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DURING the last few decades x~ray investigations of
the structure of strained metals found wide application,
and much progress was made in this field. Our litera-
ture, however, still has no systematic exposition of the
basic results. The well known survey by Greenough!
considers only papers published prior to 1951, and has
become rather obsolete by now. The survey papers
presented by Barrett and Guinier at the Detroit Con-~
ference? treat many problems quite briefly.

The present review is devoted essentially to distor-
tions in the structure of plastically deformed (cold
worked ) metals, which manifest themselves as changes
in the positions of x-ray diffraction lines and in the
forms, widths and integrated intensities of these lines.
However, since microstresses are frequently investi-
gated by methods originally developed for the study of
macrostresses produced by macroelastic loading, we
shall consider briefly these methods, too.

We do not discuss in this survey various methods
used to study the mosaic structure and its influence
on metal properties, since this problem was recently
considered by Hirsch.® In addition, we felt that we
could dispense with a detailed description of the har~
monic analysis of the profile of a diffraction line,
since this was done by Warren in his survey;* we
stopped only to discuss a few principal problems in
this procedure, which are of importance in practical
measurements.

1. SHIFT OF X-RAY DIFFRACTION LINES IN MAC-
ROELASTIC DEFORMATIONS

From the Bragg equation

2d sin® =4, (1.1)

where A is the wavelength, we see that a change in the
distance d between planes causes a change in the dif-
fraction angle ¢, i.e., a shift in the x-ray line. The
possible use of this fact was first pointed out by Ioffe
and Kirpicheva,® who proposed to determine the elastic
constants of single crystals by measuring the lattice
constant of a loaded sample.

Lester and Aborn® have found that in a stretched
thin steel specimen the distances between planes per-
pendicular to the specimen axis increase linearly with
increasing applied stress.

Aksenov! considered in general form the variation
of the shape of a diffraction ring for linear and volume

stresses, with altowance for the anisotropy of the crys-

tallites in a polycrystalline sample. However, in spite
of the valuable results obtained by Aksenov, the un-

wieldy mathematical formalism of the theory makes
practical use of the derived formulas extremely diffi-
cult.

Sachs and Weerts® used flat film and large diffrac-
tion angles. They showed that the stress oy in a loaded
duraluminum specimen as determined by x-ray diffrac-
tion is directly proportional to the stress oy, deter-
mined by the usual ‘‘mechanical’’ means. A deviation
from direct proportionality is observed only after the
macroscopic yield point is reached.

Wever and Moller? gave a formula for the sum of
the principal stresses

E di—d,

01+02=——p— it (1.2)
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where E and u are the known elastic constants, while
d; and d,y are the interplanar spacings for planes par-
allel to the specimen axis in the loaded and unloaded
states, respectively. Using a standard substance, the
authors obtained an accuracy of +6 kg/mm? for steel
specimens. They, and also the authors of references
10 and 11, noted the existence of a direct proportion-
ality between o, and oyy,.

Barrett and Gensamer!? described a method for
determining ¢y and o, separately from their known
directions and the known dy. Glocker and Osswald!®
devised a method for determining the magnitudes and
directions of oy and o, for known d,;. It was shown
later!! that angle photographs yield the magnitudes
and directions of o; and ¢, without knowledge of d,.

The most general formula for the normal stress
0y, acting in a direction ¢ parallel to the surface,
was given by Glocker, Hess, and Schaaber!®

FIG. 1. Measurement of stresses by the method of angle photo-
graphs; €y ¢ — relative change of the interplanar distances Ad/d
in the direction i, ¢ measured from the changes in the positions
of the diffraction lines.
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Here ¥ and ¢ are the polar distance and the azimuth
of the direction along which the deformation is meas-
ured (Fig. 1). Here

S, 0 %oy, 0

(1.4)
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Formula (1.4) makes it possible to determine Oy from
a single ‘‘oblique’’ photograph, for with ¥, # 0 a single
x-ray picture yields the values of the strains €y,

and €1, corresponding to the directions ¥, = 3 + 7
and Y; = Py~1n, where n = 90° —4.

Glocker’s group16 has developed an expedient pro-
cedure for the determination of Ogp, using photographs
with a standard substance with known parameter. If
the standard line is obtained at a smaller diffraction
angle than the specimen line, and a flat film at an angle
Yo = 45° is employed, the formula used is

Op=(A.—A,)C,_. (1.5)

Here Az are the distances from the standard line to
the specimen line on the side of the film where y = 45°
F 7, respectively, while C,_ is a constant that depends
on the wavelength, the parameter of the standard, and
the distance from the specimen to the film. The value
of oy + 0y is given by

—(01+0,)=(Ac—A;)C 0,

where A, is the distance from the standard line to the
specimen line in the unstressed state, A is the analo-
gous distance in the stressed state for ¥, = 0°, and
C)¢ is a constant analogous to C,_.
Fuks'? proposed the use of nomograms for photo-
graphs of steel specimens with a silver standard.
Vasil’ev and Vashchenko!® gave for back-reflection
pictures on a flat film a formula which does not call for
the knowledge of the parameter of the standard substance

)

Here I, and I, are the distances from the center of
the x-ray diffraction pattern to the sample line, corre-
sponding to two states of the specimen, 1 and 2; l;g
and l,g are the same distances for the standard sub-
stance. For angle pictures, in the case when it be-
comes necessary to determine ! separately for the
sides ¥y +n and Po—n, Vasil’ev!® proposed the use
of a reference located at a fixed distance from the
center of the x-ray diffraction picture.

To determine the magnitudes and directions of the
principal stresses it is necessary, according to Gisen,
Glocker, and Osswald,* to take angle pictures at con-
stant ¥, and at azimuths ¢, ¢ +90° and ¢ + @. An-
other procedure calls for pictures with azimuths ¢,
¢+a, and ¢ —a (see Fig. 1). The method of deter-
mining ¢y and o, from one oblique picture® has not
found practical application because of its low accu-

(1.6)
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racy (+6 kg/ mm?), whereas a procedure involving
three or four oblique pictures gives an accuracy?
+2 kg/mm?, and even® 0.5 kg/mm?.

It was assumed in the cited investigations that the
stress o) perpendicular to the surface is zero. Actu-
ally, however, the effective depth of penetration of the
customarily used x-rays is several hundredths of a
millimeter,**? so that 0| can no longer be assumed
as equal to zero at all times in the presence of large
strain gradients along the normal to the surface. This
question was first considered by Kurdyumov and his
co-workers,?® and Romberg?? gave formulas corre-
sponding to a tri-axial stressed state. Investigating
hardened steel cylinders in cobalt radiation, the au-
thors of reference 26 concluded that o) does not in-
fluence the positions of the x~-ray lines, and the line
shift due to going from long to short cylinders is
caused by the ‘‘edge effect.’”” An analysis of the ‘‘edge
effect’’ for the plane problem was given by Vasil’ev
and Tsobkallo.?® Schaaber,? using an aluminum alloy
and copper radiation, detected a noticeable influence
of the stress perpendicular to the surface on the posi-
tions of the x-ray lines.

In the presence of a tri-axial stressed state it is
necessary to employ the formula®®

_ E T T
14-p sin? Py—sin2 P ’
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Op— KO (1.8)
where o) is the stress perpendicular to the surface,
and k is a coefficient that takes into account the effect
of o) on the positions of the x-ray lines and depends
on the relation between the effective depth of penetra-
tion of the x-rays and the dimensions of the area within
which oy changes from zero to its maximum value,
corresponding to the deep layers of the specimen.

If the formulas used contain dy and the x-ray lines
of the specimen in the stressed state are broadened, it
becomes necessary to take into account the interaction
between the closely located components of the Ka doub-
let.18,30732 1f the line broadening is large, the shift of
the maximum of the x-ray line reaches one-third of the
distance between the components of the doublet, equiv-
alent in terms of stress to a systematic error!® on the
order of 50 kg/mm? for steel in cobalt radiation.

As noted earlier, a direct proportionality between
or and oy was observed even in the early investiga-
tions.®-1! However, as was shown by Moller and
Barbers, the calculation of oy from the mechanically-
measured elastic constants Ep and up, leads to a dif-
ference between o, and oy,. The authors have attrib-
uted this to the fact that in the tests for Ep, and up,
the specimen behaves like a quasi-isotropic specimen,
while the photograph and diffraction pattern are pro-
duced only by crystallites oriented in a definite manner,
so that to calculate op it is necessary to assume val-
ues of E, and u, corresponding to the reflecting
planes. Using ‘‘Armco’’ iron, they found that
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(%—)rmi.Z(%)m. (1.9)
Moller and Strunk®® compared the ratio Ey./Ey, ob-
tained for steel in cobalt Ka radiation with the values
obtained by Voigt® and found no agreement between the
experimental and the calculated data.

Rovinskii®®3? determined in a series of investiga-
tions the ratio oy /0y, assuming it to be equal to the
ratio of the experimentally measured strains €, /ep,.
For steel with 0.23 percent carbon this ratio, in cobalt
Ko radiation, was found to be 0.40 —1.64 for coarse
and fine grain states respectively. He assumed that
the difference between the x-ray elastic characteris-
tics and the mechanical ones may be due not only to
anisotropy, but also to inhomogeneity of the structure,
caused by the presence of inclusions with elastic con-
stants other than that of the main substance, and by the
presence of intercrystallite layers, as well as to the
influence of the mosaic structure, which prevents the
transmission of external forces to the lattice.

The difference between Ey or uy and Ep or ug
can be investigated in greater detail by determining
not the ratio u/E, but each of the constants separately,
which can be done by angle pictures with great accu-
racy.%®

According to Voigt,3 the strain in each grain of a
polycrystalline material is the same and is equal to
the macroscopic strain, while the stresses in the dif-
ferent grains differ from each other. The average
stress, equal to the applied stress op,, is calculated
by summing over the differently-oriented grains, and
then the values of the elastic constants E. and p. are
independent of the indices (hkl) of the reflecting plane.
According to Reuss,® to the contrary, the stresses act-
ing on all the grains are assumed to be the same and
equal to oy, while the strains in each grain depend
on the grain orientation. Then E, and u, will depend
on the (hkl) indices.

Moller and Martin®® compared the experimentally
obtained values of Egjy and pug3yy of steel specimens
with the values of E and u calculated after Voigt and
Reuss, and found no agreement between the experimen-
tal and calculated values. The authors recommend that
the values of Ey and py determined directly from ex-
periment be used for x-ray measurements. Neerfeld*!
found, for steel samples and cobalt and chromium Ko
radiation, that the use of Ey and pp in the form

— E8+E0
r 2 ’
_Petho
2

(1.10)

(1.11)

T

vields values that agree with experiment. A similar
conclusion was reached in references 42 —44. The
values of Ey and ppy were calculated by Neerfeld’s
method for a series of materials.” Hauk and Hummel,*®
and also Moller and Brasse,* propose for Ey and pup

of an iron polycrystalline specimen the formulas

D. M. VASIL’EV and B. I.

SMIRNOV
2B, E,
E=—7, (1.12)
_ etlg (1.13)
T 3 -

Apparently the true value of E, lies between E. and
Eg and the true value of u, between ue and py. An
establishment of an exact relation between the Voigt
and Reuss values of the elastic constants and the ac-
tual experimental values is of great importance to the
clarification of the character of the distribution of the
stresses and strains in an elastically-stressed poly-
crystalline specimen. If the emphasis is on the purely
practical problem of determining the macroscopic
stresses with the aid of x-rays, then the use of the
elastic constants calculated, say, from the simplest
relations (1.10) and (1.11) produces a relative error
in the modulusof elasticity not morethan +(E¢ —Eg)/
(E¢ + Eg), which is quite satisfactory for many prac-
tical purposes.

2. SHIFT OF X-RAY DIFFRACTION LINES IN THE
REGION OF MACROPLASTIC DEFORMATIONS

The experiments described in the preceding section
have shown that proportionality between the macro~
scopic stress oy, and the stress o, determined by
X-ray means is retained in the macroelastic region.

If the elastic constants Ej, and p are suitably chosen,
the following relation will hold

O = 0p. (2.1)
Since the plastic shear deformation should not change,
on the average, the parameters of the elementary cell
inside the individual crystal layers separated by the
glide planes, either direct proportionality or the ful -
fillment of Eq. (2.1) are expected also in the macro-
plastic region.
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FIG. 2. Relation between o, and oy, obtained in bending of a
steel specimen.*! Lines 1 and 2 are shifted vertically by 20 and
40 kg/mm*; measurements 1, 2, and 3 correspond to different por-
tions of the specimen,
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However, the very first measurements of the
stresses in the macroplastic region have disclosed a
deviation from relation (2.1) (Fig. 2), and in all cases
the inequality o, < gy, was obtained on going through
the macroscopic yield point og. Such results were ob-
tained in bending of duraluminum?® and steel speci-
mens.!1,% The authors have attributed the violation
of relation (2.1) to the start of plastic deformation,
without discussing the mechanism of the phenomenon
itself.

Bollenrath, Hauk, and Osswald®’ measured the
stresses o, produced by stretching steel specimens
under load, and the residual stresses after macro-
unloading. They established that when oy, = og the
value of o, decreases sharply and continues to de-
crease with further increase in the degree of plastic
deformation, in spite of the increase in op,. After
macro-~unloading, residual axial compression stresses
were observed on the surface of the specimen. Succes-
sive etching of layers on the unloaded specimen have
shown that axial and transverse tension stresses ap-
pear in the deeper layers of the specimen, and the
outer zone of the specimen, which is under the influence
of the residual compression stresses, extends deep
enough to make its area approximately one-half the
area of the cross section of the specimen. The authors
attribute their results to the fact that the crystallites
located on the surface of the specimen have more de-
grees of freedom in plastic deformation and therefore
have less resistance to deformation than those located
deeper. These outer layers are underloaded and the
internal ones overloaded compared with the macro-
scopic stress om, so that after macro-unloading
axial compression stresses occur in the outer laters,
while axial tension forces appear in the internal layers.
In a later work,® a decrease in o, on passing through
the yield point was observed also under compression.

It is interesting to note that even Heyn*® observed
in a stretched steel specimen a pattern of residual
strains, analogous to that obtained in reference 47, but
explained its origin in a different manner. He assumed
that a thin outer layer of the specimen, ~ 0.1 mm thick,
plays the role of a “‘rigid shell’’ through which the
forces are transmitted from the heads to the remain~
ing part of the specimen. This “‘rigid shell”’ is over-
loaded when tension is applied, and its strain will be
greater than average, so that a compressive stress
results after unloading.

Glocker and Hasenmeier®® observed that in cobalt
Ky radiation the deviation of o} from oy, is observed
in steel only after the yield point is reached, whereas
if the softer chromium K¢ radiation is used, this de-
viation occurs already at (0.5 —0.7)0g. The authors
have assumed that their results are a confirmation of
the existence of a weakened surface layer, extending
to a depth commensurate with the effective depth of
penetration of the chromium Ka radiation, i.e., on
the order of 0.01 mm. In the mentioned references
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47, 48, and 50, a procedure of perpendicular photo-
graphs was used from the side surface of the speci-
men under load, and it was assumed that the strains
measured with the aid of the x-rays can be converted
into stresses o, by means of formula (1.2).

Wood proposed at first a different explanation for
this problem. He observed®® a residual change in the
parameter in rolled copper specimens exposed at right
angles, and related the change with the absorption of en-
ergy during deformation. Later on Wood observed
analogous changes on rolled specimens of a-brass,%
silver, copper, nickel, aluminum, and molybdenum.5?
The results with a-brass were attributed to the fact
that the lattice of this substance is no longer cubic
after it is rolled, and the explanation for other mate-
rials was that the rolling produces a ‘‘broadening’’
of the lattice, which leads to a reduction in its sta-
bility. These investigations were objected to by Ro-
vinskii,54 who showed that no change in the residual
parameter is observed on cold-hardened copper pow-
ders, so that the described effects could be due to the
influence of the residual macrostresses produced
during rolling.

Wood and Smith® investigated the changes in the
interplanar distances, for the (310) planes of an iron
specimen in simple tension. The relative change in
interplanar distance, Ad/d = e%, between planes al-
most parallel to the lateral surface of the specimen
(in right-angle photography), was plotted as a func-
tion of the applied stress oy, (Fig. 3). The depend-
ence Oy, =@ €k) was called by the author the ‘‘strain
diagram of the atomic lattice.”” In subsequent investi-~
gations Wood and Smith obtained similar relationships

for copper,®® iron,’" aluminum,®® and soft steel.’® The
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FIG. 3. Diagram®® of the deformation oy = cp(E,-"‘) obtained

with Co Ky radiation along the 310 direction when tension is ap-
plied to a still specimen. The unloading from the points L,, L,,...
takes place along straight lines parallel to the elastic portion of
the load curve. The points M, M,,... correspond to the residual
microde-formation observed in the specimen after macro-unloading.
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dependence oy, = ¢ (€f) had the same character in all
cases (Fig. 3). The authors have attributed® the ob-
served phenomena to the fact that the lattice can expe-
rience not only the usual elastic strain, but also resid-
ual strain, which appears when opy > 0g, and which has
a sign opposite to the sign of the macroscopic deforma-
tion, in which the ‘‘reaction’’ of the lattice to the action
of the external forces manifests itself.

Smith and Wood,®® using specimens of soft steel,
have investigated the dependence of Ad/d on the angle
between the axis of the specimen and the normal to the
(310) plane. This dependence was found to correspond
to the presence of residual axial compressive strains
in the unloaded specimen. Thus, the authors have ulti-
mately reached the same conclusion as other investi-
gators,*’ that residual axial compressive strains are
produced in a sample after cold-work stretching. Smith
and Wood, however, believe these stresses to be due
not to the influence of the weakened layer, but to the
difference in resistance to deformation between the
boundary regions and the internal parts of the grains.
In plastic deformation the boundary regions have a
higher elastic limit and are subject to higher stresses
than the internal parts of the grains. After macro-
unloading, the boundary regions are subjected to re-
sidual strains of the same sign as the macrostresses
applied to the specimen, while the internal parts of the
grains are under the influence of residual strains of
opposite sign. The material of the boundaries is so
highly distorted that it does not participate in the cre-
ation of x-ray diffraction lines corresponding to the
coherent part of the scattering. Obviously, these re-
sidual strains are microstrains by nature.

Wood®! again investigated the dependence oy
=g (e%) using specimens of soft steel in cobalt and
chromium Ko radiation, and observed after prior
stretching both axial and transverse compression
microstresses. He found that in cobalt Ko radiation
the x-ray yield point ‘‘coincides’’ with og, whereas
in chromium K¢ radiation it is even higher than og,
thus contradicting reference 50.

Greenough® offered a different treatment of the
residual change in interplanar spacing observed in
simple stretching. He proposed that the changes are
due to usual residual Héyn-Masing microstresses,
i.e., microstresses due to the difference in resistance
to plastic deformation between individual grains of a
polycrystalline specimen (residual stresses of the
second kind). Greenough pointed out that the diffrac-
tion of x-rays is selective. Actually, the diffraction
pattern is produced every time not by all the crystal-
lites in the irradiated volume, but only by those whose
orientation satisfies the diffraction equation. As a re-
sult, lines with different hk! indices, corresponding
to differently oriented crystallites under microstresses
of opposite signs can shift in different directions. It
becomes necessary in practice to work with different
radiations in order to obtain lines with different hkl
in a specified range of diffraction angles.

Consequently, if Wood’s point of view®? is correct,

x-ray lines with different hkl! should give Ad/d of
only one sign; according to Greenough, however, some
of the lines yield Ad/d > 0 and others Ad/d < 0.
Greenough calculated the relative change in the dis-
tances between planes parallel to the specimen axis,
which should be observed in metals with face-centered
cubic lattice after cold-work stretching. He found that
the lines 311, 400, 420, and 511/333 should yield Ad/d
> 0, while the lines 222, 331, and 422 should give Ad/d
< 0. He suggested that his experimental results®? on
aluminum, copper, and nickel are in satisfactory agree-
ment with the calculations.

Thus, if we introduce the concept of weak A-domains,
which are under stresses lower than the macroscopic
stresses oy, in plastic deformation, and strong B-
domains, on which stresses greater than oy, act dur-
ing deformation, then the hypotheses considered above
can be briefly formulated in the following manner:

1) The hypothesis of the weakened surface layer,*
where the A-domains are the thin surface layer of the
specimen and the B-domains are the internal zone of
the specimen. 2) The Heyn-Ma.sing62 microstress hy-
pothesis, where the A- and B-domains are separate
grains of a polycrystalline specimen, which have ac-
quired through different orientation less and more re-
sistance to plastic deformation, respectively. 3) The
hypothesis of near-boundary domains and internal
parts of the grains.60 The A-domains are matrix re-
gions that participate in the creation of the diffraction
pattern of coherent scattering of x-rays, while the B~
domains are near-boundary zones that do not partici-
pate in the coherent scattering.

1. Generally speaking, the ‘‘weakened’’ surface
layer can be due to the following factors: a) unac-
counted for tilt of the specimen during deformation;

b) uneven strength over the section of the specimen,
due to technological factors (decarburization of the
steel during heat treatment, different concentration

of impurities over the cross section, different grain
size over the cross section, etc.); c) effect of the
etchant (creation of residual strains due to etching

or the creation of a microrelief); d) concentration

of stresses on the surface, due to the microrelief
(scratches produced by a cutter, by grinding, slag
inclusions, etc.); e) easier deformability of the grains
on the surface (‘‘true’’ weakness of the surface layer).

Production of residual strains by the etchant has
been reported by Lihl,% who observed them with x-
rays in steel specimens subject to chemical and elec-
trolytic etching by various reagents. However, in a
later study by Hauk, Moller, and Brasse,® who inves-
tigated steel specimens under widely varying etching
and heat-treatment conditions, the x-ray method did
not disclose any residual strains after etching, Only
in the case of a very deep microrelief with irregulari-
ties on the order of 3 x 10”2 mm was a reduction in
the stresses observed in a sample etched under load.
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In most investigations in which the existence of a
weakened surface layer was touched upon to a lesser
or greater degree it is impossible to demarcate
sharply the possible influence of the remaining factors.
Thus, Bollenrath, Hauk, and Osswald?’ worked with
steel containing 0.11 percent carbon, and the speci-
mens were annealed in a neutral atmosphere and
etched in nitric acid before testing. The same mate-
rial was used in references 48 and 50, but the authors
of reference 47 estimated the depth of the weakened
layer to be at least 1 mm, whereas in reference 50 it
is estimated to be 0.01 mm. It should be noted that the
authors of reference 48 observed that recrystallization
of deformed specimens leaves in the cross section
two concentric zones of sharply differing grain sizes.
It is possible“ that the steel used in references 47, 48,
and 50 had macroinhomogeneities over the cross sec~
tion from the very beginning.

Wood annealed the steel specimens in vacuum be-
fore testing. Finch® annealed similar specimens in
either vacuum or an inert medium, with subsequent
etching, Hauk® annealed steel specimens from iron
filings and etched them later in hydrochloric and nitric
acids; in no case were changes in the x-ray picture ob-
served after deformed specimens were etched. These
results contradict the data of Greenough,s" who ob-
served that steel specimens stretched by 11 percent
and previously annealed in vacuum exhibited residual
compression strains in a thin surface layer approxi-
mately 0.2 mm deep; the observations were made by
electrolytic removal of the layers and radiography
in cobalt, manganese, and chromium Ka radiation.

On the basis of the simplest model of the weakened
surface layer,48 one would expect the plastic deforma-
tion under load to begin in this layer before the macro-
scopic yield point og is reached. Such a phenomenon
was observed only in the cited reference 50. In all the
remaining investigations of the change in the inter-
planar spacing under tension??»80,65,68,73,74,90 54 (i qq
found that the ‘‘x-ray yield point’’ of the surface layer
coincides with og. An analogous result was obtained
by Glocker and Macherauch®® in bending and torsion.
Hendus and Wagner*? stretched specimens of steel with
0.43% carbon and observed, at stresses amounting to
approximately one-half the macroscopic yield point,

a jump in the x-ray deformation, with a maximum for
the CrKa radiation, and with smaller values in cobalt
and molybdenum Ko« radiation. No deviation from
linearity was observed in steels containing from 0.16
to 0.76% carbon. The x-ray yield point for all steels
was quite close to the macroscopic yield point og.

A systematic study of the causes of residual vari-
ation in the interplanar distances after macro-homo-
geneous plastic deformation was made by Rovinskii
and his co-workers. Having observed’® no residual
changes of the parameter inpowders of ‘“‘Armco’’ iron,
copper, brass, and bronze, they have assumed that
the changes in the parameter observed in solid speci-
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mens are the consequence of polycrystalline structure
of the specimen. Rovinskii further verified™ the hy-
pothesis of the weakened layer, using plastically de-
formed steel and aluminum samples from which the
core was removed. He concluded that no weakened
surface layer exists, and that the effects disclosed

in certain investigations were due to technological
factors which play a role in the preparation and heat
treatment of the specimens. He investigated in par-
ticular™ the behavior of surface layers of steel speci-
mens in tension, and showed that no premature flow
of these layers is observed. A similar conclusion
was obtained also in reference 73. In reference 74 the
effect of “‘slipping’’ was observed on some specimens,
i.e., premature flow of the surface layer, depending to
a great degree on the state of the surface. However,
this effect is too small to influence the change in the
interplanar distances. The authors believe that the
particular properties of the surface layer are the con-
sequence of mechanical working and heat treatment of
the specimen.

The presence of compressive macrostresses in a
thin surface layer was repeatedly investigated by known
mechanical methods wherein etching of the layers
changed the deflection of a flat specimen. Davidenkov
and Timofeeva' used aluminum specimens, Glikman
and Stepanov'® steel ones, and neither observed a weak-
ened layer in tension. In reference 77, where steel
specimens were annealed under a layer of cast-iron
filings prior to stretching and etched to depths up to
0.2 mm, residual compression stresses were observed
at low degrees of plastic deformation, which vanished
at strains on the order of several percent. The authors
attribute the residual stresses not only to the ‘‘true’’
weakness of the surface layers, but also to the possible
influence of etching.

Davidenkov, Terminasov, and .Assur’® have found in
aluminum specimens residual compression stresses
after tension, and x-ray and mechanical methods gave
approximately similar results. Later on Davidenkov'®
concluded that in reference 78 the principal role in the
creation of the ‘‘weakened’’ layer was played by the
deep etching of the specimens prior to plastic defor-
mation. A result analogous to that of reference 78 was
obtained in reference 80. In reference 81 the mechan-
ical method disclosed no residual strains in a surface
layer of steel specimens, stretched to small degrees
of plastic deformation.

2. The correctness of the Greenough hypothesis®?
was verified in many investigations. Thus, Bateman®?
obtained for specimens of aluminum of different de-
grees of purity data which did not coincide with those
predicted by the Greenough hypothesis. Kappler and
Reimer®® investigated the dependence of Ad/d on the
angle B between the normal to the plane (hkl) and
the axis of steel specimens, and reached the conclu-
sion that the experimental curve agrees satisfactorily
with the curve calculated after Greenough, provided
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FIG. 4. Angular dependence of the relative change in the param-
eter, determined from the shift of the 400 line, obtained in cobalt
Ko radiation with a copper specimen stretched beforehand by 10%.°
iy — angle between normal to the side surface of the specimen and
the normal to the (400) plane, 1 — line corresponding to the pres-
ence of axial microstress oy;; 2 — experimental points; 3 — curve
calculated after Greenough,

the ordinates of the theoretical curves are increased
by a factor of 7 or 8.

The angular dependence of Ad/d was also investi-
gated by Hauk.%:8 He found that the principal effect
in steels and in aluminum alloys is due to the pres-
ence of the microstresses that result from the pres-
ence of the ‘‘rigid’’ phases Fe;C and Al,Cu. Super-
imposed on this effect is, in some specimens, a sec-
ondary effect, predicted by the Greenough hypothesis.
Hauk cannot explain the reason for the angular de-
pendence of Ad/d in pure aluminum.

The Greenough hypothesis was also tested by
Vasil’ev and Erashev.® They obtained a dependence
of Ad/d on the angle between the specimen axis and
the (hk!) plane and reached the conclusion that the
Greenough hypothesis cannot be confirmed. Since the
experiments were made with small specimens cut
from previously deformed large specimens, the angu-
lar dependence of Ad/d could not be due to the influ-
ence of surface effects. Vasil’ev® obtained the angu-
lar dependence of Ad/d in compressed steel speci-
mens using Ka radiation of cobalt, iron, chromium,
and titanium. In no case was the Greenough hypothe-
sis confirmed. Likewise, no confirmation was obtained
of the Greenough hypothesis in references 89, 92, 95,
96, and 98. It should be noted that the effects observed
in these investigations were approximately one order
of magnitude greater than predicted by Greenough’s
hypothesis (Fig. 4).

3. We proceed now to discuss the third hypothesis.
Rovinskii,? analyzing the results of his own work as
well as those obtained by others, concluded that this
hypothesis explains the observed phenomena correctly.
He assumed that in addition to ‘‘strong’’ grain bound-
aries, an analogous role is played by regions located
near the slip planes. The microstresses produced by

60

curves for weak A-domains and strong B-domains, OC — line corre-~
sponding to the condition oy = o, OA' and OB’ — curves of axial
average structural stresses og; for A- and B-domains, OA” and
OB" — curves of transverse average structural stresses oqg¢,

OC' = cutve for 0m. The shaded areas represent the zones of
dispetsion of structural stresses Aogeg. After macro-unloading
there remain in the specimen average axial and transverse micro-

stresses o0q; and o2i, tepresented respectively by the segments
a'c’, b'c’, a'c’, and b“c’, and determined from the residual dise

placement of the x-ray lines by formula (1.8). The dispetsion of
the microstresses Ao; is equal to the dispersion of the struc-
tural stresses Acg, and is determined from the x-ray line broaden-
ing component 8¢ by means of formulas (3.1) and (3.41).

the mechanism proposed by Smith and Wood®® were
called by Rovinskii ‘‘oriented’’ microstresses. He
assumes that the ‘‘oriented’’ microstresses first in-
crease with increasing degree of plastic deformation
and that their growth then slows down, since they grad-
ually are converted into the usual ‘‘disoriented’’ mi-
crostresses.

Hauk®® in an analysis of the dependence of Ad/d on
the angle between the normal to the (hk!) plane and
the normal to the lateral surface of the specimen, con-
cluded that the experimental results for metals con-
taining ‘‘rigid’’ phases are explained by the third hy-
pothesis, the only difference being that the ‘‘strong”’
domains are not the near-boundary domains, but the
‘“‘rigid”’ phases. Vasil’ev and Erashev® also believed
the third hypothesis to be correct. They concluded
that after simple tension there is produced in the spe-
cimen a field of microstresses with components oyj
and Oy = 03j. Vasil’ev?’ reached the same conclusion
in an analysis of the changes in the dimensions of
plastically-deformed specimens during the process
of heating. Vacher et al.%:8 considered the third hy-
pothesis to be correct. They also observed the pres-
ence of the components oij, 03j, and o3j. In addition,
it was found that transverse compressive stresses,
amounting to 13 percent of the axial macrostresses,?®
arise in a stretched specimen when the yield point is
passed.

Vasil’ev used angle photographs of small plane
specimens cut out from plastically deformed larger
specimens. He used formulas analogous to (1.8) to

91,92
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calculate the microstresses. It was found that the
microstress perpendicular to the surface exerts a
noticeable influence on the position of the x-ray line,
An analysis of the possible relations between the
‘‘oriented’’ microstresses oy, determined from the
shift of the x-ray lines, and the ‘‘disoriented’’ micro-
stresses, determined from the broadening of the lines,
has shown that the corresponding line broadening com-
ponent Bg (see below) is due to oscillations (disper-
sion, Acj) of the ‘‘oriented”’ stresses about a certain
average value oj, which is not equal to zero. The
author believes that the terms ‘‘oriented’’ and ‘‘dis-
oriented’’ microstresses are meaningless, and that
the total microstress is equal to the sum of the
average microstress oj and the dispersion Acj

(2.2)

The author assumes that in plastic deformations the

A and B regions of the specimen are acted upon by
“structural’’ stresses ogt = oy (Fig. 5), and that
after the external load is removed this leads to the
appearance of residual microstresses ¢j. The con-
nection between o, Ogt, 0j, and Acj, and the disper-
sion of the ‘‘structural’’ stresses Aogt is given by the
relations

g, =0, 1 Ao,.

0, =0y, + Aoy, =0, +0; + Ac; (2.3)

Ag,, = Ag;. (2.4)

Experiments with previously stretched and compressed
specimens of copper, nickel, aluminum, iron, and mo-
lybdenum have shown that the residual microstress
acting on the matrix region is, after stretching,

ok < o4 <0, (2.5)
and after compression
o < of <O0. (2.6)

The ‘‘strong’’ B-domains (near-boundary regions)
are acted upon, both after tension and after compres-
sion, by tensile microstresses, which exceed oy, con-
siderably, so that the ‘‘structural” stresses E]sat acting
on the B~-domain during plastic deformation will be ten-
sile stresses in both cases. This is confirmed in refer-
ences 92 and 93, in which ¢; and og¢ have been deter-
mined for cementite in high-carbon steel.

Macherauch and his co-workers® % obtained for
aluminum, aluminum alloy, and copper the same angu-
lar dependences of Ad/d as obtained in references 83,
91, and 92. While these later investigations have con-
firmed the third hypothesis, and the notion of the de-
cisive role of the surface layer was refuted by etching
or by cutting out small specimens,3%% the hypothesis
of the weakened layer was again advanced in references
97 and 98, although no test of its correctness (by re-
moval of the outer layers of the specimen) was made.
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The notion of the ‘‘oriented’’ microstresses®%:86:91,92
was used also to analyze the following: the change in
the dimensions of plastically-deformed specimens by
heating,” the relaxation of aluminum and copper speci-
mens,¥ the Bauschinger effect, 100,101 4 procedure for a
separate determination of the macro- and micro-
stresses,19 the deformation curve of soft steel,? the
mechanism of deformation of large-crystal speci-
mens,102 and the role of microstresses in the harden-
ing of metals.1®

An analysis of the investigations reviewed in the
present section leads to the following conclusions. The
hypothesis of ‘‘weakened’’ layer?’ does not explain all
the observed phenomena. In many cases there is either
no weakened layer or its influence is negligibly small.™
Experiments®% in which small samples have been cut
out show that changes in the interplanar distances pro-
duce a volume effect, The observed ‘‘surface’’ effects
are apparently due to technological factors.”s™ The
Greenough hypothesis®? yields values of Ad/d which
are one order of magnitude smaller than those ob-
served; in the best case this effect is superimposed®
on the principal dependence which is well explained by
the Wood hypothesis.so Since the values of Ad/d (after
Greenough) hardly exceed the experimental errors, it
is impossible to decide at the present time whether the
effect described by it exists. The hypothesis of weak
regions in the matrix and strong near-boundary re-
gions60 explains the observed phenomena satisfactorily.

3. INVESTIGATION OF THE BROADENING OF X-RAY
LINES

3.1, Possible Causes of Smearing of the Lines

Macroelastic deformation of a polycrystalline spe-
cimen should cause an insignificant reversible broad-
ening of x-ray lines, if the elastic properties of the
individual crystallites, which make up the specimen,
are anisotropic. This circumstance was pointed out
by Aksenovi® and experimentally confirmed by Lihl, 113
Schaal, % Aksenov and Moshchanskii,!% and Brasse and
Moller. 107

X-ray lines are broadened much more by plastic de~
formation. In the early work on this subject, the effect
of broadening was wholly attributed to the development
of microdistortions in the structure, characterized by
changes in the interplanar spacing Ad/d, and to the
occurrence of microstresses (residual stresses of
the second kind!""1!), corresponding to these micro-
distortions.1%-11% The relative change in the inter-
planar distances Ad/d was determined from the for-
mula

B, =4 tg9, (3.1)*

*tg = tan.
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where Bg is the line broadening due to the plastic de-
formation.,

The corresponding microstresses o; were calcu-
lated either from the Secito formula,'!* derived under
the assumption of a linear stressed state:

o, =E%, (3.2)

or from the Cagliotti-Sachs formula,! obtained for
the case of all-sided tension (compression):

(3.3)

where x is the compressibility.

On the other hand, Selyakov?? and Scherrer!?! have
shown that if the dimension of the particle (regions of
coherent scattering) in a direction perpendicular to
the reflecting plane is D, then the width of the x-ray
line is determined by the formula

By = prong - (3.4)

In contradiction to the microstress hypothesis,
Woo0d125~127 has proposed that the line broadening in
plastic deformation is due only to the fragmentation
of the regions of coherent scattering (blocks), and
that to each form of plastic treatment corresponds
a minimum block dimension; when this is reached an
increase in plastic deformation causes no further
fragmentation, since recrystallization takes place
already during the process of plastic deformation.!?

A criterion of the degree of smearing of the line in
these investigations was the presence of a linear de-
pendence of 8 on tan ¢ [Eq. (3.1)] or on A sec ¢

[Eq. (3.4)]. Thus, Smith and Stickley'?® have estab-
lished that for tungsten 3 depends linearly on tan ¢,
whereas the dependence of B on A sec 4 gives a nega-
tive value of D as A sec 4 — 0. In contrast to this, a

6

D. M. VASIL’EV and B. I.

SMIRNOV

10

pls
as \

FIG. 6. Curves for cor-

5
\
. a6
recting the widths of x-ray 2\\ 3 \\

//

lines for instrument broad- !

ening, The curve marking a4

is explained in Table 1. \\
a2z N

[ a2 o4 a6 08 1
a/8

dependence of B on A in accordance with Eq. (3.4) was
observed in references 125 and 127. This method of
analyzing the causes of broadening of the x-ray lines
was criticized by Williamson and Hall,!?? who have
shown that linearity of g8 with tan ¢ or A sec 4 can-
not serve in practice as a criterion for the nature of
the line broadening.

3.2. Correction for Geometrical Conditions of the
Photography

An important source of reliable information on the
causes of the broadening of x-ray lines is the method
of finding the ‘‘physical’’ width, i.e., the method of
eliminating from the total broadening the part due to
instrumental causes.

At present the most widely used correction pro-
cedure is that proposed by Johnson.!3® He showed that
if the intensity distribution in the experimental curve
is described by the function h (x), the integrated width
of this line is B, and the corresponding functions and
integrated widths for the ‘‘instrumental’’ curve and
for the ‘‘physical’’ curve, due only to the imperfec-
tions in the crystal, are g(x), b and f(x), B respec-
tively, then, apart from a constant factor,

Table I. Connection between B, b, and 8 for various cases

fOoy=(1-+kox®)7

Form of functions g(x), Connection between ]Cufve on
Authors £(x), and h(x) B, b, and 8 Fig. 6
Sherrer B=b-4B 1
Wood and Rachinger'” (14-k2x2)"1 B=b+p 1
Warren and Biscoe'?* exp (— k2x?) B2= b2 p2 5
130 _ b
Jones a) g(x)=(1+x372, .g:Zp, E:kp, 2
3 __ b2
F )= (1 k2x2)1; pz%a_k_kj")‘
g(x) determined
‘from experiments

b)  fx)=(1-4 k2, curves %=f (%) !
€)  f(x)=-exp(—Ak2x?) *

i
2 (B— 2 pny2 _

Taylor'® c pr=(B—6) (B — 6%

1
Schoening, Niekerk A (1+&x? B b\ .
and Haul'* ’ ) — sz, curve 5=/ (F J ”
W= TRy
Lysak' g ()= 14k},

curve %:[(%) b4




METHODS OF INVESTIGATING COLD WORKED METALS

3]

h@=\ W g@—yay

-0

(3.5)

and
B=— %

[ /(o) (x) dz (3.6)
The standard, i.e., the specimen from which the g
curve is obtained, is usually an annealed specimen
made of the investigated material.

Thus, to determine the value of g it is necessary
to know the form of f(x) and g(x). The simplest but
not always sufficiently reliable method of finding g
from known B and b with the aid of relations (3.6) is
to pick analytic functions for f(x) and g(x). The
connection between B, b, and g for different functions
h(x), g(x), and f(x), chosen by various authors, is
listed in Table I, and it is sometimes more convenient
to determine this connection graphically from the re-
lation /B = f(b/B), plotted in Fig. 6. It must be
borne in mind that one must substitute in (3.6) the
values obtained for B and b already after separating
the K doublets by one of the known methods,30-32,130,131

A shortcoming of the Jones comparison method!3?
is that it is impossible to pick accurately analytic func-
tions that describe the real profile of the x-ray line.
The choice of various functions can change the results
appreciably, and to a greater extent for the forward
lines (i.e., large b/B). For example, when b/B = 0.8
the values of 8/B for curves 1 and 5 (Fig. 6) differ by
a factor of three, but for b/B = 0.2 the difference is
on the order of 20 percent. An analysis of the errors
due to the use of the Jones method is given in refer-
ences 132 and 133.

Kochendorfer!® (see also reference 134) developed
an absolute method of accounting for instrumental er-
rors, in which allowance is made for the size of the
collimator diaphragm, the photometer slit, the Ko
doublet, the ‘‘natural width’’ of the spectral lines, the
dimension and shape of the specimen, and the absorp-
tion in the specimen. An absolute method of account-
ing for instrumental errors was also proposed by
Bertaut. 135

The accuracy of finding the f-curve can be appre-
ciably increased by harmonic analysis. From the the-
ory of Fourier transformations it is known3® that if
F(t) and G(t) are the transforms of the functions
f(x) and g(x), i.e., the coefficients of the Fourier
series

f(z)= D F(¢) exp( _2mz%), }
- / (8.7)

g(z)= D, G(t)exp< ~—2m’t%>, Jl

where {(—a/2, a/2)] is the expaunsion interval, then the

transform H(t) of the function h(x) is F (t) G(t),

i.e.,
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H(t)=F(t) G(t). (3.8)

To find the coefficients H(t) and G(t), Schulll®” ap-
proximated the profiles of the x-ray lines by means
of the function

g8 (z) = exp ( — m2x?), 3.9)

(3.10)

and calculated analytically the coefficients F (t). This
method, however, has the same shortcoming, the need
of picking the analytic functions.

Stokes!® proposed a numerical method, free of
these shortcomings, wherein the coefficients H(t)
and G (t), and consequently also F (t), are deter-
mined from the experimental h and g curves with
the aid of the Lipson-Bever strips. In the Soviet lit-
erature, this method was described in detail in the
book by Pines.!%®

h{z)=exp (— p2z?) + texp( — q*z?)

3.3. Separate Determination of the Broadening Effects

Relations (3.5) and (3.6) can also be readily used
for a separate determination of the smearing effects
caused by microstresses and fragmentation of the
blocks. Actually, if we denote by s (x) and p (x) the
functions that describe the distribution of the intensity
in the components of the f curve, due respectively to
the influence of microstresses and block fragmentation
and the corresponding integral widths by By and Bp»
then

fay={ s@rle—ydy (3.11)

and
ﬁ — ﬁs ﬁp .

g s) p(¥)dy (3.12)

In order to find in explicit form the connection be-
tween 8, By, and Bp from Eq. (3.12), it is necessary
to specify the form of the s and p functions. How-
ever, compared with the solution of the analogous
problem of finding the connection between B, b, and
B, additional difficulties arise here, connected with
the fact that it is usually impossible to obtain ‘‘pure’’
s and p curves in an investigation of plastic defor-
mation, since the fragmentation of the regions of co-
herent scattering is accompanied by the development
of microstresses. At the same time, by specifying
the form of the s and p functions in some manner,
we predetermine to a certain degree the result of the
separation.

Lysak!*’ recommends that the s and p functions
be found for specially prepared specimens, which give
‘‘pure’’ effects of one kind only, under the assumption
that the form of the s- and p-curves will not change
in a specimen where both causes of broadening are
simultaneously active.
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Kochendorfer®13 yged instead of the integral width
the half-width of the line, b1/2: and picked the s func-
tion in the form of a rectangle and the p function in the
form of a triangle, obtaining the relation

b1/2 = bpb for bs < 2bp
{—bs
and “n (3.13)
bip=b, for b,>2b,.

Kurdyumov and Lysak141 have assumed that the s
and p curves are described by Gauss’ functions; then

pz=p2+ 3. (3.14)

Hall!® took these functions in the form (1+k?x?)71,
which leads to the relation

p=0,+B,

Lysak!? took the s function in the form (1+k3x?)72,
and the p function in the form (1+k3x?)7!, as a result
of which he obtained

{3.15)

g Bot 20y
L

To find Ad/d and D, it is necessary to have at least
two x-ray lines and to use two orders of reflection from
one plane, owing to the possible anisotropy of Ad/d and
D.

We note in addition that when the block and micro-
stress effects are so separated, an important role is
played not only by the choice of the s and p functions,
but also by the method of separating the geometrical
factor. The point is that the cause of the broadening
and the share of each of the effects are determined by
the ratio of broadening of two lines, B,/84, and in the
general case we have

sec &, <_ﬁl tg &,
sec®; " Py - tgd

(3.16)

3.17)

But the value of B,/8; will vary greatly with the
method chosen to determine B, since the transition
from one of these to the other manifests itself essen-
tially in small-angle deflections, i.e., in B; (Fig. 6).
Thus, by specifying a definite form of the functions
g(x) and f(x), an evaluation of 8 predetermines to
a certain degree the resultant values of Bg and Bp.

In the case of isotropic blocks this method of sepa-
rating the effects presupposes that D is independent
of the indices of the reflecting plane. As shown re-
cently by Khachaturyan, 187 however, this is not at all
so. He considered the connection between the size of
the mosaic block, Ly and that of the region of coher-
ent scattering, D. It was found that D = L] only when
Lpj@ > d, where a is the avérage disorientation of
the blocks. In all the remaining cases D > Lp], owing
to the presence of a coherent bond between the neigh-
boring blocks. When Lpja > d we have

Dmel_*—"%" (3-18)
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This circumstance causes the dimension of the region
of coherent scattering to depend on the indices of dif-
fraction, and the angular dependence of the component
Bp is intermediate between sec 4 and tan 4. As a re-
sult, relations (3.1) and (3.4) do not separate unambigu-
ously the spreading due to microdistortions from that
due to block fragmentation.

3.4. Separation of the Effects by Harmonic Analysis
of the Line Shape

Warren and Averbach!?-147 proposed an analysis
method based on the study of the forms of the f lines
themselves, not merely their integrated widths (in
the Soviet literature this method is detailed in refer-
ences 139 and 148). They have shown that the distri-
bution of the intensity of the f lines can be expressed
as

F(20)=K 3} A, (1) cos 2rhyn + B, (I) sin 2nkyn, (3.19)
n

where hy = (2a3/A) sin ¢ is the running coordinate in
reciprocal space; A, and B, are the coefficients of
the expansion of f(24) in the interval -~ < Al < %;
N is the total number of cells (in the volume of the
specimen exposed to the x-rays); ! is the index of the
reflecting plane in the (00!) reciprocal lattice system,
chosen such that ! coincides with the normal to the
reflecting plane; a; is the period along the normal to
the reflecting plane with I = agly/a = (a4 /a)\/Z_h% ,
where h; are the usual indices of the reflecting plane.
The coefficients A, and B, are determined in prac-
tice by a method described previously.13

For most metals and even for nonmetals® the line
broadening after plastic deformation is symmetrical.
Therefore, since the analysis thus far did not take
into account the aforementioned line shift, and the new
position of the line peak was simply taken as a new ref-
erence point, the coefficients B, were assumed to be
equal to zero. We denote by AJ the Fourier coefficients
of the function ¢ ( ney ), describing the distribution of
the microstresses (relative deformation) e, in the
structure, and by Ag the Fourier coefficients of the
function f(j), which describes the distribution of the
particles by dimensions, where j is the number of
cells in a ‘‘column’’; then, according to Egs. (3.8) and
(3.11)

4, = A A3, (3.20)

with
A = cos (2alZ,), (3.21)
=5 G-nt (). (3.22)

j=m
Here and henceforth the superior bar denotes averag-
ing, and Z, is the displacement component expressed
in fraction of the lattice axis along the normal to the
reflecting plane, with




METHODS OF INVESTIGATING COLD WORKED METALS 237

N
[ ¥/) L

FIG. 7. Dependence of the coefficients Al on the distance L.
Methods are indicated for determining D and finding the coeffi-
cient AR in the presence of a ‘*hook’’ in the curve AR=f(L),%%¢

(3.23)

Z, =ne,.

The function q(nep) is determined from the relation
q(ne,) =\ 4% cos (2nlZ,,) dy.
0

(3.24)

Averbach and Warren have shown that if Z, is small
or if q(ney) is described by a Gaussian function

g (ne,) ~ exp— 2, (3.25)
2e}
then
Ay = exp ( - 2n*2n%y). (3.26)
Williamson and Smallman!® assume that
62 -1
q(ne) ~ (142" (3.27)
which yields
Ay = exp ( — 2nlne,), (3.28)

where €y is the half-width of the Cauchy distribution
function (3.27).

Kochendorfer and Wolfstieg!®® have shown that for
sufficiently small n, any ‘‘bell-shaped’’ distribution
can be replaced with accuracy sufficient for practical
purposes by a Gaussian curve (3.25).

Even before that, Bertaut has shown®! that

ady) 1 (3.29)
dn |n=0 N3
and
dzah  p(n) (3.30)
dn? ~ N

where ﬁ3 is the average number of cells in the column.

Thus, by drawing a tangent to the Ag vs n curve at
the point n = 0, we can find ﬁ;,, and hence the average
dimension of the ‘‘column’’ {block) D = Nzag in the di-
rection perpendicular to the reflecting plane. If we
plot the dependence of Ag on the distance in the lattice
L = na;, then the intercept of the tangent on the ab-
scissa axis will be equal to D (Fig. 7).

A separate determination of AIS1 and AR is carried
out with the aid of relation (3.20), with allowance for

the fact that AP should be independent of 7, so that
the dependence of A, on I at I =0 yields the value of
Ag. Since, according to (3.20),

InA,=In 4+ In 42, (3.31)

the dependence of In A, on I? should be linear in the
case of the distribution given by (3.25); if the distribu-
tion (3.27) is used, a straight line is obtained as a func-
tion of I. Obviously, we can determine A§ and AR
without knowing the function g (neyp) only if there are
at least three orders of reflections; if the form of the
function g (nep) is known, it is enough to have two
orders of reflection from the (hkl!) plane.

Brasse and Moller,152 using molybdenum Ko radi-
ation and a scintillation counter, found for steel after
5% plastic deformation and for small values of n that
the function q (nep) has a Cauchy distribution; an in-
crease in n leads to a Gaussian distribution. After
deformation to 20%, the distribution function is close
to Gaussian. Schoening and Niekerk, 153,154 using pow-
dered silver and solid silver specimens, also found
that g (neyp) fits a Gaussian curve. This function is
picked in most present day investigations.

Pines!®® described a method of determining A§ and
D with the aid of only one order of reflection from the
(hk!) plane. Since

dA,

44, __dA}
dn

n=0dn

, (3.32)

n=0

the tangent to the curve Aj at the point n = 0 yields
the average dimension D of the ‘‘columns.’”’ Further,
neglecting the size distribution of the particles, it is
also possible to determine with the aid of (3.20) the
coefficients AS. Another method indicated by Pines
consists of approximating g (ney) and p (j) by means
of analytic functions.

Garrod and Auld* also used one reflection to sepa-
rate the spreading effect. It was found that for small
n the dependence

—2h ()

n

(3.33)

is a straight line whose slope and intercept with the or-
dinate axis determine e} and Nj.

Hauk and Hummel® indicated the possibility of de-
terming e} from a plot of

1—4,

L= f(n), (3.34)

drawn for only one order of reflection. An analogous
method was described by Shivrin. 1%

Of great importance to an estimate of the singular-
ities in the Warren-Averbach method are the works of
Eastabrook and Wilson,156 Garrod, Brett, and Macdon-
ald, ¥ and Williamson and Smallman.%® 1t was shown
in these investigations that an inaccurate measurement
of the ordinates of the profile of the x-ray line near
the background line, i.e., precisely where the measure-
ment errors increase, affects greatly the magnitude of
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Table II
After Kochendorfer'®? | S(x) and p(x) 7 Cauchy s(x)and P(’{)‘Gﬁ‘l‘sga" Harmonic analysis
Material State function functions E\::
Dc-ni100, _Adi,ws Déniloe, %.103 Dc-‘inoﬂ, %_103 5&‘95, VE-N-‘* ence
Silicon steel Compression by — — 20 2.28 3.3 2.35 2.8 21 162
55¢C, 66.3%, filed
powder - - co 4.65 2.8 5.0 2.8 4.6
35 KhNM steel Tension to rup- 3.5 0.67 — — 7.5 1.8 3.0%) 1,3%) 150
ture
Hadfield steel Compression 30% - — 6.0 0.7 —_ - 4.0%) 1,5%) 161
Steel 45 Compression 50 % — — — — 6.0 1.0 6.1%) 1.95%) 163
plus heating at
450°C (10 minutes)
Carbon steel with Tension 4% >2 1,64 16 0.96 — — 200 %) 2,5%) "
0.24% C
Gray cast iron 0.11 15 0,2 15 0.12 — — 700 1.8 5
Carbon steel with Loading in 6.4 0.57 — - 4.7 0.57 4.0 0.7 107
0.16% C mactoelastic
region
Tungsten Unloaded 9.8 0,16 — — 5,9 0,72 2,7 0,44 107
Silver - -~ 4.9 0,8 - — 2.4 2,5 154
Powder 3’3 13 - _ 1.8 13
Nickel Powder 23 5(10y*))  7(12) 24
Iron Powder 0.3(1,0) 3(8) 169
Molybdenum Powder 0.5 (c0) 4(8) 169
*With one order of reflection.
**The numbers in the parentheses are for a Cauchy distribution of the microstresses, in all other cases —for a Gavssian distribution.

the Fourier coefficients when n is small, and conse-
quently, may lead to large errors in the ‘determination
of D and \/e__g . Apparently, this pertains in particu-
lar to curves obtained by the photomethod, where the
background line may not be drawn sufficiently accu-
rately, and the usual tendency is to exaggerate the
background line.

Hauk and Hummel,* using specimens of cast iron
and steel and a powder of colloidal silver, determined
D and Jﬁn by the methods of Kochendorfer,!3 Haul,!%
and Averbach-Warren. For all specimens, the last
method gave values of D and ‘/ﬁn one order of mag-
nitude greater than the first two methods and the val-
ues of D as determined by an objective method for a
specimen made of colloidal silver. The authors attrib-
ute this result to the extreme sensitivity of the
Warren-Averbach method to the position of the back-
ground line, and assume that the determination of D
and Veg with the aid of the integral width should be
given preference over the Averbach-Warren method.

Along with this, it was observed in many investiga-
tions that the values of D and \/e=f1 determined by
methods using the integral width agree well with those

obtained by the Warren-Averbach method (see Table II).

Kochendorfer and Wa.lfstieg150 have shown that the
use of at least two orders of reflection increases ap-
preciably the reliability of determination of D and
\/ﬁn in comparison with methods in which only one
order is used.

Of great importance to the estimate of methods
used for the determination of D and \/e=§1 with only
one order of reflection is the analysis of the ‘‘hook’’
effect, described by Warren and his co-workers, 165,166
The Ag vs n curve should not have a negative second
derivative, for according to (3.30) this has no physical
meaning. Actually, however, real curves do exhibit .an
inadmissible bending of the curve in the region of small
n (see Fig. 7). This is explained® 1% by the almost un-
avoidable exaggeration of the background line in plot-
ting the profile of the x-ray curve. To exclude these
systematic errors it is proposed to determine the val-
ues of Ag by extrapolating the linear portion of the
curve AD until it intersects the ordinate axis, with a
suitable recalculation of the remaining coefficients.

In addition, Bertaut!® has shown even earlier that
an analogous deviation from linearity of the initial por-
tion of the Ag curve may be caused by the ‘‘finite sum-
mation,’’ i.e., by the limitation of the summation inter-
val. If correctly chosen, the latter should overlap the
width of the line by at least a factor of 3.

The foregoing effects may distort excessively the
results of the determination of D and Ve withonly one
order of reflection. Thus, Smirnov,168 using the Pines
method, % has noted that no sharply pronounced tan-
gent to the Ap curve is observed, and the experimen-
tally determined values of D may differ by one order
of magnitude as the expansion interval is increased by
12.5 times. Wagner!®® states that methods involving
a single line cannot be used at all.
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3.5. Change in Size of Blocks and Microdistortions
in Deformation of Metals

It is now established by numerous investigations!?®
146,156,159, 163,170,177, 119,180-185,188 41,54 plastic deformation
of metals produces in the specimens both micro-
stresses and fragmentation of the regions of coherent
scattering. Both effects increase noticeably with in-
creasing plastic deformation, but only up to a certain
limit, after which their growth slows down.

Rovinskiil™ 1" proposes that no further crumbling
occurs at high degrees of plastic deformation, because
of the ‘‘capture’’ effect, i.e., the growth of excessively
small blocks even during the deformation process.
Figure 8 shows the changes in the blocks and micro-
distortions, obtained by Rovinskii for steel. The ef-
fects are seen to vary with the methods used to deter-
mine 8. There are reportsi®® 17 of a second increase
in Ad/d, accompanied by an increase in the hardness
H, after large degrees of plastic deformation (on the
order of 70 — 80 percent).

Usually a direct proportionality is observed!?:1%
between the microstresses Ad/d and the hardness of
the material H corresponding to the deformed state,
and likewise between the microdistortions and the
vield point in the deformed state. 118 1 should be
noted that the yield point in the deformed state prac-
tically coincides with the microscopic stress oy, in
the specimen prior to unloading. A similar linear de-
pendence is observed?:112:113 petween the over-all width
of the line and the characteristics of the resistance to
plastic deformation om and H. In plastically deformed
aluminum, copper, and nickel under normal and re-
duced temperatures, according to Paterson, ¥ the de-
pendence of the broadening of the line on the degree
of plastic deformation has the same form as the strain
curve. An analogous dependence was observed by
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FIG. 9. Tension diagrams of nickel (a) and dependence of the
width of the 420 x-ray line on the degree of deformation (b) at
different temperatures.'®® 1 — 2°K; 2 — 77°K; 3 — 300°K; 4 and
5 — 300°K and after deformation at 4.2°K; 6 — 4.2°K
and after deformation at 300°K.

Davidenkov and Smirnov!® and by Klyavin and Smir-
nov!® in nickel, molybdenum, iron, and tungsten (Fig. 9).

In earlier investigations it was concluded on the
basis of these relationships that the microdistortions
are greatly responsible for the hardening. It became
necessary to forego this straight-forward point of view,
for in many cases!19:116,118,178,188 f yompering of plas-
tically deformed specimens the microdistortions di-
minish almost to zero, whereas the hardness changes
little, or even increases.

Kurdyumov and his co-workers!?®178:18 propoge
that the microdistortions are not the direct cause of
the high hardness and high resistance to deformation
of the hardened metal, but are merely a characteristic
of the limit of elastic deformation of the metal in mi-
crovolumes.

Vasil’ev?:® believes that the value of Ad/d, deter-
mined from the broadening component S8y by formula
(3.1), is a measure of the difference between the
“‘structural’’ stresses og¢, acting on individual do-
mains of the specimen, and the average ‘‘structural’’
stresses oy (see Fig. 5).

Rovinskii and Rybakoval™ have found that the follow-
ing relation holds true over a considerable range of
strains

%D = const —> 4d. (3.35)
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That the product 1_)\/e=2n is constant is noted also by
Despujols and Warren.187

Rovinskii and Rybakova!® have observed in plastic-
ally deformed steel specimens a direct proportionality
between the yield point in the deformed state and the
quantities (Ad/d)Y2D~¥2, and also a linear depend-

_Ad _1_> v
d D ’
This last dependence is noted also in reference 163.

Without discussing the fragmentation of the regions
of coherent scattering and hardening of the metal in
plastic deformation, considered in references 3, 161,
172, 173, 176, 177, 186, and 189 — 191, let us dwell on
the possibility of going from the microdistortions
Ad/d to the corresponding microstresses. As already
noted, the idea that a knowledge of the microdistortions
will enable us to calculate the microstresses cj, has
been predicted already in the early papers devoted to
plastic deformation. The other extreme point of view
denies in general the possibility of determining the
stresses, in the sense of the theory of elasticity, from
data on microdistortions.!®! According to the disloca-
tion theory!®? the field of the microstresses is none
other than the far field of the dislocations produced
during plastic deformation.

Stokes and Wilson!®® have proposed that the micro-
stresses oj are statistically and isotropically distrib-
uted in a polycrystalline specimen. If it is assumed
that all values of microdeformations between zero and
the maximum value emgx are equally probable, then
the integral width Bg will be

ence of the hardness H on the product

B, = hemax tg B, (3.36)

which coincides with the expression (3.1) with ey ax
= Ad/d. In case of a Gaussian microdeformation dis-
tribution we have

B, = 2(2ne?)' 2 tg B. (3.37)

In the former case, averaging over all directions
with allowance of only the normal components of the
microstresses yielded the expression

B, ctg ® = A+ BT, (3.38)*

where A and B are functions of the microstresses
and the elastic constants, and I'" is an orientation fac-
tor for the (hkl) planes. In the latter case both the
normal and tangential components of the microstress
tensor were taken into account in the averaging, and
this yielded

B, ctg® = (A-+ BI)vs, (3.39)

The authors have reached the conclusion that the low
accuracy of the experimental data makes neither of
the discussed versions preferable, although the Gauss-
ian distribution appears to be the more probable.

*ctg = cot.

D. M. VASIL’EV and B. I.
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Blachman!® considered various types of relations
between the microdeformations and the microstresses.
For the simplest model of a statistically isotropic dis-
tribution of microstresses he obtained

e={(s;;+ 28,5) 0}, (3.40)

where sj; and sy, are known elastic constants; this
agrees with (3.3). Blachman assumed that this sim-
plest model should give good agreement with experi-
ment in plastically deformed tungsten.

Vasil’ev®! proposes that the component Bg yields
not the total microstress oj, but only its dispersion
Acj (see above), with Agj defined as

Ao, = HL%-A—} , (3.41)
where Ad/d is determined from (3.1).

The hypothesis of statistically isotropic distribution
of microstresses was verified by Smith and Stickley!?8
in deformed a-brass and tungsten; by Stokes, Pascoe,
and Lipson'® in copper powder; by Megan and Stokes!?%
in iron, nickel, copper, silver, aluminum, and lead
powders; by Hall,!® who used data obtained by many
investigators; by Auld and Garrod*»* in powders and
solid deformed iron specimens; and by Warren and
Averbach!®® in a-brass. In all cases, the product of
the microdeformations by the corresponding modulus
of elasticity remained constant, confirming the hypoth-
esis of statistically isotropic distribution of gj.

Shivrin!®® obtained no confirmation of this hypothe-
sis in experiments with medium carbon steel. It should
be noted that Shivrin used the values of Epi; calculated
for a single crysta.l,197 whereas in reference 44, for ex-
ample, the elastic moduli were calculated by the Neer-
feld method.!!

Vasil’ev®! did not observe any dependence of the line
broadening on the angle between the (hk!) plane and
the strain axis in plastically deformed (by tension or
compression) specimens of low-carbon steel; this is
also in agreement with the hypothesis of isotropic dis-
tribution of the microstresses or of the microstress
dispersion, in Vasil’ev’s terminology.

Let us examine the quantitative connection between
the microstresses calculated from the line broadening
and the macroscopic characteristics of resistance to
deformation. Cagliotti and Sachs!!? found that the mi-
crostresses in single-crystal and polycrystalline cop-
per specimens amount to 0.25 —0.33 of oy,. Kurdyu-
mov and co-workers!™ found that the microstresses
in alloyed ferrite are 0.3 of the yield point in the de-
formed state and approximately equal to the yield point
in the undeformed state. Sandler!® observed that the
microstresses in iron specimens are likewise equal to
0.3 of the yield point in the deformed state. A similar
conclusion was reached by Khotkevich and his co-
workers.18! Smith and Stickley!?® found that the micro-
stresses in o-brass and in tungsten are equal to the
ultimate resistance of the metal; a similar result was
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FIG. 10, Arrange-
ments of atoms in the
close-packing plane of
the fcc lattice

(b, =% al101],
b, % a[211],

b3=6la[11§]).

obtained by Megan and Stokes!® for powders of iron,
nickel, copper, silver, aluminum, and lead. It should
be noted that the hypothesis that the microstresses
are equal to the yield point in the deformed state was
advanced already by van Arkel.!® Except in reference
111, the microstresses were calculated from (3.2),
using either the ‘“macroscopic’ modulus of elasticity
Em or the modulus Epk] calculated for the single-
crystal specimen.

The foregoing investigations were devoted essen-
tially to a clarification of the physical nature of the
effects that lead to the broadening of the x-ray lines.
In addition, the procedures described were used in
many investigations to study the microdistortions and
crumbling of blocks due to fatigue, 88202 160,203,204

creep,
irradiation,2% 2% surface hardening,?9"%13 and cavita-
tion,21¢

4. EFFECT OF STACKING FAULTS ON THE DIF-
FRACTION OF X RAYS

It has been shown recently that the broadening and
shift of x-ray lines can be due not only to factors men-
tioned above, but also to stacking faults in the crystal
lattice. It was found that in various types of crystal
lattices the stacking faults influence the change in the
x-ray patterns differently. In the present paper we
consider only structures with face-centered cubic and
body-centered cubic lattices.*

4.1. Face Centered Cubic Lattice

There are two types of close-packed structures,
face centered cubic (fec) and hexagonal close-packed
(hcp); the atoms in these structures have the closest
packing. The arrangement of the atoms in close packing
is shown in Fig. 10. If the atoms in one layer (layer A)
are close-packed, then the atoms of the next layer can
occupy either positions B or C. Both layer arrange-
ments yield a close-packed structure. The fcc struc-
ture is obtained from the sequence ABCABC. .. (Fig.
11a) where the fourth layer is located above the first,
whereas in the hep structure the third layer is located

*The effect of stacking faults in the case of hexagonal close-
packed lattices (h.c.p.} are discussed in references 4 and 215,
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FIG. 11, Location of atoms in close-stacked planes. a) Nor-
mal fcc lattice; b) normal hep lattice; ¢) intrinsic fault (single de-
formation fault); d) extrinsic fault (double deformation fault);

e) growth or twin fault.

vertically above the first layer, the sequence ABABAB
. is observed (Fig. 11b). The (111) planes are close
packed in the fce, and the base planes in the hep.

Deviations from the normal alternation of the atomic
planes are faults in their stacking order.* In an fcc lat-
tice any sequence of three (111) atomic planes, which
does not have the order ABC or CBA, is faulty. Ex-
amples of possible stacking faults are shown in Fig.11.
If the layer B, which follows the layer A, is placed in
position C, we have a new defective sequence ABCACA-
BC..., which contains four layers of the hep lattice
(Fig. 11c). Such a fault is called?®:217 g faylt of the sub-
traction type (intrinsic fault); it is formed by subtract-
ing one layer (in this case B) from the regular se-
quence. K each succeeding layer following the first
fault is shifted in accordance with the same law, we
obtain the sequence ABC(A)CBA..., which represents
a twin in the fce structure (Fig. 11le). The two se-
quences ABC and CBA describe the fcc structure
equally well, i.e., there is only one disturbance CAC
here, which is called a growth fault or a twin fault
(coherent twin boundary). The smallest possible twin
contains two layers. The letter symbol for it is
ABCACBCA, where the layers BCACB form a twin.

A defect of this kind is called an intrusion fault (ex-
trinsic fault); it is formed if an additional plane is
added to the regular sequence (in this case C). In-
trinsic and extrinsic faults have two twin boundaries
each. Inasmuch as they are obtained as the result of
plastic deformations, they are frequently called defor-
mation faults.

Barrett?!® first called attention to the fact that plas-
tic deformation in some metals and alloys is accompa-
nied by stacking faults which may cause broadening of
the x-ray lines. Starting from qualitative results on
the change of the broadening ratio By5/B1; after de-
formation, he concluded that the broadening due to
stacking faults cannot be neglected.

Paterson®!® determined quantitatively the influence
of intrinsic stacking faults on the width and position of
x~-ray lines under the assumption that each crystal con-
tains faults only in one row of parallel lines, and that

*Faults in the stacking of the close-packed planes will hence-

forth be called simply faults.
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each fault extends over the entire crystal. He found
that influence of the stacking fault depends on the in-
dices of the reflecting planes, and that if h + k + I = 3N,
where N is an integer, then the reflection neither
spreads nor shifts; on the other hand, if h+ k + = 3N
+ 1, a broadened reflection is obtained, shifted towards
the larger or smaller angles, respectively. For ex-
amples, the planes (111) and (111) yield unbroad-
ened and unshifted components, while the remaining
{111} planes give broadened lines shifted towards the
larger angles. By examining in this manner all the
(hk!) families, we can obtain a complete picture of

the influence of the stacking fault. This is shown sche-
matically in Fig. 12, where the vertical lines show the
sharp components, while the shaded areas are the
broadened components. The arrows indicate the direc-
tion of the shift, and the figures give the number of
components.

If we denote the probability of finding a stacking
fault in any given layer by a (i.e., there is one fault
every a~! planes), we obtain the following quantita-
tive relations:?1?

1) broadening B of an individual component is sym-
metrical, with

1—-[1—3a(1—a)]"/z |

p=3 14+ [1—3a(1—a)*/z ' (¢.1)
2) for |h+k+1| =hg=3Nz 1 the line shift is
A(200) = 4 210V 3ot oo (4.2)

T2hg

where ¢ is the angle between the normals to the re-
flecting plane and the (111) plane, on which the stack-
ing fault is located.

The maximum broadening occurs when o = 0.5.
With further increase in «, the broadening decreases,
and the position of the line approaches reflection for
a perfect crystal with twin orientation ACBACB. ..

It is also possible to obtain the values of a by the
method of harmonic analysis. According to Paterson,
if we consider a line consisting of one type of smeared
components, the Fourier coefficients are given by the
expression

A, ={[1—3c (1 —a)]"y" (4.3)
Then —(dAp/dn)p—¢=1n[1-3a (1-a)]¥? differs
from zero when o = 0, meaning that the influence of
the stacking faults on the curve Ay =f(n) is qualita-
tively similar to the influence of dispersion. It is also
possible to determine @ from the line shift, using the
relation

%:j: tgn [arcth3(1—2u)+-2—;] ,

which is again valid when all the components have the
same intensity distribution (it should be noted that the

*arctg = tan—.

(4.4)%
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FIG. 12, Effect of deformation faults on the x-ray
diffraction pattern.*'”

zero point in the calculation of the Fourier coefficients
should be the Bragg angle ;). The effect of deforma-
tion faults on the diffraction pattern was considered
also by Warren and Warekois.16

Touching upon the influence of twin faults, Pater-
son?!® noted that in this case the broadening of the line
should be asymmetrical. A more detailed analysis of
the simultaneous influence of deformation and twin
faults was considered later by Gevers®*? and Wagner.?
Without stopping to give the derivation, let us consider
only the final results. To estimate the number of twin
faults a quantity B is introduced, analogous to « for
deformation faults. It is found that for small o and B8
the line shift is determined by relation (4.2), derived
by Paterson. However, the broadening becomes some-
what different. In this case

-

or, since the coefficients are usually determined as
functions of L,

21

>n=o =+ (30.+2B), 4.5)

dA;, _ 3a+-28

TN\ AL Jr=0" 24y, (4.6)

cos @,
where dj;; is the interplanar spacing for the (111)
planes. It is found here that the broadening of the
lines is asymmetrical, and for small « and 8

B, _ B

4, Y3
[In this case, in the determination of the Fourier co-
efficients, we must take as the zero point the position
of the maximum of the shifted peak; it is precisely for
this reason that this equation characterizes the asym-
metry of the peak, and not the shift, as in (4.4).] All
these expressions are valid for one separate component.

In the case of polycrystals (or powders) we observe

a superposition of all the interference lines of the hkl
system, i.e., to determine a and g from the broaden-
ing and shift of the lines on the x-ray patterns it is
necessary to use the averaged expressions

4.7)

dA 3a+4+28 .——
— d—LL o™ zj;lp]coqu, 4.8)
A(207), = Gaj tg B, 4.9)

where j —the fraction of the {hkl} planes which are
subject to stacking faults

210V 3coste _ £90V3 hs

Tihy a2z

G= + (4.10)
Table III gives the values of j, j-cos ¢ and jG for

certain planes. It is seen from this table that it is

quite difficult to determine 8 from the asymmetrical
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Table OI. Values of j, jecos ¢, and
jG for various reflectionsl®

hkl i jcos @ iG

14 3/4 174 +3.95

200 1 V'3 —7.90

220 1/2 1/V'6 +3,95
1

311 1/2 5 V311 —1.44

222 3/4 1/4 —1.98

broadening of the lines, since the asymmetry is always
the result of a different shift of various components due
to deformation faults. The only reflection which does
not becoine asymmetrical as a result of deformation
faults is the 200 peak, from which B should indeed be
determined.

In the general case, when broadening is due both to
stacking faults and to dispersion, it is found®?! that

© dAy, 1 1 3a4-2
p— == - +
=0 p Dy

dL D 2dyy, 4.11)

cos@-j,

where D is the experimentally determined (‘‘effective’’)
dimension of the blocks, without allowance for stacking
faults, and Dp is the true dimension of the blocks. If

it is considered that the broadening, analogous to the
presence of small blocks and caused by stacking faults,
is determined, as it were, by some fictitious (appar-
ent) dimension

_ 2diy 1
Dr = 3a+2p jcosq’ (4.12)
then we have
1 1 1
L., 4,1
D Dy Dr (4.13)

Recently many researchers have used these rela-
tionships to investigate stacking faults in deformed
metals and alloys. The values of o and B obtained
by various authors are listed in Table IV.

It is seen that a considerable concentration of stack-
ing faults is observed in many deformed metals and al-
loys (up to one fault every 20 planes), and that their
numher increases with decreasing deformation tem-
perature and with increasing content of the second
component in the alloys. Table IV lists also for the
sake of comparison the ‘‘effective’’ dimensions of the
blocks, experimentally obtained by the harmonic-
analysis method, as well as the values calculated by
formula (4.12). The experimentally-obtained block
sizes are determined almost entirely by the stacking
faults. This is a very important result, which indi-
cates that the effect of stacking faults on the line
broadening must be taken into account for materials
of this type. However, we know of no paper in our
literature in which this influence is taken into account.
The faults are disregarded®?® even in the case when
an anisotropy is observed in the experimentally de-
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Table 1IV. Values of «, B, D, and Dr for
metals with fcc lattice

: Lit-
_, Material and @108 po 103 PFOID 5441y, | era-
its composition ‘ ture
1
7 222
Cu 4 22
4 225
3.3 1665 1000
11.7—13,3 465 450 228
Cu* 12.5 20 | 180 55 | ™
. 3
Ni 1.65 228
Ni* 5.5
Ag* 10 2% 170 160 227
Cu+4-20% Zn | 25 50 95 90 221
4309 Zn | 25
25 17 70 70 et
+35% Zn | 50 66,5 60 65 221
39 145 128 221
4+89% Al | 51 102
+7.1% Sn | 34 228
Al 0 0 320 233
*Filings obtained at —196°C; in all other cases—at 20°C.

termined block size for an alloy Cu + 13% Al. Yet
the block-dimension ratio obtained in this investiga-
tion, D(111) : D (100) : D(110) = 1:0.5:0.6, is close

to the ratio 1:0.43:0.6 that results from the stacking
faults.

How can stacking faults be produced in the fcc
structure? We can imagine three methods:%?

a) Shift along the close-packed plane. It is as-

sumed that the macroscopic slip in the [101] direc-
tion consists of zigzag motions of the atoms of the
type B — C — B (Fig. 10) alternately in b, = ¥%;a [211]
and by = % a [112]. The slip in the b, direction pro-
duces stacking faults of the type ABCACABC...
Thus, if a single dislocation lying in the (111) plane is
divided into two incomplete dislocations (called par-
tial dislocations by Heydenreich and Shockley) in ac-
cordance with the reaction

1 a[10T] — e [2T 1]+ +a[112], (4.14)
then a stacking-fault plate is formed between them and
the slip plane. The stacking fault together with the
dislocations that bind it is sometimes called a stretched
dislocation.

b) Removal of one close-packed plane and filling of
the resultant gap by bringing the other close-packed
planes together (Fig. 13). This results in a so-called
sitting (semi-attached) dislocation. In practice this
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FIG. 13. Sitting (semi-attached)
dislocation.
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can occur through a collapse of the cavity left by va-
cancies or by division of single dislocations, for
example

1a[110] — fa [11]+ 4 a[112]. 4.15)
c¢) Intrusion of an extra close-packed plane by set-
tling of dislocated atoms on the (111) plane.

It follows from the foregoing mechanisms that a
packing fault is more likely to occupy a certain region
on the plane rather than the entire plane, as has been
assumed in the calculations. It is noted in reference
224 that in the real case it is also necessary to take
into account effects due to the field of stresses due to
semi~dislocations, and it is assumed in this connec-
tion that the physical meaning of « is still not com-
pletely clear.

4.2, Body-Centered Cubic Lattice

In crystals with a body-centered cubic (bcc) lat-
tice, the most important slip systems are (110)[111]
and (112)[111], but only in the case of the latter can
deformation or twin faults occur. The order of the
stacking of the (112) plane can be written as a se-
quence of six layers in the form ABCDEFABCD...
(Figs. 14 and 15a), and the relative shift of the layers
is represented by a vector with components 1/6 [111]
and 1/2 [110]. This sequence of layers determines the
stacking order completely. A stacking fault occurs
when, say, the layer D is followed again by C instead
of E (Fig. 15b). Such a sequence, for example, may
be due?? to the presence in the bee lattice of a sitting
dislocation formed in accordance with the reaction

Fe[1t1]— 5 a[112] 4 £ a[11T]. (4.16)
A £ A
F D 8
£ ¢ 4 FIG. 15. Packing order of
L‘D c‘D L.D (112) planes in the bec lattice.
8 8 £ a) Faultless structure, b) Defor-

mation fault, c) Twin fault.
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If the stacking fault follows on each succeeding plane,
a twin fault is produced (Fig. 15c¢).

The influence of stacking faults in the bee structure
on the position and form of the x-ray lines was con-
sidered by Hirsch and Otte®! and by Guantert and War-
ren.!® They have shown that in the case of an individ-
ual reflection from a single plane the deformation
faults cause the peak to shift and spread, whereas
twin faults merely spread the peak and make it asym-
metrical. For polycrystals (powders) it is found,
after averaging the influence of all the components,
that the shift of the x-ray reflections is close to zero,
and the asymmetry is too small to be noted experimen-
tally.

However, both types of errors lead to a broadening
of the reflections, depending on the indices of the plane.
If we introduce the orthorhombic indices

H=h—F, Ly= —h—k+2l,

(4.17)
then the reflections broaden when k = 3N + 1, where

N is an integer, and remain sharp when k = 3N, For
a polycrystal we have a superposition of the broadened
(b) and unbroadened (u) components, so as a result we
obtain an effect analogous to the effect on the broaden-
ing of dispersion with a certain fictitious dimension

DRI
Dpex %o T W
F=15afp 21L0| ’
b

1 1 1
K=3h+gk+gl,

(4.18)

where a and B have the same meaning as before, but

in the bee lattice. The quantity (Z} 1+7, 1) is equal
u
to the repetition factor of the (hk!) plane in the cubic

lattice. In the general case

"d
—Q{IITL L=0=%=Dip+ﬂip' (4.19)
Since both types of error give an analogous broadening
effect, the probabilities & and B are determined not
separately but only in the form of a combination
(1.5 + B). The absolute and relative values of Dp
for the first three reflections are listed in Table V.
In addition, the authors of reference 166 have calcu-
lated the relative dimensions of the blocks in different
directions under the assumption that they are bounded
by parallel incoherent boundaries over the (211) or
(110) planes; these dimensions are also shown in
Table V.

Table V. Absolute and relative values of
D and Dp
bousdmses | bowede
hhi undaries
DF abs DF ret ovl:el:(g‘ilf)s o(:/er (110)
110 | 3a/V 2(1.5a+P)| 2.83 1.13 0.94
200 | 3a/4(1,5a4B) .| 1.00 1.00 1.00
211 | 3¢/V6(1.5a4+p)| 1.63 1.09 0.98
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Table VI. Values of Dyg) and of (1.5a + 8) for
metals with bce lattice

Dret |Lit-
Material State (1.5a+p)*|era=
T ture
110 J200| 211
after two
B-brass . Filings 20°C | weeks 22511110 0.024
after Lyear | 2.26 | 1 | 1.2 0.012 | 1e8
Ta Filings—183°C 1,7 11 0.016 .| =2
W Filings 20°C 1,0 1110 L6
Mo Filings 20°C 1.0 11 187
Fe Filings 2 2.0 |1]1.2 0.012
Filings—-196°C 1.7 111,23 0,012 169
*Calculated by the broadening of the reflection from the (110)
and (100) planes.

The relative values of D and the value of (1.5«
+ ), obtained by various authors for different metals
with bee lattices are listed in Table VL

In some materials the packing faults make a notice-
able contribution to the line broadening. Thus, for ex-
ample, in B-brass the broadening due to stacking faults
is twice the broadening due to dispersion. No x-ray
line shifts were noted in any of the powders of metals
with bec lattice.

5. CHANGE IN INTENSITY OF X-RAY LINES

5.1, Origin of the Notion of Distortions of the Third
Kind and the First Investigations

The first to note a reduction in the integrated inten-
sity of the higher-order reflections were Hengstenberg
and Mark.?¢ They observed that the ratio of the inten-
sities of the 200 and 400 reflections for different metals
increase considerably (up to 40 percent) after rolling.
In their opinion, this indicates a sharp weakening of
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a)
FIG. 16. Dependence of f1/fr on (sin 4)/A for copper.a) From
reference 237; b) from reference 239.
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the 400 line. By plastically compressing crystals of
sylvite and KCl, the same authors?®® have found that
after deformation the intensities of the second- and
fourth-order reflections from the (100) face of the
cube increased, while that of the 6th, 8th, and 10th
orders-decreased, and that the effect manifested itself
much stronger in reflections of higher order.

Hengstenberg and Mark concluded from their ex-
periments that the intensity of reflections is changed
by distortion in the crystal lattice and that at least
some of these distortions are irregular shifts of the
atoms from their normal positions in the lattice. They
assumed that these shifts should reduce the atomic
scattering factor just as thermal motion does. Then
the change in the intensity of the reflections is deter-
mined by the factor exp (—2M), where

M= (5.1)
and u? is the mean square deviation of the atoms from
their ideal positions in the lattice in a direction per-
pendicular to the reflecting plane. These irregular
displacements of the atoms were called ‘‘frozen thermal
motion.’”” In our literature they have been called dis-
tortions of the third kind.1?

The effect of deformation on the intensity of scatter-
ing of x-rays by metals has subsequently attracted
great attention on the part of researchers. Boyd,2%®
investigating beryllium filings, observed no reduction
in the intensity of the lines compared with the an-
nealed specimen. Brindley and Spiers,7:2%8 to the
contrary, obtained a reduction in the intensity of the
lines in filings of nickel, copper, and copper-beryllium
alloy, compared with the intensity of the chemically
prepared powders. The effect increased with increas-
ing order of reflection. The results obtained for copper
are shown in Fig. 16a (solid curve) in the form of a
dependence of fT/fr on (sin#)/A, where fT and fp
are the product of the atomic and thermal factors for
filed and for chemically-prepared powders, respec-
tively.

An analogous reduction in intensity, increasing with
increasing order of reflection, was observed by Rovin-
skii?® for deformed copper (Fig. 16b). He assumed,
however, that the experimental reduction in the inten-
sity is not wholly an exponential function of the tem-
perature factor, and there exists another reduction,
equal for all lines; in his opinion this is also confirmed
by the data of Brindley and Spiers®7 (dotted curve in
Fig. 16a). He advanced the hypothesis that the defor-
mation-induced reduction in the intensity of the re-
flections, characterized by an exponential factor, is
due not to the stable displacements of the atoms from
their equilibrium position, but to an increase in the
amplitudes of the thermal oscillations of the atoms in
the lattice of the deformed metal (i.e., a reduction in
the characteristic temperature 6). Distortions of the
third kind, however, manifest themselves in an equal
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FIG. 17. The intensity of the 400 reflection of
brass.?® 1 —annealed at 350°, picture taken at 25°;
2 —deformed at 25°, picture at 25°; 3 —annealed at 350°,
picture at 350°.
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reduction in intensity for all lines. This reduction
can be explained by the fact that some of the matter
is in a practically amorphous state. The anomalous
behavior of the intensity of the 200 and 420 reflections
(Fig. 16) have been associated by the authors of ref-
erences 237 and 239 with the anisotropy of the distor-
tions, i.e., with the unequal states of the atoms in the
crystallographic planes. Later on Rovinskii?? pro-
posed that such a behavior can be due to the occur-
rence of new coordination in the lattice. In the same
work he noted that the reduction in the intensity can
be due both to a reduction in 9, and to static distor-
tions of the lattice. L. I. Vasil’ev,?*! analyzing the
same problem, believed that one cannot expect any
considerable change in 6 through deformation.

Later on, in an investigation of rhodium, Brindley
and Rindley?®? observed that, to the contrary, the re-
duction in intensity upon deformation decreases with
increasing order of the reflection. Such a dependence
was attributed by them to the influence of the primary
extinction. The expected effect due to the lattice dis-
tortion was not noticed. In a later investigation 43
in a comparison of the earlier results,?7:238:242 they
reached the conclusion that extinction did come into
play in the case of copper and nickel.

Kritskaya?¥* found the curve for the atomic factor
of deformed cobalt to be lower than the calculated
f-curve of the undeformed metal and to increase ex-
ponentially with the reflection angle. The atomic fac-
tor of the (010) plane had an anomalously high value.

In most of the foregoing investigations the absolute
intensity was measured. A reduction in the relative
intensity of reflections in strained metals was ob-
served by Brill®¥ in iron, by Gertsriken et al.2% jn
nickel and silver, Umanskii®? in copper and aluminum,
O’ina et al.?*® in iron. Boas?? found that the intensity
of some lines of gold increased after deformation while
that of others decreased, the changes not being related
in any fashion with the reflection angle.

Comparing all the foregoing investigations, we can
see that their results are sometimes widely divergent.
But it is still unclear what causes the change in inten-
sity in the various investigations and what is the de-
pendence of the change on the angle of reflection. An
exact interpretation is made difficult, in addition, by
the large experimental errors inherent in the photo-

graphic method, and by the indeterminacy of the cor-
rections for extinction, account of which was attempted
only in reference 242.

However, the latent energy of the strained lattice
as calculated from the atomic displacements obtained
in the experiments agreed in order of magnitude with
the energy determined by calorimetric means.2%21
Consequently in some later investigations particular
attention was paid to an exclusion of the influence of
extinction and to the accuracy of the experiments. Con-
tributing to the latter was a new procedure for record-
ing x-rays by means of various counters, as well as
the use of monochromators.

5.2. Further Progress

a) Investigations of deformed metals in the form of
powders.* Using a new technique, Hall252* noted that
the diffraction lines from deformed metals have ‘‘tails’’
that extend much further than was previously assumed.
These tails are of low intensity, but since they extend
over several degrees, the integrated intensity which
they represent is sufficiently large. Hall considers
it possible that the earlier investigators were unable
to notice these tails and consequently, their values of
the integrated intensity of lines of strained metals
were excessively small, owing to an incorrect evalua-
tion of the background line; the error due to this effect
increases with increasing angle .

Averbach and Warren,?¥* investigating powdered
a-~brass, found that the intensity of the 400 line did
not change after deformation (Fig. 17), that lines with
smaller reflection angle did increase in intensity, and
that the intensity level of the background remained un-
changed. By measuring the intensity of the lines at
350°C, they have shown that the changes due to defor-
mation differ from changes brought about by thermal
motion (see Fig. 17). In the former case the lines
broaden and have very long tails, and the level of the
background does not change. In the latter case the
lines have much shorter tails, while the background
level increases noticeably., Assuming that the increase
in the intensity of the forward lines is due to a decrease
in the primary extinction, the influence of which is al-

*¥The asterisk identifies investigations in which counters were
used to register the x rays.
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ready negligibly small for the 400 reflection, the au-
thors conclude that the deformation does not change
the intensity of the lines. Analogous results were ob-
tained by Michel and Haig?*** in nickel. The deforma-
tion increased the intensity of the 111 and 200 lines,
while the intensity of the 222 and 400 lines and the
background level remained unchanged.

Wagner and Kochendorfer?®* measured the inten-
sity of the background in a very large interval of
angles in single crystals of zinc stretched to 32% and
in polycrystals of aluminum and silver rolled to 99%.
They established that the changes in the intensity do
not exceed the experimental error (+10%).

In another investigation®®* in which the diffraction
of neutrons by brass was investigated, it was observed
that the intensity of the 111 and 200 lines remains con-~
stant, accurate to one percent. In this case the use of
neutrons made it possible to avoid the influence of ex-
tinction. Nor was any change observed in the intensity
of scattering of the x rays in deformed tungsten pow-
der (0.75 percent thorium ).146*

Batterman,?™* in an investigation of iron powder in
the undeformed state and after deformation in a ball
grinder, established that the atomic factor of scatter-
ing is the same in both cases and agrees with the theo-
retical atomic factor.

I’ina and Kritskaya,? to the contrary, observed
that the intensity of the x ray reflections of the 110
and 220 lines from deformed iron are weaker than
the undeformed iron. The intensity of the reflections
was compared with the intensity of the 111 line of cop-
per, mixed into the iron powder. In the same investi-
gation, and also in another one,259* using hard radia-
tion (molybdenum ), which made it possible to follow
the variation of the intensity with deformation of met-
als over a large number of reflections, the authors
have concluded that their investigation has fully con-
firmed the existence of a variation as exp (— AZ:h%)
in the attenuation of the intensity, and that the reason
for the attenuation is the presence of distortions of the
third kind. It should be noted that the authors have ob-
served an increase in the determined distortions with
increasing wavelength of the employed radiation.

Hall and Williamson,%o* in an investigation of alu-
minum, observed an increase in the intensity of the
forward lines in deformation, while the interferences
of higher indices did not change in intensity. The level
of the background after deformation increased. The
increase in the integral background coincided exactly
with the reduction of the over-all intensity of the peak,
with allowance for corrections for extinction. The
over-all intensity remained constant within one per-
cent. The authors conclude that the entire extinction
is secondary. After introducing corrections for the
extinction, no systematic change in the attenuation of
the intensity with increasing angle ¢ has been ob-
served; for all lines the reduction is on the average
on the order of 7%.
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Weiss®! criticized the corrections for extinction
which were employed before him, and derived rew
ones, which were reviewed and modified by Lang,%6?
The latter used corrections in the following form:

for primary extinction

(Je)' =1-sfKe

for secondary extinction

2 K

(%) =1 —gzﬁ-gﬁ%} ,
where {7 is the atomic scattering factor, calculated
theoretically, and f, is the experimental value of the
atomic factor, not corrected for extinction; g; and g,
are the coefficients of the primary and secondary ex-
tinction, which depend on the dimensions and on the
angular distribution of their blocks; K, is a polariza-
tion factor, which has the following form for mono-
chromatic radiation reflected from a crystal at an
angle

(5.2)

(5.3)

Ky— 1+ cos? 2a cost 29

" 1+cos?2acos?2§ * (5.4)

Applying his corrections to the results of reference
260*, Lang concluded that neither of the formulas (5.2)
and (5.3) justifies completely the difference between
the observed and calculated intensities for copper and
aluminum.

Williamson and Smallman?®3 considered the data of
references 253* and 260* and introduced new correc-
tions for extinction. They found that in the case of
aluminum and o-brass the extinction is for the most
part primary, while after deformation a decrease
takes place in the intensity of the lines, on the order
of 3+1% for aluminum and 6 +2% for a-brass. The
authors point out the difficulties involved in the inves-
tigation of the intensity of deformed metals, due to
the strong spreading of the bases of the diffraction
peaks, their possible superposition, and changes in
the background.

Kochanovska“*® proposed still another method of
determining the distortions of the third kind, wherein
the influence of micro-absorption is eliminated and
it is possible to account —in first approximation
— for the influence of primary exinction by using the
Vilchinsky formula. The method is based on meas-
urement of the intensities of three suitably chosen
diffraction lines, it being assumed that the block di-
mensions are the same in all directions and that the
reduction in the intensity of the lines of deformed
metals is given by the function exp (-2M). A simi-
lar procedure was used in references 177 and 265.

Since there was no meeting of the mind regarding
the nature of extinction in strained metals (while al-
lowance for this extinction must be made if the change
in intensity due to distortions in the lattice is to be
evaluated), Batsur’, Iveronova, and Revkevich?®®* con-
sidered this problem in detail for powdered specimens

63

264
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FIG. 18. The dependence of 2 In (fo/fT) on sin® 3/A* (cf. re-
ference 267). a— Copper-tin alloy; b — copper immediately after de-
formation; c — copper after being aged for a month at 20°.

annealed at various temperatures. Formulas (5.2) and
(5.3) were used to take extinction into account. It was
found that in annealing above the recrystallization tem-
perature account must be taken of the primary extinc-
tion, and in specimens deformed or annealed at lower
temperatures the secondary extinction plays the prin-
cipal role.

The same authors have shown recently®'* that in
addition to the factors already mentioned, the change
in the line intensity should also be influenced by the
presence of stacking faults. A crystal with one fault
in the sequence of the (111) layers can be imagined as
consisting of two parts, shifted relative to each other
by - 1/3 and 1/3 along the X and Y axes, respectively
(the X and Y axes are the hexagonal axes, which co-
incide with the directions [011] and [101] in the cubic
crystal). Then the scattering intensity of such a crys-
tal can be written in the form

’

]mﬁ:Fﬁ[%-{-(N_Nl)a-{—

— 2n(H—K
— 21v1(x2 N oo (3 ):]

(5.5)
where H and K are the indices of the reflecting plane
in hexagonal axes, N the total number of layers in the
crystal, and N; the number of the ‘layer’’ in which
the stacking fault took place (a ‘‘layer’’ is considered
to be a triple group of layers forming the cell). The
superior bar denotes the need for averaging over the
position of the fault, i.e., over the value of N;. After
averaging we obtain

FF*

2 1 H—K
T=—F;-=§—}-30052n< 3 >, (5.6)

i.e., T =1 for planes with indices H~K = 3n, and

T = 0.5 for planes with indices H—K = 3n. Further,
in the calculation of Tpk7 it is considered that the re-
flections falling on the Debye ring come from the
planes of all the groups of indices {hkl} . As a result

it is found that T111 = 0.62, Tzoo = T400 = 0.5, Tzoz = 0.75,

and Tgyq4999 = 0.72. K the fraction of the crystals con-
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taining stacking faults is «, then the intensity of the
Debye ring is written in the form

Ty =Igpp (1 —a+al). (5.7)

It turns out in this case that even when there are few
stacking faults (o = 0.2 —90.3), the change in the in-
tensity is considerable. )

sin®g )

Figure 18 shows curves of 2 In (fg/fT) = <I>< 2

for a copper-tin alloy annealed for 10 minutes at 218°C
(a), and for the two specimens of deformed copper, one
immediately after deformation (b) and one aged for a
month at 20°C (c). The experimental points (full cir-
cles) clearly do not fit the smooth curves. The light
circles were obtained after introducing corrections

for the packing faults. It is seen that the corrected
experimental points fit the theoretical curves well.

It is found here that « = 0.5 for the copper-tin alloy,
and 0.35 and 0.2 for copper specimens (b) and (c) re~
spectively.

The authors of reference 267* observed no reduc-
tion in intensity due to distortions of the third kind in
the copper-tin alloy. It was found, however, that in
copper these distortions may or may not be observed.
The result depends on the conditions of the
distortion by filing, on the initial state of the material,
and on its purity. In addition, aging at room tempera-
ture may lead to a complete removal of the distortions.
The authors believe that in materials with low recrys-
tallization temperature distortions of the third kind
are removed at low temperatures (even room temper-
atures ), and perhaps during the plastic deformation
itself. In materials with higher recrystallization tem-
peratures the stresses are more stable. The static
shift measured in nickel is found to be on the order of
0.1A.

Thus, in examining the results of recent investiga-
tions it is seen that they sometimes differ quite
strongly. Furthermore, different processing of the
same result leads to different conclusions. The main
reason for this is apparently the ambivalent allowance
for extinction. First, as has already been seen, it is
difficult to establish which extinction takes place, pri-
mary or secondary, and second, it is difficult to choose
the correct formula for the correction. In addition,
apparently, both extinctions frequently play an appre-
ciable role simultaneously.

Generalizing the results obtained in these investi-
gations, we can say that the intensity of x-ray lines of
deformed powders* may change for many reasons,
namely: 1) fragmentation of the crystals, leading to
a change in extinction; 2) occurrence of distortions
in the lattice, due to displacements of the atoms from
the equilibrium position (distortions of the third kind);
3) occurrence of stacking faults in the layers (defor-

*If it is assumed that no preferred orientation has been produced
by the preparation of the specimens.
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Table VII. Ratio of intensities?’

11:(140_0) 1/(1400)df
State of specimens Ve o Tannedl/ Iz, 7 de
without l corrected for
cotrection extinction

Deformation 1.0 1.0
Annealed at 218° Shours 1.16 1,04
Annealed at 300% 4 hours 1.16 0.98
Annealed at400°, 4 hours 1.26 1,04

mation faults). In addition, an apparent reduction in
the line intensity may be due to an incorrect drawing
of the background line in an incorrect determination
of the ‘‘tails’’ of the diffraction lines. Failure to take
even one of these factors into account may lead to
wrong conclusions. The importance of taking account
of extinction is illustrated by the results of reference
267*, Table VII lists the ratio of the line intensities,
400/ Iyg0 = v1» of annealed specimens of metals, divided
by the same ratio (y,) for deformed specimens. The
pair of lines is so chosen that the ratio of their inten-
sities is independent of the number of packing faults.
It is seen that as a result of annealing the experimen-
tally measured ratio v, /y; increases. If we disregard
the possible effect of extinction, we can conclude that
the distortions of the third kind are eliminated by an-
nealing. However, after introducing the correction
for the extinction, it is found (column 2) that the
ratio remains constant. Returning in this connection
to the earlier papers, considered in Sec. 5.1, we note
that the analysis of the earlier results made no allow-
ance for the possible influence of extinction (with the
exception of reference 242).

There is no doubt that the question of correction
for extinction has not yet been fully answered in the
latest investigations. Thus, Hirsch emphasizes® that
the extinction corrections for the integrated intensity
have been calculated for a crystal of infinite dimen~
sions, the reflecting planes of which are parallel to
its surface, which naturally does not take place in
real crystals. As regards the Eckstein formula for
primary extinction, used in references 262, 263, 266,
and 267, it was obtained for the peak of the diffraction
curve in scattering by a spherical particle, and not for
the integrated intensity. Hirsch states that this for-
mula can be satisfactorily used only for very small
and for very large angles. In addition, further difficul-
ties lie in the fact that any imperfections in regions
whose size is comparable with the block dimension
will reduce the extinction. Such imperfections may
be: dislocations, disordered distributions or pile-up
distributions, microdistortions, (i.e., variability in
the parameter), accumulations of impurities and in-
clusions, groups of vacancies and submicrocracks,
and stacking faults. It is still not clear whether the
extinction coefficients will in this case have the same
form as for the block model.

b) Change in line intensity upon deformation of solid

polycrystalline specimens. Since it has been estab-
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lished toward the end of the Forties that plastic defor-
mation leads to the occurrence of distortions of the
third kind, many papers have appeared in which their
magnitude was related to the mechanical characteris-
tics of the metals,19%:249,288-2" The mean-square dis-
placements u? (distortions of the third kind) have
been determined in the following manner. H the defor-
mation causes the line intensity to change from I, to

I, we have according to (5.1)

5 I W
162 I sin?¢

u?= (5.8)
We measure here not the absolute values I, and I, but
their ratio to the intensity of the standard or of the
background. The value of u? can be deduced from the
change in the ratio of intensities of two lines. Then

Py R A A’ﬁ)

T 4n? (Shia— kD) I In (5.9)

where the subscripts 1 and 2 pertain to different re-
flections.

The use of (5.8) and (5.9) is valid only when the en-
tire change in line intensity is due only to distortions
of the third kind. However, as already noted, the in-
tensity of the lines and their ratio are greatly influ-
enced by extinction changes due to deformations and
stacking faults. In addition, in the case of deformation
of solid specimens the intensity of the lines may change
also as the result of formation of a preferred orienta-
tion — texture, to which particular attention was paid
in references 275 —277. Smirnov?'’ has shown that the
development of a texture may cause the intensity of the
different reflections to increase, decrease, or remain
unchanged. Naturally, under the joint action of texture
and extinction it is very difficult to separate the change
in intensity due to distortions of the third kind, particu-
larly since the effect of the latter is apparently much
less than the effect of the first two factors 287,277

It follows from all the foregoing that a change in in-
tensity of a line, taken separately, or a change in the
intensity ratio of two lines, cannot characterize the
distortions of the third kind unless the effects of tex-
ture, extinction, and packing faults are eliminated.

Yet, in all the papers already cited,199,234,241,268-274*
and also in papers published after this question has
been clarified, 2281 no account is taken of either ex-
tinction or texture. In other pa.pers,1'”’249’277’282’283
where the ratio of intensities of reflections from two
orders is used, T only the influence of the texture is

*It should be emphasized that these investigations include the
research of Hengstenberg and Mark,*** in which, as has been as-
sumed, the distortions of the third kind were observed for the first
time.

tThis ratio is not independent of the texture for every form of
deformation, nor even for every picture setup.”’* Methods of elim-
inating the influence of texture for one order of reflection are dis-
cussed in references 275 and 284,
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excluded. Thus, in the overwhelming majority of
papers devoted to strained solid polycrystals, the
conclusions concerning the magnitude of the distor-
tions of the third kind and their variation with the degree
of deformation cannot be considered as well founded.
Iveronova et al.?? believe that many questions regard-
ing the connection between these distortions and the
change in the mechanical properties are still unan-
swered.

An investigation was also made of the change of
intensity of x-ray reflections from crystal specimens
exposed to radiations of various kinds.2?® The results
obtained are quite varied: in some cases the intensity
decreases, in others it increases, and in still others
it remains unchanged.

5.3. Static and Dynamic Distortions

As already noted, changes in the intensities of x-ray
interferences in strained metals or alloys can be due
in principle either to irregular displacements of atoms
from their equilibrium position (static distortions or
distortions of the third kind) or to changes in the char-
acteristic temperature 6 (dynamic distortions).

A method for separating these factors was proposed
in references 248 and 285. In the general case the in-
tensity is determined by the expression

I=1,exp(—2M,)exp(—2M), (5.10)
in which
1‘2 in2
RN L CHTSE.TIR

where x = /T, & is the Debye function, m is the
mass of the atom, while h and k are the known con-
stants. Since the first term in (5.10) depends on the
temperature, and the second does not, they can be sep-
arated by taking pictures of the specimens at different
temperatures, T; and T,. Then

I

In<*=1In
Iy Iy

I _ 1212 [ Oz))  Dx) ] sin? ¢
Tos mkh N Zy Az

(6.12)

A plot of In(I; /I,) vs. (sin?g)/A? results in a line
whose slope yields the factor in front of (sin?¢)/A%,
hence 6. Knowing 6 we can then determine M, hence
u?,

I’ina et al.24%:28 ohtained data in favor of the as-
sumption that in strained pure metals (iron or molyb-
denum ) the lattice distortions are static. In solid so-
lutions,24%285-257 oth static and dynamic distortions
are possible, and both forms of distortion may be
changed by the deformation. With this result in mind,
it should be noted that in investigations made on de-
formed alloys,?8-28 the calculated intensities may not
agree with the experimental ones, corrected for ex-
tinction, owing to the change in the characteristic
temperature.

The aforementioned method of separation is based
on the assumed validity of the Debye-Waller correc-
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tion, in which the characteristic temperature is the
same for all reflections. Yet there are indications?®®29
that in this correction the rms thermal displacement
of the atoms is not only a function of § and T, but also
a function of the crystallographic direction. This may
introduce an error in the determination of the charac-
teristic temperature from the ratio of the intensities
of the reflections from different planes. Krivoglaz3®
has shown recently that this method of separation is
not always feasible for another reason, too. He found
that a change of the static displacements u? is simul-
taneously accompanied by a change in the amplitudes
of the atomic vibrations, so that the contribution of both
effects is not additive, as was considered earlier.

The change in the characteristic temperature, as
determined by the method described, accompanying
the formation of alloys and their deformations, is
usually associated?®-2%7 with the change in interatomic
binding forces. In some recent papers, however, the
opinion has been expressed that the Debye-Waller law
is valid only for monatomic substa.nces,301 and that the
observed change in 8 is connected with a certain dis-
tribution of the location of the atoms in the solid solu-
tion,%® i.e., the values of 9 determined by x-ray dif-
fraction cannot be considered in this case as a meas-
ure of the interatomic forces.

6.4. Concerning Classification of Distortions, the
Structure of Deformed Metals, and the Internal
Stresses Corresponding to these Distortions

The foundations for the classification of structure
distortions and internal stresses were laid in refer-
ences 108 —111. According to this classification, all
structure distortions, like the residual stresses cor-
responding to these distortions, were grouped into
distortions of the first, second, and third kind. Later
on it was decided to dispense with the term ‘‘stresses
of the third kind’’ and only the term ‘‘distortions of
the third kind’’ was retained, since in a volume com-
mensurate with the volume of the elementary cell, the
concept of ‘‘stress’’ cannot be used in the sense of the
theory of elasticity, as pointed out by Sachs.3® Dehl-
inger!® again returned to the term “‘residual stresses
of the third kind,’’ assuming these stresses to be pro-
duced by the near field of the dislocations produced
by plastic deformation.

Recently, in connection with many of the investiga-
tions reported in Secs. 2 —5 of this review, a need
arose for modifying somewhat the earlier classifica-
tion. Thus, for example, the shift of the x-ray lines
cannot serve as a unique criterion for the existence
of only residual stresses of the first kind in a speci-
men, since such a displacement can result also from
stresses of the second kind. Likewise, in view of the
considerable improvement in the procedures for meas-
uring intensity, it has been found that the clear cut
connection previously established between the distor-
tions of the third kind and the change in intensity of
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the x-ray lines is not confirmed in many cases, so
that the existing estimates of the magnitudes of the
distortions of the third kind, developed in metal under
plastic deformation, may prove to be too high and, in
any case, call for a thorough review. By the same
token, apparently, the connection between the latent
deformation energy and distortions of the third kind
needs re-evaluation. Summarizing the discussions

on the classification, published in the journal ‘‘Zavod-
skaya laboratoriya’’ (Plant Laboratory),*%=3% Dayi-
denko formulated the definition of residual stresses
as follows:

1. Stresses of the first kind, or macrostresses, are
those which are balanced in volumes commensurate
with the volume of the body and can be observed by
cutting the body in parts. They appear on the x-ray
photographs as shifts in the interference maxima,
but the shift can be eliminated by suitably cutting
the body.

2. Stresses of the second kind, or microstresses,
are those balanced within volumes of the same order
of magnitude as the volumes of one or several crys-
tallites. Their x-ray diffraction manifestation is in
the smearing of the interference maxima, and also
in a shift (of these maxima) which cannot be elimi-
nated by cutting.

3. Distortions of the third kind are disturbances to
the regular placement of the atoms in the lattice; since
their x-ray diffraction manifestation has not yet been
finally established, they are not yet included in a clas-
sification by x-ray symptoms.

Like any other classification, this one is incom-
plete. It does not include, naturally, such structure
distortions as the stacking faults described in Sec. 4
of the present survey. The possibility is not excluded
that other types of structure distortions, which influ-
ence the diffraction of x-rays, will be discovered in
the future.

6. DISLOCATION DATA OBTAINED BY X-RAY
DIFFRACTION

6.1, Determination of Dislocation Density

a) Use of Debye-Scherrer x-ray patterns. To calcu-
late the density of the dislocations, Williamson and
Smallman®!! used two quantities which can be deter-
mined by x-ray diffraction: the block dimension D
and the width of the microstress distribution ¢
= 2(Ad/d). In the first case, assuming that the dis-
locations lie on the boundaries between the blocks,
their density is determined as follows. The over-all
length of the dislocation line on one block is 6nD/2,
where n is the numbes of dislocations on the surface
of the block. Since the number of blocks per unit vol-
ume is 1/D% the density of the dislocations will be

_3n

o= (6.1)
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When using this equation, the value of n must be
either determined or specified. The value n =1 gives
the minimum density of dislocations and can be used
for annealed or very strongly deformed metals, when
the distribution of the dislocations becomes almost
disordered.?!! As regards the block dimension D, the
value of p is determined by the microbeam method,
by measuring the primary extinction, or by the broad-
ening of the diffraction lines and their displacement
(in the latter case as the distance between the stack-
ing faults).

The dislocation density can also be determined from
the microdistortions. If we know the rms strain e? for
any distribution, then the corresponding latent energy
of the lattice is

v _ BEe _ 3EAR

; s (6.2)

where A is a coefficient that depends on the character
of the distribution of the microdeformation, and its
values are 1/2r and ~2 for Gauss and Cauchy distri-
butions, respectively. The energy of a screw dislocation
ve in the absence of interaction with other dislocations
is

_wr
Vo= In o (6.3)

where b is the Burgers vector, r is the radius of the
crystal containing the dislocation, and ry is a suitably
chosen?3? integration limit, usually on the order of 1077
cm. Since the dislocations do interact, the elastic en-

ergy changes on the average by a factor F, i.e.,

v=uF. (6.4)

Then the density of the dislocations, obtained in this
manner, is

V_ kg

e=—=F 75 (6.5)

where
k=6rEA/ In (’27) .

The calculation given in reference 311 yields k = 16.1
for fcc metals with a Burgers vector b directed
along [110], and k = 14.4 for bec metals with b di-
rected along [111].

In the present case the value of F must again be
determined or specified. The simplest assumption is
F =1. A model in which F =1 approximately is a
network in which a dislocation coincides with each
edge of the block; then the distance between the dis-
locations is a maximum and the interaction is mini-
mal. In addition, for this model we obviously have
n = 1. A criterion of the correctness of these assump-
tions can be the fulfillment of the equality Pp = Ps»
where pp and pg are the dislocation densities deter-
mined by Eqgs. (6.1) and (6.5) under the condition n =1
and F =1. The values of pp and pg, calculated by
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Table VIII. Dislocation density in metals, calculated from
data on the dimensions of the particles and
sizes of the microstressess!!

D, cm
Material and its 0s . by broaden- op
purity State (F=1) by te'xtmc-- ing of the (n=1)
ion line
Annealed, 500° 3.5.10-¢ 2,4.107
AL(9.9%) | Filings, 20° 4.0-10° 2.6-1074 4.5-107
: Filings, 20° 2.4.101° 2.1074 7-107
Al commerciel Filings, ~183° | 32101 0.7-107 6.108
_ Annealed, 675° 1.2-10- 2.108
Fe Armco Filings, 200 7101 10-8 3- 1010
Filings, ~183° 9-101 10-® 3-101
i Annealed, 1860° 2-107¢ 7-107
Al commercial Filings, 20° 5.8- 1011 105 3.4010
E Annealed, 350° 1,35-107¢ 2.4.108
o-brass Filings, éoo 1.2-3.1012 1.2.1076* 2.5.1012
*Distance between stacking faults.
Williamson and Smallman3!! from various sources, Np= % . (6.6)

are listed in Table VIIL

In estimating the reliability of the resultant values
of p, it is always necessary to bear in mind the inde-
terminacy of the experimental values of D and e?

{see Secs. 3.3 and 3.4), and also the fact that in the very

calculation of Pp and pg some additional assumptions
are made. Williamson and Smallman®!! believe that the
most reliable values of D are determined from the
primary extinction. Hirsch,® however, in view of the
unsatisfactory nature of the extinction corrections,

doubts that this method can yield real information on the

nature and degree of perfection of a well annealed
metal.

b) Broadening of the rotation curve on a double
crystal spectrometer. In Hirsch’s opinion,3 the most
reliable x ray data on the distribution of dislocations
are obtained by measuring the disorientation of the
blocks with a double crystal spectrometer. If a perfect
crystal is rotated about its reflecting position, it re-
flects the x rays only within a range of several sec-
onds. Real crystals frequently have a rotation curve
of much greater angular width (on the order of sev-
eral minutes). Sometimes the rotation curve consists
also of several peaks, which undoubtedly is evidence
of the presence of several disoriented blocks. Most
frequently it represents one peak, but broader than
theoretically expected.

If data on the disorientation are available, they can
be used to estimate the distribution and density of the
dislocations. It is known? that if the disorientation
angle on the boundary, «, is small, then the density
of dislocations is determined by the expression*

*In this case the definition of the dislocation density differs
from p in Eq. (6.1). For the case®'! of an isotropic distribution of
dislocations, p = 3Np.

If o is unknown, we can estimate the upper and lower
limits of the dislocation density. Assuming the crys-
tal to be bent uniformly, we have in the plane perpen-
dicular to the flexure axis a = Dy/T, where T is the
width of the region bent by the observed angle v, i.e.,
T is usually equal to the grain dimension or to the di-
ameter of the illuminated area of the crystal (which-
ever is smaller). Then

ND=L-

3T (6.7)

The upper limit is determined by assuming that the
suberystallites are disoriented about their central po-
sition, and their normals have a Gaussian distribution.
Then® « ~ /3 and

Np~ (6.8)

_y_
3D °
If D is unknown, the upper limit for the case of arbi-
trary distribution of the dislocations is found to be®

2

Np=-r-

_ (6.9)

The dislocation density calculated from Eq. (6.9) is
listed in Table IX, along with some other results, A
comparison of the dislocation density calculated from
(6.9) with the density determined by the number of etch
pits for germanium, gave good agreement.%!?

c) Systematization of data on the dislocation density.
A comparison of the data on the dislocation density, de-
termined by various methods, shows that in undeformed
crystals the dislocation density lies between 10* and 103
cm ™2, and for the overwhelming majority of specimens,
obtained by various methods, the density is greater than
10° cm ™2, As a result of deformation, the dislocation
density increases to 108 — 10! cm™2, and depends on the
type and purity of the metal, and also on the form, de-
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Table IX. Limiting dislocation densities
in grystals®

Crystal and its state ¥ NpPPer/em? Ng’we’/ cm?®
Aluminum (99.999 %),
recrystallization
(grain size 30p) 3’ 3.108 1.3.107
Aluminum (99.993 %),
bent and anneale ~ 2! 108 5.108
(density
inside
subgrain)
Copper (99.999 %),
recrystallization
(grain size 30p) ~ 1’ 2.407 4.108
NaCl, from melt 4" 8-10*%
NaCl, polished 4 3-108
Fe, whiskers®® 108

gree, and temperature of the deformation. Annealing
of deformed crystals leads to a reduction in the dislo-
cation density. Very little is known as yet concerning
the exact distribution of dislocations in either unde-
formed or deformed metals.

X rays

FIG. 19. Schematic diagram of the
main features of Lang’s method.***
1 — crystal; 2 — film; 3 — screen.

6.2. Direct Observation of Dislocations

The foregoing methods of determining the disloca-
tion density are no longer sensitive at densities less
than 10° cm™2. Lang, assuming that the dislocation
can be detected more readily by its effect on the in-
tensity of reflection from the surrounding region than
on the angular region of reflection from a relatively
large volume of the crystal, proposed a method®!* for
observing individual dislocations. The principal scheme
of the method is shown in Fig. 19. The primary x-ray
beam, which is narrow in the plane of the figure, passes
through the crystal in such a way that the Bragg reflec-
tion is from the planes that are approximately perpen-
dicular to the surface of the crystal. The reflected
rays are registered on film. The resultant pat-
tern was called by Lang a sectional topograph. He as-
sumes that the dislocations are observed in this case
as regions of increased reflection intensity, as a re-
sult of their influence on the distribution of the energy
between the multiply reflected primary and diffracted
beams. In this way he obtained?!® for the dislocations
in silicon 3 mm thick a pattern that agreed very well
with the pattern obtained by passage of infrared rays
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FIG. 20. Sectional topograph of dislocations in silicon ob-
tained from the 220 reflection. The (111) planes are parallel to the
surface of the flat crystal.

through the same part of the crystal after copper was
deposited on the dislocations. Figure 20 shows one of
the patterns obtained by Lang for silicon.318

By determining the position of the dislocations in
individual cross sections, it is possible to obtain a
three-dimensional picture of their distribution. To
obtain this information more rapidly, Lang!® resorted
to simultaneous displacement of the film and of the
specimen parallel to their own surfaces (Fig. 19). The
two-dimensional picture obtained on the film is a pro-
jection of the crystal and its imperfections. It is equiv-
alent to a superposition of many sectional topographs
and was called by Lang a projection topograph. By ob-
taining a pair of projection topographs (a stereoscopic
pair) for reflections from the (hkl) and (hkl) planes
respectively, it was possible to determine the three-
dimensional distribution of the dislocations within
the volume of the crystal. This method yielded
the distribution of dislocations in a whole series of
a great variety of materials. 317731

Lang’s procedure was used by Webb®? to study the
‘““whiskers’’ of NaCl. A direct observation of the dis~
locations by reflection of x rays was also carried out
by Bonse and Ka,ppler:m’322 and by Newkirk.323
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