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INTRODUCTION

J.HE phenomenological electrodynamics of material
media, which was formulated by Maxwell, did not take
into account in its initial form the dependence of the
dielectric permittivity and magnetic permeability on
the frequency of the electromagnetic field. Therefore,
the experimentally observed dependence of the index
of refraction on the frequency of light (dispersion, or,
more precisely, frequency dispersion), which leads in
Maxwell's theory to a dispersion of the permittivity and
permeability, was for a while a phenomenon apparently
in contradiction with the theory. However, further ad-
vances in physics particularly molecular theory and
the Lorentz electron theory, made it possible to dis-
close the microscopic reasons for the dispersion phe-
nomenon. Finally, quantum mechanics, in a definite
sense, brought to a culmination the microscopic theory
of dispersion.

On the other hand, even at the end of the preceding
century it became clear that the phenomenon of natural
optical activity can be explained by taking account of the
dependence of the permittivity not only on the frequency,
but also on the wave vector. Such a point of view was
completely confirmed by Bom's microscopic theory,
which showed that the dependence of the permittivity
on the wave vector (referred to in what follows as
spatial dispersion of the permittivity*) in naturally
optically-active (gyrotropic) media corresponds to
taking into account small quantities of the order of the
ratio of the dimensions of molecules to the wavelength
of electromagnetic radiation. In such a case we may
speak of weak spatial dispersion.

In recent years, mainly because of the very rapid
development of plasma physics and also the investiga-
tion of the electromagnetic properties of metals at low
temperatures by radio-frequency methods, it has be-
come clear that, in addition to frequency dispersion of
the permittivity, the spatial dispersion possible in
many cases is by no means small. In numerous theo-
retical papers concerning the fundamentals of plasma
physics and physics of metals, in addition to specific
electromagnetic properties of the particular media,
one also investigates as a rule general questions of
the electrodynamics of media with spatial dispersion.
The present survey is a systematic presentation of the
electrodynamics of media with spatial dispersion.

1. THE EQUATIONS OF THE ELECTROMAGNETIC
FIELD

The electrodynamics of material media differs from
the electrodynamics of the vacuum primarily in that
under the action of external fields or external field
sources there are induced in the medium densities of
charge and current. One then has the following field
equations for the electric field intensity E and the
magnetic induction B:

rot E = -j- .

divB = 0. (1.1)"

Here p 0 and j 0 a r e the charge density and c u r r e n t
density of the external s o u r c e s of the field, while p
and J a r e the corresponding dens i t ies induced in the
medium. F o r the induced c h a r g e s and c u r r e n t s one
has the continuity equation

?S + divj = 0. (1.2)

The physical meaning of the e l e c t r i c field E and
magnetic induction В which appear in the field equa-
tions (1.1) is determined by the expression for the
force F acting on a point test charge e moving in
the medium with velocity v:

l [ v , В] (Dt

In order that the system of field equations be closed,
one needs the so-called material equations, which r e -
late the density of induced currents to the electric field
intensity and the magnetic induction. Such relations es-
sentially also determine the electromagnetic properties
of the material media. However, the expression of the
material equations and, consequently, the correspond-
ing systems of field equations are not unique.

Usually the equations of the electromagnetic field
in a medium are written in the form

div D =

™tH = ~ + ^ j 0 ,

. „ i SB
г о 1 Е = - т - в Г 1

div В = 0. (1.3)

Here the magnetic field strength H and the electric
induction D are related in the following way with the
density of induced currents:

j = gj- + с rot M,

Н = В - 4 л М ,

(1.4)

(1.5)

•The term "spatial dispersion" seems to have first been used
in reference 3.

*rot = curl.
t[v, B] = v x B.
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D = E + 4nP. (1.6)

The vector M is called the magnetization and P the
polarization vector of the medium. Substituting (1.4)
in (1.1) and using (1.5) in (1.6), we obtain (1.3).

Already the fact that, in place of a single vector
quantity characterizing the medium (j), there are
two vector quantities in (1.3), shows a definite arbi-
trariness in the choice of the way of writing the field
equations, which is determined, obviously, by consid-
erations of convenience. We note that, from the polar-
ization current 9P/3t one often separates off the con-
duction current ЭР/8t — 3P'/9t + ] c o n ( j - Such a split-
ting has a real significance only for slowly varying
fields. Thus, for the case of a constant field, setting
8P'/9t = 0, we have j = jCond + c c u r l M - T n e density
of the conduction current is defined so that its integral
over a surface intersecting the medium is equal to the
total current. Therefore the introduction of the mag-
netization M is justified by the possibility of the ex-
istence of a non-zero current density also in the case
where the total current through any surface is equal
to zero.*

However, in the case of varying fields, the splitting
of the induced current into parts and also the associ-
ating with it of the displacement current (1/47Г) (9E/3t)
is quite difficult to justify. On the other hand, by means
of the relation

D'(r, i) = E(r, dt'j(r, (1-7)

one can introduce a quantity D' which enables one to
combine the densities of induced charges and current
with the displacement current in the field equations
(1.1). Then the field equations take the form (cf. ref-
erence 2, Sec. 83)

div D ' = 4я@0,

1 3D , 4л
= — —- + —1„, divB = O. (П)

Naturally the system of equations (II) must be supple-
mented by a material equation giving an explicit ex-
pression for the quantity D', which we shall from now
on call the electric induction, t

Before discussing possible material equations, we
make the following remark: as has been shown, the
formulation of the field equations may vary. In partic-
ular, the field equations (П) are formulated so that one
does not use the concept of magnetic field strength in

*To avoid misunderstanding we state that, in contrast to the
definition (1.6) of the induction D, which we ate using (and which
is also used by many authors), the electric induction is often un-
derstood in the literature to be the quantity E + 4rrP' (cf., for ex-
ample, reference 4).

tWe use term electric induction for the quantity appearing in
Eq. (1.3) and defined by relation (1.6). We hope that this will not
give rise to confusion. In each case where there may be some
question we shall, in using the term "electric induction," write
either D or D' respectively.

them. Such a form of the field equations is preferable
for the treatment of rapidly varying phenomena. How-
ever, considering the fact that often electrodynamics
is formulated on the basis of Eq. (1.3), which, in many
cases, is entirely justified, and also for the purpose
of establishing a connection with other approaches,
although we shall give preference to Eq. (II), we shall
also use (1.3). In particular, going on to a discussion
of material equations supplementing the field equations,
we first consider material equations for the case of
(1.3).

In the following we shall restr ict ourselves to the
case of linear electrodynamics. Then the material
equations are linear relations. In the case of constant
fields, the material equations corresponding to (1.3)
are written in the form

Here the quantities ejj and цц, which are called r e -
spectively the permittivity tensor and the permeability
tensor, are determined by the specific properties of
the medium and, in this sense, characterize its elec-
tromagnetic properties. Such material equations are
suitable only for sufficiently slowly varying fields. In
the case of rapidly varying fields, i.e., fields changing
rapidly compared with characteristic relaxation times
in the medium, or compared with the period of charac-
teristic normal vibrations of the medium, the situation
is more complicated. Then the state of the medium is
dependent not only on the field at the given time t, but
also on its values at preceding times. This can be un-
derstood if we consider, for example, the fact that a
relaxation process beginning in a medium under the
action of a field appearing at moment t and going to
zero during a time much smaller than the relaxation
time will, nevertheless, persist after the disappear-
ance of the field. Therefore, in the case of high-fre-
quency fields, one should, as is usually done, use ma-
terial equations of the form2

(1.8)

Relations (1.8) take account of the influence of the
prior history on the electromagnetic properties of the
medium. Here one usually speaks of temporal, or fre-
quency, dispersion.

In the case of fields which change sharply in space,
one must obviously also take account of the influence
of the field at remote points on the electromagnetic
properties of tl& medium at a particular point in space.
In fact, for example, because of transport processes
the state at a definite point in the medium will be de-
termined not only by the value of the field at that point,
but also by the field over whole regions of the medium
from which the influence of the field is transmitted as
a result of convection of matter. Therefore, in place
of the material equations (1.8), one must use spatially
non-local relations, taking account not only of temporal
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dispersion, but also of spatial dispersion. For a homo-
geneous, isotropic, and non-gyrotropic medium* such
relations can be written in the following form:

D(r, f)= \ dt' { dr'e(t—t', r —r')E(r', t'),

t
B(r, t)= \ dt' \ dt'p (t-f, r - r ' ) H ( r ' , V). (1.9)

Thus, the electromagnetic properties of such a medium
are determined by two functions depending on r and t.

We have here intentionally not written the relations
generalizing the material equations (1.8) to anisotropic
media. The point is that, if one made a direct generali-
zation of relations (1.8), there would appear a large
number of functions (two tensors depending on r, r '
and t - t ' ) which would be used for describing the elec-
tromagnetic properties of the medium. On the other
hand, in the field equations (II), there appears only one
vector quantity D' characterizing the properties of the
medium. The material equation supplementing the field
equations (П) and including both temporal and spatial
dispersions can, in the case of linear electrodynamics,
be written in the form:

t
[{r, t)=\ dt' \ dr'Ey(«-«', r, r')£,-(r\ t). (Ill)D

The dependence of the kernel of the integral on the
right side of this relation on the difference t — t' is
caused by the uniformity of the problem with respect
to the time.t In the case of a spatially homogeneous
medium, the dependence is also only on the difference
of the coordinates.

It can be shown that the material equation (III) is not
general, since it includes only the dependence of the
electric induction D' on the electric field E. In prin-
ciple, one might speak of a dependence of D' also on
the magnetic induction B. However, it is easy to see
that in the latter case, by using the field equation
curl E = — ( l /c)(3B/9t) one could always eliminate В
and write the material equation in the form (III).

The material equation (III) supplements the field
equations (II). If, however, we start from the field
equations (1.1), then we should use a material equation
relating the current density j induced in the medium
with the electric field strength:

7 i (r, t) = dr'oit(t-t', r, r') Ej(t', t'). (1.10)

By means of relations (1.7) and (1.11), it is easy to

•Concerning the material equation for an isotropic and gyro-
tropic medium, cf. Sec. 7.

tWe note that, if under the action of certain external causes
[not related to the influence of the electromagnetic field taken into
account in (III)] the medium changes its properties in the course of
time, then we can no longer speak of a homogeneity of the problem
in time, and therefore can no longer use the dependence on time
difference in Eij(r, r', t, t ').

establish the following connection between the quanti-
ties еф, г, r ' ) and ^ ( t , r, r ' ) :

dt'Oij (t, r, r'). (1.11)

Naturally, both forms of the material equation (Ш)
and (1.10), as well as the field equations (II) and (1.1),
are completely equivalent. From these relations it
follows that the electromagnetic properties of an ani-
sotropic medium are determined by a single tensor
depending on r, r ' and t —t'. It is therefore clear that
the two tensors which appear when one directly gener-
alizes formulas (1.8) to the case of spatial dispersion
cannot be independent. This fact points out the use-
lessness of introducing the magnetic field strength, in
addition to the electric induction, for an anisotropic
medium when one wants to include spatial dispersion.

The system of field equations must also be supple-
mented by boundary conditions. Let us formulate the
boundary conditions at a uniform surface of separation
of media. Here, as a result of the equation, div В = 0,
we obtain a condition of continuity of the normal com-
ponent of magnetic induction B l n = B 2 n . The normal
to the surface of separation of the media is assumed
to be directed from the first medium toward the sec-
ond. Furthermore from the equation curl E = - (1/c )x
(9B/ 9t) we obtain a condition of continuity of the com-
ponent of the electric field which is tangential to the
surface of separation, Ец = E2t- These boundary con-
ditions are a consequence of the field equations, in
which the medium properties do not appear, and there-
fore can be used both for the system of field equations
(II), as well as for (1.3).

The complication of the boundary problems, when
one takes account of spatial dispersion, manifests it-
self in the conditions related to the material equations.
A formal integration of the equation curl В = (1/c )x
(9E/8t) + (4TT/C)(J + Jo) gives the boundary condition
n x ( B 2 - B t ) = (4тг/с)(Г + i 0 ) , where n is the normal
to the boundary surface, i 0 is the density of current of
the external surface sources, and i ' is the density of
surface currents. The last quantity is defined by the
equation

2 2
•'_ { rllf i дЕ Л— ^ { и!30'

i " I
Integration is taken over an infinitestmally small depth
of the surface layer.

In the case of the field equations (1.3), where we
use expression (1.4) for the density of the induced cur-
rent, we have

4я J dl— + c[n, M 2 - .

Therefore , for the tangential components of the m a g -
netic field, the boundary conditions can be wr i t ten in
the form
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[n, H 2 - H 1 ] = ^ -

where

Thus, both the tangential components of the magnetic
induction, as well as the tangential components of the
magnetic field intensity, even in the absence of exter-
nal sources of surface currents, may have disconti-
nuities at the surface of separation of two media.

The last boundary condition, which is a consequence
of the equation div E = 4тг (p + p 0) has, for the case of
Eq. (II), the form Т>'2а-Щп = 4Tr((f +cr 0). Here a0 is
the surface density of charge of the external sources,
while

2
a' = -^\ dl di\[n, [D, n]].

l
An analogous boundary condition can also be written
for the field equation (1.3).

It should also be remarked that, in order to be able
to solve the system of field equations, one must also
have an expression for the induced surface density of
current (and also of charge). In other words, one
must have surface material equations.* Thus, sum-
ming up, we may say that the field equations (П), sup-
plemented by the material equations (III) (and also by
surface material equations), when one takes account
of the boundary conditions

E 1 ( = E 2 [n, B 2 -B 1 ] = ^ (IV)

together with the conditions at infinity, enable us to de-
termine uniquely the electromagnetic field in any part
of space.

2. THE COMPLEX PERMITTIVITY TENSOR

The electromagnetic field in the medium can be rep-
resented by means of a Fourier expansion as a set of
monochromatic components whose time dependence is
determined by the functions e*w*. Such an expansion
is also called a spectral resolution. For a monochro-
matic electromagnetic field with frequency w, the ma-
terial equation (Ш) takes the following form

where

ei;(co, r, r ' )= r, r').

(2.1)

(2.2)
o'

The tensor e y (t, r, r ' ) which establishes a linear r e -
lation between the real quantities E (r, t ) and D (r, t )
is obviously a real function. The quantity £ij(w, Г, Г'),
defined by the relation (2.2), may generally be complex.

•Examples of this type of surface material equations were con-
sidered in reference 5. (Cf. also reference 6, Sec. 18.)

We denote the real and imaginary parts of еу(ш, г, г ' )
respectively by ец(ш, г, r ' ) and ei'j(a), r, r ' ) , i.e.,

Bi, (w, r, r') = eij(co, r, r') + ie,'lj (to, r, r').

From relation (2.2) it follows that

е о ( - ш , г, i') = eft (to, r, r'), ej,- (to, г, г') = е|,-( —со, г, г'),

еу(со, г, г ' ) = — е'[,( — со, г, г'). (2.3)

И the medium is unbounded in space and homogene-
ous, the kernel of the integral equation (III) is a func-
tion of the difference of coordinates;

D[(T, /)= ^ dt' \dr'i,ij(t-t', T-T')EJ(I', t). (2.4)
—OO

In this case it is convenient to expand the electromag-
netic field in a Fourier integral, representing it as a
set of plane monochromatic waves whose dependence
on coordinates and time is given by the functions
e^T-ico^ For such waves the relation (2.4) takes
the following form:

~)'\ = e i ; (со, (2.5)

w h e r e

oo
ei;- (to, k) = \ dteimt \ dre-ikrEii (t, r) = [ rire-ikrei; (со, г).

il J J (2.6)

In the following we shall call the quantity еу(ш,к) the
tensor of the complex dielectric permittivity of the
medium. It should be emphasized that the dielectric
tensor (2.6) can be introduced only for unbounded and
spatially homogeneous media, for which the material
equation has the form (2.4). The dependence of the
tensor ejj(u),k) on the frequency of the field is de-
termined by the frequency dispersion, while the de-
pendence on the wave vector k, determined by the
non-locality of the material equation (2.4), character-
izes the spatial dispersion.

The quantity €y(w,k) is , generally speaking, a
complex function of the real variables ш and k. From
the relation (2.6), taking account of the fact that the func-
tion €ij(t, r ) is real, we obtain the following relations
for the real part e{j(w,k) and the imaginary part
ejj(a),k) of the dielectric permittivity tensor:

е-,(-ш, - k ) = 8y(co, k), ey(-co, - k ) = -tlj(со, k),

e?;-(«o, к) = е(,(-а>, - к ) . (2.7)

For an unbounded and spatially homogeneous medium,
one can introduce one more quantity characterizing the
electromagnetic properties of the medium. To do this
we expand the electromagnetic field in a Fourier inte-
gral in the coordinates, representing it as a superposi-
tion of fields whose dependence on the coordinates is
given by the factor е ^ ' Г . For such fields the mate-
rial equation (2.4) takes the form

D[(t)= ^ dt'eij(t-t',k)Ej(t'), (2.8)

where
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ец(1-1', к ) = ец(1-Г, r) . (2.9)

The tensor ei j(t .k), like ец(ш,к), is a complex
quantity whose real and imaginary parts have the
following properties:

= t'u(t, - k ) , =-e?,-(i, - k ) . (2.10)

The dependence of е^(ш,к) on wave vector leads
to the result that even in an isotropic and non-gyro-
tropic medium the dielectric permittivity retains es-
sentially a tensor form. In fact, in such a medium
because of the dependence of €ц(ш,к) on the vector
k, in addition to the tensor бц, one can also form the
tensor kjkj. Therefore, the dielectric tensor in an
isotropic and non-gyrotropic medium can be repre-
sented in the following form:7

e i 5>, к) =
к,к - j ^ e i ( m , k). (2.11)

The coefficient on the right side of formula (2.11),
which multiplies the transverse tensor, we shall call
the transverse dielectric permittivity [е* г (ы,к)] ,
and the corresponding coefficient of the longitudinal
tensor the longitudinal dielectric permittivity
[el(w,k)] of the isotropic medium. These quantities
are complex functions of frequency and wave vector.
Introducing the real and imaginary parts of the longi-
tudinal and transverse dielectric permittivities, we
obtain from relation (2.7):

E*r'(to, &) = 8 t r ' ( - c o , k), e t r"(co, k) = - e t r " ( - со, k),

el'(w, /с) = е 1 ' (-ш, к), el" (<в, к) = - e 1 " (-<>>, к). (2.12)

We have already spoken of the two forms of the
field equations in a medium. It is useful now to con-
sider the relation of the material equations (1.9) and
(III) for a spatially homogeneous isotropic and non-
gyrotropic medium, and also the connection of the
Maxwell equations (1.3) and (П). However, before do-
ing this, we consider some consequences which follow
from the material equations (1.9).

For a monochromatic electromagnetic field with
frequency ш we have from equations (1.9)

r> r ' ) E (' B(r)= С r, r')H(r'),

(2.13)

where

CO CO
e(to, r, r')={ dteiall(t, r, r'), (i(co, r, r') = { dteiat\i.(t, r, r')

* ° (2.14)
Because of the rea l i ty of the fields D ( r , t ) , E ( r , t ) ,
B ( r , t ) and H ( r , t ) , obviously the functions e ( t , r , r ' )
and j2(t, r, r ' ) a l so a r e r e a l . Then, from e x p r e s s i o n s
(2.14), in the s a m e way a s for (2.3), it follows that the
real parts of the quantities € (w, r, r ' ) and ц(ш, г, r ' )
are even functions of the frequency, while their imagi-
nary parts are odd functions of the frequency.

In the case of a spatially homogeneous and unbounded
medium, the dependence of e (t, r, r ' ) and ft (t, r, r ' )
on coordinates is a difference dependence. Expanding
the field in plane monochromatic waves eik-r-ioit) w e

obtain from the material equations (1.9) the following
relation between the quantities D, E and В, Н in such
a wave:

= e(co, k)E, = |i(co, к) Н, (2.15)

where
со

e ( ( o , k ) = { d t e i a t \

CO
(i((o, k) = \ dtei

, r) = { dre-ikre(co, r),

^'ii (t, r) = [ rfre~ikrn (со, г). (2.16)
J

The quantities e (ш,к) and ц (w,k) in the following
will be called respectively the permittivity and per-
meability of the isotropic medium. From the relations
(2.16) we obtain the following formulas, characterizing
the properties of the real and imaginary parts of these
quantities, analogously to (2.12):

s'( — со, k) = E' (СО, к), е"( —со, fc) = — e"(co, k),

ц'( —со, *) = ц,'(се, к), ц"( —со, fe)= — ц"(со, к). (2.17)

We now t u r n to the sett ing up of t h e r e l a t i o n we a r e
i n t e r e s t e d in finding between the field equations (1.3)
and (II). Equations (1.3), for fields depending on t ime
and coordinates a s e ^ * r ~ i a ; t , take the following form:

;kEe(co, k) = к), [к, E]=-^-

к)Е + ^}0(ш, к), =,0, (2.18)

where р о (ш,к) and J0(o),k) are the Fourier compo-
nents of the charge density and current density of the
external sources of the field.

In the same way, the field equation (П) in this case,
when we include expression (2.11) for the dielectric
tensor, takes the form:

, fc) = 4itQo(co, k), [k, E] = ^ B, kB = 0,

ilk, B] t = - • 2 { ( e i J . ! - i £

J

(2.19)

F r o m a compar i son of (2.18) and (2.19) it i m m e d i -
ately follows that

г1 (а, /с) = е(со, к). (2.20)

To establish the relation of the quantities ц (со, к)
with the quantities el(w,k) and e t r(co,k) we proceed
as follows. We subtract from the equation of the sys-
tem (2.18) which contains on its right side the current
density of external field sources J 0 (w,k) the corre-
sponding equation of system (2.19). Making use of r e -
lation (2.20) and eliminating the magnetic induction В
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from the difference by using the field equation

= —[k, El (2.21)

we obtain

From this we then have the following relation:7

1 - l
ц (со, k)

(2.22)

w h i c h e n a b l e s u s to e x p r e s s the m a g n e t i c p e r m e a b i l i t y

of the isotropic medium /x (ш, к) in terms of the longi-
tudinal and transverse dielectric permeabilities.

In the case of an isotropic and non-gyrotropic me-
dium, the material equation (2.5) can also be written in
a somewhat different form, whose use is in many cases
more convenient for establishing the relation of the
field equations in the forms (1.3) and (II). According
to expression (2.11), the material equation (2.5) for an
isotropic, non-gyrotropic medium takes the form

k(fcE)
' = etr(co, &)E-[etr(co, k)-el(a, Щ- (2.23)

Using the field equation (2.21) and also relations (2.20)
and (2.22), the material equation (2.23) can be t rans-
formed to

= e(co, со ц(со, к) L

w h e r e w e have in troduced the notat ion

, B],

, k)= -

(2.24)

(2.25)

We shall call the quantity x(w,k) the magnetic sus-
ceptibility of the isotropic medium.

Naturally, both forms of the material equations for
the field (2.23) and (2.24), as well as (2.15), are com-
pletely equivalent. In each of them there appear two
functions of the frequency and wave vector which de-
scribe the electromagnetic properties of the isotropic
and non-gyrotropic medium.

In concluding this section , we introduce the concept
of a complex conductivity tensor of the medium. As
already mentioned above, in place of the field equations
(II) and the material equations (Ш) one can use the field
equations (1.1) and the material equation (1.10). The
tensor &ij(t, r, r ' ) relating the current density J in-
duced in the medium to the electric field intensity has
properties analogous to the properties of eij(t, r, r ' ) .
In particular, in the case of a spatially unbounded and
uniform medium the tensor o-jj(t, r, r ' ) is a function
of the difference of the coordinates. Then for fields de-
pending on the time and coordinates as e^'r-icot w e

get

/\ = оц(а>, k)Ej, (2.26)

oo
(Ту (со, к) = [ dte™1 \ аге-*к'оц (t, r). (2.27)

о J

We shall call the quantity стц(ш,к) the complex con-
ductivity tensor of the medium. From relations (1.11),
(2.6) and (2.27) we obtain the relation between the di-
electric tensor and the conductivity tensor:*

Eij (со, к) а0 (со, к) 6+ (со). (2.28)

Using (2.28), one can easily obtain relations character-
izing the properties of the conductivity tensor оц( ш, к)
when there are corresponding relations for the dielec-
tric permittivity tensor [cf., for example, Eq. (2.7)].

For an isotropic and non-gyrotropic medium, in
analogy to formula (2.11), we can write

ay (со, k) = f6y-4r-V t r(«. к) + ^г°Ч<о> к), (2.29)

where a^r and cr- are respectively the transverse and
longitudinal conductivity of the medium. Then from
formulas (2.11), (2.28), and (2.29) we have

3. DISPERSION OF THE DIELECTRIC PERMITTIVITY
TENSOR

In the preceding section we have introduced the con-
cept of a dielectric permeability tensor of the medium
ец(си, к) , taking into account both frequency and spa-
tial dispersion. Here we consider the behavior of
£ij(u,k) for small values of ш and к and show the
relation of this tensor to certain quantities character-
izing the electromagnetic properties of the medium.

An electromagnetic field which is variable in time
may also be variable in space. In the case of fields
which change rapidly in space, one must take into ac-
count the effect of field at distant points on the elec-
tromagnetic properties at a particular point in space;
i.e., we must take into account spatial dispersion. How-
ever, if the electromagnetic field varies sufficiently
smoothly over space, one can restrict consideration
to frequency dispersion and neglect spatial dispersion.
On the other hand, it is also possible to have a case
where a field which is non-uniform in space can be
considered to be static, and consequently one can neg-
lect the frequency dispersion. The electromagnetic
properties of the medium in these two limiting cases
are described by the limiting expressions for the ten-
sor €jj(oj,k) corresponding to к/со — О and w/k—•O
respectively. Let us consider these limits on the ex-

•The function S+(w) is defined as follows:

w h e r e
where the symbol P means that the singularity at <u = 0 is to be
understood in the sense of the principal value.
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ample of an isotropic and non-gyrotropic medium. In
this case, the dielectric tensor (2.11) contains two
functions e t r (o),k) and e^(w,k). Let us begin with
a consideration of the longitudinal dielectric permittiv-
ity е ^ ш . к ) .

In the static limit, i.e., as w — 0, the external
sources of the field may, generally speaking, produce
an inhomogeneous electric field in the medium. Then
the electric field in the medium will be derivable from
a potential, i.e.,

E = — grad<D, (3.1)

I n t h e c a s e w h e r e t h e s o u r c e o f t h e f i e l d i n t h e m e -

d i u m i s a p o i n t c h a r g e a t r e s t , t h e c h a r g e d e n s i t y i s

e q u a l t o

Q0 (r) = ев (r - r0).

Therefore the e l e c t r o s t a t i c potential of a point charge
in an i s o t r o p i c medium, according t o (3.3), has the
form:

The difference of the function e ^ O . k ) from unity h a s
the consequence that the field of a point charge in a
medium differs f rom the Coulomb field. In p a r t i c u l a r ,
if, for example,

~^ (3.5)e1 (0, k) = 1 + -^-p ,

then we obtain from (3.4) the express ion

|r-rol
(3.6)

Such a potential corresponds to the Debye screening
of the field of the point charge in the medium (cf. ref-
erence 8, Sec. 74). The Debye screening results in a
weakening of the field at large distances from the
charge and is caused by the fact that the integrand in
formula (3.4) in the case where e^(0,k) has the form
(3.5) remains finite for к = 0. Here it is important
that the second term in formula (3.5) is positive. Thus,
in order to have Debye screening of the electrostatic
field in an isotropic medium, it is sufficient that the
static dielectric permittivity e*(0,k) for k = 0 have

a singularity of the type 1/k2 and remain positive. The
quantity r g c r defined by the relation

lim k*[el(<o, k)-l], (3.7)
/ А Оfc~>0

characterizes the distance over which the weakening
of the static field of the charge in the medium occurs.

In the opposite limiting case, i.e., for k/cu — 0, the
quantity

e1 (ш, 0) = lim e1 (со, к)
fe/0

(3.8)

where Ф is the scalar potential of the field.
We expand the functions E and Ф in three-dimen-

sional Fourier integrals in the coordinates r :

E(r) = { dkeikrE, Ф(r) = ^ йке*кгФк. (3.2)

Then according to (3.1) we have

E = -гкФ к .

Substituting this expression in the field equations (2.19),
we obtain the following equation for the scalar potential

*k :

= 4яро(О, к). (3.3)

is the usual dielectric permittivity of the medium, tak-
ing into account only frequency dispersion. It should
be remarked that in this limit, corresponding to the
neglect of spatial dispersion, the dielectric permittiv-
ity tensor of an isotropic medium should have the form

e (со) 6ц.

T h i s f o l l o w s f rom the fact that, in an i s o t r o p i c m e -

d ium, w h e n w e n e g l e c t spat ia l d i s p e r s i o n , w e c a n f o r m

only a single second-rank tensor бц. Starting from
this, we conclude that*

(со, O) = etr(co, 0) = e(co). (3.9)

Obviously, in the l imit u> — 0 the quantity e (u>) c a n -
not give r i s e to any s c r e e n i n g of the stat ic field in the
medium, p r i m a r i l y because it not only does not have a
s ingular i ty ~ l/k 2 , but in g e n e r a l does not depend on
the wave vec tor k.

F r o m our p r e s e n t a t i o n it i s c l e a r that t h e r e can, in
genera l , exist two different l i m i t s for the longitudinal
dielectric permittivity е*(ш,к) for w= 0 and к = 0.
In those cases where these limits exist, we shall use
for them the following notation:

e1 (0, 0) = lim lim е1 (со, к),
<i)->-0 А/Ш-+0

e> (0,0) = lim lim e1 (со, к). (3.10)
ft->-0 а/к ->о

Thus, the point ш = 0, к = 0 can, in certain cases, be
an essentially singular point for the longitudinal die-
lectric permittivity e-l (w, к ) .

It should be remarked that the dielectric permittiv-
ity e (w), taking into account only frequency dispersion,
may have a singularity in the region of small ш. For
conductors, for example, at low frequencies (cf., for
example, reference 2, Sec. 62)

4я£(Т08 (CO) = - (3.11)

where ст0 is the static conductivity of the conductor.
For dielectrics in the region of low frequencies, e (w)
has no singularity:

e(co) = eo, (3.12)

where e0 is the static dielectric constant.

*For the case of an isotropic and non-gyrotropic medium, the
spatial dispersion of the dielectric permittivity was treated in
reference 9. However, it was assumed there that Eq. (3.9) also
holds for к Ф 0.
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We now consider the limiting transitions to the
cases со = О and к = 0 for the transverse dielectric
permittivity of the medium e t r (co,k). First of all,
we note that the electromagnetic field equations (1.3)
allow, in addition to the electrostatic field, the pos-
sible existence in the medium of a constant magnetic
field produced by external sources. It was not by
chance that we used the field equations in the form
(1.3). The point is that the field equations (II) are in-
convenient for describing a constant magnetic field in
the medium. In fact, let us consider the case where
the electric field intensity E in the medium is equal
to zero, while the magnetic induction В * 0. The ma-
terial equation (2.23) is then obviously not applicable,
since it does not contain the magnetic induction В ex-
plicitly. The material equation written in the form

(2.24) is also not very suitable for describing a con-
stant field in the medium. For the case of a constant
magnetic field, it is more convenient to use the Max-
well equations (1.3) and the corresponding material
equations (2.15).

We investigate the conditions under which we may
speak of a constant field in the medium. In the case
of slow change of magnetic field with time, there ap-
pears in the medium a weak, variable electric field
determined by the equation

с dt

W e n o t e t h a t i t i s a l s o p o s s i b l e t o h a v e , i n g e n e r a l , a

c o n s t a n t e l e c t r i c f i e l d w h i c h i s n o t s m a l l . T h e o r d e r

o f m a g n i t u d e o f t h e s t r e n g t h o f t h e v a r i a b l e e l e c t r i c

f i e l d E c a n b e f o u n d b y e v a l u a t i n g b o t h s i d e s o f t h e

a b o v e e q u a t i o n . If w i s a c h a r a c t e r i s t i c f r e q u e n c y ,

a n d 1/k a c h a r a c t e r i s t i c d i m e n s i o n o f t h e i n h o m o g e -

n e i t y o f t h e m a g n e t i c f i e l d i n t h e m e d i u m , t h e n , a c -

c o r d i n g t o t h i s e q u a t i o n , E ~ ( c o / c k ) B . O n t h e o t h e r

h a n d , f r o m t h e f i e l d e q u a t i o n s ( 1 . 1 ) a n d ( 1 . 4 ) w e h a v e

rot B= у ~ (E + 4лР') + 4я rotM 4л .

c Jcond*
(3.13)

F r o m t h i s w e s e e that the m a g n e t i c f ie ld in the m e d i u m

c a n b e r e g a r d e d a s c o n s t a n t if, in t h i s equat ion, w e c a n

neglect the term ( l / c ) (д/dt) (E + 4irP'). For dielec-
trics, because of the absence of a conductivity, the
quantity E + 4тгР' coincides with the electric induction
D, and therefore this term in (3.13) for small со is of
order ie 0(co/c)E where e0 is the static dielectric con-
stant of the dielectric. For conductors, the quantity
E + 47rP' differs from the induction D by a term due
to the conduction current. Since the singularity of the
dielectric permittivity of a conductor in the region of
low frequencies is, as we pointed out above in (3.11),
related to the conductivity, we conclude that ( l /c )x
O/9t)(E + 47ГР') ~ (ico/c) e 0E, where the quantity

e0 remains finite for ш — 0.* Thus for such media,
the term pointed out above in (3.13) can be neglected
if V e0co /ck « 1. The transition to a constant mag-
netic field means a transition in the material equa-
tions to the limit co/k — 0, and consequently the static
magnetic permeability should be defined from the r e -
lation (2.22) as follows:

(3.14)MO, 0) = lim lim { l _

From this formula it follows that the deviation of the
static magnetic permeability from unity (or, what is
the same thing, the deviation of the static magnetic
susceptibility from zero) means that the right side of
relation (2.22) is different from zero in the limit of
constant field, i.e., for co/k — 0.

In the opposite limiting case for k/co — 0, we may
speak of weak spatial dispersion and expand the quan-
tities eMto.k) and e*-r(co,k) in series in powers of
k/co:

еЦш, fc)*8(o)) + a((o)-^l , Ef(co, к) ъ е (со) + f, (со) - ^ .

(3.15)

Then from relation (2.22) we have

M<o,0)= l i m H-K fe) = [ l + a(co)-P(co)] l . (3.16)

This quantity does not depend on the wave vector k,
and in the limit of со = О it does not at all coincide with
the static magnetic permeability defined by relation
(3.14).

It is especially important to emphasize that, when
we speak of the frequency dispersion of the magnetic
permeability corresponding to the material equations
(1.8), we are not talking about the quantity цш(ш, О)
= lim д(со,к) but of the quantity д(со,к) in the

к/со— о
neighborhood of the point co/k = 0. Under specific
conditions, in the neighborhood of this point the quan-
tity ц (со, к) may be essentially dependent on the fre-
quency of the field and not dependent on the wave vec-
tor k. In the language of the quantities el(co,k) and
e^ r(co,k), this means the following: first of all, in
order for the static magnetic permeability of a me-
dium to be different from unity, or, as one says, in
order for the medium to have magnetic properties, it
is necessary that the expression e* r — 6̂  in the vicin-
ity of the point co/k = 0 have a singularity of the type
k2/co2. For nonmagnetic media this expression does

*We note that the quantity e0 does not coincide with the static
dielectric permittivity of the conductor, since E + 4wP' differs
from the induction D. In the low frequency region, for a conductor,

e(co)%e0-|—^p. .

In the literature, however, the quantity e0 is frequently called the
dielectric constant of the conductor. The second term in this ex-
pression is related to the conduction current.
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not have such a singularity in the neighborhood of the
point w/k = 0, and therefore the static magnetic per-
meability of such media is /%(0, 0) = 1. Secondly, if
in the expansion of the function e t r — cl in series in
powers of w/k the coefficient of the term k2/w2 is
independent of k, but depends on frequency w, then
the quantity /u (w,k), defined by the relation (2.22),
will be a function only of frequency in the neighbor-
hood of the point w/k = 0. It is just this quantity, and
not the quantity цш(ш, 0) defined by formula (3.17),
which has the significance of a magnetic permeability
of the medium when we take account of the frequency
dispersion. In the following, in order not to confuse
this quantity with цш(ш, 0), we shall denote it by
/%(w). From all we have said we conclude that the
frequency dispersion of the magnetic permeability of
a medium мк(^) has a meaning only in a restricted
region of frequencies in the neighborhood of the point
ш/к = 0, where 1/k is a characteristic dimension of
the inhomogeneities of the field in the medium. In the
limit of w = 0, this quantity naturally coincides with
the static magnetic permeability (3.14). It should be
mentioned that the possible existence of two limits
Mw(0, 0) and nk(0, 0) is a consequence of the fact that
the point к = 0 and w = 0 can, generally speaking, be
an essential singularity for the dielectric permittivity
tensor ejj(ai,k).

A completely analogous situation holds in the case
of anisotropic media. Thus, in the limit of ы/к — 0,
the scalar potential of the field produced by a point
charge in an anisotropic medium is determined by the
following expression:

Ф(г) = - dk
0, k)kj

(3.17)

If the function kj€ij(O,k)kj remains finite for k— 0,
then, as in the case of an isotropic medium, one can
have a screening of the electrostatic field of the charge
at large distances in an anisotropic medium also. Here
the character of the screening of the field in the aniso-
tropic medium will, in general, depend on direction.

In the opposite limiting case, when к/ш — 0, the
quantity е^(ш, 0) is a dielectric permittivity tensor
which takes into account only the frequency dispersion
and completely neglects spatial dispersion. The func-
tion ен(со, 0) can, in general, have a singularity in the
region of low frequencies w. For conducting media,
for example, the function ejj(w, 0) for small w has a
singularity of the type l/oi, while for non-conducting
media it remains finite.

From the above, it follows that the point w = 0,
к = 0, just as in the case of an isotropic medium, may
be an essential singularity for the dielectric permittiv-
ity tensor, and there may exist two different limits of
the tensor е^(ш,к) for ш = 0 and к = 0. A manifesta-
tion of this fact is the existence of anisotropic media
with non-zero magnetic susceptibility. All the argu-
ments presented above concerning the possibility of

regarding the magnetic field in an isotropic medium
as constant remain valid also for an anisotropic me-
dium; i.e., the magnetic field in the medium can be r e -
garded as constant only in the neighborhood of the point
ы/к = 0, where ш is a characteristic frequency and
1/k is a characteristic size of the field inhomogeneity.
In the neighborhood of this point, the dielectric permit-
tivity tensor can have a singularity ~ (k/w)2 which
corresponds to the presence in the medium of a non-
zero magnetic susceptibility.

4. ENERGY OF THE ELECTROMAGNETIC FIELD
IN THE MEDIUM

External sources of the field, which produce an
electromagnetic field, change the energy of the medi-
um. The change in energy of the medium is actually
determined by the interaction of the electromagnetic
field with the sources of the field. Such an interaction
energy is determined by the work done by the field on
the external sources. We note that the work done dur-
ing a time dt by the electric field E (r, t ) on the ex-
ternal currents in the volume dr, characterized by a
current density j o ( r , t ) , is equal to

E(r, t)jo(r,t)drdt. (4.1)

Therefore, the total work done by the field over all
space, during the time of action of the external sources
up to the time t, is given by an integral of this expres-
sion,

= ^ dt' t')jo(r, t'). (4.2)

According to the law of conservation of energy, the
work done by the field must be compensated by the
change in energy of the electromagnetic field which
we denote by W. The rate of change of the field en-
ergy is given by the relation

dW
~dT

dA
dt 0jo(r, t). (4.3)

By using the field equations (1.3), we can eliminate the
current density of the external sources from the right
side of relation (4.3). We then get

dW
dt

On the other hand, to eliminate the current density of
the external sources one can use the system of field
equations (ID. In this case

dW
4л V dt

- - ^ - d i v [ E , B ] } . ( 4 . 5 )
4Л l ' J

For an unbounded material medium (which is the
only case we shall consider here), the field at infinity
can be assumed to vanish. Therefore the surface in-
tegrals to which the expressions in formulas (4.4) and
(4.5) reduce, since they contain divergences also can
be assumed to vanish. If, inside the material medium,



468 A. A. R U K H A D Z E a n d V. P . S I L I N

the magnetic induction В and the magnetic field inten-
sity change continuously, then the rate of change of the
energy in the unbounded medium is given by formulas
(4.4) and (4.5), in which we may drop the terms con-
taining divergences. In particular,

dW
dt ( 4 - 6 )

By using formula (4.6) we can get an expression for
the amount of heat liberated in the medium. Let us
consider a monochromatic field whose time depend-
ence is е~*ш*. Averaging the expression (4.6) over
the time, we get the average energy accumulating in
the medium, or, what is the same thing, the amount
of heat liberated in the medium per unit time. Because
of the fact that the electric field is a real quantity, it
can be represented in the form

E(r, t)=E(t, to)е~ш + E* (r, co)eia;. (4.7)

We can similarly represent the magnetic and electric
induction. Substituting such expressions in formula
(4.6) and taking the time average, we get

Q = -^Ц dr {E (г, со) D* (г, со) - E* (г, со) D' (г, со)}. (4.8)

Since for a monochromatic field the material equation
(III) takes the form (2.1) and, because, in addition, r e -
lation (2.3) is valid, formula (4.8) can be written as
follows:

e&(<D, г, г')-ел(а», г, г')}£4(г, со) Щ (r\ со).

(4.9)

The right side of this relation determines the energy
accumulating per unit time in the medium (or, corre-
spondingly, given out by the medium*) as a result of
the appearance in the medium of a monochromatic
electromagnetic field due to external sources.

In a homogeneous medium with weak absorption, in
treating the propagation of plane electromagnetic waves
e-icot+ik.r, o n e c a n approximately treat к as a con-
stant. Then, using formula (4.9), one can obtain the
following expression for the heat liberated per unit
time per unit volume of the body:

• £ = ^ {etj (со, к) - вн (со, к)} E*EV (4.10)

Under conditions where there is practically no heat
liberated, one can neglect the dissipation and consider
the medium as nonabsorptive. Then we can assume
that the equality

E,7 (со, г, г') = е3ч(со, r', r) (4.11)

i s s a t i s f i e d . In the c a s e of a h o m o g e n e o u s m e d i u m ,

w e then h a v e

e?,(co, k) = e,4 (со, к ) . (4.11 ' )

*The latter is possible when the medium is not in a state of
thermodynamic equilibrium. In order not to complicate the presen-
tation, we shall speak of an accumulation of energy.

Thus, for a nonabsorb ing m e d i u m the d i e l e c t r i c p e r -

m i t t i v i t y t e n s o r i s H e r m i t i a n . F o r an i s o t r o p i c and

n o n - g y r o t r o p i c m e d i u m , w e should u s e the e x p r e s s i o n

(2.11) a s the d i e l e c t r i c p e r m i t t i v i t y t e n s o r . Then f o r -

m u l a (4.10) b e c o m e s

- k) - e l >1 k)

-8*'(CD, k)]|[k,E]p}

= —^ {e1" (со, k) | (kE) |2' + e*1" (со, к) | [к, Е] |2}. (4.12)

The first term on the right side of formula (4.12) de-
termines the absorption of the longitudinal field in the
medium, and the second the absorption of the t rans-
verse field. In this sense, we may speak of longitudi-
nal and transverse losses in the medium.

For material media which are in a state of thermo-
dynamic equilibrium as a result of external actions
the entropy increases and therefore heat is liberated.
In this case Q is positive and, from the expression
(4.12), we find

e1" > 0 and e t r" > 0. (4.13)

We note that, by using relations (2.15), (2.20), and
(2.22), the right side of formula (4.12) can be written
as

Q = -^- {(e* — e)"ЕЕ* + (jx* - (x) HH*} = ~ {г" | E j 2 + \i" \ H |2}.

(4.14)

This expression can also be obtained directly by taking
a time average of formula (4.4).

We note that from the inequalities (4.13) it generally
does not follow that the imaginary part of the magnetic
permeability д" is positive. Such a condition does not
follow in the general case even from formula (4.14),
since the transverse electric field Etr and the mag-
netic field are related to one another. This last point
means that, in order for the expression (4.14) to be
positive, it is not necessary that the condition ц." > О
be satisfied.

It is of interest to consider the case of almost
monochromatic fields and to determine the rate of
systematic change in energy corresponding to this
case, ш fact, when we usually speak of a field con-
sisting of a superposition of monochromatic fields with
frequencies close to some value со, this means that in
the Fourier expansion

с
E(r, 0 = \ da'e-M'E(г, со')

the quantity E (r, w') as a function of со' has a sharp
maximum in the neighborhood of the points a/ = ±co.
The two frequency values (±co) appear because of
the fact that the field E (r, t ) is real, so that E*(r, w)
= E (r, - со). All this permits us to represent an al-
most monochromatic field in the form

E (r, t) = Eo (r, t) e-*»< + E* (r, t) e"»', (4.15)
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where E 0 ( r , t ) a s a function of t i m e changes very l i t t le
over a t i m e equal to the per iod 2ir/co. It i s obvious
that

E 0(r, i ) =

о

EJ(r, 0 = \

-<•>'> f E ( r , со'),

е~г <ш+ ' ) ' Е* (г, со').

In the integrands of such integrals, because of the fact
that E (r, со) is a function with a sharp maximum, we
can make an expansion in powers of со' =F СО. This in
particular permits us to write the following approxi-
mate relations:

CO
•j- E o (r, 1) ^ i \ dco' (со — to') E (г, со'),

E* (r, t) ^ —i { dai' (со + со') Е* (г, со'

The o c c u r r e n c e on the r ight s ides of t h e s e e x p r e s s i o n s
of the quantities со ± со' has the result that, for a suf-
ficiently narrow distribution of field in frequency, the
function Eo actually is a slowly varying function.
There is an analogous situation for the electric and
magnetic inductions.

We now obtain the approximate expression for the
time derivative of the electric induction of an almost
monochromatic field and pose the problem of express-
ing it in terms of the slowly varying function Eo (r , t ) .
According to formula (2.1) we have

(r, t) = — i \ г, г') Ej (г, cor

Because of the fact that, in our case of an almost mon-
ochromatic field, the main contribution to the со' inte-
grations comes only from the frequency regions near
to ± со, we can, in the integrands on the right side of
this relation, make an expansion in powers of со' ± со.
Retaining only the first two terms of such an expansion,
and also making use of the expressions obtained above
for 9E0/9t and 9Eo/9t, we find

df ed (со, r, r') Eoj (r\ t)

шеш \ dr'e*j (со, г, г') E*j (г ' , t) + е~ш \ dr

9(0
„ (со, г, г')] - е«< J df Ж ^ ' " ± [соеГу (со, г, г')].

This expression, as well as formula (4.15) and the cor-
responding expression for the magnetic induction, en-
able us to determine the quantity of interest to us, the
rate of systematic change of energy of an electromag-
netic field in the medium. In fact, substituting these
expressions in formula (4.6) and averaging over the
period 2ir/co, we obtain for the rate of systematic
change of electromagnetic energy the following ex-
pression:

dEoj(r', t) д

- ^ К „ ( с о , г, г) ]at

+ Ed(f,t)
9EQJ (r, t)

dt

(4.16)

where Q is the heat liberated per unit time and is
given by formula (4.9).

Formula (4.16) enables us to give a quantitative
criterion for a nonabsorbing medium. From Eq. (4.11)
we can give the conditions when the expression for the
heat liberated, Q, is much smaller than the sum of
all the remaining terms on the right side of formula

|(4.16). In this case, taking eij(co, r, r ' )
we get from formula (4.16),

e|i(co, r, r ' ) ,

• dW^ dU di

1 Eo*4 (r, t) Eo, (r', t) ± [«*„• (со, r, r')] } . (4.17)

It is important that for a nonabsorbing medium the
rate of systematic change of energy of the electromag-
netic field is given, according to expression (4.17), by
a total time derivative. Therefore the quantity U can
be considered as the average energy of the electro-
magnetic field of the medium.

For plane waves whose dependence on space coor-
dinates has the form e ^ * r , we obtain from (4.17)

U = i 5 d r »+ Е * ы Е*

In the case of an isotropic and non-gyrotropic me-
dium, according to relation (2.11), we can write the
right-hand side of formula (4.18) as

± E'o | ^

(4.19)

Here E\ is the longitudinal (parallel to the vector k)
component of the electric field, and E(jr is the t rans-
verse component (div EQ = 0 ) .

From the condition that expression (4.19) be posi-
tive, there follow in particular the inequalities

(4.20)

which for к = 0 coincide with one another and go over
into the well-known inequality (cf. reference 2, Sec. 64)

By using expression (4.19) and also relations (2.15),
(2.20), and (2.22), it is not difficult to show that for an
isotropic and non-gyrotropic medium formula (4.18)
goes over into the form
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и = 4- (4.21)

This last expression is very convenient to use in the
case of nonabsorbing isotropic media, when one con-
siders only frequency dispersion of the dielectric
permittivity.2

In conclusion, we emphasize that one may speak
about an average energy of the electromagnetic field,
U, as defined by formulas (4.18), (4.19), and (4.21),
only under the condition that the absorption in the
medium be negligibly small.

5. ELECTROMAGNETIC WAVES IN A MEDIUM

In the absence of external sources, electromagnetic
fields are still possible in vacuum. Such fields are
called electromagnetic waves. In particular, they may
be plane monochromatic waves whose time and coordi-
nate dependence is е"с*г~*ш*') where cu and к are real
quantities.

In the absence of absorption, it is also possible to
have such waves in a medium. On the other hand, in
absorbing media the situation is different. If a certain
electromagnetic field appears in such a medium at
some initial time as a result of the action of external
forces, then in the succeeding moments after the com-
pletion of the action of the external forces, because of
the presence of dissipative processes, the field in the
medium will in general be damped. In particular, it
is possible to have damped oscillations of the field,
i.e., electromagnetic waves which are damped in time.

ш this section we shall consider the question of the
dependence of the electromagnetic field on time in an
unbounded, homogeneous medium in which, at the ini-
tial time t = 0, the external sources produce an elec-
tromagnetic field, while in the succeeding time the
external sources of the field do not act.

To solve such an initial value problem it is not
enough to know the magnetic induction В (г, 0), the
electric field E (r, 0), and the electric induction
D'(r, 0) at the initial time t = 0. In fact, on the right
hand side of the material equation (III), which in our
case of a homogeneous, unbounded medium has the
form (2.4), there enter the values of the electric field
both for t > 0 as well as for preceding times. It there-
fore must be clear that to solve the initial value prob-
lem one actually needs to know the prior history of the
field in the medium.

The electric induction can be represented as a sum
of two terms 7 D' = D < 0 ) + D U ) , where

о
Z)f>= J df t',T-T')Ej(r',t'), (5.1)

* u = \ df \ dt'iij(t-f,r-T')Ei(T',f). (5.2)
—oo
t

The quantity D U ) depends only on the value of the field
for t > 0; on the other hand, D ( 0 ) depends on the prior

history and therefore this quantity must be assigned in
the initial value problem. The physical significance of
the need for assigning such a quantity, which is a func-
tion of the time, is that we thus take account of proc-
esses of relaxation and transport accomplished by the
particles of the medium and beginning at the time
t = 0.*

Thus, for solving the initial value problem in which
we are interested we shall assume that we are given
B ( r , 0 ) and D < 0 ) ( r , t ) . We note that D ' ( r ,0)
= D < 0 ) (r, o). Assuming that these quantities are known,
we make use of the Fourier transformation1 0"1 2 to ob-
tain the solution of the field equations!

E(r, 0 = (2^i

E (к, со) =

oo+iCT
dcoe-*"'E(k,

-co 4-iCT

(Imco = <7 (5.3)

W i t h r e s p e c t t o t h e t i m e , w e u s e a o n e - s i d e d F o u r i e r

t r a n s f o r m c o r r e s p o n d i n g t o t h e f a c t t h a t t h e e q u a t i o n

o f t h e f i e l d w i t h o u t s o u r c e s i n t h e i n i t i a l v a l u e p r o b -

l e m i s v a l i d o n l y f o r t > 0 . F o r m u l a s a n a l o g o u s t o

( 5 . 3 ) a r e a l s o t o b e u n d e r s t o o d a s h o l d i n g f o r t h e e l e c

t r i c a n d m a g n e t i c i n d u c t i o n . T h e n , f r o m t h e f i e l d

e q u a t i o n s , w e h a v e

— B(k, co)-[k,
С

kB = 0,

— D' (к, со) + [кВ (к, со)] = -i D' (к, t = 0), kD' = 0.

D ' ( k , t = 0 ) = ^ d r e - i k ' D ' ( r , t =

H e r e

An analogous relation determines В (к, t = 0). Elimi-
nating the magnetic induction and also representing the
electric induction in the form of a sum Dj = D| 0 ) + DJ1*,
we get

co2Dm (к, со) + с2 [к, [к, Е (к, со)]]

= coD' (к, t = 0) + ic [кВ (к, t = 0)] - co2D"» (к, со), <[5.4)

kD(1) (к, со) = -kD' 0 1 (к, со). (5.5)

Supplementing this system by a material equation r e -
lating the quantities D ( 1 )(k, ш) and E (к, ш) and hav-
ing the following form according to formula (5.2):

Dl1' (к, со) = е„- (со, к) Ej (к, со), (5.6)

•Naturally, if we should consider the initial value problem not
just for the field equations, but also for the equations of motion of
the particles of the medium, then the knowledge of the prior his-
tory would not be necessary. However, then, in addition to the
initial values of the field, we would have to also assign the initial
states of the particles of the medium.

TOn the assumption that E (r, t) increases with time no faster
than eat, we can assert according to formula (5.3)that E(k, <a)as a
function of the complex variable со has no singularities in the
complex plane of this variable above the line Im (ь>) = a. The same
also applies to the function Bij (со, к) defined by relation (2.6).
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we get a sys tem of l inear , a lgebra ic equations for the
determinat ion of the quantity E (k, w):

kfin (со, k) Ej (к, со) = - k D < 0 > (к, со), (5.4')

(co2eu- (to, k) - с?к*6ц + c%kj) Ej (к, ш) = - co2Z>|0> (k, to)

'i (k, t = 0) + ic [к, В (к, t = 0)]. (5.5')

Let u s f i r s t c o n s i d e r the c a s e of an i s o t r o p i c , n o n -
g y r o t r o p i c m e d i u m , w h e r e e x p r e s s i o n (2.11) h o l d s for
the d i e l e c t r i c p e r m i t t i v i t y t e n s o r . In t h i s c a s e , the
s y s t e m of e q u a t i o n s (5.4 ' ) and (5.5 ' ) b r e a k s up into
independent equat ions for the longitudinal f ie ld E*
( p a r a l l e l to the v e c t o r k ) and the t r a n s v e r s e f ie ld
E t r -

e'(co, k)E ' (k, co)= - D ( 0 ) 1 ( k , со),

{co2Etr (со, k) - c2&2} E t r (к, со) = - co2D<0) t r (к, со)

' (k, t = 0) + ic [к, В (к, «•= 0)J.

Here D<0)* and D ( 0 ) t r are the longitudinal and t rans-
verse components of the vector D ( 0 ) . From this we
have immediately

D"»1 (к, со)Е' (к, со) = - • ,v ; е\к, со)
— <йЧ)<0)*г(к, co) + «oD'(k, t = 0) + ie[k, В]

со2е*г (со, к) — с2к2

(5.7)

A c c o r d i n g t o f o r m u l a s (5.7) and (5.8) , the e x p r e s s i o n s
for the longi tudinal and t r a n s v e r s e f i e l d s c a n b e r e p -
r e s e n t e d a s

oo
E J(r, t)= ^dt' ^dr'G[(T-r', l - ( ' ) p D " " ( r ' , C ) , (5.7 ' )

о
oo

Etr(r, 0 = 5 dt' \ dt' {D'(''. ' = 0)-|-С1/(г-г', t-t')

- —crot B(r', t = 0)1 | ,
(5.8')

where the longitudinal and transverse retarded Green's
functions have the respective forms7

ikr
(5.9)*2e' (со, к) '

-foo-J-iff

-oo+io
co2etr (со, k) — c2fc2. (5.9')

It i s c l e a r that to t r e a t the dependence of the field on
the t i m e it i s n e c e s s a r y to invest igate the form of the
r e t a r d e d G r e e n ' s functions.

In e x p r e s s i o n s (5.9) and (5.9') it i s useful to shift
the contour of integrat ion over w into the lower half-
plane of the complex v a r i a b l e . * Here the integra l along

*It should be remarked that in shifting the contour of integra-
tion in (5.9) we must make an analytic continuation of the integrand
into the lower half-plane of the complex variable a>. The functions
D ( o ) * (к, ш) and e'(<u, k) as functions of a are defined by means
of the one-sided Fourier transform, according to formulas (2.6) and
(5.3), and are analytic everywhere in the upper half-plane of the
complex variable <u(Imcu i a - 0), beyond, possibly, a band of
finite width a around the real axis.

a l i n e p a r a l l e l t o the r e a l a x i s and l y i n g inf in i te ly far
in the l o w e r ha l f -p lane g i v e s a z e r o contr ibut ion. The
finite contr ibut ion c o m e s f r o m c i r c l i n g the p o l e s of the
integrand and a l s o g o i n g around the c u t s in the p l a n e
of the c o m p l e x v a r i a b l e wh ich a r i s e a s a r e s u l t of the
p r e s e n c e of b r a n c h p o i n t s .

Let u s c o n s i d e r the contr ibut ion to t h e i n t e g r a l (5.9)
a r i s i n g f rom p o l e s of the in tegrand w h i c h a r e a s s o c i -
ated wi th the v a n i s h i n g of the longitudinal d i e l e c t r i c
p e r m i t t i v i t y

e1 (о), Л) = 0. (5.10)

In this c a s e the integra l over the contour around such
a pole corresponding to the r e s i d u e of the integrand
(5.9) gives a t ime dependence

where ш = ш' + ia>" is the solution of (5.10), determin-
ing the dependence of the frequency a/ and the loga-
rithmic decrement у = - w" for the wave with wave
vector k.* For a given wave vector, there may, in
general, be different roots of (5.10). After sufficiently
long times only those vibrations among these will be
important which are damped most slowly, i.e., which
have the smallest logarithmic decrement, which cor-
responds to the root of (5.10) which is closest to the
real axis.

The contribution to the integral (5.9) resulting from
branches of the longitudinal dielectric permittivity and
associated with the integration along the boundary lines
of the cut in the plane of the complex variable w does
not give a purely exponential dependence.12 We may
say that in this case a continuous spectrum of frequen-
cies corresponds to a definite wave vector k. Of es-
pecial interest is the case when, near the line of the
cut on the neighboring sheets of the complex variable
a), the analytic continuation of the function е^(ш,к)
has a zero. In this case, for not too small times, the
principal time dependence associated with the integra-
tion along the boundary line of the cut will be purely ex-
ponential with the complex frequency determined by
Eq. (5.10) for the analytic continuation of the longitudi-
nal dielectric permittivity on the neighboring sheets.

An analogous treatment for transverse waves using
expression (5.8) obviously leads to the condition

co2etr (со, к) — c2k* = 0, (5.11)

which d e t e r m i n e s the frequencies and logar i thmic d e c -
r e m e n t s of the t r a n s v e r s e osci l la t ions of the field.

In the c a s e of an ani sot ropic , homogeneous medium,
the solution of the s y s t e m of l i n e a r equations (5.4')
and (5.5') is proportional to Д - 1 ( к , w), where

Д ( к , ю ) = в4,-*,*,— •£-*„(«», к) (5.12)

*&> is negative if the pole lies in the lower half-plane. But if
the pole is located in the upper half-plane (cr •> a," > 0), then we
should speak of a logarithmic increment, which can be the case
only when the medium is in a non-equilibrium state.
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is the determinant of this system of linear equations.
Therefore the branch points and zeros of such a deter-
minant determine the dependence of the field on time
resulting from the properties of the medium and not
caused by the initial state. In particular, in place of
the dispersion equations (5.10) and (5.11), giving the
dependence of frequency and logarithmic decrement
on wave vector, for the case of an anisotropic medium
we have

= 0. (5.13)

It is not difficult to see that in the case of an isotropic
medium with the expression for the complex dielectric
permittivity tensor ey(a),k) given by formula (2.11),
the determinant Д (k, w) splits into a product of two
factors, as a result of which Eq. (5.13) reduces to
Eqs. (5.10) and (5.11).

6. PLANE MONOCHROMATIC WAVES Ш A MEDIUM

As we have already pointed out above, in a material
medium in the absence of absorption, just as in vac-
uum, it is possible to have electromagnetic waves of
the form

eikr-icof_ (6.1)

In a vacuum the frequency ш and wave vector к are
real quantities, and the waves (6.1) are plane. In con-
sidering the propagation of the electromagnetic waves
(6.1) in material media, it is necessary in the general
case to introduce complex values of w and k. In the
preceding section we considered the problem of propa-
gation of electromagnetic waves in a medium, these
waves being the result of an arbitrary initial perturba-
tion in the medium. Then, assigning the real wave
vector k, we found Eqs. (5.10), (5.11), and (5.13),
which made it possible to determine the complex fre-
quency w = a)' + iw", whose real part represents the
vibration frequency and whose imaginary part is the
logarithmic decrement (or logarithmic increment)
of the amplitude of the wave with time. However, it
is also sensible to consider a different formulation of
the problem in which one chooses a real frequency;
i.e., one considers propagation in the medium of a
monochromatic wave with a fixed frequency w. We
are then required to determine the complex wave vec-
tor k. Here we shall consider the propagation of
waves of the type (6.1) for such a formulation of the
problem in an unbounded homogeneous medium. Equa-
tions (II) and (Ш) describing the electromagnetic field
in the medium can then be brought to the following
system of homogeneous algebraic equations for the
electric field intensity E;

% - kjc, - -£ 6U (ш, к)} Ej = 0. ( 6.2)

The condition of compatibility of this system is

A . * e.. ( c o, k ) = 0
(6.3)

which is the dispersion equation for the electromag-
netic waves in the medium. It determines the disper-
sion law in implicit form; i.e., it determines the de-
pendence of the wave vector on frequency.

For a vacuum, ец(ш,к) = 6jj, and therefore we find
from (6.3) that к2 = ш2/с2. In the case of a material
medium, Eq. (6.3) for real w may also have complex
solutions к = k' + ik". It should be noted that complex
solutions к are not necessarily associated with com-
plex values for the dielectric permittivity tensor. In
fact, for an isotropic medium, for example, when we
neglect spatial dispersion, ejj(a),k) = е ( ш ) б ц ; there-
fore, we have from Eq. (6.3), к2 = (w2/c2) е (ш). For
e (w) < 0 the roots of this equation are pure imaginary,
even though there is no absorption in the medium.

In the general case of complex k, the wave (6.1)
may be called "p lane" only in some conventional
sense. From the coordinate dependence of the field,

e ik-r = e ik 'T-к ' ' т , ц follows that the planes of con-
stant phase of the wave are planes perpendicular to
the vector k', while the amplitude of the wave is con-
stant on planes perpendicular to the vector k", along
whose direction there is a damping (or r i se in ampli-
tude) of the wave. Therefore such waves are called
inhomogeneous plane waves, as distinct from the homo-
geneous plane waves in which the surfaces of constant
field value coincide with the surfaces of constant wave
amplitude. One can have homogeneous plane waves
when the quantity к is real, as occurs, for example,
in vacuum; or when k' and k" are parallel to one an-
other. Media in which there correspond to real values
of w real values of к (more precisely, negligibly
small imaginary parts of k) are said to be transpar-
ent for the given frequencies.

In the case of homogeneous plane waves, the dis-
persion equation (6.3) enables us to determine the
value of the wave vector к for each given direction
of propagation of the wave. But in those same cases,
where in a given problem inhomogeneous plane waves
are important, usually in addition to the frequency one
also knows two real components of the wave vector.
Then the dispersion equation (6.3) determines the
third, complex component of k. Such a situation holds,
for example, in the problem of reflection and refrac-
tion of a plane monochromatic wave for oblique inci-
dence on a plane boundary between vacuum and a m e -
dium. The tangential components of the wave vector
of the refracted wave are then equal to the tangential
components of the wave vector of the incident wave
and are real; the normal components are determined
from the dispersion equation (6.3) and are complex in
general.

After the general comments, let us consider the
most important special case of propagation of electro-
magnetic waves of the type (6.1) in material media.

An especially simple and easily pictured case is
the propagation of monochromatic waves in a t rans-
parent medium. If the medium is isotropic and non-
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gyrotropic, then the dispersion equation (6.6) breaks
up into two equations. The first of them,

s1 (со, к) = О (6.4)

determines the wave vector of longitudinal waves in
the medium. The second equation

A2 — ^-etr(ш, к) = О (6.5)

is the dispersion equation for the transverse electro-
magnetic waves.

Using relations (2.20) and (2.22), the dispersion
equations (6.4) and (6.5) can also be written in the
following form:

s(co, A) = (6.4')

(6.5')

This form of writing of the dispersion equations for
the longitudinal and transverse waves corresponds to
describing the propagation of electromagnetic waves
in an isotropic and non-gyrotropic medium by means
of the field equations (1.3) and (1.9).

In a transparent medium we can define a vector n
by means of the relation

k = — n. (6.6)

The quantity n (со), which is called the index of r e -
fraction of the medium, characterizes the difference
between the phase velocity of the waves propagating
in a given direction and the velocity of light in vacuum.

Dispersion equations for the longitudinal and t rans-
verse waves in an isotropic and non-gyrotropic t rans-
parent medium can be written in the following form,
by using the quantities n and со:

For longitudinal waves:

о, — n ) = 0 or to, — n 1 = 0,
с )

For transverse waves:

_ g t r f ffl iH

V с
o r (0, — П 'ц/со, -

( 6 . 7 )

( 6 . 8 )

In a n i s o t r o p i c m e d i u m t h e i n d e x of r e f r a c t i o n of t h e

w a v e d o e s n o t d e p e n d o n t h e d i r e c t i o n of p r o p a g a t i o n .

T h i s l e a d s t o t h e r e s u l t t h a t , i n a n i s o t r o p i c m e d i u m ,

b o t h t h e p h a s e a n d t h e g r o u p v e l o c i t y c a n , g e n e r a l l y ,

b e d i r e c t e d o p p o s i t e t o t h e d i r e c t i o n of p r o p a g a t i o n of

t h e w a v e . In t h i s c a s e w e s a y t h a t t h e e l e c t r o m a g n e t i c

w a v e s h a v e n e g a t i v e g r o u p v e l o c i t y .

W h e n o n e n e g l e c t s s p a t i a l d i s p e r s i o n ( i . e . , i n t h e

l i m i t of k/co —• 0 ) , t h e d i s p e r s i o n e q u a t i o n f o r l o n g i -

t u d i n a l w a v e s [cf. f o r m u l a (3.9)]

e (со) = 0 (6.9)

d e t e r m i n e s t h e d i s c r e t e f r e q u e n c i e s of e l e c t r o m a g n e t i c

o s c i l l a t i o n s of t h e m e d i u m . In t h i s c a s e , t h e l o n g i t u d i -

n a l w a v e s h a v e z e r o g r o u p v e l o c i t y a n d a r b i t r a r y p h a s e

v e l o c i t y . W h e n w e i n c l u d e s p a t i a l d i s p e r s i o n of t h e d i -

electric permittivity, as we see from Eqs. (6.4) and
(6.7), the frequency of the longitudinal waves becomes
a function of the wave vector, and thus the group ve-
locity is different from zero, ш this sense, longitudi-
nal waves in a medium, when one takes account of spa-
tial dispersion, become an acceptable branch of the
normal waves.

The dispersion equation for the transverse waves
(6.5) in an isotropic transparent medium, when we
neglect spatial dispersion, has the form

я 2 = е(<й). (6.10)

Since the dielectric permittivity e (со) is a single-
valued function of frequency, we say that in an iso-
tropic medium, when we neglect spatial dispersion,
there can propagate only one transverse wave with a
given frequency со. (Here, it is understood, of course,
that one can have waves with two different types of po-
larization. ) When we include spatial dispersion, Eq.
(6.8) for transverse waves has, in general, several
solutions n|(co) (possibly even an infinite number).
Consequently, there may propagate in the medium
several transverse waves with the same frequency,
but with different indices of refraction nj(co).

In the case of an anisotropic transparent medium,
the dispersion equation for electromagnetic waves
(6.3) can be written, using the quantities n and со, in
the following form:

By — n.jij — e4j (oo, % j = 0 . (6.11)

T h e s u b d i v i s i o n of e l e c t r o m a g n e t i c w a v e s i n t o l o n g i -

t u d i n a l a n d t r a n s v e r s e w a v e s i s i n g e n e r a l n o t p o s s i b l e

in the case of an anisotropic medium. The index of r e -
fraction of the wave n (со) then depends on its direc-
tion of propagation. Therefore, the direction of the
group velocity of the wave in an anisotropic medium
does not coincide with its direction of propagation, as
is the case for an isotropic medium.

Under the conditions where one neglects spatial dis-
persion, the dispersion equation for the electromag-
netic waves in a transparent anisotropic medium

| n2bi,- — n{nj — e (со) I = 0 (6.12)

in the space ( n x , n v , n z ) d e t e r m i n e s a c e r t a i n sur face
of fourth o r d e r — t h e " w a v e - v e c t o r s u r f a c e . " F o r
each given d i rec t ion n, th i s equation is a quadrat ic
equation in n 2 . There fore , in each d i rec t ion in the
anisot ropic medium t h e r e can, in g e n e r a l , p ropagate
two waves with the same frequency со. When one in-
cludes spatial dispersion, the picture becomes consid-
erably more complicated. The dispersion equation
(6.11) in the general case is a surface of higher order
than (6.12), and therefore one can have more than two
waves propagating in each direction in the medium.

So far we have considered the propagation of plane
monochromatic waves (6.1) in transparent media,
where the wave vector of the wave к is a real quan-
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tity. However, as we have already remarked above,
in treating the problem of propagation of monochro-
matic waves in material media, one must also intro-
duce complex wave vectors к = k' + ik". Then we can
distinguish a large class of homogeneous plane waves
for which k' and k" are parallel to one another. In-
cluded in this type of wave are, for example, electro-
magnetic waves in an isotropic absorbing medium.
The problems of propagation of homogeneous plane
waves in absorbing media formally are not different
from the corresponding problems in transparent me-
dia. The same dispersion equations i(6.3) (for aniso-
tropic media) or (6.7) and (6.8) (for isotropic media)
determine the value of the complex wave vector in
each given direction of propagation of the wave. One
must keep in mind that when the imaginary part of the
wave vector k" is large, the concept of a wave loses
its meaning; since its amplitude changes considerably
over a distance of the order of the wave length к
= 2тг/к', we have an electromagnetic wave which is
essentially exponentially damped in space. For large
values of k" the concept of direction of propagation
of the wave also becomes meaningless. In an absorb-
ing, non-transparent medium, in addition to the wave
vector, the index of refraction as determined by (6.6)
becomes complex, n = n' + in". Here the quantity n'
is called the index of refraction, while к = n" is the
absorption coefficient of the medium.

As a simple example, let us consider the transverse
electromagnetic waves in an isotropic absorbing me-
dium, neglecting spatial dispersion. From (6.8) we
then obtain2

From this we see that the quantity n (w) can be com-
plex even in the case of a real dielectric permittivity
for the medium, i.e., in the absence of absorption in
the medium. In particular, for e' < 0 and e" = 0 we
have, from expression (6.13), n' = 0, n" = V | e' | . For
conductors in the low-frequency range where formula
(3.11) is valid, we find from the expression (6.13) that
n' and n" coincide in value and are equal to n' = n"
= V2TT(TO/W . The most general class of waves (6.1) in
material media are inhomogeneous plane waves in
which the real part k' and the imaginary part k" of
the wave vector are not parallel to one another. In-
homogeneous plane waves appearessentially, for ex-
ample, in problems of reflection and refraction of
plane waves at a plane boundary of separation between
two homogeneous media. In such problems one usually
knows two real components of the wave vector k, and
from the dispersion equations (6.3), (6.4), and (6.5) one
determines the third complex component as a function
of the frequency of the wave and the two known compo-
nents of the wave vector.

7. PROPAGATION OF ELECTROMAGNETIC WAVES
IN MEDIA WITH WEAK SPATIAL DISPERSION

In treating electromagnetic waves in unbounded,
spatially homogeneous media, we have used the mate-
rial equation

D[ = e i3 (ю, к) Ej. (7.1)

We have not r e s t r i c t e d ourse lves to any explicit func-
tional dependence of the d ie lec t r ic permit t iv i ty t e n s o r
€i j (w,k) on wave vec tor k. If the e lec t romagnet ic
field v a r i e s sufficiently smoothly in space , the t enso r
ei j(o) ,k) can be expanded in s e r i e s in powers of k.
Limiting ourse lves to the f i rs t t e r m s in the expansion,
we wr i te 1 3 (cf. a lso r e fe rences 4, 6, and 14)

ey (со, k) = гц (со) + iym (со) щ + ащт (ш) ntn (7.2)

where a = (c/w) k. In this c a s e of a field varying
slowly over space, the coefficients yty and а ц ^ т are
small, and the expansion (7.2) is a series in powers of
a small parameter.* In such cases we may speak of
weak spatial dispersion.

The propagation of plane electromagnetic waves in
material media, when we include weak spatial disper-
sion, obviously can be investigated more completely
than was done in the preceding section. In addition, in
the propagation of electromagnetic waves in such me-
dia there appear certain characteristic effects which
are absent when we neglect spatial dispersion.

It follows from expression (6.2) that the effects of
weak spatial dispersion can become important for
small values of the components of the tensor ец(ш),
which is the dielectric permittivity tensor of the me-
dium when one includes only frequency dispersion, fii
fact, then in the expansion (7.2), the second and third
terms are important, these being the terms associated
with spatial dispersion.

The expansion (7.2), however, is not always suffi-
cient for describing the effects of weak spatial disper-
sion in a medium. The point is that, if all the compo-
nents of the tensor ец(ш) are large, then we can r e -
strict ourselves in expression (7.2) to just the first
term. At the same time, the components of the tensor
ejj (ш) may be small, and in the expansion1 3"1 5

8,"/ (со, к) = еГ/ (со) + igm (со) n, + $щт (to) n,nn (7.3)

the second and th i rd t e r m s , which take account of the
spat ia l d i s p e r s i o n , will be impor tant . T h e r e f o r e , t o
d e s c r i b e the effects of weak spatial d i s p e r s i o n in a

•This parameter depends on the electromagnetic properties of
the medium. In a plasma, for longitudinal waves, the small param-
eter for describing the spatial dispersion is the ratio tn/X, where
rD is the Debye radius and X is the wave length of the longitudi-
nal field. For transverse waves in a plasma, this parameter is
~v/c, where v is the thermal velocity of the particles. For crys-
talline media and neutral gases, a parameter of this sort is the
ratio a/% where a is the lattice constant or the radius of the
molecules of the gas, respectively.
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medium we shall use, in addition to the expansion
(7.2), the expansion (7.3).

Before proceeding to consider electromagnetic
waves in a medium including weak spatial dispersion,
let us make some comments concerning the symmetry
of the coefficients ущ and aij£m- From the symme-
try properties of the dielectric permittivity tensor
(cf. Sec. 9)

E j ((В, к) = 8ji ((0, — k) (7.4)

it follows immediately that yijz = - yji/ and ayzm
= Qfji;m. The tensor ajjjm i s also symmetric in the
indices I and m. The coefficients gyj and ftj^Q ob-
viously have the same symmetry properties as the
Уц1 and the a^j^n- b* t h e absence of absorption in
the medium, e*j(w,k) = е«(ш,к); therefore in such a
medium the tensors уц; and otijim are real. The
further simplification of these quantities is already
associated with specific symmetries of the medium.
In the following we shall restr ict ourselves to treating
weakly absorbing media. Therefore the coefficients
in the expansion (7.2) and (7.3) will be assumed to be
real throughout the following discussion.

In the expansions (7.2) and (7.3), in addition to the
linear terms in k, we also will keep quadratic terms.
In the majority of cases the expansion of the tensor
ejj(o),k) in powers of the wave vector does not con-
tain odd powers of k. The point is that if the individ-
ual molecules which constitute the medium have cen-
ters of symmetry, or if in the case of a crystalline
medium the elementary cell of the crystal has a cen-
ter of symmetry, then the dielectric tensor of such a
medium has the following property:

84, (со, к) = eu- (со, — к).

In t h i s c a s e , the e x p a n s i o n of the t e n s o r e j j (o ) ,k ) in
p o w e r s of the w a v e v e c t o r o b v i o u s l y c o n t a i n s on ly e v e n
p o w e r s of k. Such m e d i a a r e s a i d t o b e n o n - g y r o -
t r o p i c , o r o p t i c a l l y i n a c t i v e . M e d i a w h i c h do not h a v e
t h i s s y m m e t r y p r o p e r t y a r e s a i d to b e g y r o t r o p i c . In
p a r t i c u l a r , i s o t r o p i c m e d i a m a y b e g y r o t r o p i c . An
e x a m p l e of s u c h a m e d i u m i s a s o l u t i o n of c a n e s u g a r .
F o r g y r o t r o p i c m e d i a w e m a y l i m i t o u r s e l v e s t o the
f i r s t t w o t e r m s in the e x p a n s i o n s (7.2) and (7.3) .

We now c o n s i d e r the p r o p a g a t i o n of e l e c t r o m a g -
n e t i c w a v e s in m e d i a w h e n w e inc lude w e a k s p a t i a l
d i s p e r s i o n . Let u s b e g i n w i t h t h e t r e a t m e n t of i s o -
t r o p i c , g y r o t r o p i c m e d i a . In an i s o t r o p i c m e d i u m
(and a l s o in a c r y s t a l w i th cub ic s y m m e t r y ) , the
symmetric second rank tensor ец(ш) reduces to a
scalar, while the antisymmetric tensor of second
rank ушп^ reduces to a pseudoscalar. Introducing
the notation уц; = ye^jj and gjj/ = — g e ^ , where ещ
is the completely antisymmetric unit tensor of third
rank, the expansions (7.2) and (7.3) can be written as

f o l l o w s : *

в„- (со, к) = е (со) 6i3- + iy (со) eik и„ (7.5)
Elf (со, к) = e"1 (со) 6U- - ig (со) е„-,п,. (7.6)

The expression (7.5) should be used to account for
weak spatial dispersion, as we have already remarked
above, for small values of e (w), whereas for large
values of e (со) one should use expression (7.6). When
account is taken of frequency dispersion, the dielectric
permittivity e(w) is generally a non-monotonic func-
tion of frequency. In treating electromagnetic waves
near absorption bands of the medium, one frequently
uses the following interpolation formula (cf., for ex-
ample, reference 16, Sec. 149):

Е = е' + гУ' = е 0 - ^ - 4 . (7-7)
CO2 — CO,' — MOV

where w0, wj, and v characterize the properties of
the medium. For v = 0 the dielectric permittivity
(7.7) is real, i.e., there is no absorption in the medium.

From expressions (7.5) and (7.6) we obtain for lon-
gitudinal waves the equation

8 (CO) = 0, (7.8)

which coincides with the dispersion equation for longi-
tudinal waves in an isotropic and non-gyrotropic m e -
dium under the condition that one neglects spatial dis-
persion.t

As regards transverse electromagnetic waves, the
expressions (7.5) and (7.6) lead for them to different
dispersion equations. Since for the transverse waves,
according to Maxwell's equations, D = n2E, we obtain
from the expansion (7.5) the following dispersion
equation:

[n2 - e (со)]2 = у2 (со) га2. (7.9)

Because of the smallness of the quantity y2, one can
write approximate solutions of (7.9) in the form

« 2 ± ^ E ( C O ) ± у(а>)Уе(ш). (7.10)

T o the t w o s o l u t i o n s of (7.9) t h e r e c o r r e s p o n d the

*For an isotropic, gyrotropic medium, the d ie lectr ic tensor, in-

cluding arbitrary spat ia l dispersion, can b e represented a s fo l lows:

(со, iq> (со, к)

In the c a s e of weak dispersion, this express ion g o e s over into

(7.5), where cp (<u, 0) = у (<u) c/<u, and into (7.6) with cp (&>, 0)
= e2(tu) g(<u) c/co.

tWe should remark that the dispersion equation for longitudinal
electromagnetic waves in an isotropic, gyrotropic medium, when
one includes spatial dispersion,

e'O, k) = 0

also does not differ from the corresponding equation in an isotropic
and non-gyrotropic medium.
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following two relations between the components of the
vector E (or D):

(The vector к is assumed to be along the z axis.)
This means that two waves corresponding to the two
solutions of (7.9), have different polarizations: namely,
the wave in which E x = i E y is right circularly polar-
ized, while the wave in which E x = — iEy is left circu-
larly polarized. In such a medium there is a rotation
of the plane of polarization of the electromagnetic
wave.

If the frequency of a transverse wave is close to
one of the natural frequencies of the medium, then,
according to (7,5), the dispersion equation has the
form1 3

gW-Ql-lj^O. (7.11)

Making use of the fact that the quantity g2 is small,
we find the following solutions of this equation*

;, (7.12)

corresponding to three transverse waves. It is easy
to show that the waves with indices of refraction nf
and n2. have right and left circular polarizations r e -
spectively.

Summarizing the above statements, we conclude
that in an isotropic, gyrotropic medium, far from ab-
sorption bands, two transverse waves propagate, while
near to an absorption band, according to (7.13), we
can have three transverse waves propagating with the
same frequency but with different indices of refraction.
In Fig. 1 we show the curves of n2

)2)3(ci)) near an ab-
sorption band for e (w) taken in the form (7.7), where
the absorption is neglected (и = 0). fii constructing
the graph we have used the following values: g2 = 10~5,
e0 = 1, cjo/ct)j = 1. The dashed curves in Fig. 1 are

FIG. 1

•Measurements of the quantity g for different media do not ex-
ist at present. We may assume, however, that the quantity g is of
the same order as y, which in the optical region of the spectrum
for various materials i s of the order of у ~10~ s — 10~4 (cf. refer-
ence 16, Ch. XXIX).

the limiting curves (7.7). We note that multiple roots
of (7.12) correspond to

i.e., w2/a>j « 0.96, Пт » 70, and n2 « 18. In the op-
tical frequency region this corresponds to Дш ~ 2
x Ю"2 ~ 6 — 12 x Ю13 sec" 1, or Ak ~ 80 — 150 A.
These estimates show that the range in which three
transverse waves exist in the medium is quite far
from the center of the absorption line (natural fre-
quency of the medium). The absorption is then still
negligibly small, which makes possible the experi-
mental observation of such waves.

In the case of a non-gyrotropic medium, as we
have already pointed out above, the expansion of the
tensor eij(w,k) begins with quadratic terms in k.
If the medium is also isotropic, the expansions (7.2)
and (7.3) take the form

е„- (со, к) = [e (со) - а, (со) n2] б;г - a2 (со) п{щ, (7.13)

«si,1 (со, к) = [е-1 (со) + рх (со) и«] б;з- + р2 (со) щщ. (7.14)

In writing these expressions we have used the fact that
in the case of isotropic media the tensors a^fon and
/?iiZm reduce to tensors of second rank with two inde-
pendent components.

The expression (7.14) leads to the following disper-
sion equation for longitudinal waves in the medium:

гг. (7-15)

T h i s equat ion d i f fers qua l i ta t i ve ly f r o m the d i s p e r s i o n

equat ion for longitudinal w a v e s obta ined n e g l e c t i n g s p a -

t ia l d i s p e r s i o n (6.9) . The d i f f e r e n c e i s that t o Eq. (6.9)

t h e r e c o r r e s p o n d only v i b r a t i o n s with d i s c r e t e f r e q u e n -

c i e s , and c o n s e q u e n t l y longitudinal w a v e s w i t h z e r o

group v e l o c i t y , w h e r e a s the w a v e s def ined by Eq. (7.15)

have a n o n - z e r o group v e l o c i t y .

F o r t r a n s v e r s e w a v e s w e obtain f r o m e x p r e s s i o n

(7.14) the d i s p e r s i o n equat ion

which, because of t h e s m a l l n e s s of the quantity a ^ w ) ,

i s p rac t ica l ly not different from (6.10), corresponding

to neglect of spat ia l d i spers ion.

The situation is different for large values of e (ш)
when, to take account of weak spatial dispersion, we
must use expression (7.15). Then the dispersion equa-
tion for transverse waves takes the form 1 3 ' 1 5

for which we have the following solutions:

l о яо i

(7.17)

( 7 Л 8 )

Thus, including weak spatial dispersion in isotropic
media leads to a qualitatively new phenomenon near to
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an absorption band, namely to the appearance of new
transverse waves, In Figs. 2 and 3 we show the curves
of n2

j 2(co) near an absorption band for the case of a
real function e (ш), i.e., for v = 0 in formula (7.7).
We have used the following values: e0 = 1, — wo/a>j = 1
and | /3j | = 10"5, where /% > 0 in Fig. 2, and j3t < 0 in
Fig. 3. Curve (7.8) is shown as the dashed curve in
both cases.

FIG. 2

FIG. 3

For pt > 0 one of the roots of (7.18) is negative,
and therefore the corresponding wave cannot propagate
in the medium. In the case of /3t < 0 one can have a
propagation of both waves. In this case the multiple
roots correspond to the values

И Pi I * V
i.e., nfu ss 300, and a)2/w? ю 0.994. In the optical fre-
quency range this corresponds to Аи ~ 3 x 10~3 WJ
~ 1 — 2 x Ю13 sec" 1 , or Д* ~ 10 — 20 A. This is so
close to the natural frequency of the medium that the
absorption is then extremely important, as a result
of which these waves are very difficult to observe. In
fact, for c / O w e have n2 = (n' + in" )2, where the
absorption coefficient n" for a frequency correspond-
ing to the multiple root is equal to n" s e" | /3t |У

4 s 0.5
x 104 v/шу For V/WJ ~ 10"6 we have n" ~ 5 x 10~3.
Since the intensity of the radiation is damped accord-
ing to the law e - 2 ( c o / c > n " z = e ^ 2 , we get ц « 3 x 103

cm *, i.e., the intensity of the radiation decreases by
a factor of e over a distance ~ 3 x 10~4 cm (where
?c ~ 2 x Ю"6 cm). Far from the center of the absorp-
tion line where we can neglect the damping, the index
of refraction of one of the waves is so large that the
condition for applicability of the expansion (7.14) is
violated. From the estimates given it follows that ob-
servation of both waves in an isotropic and non-gyro-
tropic medium is possible only in films of thickness
< 10"4 cm.

In conclusion we consider very briefly the propa-
gation of electromagnetic waves in media with differ-
ent crystal structure, when one takes account of weak
spatial dispersion. For simplicity we restr ict our-
selves to considering only non-gyrotropic media. In-
cluding weak spatial dispersion naturally reduces the
symmetry of the dielectric permittivity tensor of the
medium compared to the symmetry which it had when
we neglected the dispersion.

In crystalline media with cubic symmetry, the di-
electric permittivity ец(ш), when we include only fre-
quency dispersion, is similar to the permeability for
an isotropic medium. But when we include weak spa-
tial dispersion, there appears a weak optical aniso-
tropy of cubic crystals, associated with the fact that
the tensor а:ц|г т (and also ftjjm) in a cubic crystal
has three indpendent components. The non-zero com-
ponents of the tensor а ш т are then1 3

To include a weak anisotropy of cubic crystals in
treating transverse waves, it is sufficient to substitute
in the small terms of the expression (7.2) and (7.3) the
zeroth order values of the index of refraction nj
= e (w), which correspond to neglecting spatial dis-
persion. We should, however, remember that such a
replacement is valid only far from those frequencies
for which e (w) is close to zero or infinity. Then the
dielectric permittivity tensor ец(ш,к); according to
(7.2), depends on the direction of propagation of the
wave, which corresponds to a medium with optical
anisotropy that manifests itself, for example, in double
refraction of a cubic crystal. In ranges of frequency
for which e (со) — 0 or e (w) — «, there should ap-
pear in a cubic crystal the same characteristic ef-
fects as in an isotropic medium, but complicated
somewhat by the weak anisotropy of the cubic crystal.

Crystals with other symmetries can be treated in
a similar fashion. Depending on the symmetry of the
crystals, the tensors а ц £ т and fyjim simplify in dif-
ferent ways. For example, in rhombic crystals they
have 12 independent components, in tetragonal crystals
7, etc. It should be remarked that in cubic crystals, as
in isotropic media, spatial dispersion is much stronger
when gyrotropy is present.
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8. ENERGY LOSS OF FAST ELECTRONS IN A
MEDIUM

A fast charged particle moving in a medium excites
electromagnetic waves in it. In an absorbing medium
these waves are damped rapidly, which essentially cor-
responds to a transfer of energy of the particle to the
medium via the excitation of electromagnetic waves in
it. Therefore a fast charged particle loses part of its
energy as it moves in a medium. We shall assume that
the energy of the excited electromagnetic waves is
small compared with the energy of the particle, and
that the change of velocity of the particle in the me-
dium is negligible. The theory of the energy loss of
fast charged particles in a medium was developed in
papers by Tamm, Frank, and Fermi . 1 7 " 2 0 The general-
ization of this theory to the case of spatial dispersion
of the dielectric permittivity was given in references
7 and 21 — 33.

The energy loss of a moving particle is obviously
determined by the work done on the particle by the
damping force resulting from the electromagnetic field
which it produces in the medium. The work of this
force, as determined by expression (I), is given per
unit length of the path in the medium by

W = ^F = 1 (^E)__ ( 8 Л )

In th i s formula we should subst i tute the e l e c t r i c field
intensity E ( r , t ) a t the point at which the charge i s
located. We shal l c o n s i d e r the motion of the fast
charged p a r t i c l e in a spat ial ly homogeneous and un-
bounded medium. We shal l r e p r e s e n t the e l e c t r o m a g -
net ic field produced by t h e p a r t i c l e by m e a n s of i t s
F o u r i e r expansion in a sum of waves of the form
е^кт-iwt Going over in the field equations (II) to
Fourier components and eliminating the magnetic in-
duction B, we obtain the following equation for deter-
mining the Fourier components of the electric field
intensity E:

Чи-к^-^ги(со, к)} £ y = ^ / O J ( c o , к), (8.2)

where j o ( w , k ) a r e the F o u r i e r components of the c u r -
r e n t densi ty of the ex terna l s o u r c e s of the field.

In an i sot ropic and non-gyrotropic medium, w h e r e
the d i e l e c t r i c permit t iv i ty t e n s o r has t h e form (2.11),
we find from Eq. (8.2) the following e x p r e s s i o n s for
the F o u r i e r components of the e l e c t r i c field intensity
E:

4nia> 12 I A .
/.,(», к). (8-3)

The intensity of the electric field in the medium at any
point at the time t is then determined by means of the
Fourier transformation formula

E (r, die-** ^ rfk e*"' E (со, к). (8.4)

Formulas (8.3) and (8.4) enable us to find the elec-
tromagnetic field in an isotropic and non-gyrotropic
medium produced by an arbitrary field source with
current density j o ( r , t ) . For the case where the field
source is a point charge moving with velocity v,

jo(r, t) = evb(r-vt).

Then from formulas (8.3) and (8.4) we get

E(r, 0 = - ijiie rfk eik(r-vl) A2(kv)( v —
(kv)k

k2

[*•-•?-

(8.5)

(8.6)
Taking the value of the electromagnetic field inten-

sity at the point where the charge is located, i.e., at
the point r = vt, we find, using formula (8.1), for the
energy loss of the particle per unit length of path in
the medium,

w =
jEl(kVift)

• (8.7)

Introducing the notation w = к• v, q2 = к2 - (к • v )2/v2,
we write formula (8.7) in the following form:

w = ^

(8.8)

Since the real and imaginary parts of the longitudi-
nal and transverse dielectric permittivities are even
functions of frequency, while the imaginary parts are
odd, we have from formula (8.8)

w=wl+wtT,

where

(8.9)

, (8.10)

со

\_fdq_

xlm-

*°+«>2[^г-1РгеЧш'
( 8 . 1 1 )

A t f i r s t g l a n c e i t m a y s e e m t h a t t h e i m p o r t a n t c o n -

t r i b u t i o n s t o t h e e n e r g y l o s s o f t h e c h a r g e d p a r t i c l e i n

the medium come only from those regions of the argu-
ments w and к in which there is considerable absorp-
tion. This is not so, however. In the expression (8.8)
there is also contained a considerable contribution
from regions in which the imaginary parts of el and
e t r are negligibly small. The point is that in such r e -
gions the denominators of the first and second terms
in the curly brackets of (8.8) may generally pass
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through zero, and the integrand may then have a pole.
In Sec. 4 it was shown that for media which are in
thermodynamic equilibrium, l i n e ' > 0 and bn e* r > 0.
Taking this into account and also using the relation

lim

we find the following contributions to W* and W t r

from those regions of the variables OJ and к in which
there is no absorption:

(8-12)

* »2 (8.13)

The integrations with respect to ш and q in these ex-
pressions extend over the regions of weak absorption
in the medium. From formulas (8.12) and (8.13) it is
clear that in regions of weak absorption the energy
losses are determined by those values of the variables
a) and к at which the arguments of the б functions ap-
pearing in the formulas are equal to zero. According
to (6.4) and (6.5) these values of ш and к correspond
to longitudinal and transverse electromagnetic waves
in the isotropic and non-gyrotropic medium.

We have written the expression for the energy loss
of the particle in the medium as a sum of two terms
W1 and W41". The first term W1 in (8.9) represents
the energy loss of a nonrelativistic electron in the
medium, and is caused by radiation of longitudinal
electromagnetic waves; the second term W*r repre-
sents the energy loss of the electron to excitation of
transverse electromagnetic waves in the medium. F r e -
quently in the literature the energy losses of a particle
corresponding to the quantity W* are called polariza-
tion losses, or Bohr losses, while the losses associ-
ated with the term Wt r in (8.9) are called Cerenkov
losses. It should be emphasized that such a division,
in a certain sense, is purely a convention, since both
the first and the second terms in (8.9) apply to energy
losses of the charged particle to excitation of longitudi-
nal and transverse waves respectively in the medium.
In an anisotropic medium, in which the division of
electromagnetic waves into longitudinal and transverse
is not possible in general, the concept of a division of
losses into polarization and Cerenkov losses loses its
meaning.

In the case of the motion of a charge particle in an
anisotropic medium, we obtain from formulas (8.1),
(8.2), and (8.4) the following expression for the energy
loss of the particle per unit length of path:3 0

- ] , (8.14)

•J i ; C 2 i i \ > )•

F o r a n o n - a b s o r b i n g m e d i u m t h e e n e r g y l o s s e s o f

a p a r t i c l e i n t h e m e d i u m w i l l b e d e t e r m i n e d b y t h e

p o l e s o f t h e i n t e g r a n d i n ( 8 . 1 4 ) . T h e s e p o l e s c o i n c i d e

w i t h t h e r o o t s o f ( 6 . 3 ) , w h i c h i s t h e d i s p e r s i o n e q u a -

t i o n f o r e l e c t r o m a g n e t i c w a v e s i n t h e a n i s o t r o p i c

m e d i u m .

F o r m u l a ( 8 . 1 4 ) s i m p l i f i e s c o n s i d e r a b l y i n t h e c a s e

where the medium can be assumed to satisfy the in-
equality (v2/c2) ец(ы,к) « 1 for all values of the
arguments ш and k. Then formula (8.14) takes the
following form:

W=-^*-l, ( k : ) r f * . (8.15)

Since expression (8.15) is obtained from (8.14) by a
formal transition to the limit с — °°, one says that it
determines the total nonrelativistic energy loss of a
charged particle in an anisotropic medium.

From the above it follows that the division of the
losses into longitudinal and transverse, as is the case
for an isotropic medium, becomes meaningless for the
case of an anisotropic medium. We may, however,
speak of the nonrelativistic losses of the fast particle,
as given by expression (8.15), and the total losses of
the particle, as given by formula (8.14).

Let us now explain what characteristic features for
energy loss in isotropic and non-gyrotropic media r e -
sult from inclusion of spatial dispersion. Let us con-
sider each term in formula (8.9) individually.

As we have already stated above, the quantity W*
represents the energy loss of a charged particle due
to radiation of longitudinal waves in the medium. Sup-
pose that a particle with momentum p, as a result of
interaction with the medium, radiates a longitudinal
electromagnetic wave with frequency ш and wave vec-
tor k, and is then scattered through an angle ^ « 1.
In the language of quantum mechanics, such a wave
may be called a longitudinal quantum with energy Kw
and momentum Hk. From the laws of conservation
of energy and momentum, we have

(8.16)

From this, using the notations k2 = q2 + w2/v2, we have
q = p^/fi. It should be remarked that such a quantum
mechanical treatment applies only in regions of t rans-
parency of the medium, when the imaginary parts of
ш and к are small. From formula (8.10) we find the
following expression for the probability of scattering
of a fast particle through an angle $ « 1 with emis-
sion of a longitudinal quantum of frequency w, per
unit time of motion in the medium:

vdW
ti ш dead dQ nhv

I m

pv

w h e r e

Using the relation ш = k*v, and also formula (8.16), it
is easy to obtain from the expression (8.17) the proba-
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bility of emission per unit time of a longitudinal quan-
tum with wave vector к by a fast electron moving in
the medium with velocity v. For non-absorbing media
this probability is equal to

б [Е 1 (kv, k)]
( 8 . 1 8 )

W h e n w e n e g l e c t s p a t i a l d i s p e r s i o n , f o r m u l a ( 8 . 1 7 ) b e -

c o m e s t h e f o l l o w i n g : 2

vdW' 2«2

-Im e((B) ( 8 . 1 9 )

where e (ш) = el(w, 0). Comparing formulas (8.17)
and (8.19) we conclude that including spatial dispersion
changes the angular dependence of the probability of
scattering of a fast particle in a medium with emission
of a longitudinal quantum. In certain cases, for not too
small angles of scattering, the difference between
(8.17) and (8.19) may be very important.

Formula (8.18) for the probability of emission of a
longitudinal quantum, when we neglect spatial disper-
sion, takes the form

vdW1

hatdk
e1 (kv)] (8.20)

Finally, we give one more form for the expression
for the longitudinal (polarization) loss (8.10) which is
useful when the spatial dispersion can be neglected.
Expressing the dielectric permittivity e(w) in terms
of the index of refraction n' and the absorption coeffi-
cient к,

and integrating with respect to q, we get from formula
(8.10)

a>da>.—n i -^- . (8.21)

The upper limit of integration over q, the quantity qg,
is determined from the condition that one can neglect
spatial dispersion of the longitudinal dielectric per-
mittivity in expression (8.10).

In a completely analogous fashion we obtain from
formula (8.11) the expression for the probability of
scattering of a fast particle per unit time with emis-
sion of a transverse quantum of frequency со:

vdW1

hw dcod dO Лео
pv

x I m - ( 8 . 2 2 )

J u s t a s i n ( 8 . 1 7 ) , t h e a n g u l a r d e p e n d e n c e i n e x p r e s -

s i o n ( 8 . 2 2 ) d i f f e r s f r o m t h e a n g u l a r d e p e n d e n c e o f t h e

c o r r e s p o n d i n g e x p r e s s i o n o b t a i n e d w h e n w e n e g l e c t

s p a t i a l d i s p e r s i o n . H o w e v e r , u n l i k e t h e c a s e o f ( 8 . 1 7 ) ,

t h e i n c l u s i o n o f s p a t i a l d i s p e r s i o n i n ( 8 . 2 2 ) f o r a n o n -

r e l a t i v i s t i c p a r t i c l e l e a d s t o a w e a k e f f e c t , s i n c e , a s

o n e s e e s f r o m f o r m u l a ( 8 . 2 2 ) , t h e c h a n g e s r e f e r o n l y

t o t h e s m a l l t e r m o f o r d e r ( v 2 / c 2 ) e t r . B e s i d e s , t h e

c o n t r i b u t i o n o f e x p r e s s i o n ( 8 . 2 2 ) t o t h e t o t a l p r o b a b i l -

i t y o f s c a t t e r i n g o f a p a r t i c l e i n a m e d i u m t h r o u g h a n

a n g l e d- « 1 w i t h r a d i a t i o n o f e l e c t r o m a g n e t i c w a v e s

i s a s m a l l q u a n t i t y o f o r d e r v 2 / c 2 . F o r a r e l a t i v i s t i c

p a r t i c l e , t h e e f f e c t o f s p a t i a l d i s p e r s i o n m a y b e c o m e

s i g n i f i c a n t . T h e i n c l u s i o n o f s p a t i a l d i s p e r s i o n h a s

a n i m p o r t a n t e f f e c t o n t h e s p e c t r a l a n d a n g u l a r d i s t r i -

b u t i o n o f t r a n s v e r s e r a d i a t i o n o f a p a r t i c l e . In o r d e r

t o c o n v i n c e o n e s e l f o f t h i s , l e t u s c o n s i d e r t h e c a s e

o f a n o n - a b s o r b i n g m e d i u m . T h e n

° " + »2 ( 8 . 2 3 )

N e g l e c t i n g s p a t i a l d i s p e r s i o n i n t h i s e x p r e s s i o n , w e

h a v e

c2

where e (w) = e t r (w, 0).
From expression (8.24) it follows that there is

Cerenkov radiation with frequency ш only if the
condition

'

(8.24)

УТЩ ~ n И

is satisfied, where n (ш) is the index of refraction of
the radiated transverse wave. After integration over
q, we obtain from (8.24) the final formula

и/1г = Л- (8.25)

which determines the total intensity of the Cerenkov
radiation.

Introducing the angle в between the direction of
motion of the charged particle and the direction of
propagation of the Cerenkov radiation of frequency w,
and noting that for a Cerenkov wave ш = к • v = kv cos в
= n (ш/с) v cos в, we find that this radiation is distrib-
uted over the surface of a cone with opening angle

cos 6 = (8.26)

When we include spatial dispersion, we obtain from
formula (8.23) the following condition for radiation of
a Cerenkov wave with frequency w:

where nj(w) is one of the roots of equation (6.8), which
is the dispersion equation for transverse electromag-
netic waves of the medium. Here the radiation is dis-
tributed over the surface of a cone with opening angle

COS 6; = - (8.27)
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Since equation (6.8) has in general several roots, the
Cerenkov radiation with frequency w may be distrib-
uted over the surfaces of several cones; whereas when
we neglect spatial dispersion, all of the radiation is
distributed over the surface of a single cone. 1 3 ' 3 0

9. FLUCTUATIONS OF THE ELECTROMAGNETIC
FIELD

Fluctuation oscillations of the density in a material
medium give rise to local spontaneous, or, as one says,
stochastic currents j s t , which produce a fluctuating
electromagnetic field. In place of the stochastic cur-
rents it is more convenient to introduce a stochastic
induction K, which is related to ] s t by the relation

l ж
4я dt

( 9 . 1 )

T h e s e q u a n t i t i e s a r e a l s o c a l l e d " e x t e r n a l " t o e m p h a -

s i z e t h e f a c t t h a t i n t h e M a x w e l l e q u a t i o n s f o r t h e fluc-

t u a t i o n f i e l d t h e y p l a y t h e r o l e o f e x t e r n a l s o u r c e s o f

t h e f i e l d .

T h e t h e o r y o f f l u c t u a t i o n s o f t h e e l e c t r o m a g n e t i c

f i e l d i n m a t e r i a l m e d i a , w h e n o n e i n c l u d e s o n l y f r e -

q u e n c y d i s p e r s i o n o f t h e d i e l e c t r i c p e r m i t t i v i t y , h a s

b e e n d e v e l o p e d i n d e t a i l i n r e f e r e n c e s 2 a n d 3 4 — 3 8 .

T h e t h e o r y o f e l e c t r o m a g n e t i c fluctuations i n m e d i a ,

w h e n o n e t a k e s a c c o u n t o f s p a t i a l d i s p e r s i o n , i s a t

p r e s e n t t h e s u b j e c t o f o n l y a s m a l l n u m b e r o f p a p e r s .

6,39-43 |д (.щд s e c t i o n w e shal l explain briefly the r e -
sul ts of t h e s e p a p e r s .

Suppose that t h e r e a p p e a r s in a medium a s t o c h a s -
t ic c u r r e n t with frequency w. This c u r r e n t , r e g a r d e d
a s an ex terna l s o u r c e , gives r i s e to fluctuating e l e c t r o -
magnet ic fields in the medium. Following the s a m e
a r g u m e n t s given in r e f e r e n c e 2 (Sec. 90), we get the
following e x p r e s s i o n for the c o r r e l a t i o n of the s t o c h a s -
t ic c u r r e n t s j s t : 4 0

(jsti (') Jst; (r'))a> = - -£f [0Ч К r- r ' ) + ati К г'> r)] c t h " 2 ^ •

(9.2)*
Using r e l a t i o n s (1.11) and (9.1), we obtain from ex-
p r e s s i o n (9.2) the c o r r e l a t i o n formula for the fluctu-
at ions of the s tochast ic induction in the m e d i u m 6

(Ki (r) Kj (r'))m = ih cth ^r [e*i (со, r\ r) - e i ; (со, г, г')]. (9.3)

It should be noted that non-locality of the c o r r e l a t i o n s
of the r a n d o m c u r r e n t s and random induction is caused
by spat ia l d i sper s ion . When the spat ia l d i sper s ion can
be neglected

ey (со, r, r') = ei;- (со) б (г — г'), стц (со, г, г') = аи (со) б (г - г').

F o r m u l a s (9.2) and (9.3) in th i s c a s e take t h e i r usual
form 2

(/st i (') /st i («•'))«, = - - g - cth - ^ r (<т„ (со) + а% (со)) б (г - r'),

(9.4)

(Kt (r) ^ (г'))„ = in cth J ^ (8Ji (со) - Ei; (со)) б (г - г'). (9.5)

Let us now cons ider the c a s e of a spatial ly h o m o -
geneous, i so t ropic , and non-gyrotropic medium. Using
a F o u r i e r expansion in the coordinates and r e m e m b e r -
ing re la t ion (2.11), we obtain from formulas (9.2) and
(9.3)

</sti(k)/stiy(k ))ffl= — (2Sjic t h2xrl\"« — ~p- j R e C T (ш> «)

+ ^ Re а1 (со, к)} б (к + к'), (9.6)

t (к) X, (к'))м = ^ cth ^ {(«« - ^ ) Im ef (со,{К
" (2л)» " ш 2иГ 1Г г 3 *^

• ^ Ime 1 (со, А))б(к + к').

к)

(9.7)

In o r d e r to d e t e r m i n e the c o r r e l a t i o n of t h e f luctua-
tions of the e l e c t r i c field in the medium, it i s n e c e s s a r y
to solve Maxwell 's equations in which the s tochast ic i n -
ductions play the p a r t of externa l s o u r c e s . F o r an i s o -
t r o p i c and non-gyrotropic medium, we have

(9.8)

From the solution of this equation, taking account of
formula (9.7), we get42

( £ t ( k ) ^ ( k ' ) ) « = - ( S

where*

cth ^ ^ (со, к) б (к + к'), (9.9)

Ime" . (9.10)

Finally, using the inverse Fourier transformation we
find the spatial correlation of the electric field in an
isotropic and non-gyrotropic medium:

where

Si(r)£V('-'))<o = 2 f t c t h ^ O i ; ( c o , r - r ' ) , (9.11)

(9.12)= щр ] dk ei«^ tj (со, к).

We note that the first term on the right of (9.9) cor-
responds to the correlation of the longitudinal field,
while the second term is caused by the transverse field.
From this the correlation formula for the longitudinal
field can be written in the form4 2

(9.13)

Similarly, we can write a correlation formula for the
transverse electromagnetic field. Contracting on the
indices i and j in formula (9.11) we get

Ime"

*cth = coth.

(9.14)

*We note that the inequality (4.13) follows from (9.9) and (9.10).
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where R = г - г ' . К in this expression we neglect the
spatial dispersion and make use of relation (3.9), we
get the familiar form2

1 Ш* Г-^Г-*
4я Re' — e ' ] } • (9.15)

One of the peculiarities of this formula is the presence
of the б function in front of the term proportional to
the imaginary part of the dielectric permittivity e (со),
which leads to an infinitely large fluctuation of the lon-
gitudinal field in absorbing media. The expression
(9.14) does not contain a singularity of the form б (R).
The second peculiar feature of formula (9.15) is the
presence of a divergence of the fluctuations of the lon-
gitudinal field for e (со) = 0, i.e., when both the real
and imaginary part of the dielectric permittivity are
equal to zero. The physical reason for this divergence
is quite simple.4 2 The point is that the condition с (со)
= 0 is the condition for having longitudinal oscillations
where the frequency of the oscillation is independent of
wave vector. Consequently, to one frequency of the
longitudinal oscillations there corresponds an infinite
number of waves with arbitrary wave vectors. This
last point means that the fluctuation longitudinal field
with the frequency of the longitudinal oscillations cor-
responds to a thermal excitation of an infinite number
of degrees of freedom, which results in a singularity
in formula (9.15) at a frequency equal to the frequency
of the longitudinal vibrations. It is easily understood
that when we include spatial dispersion, in which case
the frequency of longitudinal waves becomes a function
of the wave vector, the singularity described above
cannot occur. In fact, from formula (9.11), we see that
the correlation of fluctuations of the longitudinal field
has no singularity for el(co,k) = 0. This is caused by
the fact that when we include spatial dispersion, longi-
tudinal waves, like transverse waves, become a legiti-
mate branch of the normal modes in the medium and
give r ise to effects similar to those resulting from
transverse electromagnetic waves.

In the case of a non-absorbing medium, it is easy
to obtain from expression (9.9) the following formulas
for the fluctuations of the longitudinal and transverse
fields in the medium:

(9.16)

Subst i tut ing t h e s e e x p r e s s i o n s in f o r m u l a (4. ' l9), w h i c h

d e t e r m i n e s the d e n s i t y of e n e r g y of the e l e c t r o m a g n e t i c

f ie ld in a n o n - a b s o r b i n g m e d i u m , w e obta in 4 3

dW ftco3 . , ftco л , • . ..« d . ,• / w

where n|| and n\ are the indices of refraction for lon-
gitudinal and transverse waves, i.e., for the solutions
of (6.7) and (6.8) respectively.

In conclusion, we consider the question of the sym-
metry of the dielectric permittivity tensor of a me-
dium. We use the property of temporal symmetry of
the fluctuations of the electric field

(Et (r) i (r)).. (9.18)

A completely analogous symmetry property applies to
the fluctuations of the random induction K. A conse-
quence of this, according to (9.5), is the identity

e i ; ( w , г, г') —8,ч(о), г', r) = 8i,-((o, г', r) —e? ; (GO, r, r'). (9.19)

F r o m t h i s w e have

е'ц((о, г, г') = е;ч(ш, г', г), (9.20)

where е^(со, г, г ' ) is the real part of the tensor
е^(со, г, r ' ) . But the real and imaginary parts of the
dielectric tensor of a medium which is in an equilib-
rium state are related to one another by the linear in-
tegral relations — the Kramers-Kronig formulas. In
fact, eij(w, r, r ' ) as a function of со, defined by means
of the one-sided Fourier transformation (2.2), is analy-
tic everywhere in the upper half-plane of the complex
variable со, except possibly for a band of finite width,
Im со > a > 0. For media which are in an equilibrium
state, a = + 0 (cf. Sec. 5). Therefore for such media

+OO
)-«ч = г \ -da>', ( 9 . 2 1 )

where P means that the integral is to be understood
in the sense of a principal value. Separating the real
and imaginary parts in (9.21), we obtain the familiar
Kramers-Kronig formulas*

•For an isotropic medium the Kramers-Kronig relations (9.21)
hold both for the longitudinal, e1 (<o, k), and for the transverse,
etr(<u, k), dielectric permittivities. Therefore according to (2.22)
we get for the magnetic permeability

—
Ц(Ш,

+CO
= — \ P

da>' о', ft)

a' — и | (д, (a>', ft) | 2

!*"(«>,*)
>', *)

If the function ц"(а>, к) does not have a singularity for cu = 0,
then from these formulae we have in particular the following rela-
tion for the static magnetic permeability of the isotropic medium:

Г 1 " ] ' _ . . 2 С *»' V-" (m'> *)
L ц (со, ft) J ~ я" J "со7" | ц (ш', ft) I'- '

0
In Sec. 4 jye have already mentioned that the quantity p"(co, k),
unlike e1 (о), к) and е*г'(ш, к), may be either positive or negative.
In fact, the inequality fi'(a>, k) > 0 [or (i"{a>, k) < 0] would mean the
impossibility of existence of diamagnetic (or paramagnetic) media.
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+00 Bjy((O', Г, Г')
dm'

+00

e i ' , ( m , r , r ' ) = - 4 { Р Ч > ' — - ( 9 . 2 2 )

F r o m t h e s e r e l a t i o n s i t f o l l o w s t h a t t h e i m a g i n a r y

part €jj(u, r, r ' ) as well as the real part е[\(ш, r, r ' ) ,
has the symmetry property (9.20). We thus arrive at
the final result

eu(co, г, г') = ея(со, (9.23)

In the c a s e of an unbounded and spatial ly homogeneous
medium, we obtain from this the following s y m m e t r y
p r o p e r t y of the d ie lec t r ic permi t t iv i ty t e n s o r : 4 4

&u (со, к) = е я (со, - к ) . (9.24)

The form of the r e l a t i o n s (9.23) and (9.24) i s changed
somewhat if t h e r e i s a constant magnet ic field B o in
the medium produced by externa l s o u r c e s . In th i s
c a s e , when we r e v e r s e the sign of the t i m e , we m u s t
a l so m a k e the change B o — - B o . There fore , in p lace
of the r e l a t i o n s (9.23) we obtain

ei;-(co, к, В0) = ея((о, - к , Во). (9.25)

In the c a s e of an unbounded and spatial ly homogeneous

medium, we have

eu (со, r, r', Bo) = ен (со, г', г, - Bo). (9.26)
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