
SOVIET PHYSICS USPEKHI VOLUME 4, NUMBER 2 SEPTEMBER-OCTOBER 1961

STABILITY OF PLASMA

A. A. VEDENOV, E. P. VELIKHOV, and R. Z. SAGDEEV

Usp. Fiz. Nauk 73, 701-766 (April, 1961)

CONTENTS

I. Introduction 332
1. Linear and Nonlinear Stability Theory 333
2. Oscillating and Aperiodic Instabilities 334
3. Methods of Describing a Plasma 334

П. Aperiodic Plasma Instability 336
4. Ideal Plasma 336
5. Aperiodic Plasma Instability with Account of Dissipation 346

III. Oscillating Plasma Instability 349
6. Instability of Beams in a Plasma 349
7. Microscopic Instability of "Nonmaxwellian" Plasma 352
8. Build-up of Oscillations in a Plasma in the Presence of Relative Motion of Ions and

Electrons 355
9. Microscopic Instabilities of an tohomogeneous Plasma 356

10. Stability of Plasma Flow in a Magnetic Field 357
11. "Oscillating Convection" in a Plasma 360
12. Instability of Positive Column of Gas Discharge in a Magnetic Field 360

IV. Problems in Nonlinear Stability Theory 361
13. Steady-State Convection in a Plasma and "Anomalous Diffusion" 361
14. Quasi Linear Approximation in the Analysis of Oscillating Instabilities in a

Rarefied Plasma 363
15. Developed Instability 365

Appendices 366
Literature 368

I. INTRODUCTION In addition, many heating methods are usually con-

P! nected with excitation of individual degrees of freedom
LASMA stability, to which the present review is de- of a plasma. For example, heating of a plasma situ-

voted, is no less important, both theoretically and prac- ated in a stationary magnetic field by means of a field
tically, in plasma physics than the corresponding ques- of frequency close to the cyclotron frequency of the
tion of stability in ordinary hydrodynamics, and its ions or electrons (called heating by cyclotron reso-
solution is probably more difficult. nance) increases only the energy of rotation of the

One of the most important applications of the theory particle in the Larmor orbits in the field; heating with
of plasma stability is in the problem of controllable current increases the kinetic energy of the electrons,
thermonuclear fusion. Even to produce and to heat a etc. Instability may set in in this case, too, and a con-
plasma under laboratory conditions, we must be able siderable portion of the energy may go to the field of
to insulate it, and this is possible only with the aid of the oscillations. The field, in turn, again increases
external or self-magnetic fields. These fields must the diffusion of the particles.

decrease sufficiently the diffusion of heat and of par- Only a theory of laminar plasma motion exists at
t i d e s from the region occupied by the plasma. Such a present, and the limits of its applicability can be evalu-
plasma state can in a certain sense be called meta- ated by stability theory. Moreover, stability theory is
stable. an essential basis for the development of a theory for

However, very stringent conditions must be satis- turbulent plasma.
fied if the metastable state is to exist a sufficiently Directly related to stability theory is dissipation of
long time. It is essential here to prevent the excita- energy in the plasma during time intervals consider-
tion of both macroscopic degrees of freedom (which ably shorter than the pair-collision times, i.e., the
would lead to the escape of the plasma as a whole question of the so-called "collisionless" dissipation
from the occupied region), and microscopic ones, in plasma. The mechanisms of this dissipation, which
since the fields produced by the build-up of oscillat- are connected with the exchange of energy between dif-
tions increase the diffusion of the particles sharply. ferent degrees of freedom, must also be known before
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a theory can be developed for turbulent plasma.
The authors of this article did not aim at a detailed

analysis of the mathematical formalism of stability
theory; we tried to report the principal physical r e -
sults of stability theory, derived from well-drawn
physical considerations. In the few cases when, in our
opinion, the formal approach attains the purpose more
rapidly, we do not engage in qualitative considerations.

The choice of the material and its arrangement in
the review were aimed at establishing, where possible,
the internal connections between the physical causes
of various types of plasma instability. In the introduc-
tory chapter we discuss the formulation of the problem
and explain briefly the various approaches to the sta-
bility problem (including the choice of approximations)
and methods of describing the plasma.

Chapter II is devoted to the so-called aperiodic type
of instability (where the departure from equilibrium
increases monotonically with t ime). Instabilities of
this type characterize essentially static plasma equi-
librium configurations that are contained by the p r e s -
sure of the magnetic field. This applies, for example,
to stability of a plasma in a gravitational field (the
Kruskal-Schwartzschild problem) and to the closely
related problem of stability of a plasma in a b a r r e l -
shaped" magnetic field (Longmire, Rosenbluth), to
the stability of a pinch, i.e., a current-carrying plasma
column, etc. We consider next the stability of a plasma
pinch with allowance for rotation, and the stability of a
plasma contained by the pressure of a high-frequency
electromagnetic field. In addition, we consider several
types of aperiodic instability in a rarefied plasma with
nonmaxwellian velocity distribution in a magnetic field.

The second part of Chapter II is devoted to the in-
fluence of dissipative effects on aperiodic plasma in-
stability, viz., stability of a pinch with allowance for
finite conductivity, and stability of rotation of a real
plasma.

Oscillating plasma instabilities and the conditions
under which they are produced are described in Chap-
ter III (in these cases the system oscillates with a
continuously increasing amplitude after departing from
the initial state). The problem discussed there con-
cerns so-called " b e a m " instability of a rarefied
plasma and of instability of nonmaxwellian plasma in
general. Criteria are derived for the stability under
the launching of various types of oscillations.

Certain oscillating instabilities are characteristic
of plasma currents in a magnetic field. This question
is considered in the magnetohydrodynamic approxima-
tion in Sec. 10 of Chapter III; In conclusion, we con-
sider the conditions under which periodic convection
arises in an unevenly heated plasma placed in a mag-
netic field, as well as the question of the instability of
the positive column of a gas discharge in a magnetic
field.

The last chapter, IV, is devoted to a discussion of
nonlinear effects in the theory of plasma instability.

The so-called quasilinear method is developed and
applied both to problems in hydrodynamics of plasma
(convection), and to problems involved in the build-up
of oscillations in a rarefied plasma. These effects are
particularly important for an estimate of the influence
of the instability on transport processes in the plasma.

Individual mathematical derivations for various
chapters are contained in the appendices.

1. linear and Nonlinear Stability Theory

The stability of any system is investigated by the
perturbation method. If the initial perturbation of the
stationary state of the system increases with time, the
state is unstable under a perturbation of this type.

The question of instability was investigated most
thoroughly only as applied to small perturbations. The
deviations from the initial stationary state are consid-
ered here to be so small that the equations for these
deviations can be linearized, i.e., expanded in powers
of the perturbation amplitude and all terms of order
higher than the first neglected. The present review
is devoted essentially to linear stability theory.

In view of the linearity of the equations of the the-
ory, it is natural to employ the method of Fourier ex-
pansion in terms of time and of the space coordinates
in which the system is homogeneous. The problem r e -
duces in this case to an investigation of the behavior
of the individual Fourier component of some physical
quantity. Where such an analysis leads to misunder-
standing, it becomes necessary to turn to a current
solution of the problem with initial conditions taken
into account. Usually, however, one can seek a solu-
tion of the system of equations simply in the form

F(r, t) = F(r)e~iat,

where ш = w r + ш\ is the complex frequency and F
is the deviation of any physical quantity from its
stationary value.

The linear theory of stability does not distinguish
in principle between metastable and stable states, i.e.,
it is not applicable in the case when two stationary
states are separated by a barr ier . The latter problem
is already part of the nonlinear stability theory. With
the exception of several particular cases pertaining
to ordinary hydrodynamics, there is no such "sub-
cr i t ica l" nonlinear theory of stability.

Great progress was made in the development of
"supercr i t ical" stability theory. This theory deals
with the effect of perturbations on the average "back-
ground"* and with the development of small perturba-
tions against this background. Either energy consid-
erations or the usual methods of perturbation theory
are employed. The physical meaning of this approxi-
mation is that distortion of the average background

*We use the term "background" to describe the stationary
state. In this case the stationary state is the one averaged over
many periods of small oscillations.
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by the perturbation decreases the energy transfer to
the perturbations. A balance is established at some
finite perturbation amplitude between the perturbation
energy flux and the flux of the energy dissipated in the
perturbations. This establishes the stationary ampli-
tude of the perturbations (see reference 1 for a gen-
eral formulation of the problem).

This method is valid when the critical stability con-
ditions are exceeded slightly. If A. is some parameter
(the critical value of which is \ c ) , then the motion
consists of a stationary component plus oscillations
whose amplitude is proportional to the square root of
A. - A.c. Under these conditions each mode develops
independently and the interaction between modes can
be neglected. Further deviation from the critical state
causes interaction and energy exchange to set in be-
tween the different modes.

The question of the conditions that lead to turbulence
in the system is beyond the scope of the present review.

2. Oscillating and Aperiodic Instabilities

Physically, it is meaningful to distinguish between
two kinds of instability:

a) aperiodic departure, in which the deviation from
equilibrium position increases monotonically with time,
and

b) oscillations whose amplitude increases with time.
Mathematically the condition under which the depar-

ture is aperiodic is Re ш = 0, so that all the quantities
that characterize the deviation from equilibrium have
the form

where oij is a real number. A criterion for such an
instability is best formulated in energy terms. The
system is unstable if there exist perturbations that
cause its potential energy to decrease.

An instability is called oscillating if Re ш * 0, i.e.,
oscillating perturbations that build up in time exist in
the system. Such an instability can be due to the fol-
lowing causes.

In many cases resonance between a group of plasma
particles and the perturbation wave can set in in a co-
ordinate system moving with a certain velocity. Such
a phenomenon, which leads to the development of oscil-
lating instability, will be called phase resonance.

An oscillating instability can also be produced as a
result of competition between relaxation processes,
such as heat conduction and the diffusion of the mag-
netic field in convection.

Oscillating instabilities differ in character. If small
perturbations are initiated in some small region of
space and increase in that region without limit as
t — oo we call such an instability absolute. On the
other hand, if these perturbations both increase and
move out of the system, this will be called a drift
instability.

3. Methods of Describing a Plasma

Before we proceed to report the results accumu-
lated in the extensive literature on plasma stability,
let us describe briefly the initial mathematical formal-
ism used to describe a plasma in problems involving
the stability of various states of a plasma.

The plasma, being an aggregate of an electron gas
and ion gases (several sorts of ions may exist in the
plasma),* is frequently described in terms of a differ-
ent distribution function f (r, v, t ) for each sort of
charge. These distribution functions can in principle
be determined by solving a system of Boltzmann equa-
tions, in which account is taken not only of particle
pair collisions, but also of the action of electric and
magnetic fields on the plasma particles. The fields
themselves are related in turn, by the Maxwell equa-
tions, with the spatial current densities ejfvdv and
the charge density ejidv.

To obtain reasonable physical results, one usually
resorts to simplified mathematical models, which per-
mit the use, under certain assumptions, of equations
simpler than Boltzmann's.

As in an ordinary gas, we can use the gas dynamic
approximation if we consider space scales L consid-
erably greater than the average mean free path L a v

of the ions (electrons) prior to collision.
Formally, the system of equations of magnetic gas

dynamics consists of the equations for the lower mo-
ments (up to the third, inclusive) of the ion and elec-
tron distribution functions and the Maxwell equations
for self-consistent fields, the plasma being assumed
quasineutral. The latter assumption, which is valid
for scales considerably greater than the Debye radius,
is known to be satisfied in the gasdynamic case.

In magnetohydrodynamic stability investigations the
plasma can be regarded as an ideal liquid, i.e., we can
discard the dissipative terms from the initial magneto-
hydrodynamic equations. This approximation is mean-
ingful if the processes of interest to us have a duration
much shorter than the diffusion time of the field

where L is the characteristic dimension and a the
conductivity of the plasma, shorter than the character-
istic time of "velocity diffusion"

where v is the kinematic viscosity, and shorter than
the characteristic time of temperature diffusion

*We confine ourselves here from the outset to the "gas" ap-
proximation, i.e., we assume the plasma to be an almost perfect
gas, which is correct if the Debye radius of the ions (electrons)
exceeds appreciably the average distance between particles.
However, many results concerning stability, particularly those
pertaining to the magnotohydrodynamic approximation, have a
much wider range of application.
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where x is the coefficient of temperature conductivity
of the plasma. The corresponding dimensionless pa-
rameters are called respectively the magnetic Rey-
nolds number

Ke™ "" x - ~ W •

where т is the time scale, the hydrodynamic Reynolds
number

R e * = V = £

and the Peclet number

Thus, in order for the approximation of an " ideal"
plasma to be valid, it is necessary to have

Rem » 1, Re, » 1, Pe > 1.

It should be noted that these conditions are sometimes
found to be insufficient, for when R » 1 there exists a
whole class of phenomena which are not described by
the ideal-plasma model, phenomena connected with the
so-called paradox of zero and vanishing dissipation
(see Sees. 5a and 10). The ideal magnetohydrodynamic
system of equations obtained in this approximation has
the form

| + div6V=0,

dt
4^[ro tH,H] ,

(3.1)

(3.2)*
Q ' ' 4 л д с l

^ = r o t [ v , H ] , ( 3 . 3 )

p = p(Q). ( 3 . 4 )

In this system (3.1) is the continuity equation for the
density p, (3.2) is the equation of motion describing
the variation of the average velocity v of a plasma
element under the influence of a force connected with
the pressure drop p and a ponderomotive force

i j x H = -f- curl Hx H, Eq. (3.3) states that the force
с 47Г

l i n e s of the m a g n e t i c f ie ld a r e " g l u e d " to an i d e a l l y

conduct ing p l a s m a , and (3.4) i s the equat ion of s t a t e .

The p o n d e r o m o t i v e f o r c e i s c o n v e n i e n t l y w r i t t e n

in the f o r m of the s u m

4n . _ ^ ( Н . Т ) Н .

The f i r s t ( p o t e n t i a l ) t e r m i s the grad ient of the

" m a g n e t i c p r e s s u r e . " The s e c o n d t e r m y i e l d s the

p r o j e c t i o n

4я
( H , V ) H : H2

w h e r e n i s t h e n o r m a l t o t h e f o r c e l i n e and R i s t h e

r a d i u s of c u r v a t u r e of the l a t t e r , i . e . , the s e c o n d t e r m

i s a n a l o g o u s in f o r m to the e l a s t i c f o r c e that a r i s e s

w h e n a s t r e t c h e d s t r i n g i s bent . It i s t h e r e f o r e c a l l e d

the " t e n s i o n of t h e m a g n e t i c f o r c e l i n e s . " T h i s d e -

s c r i p t i v e l a n g u a g e w i l l b e f requent ly u s e d hence for th .

The in troduct ion of the d i s s i p a t i v e e f f e c t s c o m p l i -

c a t e s the s y s t e m (3.1) — (3.4) . Thus, a t e r m

due t o the in f luence of v i s c o s i t y (rj and £ a r e v i s c o s -

i ty c o e f f i c i e n t s ) a p p e a r s in the r ight half of (3 .2) , w h i l e

the r ight half of (3.3) conta ins the t e r m that t a k e s into

account the e l e c t r i c r e s i s t a n c e of the p l a s m a

ДН,
ina

w h e r e a i s the e l e c t r i c conduct i v i ty of the p l a s m a and

с is the velocity of light in vacuum. The pressure no
longer obeys the adiabatic law, and we must use in lieu
of (3.4) the two equations p = p (p, T) and

, H ] - ( v a ' ) - x V r

where

к is the coefficient of heat conduction. The quantities
a, v, and к are scalars only when the mean free path
is much less than the average Larmor radii of the ions
(electrons). In a strong magnetic field, the Larmor
radii rjj ~ vmc/eH (v is the average thermal veloc-
ity) may become small and our equation is made com-
plicated by the anisotropy of the transport coefficients.
A strong magnetic field, for example, decreases the
heat flow transverse to the force lines by a factor
4

К the characteristic spatial scales of interest to
us are, to the contrary, much smaller than the mean
free path, we can use the Boltzmann kinetic equation
without collision integrals to describe the plasma, for
in this limiting case each ion and electron of the plasma
moves in its own trajectory under the influence of the
electric and magnetic fields, which depend in turn on
the joint motion of all the electrons and ions

d i v H = 0 ,

*Rot = curl. [v,H] = vxH, (v, V) = v-V.

(3.1)
*It must be noted that, unlike in stability of mechanical

equilibrium, allowance fot the dissipative terms leads not only to
a change in the rate of build-up of the perturbations, but also to a
change in the stability condition itself (see Sec. 5 for the reason).
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In this form, the system (3.1) permits a practical
investigation of stability only in the simplest cases of
"homogeneous" or almost "homogeneous" background,
i.e., in such idealized equilibrium states, in which the
unperturbed distribution of the quantities that describe
the plasma depends very weakly on the spatial coordi-
nates. In practice this means that we consider pertur-
bation wavelengths considerably shorter than the char-
acteristic scales of the unperturbed spatial distribution.

The system (3.1), which is based on kinetic equations
without account of collisions, can be greatly simplified
if the characteristic spatial scales considerably exceed
the average Larmor radii of the ions (electrons), and
the time scales are much greater than the period of
Larmor revolution. In this case the trajectory of each
charge in the plasma is a superposition of a slow drift
transverse to the force lines, motion along the lines,
and rapid Larmor rotation about the magnetic field.
Averaging over the rapid rotations, we can obtain in
this approximation (called the "dr i f t " approxima-
tion) 2 " 4 simple equations of motion for the center of
the Larmor circle of the charge

Here V|| is the velocity along the force line, while the
second term describes the electric drift.

The last term describes the drift under the influ-
ence of a force

F = _ - M (E0V
d [E,H] M.

where /uVH is the force acting on a particle with mag-

netic moment ц = Mvj_/2H in an inhomogeneous mag-

netic field, and - M (e 0 • V) e0v
2| - — с — p — M is the

inertia force, where M is the particle mass. The mag-
netic moment is conserved in the drift approximation.
The equation of motion along the force line has the form

• d v \ \

~ ~ d t

, ( V f f . H )

Я
J E , H)

H '

In the drift approximation it is possible to replace the
distribution function f (v, r, t ) by the function
fdr (v | |> M> r> ' )• with one less independent variable.
The kinetic equation for fdr <vll> M> r> t) has obviously
the form of a continuity equation in the space Уц, ц, г:

The drift equation (3.II), together with Maxwell's
equations for the fields E and H, has a unique feature:
when there is no dependence on the spatial coordinate
along the force line, the equations for the moments of
fdr have the same form as the magnetohydrodynamic
equations, apart from the adiabatic exponent y, which
is equal to 2 in the drift approximation. Actually,
Pj_ ~ nmv^ ~ пдН ~ n2, since ц is a constant and
H ~ n is a result of the "gluing" of the force lines.

Thus, even in the absence of pair collisions the equa-
tions of magnetohydrodynamics are formally valid for
motion transverse to the force lines. 5

The different mathematical models used for de-
scribing the plasma are compared in the following
scheme, which enables us to trace the "genealogy"
of various approximate methods and their interrela-
tionships.

System of kinetic equations for
ions and electons

Two-liquid hydrodynamics
(ions, electrons)

Single-liquid hydro-
dynamics

ч
Magnetohydrodynamics of

ideal liquid

Kinetics with collisions
disregarded

Kinetics against homo-
geneous "background"

"Drift" kinetic
equation.

T h e f a c t t h a t a s i m i l a r m a t h e m a t i c a l f o r m a l i s m i s

u s e d , i n f i n a l a n a l y s i s , t o d e s c r i b e a p l a s m a u n d e r t h e

m o s t c o n t r a d i c t o r y l i m i t i n g c a s e s , L » Z a v a n d L

« Z a v , e n a b l e s u s f r e q u e n t l y t o d e d u c e t h e s t a b i l i t y

o r i n s t a b i l i t y o f a r a r e f i e d p l a s m a ( L « Z a v ) s i m p l y

f r o m t h e r e s u l t s o f t h e m a g n e t o h y d r o d y n a m i c i n v e s -

t i g a t i o n ( L » Z a v ) .

П. APERIODIC PLASMA INSTABILITY

4. Meal Plasma

4a. The energy principle. 6" 8 A remarkable property
of the system of linearized equations for small pertur-
bations of an ideal plasma in the magnetohydrodynamic
approximation is that they are self adjoint (this takes
place when the unperturbed plasma is at r e s t ) . It fol-
lows from (3.1) — (3.4) that a small displacement of
the plasma from the equilibrium position obeys the
equation of motion

^1=E{|}>
(4a. 1)

where

Here p is the pressure, p the density, В the intensity
of the magnetic field, cp the potential of the external
forces, J the current density in equilibrium, and £ the
displacement from the equilibrium position. The self
adjointness of (4a.l) follows from the fact that the force
depends only on the displacement £, and not on its de-
rivatives with respect to the time.

Obviously the expression
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corresponds to the kinetic energy, while

corresponds to the potential energy. If we seek solu-
tions in the form of normal oscillations exp ( —io)nt),
it follows from (4a. 1) that

-eo^eln = F{ln}. (4a.2)

From the self adjointness of (4a. 1) it follows that OJ^
is real. Therefore in an ideal plasma at rest only
aperiodic instability can exist in the magnetohydrody-
namic approximation. Because of the self adjointness
of (4a.2), | n could be chosen to be orthonormalized
and used to make up a complete system, in which any
displacement satisfying the boundary conditions on the
plasma surface can be expanded. Therefore for any
displacement £ = 2 a n £ n we have 6W = V^Sa^u^. 6W
can become negative if and only if there exists at least
one imaginary frequency Шц < О. Consequently, the
solution of the stability problem reduces to a determi-
nation of the sign of 6W under arbitrary displacements
satisfying the boundary conditions, particularly the con-
tinuity of the total pressure on the boundary.

This last limitation can be lifted by introducing the
generalized energy principle. For this purpose it is
necessary, with account of the correct boundary con-
ditions, to express 6W as the sum of a volume term
(over the volume of the plasma) 6Wp, a surface term
6Wg, and a vacuum term 6Wy:

where

bW = bWF + bWs + bWv,

rot[lB]|3--ij[rot[SB],

(4a.3)

+ yp (div If + (div | ) {IVp) - (IVcp) div (р

bWs = у ^ da (ulf n(V(p + B* 8я)>

(4a.3a)

(4a.3b)

(4a. 3c)

The first integral is over the volume occupied by the
plasma, the second over the boundary between the
plasma and the vacuum (n is the normal to the surface
and (f) denotes the jump in f on going through the
surface), and the third over the vacuum (H is the field
in the vacuum). It is assumed that the force lines do
not cross the plasma boundary. It can be shown8 that
the necessary and sufficient condition for instability
is the existence of 4, H, and E which satisfy only the
electrodynamic conditions on the separation boundary
and make the potential energy (4a.3) negative.

The self-adjoint equation (4a. 1) can be derived from
the variations! principle for

Using the variational principle, we can determine not
only the stability conditions, but also the increments;
however, the energy principle, which does not require
the normalization condition К { { , { } = 1, is much
simpler to use.

With the aid of the energy principle we can readily
establish several comparison theorems. We give here
the following example: If system II differs from sys-
tem I in that the part occupied in system I by the vac-
uum is occupied in system II by a plasma of zero pres-
sure, then instability of system II implies instability
of system I. To prove this we note that whereas in
the region of system I occupied by the vacuum the con-
tribution to 6W is due to the term

6WV = _L ^ dv-к2,

where H is the field perturbation in the vacuum, in
system II we have

if { and H are chosen such that 6WJJ < 0, then by
choosing £i = I n and Hj = Нц everywhere outside
the region of the vacuum of the system I, and Hj
= curl [ J x B ] in this region, we find that 6Wj < 0.
This choice is possible, since Hj satisfies the elec-
trodynamic conditions on the separation boundary.

Using the energy principle in the form (4a.3) it is
easy to show, for example, that a sufficient condition
for the stability of a sharp plasma boundary with no
internal magnetic field is the inequality 9H2/3n > 0,
i.e., for stability, the magnetic pressure must increase
everywhere with increasing distance from the plasma
boundary.

From energy considerations it follows in the gen-
eral case that the most dangerous are deformations
which do not increase the energy of the magnetic field,
i.e., those in which the magnetic force lines are neither
"s t re tched" nor bent. Such deformations are "f lutes"
along the force lines of the magnetic field, in which
{ I B , .

This last circumstance causes the energy principle,
which has been formally derived from linearized equa-
tions of the hydrodynamic approximation, to have a
sensible meaning also for a rarefied plasma in the
drift approximation. Actually, for the most stable
perturbations (£ 1 Bo) the motion is transverse to
the force lines, where again hydrodynamics is applic-
able, but now with non-isotropic pressure. It can be
shown that the stability criterion obtained from the
variational principle in the drift approximation9 is
somewhat less rigid than the corresponding magneto-
hydrodynamic criterion.

4b. Stability of the plasma boundary. When it comes
to applications, one of the most interesting problems
(for example, in controllable fusion) is the stability
of a plasma confined by a magnetic field, i.e., the
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question of the stability of the magnetic insulation of
a plasma. This problem is simplest to analyze by
means of a simple example, first investigated by
Kruskal and Schwarzschild.10 Consider a layer of
plasma bordering on a vacuum. The boundary is
maintained in equilibrium by the pressure of the mag-
netic field Н2/8тг. The ends of the plasma are in con-
tact with ideally conducting plates perpendicular to the
magnetic field and spaced a distance L apart (Fig. I ) . 4 8

•.'•;•.•.••••'/: P l a s m a :V.V\ I'..-•_;

-H

F I G . 1

T h e f i e l d s i n s i d e a n d o u t s i d e t h e p l a s m a a r e p a r a l l e l .

A f o r c e f = p g i s p e r p e n d i c u l a r t o t h e s e f i e l d s . T h e

fields inside and outside the plasma are Bo and Но,
respectively.

If the plasma boundary is displaced vertically by
6z, and if the disturbance has a length on the order
of Z transverse to the field and, naturally, L along
the field, then the pressure on the portion of the bound-
ary that has deviated the most is increased by an
amount equal to the weight of a plasma column of
height 6z:

6p = qgdz. (4b. 1)

The distortion of the magnetic field produces a quasi-
elastic force. If this force is greater than the change
in pressure, the equilibrium is stable.

In the vacuum this force is connected with the change
of the magnetic pressure бН2/8тг = НобНц /47Г, where
бНц is the component of the magnetic field disturbances
along Щ. The field near the boundary of an ideally con-
ducting plasma remains parallel to the plasma. There-
fore, 6Hx ~ H06z/L. Since the motion is quasi station-
ary (v/c — 0), we have outside the plasma H = Vcp
and V2<p = 0. Therefore when I « L the characteris-
tic dimension of the disturbance of the field in a direc-
tion perpendicular to the boundary is Z. Consequently,
бНц ~ 6H1Z/L and 6H2/8ir ~ HjjZdz/L2. Inside the
plasma the field is "frozen i n " and the volume force
reduces to the Maxwellian tension B2/4TTR, and R is
the radius of curvature of the force line; since R ~ L2/
6z, the quasi elastic volume force is equal to BQ6Z/L 2 .
Therefore, if the condition

BJ+Щ (4b.2)

i s s a t i s f i e d , the equ i l i br ium i s s t a b l e .

F o r any f ie ld, p e r t u r b a t i o n s e x i s t wi th v a l u e s of I

s o s m a l l a s t o m a k e t h e s h a r p boundary of t h e p l a s m a

unstab le . Obvious ly, s u c h p e r t u r b a t i o n s dif fuse the

boundary to a width

Actua l ly , w h e n an e l e m e n t of i n h o m o g e n e o u s p l a s m a

i s d i s p l a c e d , a q u a s i - e l a s t i c f o r c e B 2 6 z / L 2 and an

A r c h i m e d e a n f o r c e g6p ( w h e r e 6p i s the d i f f e r e n c e

in the d e n s i t i e s of the d i s p l a c e d e l e m e n t and s u r r o u n d -

ing p l a s m a ) s e t in. But

s o that the s t a b i l i t y condi t ion i s

(4b.3)

(4b.4)

i.e., a diffuse boundary of the plasma, of width Ẑ  is
actually stable.

If a dense plasma occupies not the entire region
between the plates, but only a part of length Lj, and
a r a r e plasma is located between it and the plates, it
is necessary to replace p in (4b.4) by an "effective"
density p* = pLj/L. The exact necessary and suffi-
cient condition for stability has the form

-^hr>^- (4b.5)

Although w e h a v e s t a r t e d out w i th the h y d r o d y n a m i c

p i c t u r e , the r e s u l t s a r e q u a l i t a t i v e l y v a l i d for a r a r e

p l a s m a , t o o .

It i s e a s y to s e e that in the a b s e n c e of a s t a b i l i z i n g

f o r c e c o n n e c t e d with the s e c u r e d e n d s , i . e . , a s L —•• °°,

the i n s t a b i l i t y w h i c h i s d e s c r i b e d above h y d r o d y n a m i c -

ally will develop with an increment* ш^ ~ Vg/Z , for
the change in pressure (4b.1) leads in this case to an
acceleration

(4b. 5a)

Any force acting perpendicular to the magnetic field
and independent of the sign of the charge, will give r ise
to the above-described instability; the conducting ends,
as in the case of a gravitational field, exert a stabiliz-
ing influence.

Such a force may be, first, the centrifugal force
connected with the motion of the particles along the
curved force lines; it is necessary here to replace in
(4b.4) g by Rv2| /R2, where R is the radius of curva-
ture of the force line. Secondly, this force can be con-
nected with the drift in the inhomogeneous magnetic
field (see Sec. 3). In this case g — VjRv^/R2. Adding
the two effects, we obtain

(4b.6)

It is seen therefore that a convex plasma boundary is
unstable.1 1 On the other hand, if conducting plates are
present on the ends of the system, it is essential for
stabilization, as can be seen from (4b.5) and (4b.6),
to have

*L. A. Artsimovich has called our attention to the fact that
the system remains unstable because of the finite conductivity of
the end material, particularly of the rare secondary plasma through
which contact is made with the ends (but the increments decrease).



V E D E N O V , VELIKHOV, and S A G D E E V 339

-^i^, (4b.7)

where L is the distance between plates, averaged with
allowance for the variation of the plasma density along
the force lines, R is the radius of curvature of the
force line, and ZD * s the thickness of the diffuse bound-
ary.

If a plasma cylinder is located in crossed electric
and magnetic fields, and consequently rotates with a
velocity v = cE/H, then instability may result from
the centrifugal force. In this case

ёеи^4-~^, (4b.8)

where r is the radius of the plasma boundary. This
instability is discussed in Sees. 4d, 5a, and 10c, and
the physical causes of plasma rotation are treated in
Sec. 13. It follows from (4b.8) that

geff
/

cE
H V rl

(4b.9)

If the plasma borders on an inhomogeneous mag-
netic field in vacuum, then, as already mentioned in
the preceding section, its stability depends on whether
the magnetic field in the vacuum increases or de-
creases with increasing distance from the plasma.

If a certain perturbation in the form of a "tongue"
appears on the boundary and penetrates through the
field flux lines, we can determine its future fate by
employing already known reasoning. The pressure
on the end of a slowly-moving tongue is equal to the
pressure of the plasma, i.e., Н^/Этг, where H^ is
the intensity of the magnetic field on the boundary.
The surrounding field pressure is Н2/8тг, where H
is the intensity of the magnetic field at a distance 6z
from the boundary, i.e.,

) — Я 2 ( 0 ) Н b dH
8JI in dz 6z,

and from (4b.5a)

(4b. 10)

For a constant magnetic field this derivation is merely
a duplicate of the derivation of the criterion (4b.6) but
in the macroscopic language of magnetohydrodynamics.
However, it remains meaningful also for high frequency
fields (see Sec. 4g). A stability criterion, with allow-
ance for the fixed ends of the force lines, can be read-
ily obtained in analogy with (4b.7).

A plasma can be made unstable not only by forces
not connected with the sign of the charge but also by an
electric field. Let us consider, for example, a plasma
near a conducting boundary. If an electric field E ex-
ists in the vacuum, and a surface charge

exists on the boundary, then the displaced element is
acted on by the force

Therefore

where d is the distance from the plasma to the con-
ducting plane.

However, the question of the stability of the bound-
ary is not completely limited to hydrodynamic stability
theory. The currents flowing over the boundary and
the sharp gradients cause a strong deviation from
equilibrium. We shall therefore return to this prob-
lem when we investigate the microscopic instability
of the plasma.

To conclude this section we note that if the plasma
is accelerated, then the analog of " g " is the accelera-
tion " a " of the boundary. The perturbation increment
in this case is u>i ~ Va/Z . An instability of this type
is observed in experiments on the contraction of a
plasma by an axial magnetic field ("в pinch").

We have confined ourselves to an investigation of
a dense plasma, in which the dielectric constant is
e = 1 + 4irNMc2/B2 » 1 (N is the particle density and
M the mass of the plasma ions). It has therefore been
tacitly assumed in all the formulas that 47rNMc2/B2

» 1, and unity was neglected in the expression for e.
The surface charge a, developed on the curved surface
by various particle drifts in the force field, produces
in the plasma an electric field E' ~ 4mr/e. Conse-
quently, when e ~ 1, the electric field E' decreases
considerably and with it the rate of growth of the in-
stability:

inNMc2

4c. Convective instability. Unlike the preceding
case, in which the plasma boundary was considered,
let us examine the stability of the internal part of a
plasma with closed force lines.

We confine ourselves, for the sake of clarity, to an
axially symmetrical plasma configuration. Let the
field in the plasma have only an azimuthal component
Bo, i.e., let current flow along the axis of the plasma,
and let the current density, the intensity of the mag-
netic field, the pressure, and the plasma density de-
pend only on the distance to a certain axis.

Because of the tension in the bent force lines of the
magnetic field, each force tube (Fig. 2) tends to con-
tract towards the axis. Opposing this is the gradient
of the magnetic and gas pressures . In the stationary

FIG. 2
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state both forces are balanced. If a small radial dis-
placement of the tube towards the axis causes the ten-
sion in the tube to increase more rapidly than the pres-
sure gradient, the equilibrium is obviously unstable,
and vice versa.

To investigate the stability of the plasma let us cal-
culate the total force acting on the displaced tube. For
this purpose we consider a thin force tube at a distance
r 0 away from the axis. The gradient of the total pres-
sure is balanced by the tension of the magnetic force
lines of the tube (see Sec. 3):

Let us find the forces acting on a tube which is dis-
placed a distance 6r. Such a displacement changes the
field in the tube Brp, in view of the conservation of the
total magnetic flux through its section S T , by an
amount

rftJ'T* 4J 'lr w 71 T̂ (4c.2)

where V^ is the volume of the tube. But in adiabatic
motion 6V-p/Vx = -6p/yp. Therefore

ЬВт _ I 6p &r
~W~ у ~p ~ '

(4o.3)

On the o ther hand, the total p r e s s u r e in the tube should
be equal to the externa l p r e s s u r e at the point r + 6 r :

pT + BT/8n = po(r + Ьг + йг)/8я. (4c.4)

The left and right halves of (4c.4) are respectively
equal to

Po (r) + Щ (г)/8я + Ьр + В0

and

Therefore

(4o.5)

Substituting 6Bf from (4c.3), we obtain

ЬВТ 1 р'4-В0(ВЬ — B0/r)/4n . Ьг
1+Bl/inyp + r •Bo УРо

The c h a n g e in the t e n s i o n i n the m a g n e t i c tube i s

(4о.6)

б jgT. = ^о°-"Г i \ 6 r . (4c.7)

S i n c e t h e grad ient of the tota l p r e s s u r e at the po int

r + 6 r b a l a n c e s t h e t e n s i o n of a l l the t u b e s conta ined

t h e r e , the tota l g r a d i e n t c h a n g e s a f ter d i s p l a c e m e n t by

'S(r+Sr) Bg(r)
4лг4л (

The total force act ing on the tube i s

(4c. 8)

(4c.9)

F r o m (4c.6) and (4c.9) we get

BJ

If 6 F / 6 r > 0, t h e tube a c c e l e r a t e s and the e q u i l i b -

r i u m i s u n s t a b l e . T h e r e f o r e the condi t ion for s t a b i l i t y

a g a i n s t r e a r r a n g e m e n t of the f o r c e t u b e s h a s t h e form

6F/6r<0.

F r o m (4c. 1) i t f o l l o w s that

s o that the p l a s m a i s s t a b l e if

BUlnryp,,

(4c.11)

o r , in a d i f ferent form,

inyp0

(4c.12)

F o r s t a b i l i t y in an i n c o m p r e s s i b l e l iquid (y —• « )

i t i s n e c e s s a r y and suf f ic ient that the f ie ld i n c r e a s e

not faster than the distance from the axis. For stabil-
ity of a rarefied plasma (when В2/8тгр = 1//3 » 1),
however, it is necessary that the field away from the
axis decrease more rapidly than 1/r. This last con-
dition coincides with the condition obtained in refer-
ence 12. Actually, let us introduce the quantity U
= - J dl/B0 = - 2тгг/В0. It is easy to see that (4c. 12)
assumes the form

VUVp < yp
\u\

(4c. 13)

This condition is valid11»12 for closed force lines of any
shape.

If j8 > 2y/3, the most dangerous perturbations of
the equilibrium configurations are those with no axial
symmetry— "kinks." The stability condition for them
has the form

d In p
' d In r

(4c.l4)

On the other hand, the condition (4c. 12) has the form

d\n p 47
rflnr "^ 2+vP

(4C.15)

It follows from this, actually, that when /3 > 2y/3
the stability is determined by the condition (4c. 14).

4d. Stability of a cylindrical pinch. The stability of
a plasma pinch has been the subject of numerous r e -
searches . The very first photographs of a plasma
pinch compressed by its own current have shown that
it is unstable against "neck" (sausage) and flexure
(kink) deformations.

The instability of a pinch with longitudinal current
flowing over the surface is theoretically evident from
the fact that the magnetic field diminishes everywhere
from the plasma boundary towards the outside.

Various authors 1 3 " 1 5 have proposed, almost simul-
taneously, to stabilize such a pinch with a strong mag-
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netic field directed along the pinch axis, bi this case
the deformations of the pinch actually perform work
to increase the energy of this magnetic field, thereby
causing the stabilizing effect, which is most clearly
pronounced for perturbations with a large wave vector
along the pinch axis. In long-wave perturbations, to
the contrary, the changes in the longitudinal magnetic
field are small and the instability against perturba-
tions with wavelengths considerably greater than the
radius of the pinch still remains. The condition of
pinch stability against "k inks" and "sausages" is
best visualized as follows.

We consider first kink perturbations (Fig. 3). We
assume that the pinch, of radius a, contains a frozen-
in axial field B, while outside the pinch there is the
azimuthal field H of the current flowing over its sur-
face. If the pinch is bent (length of the flexure ~\),

в

FIG. 3. Kink instability of a pinch.

then the force lines of the azimuthal field become
denser on the outside than on the inside. The internal
part of the pinch (turned towards the center of curva-
ture ) is therefore under greater magnetic pressure.
On the other hand, the bending of the force lines of
the frozen-in field produce a force in the opposite
direction (quasi-elastic force).

The force produced by the azimuthal field on a unit
of pinch length can be calculated in the following man-
ner. We isolate around the pinch a cylindrical volume
of radius ~ A., bounded by planes passing through the
center of curvature. Since the force lines of the azi-
muthal field lie in these planes, the total force acting
in the direction of the displacement consists of the
corresponding component of the magnetic pressure on
the ends

HI 'Imdra,

(where the angle of inclination is a = A./2R and R is
the radius of curvature) and the pressure on the side
surfaces, which can be neglected. At a distance ~X,
the field perturbation vanishes.

The force on a unit pinch length, exerted by the field
perturbation due to the bending, is therefore

X
Я 2

T h e q u a s i - e l a s t i c v o l u m e f o r c e i s

в2 , вг „

so that the total force is

From this we get the known stability condition

Since it follows from the equilibrium condition

that B2 < H2, it is clear that the pinch cannot be sta-
bilized against long-wave perturbations by a strong
internal longitudinal field.

If a longitudinal magnetic field exists inside and
outside the pinch with the axial current, then the total
field is helical. The pinch, bending along the helical
force lines in such a field, can penetrate between the
force lines of the field without bending them. Such an
instability will occur if the perturbation of the pinch
surface is helical and if the pitch Л. of this helix is
equal to or greater than the pitch 27raHz /Н„, of the
force line on the surface of the pinch. Consequently,
the pinch will be stable against helical perturbations
of wavelength

к < 2яа
Я .

If t h e w a v e l e n g t h of t h e p e r t u r b a t i o n i s b o u n d e d

f r o m a b o v e b y t h e d i m e n s i o n s of t h e s y s t e m ( f o r e x -

a m p l e , t h e l e n g t h 2TTR of a t o r o i d a l p i n c h ) , t h e n i n -

s t a b i l i t y s e t s i n w h e n t h e c u r r e n t e x c e e d s t h e c r i t i c a l

v a l u e

s o m e t i m e s c a l l e d t h e S h a f r a n o v - K r u s k a l c u r r e n t .

T h u s , i n b o t h c a s e s a m a x i m u m w a v e l e n g t h e x i s t s

f o r t h e p e r t u r b a t i o n t h a t c a n b e s t a b i l i z e d b y a m a g -

n e t i c f i e l d .

T h e c o n d i t i o n of s t a b i l i t y a g a i n s t " s a u s a g e s " ( F i g . 4)

c a n b e o b t a i n e d i n t h e f o l l o w i n g m a n n e r . L e t t h e r a d i u s

of t h e p i n c h c h a n g e b y 6 a . T h e n , o w i n g t o t h e c o n s e r v a -

t i o n of t h e f lux, t h e f i e l d i n s i d e t h e p i n c h i s c h a n g e d b y

6B= - Д 26a

FIG. 4. Sausage instability of a pinch.

where Ho = H (a) - t h e field on the surface of the pinch.



342 V E D E N O V , V E L I K H O V , a n d S A G D E E V

On the other hand, the azimuthal field H outside the
pinch is

where I is the total current. Therefore 6H = - Н^ба/а.
The total change in the difference of magnetic pres-
sures inside and outside the pinch is consequently
equal to

. B2 26a
P™ ~ lit ~

H26a
4я Т

so that the stability condition has the form

Thus, a sufficiently strong magnetic field will suppress
the "sausages" but cannot stabilize a pinch against
long-wave "kinks."

However, long waves can be stabilized by surround-
ing the plasma pinch with a conducting coaxial sheath.
The displacement of the pinch should induce in the
sheath currents which interact with the pinch and tend
to return it to the initial position. A combination of
both stabilization methods found use in many well-
known experimental installations for the production of
high-temperature plasma ("Zeta," "Columbus,"
"Alpha," "Tocomac," etc.) .

If we forego the idealized picture of the "surface
current ," then the stability criteria will depend essen-
tially on the profile of current distribution (and con-
sequently on the magnetic field, plasma pressure, etc.)
over the cross section of the pinch.

In Sec. 4c we derived the condition that the profile
of the distribution of these quantities must satisfy in
order for the pinch to be stable (in the absence of a
longitudinal field!). Physically, however, such a pro-
file cannot be realized, since it contains a singularity
in the current density on the axis.

The idealized picture of distributed longitudinal and
azimuthal fields in a fast discharge corresponds more
or less to reality only in a short time interval. The
finite conductivity of the plasma causes the fields to
become "intermixed" and a helical field is produced
in the discharge. On the other hand, in installations
designed for prolonged confinement of the plasma it
is necessary, as we have already seen, to employ a
helical field in order to maintain stability (Stellarator,
Tocomac). Thus it becomes necessary to investigate
the stable equilibrium of the plasma in a helical field.

The usual interchange instability is impossible in
a helical field, since the pitch of the force line is dif-
ferent on each magnetic surface, the tubes become
"entangled" upon radical displacement, and a quasi
elastic force is produced. In each given layer, how-
ever, the tube can move if its displacement is uniform
along the force lines. With increasing deviation from
its own layer, the quasi elastic force increases, and
consequently a surface instability localized near a
certain magnetic surface can occur.

In order for the perturbation not to bend the force
line, its wave vector must be perpendicular to the line
everywhere. If we seek a perturbation in the form
exp (imcp + ikz), then this condition has the form

where В is the unperturbed helical field.
Let us assume that this condition is satisfied for

given m and к at a certain radius r 0. If the scale of
the perturbation is X ~ 1/k « r 0, then the equation of
motion can be expanded in powers of A./r0 about r 0,
which is determined from the condition (4d.l). Let us
find the conditions under which slow displacements of
the tubes are possible, i.e., let us find the instability
limit. The tube equilibrium condition has the form

(4d.2)

the condition on В being div В = 0.
Linearizing these equations we obtain

т - ^ Ф1 = О,

(**,) + ЛЬ = 0 .

(4d.3)

where b and Ф1 are the perturbations of the field and
of the total pressure.

We introduce the variable x = r / r 0 - 1 and expand
(4d.l) in powers of Л/г0: к* В = Sx, where

= ro(kB)'. (4d.4)

From the system (4d.3) we obtain for b r the following
differential equation

(4d.5)

w h e r e

8яр','rB2

and ц = B,p/rB z is the torsion (i.e., a quantity recip-
rocal to the radius of torsion) of the force line. Gen-
erally speaking, (4d.5) does not hold near x = 0, and
for a correct description of this region it is necessary
to take either inertia or dissipation into account. How-
ever, a formal solution of (4d.5) is

where с = У к 2 - У 4 . When vi > 0 the funtion has,
as is well known, an infinite number of zeros near
x = 0. The solutions that are damped at infinity can
therefore be joined to any solution near x = 0. When
v2 < 0 this cannot be done. Therefore the critical
value of K2 is У4. An exact account of the inertia con-
firms this result.

Thus, the condition for the instability of a plasma
in a helical field has the form к2 < У±, i.e.,

- (4d.6)
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This condition was first established by Suydam.16

bi the general case it follows from (4d.6) that the
greater the relative change in the torsion of the force
lines ix'/tx in the radial direction, the greater the
pressure gradient that can be contained stably by the
magnetic field. The necessary and sufficient condi-
tion for the stability can be obtained from the energy
principle (see Sec. 4a):

if the pinch is stable for m = l , — °° < к < °°
and for к — 0, m = 0, it is also stable for
all m and k.

Even with the aid of this theorem, however, the in-
vestigation of the stability of the pinch against nonlocal
perturbation is a rather complicated matter. Results
were obtained only for some special types of field dis-
tributions. 5 0

4e. Stability of rotating non-uniform plasma in a
magnetic field. In a whole series of devices such as
"Homopolar," magnetic plasma condensers or traps
in which the rotation of the plasma improves the con-
finements, we deal with a non-uniform plasma that r o -
tates in an axial magnetic field (Fig. 5).

In systems of the "Homopolar" type the plasma
borders on its ends with insulators (Fig. 6). There-
fore, generally speaking, interchange instability can
develop. The plasma can move transversely to the
field without disturbing it. However this type of in-
stability can be produced only under rather specific
conditions. Since this instability is no longer aperi-
odic, we shall consider it in greater detail in Chapter
IV. As will follow from Chapter IV, if the plasma den-
sity is not decreased during displacement away from
the axis, then the rotation is unstable only when the
flow contains a layer in which the velocity curl has
an extremum. If there is no such layer, only pertur-
bations with axial symmetry are dangerous.

FIG. 5. Trap with rotating plasma.

FIG. 6. Homopolar.

We have thus obtained the condition of stability
against perturbations that bend the magnetic force
lines.

Let us consider a magnetic force line, the ends of
which are secured at two points a distance 2L apart,
and whose central part is displaced a distance 6r
from the equilibrium position (Fig. 7). Each tube r o -
tates with an angular velocity п ( г ) . It is clear that
in the case of a sufficiently slow displacement of the

FIG. 7

tube, its angular velocity remains the same in any ar-
bitrarily weak field B, for otherwise the tube would
be "wound u p " by the rotation and the magnetic field
would increase by an arbitrarily large amount (Fig. 8).

Q

FIG. 8

As before, we confine ourselves to the case of small /3.
The forces acting radially on the tube are made up of
the following:

a) Tension in the magnetic force lines in the tube:

the minus sign means that this force tends to return
the tube.

b) Centrifugal force connected with the rotation of
the tube:

Q V + 6 (Qi-Qr) = Й V + Q2QSr, (4e.2)

we can neglect the change of the density in the tube
when /3 i s s m a l l ;

c) Gradient of total p r e s s u r e at t h e point r + 6r

V ( P + Ж) = t Q 2 ^]r+6r = Й V + Q2Q'rbr + (Я2)' Qr 6r

F r o m (4e.2) and (4e.3) we obtain

so that the stabi l i ty condition has the form

в2 _

(4e.3)

(4e.4)

(4e.5)

The difference between th i s p r o b l e m and t h e a n a l o -
gous one of s tabi l i ty in the absence of a field i s that in
the l a t t e r the angular m o m e n t u m of the liquid e lement
i s conserved, 1 w h e r e a s in the p r e s e n c e of a field it i s
the angular velocity that i s conserved. The velocity i s
conserved no m a t t e r how weak the field, so long as dis-
sipat ion p r o c e s s e s do not come into play, i .e . , so long
a s the p l a s m a does not b e c o m e " u n g l u e d " from the
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force lines of the magnetic field. For details regard-
ing an incompressible liquid, see reference 17.

If an azimuthal current flows through the rotating
plasma, then the centrifugal effect is superimposed
on the magnetic convective instability. In an inviscid
fluid the angular momentum of the toroidal magnetic
force tube is conserved as the tube moves uniformly
in a radial direction (expansion or contraction), i.e.,
M = pur2 = const.

It follows from (4c.5) that the change of the mag-
netic field in the tube is given by

6B
BВ ур l-\-B2/ijtyp

a n d t h e c h a n g e i n p r e s s u r e i s

*_ p'+B(B'-B/r)/in

г 1+В 2 /4яур

On t h e o t h e r h a n d , if t h e m o t i o n of t h e t u b e i s a d i a -

b a t i c

l 6p

У7
Therefore the total force acting on the displaced tube,
equal to the sum of the variations in the centrifugal
force, in the tension of the magnetic force lines, and
in the gradient of the total pressure,

bF c - -6V(p + В2/8я)

р'+в(в'—

p'Q2ry , B(B'-Blr)
' 7i г "

1+В2/4лур

2QQ (Qr2)

2nr

T h e f i r s t t w o t e r m s a r e d u e t o t h e c o m p r e s s i b i l i t y o f

t h e t u b e , t h e t h i r d t o t h e c h a n g e i n t h e t e n s i o n o f t h e

m a g n e t i c f o r c e l i n e s i n t h e t u b e , a n d t h e l a s t i s c o n -

n e c t e d w i t h t h e e f f e c t o f t h e c e n t r i f u g a l f o r c e .

T h e s u f f i c i e n t c o n d i t i o n f o r s t a b i l i t y i s 6 F / 6 r < 0

a t e a c h p o i n t o f t h e r o t a t i n g p l a s m a .

4f . A p e r i o d i c i n s t a b i l i t y o f n o n m a x w e l l i a n p l a s m a .

A c u r i o u s t y p e o f a p e r i o d i c i n s t a b i l i t y c a n o c c u r i n a

u n i f o r m p l a s m a l o c a t e d i n a c o n s t a n t m a g n e t i c f i e l d ,

i f t h e p l a s m a i s n o t i n t h e r m o d y n a m i c e q u i l i b r i u m ,

i . e v i f t h e p a r t i c l e v e l o c i t y d i s t r i b u t i o n i s n o n m a x w e l l -

i a n . 1 8 " 2 0 T h i s i n s t a b i l i t y d e v e l o p s w i t h i n a t i m e m u c h

s h o r t e r t h a n t h e t i m e o f p a i r c o l l i s i o n s , a n d w e s h a l l

t h e r e f o r e e x c l u d e p a r t i c l e c o l l i s i o n s f r o m f u r t h e r

c o n s i d e r a t i o n .

L e t u s c o n s i d e r p e r t u r b a t i o n s w i t h w a v e l e n g t h s X

m u c h g r e a t e r t h a n t h e a v e r a g e L a r m o r r a d i i o f t h e

e l e c t r o n s a n d i o n s ( a n d w i t h a c h a r a c t e r i s t i c t i m e o f

v a r i a t i o n c o n s i d e r a b l y g r e a t e r t h a n t h e p e r i o d o f r e v o -

l u t i o n o f t h e p a r t i c l e s i n t h e m a g n e t i c f i e l d ) . H e r e w e

c a n u s e i n t h e c a l c u l a t i o n s t h e d r i f t a p p r o x i m a t i o n ,

w i t h i n t h e f r a m e w o r k o f w h i c h t h e p l a s m a i s c o n s i d -

e r e d a s a n a g g r e g a t e o f q u a s i p a r t i c l e s ( " L a r m o r

circles") with conserved magnetic moment ц = е^/Н.
The particle distribution is described by a function

f (ju, V||), where V|| is the velocity along the constant
magnetic field and eĵ  is the rotation energy.

Instability can occur in our case for waves propa-
gating at an arbitrary angle to the electromagnetic
field. For the sake of simplicity we consider two lim-
iting cases: a wave propagating strictly along the mag-
netic field (Alfven wave),* and a magnetoacoustic
wave propagating almost perpendicularly to the mag-
netic field.

1. Instability of Alfven wave. As is well known,
Alfven waves can be visualized as oscillations of
"elastic filaments" —the force lines of the magnetic
field. To determine the instability conditions, let us
consider the forces arising when a force line is bent
(Fig. 9). Since the particles are "attached" to the
force line, motion along the curved portion of the force
line gives rise to a centrifugal force

which tends to increase the curvature.

FIG. 9

Since, in addition, each "quasi par t ic le" has a mag-
netic moment -мео> oriented opposite to the magnetic
field e(|H, a particle in an inhomogeneous magnetic
field will be acted upon by a force due to the presence
of the magnetizing current J^ = с curl Jц£dv\\ dp.

= | r o t i H J
( 4 f # 1 )

This force, together with the "tension" force of the
magnetic field lines

(4f.2)

tends to return the force line to the equilibrium posi-
tion.

If F c + FJJ, the system deviates from equilib-
rium position, i.e., instability sets in. In this per tur-
bation, the only non-vanishing wave-vector component
is k||. Substituting V = {o, 0, ik} in (4f.l) and (4f.2),
we obtain the following instability condition

PU-P±> (4f.3)

where

•Actually, if the instability criterion which we are about to
derive is satisfied, the perturbation does not behave like a wave
(this manifests itself formally in the fact that <u2 becomes nega-
tive). Nonetheless, we shall speak for the sake of brevity of "in-
stability on an Alfven wave," bearing in mind that as the aniso-
tropy is decreased this type of perturbation is gradually converted
into an Alfven wave.
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P\\= \ \ ф , р± =

When condition (4f.3) is satisfied, the force takes the
system continuously away from the equilibrium condi-
tion, and therefore the instability is aperiodic and
varies as exp (yt).

The increment у can be readily obtained by equat-
ing the sum of the forces F c - F^ - FJJ to the product
of the mass of the plasma element by the acceleration

• _ d cE

Since it follows from Maxwell's equations that E = Ну/
ck, the acceleration is v = -^Н/кН,). Substituting the
values of the forces F, we obtain

2. "Instability on magnetoacoustic waves" propa-
gating almost perpendicular to the magnetic field. We
obtain the stability limit by equating the total force F,
acting on the plasma element under an almost-trans-
verse perturbation (kx » кц ) to the force

[Ho, rot H]_L .
4я = = 0. (4f.4)

Here p is the correction to the transverse pressure,

equal to

wV.dv, (4f.5)

w h e r e ft i s t h e c o r r e c t i o n t o t h e d i s t r i b u t i o n f u n c t i o n ,

a n d H i s t h e c o r r e c t i o n t o t h e m a g n e t i c f i e l d . T h e

l i n e a r i z e d k i n e t i c e q u a t i o n y i e l d s f o r t h e c o r r e c t i o n

fj, w h i c h i n t h e d r i f t a p p r o x i m a t i o n i s a f u n c t i o n of

\x = mv | /2H and уц, the following expression (ш = 0
on the stability boundary)

, , я ця а/0 „

Substituting ft (4f.2) and recognizing that in an al-
most transverse wave

[H o , = ik±H0H,

we obtain from (4f.l) the stability limit

1+- -d\idvy = 0, (4f.6)

where p^ = J^Hfodv is the equilibrium value of the
transverse pressure.

For an equilibrium Maxwellian distribution function,
which is known to be stable, the last two terms in (4f.3)
cancel each other; consequently, for a plasma to be
stable against perturbations of this type, the left half
of (4f.3) should be positive. In the particular case of

*For simplicity we disregard here the variation in the distribu-
tion function, due to the longitudinal electric field. This is valid
if the electrons are "cold" and therefore annihilate the longitu-
dinal field.

a "anisotropic Maxwellian" distribution funtion
Tj_ > Тц, the stability criterion has the form

п . Г х < 1 - Г 1 / Г „ )
- ; ~ 7 J | " > o . (4f.7)

We see from formulas (4f.3) — (4f.7) that the insta-
bility types considered in this section arise in a low-
pressure plasma (i.e., p « H2/87r) only in the case
of sufficiently large anisotropy. Thus, for example,
according to (4e.7), (Tj_ - Тц )/Тц should reach a value
greater than Н2/8тгр_|_, in order for an aperiodic insta-
bility to be able to develop in the plasma. Under these
conditions the oscillator instability, which will be con-
sidered later on in Sec. 7, should set in much earlier.

4g. Stability of a plasma contained by the pressure
of a high-frequency electromagnetic field. Distinct
types of instability are inherent in configurations pro-
duced by high-frequency (hf) containment, i.e., in a
plasma insulated by the pressure of an alternating
electromagnetic field. The feasibility of such a con-
tainment is based on the fact that the alternating mag-
netic field cannot penetrate into a conductor (such as
a plasma at frequencies w < oi0) and thereby produces
a pressure drop H2/87r at the boundaries of the con-
ductor.

It is simplest to analyze the stability against per-
turbations that vary little over a single cycle of the
containing hf field. In this case we can average over
the fast oscillations_ of the hf field and introduce the
average pressure Н2/8я\

The matter becomes even simpler if the hf field is
quasi-stationary, i.e., the displacement currents can
be neglected. Actually, the magnetic field is then r e -
lated with the current density in the same manner as
in the " s t a t i c " case, all the results of the energy ap-
proach (see Sec. 4a) are also valid in the magneto-
hydrodynamic treatment of the plasma. Such a system
will be most stable if H2/87r increases from the plasma
outward. Unlike the " s t a t i c " case, it is much easier*
in principle to obtain by hf containment a magnetic -
mir ror geometry that ensures stability.

In order for the hf field to be able to contain the
plasma stably against the action of an external force
(gravity, centrifugal force, etc.) it is necessary that
no plasma "tongues" be able to penetrate into the
spaces between the force lines of the field. To avoid
this, it is possible to " r o t a t e " the polarization of the
waves so as to "smooth" the tongues. This, however,
can cause dragging of the plasma and further desta-
bilization.

If the displacement current and the associated wave
effects are appreciable in the containing hf field, (i.e.,
if the wavelength of the containing hf field is compar-
able with the characteristic mir ror dimension), the
following " resonant" effect can appear.

*On the other hand, the practical production of a hf magnetic
field of sufficient amplitude calls for tremendous power to supply
the hf apparatus.
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We consider for simplicity a plane plasma bound-
ary, contained by the pressure of an electromagnetic
wave, (say a standing wave), excited in a layer of
thickness Z, bounded on the one side by the plasma
surface and on the other by some conducting surface
(Fig. 10). Let the amplitudes E° and H° of the hf

T h e c o r r e c t i o n t o t h e p r e s s u r e o n t h e p l a s m a b o u n d a r y

4

U

Standing
electro-
magnetic '

,. _ Plasma _
) - — —

FIG. 10

f i e l d s E a n d H h a v e a n e q u i l i b r i u m d i s t r i b u t i o n i n

s p a c e

Т-П r » • ffl ,
£ " = £ ° s i n — x , )

where

Щ = H° cos —x, I

JL=JL, £<>=_tf°.

A wave-like perturbation [~ exp (ikz)] of the
plasma boundary causes a change in the spatial distri-
bution of the hf field, and thereby a change in the dis-
tribution of its pressure U2/8n along the plasma bound-
ary. If the pressure on the crests of the plasma bound-
ary has increased, the system is stable (it tends to re-
turn to the initial state). In the opposite case, the
plasma will depart from the equilibrium position
(aperiodic instability will set in). Maxwell's equation
for the corrections to the standing-wave amplitude
have the form

ш dx
d2E\,
dx2

(4g.2)

a n d t h e b o u n d a r y c o n d i t i o n s c a l l f o r t h e v a n i s h i n g o f

t h e t a n g e n t i a l c o m p o n e n t o f E o n b o t h b o u n d a r i e s , a t

x = 0 a n d x = 1 + i , w h e r e £ i s a s m a l l d i s p l a c e m e n t

o f t h e p l a s m a b o u n d a r y . T h e f i r s t c o n d i t i o n y i e l d s

s i m p l y E y | x = 0 = 0 , w h i l e t h e s e c o n d , a c c u r a t e t o f i r s t -

o r d e r q u a n t i t i e s , i s

dx x=l
= 0. (4g.3)

E q u a t i o n s (4g.2) a n d (4g.3) h a v e a s o l u t i o n s a t i s f y i n g

t h e b o u n d a r y c o n d i t i o n s , n a m e l y ,

sinai
H\ =

s i n al

w h e r e

i s p r o p o r t i o n a l t o H 0!! 1 ~ - 1 —— a c o t al. F o r s t a b i l -

i t y i s e s s e n t i a l t h a t t h e p r e s s u r e i n c r e a s e w h e r e £ i s

n e g a t i v e , i . e . , w h e r e t h e p l a s m a b o u n d a r y i s c o n v e x .

C o n s e q u e n t l y , t h e p l a s m a i s s t a b l e if*

ctgУ<>>2/с2-№-1 > 0

or'21
3 я 2

We s e e t h e r e f o r e t h a t i n s t a b i l i t y s e t s i n w h e n t h e s u r -

f a c e p e r t u r b a t i o n s h a v e l o n g w a v e l e n g t h s 27r/k, c o m -

p a r a b l e w i t h t h e l e n g t h of t h e e l e c t r o i u a g n e t i c s t a n d i n g

w a v e s . N o s u c h i n s t a b i l i t y o c c u r s if t h e d i m e n s i o n s of

t h e p l a s m a c o n f i g u r a t i o n a r e m u c h l e s s t h a n c/w.

T h i s i n s t a b i l i t y c a n b e i n t e r p r e t e d q u a l i t a t i v e l y a s

g e o m e t r i c r e s o n a n c e , w h i c h o c c u r s w h e n t h e w a v e -

l e n g t h of t h e p e r t u r b a t i o n i s c o m p a r a b l e w i t h t h e w a v e -

l e n g t h of t h e c o n t a i n i n g e l e c t r o m a g n e t i c w a v e .

W e h a v e c o n s i d e r e d f o r s i m p l i c i t y o n l y t h e s i m p l e s t

d e f o r m a t i o n of t h e p l a s m a b o u n d a r y [~ e x p ( i k z ) ] , a

w a v e a l o n g t h e d i r e c t i o n of t h e hf m a g n e t i c f i e l d . An

a n a l y s i s of m o r e g e n e r a l d e f o r m a t i o n s , of t h e f o r m

e x p [ i ( k z z + k v y ) ] , h a r d l y c h a n g e s t h e s t a b i l i t y c r i t e -

r i o n , v i z . , t h e s y s t e m i s s t a b l e if

I* '

5. A p e r i o d i c P l a s m a Instab i l i ty w i th Account of

D i s s i p a t i o n

D i s s i p a t i v e p r o c e s s e s — v i s c o s i t y , c o n d u c t i v i t y , a n d

h e a t c o n d u c t i o n — c a n i n p r i n c i p l e c o n v e r t t h e a p e r i o d i c

i n s t a b i l i t y i n t o o s c i l l a t i o n s w i t h i n c r e a s i n g a m p l i t u d e ,

f o r t h e p r o b l e m i s n o l o n g e r s e l f a d j o i n t . In s o m e

c a s e s , h o w e v e r , i t c a n b e s h o w n t h a t if t h e f i n i t e d i s -

s i p a t i o n i s t a k e n i n t o a c c o u n t t h e i n s t a b i l i t y r e g i o n i s

d e t e r m i n e d by c o n d i t i o n ai = 0, i . e . , t h e s y s t e m d e -

p a r t s f r o m e q u i l i b r i u m a p e r i o d i c a l l y . In t h i s c a s e ,

i n a n a l o g y w i t h a n i d e a l p l a s m a , w e c a n i n t r o d u c e a

v a r i a t i o n a l s t a b i l i t y c r i t e r i o n a n d u s e i t f o r n u m e r i c a l

c o m p u t a t i o n s .

In t h e p r e s e n t s e c t i o n w e c o n s i d e r p r o b l e m s i n v o l v -

i n g r o t a t i o n a n d m a g n e t i c c o n v e c t i o n i n a p l a s m a , w i t h

a l l o w a n c e f o r d i s s i p a t i v e f o r c e s .

A p e r i o d i c t h e r m a l c o n v e c t i o n i n a p l a s m a i s c o n -

s i d e r e d i n d e t a i l i n S e c . 1 3 , w h e r e w e d e t e r m i n e t h e

c o n d i t i o n s f o r t h e o c c u r r e n c e of c o n v e c t i o n a n d of

" s u p e r c r i t i c a l " c o n v e c t i o n .

5 a . S t a b i l i t y of p l a s m a r o t a t i o n . In t h i s s e c t i o n w e

c o n t i n u e t h e s t u d y of t h e s t a b i l i t y of a r o t a t i n g p l a s m a

a g a i n s t a x i a l l y - s y m m e t r i c a l p e r t u r b a t i o n s . F o r s i m -

p l i c i t y w e c o n f i n e o u r s e l v e s t o a n i n c o m p r e s s i b l e l i q u i d

w i t h f i n i t e c o n d u c t i v i t y , t h e o n l y c a s e i n v e s t i g a t e d i n

d e t a i l t o d a t e .

*ctg = cot.
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We have seen in Sec. 4d that the influence of the
magnetic field on the rotating stability of an ideal
plasma lies in the fact that the angular momentum
ceases to be conserved under displacements of small
parts of the plasma, but the angular velocity of these
parts is conserved. The change in the stability limit
for a uniform ideally conducting plasma between two
rotating cylinders that bound the plasma (angular ve-
locities п1 and fi2, radii R t and R2; R2 >Щ) is
shown in Fig. 11 for the case of a weak magnetic field.
Allowing for the magnetic quasi elastic force, the sta-
bility condition is

dr

i.e., the stability region is somewhat broader than
shown in Fig. 11.

^,

FIG. 11

As the conductivity d e c r e a s e s , the stabi l i ty region
i n c r e a s e s . This i s brought about by damping due to
Joule heating of the p l a s m a and by the " u n g l u i n g " of
the p l a s m a from the magnet ic force l ines ; th is c a u s e s
the instabi l i ty boundary to shift towards t h e Rayleigh
boundary (п{В.\ = i i 2 R | ) .

At a c e r t a i n finite conductivity, the stabi l iz ing ef-
fect of the magnet ic field begins to mani fes t itself —
Joule l o s s e s begin to exceed the influence of " m a g -
net ic u n t w i s t i n g . " Let us cons ider t h i s effect for a

poorly conducting liquid, , 2—5—*• 47rcr < 1. As
' 4тгр С

is well known, the motion of the p l a s m a d i s t u r b s the

magnet ic field l i t t le in th i s c a s e . The effect of the

field r e d u c e s t h e r e f o r e to the a p p e a r a n c e of a r e -

tard ing force

vH H avH2

(5a.2)

Let us find the conditions for the ex i s tence ( i . e . , the
stabil i ty boundary) of s ta t ionary motion maintained in
a p l a s m a by the gradient of the centrifugal force.

We have seen (Sec. 4e) that when a p l a s m a e lement
is rapidly displaced ( c o m p a r e d with the equalization
veloci ty) it i s acted upon by the difference between
the change in the tota l p r e s s u r e gradient and the c e n -
trifugal force

6F = — (Qr2)'6r (5a.3)
r

where п is the angular velocity of rotation of the layer

from which the e lement begins i t s motion, r i s the d i s -
tance of th i s l a y e r from the axis of rotat ion, and p i s
the densi ty .

The d i sp lacement t i m e can be e s t imated by equating
th i s force t o the e l e c t r o m a g n e t i c r e t a r d i n g force and
to the force of v i scous fr ict ion

Y fir- O f l 2 6 r 4- Ц 6 г (5а.4)

w h e r e A. i s the c h a r a c t e r i s t i c d imension of the p e r t u r -
bat ions, hence

(5a.4')

O n t h e o t h e r h a n d , t h i s t i m e s h o u l d n o t b e s u f f i c i e n t

f o r t h e r o t a t i o n a l v e l o c i t y o f t h e e l e m e n t t o b e c o m e

e q u a l t o t h e v e l o c i t y o f t h e s u r r o u n d i n g p l a s m a . T h e

r a t e o f e q u a l i z a t i o n i s d e t e r m i n e d f r o m t h e a p p r o x i -

m a t e r e l a t i o n

&V СТЯ2

E q u a t i n g 6 t t a n d 6 t 2 , w e o b t a i n t h e s t a b i l i t y b o u n d a r y

o r

T c r __ _
1 ^

QrT(i? a —fi t )* ( Д 2 - Д , ) 4 f , o № V
rv* V V + C*QV ) '

(5a.7)

w h e r e T i s t h e T a y l o r n u m b e r .

F o r s o l i d c y l i n d e r s T c r — T c r = 1700 a s H - * 0.

P u t t i n g

where H is the Hartmann number, we see that

' I Л I U 2 _ \ л 0

то« V "•" (л,-л,)« ) I5" •
( 5 a . 8 )

The length A. involved in all these expressions is
some average dimension of the-perturbation

a n d t h e e x a c t v a l u e o f t h e n u m e r i c a l f a c t o r A d e p e n d s

o n t h e b o u n d a r y c o n d i t i o n s .

I n a s t r o n g f i e l d ( H » 1 ) t h e s t a b i l i t y l i m i t i s d e -

t e r m i n e d b y t h e d i m e n s i o n l e s s p a r a m e t e r

л= -- Л " 1. (5a. 9)

F i g u r e 12 shows the dependence of T c r on H. The
init ial por t ion of the curve was d e t e r m i n e d n u m e r i c a l l y
in r e f e r e n c e 22. When T > T c r the expres s ion i s un-
s tab le .

5b. P inch stabi l i ty. Considering that the longitudi-
nal c u r r e n t flows in a r e a l , dense p l a s m a (we r e g a r d
a p l a s m a as dense if the m e a n f ree path i s much l e s s
than the d imens ions of the v e s s e l ) , an account m u s t
be taken of the finite conductivity and v i scos i ty of the
p l a s m a .
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Г сг

1700

Unstable

Stable

FIG. 12

Let us examine qualitatively two types of phenom-
ena, which are influenced by the finite conductivity of
the plasma: a) stability of the discharge column as a
whole, b) internal (magnetic convective) stability of
the pinch.

It is clear that if the finite conductivity is taken
into account, all the previous conclusions regarding
the stability of the pinch with respect to " sausages"
and "k inks" remain in force, since the current always
remains inside the pinch. But once a longitudinal mag-
netic field is applied, the picture is substantially
changed.

Let us consider, for example, a screw-like bending
of the entire pinch as a whole. Whereas in the case
of ideal conductivity the force lines are dragged by the
pinch, in the case of poor plasma conductivity the dis-
tortion of the external field can be neglected. There-
fore the field exerts a radial force on the cp component
of the current. It is clear that of the two possible he-
lices, one will cause instability, pressing of the pinch
against the wall (Figs. 13 —14).

/

FIG. 13 FIG. 14

In s a u s a g e - l i k e p e r t u r b a t i o n s t h e m a i n e f f e c t i s t h e

o c c u r r e n c e o f a m o m e n t i n t h e z d i r e c t i o n , d u e t o t h e

f o r c e J r H z / c . T h i s m o m e n t c a u s e s r o t a t i o n o f t h e

p i n c h a s a w h o l e , a n d a c e n t r i f u g a l f o r c e i s p r o d u c e d .

If t h e p i n c h i s l o c a t e d i n v a c u u m , t h e f o r c e h a s a h i g h l y

d e s t a b i l i z i n g e f f e c t — i t " s p l a s h e s " t h e p i n c h . O n t h e

o t h e r h a n d , i f t h e p i n c h i s s u r r o u n d e d b y a n a t m o s p h e r e

o f c o l d ( a n d d e n s e ) g a s , t h e n t h e c e n t r i f u g a l e f f e c t ,

l i k e i n a c e n t r i f u g e , w i l l s t a b i l i z e t h e p i n c h . T h e

p i n c h w i l l b e i n a c e r t a i n " d y n a m i c a l l y s t a b l e " s t a t e ,

r o t a t i n g a t a v e l o c i t y s u c h t h a t t h e r i s e i n t h e p r e s s u r e

g r a d i e n t i n t h e c o l d " j a c k e t , " d u e t o t h e c e n t r i f u g a l

f o r c e , o f f s e t s t h e d r o p i n t h e m a g n e t i c p r e s s u r e , a n d

t h e w o r k d o n e b y t h e c u r r e n t i n t h e e x t e r n a l f i e l d o f f -

s e t s t h e w o r k o f t h e f r i c t i o n f o r c e s .

T h e i n t e r n a l s t a b i l i t y o f t h e p i n c h i s c o n n e c t e d w i t h

t h e e x t e n t o f t h e d a m p i n g d u e t o v i s c o s i t y a n d d u e t o

f i n i t e c o n d u c t i v i t y . A c t u a l l y , l e t u s c o n s i d e r t h e c o n -

v e c t i v e i n s t a b i l i t y i n v e s t i g a t e d i n S e c . 4 d , w i t h a l l o w -

a n c e f o r v i s c o s i t y a n d f i n i t e c o n d u c t i v i t y o f t h e p l a s m a .

A t u b e o f m a g n e t i c f o r c e l i n e s , a c c e l e r a t e d b y t h e d i f -

f e r e n c e b e t w e e n t h e g r a d i e n t o f t h e t o t a l p r e s s u r e a n d

t h e s e l f - m a g n e t i c t e n s i o n

bF= - - Bl f l
яг 0 1 у p 0

[see (4c.10)] has, with allowance for the finite viscos-
ity, a velocity

«ss sge^A», (5b.2)

where A. is the dimension of the tube.
If the fields inside and outside the tube cannot be

equalized within this time, i.e.,

bt< (5b.3)

t h e n c o n v e c t i o n d e v e l o p s . T h e c r i t i c a l c o n d i t i o n s f o r

t h e o c c u r r e n c e o f m a g n e t i c c o n v e c t i o n a r e o b t a i n e d b y

s u b s t i t u t i n g 6 t f r o m ( 5 b . 2 ) i n ( 5 b . 3 ) :

_ bF

J_
yp :*•

(5b.4)

The exact value of the critical magnetic Taylor
number T 0 ^ depends on the boundary conditions, and
amounts to 1700 for convection between the isolating
walls in a thin cylindrical layer of radius r and thick-
ness d, and to 657 in the case of convection in a layer
with free surfaces.

For a rarefied plasma (/3 = 87rp/B2 « 1) this condi-
tion yields

ЦС2Г

f_
C2rV Q

I t i s a s s u m e d t h a t t h e p l a s m a h a s " m a g n e t i z e d " v i s -

c o s i t y . T h i s q u a n t i t y i s u s u a l l y v e r y l a r g e , s o t h a t t h e

c o n v e c t i o n i s s t r o n g l y " t r a n s c r i t i c a l , " i . e . , w i t h d e v e l -

o p e d t u r b u l e n c e .

O n t h e o t h e r h a n d , i n a c o l d a n d d e n s e p l a s m a

(ls « r x i ) , o f t h e t y p e p r o d u c e d i n p l a s m o t r o n s a n d

i n s t a b i l i z e d a r c s , c o n v e c t i o n m a y n o t s e t i n .

I f a l o n g i t u d i n a l m a g n e t i c f i e l d e x i s t s i n s i d e t h e

p i n c h , n e w e f f e c t s m a y a p p e a r , a l l o w a n c e f o r w h i c h ,

h o w e v e r , i s p r a c t i c a l l y i m p o s s i b l e i n t h e g e n e r a l c a s e .

T h e o p p o s i t e l i m i t i n g c a s e , w h e n t h e l o n g i t u d i n a l m a g -

n e t i c f i e l d i s s o s t r o n g t h a t t h e a z i m u t h a l m a g n e t i c

f i e l d c a n b e n e g l e c t e d a l o n g w i t h t h e p l a s m a p r e s s u r e

( c o m p a r e d w i t h H | / 8 i r ) , a d m i t s n o n e t h e l e s s o f a

s i m p l e a n a l y s i s . 4 6 L e t u s a s s u m e t h a t a n e l e c t r i c

field Eo is applied in equilibrium along z and pro-
duces a current jo = cr0E0, with <т0 variable along the
x coordinate (for simplicity we assume flat rather



S T A B I L I T Y OF P L A S M A 349

Шал cylindrical geometry). We consider perturba-
tions of the form exp {i (k yy + k z z ) + iwt}, which de-
velops at frequencies w such that the distortion of the
magnetic field can be neglected:

r o t E ^ O , r o t H ^ O (5b.5)

(this means that the phase velocity w/k of the pertur-
bations should be much less than the characteristic
velocity H/V4rrp connected with the magnitude of
the magnetic field).

The x component of the velocity of the perturbed
current-carrying tube will be

vx = c^-. (5b.6)

The perturbation of the electric field is determined
from the condition

/ = oE0 + a0Ez = 0. (5b.7)

If we neglect the heat conduction, the change in con-
ductivity a will be due only to the motion of the plasma

dx (5b. 8)

where £x is the displacement of the current tube. Com-
bining (5b.6), (5b.7), and (5b.8) and recognizing that Ey
= k y E z / k z from (5b.5), we obtain the connection be-
tween the velocity v and the displacement £x

Е„ d ]n o 0 .

k,
(5b. 9)

C h o o s i n g t h e p r o p e r s i g n of k y / k z , w e c a n c o n -

s t r u c t p e r t u r b a t i o n s w h i c h r i s e e x p o n e n t i a l l y i n t i m e

ev^ ( v x i s d i r e c t e d a l o n g t h e d i s p l a c e m e n t £ x ) . T h e

i n c r e m e n t of s u c h a n i n s t a b i l i t y w i l l b e

(5b.10)
lx kz Ho dx

In t h i s i d e a l i z e d a n a l y s i s , any e q u i l i b r i u m in w h i c h

t h e c o n d u c t i v i t y <J0, m e a n i n g a l s o t h e p l a s m a t e m p e r a -

t u r e ( a s w e l l a s t h e d e n s i t y , if t h e p l a s m a i s n o t ful ly

i o n i z e d ) , v a r y i n s p a c e s h o u l d b e u n s t a b l e . In f a c t ,

a n a c c o u n t of t h e e q u a l i z i n g a c t i o n of t h e h e a t c o n d u c -

t i o n ( f o r e x a m p l e , a l o n g t h e f o r c e l i n e s ) w o u l d y i e l d

i n s t e a d of (5b.10) t h e fo l l owing f o r m u l a f o r t h e i n c r e -

m e n t

dx

In connection with the foregoing instability, it is in-
teresting to note that when the plasma is heated by the
Joule heat created by the current flowing through it,
the tendency towards spontaneous rise in the inhomo-
geneity in the spatial distribution of the temperature
may become significant. This is caused by the fact
that the conductivity a is greater in a local volume
with high temperature, and consequently the release
of Joule heat crE2 exceeds the average level. Thus,
a unique " thermal" instability sets in.

Ш. OSCILLATING PLASMA INSTABILITY

Proceeding to investigate the oscillating instability
of a plasma, we shall consider in Sec. 6 the instability
of beams, and in Sec. 7 the microscopic instability of
a "nonmaxwellian" plasma, due to phase resonance
between the perturbation waves and individual groups
of particles. In Sees. 8 and 9 we shall discuss the mi-
croscopic instability of a non-uniform plasma, due to
phase resonance between the perturbation waves and
the particle drift. Section 10 is devoted to instability
of a plasma flowing in a magnetic field, due to phase
resonance between the perturbation waves and individ-
ual layers of the flow, while Sec. 11 covers "periodic
convection" in a plasma, i.e., instability of a heavy
plasma, heated from below, subject to the condition
4mjx/c2 > li i-e-> when the magnetic field is equalized
more slowly than the temperature. The occurrence of
instability of the type of Alfven oscillations with in-
creasing amplitude is connected in this last case with
the competition between two-different diffusion proc-
esses.

6. Instability of Beams in a Plasma

Because the mean free path of the particles in the
plasma may in many cases be much greater than the
dimensions of the vessel, groups of particles with dif-
ferent average velocities —beams —can exist in the
same place in the plasma. These beams can be intro-
duced into the plasma artificially (electron beams in
electron-beam amplifiers, ion beams in the case of
injection in a trap) or may be produced in the plasma
by external fields (for example, "runaway" electrons).
In many cases the plasma itself can be regarded as
several interpenetrating electron and ion beams. In
this section we are interested essentially in almost
monoenergetic beams (the spread in particle veloci-
ties is much less than the average velocity). The in-
stability of diffuse beams will be considered in Sec. 6a.

An interesting common property of almost-mono-
energetic beams is the intense energy loss, which can-
not be explained from the point of view of pair colli-
sions.2 3 Apparently this experimental fact is in many
cases in good agreement with the theory of instability
of beams.

We cannot cover in this review all the results of
this theory, 2 3" 2 5 and confine ourselves therefore to a
study of infinite homogeneous beams, disregarding
effects connected with finite transverse beam dimen-
sions. In addition, we consider only quasi neutral
beams. As is well known, almost-monoenergetic
beams are well described by the hydrodynamic ap-
proximation, and only this approximation will be used
in the present section.

bi Sec. 6a we consider the instability of two beams,
in Sec. 6b we analyze briefly the character of this in-
stability, and in Sec. 6c we study the instability of two
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ion beams in a plasma with hot electrons. Finally, in
Sec. 6d we consider the effect of the magnetic field on
beam instability.

6a. Instability of two beams. We consider two par-
ticle beams with charges ei and e2, masses m t and
m 2, densities Nj and N2, and velocity spreads c t and
c 2. The first beam is at rest, and the second moves
at a velocity V.

The equation relating the complex frequency ш with
the wave number к (derived in Appendix I) has the
form

F{ ^- ) =
( <° Y с* (±_у\г_
I —\— I C/j I ^ V I
ч * J V A У

(6a.

where

Figure 15 shows the left half of (6a. 1) as a function
of oi/k for two cases: a) Cj + c2 < V, b) c t + c 2 > V.

f ( ^

\ 1

OJ/K

FIG. 15

If the line k2 crosses F (ш/к) at four points, then
(6a. 1) has four real roots and the perturbations are
purely periodic, i.e., the beams are stable against per-
turbations with this wave number.

In Fig. 15, the line k | t corresponds to non-rising
perturbations and k ^ n s t corresponds to perturbations
whose amplitudes increase in time. The line k c r

separates the stability and instability regions.

It follows from Fig. 16 that if c t + c 2 > V, the
beams are stable.

4 \ Ш/Н

У:сг с,

A

FIG. 16

When Cj + c 2 < V, instabi l i ty i s brought about only
by p e r t u r b a t i o n s of sufficiently long wavelength. F o r
monoenerget ic b e a m s it follows f rom (6a. 1) that

Of the four poss ib le waves, two do not build up.

These two waves a r e analogous to the ord inary Lang-
m u i r osc i l la t ions . The other two waves do not build
up if they a r e sufficiently long.

Let us cons ider in g r e a t e r detai l the m e c h a n i s m of
" e l e c t r o s t a t i c " instabi l i ty ( a s the instabil ity against
p e r t u r b a t i o n s such as longitudinal p l a s m a osci l lat ions
i s s o m e t i m e s c a l l e d ) . By way of an example we
choose great ly different b e a m s — an e lec t ron b e a m
moving through an ion gas at r e s t ( o r , perfect ly a n a l o -
gously, a dense beam moving through a ra re f ied o n e ) .
We a s s u m e that a long-wave p e r t u r b a t i o n (k « w 2/V,
where w2 i s the p l a s m a frequency of the e l e c t r o n s )
has been produced in the p l a s m a at the initial instant
of t i m e . Since we a r e not i n t e r e s t e d in fast osc i l l a-
t ions, th is initial per turbat ion should be quas i n e u t r a l .
We a s s u m e , however, that it h a s a s m a l l e x c e s s nega-
tive c h a r g e . Then ions will begin to ga ther in the field
of this charge . On the o ther hand, the moving e l e c t r o n s
slow down in it and t h e i r density in a reg ion of negative
space c h a r g e a l so i n c r e a s e s . Therefore the initial
quasi n e u t r a l per turbat ion builds up. The c h a r a c t e r -
i s t ic growth t ime of such a per turbat ion can be o b -
tained from the following cons idera t ions .

F r o m the conservat ion of the energy of the moving
e l e c t r o n s it follows that

Vv, ш = const
e т. т

( t h e c o n s t a n t c a n b e s e t e q u a l t o z e r o ) . H e r e v e a r e

t h e p e r t u r b e d e l e c t r o n v e l o c i t i e s a n d cp i s t h e p o t e n -

t i a l . F r o m t h e c o n s e r v a t i o n o f t h e e l e c t r o n c u r r e n t i t

f o l l o w s t h a t

Neve _

w h e r e n e i s t h e p e r t u r b a t i o n o f t h e e l e c t r o n d e n s i t y .

T h e P o i s s o n e q u a t i o n t h e n g i v e s t h e f o l l o w i n g e x p r e s -

s i o n f o r t h e i o n - d e n s i t y p e r t u r b a t i o n

(ба.з)

It f o l l o w s t h e r e f o r e t h a t f o r s u f f i c i e n t l y l o n g w a v e s , a s

w e h a v e s e e n e a r l i e r , b o t h t h e e l e c t r o n d e n s i t y a n d t h e

i o n d e n s i t y i n c r e a s e i n t h e n e g a t i v e s p a c e c h a r g e r e -

g i o n . F r o m t h e e q u a t i o n o f m o t i o n o f i o n s i n t h e f i e l d

q> a n d f r o m t h e c o n t i n u i t y e q u a t i o n i t f o l l o w s t h a t

d"i e дц,
dt ~ W~dx~ '

dn. dv, d2n.
- = - TV, • i . e . , N,e

M dx*
From (6a.4) and (ба.З) we obtain for a spatially sinu-
soidal perturbation

_ M / t 2 —

The characteristic growth time is

mV2
k2

M
-k2

(ба.5)
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The closer the wavelength is to " resonant" ( k r e s

= w e /V), the faster the perturbations grow.
The shortest growth time — growth at resonance —

is obtained from (6a. 1) by putting к = u>e/V and neg-
lecting ш/ше compared with unity:

J _ _ Г 2М
«i ~ V m (ба.6)

Here wj is the imaginary part of ш (increment).
In weak beams, the time (6a.6) is much shorter than

that obtained from (6a.5). Therefore the velocity
spread in the beam reduces the increment consider-
ably even before the instability has completely van-
ished. It can be shown that when c e / V ~ (m/M) 1/ 3

the mechanism described in the next section is more
important to the growth of beam oscillations.

6b. Absolute and drift instability of beams. As al-
ready mentioned in the introduction, it is expedient to
differentiate between absolute and drift instability. The
system is absolutely unstable if a small perturbation,
occurring at some instant of time and in a limited r e -
gion of space, increases without limit as t — <*> in the
same region. On the other hand, if the perturbation is
transported and grows, but diminishes with time at the
initial point, this is drift instability. Thus, the very
formulation of the problem is meaningful only within
the framework of the linear approximation•, and only
with respect to one particular type, namely perturba-
tions that differ from zero at the initial instant of time
only in a limited region of space.

Absolutely unstable systems can be used only as
generators. On the other hand, systems in which drift
instability exists, can be used as amplifiers.

To answer this question, we must solve the initial-
value problem for the system of equations that de-
scribes small beam perturbations. A beam in a plasma
at rest and beams moving in one direction are not ab-
solutely unstable.

Beams moving in opposite directions are absolutely
unstable. The physical reasons for this lie in the ex-
istence of feedback between the source of perturbation
and the perturbation, which grows as it propagates.

6c. Stability of ion beams in a plasma. Let us con-
sider an ion-electron plasma containing an ion beam.
For simplicity we assume that the ion temperature is
much lower than the electron temperature.

We introduce the following notation: w p i — Lang-
muir frequency of the plasma ions (first beam), wp 2

— Langmuir frequency of the beam ions (second beam),
We — Langmuir frequency of the electrons, V — velocity
of ions of the second beam, к —wave number of the
perturbations, c e = VyT/m —thermal velocity of the
electrons.

The dispersion equation, which is derived in Appen-
dix 1, has the form

Assuming V < c e , we obtain the dependence of the left
half on w/k, as shown in Fig. 17. Obviously the roots
1, 2, 3, and 4, obtained where the curves cross the line
k2 (which is parallel to the abscissa axis) are purely
periodic perturbations, which do not lead to instability.

FIG. 17

The stability or instability of the beams depends on
whether this straight branch intersects F (w/k) when
0 < w/k < V. For this purpose it is sufficient to know
whether F(w/k) has zeros in the range 0 —V. Thus,
the beams are unstable if F = 0 has two real roots,
and are stable if the number of roots is four. Let us
consider the particular case V « c e . We can then
neglect in (6c.1) oi/k compared with c e , and get

4 - (6c.2)
(to/A:)2 ' (co/A — V)2 ef '

This equation is exactly equivalent to (6a. 1). We there-
fore obtain from (6a. 2) the stability condition

On the other hand, our analysis is valid only for V2

< c e . If this condition is violated, electrostatic insta-
bility occurs on the electronic branch. Therefore the
condition for stability against excitation of the fore-
going perturbations has the form

F ^) =•(<o/*)a ^ (co/A — V)2 ^ (co/fc)2 — cf
(6C.

We have considered here only one particular type of
perturbation — oscillations in the direction of the beam
velocity. If "oblique" perturbations (k X V) are taken
into account, ion beams are always unstable. However,
if there exists in the plasma a sufficiently strong mag-
netic field parallel to the beam velocity, then the cr i te-
rion (6c.3) remains in force, i.e., sufficiently fast ion
beams are stable. This is due to the fact that the mag-
netic field " suppresses" the oscillations perpendicular
to H, and therefore the wave vector component k^
drops out of the equation.

6d. Effect of magnetic field on beam instability. The
presence of a magnetic field perpendicular to the direc-
tion of motion of the beam can appreciably change the
results of the preceding section.

The magnetic field influences the motion of the ions
in the wave whenever X £ r ^ . Here Л. is the wave-
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length r ^ i is the Larmor radius of the ion, and for the
"resonant" wavelength Л. = 2ir/k = 2irV/copi. On the
other hand, r\i ~ vxi/wfji, where vpi is the thermal
velocity and и щ is the gyrofrequency of the ions.

The field therefore affects the perturbed motion of
ions only if

jvn >— =

This last quantity is very large for a dense plasma.
Consequently the field affects the motion of the ions
in such a plasma only when very narrow beams are
perturbed.

Let us consider a beam in a sufficiently weak field,
i.e., we assume that V/vT i < V47rNMc2/H2 . bi this
case the field influences only the electrons. If the
"resonant" wavelength of the perturbations is greater
than the Larmor radius of the electrons, this influence
is appreciable. Condition (6d.l) is then replaced by

i.e., J->i^.i
4яЛ'тс2

Я 2

In the o p p o s i t e c a s e ,
T e Nmc2 •

(6d.2)

the
v T i L Ti H'

f ie ld d o e s not in f luence the p e r t u r b a t i o n s at a l l . But if

iilNMc2 1 '/ mc2 \ V;

then the e l e c t r o n s a r e " m a g n e t i z e d , " i . e . , t h e y drift

under the in f luence of the e l e c t r i c f ie ld of the p e r t u r -

bat ion w a v e .

The p e r t u r b a t i o n of t h e x c o m p o n e n t of the e l e c t r o n

v e l o c i t y ( t h e x a x i s i s d i r e c t e d , a s e v e r y w h e r e in t h i s

s e c t i o n , a l o n g t h e v e l o c i t y of the ion b e a m ) i s thus,

a c c o r d i n g to S e c . 3 ,

„ e x ^ _ _ £ | L ^ . (6d.4)

F r o m the cont inui ty equat ion for the e l e c t r o n s i t f o l -

l o w s that

dne = - Л '
dx dtdx '

(6d.5)

j-e.,
dEx

дх

The e l e c t r i c f ie ld in the longitudinal w a v e i s d e t e r -

m i n e d by the e x p r e s s i o n

Substituting щ from Appendix I and neglecting the left
half, we obtain

inNrnc2

fc~ = - (6d.6)

Qualitatively this equation corresponds fully to (6a. 1).
Therefore, as before, the stability condition has the

form V > vx t + VT 2 and the kinetic mechanism of the
instability becomes more appreciable when

iLY/3 for ^ l i « l .
<oi2 J coi2

The resonant wavelength is now

i.e., resonance takes place at the "geometric mean"
frequency.

Formula (6d.6) is no longer valid when the beam
velocity V, being considerably greater than the ther-
mal velocity of the ions, approaches the Alfven veloc-
ity H/V47rp . At greater velocities, as shown by cal-
culation, the beam is unstable against oblique pertur-
bations к К V.

If the charged-particle beams move along the field,
then Cerenkov radiation of these waves sets in when
the relative beam velocity exceeds the phase velocities
of the waves. In addition, a strong interaction takes
place between the beam particles and the waves when
the wave frequency, changing as a result of the Dopp-
ler effect, coincides with the overtones of the Larmor
frequency of rotation of the particles in the longitudi-
nal field. This interaction will be considered in detail
qualitatively in Sec. 7.

7. Microscopic Instability of "Nonmaxwellian" Plasma

In Sec. 4f we considered the aperiodic instability of
a rarefied plasma with nonmaxwellian particle-velocity
distribution. Generally speaking, the deviation of the
particle distribution from equilibrium (Maxwellian)
distribution can lead to build up of waves in the plasma,
i.e., to the appearance of oscillating instability. The
criterion for the occurrence of such an instability, i.e.,
the condition under which the imaginary part щ of the
frequency u> = cor + ia>i reverses sign, can be readily
obtained by examining the balance of energy exchange
between the plasma particles and any plasma wave
produced by the fluctuations. At very small w{ (щ
« w r ) the wave with given w and corresponding wave
vector к is almost periodic. The average energy of
the plasma ions (or electrons) oscillating in the
periodic field of the wave will not change. The only
exception are those particles whose velocity satisfies
the condition of resonance with the wave. In the ab-
sence of a magnetic field, the only particles at reso-
nance in the unperturbed plasma are those whose ve-
locity is close to the phase velocity w/k of the wave
(the resonance condition i s w - k - v = 0). In the pres-
ence of a constant external magnetic field, the wave
will also interact effectively with the particles for
which, in their own coordinate system, the Doppler
effect causes the wave frequency ы' = ш-кцуц to be
close to the cyclotron frequency сод = eH/mc (or to
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one of i t s h a r m o n i c s in UJJJ) : ы - к ц у ц - n c o H = 0,

n = ± 1 , ± 2 , . . . .

Particles whose velocity component Уц along the
magnetic field satisfies this condition will be continu-
ously accelerated by the field of the wave, just as ions
are accelerated in the cyclotron.

Let us examine some specific conditions for the
build up of different waves in a plasma.

1. Li the absence of a constant magnetic field, the
waves that can propagate in a homogeneous plasma
are either purely transverse or purely longitudinal.
We do not consider transverse waves, since their
phase velocity exceeds the velocity of light (e = 1
— Wp/w2). The phase velocity of longitudinal Lang-
muir electron oscillations has a lower limit on the
order of the thermal velocity of the electrons (the
corresponding minimum wavelength is on the order of
the Debye radius) and increases with increasing wave-
length. Let us consider a Langmuir wave of frequency
w (and phase velocity w/k); in the coordinate system
moving with a velocity w/k relative to the laboratory
system, the profile of variation of the electrostatic po-
tential is a stationary sine wave with amplitude <p0, an
alternation of the potential "wel l s" and " c r e s t s " for
the electrons. Electrons with a velocity sufficiently
different from w/k will move freely in this periodic
field, and their average energy remains constant. The
electrons whose velocity v differs from ai/k by an
amount less than V 2ecp0/m , will be reflected from
the potential " c r e s t s . " These electrons can be di-
vided into two groups with velocities greater than and
smaller than w/k, respectively. The electrons of
the first group catch up with the potential " c r e s t s , "
are reflected and thereby give up energy to the waves.
The electrons of the second group are "whiplashed"
by the wave and acquire energy from it. The ampli-
tude of the wave will increase if on the whole energy
is transferred from the electrons to the wave. This
takes place if the number of electrons in the first
group is greater than in the second group, i.e., if

To satisfy this condition it is necessary that the
electron velocity distribution function have at least
one additional maximum in the region above thermal
velocity. On the other hand, if 9fo/3v < 0, WJ < 0
everywhere, i.e., the wave attenuates (Landau damp-
ing). The value of ш\ near the instability region (w±
« ш) can be obtained (apart from a numerical fac-
tor ) from a simple examination of the energy ex-
change between the wave and the resonant particles.
As is well known,

i = Y = " d'i

where Ш is the energy density in the wave, which in
our case is equal to the sum of the energy of the elec-

tric field and the kinetic energy Е2/8тг + (m/2) X/ v |
i

(E o is the amplitude of the electric field and VJ is the
amplitude of the velocity of the i-th electron in the
wave).

For Langmuir oscillations of frequency ш close to
a)0, the kinetic energy is equal to the energy of the
electric field, so that

% = Elfin = Л;2ф*/4я.

The r a t e of change of the energy density, dif /dt ,
c o n s i s t s of the r a t e of change of energy del ivered p e r
unit t i m e to the wave by t h e e l e c t r o n s of t h e f i r s t group

oi/ft

v3 (2a, к - v\2

fo(v)dv,

and the energy received from the wave by the electrons
of the second group

- (-Ц k — r)'- ~] )• —co/A- fn(y)dv.

For a wave of low amplitude, есрц « m (w/k)2, the
integrals are readily calculated by expanding fo(v)
near v = w/k. Here

dS
dt

a n d

Y
/,•- d v

2 . I n t h e p r e s e n c e o f a c o n s t a n t m a g n e t i c f i e l d ,

there are many modes of plasma oscillation. At fre-
quencies ш « шщ both Alfven and magnetoacoustic
waves can propagate. We consider first the build-up
of a magnetoacoustic wave, propagated at an angle to
the magnetic field. When ш « м щ the magnetic mo-
ments ц of the electrons and ions are conserved. In
the inhomogeneous magnetic field of the wave, these
moments are acted upon by a force — ̂ VH. A wave
with specified ш and к produces a periodic pattern
of condensation and rarefaction of magnetic force
lines, the pattern moving at the phase velocity w/k
of the wave. Under the influence of the force -piVH,
the particles moving along H will be reflected from
the regions of denser force lines, if the component
of the particle velocity in the direction of the mag-
netic field is not too different from the corresponding
projection of the phase velocity of the wave

A r g u m e n t s a n a l o g o u s t o t h o s e g i v e n i n S e c . 1 l e a d

t o a l m o s t t h e s a m e i n s t a b i l i t y c r i t e r i o n

r)7l, . Ji.\ Ib *

The phase velocity of magnetoacoustic waves, as is
well known, is of the same order of magnitude as
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H/V4vrp ; in a sufficiently strong magnetic field, this
velocity greatly exceeds the thermal velocity of the
particles, so that instability against build-up of mag-
netoacoustic waves presents no danger in many of the
typical experimental devices produced for the contain-
ment of plasma.

3. Let us examine the build-up produced by cyclo-
tron resonance. In the first two sections we have con-
sidered the build-up of different types of oscillations;
in either case, the instability is due to particles mov-
ing with a velocity close to the phase velocity of the
wave.

We now consider the appearance of instability due
to a group of particles which are in cyclotron reso-
nance with the wave (ш -кцуц = nwjj). It should be
noted that in the case of waves propagating at an angle
to the magnetic field, when the electric field of the
wave has components both longitudinal and transverse
relative to the constant magnetic field, the stability
criterion for the build-up of the waves is determined
by both mechanisms. In order to investigate the role
of cyclotron resonance in pure form, we shall con-
sider the simplest type of wave, propagating along a
constant magnetic field (k ± = 0), with transverse
polarization. Such a wave will interact effectively
with particles of velocity

To derive the criterion of plasma stability against
build-up of transverse waves with kj_ = 0, let us es-
timate the work performed by the electric field of the
wave on the plasma particles

_!2 —vE
at

vE,

where

and fj is the correction to the unperturbed distribution
function f0, due to the action of the wave on the par-
ticles. This correction is linear in the field of the
wave and proportional to the quantity

о J (7.1)

Here E and H are the electric and magnetic fields of
the wave, connected by the relation

H = - [ k , E].

Since the vector E of our transverse wave is per-
pendicular to the constant magnetic field Ho, expres-
sion (7.1) can be rewritten

-Ev L\ 0) / де± д (mv\\)
(7.2)

[ under the assumption that f0 = f0 (e_|_, уц ), where e x

= m v | / 2 ] .

Inasmuch as the particles effectively interacting
with the wave have a velocity уц satisfying the condi-
tion V|| = ( ш - ш д ) / к , we must put Уц = ( ш - ш д ) / к
in (7.2). Integrating (7.2) with respect to е х , we then
obtain the condition that the particles must satisfy if
they are to give up energy to the field of the wave, i.e.,
the following instability takes place

(7.3)

L e t u s c o n s i d e r , f o r e x a m p l e , a n " a n i s o t r o p i c M a x -

wellian" distribution with different temperatures Тц
and Т . :

/o _
Т

- e -L
in this case the instability criterion (7.3) has the form

^ + ^-(l-T1/Tll)<0. (7.4)
il

For an isotropic plasma, Tj_ = Tjj and the second
term vanishes; if the degree of anisotropy is small
(i.e., if 11 - Т±/Тц | « 1 ) , then instability can occur
only for waves with frequencies ш considerably lower
than the cyclotron frequency соц.

As is well known, transverse waves propagating
along the magnetic field Ho are circularly polarized;
the direction of rotation of the vector of polarization
is determined in our formulas by the sign of the fre-
quency со. Therefore, depending on the sign of
1 - Т^/Тц, instability can occur no matter what the
sign of the anisotropy 1 - Т_|_/Тц, whether right-hand
or left-hand polarized waves are excited.

It follows from (7.4) that instability takes place
even at very low temperature anisotropy | Tj_ — Тц |/Т;
in this case, however, the increment &>i is exponen-
tially small. Actually, the frequency WJ. is propor-
tional to

fo(vl\ . e x p
Г — "l {и>~анУ-"1
L T № J '

When o)«ci)jj we have k2 = w2/c|j, where c| j = H2/47rp;
since according to (7.4) instability takes place when
со < W H ( T | | — T J _ ) / T , the increment cj£ for the most
"dangerous" waves will be proportional to

\ 2 T \T^ — TX) I

It should be noted that the instability just consid-
ered may not occur in a real situation with low aniso-
tropy, for the "cut-off" Maxwellian distribution
(which apparently obtains in the experiment) does
not contain the particles with large longitudinal ve-
locities V|| ~ VT/M T/ | ТЦ - Tj_ |, which are respon-
sible for the build-up of the oscillations. In practice,
therefore, the wave build-up due to such an instability
can be noticeable only if the degree of anisotropy is
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sufficiently large and increases with the ratio of the
magnetic pressure to the plasma pressure. Let, for
example, Tj_ > Тц. Let us estimate at what degree
of anisotropy does the exponential factor

exp
Г __m_
I 2 T,,k2 which is contained in the

expression for the increment, become of the order of
unity

" ~ J . (7.5)m ((0 —

The square of the wave vector k2 can be expressed
in terms of ш with the aid of the following well known
dispersion relations for "co ld" plasma:

\ = =
со2 ~ a H i ( ( i > H J - < o ) '

i f w e d e a l w i t h a w a v e h a v i n g a p o l a r i z a t i o n v e c t o r t h a t

r o t a t e s i n t h e s a m e d i r e c t i o n a s t h e i o n s r o t a t e i n t h e

magnetic field. Substituting k2 = u>li шг/с2и>т (wjji - w)
in (7.5) and taking account of the fact that for instabil-
ity, according to (7.4), we must have w 4 wjji (1 -
Т ц ) , we obtain Т_ц/Тщ к. V Under this
condition, the instability increment becomes noticeable.
An analogous condition takes place also for a wave po-
larized in the direction of rotation of the electrons:
Tle/Tlle-i VH2/87mT_Le . It is clear that, other con-
ditions being equal, the electron mode should have a
greater increment. Returning to the results of Sec. 4f,
where we derived the conditions for aperiodic instabil-
ity of a nonisotropic plasma, we note that when Н2/8ттТ
is large the oscillating instability should occur at much
lower anisotropy.

We have considered here essentially the simplest
case of a transversely polarized wave propagating
along a constant magnetic field. In an oblique wave
(к К HQ) the situation under which instability sets in
is more complicated, since it is also necessary to take
into account the particles that are in multiple cyclotron
resonance with the wave ш ± nwjj + кц\гц = О, where n
is any integer. A similar problem was considered for
highly idealized "background" distribution functions
in reference 27. The instability due to anisotropy on
the " ionic sound" branch was considered in reference
28. Ionic sound, as is well known (see Sec. 8) can exist
only in a strongly nonisothermal plasma, T e » Tj. It
was shown accordingly in reference 28 that the corre-
sponding instability should occur (for example, if

ell
5Till) w h e n 2 T

il-

8. Build-up of Oscillations in a Plasma in the Pres-
ence of Relative Motion of Ions and Electrons

A plasma can also be unstable when both the elec-
trons and the ions have Maxwellian distributions, but
move with a certain velocity u relative to each other,
i.e., whencurrentflows. It is natural to expect insta-
bility of the beam type to appear here (see Sec. 6) if,
for example, we regard the electrons moving relative

to the ions as a "beam." Instability should occur when
u goes through a certain critical value, on the order of
the phase velocity of the corresponding wave.

Let us consider, for simplicity, a case when there
is no magnetic field (all the arguments are readily
extended to the case when there exists a constant mag-
netic field, but the oscillations are along the force
lines). The lowest phase velocity Vpn ~ V ( T e + Tj)/M
is possessed by the ionic longitudinal oscillations
(ionic sound). However, if w/k is not too much
greater than the average thermal velocity of the ions
V Tj / M , these oscillations attenuate rapidly (prac-
tically within several cycles), and transfer their en-
ergy to the ions, which move with a velocity on the
order of the phase velocity of the wave. For these
oscillations really to exist it is necessary that the
condition Z T e » Tj be satisfied. In practice this con-
dition is frequently satisfied even for a plasma with
Z ~» 1 (Ze is the ion charge).

Let us determine the criterion for the instability
of the plasma against build-up of ionic "sound" oscil-
lations, by considering the interaction between the
particles and the potential " c r e s t s , " as was done in
Sec. 7.

Assume that, in the coordinate system in which the
average velocity of the ions is zero, the ion and elec-
tron distribution functions fj and fe have the form

/t - (2nTi/M)~•/» exp {- MvWTJ,
/e = (2лТе/т)-Ч* exp {-m(v- uf/2Te},

fi and fe are the complete distribution functions, in-
tegrated over the transverse velocities. The balance
of energy exchanged between the plasma particles and
the wave is determined by the energy transferred per
unit time to the wave from the electrons

dt~
(8.1)

and by the energy transferred from the wave to the
ions

Hi
dt

d" /0=0),* (8.2)

The instability condition for the build-up of ionic
sound assumes the form

dt

i.e.,

u— ml к . -i/ M f Tr V/2 |
СО/Л" Г 7И 4 ' i / * z = 1 - ( 8 - 3 )

It is seen from (8.3) that for instability it is neces-
sary that u be greater than w/k; with increasing
T e / T j , the excess of u over the phase velocity w/k,
necessary for the build-up of the ionic sound, decreases.

For clarity, we present a table showing the depend-

ence of the quantity y = ( u c - Г" ) / T~ (where u c
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У
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И
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1

i s the r e l a t i v e v e l o c i t y n e c e s s a r y for the o c c u r r e n c e

of i n s t a b i l i t y ) on the r a t i o x = T e /T j for a p l a s m a

with Z = 1 and M / m = 3 6 0 0 .

With the aid of (8.1) and (8.2) we can readily deter-
mine the increment у = t /1%, by dividing the rate of
energy transfer from the particles to the wave by the
energy density in the wave

thermal velocity and the ' Ъ е а т " instability described
in Sec. 6 is possible.

2. In the case of small inhomogeneities (i.e., at low
current densities) the velocity of the " b e a m " will be
quite small and it can interact only with the slowest
of the waves propagating in the plasma.

Let us consider the simplest equilibrium of a plasma
confined by the pressure of a magnetic field with a con-
stant direction everywhere, say along the z axis
(Fig. 18).

Ho

м

co/fc VTi
(8.4)

The ion-oscillation frequency spectrum has an upper
limit on the order of the ionic Langmuir frequency Sij
= V47rne2/m . The phase velocity w/k remains approx-
imately equal to VZT e + Tj/M in the entire region of
the spectrum. Consequently, the increment w\ in-
creases in proportion to the frequency, and the most
likely to be excited are the short waves with wavelength
on the order of several times the ionic Debye radius.

9. Microscopic Instabilities of an Inhomogeneous
Plasma

We have seen in Sec. 6 that the presence of a " b e a m "
passing through a plasma can lead to instability. A
special form of such " b e a m " instability can occur in
a non-uniform plasma in the presence of a current
Jo = (e/47r) curl Ho * 0. The electrons and ions par-
ticipating in the production of the current Jo comprise
in some respect а ' Ъ е а т . "

1. This effect can become particular pronounced in
the thin boundary layer between the region of the mag-
netic field and the plasma current incident on this r e -
gion (the Chapman-Ferraro problem). The electrons
entering the region of the magnetic field are "reflec-
t e d " from it, and penetrate only a distance on the or-
der of the electronic Larmor radius r JJ. On the other
hand, the ions are hardly influenced by the magnetic
field and are contained by the electrostatic forces.

In such a boundary layer, of thickness 5 ~ гд,
there should flow an electric current that ensures
equality of the plasma and magnetic-field pressures

FIG. 18
Assume that in equilibrium all the quantities depend

only on x. The current jg is transverse to the z and
x axes and parallel to the у axis. We consider the in-
teraction between the particles and sound waves propa-
gating transverse to Ho in the direction of the у axis.
The particles effectively interacting with the wave will
be those whose drift velocity v^r is close to the phase
velocity of the wave ш/к. Inasmuch as such electrons
(ions) always have the same phase relative to the
wave, they will be acted upon by a constant force.
Under the influence of the у component of this force,
the particles will drift with constant velocity c F y

x Но/еНр along x. Electrons (ions) which will fall
into the weakest magnetic field will lose energy, be-
coming adiabatically demagnetized (since the condition
li = mvj/2H = const implies m i | ~ H). To the con-
trary, the charges entering into regions when the field
is stronger will acquire energy. The first tendency
predominates if the region with the stronger field con-
tains more electrons (ions) of the required energy

( v d r depends on v^m/2, namely = c

dH0

dx
mvi

Hn

i.e., when

(9.1)
dr

H2

/ ~ Т ^ ~ 7 Г

T h e r e l a t i v e v e l o c i t y of the i o n s and e l e c t r o n s c a r r y i n g

the c u r r e n t should b e of t h e fo l lowing o r d e r of m a g n i -

tude i n s i d e t h i s l a y e r

с

1л
— 1 ~ l/ -
en о г

Thus, the re lat ive velocity of the e l e c t r o n s inside the

C h a p m a n - F e r r a r o l a y e r i s on t h e o r d e r of the average

In t h i s c a s e t h e p l a s m a e n e r g y a s a w h o l e w i l l d e -

c r e a s e a n d a c c o r d i n g l y t h e w a v e e n e r g y w i l l i n c r e a s e

( i . e . , i n s t a b i l i t y t a k e s p l a c e ) . F o r a M a x w e l l i a n d i s -

t r i b u t i o n f u n c t i o n a n d a w e a k l y i n h o m o g e n e o u s p l a s m a ,

( 9 . 1 ) i s e q u i v a l e n t t o t h e c o n d i t i o n 2 9 ' 3 0

dlnT ,

d i n Я

However, at small inhomogeneities H'o/Ho « 1/гщ,
the average particle drift velocities are very small
compared with the thermal velocities. Only particles
of energy much greater than the average thermal en-
ergy can resonate with the wave. The increment,
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which is proportional to the fraction of such particles,
will consequently be exponentially small.

In principle, owing to the occurrence of anomalous
dispersion at frequencies close to multiple cyclotron
frequencies, waves can be found propagating trans-
verse to the magnetic field with as small a phase ve-
locity as desired. Such waves could interact effec-
tively with particles carrying electric current, even
in a weakly non-uniform plasma. This phenomenon
can, however, hardly lead to a "universal" instability
of any non-uniform plasma, inasmuch as anomalous
dispersion is always accompanied by an anomalous
absorption (at multiple cyclotron frequencies), thus
ensuring a stability "marg in."

3. The spontaneous growth of ionic sound oscilla-
tions, considered in Sec. 8, can occur under certain
conditions in a non-uniform plasma. The reason for
such an instability can be visualized as follows. It
is well known that in a uniform plasma located in a
strong magnetic field, the frequency of the ionic sound
waves is independent of the wave-vector component
transverse to the magnetic field if w « eH/Mc (the
magnetic field suppresses the transverse motions).
On the other hand if the unperturbed plasma is not
uniform, for example if it has a temperature that
varies transversely to the force lines, then the t rans-
verse motions in the wave will be accompanied by heat
flow (v grad T o ) . An ionic sound wave can be imagined
as an alternation of regions of compression (increase
in temperature) and rarefaction (reduction in tem-
perature), moving in space with a velocity ~ VT/M .
Depending on the sign of the ratio of the components
of the wave vector кц /kj_ (parallel to and perpendicu-
lar to the magnetic field), the transverse influx of
heat will take place, either in the compression region,
or in the rarefaction region, owing to the inhomoge-
neity of the initial temperature. It is found that in the
former case the ionic sound is unstable if the t rans-
verse motion is sufficiently large (kj_ » кц). The in-
stability criterion (see Appendix IV) has the form

Here г щ is the average Larmor radius of the ions,
and a is the distance over which the temperature
varies appreciably.

10. Stability of Plasma Flow in a Magnetic Field

The magnetic field affects the,stability of a moving
plasma in two ways. First, it changes the spatial dis-
tribution of the velocity of flow, and the stability de-
pends greatly, as is well known, on the velocity profile.
Second, the field also has a direct effect on the pertur-
bations, i.e., on the stability. If the field does not have
time to diffuse out of the flow perturbations within the
inertia time, i.e., if R e m = 47ro\Lv/c2 » 1, then the
direct effect of the field on the perturbation is in the

a p p e a r a n c e o f t h e q u a s i e l a s t i c f o r c e c o n n e c t e d w i t h

t h e d e f o r m a t i o n o f t h e m a g n e t i c f o r c e l i n e s . I n t h i s

c a s e t h e e x t e n t o f t h e e f f e c t i s n a t u r a l l y d e t e r m i n e d

b y t h e r a t i o o f t h e m a g n e t i c e n e r g y d e n s i t y t o t h e h y -

d r o d y n a m i c e n e r g y d e n s i t y , i . e . , b y t h e d i m e n s i o n l e s s

1 / H 2 / 8 T T l / H 2

 A ] _ „ J

number A = I/—Y7Z~ = v~* Г . the so-called
" pv /2 r 47rpv

Alfven number. On the other hand, if the field is not
perturbed, i.e., R e m < 1, then its effect on the per-
turbations reduces to the appearance of an electro-
magnetic retardation force

/ —iJL
• m ~~ ~c~

arH Л
с

The ratio of the density of this force to the density of
the inertia forces yields a parameter (the Stuart num-
ber ) which determines the extent of the effect of the
field on a poorly conducting liquid:

st = - oH2L
QV 'г

where L is the characteristic dimension of the system.
A distinguishing feature of the action of the magnetic

field is that it does not affect the short-wave perturba-
tions, since Re(P) -~ 0 and St<P> — 0 when L(P) -~ 0,
where L(P> is the characteristic dimension of the
perturbations.

Let us proceed now to an investigation of the sta-
bility of some specific flows. We consider first a flow
in which the velocity distribution does not change when
the magnetic field is applied. This includes plane lami-
nar flow parallel to the field.

10a. Stability of plane flow. 1. The simplest example
of plane flow in a longitudinal field is a separate small
jet in a liquid at rest (Fig. 19). Let us consider long-
wave perturbations in the jet. We can neglect here
the electric resistance of the plasma and the tension

FIG. 19

of the curved force lines (H • V) H, and confine our-
selves to an analysis of the potential terms. The pres-
sure distribution and the field outside the jet are also
little perturbed. In quasi-stationary bending

~- -\- p = w = const.

For simplicity we confine ourselves to an incom-
pressible liquid. Then pv2/2 = (pVo/2)(2ij/22),
where 2 is the cross section of the tube. The t rans-
verse total pressure will be in this case

The stability condition is that when the cross sec-
tion increases the pressure inside the tube decreases,
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i.e., ЭФ/Э2 < 0. But

дф 2Sg ( Щ Q"2 Л
П V 8л 2 J '

s o t h a t t h e s t a b i l i t y c o n d i t i o n i s A > 1.

For short-wave surface perturbations (Л. «
we arrive at the problem of stability of a tangential dis-
continuity; it is easily seen that here the quasi elastic
force, the perturbation of the external magnetic pres-
sure, and the perturbation of the internal magnetic
pressure are all of the same order of magnitude. As
shown in reference 31, the stability condition for
R e m » 1 has the form

(H[ + Я * ) / 4 п > v-0 Q ^ A Q I + Q..),

w h e r e H l j 2 a n d p 1 > 2 a r e t h e f i e l d a n d d e n s i t y on t h e

t w o s i d e s of t h e t a n g e n t i a l d i s c o n t i n u i t y . At e q u a l d e n -

s i t i e s p i = p 2 a n d e q u a l f i e l d s H i = H 2 , t h i s c o n d i t i o n

b e c o m e s A > V2. A s s h o w n i n r e f e r e n c e 3 1 , t h e c o m -

p r e s s i b i l i t y a f f e c t s t h i s r e s u l t v e r y l i t t l e .

F o r s t i l l s h o r t e r w a v e s , R e m — 0, a n d t h e f i e l d n o

l o n g e r s t a b i l i z e s t h e m f o r a n y A . T h e q u e s t i o n of

w h e t h e r s u c h w a v e s a r e d a n g e r o u s i s c o n n e c t e d w i t h

t h e r e a l s t r u c t u r e of t h e l a y e r , d e t e r m i n e d b y t h e

v i s c o s i t y .

2 . L e t u s e x a m i n e t h e i n f l u e n c e of t h e f i e l d o n t h e

s t a b i l i t y of p l a n e l o n g i t u d i n a l flows w i t h c o n t i n u o u s

v e l o c i t y d i s t r i b u t i o n . T h e v e l o c i t y p r o f i l e of a flow

of t h i s k i n d i s d e t e r m i n e d b y t h e v i s c o u s a n d i n e r t i a

f o r c e s ( F i g . 2 0 ) .

FIG. 20. Laminar longitudinal flow.

As is well known,35 the stability of such a flow in
the absence of a field is connected with the presence
of a point at which vj (z) = 0, i.e.,

VrotHv0 = 0.

This condition, first derived by Rayleigh, admits
of a simple interpretation. If the vortex tube goes
outside the layer in which it originally moved, accel-
eration is produced in a direction opposite to the mo-
tion of the tube, proportional to

/(.r, y)]*4 roty\odxdy,

and therefore the tube returns to the original layer.
On the other hand, if somewhere in the flow we

have V curly VQ = 0, nothing hinders the motion of
the tube near this layer. On the other side of the
layer, however, the acceleration reverses sign and
the tube continues to move further. This causes the
initial perturbation to "work loose," and the energy

i s t r a n s f e r r e d f r o m t h e m a i n flow t o t h e p e r t u r b a -

t i o n s .

T h e m a g n e t i c f i e l d s h o u l d e x e r t a s t a b i l i z i n g a c t i o n

o n s u c h i n e r t i a l l y - u n s t a b l e flows w h e n A ~ 1, if R e m

» 1, a n d w h e n St ~ 1, if R e m « 1.

If t h e c u r l of t h e v e l o c i t y d o e s n o t h a v e a n e x t r e -

m u m a n y w h e r e i n s i d e t h e f low, t h e n t h e i n s t a b i l i t y

of flow c a n b e c o n n e c t e d o n l y w i t h t h e e f fec t of v i s -

c o s i t y , a s w a s d e m o n s t r a t e d f o r t h e f i r s t t i m e b y

H e i s e n b e r g . 3 2 L e t u s c o n s i d e r t h e i n t e r a c t i o n b e t w e e n

a n i n d i v i d u a l p e r t u r b a t i o n w a v e a n d t h e f low. It i s o b -

v i o u s t h a t a t l a r g e R e y n o l d s n u m b e r s t h e v i s c o s i t y c a n

m a n i f e s t i t s e l f o n l y i n t h e l a y e r i n w h i c h t h e p h a s e

v e l o c i t y of t h e p e r t u r b a t i o n i s e q u a l t o t h e v e l o c i t y of

flow. It i s p r e c i s e l y n e a r t h i s l a y e r t h a t e n e r g y e x -

c h a n g e t a k e s p l a c e b e t w e e n t h e p e r t u r b a t i o n a n d t h e

flow. T h e e l e m e n t s of t h e l i q u i d c a n m o v e g r a d u a l l y

f r o m o n e s i d e of t h e l a y e r t o t h e o t h e r a n d b e c o m e

u n t w i s t e d b y t h e f low. T h e i n s t a b i l i t y h a s a n o s c i l l a t -

i n g c h a r a c t e r , a n d w e s e e t h a t i t i s c o n n e c t e d w i t h

p h a s e r e s o n a n c e .

T h e s t a b i l i t y i n v e s t i g a t e d i n g r e a t e s t d e t a i l i s t h a t

of p l a n e P o i s e u i l l e flow b e t w e e n i n f i n i t e p a r a l l e l p l a t e s .

If R e m » 1, t h e n p h a s e r e s o n a n c e t a k e s p l a c e b e t w e e n

t h e flow a n d t h e Alfven w a v e s . It i s s h o w n i n r e f e r e n c e

33 t h a t t h e c r i t i c a l R e y n o l d s n u m b e r i n c r e a s e s w i t h i n -

c r e a s i n g A 2 = H2/47rpoVo a n d w h e n A = 0 . 1 t h e P o i s e u i l l e

flow b e c o m e s ful ly s t a b l e ( F i g . 2 1 ) .

FIG. 21. Poiseuille flow in a
longitudinal field.

W i t h d e c r e a s i n g c o n d u c t i v i t y , t h e f i e l d n e c e s s a r y t o

s t a b i l i z e t h e flow i n c r e a s e s , a s s h o w n i n r e f e r e n c e 3 4 .

A s R e m —• 0 ( p o o r c o n d u c t i v i t y ) t h e e f fec t of t h e

f i e l d , a s h a s a l r e a d y b e e n s h o w n , r e d u c e s t o a n e l e c -

t r o m a g n e t i c r e t a r d i n g f o r c e

/tf/c ~ oHW/c*.

T h e m a g n i t u d e of t h i s f o r c e i s i n d e p e n d e n t of t h e

d i m e n s i o n s of t h e p e r t u r b a t i o n . A s i s w e l l k n o w n

f r o m o r d i n a r y h y d r o d y n a m i c s , t h e f a s t e s t t o g r o w

a r e p e r t u r b a t i o n s w i t h w a v e l e n g t h s o n t h e o r d e r of

t r a n s v e r s e d i m e n s i o n s of t h e s t r e a m . F o r s h o r t e r

w a v e s , t h e s t a b i l i z i n g r o l e of t h e v i s c o s i t y i n c r e a s e s ,

a n d f o r l o n g e r o n e s , t h e d e s t a b i l i z i n g r o l e d e c r e a s e s .

T h e c u r v e s t h a t s e p a r a t e t h e s t a b i l i t y r e g i o n f r o m t h e

instability region on the plane (k, Reg), (к = 2я/Л.
and \ is the wavelength of the perturbations) are
shown in Fig. 22. They are similar to the equal-
increment curves obtained in reference 35. The
critical Reynolds number increases slowly with in-
creasing Stuart number, but when St — 0.1, the in-
stability region of the stream contracts to a point.
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In the s e c o n d type of b o u n d a r y l a y e r

FIG. 22

The dependence of the critical Alfven number A
= V Н2/4тгру§ on the magnetic Reynolds number is
illustrated in Fig. 23.

FIG. 23

A s

a s

R e m - *

R e ™ - ^

0

OO

A 2 - ^ (

А - И
D.I/Re
3.1.

Thus, in the case of poor conductivity Rem is so
to speak a measure of the action of a field on the flow.

10b. Stability of flows perpendicular to the field.
We know that if the velocity of the liquid is perpendic-
ular to the direction of the magnetic field, a Hartmann
boundary layer forms near the wall perpendicular to
the field. Its thickness is determined by the equality
of the viscous and magnetic forces:

oH4<
QC

2

i.e.,

L
H
 =

On the other hand, if the wall is parallel to the field,
then the thickness of the boundary layer is ~ L/H1/2,
where H = (сгН^/пс 2 ) 1 / 2 is the Hartmann number,
and L is the characteristic dimension of the flow.

In the first boundary layer, naturally, viscous
forces predominate over all internal processes.
Therefore the influence of the field on the flow is con-
fined to its influence on the velocity profile. The cri t-
ical Reynolds number is

Re? = vC,№Jv = (vL/v) (1/H) ~ 50000,

i.e., the Reynold number, calculated from the charac-
teristic dimension of the flow is, on the order of

Re? - 50 000H.

The number 50,000 is the critical Reynolds number
for an exponential boundary layer, known from ordinary
hydrodynamic s.
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Thus, a magnetic field perpendicular to the flow in-
creases in most cases the stability of the flow by con-
centrating the gradients near the walls. This effect is
particularly appreciable in flow of the diffusor type,
where reversal of flow is possible in the absence of
the field. It should be noted, however, that the field
can destabilize the flow. Actually, if in the absence
of a field Reg lies in the region on the left of the sta-
bility region of Fig. 22 (case of small gradients and
high viscosity), then the field can destabilize the flow
by increasing the velocity gradient, if Reg falls in the
instability region.

10c. Stability of a rotating plasma. In Sec. 4e we
considered the stability of a rotating plasma against
axially-symmetrical perturbations. Such perturba-
tions bend the magnetic force lines and the stability
depends on the ratio of the quasi elastic force pro-
duced by the perturbed field, to the force due to the
faster decrease in the stationary pressure gradient
compared with the centrifugal force acting on the
perturbed force tubes.

In a large magnetic field, the quasi elastic force
suppresses the instability. The field, however, does
not influence "flute-like" perturbations, which are
homogeneous along the axis of rotation (Fig. 24).

о Н

FIG. 24. Flute instability of rotating
plasma.

If the densi ty of the p l a s m a d e c r e a s e s away from
the axis of rotat ion, an instabi l i ty of the type invest i-
gated in Section 4b, that of a p l a s m a boundary in a
gravitat ional field, is produced. Therefore such a
rotat ion i s absolutely unstable, as shown in Appendix I
for £ = 8тф/Н2 « 1.

If the p l a s m a r o t a t e s l ike a solid, then the f irst to
come out a r e two " t o n g u e s " on opposite s i d e s .

If, however, the speed of rotat ion changes m o r e
rapidly than the density, then only the s m a l l - s c a l e
p e r t u r b a t i o n s a r e unstable. These, however, a r e
effectively s u p p r e s s e d by the v iscos i ty (they may
also be forbidden by the finite value of t h e L a r m o r
radius in the r a r e f i e d p l a s m a ) , so that the rotat ion
may prove to be s table .

If the densi ty of the p l a s m a is constant, then the
question of the stabi l i ty of the rotat ion r e d u c e s to the
question, a l ready cons idered in Sec. 10a, of t h e i n -
stabil i ty of plane flow. The n e c e s s a r y condition for
instabi l i ty, a s we have seen, is the p r e s e n c e in the
p l a s m a of a l a y e r with an e x t r e m a l velocity c u r l , i .e . ,
a l a y e r in which at some point

~ rot.v = — tv' — V;r) — 0.
dr • ar v '
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On the other hand, if the rotation is inertially stable,
then a finite viscosity can apparently cause it to be-
come unstable at large Reynolds numbers, as usually
occurs in plane flow.

11. "Oscillating Convection" in a Plasma

It was already mentioned in Sec. 5 that if the plasma
contains a magnetic field whose diffusion is slower than
the heat exchange, i.e.,

4яа^/с2 > 1, (11.1)

where x is the coefficient of temperature conductivity,
then, as was shown first in reference 36, in a heavy
plasma heated from below, Alfven waves with an am-
plitude that increases in time (Fig. 25) occur at a cer-
tain critical temperature gradient. This is connected
with the fact that the plasma element is, as it were,

FIG. 25. Plasma layer heated
from below in gravitational field.

H

" t i e d " to the force line, owing to the quasi elastic
force. Under the influence of the Archimedean force
the plasma element stretches the force line, and con-
sequently it slows down and its temperature has time
to become equal to the ambient temperature. With this,
the Archimedean force decreases, the magnetic quasi
elastic force again returns the element, which is heated
again. The development of such an oscillating instabil-
ity increases the heat transfer, like the development of
aperiodic convection. The conditions for the occur-
rence of a periodic instability in a plasma heated from
below, with allowance for viscosity, are :

Ra c r = я 2 •

(11.2)

(11.3)

for the f r e e boundary.

H e r e

Ra =

S\ = X+ v-Ь с2/4ло,
Л'2 = 5(v -f- VC 2/4JTCT - | - хс-/4па.

v i s t h e k i n e m a t i c v i s c o s i t y o f t h e p l a s m a , x i s t h e

t e m p e r a t u r e c o n d u c t i v i t y , a n d a i s t h e c o e f f i c i e n t o f

t h e r m a l e x p a n s i o n ( S e e s . 4 — 5 ) . W e k n o w t h a t w i t h o u t

a field R a c r = 27 7г4/4 for a free boundary (1700 for a
rigid one). We see therefore that the curve R a c r ( H)
for an oscillating instability in weak fields always lies
above the aperiodic R a c r ( H ) curve.

In strong fields when x > с2/4тгсг, as follows from
(11.3), the aperiodic instability occurs at lower Ray-

leigh numbers than the oscillating instability, i.e., at
lower temperature gradients.

12. Instability of Positive Column of Gas Discharge
in a Magnetic Field37'38

By observing the variation of the coefficient of dif-
fusion of an incompletely ionized plasma from the
positive column of a gas discharge in a long tube with
varying external magnetic field parallel to the dis-
charge axis, Lehnert observed that oscillations are
produced in the plasma column when the field is in-
creased above a certain critical value, and that the
diffusion of the plasma on the tube walls increases
at the same time.

The condition for the occurrence of instability and
for the development of oscillations in a plasma column
(considered in greater detail in Appendix II) can be
derived for very long waves in the following fashion.
The most dangerous perturbations are those in which
the electron density remains almost constant, dn/dt
= 0; these perturbations are cumulative in time. For
these slowly-varying perturbations the total deriva-
tive d/dt is approximately equal to v • V, where v
= V|| + Vj_ is the electron velocity in the stationary dis-
tribution, made up of the velocity along the tube Уц (the
cause of the discharge current) and the drift velocity

The velocity is due to the electrostatic force eV<p and
the gradient of the pressure of the electron gas V (nT e )

If the per turbat ion v a r i e s in s p a c e a s e x p { i (kz +

m 0 ) } , then the condit ion ( v V ) n = 0 y i e l d s

A t , , + Z l i £ - = 0, (12.1)

where Ф' = T eN'/eN is the radial electric field, and
N is the density of the electrons in the stationary dis-
tribution. It is obvious that this condition coincides
with Eq. (Ш.6) in the limit of very long waves, as
к — 0. But to satisfy this condition for small уц, we
must already have large values of k, for which diffu-
sion must be taken into account. Allowance for diffu-
sion leads to the appearance in (12.1) of a term propor-
tional to k4 (see Appendix II); the criterion obtained
thereby for the stability of a plasma column has the
form

СГ
Vy <C, t/|| .

T h e c r i t i c a l e l e c t r o n v e l o c i t y , a c c u r a t e t o a n u m e r -

i c a l f a c t o r , i s

"°w "•" —
\m\
9.x

where D is the coefficient of diffusion, a is the ra-
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dius of fi = eH/mc, and т 1 is the frequency of colli-
sions between the electrons and the molecules.

As the magnetic field increases, v c r decreases

and when
II

<v\\

oscillations are produced in the plasma columnwhich
increase the diffusion flow of the particles towards the
walls of the tube.

IV. PROBLEMS IN NONLINEAR STABILITY THEORY

In this chapter we consider a quasi linear approach
to the "supercr i t ica l" state of the plasma, an approach
used below to study the behavior of a plasma near the
stability boundary. The quasi linear approach con-
sists of accounting for the reaction of perturbations
of finite amplitude on an average background, and of
neglecting the interaction between various perturba-
tion modes (i.e., the energy transfer between pertur-
bations with different scales). This approach, natu-
rally, is valid only at low "supercrit icality" and r e -
duces essentially to perturbation theory with expansion
in terms of the small parameter

where Л is a dimensionless parameter characterizing
the state of the plasma.

In Sec. 13 we consider "supercr i t ical" convection
in a plasma, and in Sec. 14 "supercr i t ical" oscillating
instability in a nonmaxwellian plasma.

13. Steady-State Convection in a Plasma and
lous Diffusion"

'Anoma-

FIG. 26. Model of convection cell.
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\н

The work performed by the viscous forces per unit
volume in a unit time is

r,! Д | of) + T] IД I v\ = т, j A \vf. (1 + Г±/Ц),

(13.1)

The work performed by the electromagnetic retarda-
tion force is

. н OH2 ОН2

' с - J - с2 V-L— са ""

a n d t h a t o f t h e A r c h i m e d e a n f o r c e i s

±Af|. ( 1 3 . 1 a )

( 1 3 . 2 )

w h e r e a i s t h e v o l u m e c o e f f i c i e n t o f e x p a n s i o n o f t h e

l i q u i d , a n d ( T ) i s t h e t e m p e r a t u r e a v e r a g e d o v e r a l l

t u b e s a t a g i v e n h e i g h t .

A v e r a g i n g t h e e q u a t i o n o f h e a t c o n d u c t i o n o v e r a l l

t u b e s , w e g e t

( 1 3 . 3 )

(13.4)

o n t h e o t h e r h a n d , i n s i d e e a c h t u b e w e h a v e

i

It f o l l o w s f r o m ( 1 3 . 3 ) t h a t

+ c o n s t .

T h o m s o n 3 6 d e r i v e d t h e c o n d i t i o n s u n d e r w h i c h c o n -

v e c t i o n a r i s e s i n a c o n d u c t i n g h e a v y l i q u i d h e a t e d f r o m

below. He showed that when 47гстх/с2 < 1 (where x is
the temperature conductivity and a the electric con-
ductivity of the liquid) the convection is aperiodic and
the effect of the magnetic field reduces to the action
of an electromagnetic retardation force.

The aperiodic convection denotes that steady motion
of the liquid — Benard cells — sets in under supercrit-
ical conditions (for example, when the temperature
gradient exceeds some critical value). Motion of this
kind in the absence of a magnetic field was investigated
by Stuart3 9 and by Gor'kov.40 A similar study, with al-
lowance for the magnetic field, was made by Nakagawa.41

In this section we estimate the velocity amplitude and
the heat transfer by convective motion when 4cirax/c2

< 1.

We consider for this purpose a simplified convection
model, wherein the liquid moves in a thin current tube
of dimensions indicated in Fig. 26. It is obvious that
the velocities of the liquid along and across the mag-
netic field are related by

Substituting (13.5) in (13.4) we obtain

(13.5)

(13.6)

The constant is determined from the condition

V{T)dz = T2-

Therefore

and from (13.4)

1 { ' 1Д1
1_

Д I X
1 . (13.8)

It follows from (13.7) that the gradient of the tem-
perature increases near the walls, where Уц — О, and
molecular transfer is effective, and decreases in the
center where the heat is transferred by convection,
as shown in Fig. 27. This change in the temperature
profile reduces the work of the Archimedean force,
i.e., leads to establishment of a finite convection am-
plitude, and also increases the heat flow.
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FIG. 27

Actually, near the wall

where к is the heat conductivity of the plasma.
Substituting (13.8) and (13.2) and equating the work

of the Archimedean force to the work of the viscous
force and to the work of electromagnetic retardation,
we obtain the square of the limiting convection ampli-
tude

(13.10)f
\ Ra

Exact values of A and R a c r as functions of H are
given in reference 41. At large H2 the parameter A
depends little on the form of the boundary and ap-
proaches V2. In this case R a c r — 7r2H2.

With increasing Ra, the above-described convec-
tion becomes unstable, new modes appear, the number
of free phases increases, and turbulent convection
sets in.

We have considered the dynamics of a liquid with
an equation of state p = pa {1 - a (T - T o ) } , as is
usually done in all papers on convection. It is easy to
extend our analysis to include a real plasma. This in-
volves replacing the temperature gradient (T 2 — T t )/d
in the Rayleigh number by the difference between this
gradient and the adiabatic temperature gradient, i.e.,
for a plasma,

R a = 4 V r + i ) ? - | n - -

Thus our analysis is valid when

Here A = <vf, >/<vf,>2 - 1, and Ra
= — apg (T 2 — Tj) d3 /xv is the Rayleigh number, the
critical value of which is

с-ц
(13.12)

The p a r a m e t e r A and t h e r a t i o (d/A.||) a r e d e t e r m i n e d
by the boundary conditions (genera l ly speaking, d/\ | |
~7T).

Substituting (13.10) in (13.9) we obtain the heat flux

and

where c p is the specific heat at constant pressure.
We can investigate analogously supercritical flow

}, (13.11) in a rotating plasma (Taylor vortices), inasmuch as
the problems are quite similar, both mathematically
and physically. The difference lies in the dual role
assumed by the viscosity. On the one hand, the vis-
cosity slows down the convection due to the momentum
transfer, and on the other hand it leads to diffusion of
the velocity curl, thereby reducing the centrifugal
effect. The analog of the Rayleigh number is the Taylor
number. The average amplitude of the velocity is, ac-
cording to (13.10),

(13.13)

g = Ra
?cr ~~ Racr ' Ra < Racr,

w h e r e q c r i s the heat flux in the c r i t i c a l mode.
The heat flux t r a n s f e r r e d by convection can b e w r i t -

ten in the form

Яconv A
R a - R a

T h e f o r m o f t h e B e n a r d c e l l s a n d t h e d e p e n d e n c e o f

t h e c r i t i c a l R a y l e i g h n u m b e r R a c r o n t h e m a g n e t i c

f i e l d c a n b e o b t a i n e d b y m i n i m i z i n g t h e r i g h t h a l f o f

( 1 3 . 1 1 ) . F r o m o u r c r u d e m o d e l

.-'/a

i . e . , t h e c e l l s s t r e t c h o u t v e r t i c a l l y w i t h i n c r e a s i n g

m a g n e t i c f i e l d a n d

Y (и^У= const (T — Tcr)1/4-

As shown in Sec. 5,

T c r ~ H * as |H->co.

The change in the form of the Taylor vortices,
naturally, coincides with the change in the form of the
Benard cells —they stretch along the field. The prob-
lem without magnetic field is solved in reference 39.

In the case of magnetic convection, the amplitude
in a plasma with closed force lines is limited by the
redistribution of the current. The analog of the Ray-
leigh number is the magnetic Taylor number. The
mean square velocity of motion of the magnetic force
tubes is

R a c
d2

H 2 H

A s H — * 0 w e h a v e , f o r c o n v e c t i o n b e t w e e n s o l i d

p l a t e s , R a c r = 1 7 0 0 .

I t f o l l o w s f r o m ( 1 3 . 1 3 ) t h a t a s H — - «° w e h a v e

~ 2H ~ 2 , i . e . , t h e f i e l d e f f e c t i v e l y d e c r e a s e s t h e

c o n v e c t i v e h e a t flux.

VV> = Const . (T m -Tm)' / 2 .

If the convection is associated with a transfer of
particles and heat, such as takes place near an ab-
sorbing boundary or a diaphragm, then the time of
departure of the particles from the volume in super-
critical mode is proportional to the velocity of the
tubes and inversely proportional to the dimensions
of the system, and not to the square of these dim en-



S T A B I L I T Y O F P L A S M A 363

sions, as would occur in molecular or developed tur-
bulent diffusion. This dependence can permit a c lari-
fication of the true picture of diffusion by experiment
(Fig. 28).

//////,

FIG. 28

If the force tubes in the plasma are not closed,
then the pattern of supercritical motion is compli-
cated by the appearance of quasi elastic forces, which
obviously limit the motion of the tubes. The pattern
of development of weakly supercritical instability r e -
duces in this case to the following. Assume that the
local condition of Sec. 4d is violated in some place
in the plasma:

rl г—

Then the surface oscillations in this layer decrease
the gradient of the pressure, and the instability shifts
to the neighboring layer. Although the instability has
a local character in each layer, the diffusioa of par-
ticles in the entire plasma affected by the developing
oscillations is sharply increased.

Closely related with the foregoing problems is that
of "anomalous diffusion." We use quotation marks
here to note that in all the experiments described be-
low the "anomalous" character of diffusion is appar-
ently connected, at a certain critical value of the field,
with the macroscopic instability of the ground state,
in which classical diffusion takes place. This phenom-
enon was observed experimentally in a plasma without
current.

In Sec. 12 and in Appendix Ш we consider the sta-
bility of a gas discharge in a long tube in a longitudi-
nal field. At a certain critical field value, as shown
in Appendix III, the discharge becomes unstable. The
resultant oscillations distort the average background
and increase the particle flux across the magnetic field
to the wall. In this case the instability of the discharge
and the increase in the diffusion are connected in prin-
ciple with the presence of a longitudinal current.

In many experiments, however, there is no current.
In principle, disregarding the method by which the
plasma is produced, it can be stated that these de-
vices comprise a longitudinal field, an equipotential
wall 1, and the region occupied by the plasma, 2
(Fig. 29). At a certain critical field, depending on
the type and pressure of the plasma and of the resid-
ual gas in the apparatus, the ordinary diffusion is
greatly disturbed and the flux of particles to the wall
increases. This phenomenon is explained as follows.

w

FIG. 29

Owing to the large mobility of the electrons, a poten-
tial difference is produced between the plasma and
the Quter case, on the order of the temperature of the
electrons in the plasma. In a radial electric and axial
magnetic field the plasma rotates with a certain aver-
age angular velocity

(Q). cE
H

where </?0 is the potential of the plasma and ( r ) is
the average distance to the axis. Since the density of
the plasma decreases away from the axis, the deduc-
tions of Sec. 10 show the rotation of the plasma to be
unstable. The drift time of the plasma is ~ l/u
~ E/<p0 ~ H/T e . On the other hand, the time of equal-
ization of the density (connected with the ordinary
diffusion) is ~ H2. There is therefore a certain cr i t-
ical field H c r ~ l / T e , at which instability can develop.
When H > H c r the drift of the plasma to the walls is
sharply slowed down. Strictly speaking, this process
is no longer diffusion. The "tongues" of the rotating
plasma simply "wriggle through" between the force
lines and go to the wall. The electron temperature
T e and the critical magnetic field H c r depend on the
pressure in the chamber and on the gas in it.

14. Quasi Linear Approximation in the Analysis of
Oscillating Instabilities in a Rarefied Plasma

In Sees. 4e, 7 and 8 we considered in the linear ap-
proximation the periodic instability caused by devia-
tions of the plasma-particle distribution from Max-
wellian. If this deviation is small and the increment
is much less than the frequency, we can attempt, by
taking into account terms of second order of small-
ness, to analyze approximately the establishment of
equilibrium in the system and to estimate the relaxa-
tion time.

We assume that the distribution function is the sum
of a rapidly oscillating part f1 and a slowly-varying
function f°. The electric and magnetic fields of the
oscillations are then represented as functions with
high space and time frequencies but with slowly-vary-
ing amplitudes.

We consider for simplicity the case of longitudinal
oscillations in a plasma without external magnetic
field. The distribution function has the form

where

/1 = V fke
ikr-iakt
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and E^ is the Fourier component of the electric field.
Substituting this value of f1 in the kinetic equation

and averaging over the fast space and time oscillations
we obtain an equation for the distribution function of
the background" f°, which is slowly distorted under
the influence of the oscillations:

(г, О

where

In a c c o r d a n c e w i t h t h e a r g u m e n t s o f S e c . 7 , t h e o s -

c i l l a t i o n s i n t e r a c t e f f e c t i v e l y w i t h t h e p a r t i c l e s t h a t

m o v e i n r e s o n a n c e w i t h t h e p h a s e v e l o c i t y o f t h e w a v e

и = kv.

These p a r t i c l e s a r e indeed respons ib le for the d i s -
tor t ion of the b a c k g r o u n d . "

The ampli tude of the e l e c t r i c field of the wave | Ejj |
sat i s f ies the following equation (the l inear approximation
is adequate h e r e ) *

H 5 J l = 2 Y | E k | " , (14.2)

where у is the increment, a functional of the "back-
ground" f°,

,=m/ft. (14.3)

the oscillations be small, but also that the oscillations
be " fast ." It is found that the last condition makes
the quasi linear approximation inapplicable to a mono-
chromatic wave no matter how small the amplitude.
It is applicable for the analysis of wave packets, the
"width" of which is not too small,4 9 Д (w/k)» Ve<p/m
(here <p is the amplitude of the potential in the wave).
This limitation can be readily understood by changing
over to a system of coordinates connected with the
resonant particles, v = w/k. In a monochromatic
wave resonance takes place only for a single value of
the velocity, and the corresponding frequency vanishes
in the moving system of coordinates. It is clear that
the condition of " fastness" of oscillations is violated
here for the particles responsible for the distortion
of the distribution function.

To estimate the relaxation time of a plasma which
is unstable in the initial state against build-up of
plasma oscillations, we make use of Eqs. (14.1) and
(14.2). When a certain time т has elapsed after the
occurrence of the oscillations, the "background"
changes in such a way that the oscillations stop in-
creasing (a quasi-stationary distribution is estab-
lished), so that af°/at = 0.

Integrating (14.1) with respect to time from t t = 0
to t2 ~ т, we obtain, using (14.2), the approximate
equality

o {AVJ°) (14.4)

Accordingly, wfc is a function of k, determined by
the dispersion equation of the linear approximation.

To clarify the meaning of the approximation used,
we must note that it is essentially analogous to the
well known Van der Pol method, in which the motion
of an inharmonic oscillator is represented by a super-
position of rapidly-oscillating and slowly-varying
functions. The equation for the slowly-varying part
is obtained by averaging the initial equations, with
allowance for the quadratic terms, over the rapidly
oscillating function, which is determined in turn from
the linear approximation. For this method to be ap-
plicable it is necessary not only that the amplitude of

where Af° = f°(t2) - f°(ti) is the total change in the
"background" and Ao is the value of A at the initial
instant.

Relation (14.4) determines the order of magnitude
of the relaxation time 4 2

~~ я со» l n _Vfi'_ (14.5)

*It is easy to include the radiation of the oscillations due to
fluctuations in the quasi linear system. For this purpose we add
to the right half of (14. 2) the intensity It of this radiation. In
the approximation of a perfect gas, each electron radiates inde-
pendently and to obtain the total intensity it is therefore neces-
sary to sum the contributions of the individual electrons Ik
=* / J k f°(v) dv. The spectral intensity of radiation of plasma

The form of the " b a c k g r o u n d " in the final s tate (af ter
r e l a x a t i o n ) i s d e t e r m i n e d by the equation

Instability s e t s in, as is well known (see Sec. 7) in
the c a s e when ( 3 f o / 9 v ) v = w / [ c > 0, i .e. , the dis t r ibut ion
function h a s , in addition to the pr inc ipa l m a x i m u m , at
leas t one m o r e m a x i m u m . The quasi s ta t ionary s ta te
is es tabl i shed when this additional m a x i m u m d e c r e a s e s
and t u r n s into a " p l a t e a u " (Fig. 30).

waves by a separate electron is m — -r^ 8(a>— kv). We obtain

finally I k = ^ -ф e2 / f° (vx, vy, y-)dvxdvy. With the aid of

this addition we can, for example, derive from (14. 2) the station-
ary fluctuation level of the oscillations, by putting d/dt lE^I^O.
Naturally, such a level exists only in the stability region (df°/dv
< 0). As the stability region is approached (df°/dv -» 0), the noise
amplitude increases. FIG. 30
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15. Developed Instability

Approximate methods, of the type employed in Sees.
13 and 14, make it possible to investigate the " t r a n s -
critical mode" only at small deviations from the in-
stability boundary. If the initial unperturbed state of
the plasma is far beyond the stability region, the de-
velopment of instability can bring the plasma to a state
in which its motion will be turbulent; an essential fea-
ture of this state is the interaction between different
scales, or in other words between different k. This
interaction leads to a "fragmentation of the sca les"
and the pumping of energy from larger to smaller
scales.

The theory of turbulence is fraught with tremen-
dous difficulties even in the hydrodynamic approxima-
tion. Only the homogeneous isotropic case can be con-
sidered in practice. Reliable dimensionality consid-
erations can be developed only for local isotropic tur-
bulence (The Kolmogorov-Obukhov relations). It is
clear that a magnetic field can disturb the isotropy.
Still another difficulty arises in the kinetic analysis
and consists of the following. In hydrodynamics the
turbulence spectrum is always bounded from above,
к « l/l (more accurately, the minimum turbulence

scale in the mean free path I, multiplied by -̂ — -̂ Rel 1/ 4

v0 &
where <v)/v0 is the ratio of the thermal velocity to
the directed velocity). What can we assume for the
minimum turbulence scale in a rarefied plasma, when
1/k is assumed at the very outset to be much less than I2 ?
This is a rather serious question, inasmuch as we deal
with a dissipation mechanism that limits the "fragmen-
tation" of the scales. In a rarefied plasma this mech-
anism cannot be ordinary viscosity, since we have al-
ready neglected pair collisions. If we resort to the
"collisionless" damping mechanisms (similar to
those considered in Sec. 7 ), which again have been
investigated only in linearized theory, we obtain sev-
eral such characteristic lengths: the Debye radius
VT/CU0, the Larmor radii of the electrons vxe/^He
and of the ions VTi/o>Hi- (It is known that oscillations
of wavelengths approaching these values are anoma-
lously absorbed.)

An additional effect in the damping of small-scale
perturbations is the randomizing effect of " intersec-
tion of t ra jectories ." 4 3

Let us consider in greater detail some character-
istic features of the decay of the spectrum of plasma
oscillations, caused by interaction between harmonics.
If the oscillation amplitude is small, it can serve as
the expansion parameter. In the first approximation
we have the non-interacting harmonics

/ к " • -iMkf+ikx

where L i s a differential operator whose spectrum is
0)^ = и) (к) . The expression in the right half can be
considered as a "driving force" acting on the oscil-
lator. If the force is in resonance with the natural
vibrations of the oscillator, i.e., ш2 = wfc + wjj is a
natural frequency corresponding to the wave vector
к = kj + k2, then this force excites (generates) a new
harmonic w2 (к = kt + k 2 ) .

If kj II k2 (one-dimensional spectrum), this is pos-
sible, generally speaking, only for a linear dispersion
law ш = ck. In the general case, the possibility of such
a decay depends on the form of a function ш (к)
(Fig. 31).

F I G . 3 1

For the dispersion curve 1 it is obvious that | к |
< | k t | + | k 21, and a triangle can be formed with kj and
k2. For curve 3 this cannot be done, and decay is there-
fore possible only for perturbations of type 1.

Langmuir oscillations, for example (see Sec. 7), be-
long to type 3, so that second-order decay is impossible
for these oscillations. In the third order, the driving
force will have the form

~ 2 /kj/k./k.e % + < ° k 2 Ы к з + l ' k l + k 2 + k 3 '
k l ' S ' k 3

I t i s e a s y t o s e e t h a t t h e s y s t e m

In the second approximation (including terms quadratic
in the amplitude) the generation of new harmonics is
described by an equation of the type

к = k2 + k2 + k3

has a solution for any dispersion law. The decay time
of an arbitrary spectrum, generally speaking, is thus
inversely proportional to the square of the amplitude.
These arguments show44 that the decay of a spectrum
can be regarded as the consequence of collisions be-
tween quasi-particles or harmonics, for which the
conservation laws ш = Swj for the "energy" and к
= 2 к} for the momentum are satisfied.

The ions and electrons of the plasma will execute
"Brownian" motion under the influence of the electric
and magnetic field. Knowing the spectrum of these
oscillations, we can, in principle, readily obtain the
corresponding diffusion coefficients. So far this has
been done, unfortunately, only for the uninteresting
case of equilibrium thermal vibrations, since the de-
termination of the non-equilibrium spectrum entails
great difficulties.
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APPENDIX I

STABILITY OF BEAMS IN A PLASMA

We consider several beams moving with velocities
V{ and consisting of particles of charge ej and mass
m 4 . The particle temperature in the beams is Tj and
the particle density is Nj. The Euler equation for
small perturbations has the form

dt ^Vz dx ~ mNi dx + m; ' U '

the continuity equation is

and the equation for the longitudinal electric field is

dE
~dx

(1.3)

In these equations vj, n^, and pj are the perturbations
of the velocity, density, and pressure of the particles
in the i-th beam, and E is the intensity of the electric
field of the perturbations. As is well known, for a per-
fect gas of particles we have in each beam

Pi— (1.4)

where yj is some effective adiabatic exponent, deter-
mined from the exact kinetic theory.

As usual, we seek the perturbations in the form
exp ( —io)t + ikx), and obtain the connection between
w and к from (1.3), substituting in it (I.I), (1.2) and
(1.4):

hi— V -

where

APPENDK II

STABILITY OF ROTATING PLASMA

Let us derive the stability conditions for the rota-
tion of the plasma, as given in Sec. 10c.

Electric fields can exist at the ends of the system
(because the plasma borders on the vacuum) and con-
sequently the occurrence of "interchange" instability
(see Sees. 4b and 4c), i.e., instability of a plasma with
m ^ 0, is possible. With this, the "tongues" of the
plasma wriggle through between the force lines of the
magnetic field without bending the latter. We shall
find later on the conditions for stability of rotation
against perturbations of this type. We confine our-
selves to the case of a strong magnetic field (8тгр/Н2

» 1). The motion of a plasma in such a field is simi-

lar to the motion of an incompressible liquid. From
the equations of Chapter II we obtain an equation for
the perturbation of the radial component of velocity
of rotation

VI In'Q

V Y
V I (II.1)

with boundary conditions v r = 0 when r = Щ and R2.
Replacing v r by u = /p~r3/2v r, we obtain from (II. 1)

— - j - u = 0. (П.2)

In these equations v r is the radial component of the
plasma-velocity perturbation, p ( r ) is the density of
the plasma, Vo(r) is the azimuthal velocity of the
plasma, Д+ = Vo(r) + V0/r is the curl of the plasma
velocity, and the prime denotes differentiation with
respect to the radius.

The third term in the braces is connected with the
usual conservation of the velocity curl in the flow, and
the fourth contains in its numerator (pVg/r) Vp
— VpVp, i.e., it is connected with the Taylor instabil-
ity of a heavy liquid supported by a light one in a field
of centrifugal forces.

Let us consider several particular examples.
a) Homogeneous rotation of a plasma. Let the en-

tire plasma rotate with angular velocity ш. From
(11.2) it follows that in this case

= 0, (И.З)

where

Via
2 ( ю - т й ) ' - с о 2

(ш — mQ)2

and it is assumed that p = Po exp { — r 2 /2a 2 } . Equation
(П.З) is the Schrodinger equation for a three-dimen-
sional isotropic oscillator with I - m — У2. Therefore
local solutions are possible when

- = m+n + i. (II. 4)

where

n = 0, 1 . . .

Solving the corresponding dispersion equation, we
obtain

nQ.YE — 1 — 2) (П.5)

It is obvious that щ has a maximum when E = 3
and m = 2. The rotation is always unstable, and the
most likely to wriggle out are two "tongues" on oppo-
site sides. The presence of an internal or external
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wall merely changes the distribution of the levels in
the effective potential well, as shown in Fig. 1.

unstable when the following inequality is satisfied

[>]•
(11.12)

Wall
FIG. 1

b) Rotation of a plasma under the influence of an
electric field in a cylindrical capacitor. If we apply
to the electrodes a potential difference <p0, then the
field between them is

As m — °°, it follows from (11.10) that ш has an
imaginary part if p' < 0. In this case the rotation of
a plasma of decreasing density is unstable. But, if
the dissipative processes (or the finite Larmor r a -
dius of the ion) limit the dimensions of the perturba-
tions (so that m cannot be very large), then the r o -
tation may prove to be stable, provided the speed of
rotation changes more rapidly than the density, as
indicated in the text (Sec. 10c).

г - V» (П.6) APPENDIX Ш
rln f

Л1

It is easy to see that in this case Д+ = 0. Multiplying
(II. 1) by ( r v r ) * and integrating by parts, we obtain
from the condition that the real part of the integral
vanish

| (rvr)' |2-
Ri I L

m2 Пв' I m

rdrq

Д о

dr
j (or/m— VQ [

(II. 7)

where it is assumed that ш = w r + ш^.
It follows from (II.7) that when p' < 0 the rotation

is unstable for all <PQ. This is due to the lack of a sta-
bilizing force. On the other hand, if the speed of rota-
tion (or the electric field in our example) varies for
some reason (say space charge) faster than r" 1, then
a stabilizing force appears. For simplicity we assume
that the plasma is contained in a thin gap between cylin-
drical walls (the gap width Л is much less than the
radius r ) . In this case the dispersion equation has the
form

l i i ' ( Q A J A t

k"

ln'Q

- ±
/ ' •

[ A , I n ' П lri'e

(П.8)

}, (Ы.9)

w h e r e r i s t h e a v e r a g e r a d i u s o f t h e p l a s m a l a y e r a n d

T h e r o t a t i o n i s u n s t a b l e i f t h e d e n s i t y f a l l s o f f a w a y

f r o m t h e a x i s s o m u c h f a s t e r t h a n t h e c h a n g e i n t h e

v e l o c i t y ( r e g a r d l e s s o f t h e s i g n ) , t h a t

0 \ I I O ' o ~T~ * of fji 1 /TT I i \
- T > 4 3 K F ( e } • ( I L 1 1 )

Ц p'/p ~ - V2 and Vo/Vo 1/L, then the rotation is

STABILITY OF A POSITIVE COLUMN38

We consider in greater detail the occurrence of
plasma instability in the positive column of a gas dis-
charge in a long tube, when a sufficiently large con-
stant magnetic field, parallel to the axis of the dis-
charge, is applied.

The initial equations of the problem are the equa-
tions for the balance of the number of ions nj and
electrons n e per unit volume of the plasma (where-
upon, by virtue of the quasi-neutrality, щ = n e = n)

dn_

_

(III. la)

(Ill.lb)

where a is the number of charged particles formed
per second by one electron.

The velocity of the ions Vj is determined by their
mobility bj and by the electric field E = — Vcp

In the presence of a strong longitudinal magnetic field
H, the electrons drift in a transverse direction with
velocity

vel =-^[h,F] (III.2a)

and, in addition, move along the magnetic field with
velocity

hF
, = & « • (III. 2b)

The total force F involved in these formulas and
acting on the electron is made up of an electrostatic
force eV<p and the gradient of the pressure of the
electron gas V ( n T e ) , referred to a single particle:

(III.3)

We consider the case of vanishingly small ion mo-
bility bj, when the diffusion to the walls and the rate
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of ionization tend to zero. We can drop then the an
terms in (III. 1) after first linearizing these equations.
In addition, we shall consider low-frequency oscilla-
tions in a plasma column, and therefore neglect the
Эп/at term in (Ill.lb). Then, denoting the equilibrium
densities and the potential of the plasma by N and Ф,
the state of electrons by V, and retaining the symbols
n, cp, and v, for the deviations of these quantities
from N, Ф, and V, we obtain by linearizing (III.l)

) = 0, V (Ш.4)

Let us consider a helical perturbation of the density
and potential in the form f ( r ) exp (— iwt + im0 + ikz)
(z is the coordinate along the discharge axis and в
the azimuth) and assume for simplicity | m | » 1.
Substituting the perturbation in (III.4) and using (III.2)
and (III.3), we obtain, accurate to terms ~ l/m, two
algebraic equations for n and cp:

An — B<jp = O, —i

where

п = eH/mc, and u is the stationary velocity of the
electrons along the discharge axis, while the prime
denotes differentiation with respect to the radius.

After obtaining the frequency w from (III. 5a), we
now determine the stability boundary of the plasma
column from the condition Ьп ш = 0

= Reira =—ReAB* = 0.

Substituting the values of A and В from (III.5b),
we obtain the following equation* for the wave vector к

(*г)<

Instability is produced by the perturbation with к
= k c r and m < 0 if the longitudinal electron velocity
exceeds u c r . The values of k c r and u c r can be ob-
tained from (III. 6) and from the derivative of (III. 6)
with respect to k c r . Considering that rN'/N ~ 1, we
obtain, apart from coefficients of order unity,

D ~Y\m I/QT. (III.7)

If we now express the longitudinal electron velocity
u in terms of the electric field E, we can obtain from
(III. 7) the connection between the critical longitudinal
electric field E c r and the magnetic field H c r at which
the positive column loses stability

aeEct
m | V/a еНс (III. 8)

*We note that if we neglect the last term of this formula (con-
sidering the case of very large От), the stability criterion (Ш.6)
coincides with the stability criterion in the presence of a plasma-
conductivity gradient (5b, 11).

a i s the rad ius of the column and A. i s a n u m e r i c a l
factor of o r d e r unity.

Instability o c c u r s in the exper iment if the magnet ic
field H exceeds the c r i t i c a l value H c r given by for-
m u l a (III.8).

APPENDIX IV

IONIC SOUND IN A NON-UNIFORM PLASMA

We der ive the d i s p e r s i o n equation for ionic sound
osci l la t ions in a non-uniform p l a s m a . We d i r e c t the
magnet ic field Ho along the z axis and a s s u m e that
the p l a s m a p r e s s u r e i s much l e s s than the magnet ic
p r e s s u r e , p 0 « HJj/8;r. Let the equi l ibr ium d i s t r i b u -
tion of the e l e c t r o n s and ions depend on the coordinate
к. For perturbations of the form exp i (kyy + k z z ) ,
the corrections to the distribution functions fo(v, x)
will have the following form (assuming that w « еЩ/
Me — the drift approximation)

Ho dx J
(IV. 1)

The electric field can be considered with sufficient de-
gree of accuracy to be potential, E = - grad <p. Then
the dispersion equation can be obtained from the con-
dition

div j ^ ikjz =& 0,

= 2 (IV. 2)

(The transverse components of the current density are
suppressed by the magnetic field and do not influence
the stability criterion. They must, however, be taken
into account when the space dependence of the pertur-
bation—the eigenfunction — is determined.)

The dispersion equation assumes the form

i.e.

v dvz « 4 » _ i ^ + _ i L L _ii± = o . (IV.3)

F o r M a x w e l l i a n i o n a n d e l e c t r o n d i s t r i b u t i o n f u n c t i o n s

w i t h x - d e p e n d e n t t e m p e r a t u r e , w e c a n r e a d i l y o b t a i n

f r o m (IV.3) t h e s i m p l e e x p r e s s i o n

C "''" ° ,0, (IV.4)ц>»—Щку-
eMHa

which holds when the following condition is satisfied

• >
«я,

'TIM dUlT°
(IV.5)

dx
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