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1. INTRODUCTION an atom with the electromagnetic field. (The calcula-
_ tions were repeated by Dzyaloshinskii3 using the mod-
I T is well known that there are attractive forces, ern invariant Feynman technique.) In the limiting case
called van der Waals' forces, between any two neutral when R » Л, the interaction energy is proportional to
atoms or molecules which are at a distance R which R~7.
is large compared to the dimensions of the systems The appearance of attractive forces between neutral
themselves. These forces have a long range character: atoms naturally leads to the appearance of similar
they fall off with distance according to a power law and forces between any two macroscopic bodies whose sur-
not exponentially. faces are brought to very small distances from one an-

From their origin the van der Waals' forces have other. However, the calculation of these forces, simply
electromagnetic character. They are obtained, as was starting from the interaction of individual atoms (as
first shown by F. London,1 in second order perturba- has usually been done), is actually impossible. It would
tion theory applied to the electrostatic interaction of be valid only for sufficiently rarefied bodies such as
two dipoles; the energy of attraction is then propor- gases, a case which actually, of course, cannot be
tional to R"6. However, such a treatment is possible achieved. On the other hand, in condensed bodies the
only so long as the distance R is small compared with atoms of the neighborhood cause an essential change
the wavelength A corresponding to transitions between in the properties of the electronic shells, and the p r e s -
the ground and excited states of the atoms. For R £ Л ence of a medium between the interacting atoms affects
effects of retardation become important. The interac- the electromagnetic field through which the interaction
tion of atoms when retardation is taken into account is established.
was studied by Casimir and Polder2 as an effect in However, in contrast to such a "microscopic" ap-
fourth-order perturbation theory in the interaction of proach to this problem, one can also attack it from a
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completely different, purely macroscopic point of view,
in which the interacting bodies are treated as continu-
ous media. The validity of such an approach is related
to the fact that the distances between the surfaces of
the bodies are assumed to be small, but still large
compared with interatomic distances inside the bodies.

The fundamental idea of the theory is that the inter-
action between bodies is treated as being established
through a fluctuating electromagnetic field. By virtue
of thermodynamic fluctuations, such a field is always
present inside any material medium and also extends
beyond its boundaries. A well-known case where such
a field manifests itself is the thermal radiation of a
body, but it should be emphasized that this radiation
does not exhaust all the fluctuation field outside the
body. This is seen most clearly from the fact that
electromagnetic fluctuations persist even at absolute
zero, when there is no thermal radiation; at this tem-
perature the fluctuations have a purely quantum char-
acter.

In addition to the attractive forces between bodies
which are close to one another, from this point of view
we may also treat other effects in condensed bodies
which are related to the van der Waals' forces, in
particular, the properties of thin films of liquid on
the surface of a solid.

In all of these effects, from the point of view of
thermodynamics there appears one general feature:
all of them are associated with the nonadditivity of the
free energy of a system of bodies when van der Waals'
forces are taken into account. In fact, in all these
cases the free energy is not simply proportional to
the volume of the system, but depends for a fixed vol-
ume on parameters which characterize the mutual a r -
rangement of the bodies. (For example, it may depend
on the distance between the solid bodies or on the thick-
ness of a film.) It is just this nonadditivity, which is
related to the long-range character of the van der
Waals' forces, which gives a qualitatively new effect,
distinguishing the contribution of these forces to ther-
modynamic quantities from the very much greater ad-
ditive parts of these quantities. This nonadditivity can
also be understood easily by noting the connection be -
tween the van der Waals' forces and fluctuations of the
electromagnetic field. In fact, every change of elec-
trical properties of the medium in a certain region
leads, by virtue of the Maxwell equations, to a change
in the fluctuation field outside this region, too. There-
fore, that part of the free energy which is associated
with electromagnetic fluctuations is not determined
solely by the properties of the material at a given
point, i.e., it is non-additive.

We should now make more definite what we mean
when, in speaking of fluctuations of the electromagnetic
field, we consider the set of spectral components with
wave length large compared to atomic dimensions.
(We shall refer to them as "long-wave" fluctuations.)
What we mean is that those fluctuations are important

whose wave lengths are of the order of magnitude of
the characteristic dimensions of the inhomogeneities
in the system. (For example, for a film, of the order
of its thickness; for the case of attraction of bodies,
of the order of the distance between the bodies.) All
properties of long-range fluctuations and also their
contribution to all thermodynamic quantities are ex-
pressed entirely in terms of the complex dielectric
constant of the body.

It turns out that it is possible to construct a general
macroscopic theory of van der Waals' forces which is
free of any limitations except the one that all the char-
acteristic dimensions of the bodies must be large com-
pared with atomic separations. Such a theory is applic-
able, in principle, at any temperature to any bodies,
independent of their molecular constitution (ionic or
molecular crystals, amorphous bodies or liquids,
metals, dielectrics, etc.) . Since the theory starts
from the exact equations of the electromagnetic field,
it automatically includes retardation effects.

A theory of the van der Waals' attractive forces
between bodies, based on these principles, was first
constructed by E. M. Lifshitz.4 By applying the meth-
ods of present-day quantum field theory, it has been
possible to find general formulas for computing the
van der Waals' part of the thermodynamic quantities
for an arbitrary inhomogeneous medium (I. E. Dzyalo-
shinskii and L. P. Pitaevskii5). This has made it pos-
sible to extend Lifshitz's theory to the case of bodies
separated by a liquid layer, and also to the study of
the properties of liquid films (I. E. Dzyaloshinskii,
E. M. Lifshitz, and L. P. Pitaevskii6).

We begin our presentation with a brief summary
of the methods of quantum field theory in statistical
physics (Sec. 2). These methods make it possible to
extend the whole theory of van der Waals' forces in
the most natural and general fashion. The further
presentation is arranged so that the reader who is in-
terested only in the results of the theory can omit
Sees. 2, 3, and 4a.

2. METHODS OF QUANTUM FIELD THEORY IN
STATISTICAL PHYSICS

A characteristic feature of present day quantum
field theory is the extensive use of the Feynman dia-
gram technique, which makes it possible to give a very
pictorial presentation of the structure and character of
any approximation.

We know that in quantum field theory physical quan-
tities are expressed in perturbation series in powers
of the coupling constant (for example, in powers of
the charge e of the electron). Any term in the per-
turbation series can be described by an appropriate
diagram, and its computation on the basis of this dia-
gram is done according to the rules of the Feynman
technique. To each internal line of the diagram there
is associated a so-called free particle Green's func-
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tion Go> or a free photon Green's function Do; to each
intersection of lines on the diagram (vertex) there is
associated a definite interaction operator (in quantum
electrodynamics this is the Dirac matrix y^ multi-
plied by the electron charge), and finally an integra-
tion is carried out over the four-dimensional coordi-
nates of each vertex in the diagram.

The advantages of the diagram technique are most
clearly seen in the solution of problems in which one
cannot limit oneself to a finite number of terms in the
perturbation series, but must sum infinite sequences
of so-called "principal diagrams." The possibility of
summing infinite series makes the diagram technique
especially attractive for quantum statistics, where the
usual methods enable one to describe with great diffi-
culty only the first two or three terms in the perturba-
tion series.

The application of the methods of quantum field
theory to problems of statistical physics at finite tem-
peratures is based on the work of Matsubara,7 who
showed that the computation of the free energy can be
carried out according to the rules of the Feynman dia-
gram technique. Any term of the series in the thermo-
dynamic perturbation theory, as in field theory, is de-
scribed by the corresponding Feynman diagram, and
its calculation is done by analogous rules: each line
of the diagram is associated with a " temperature"
Green's function for the free particle Щ, and each
vertex of the diagram is associated with an interaction
operator. The only difference is that the Green's func-
tion WQ in the Matsubara technique depends not on the
time t, but on a fictitious "imaginary t ime" т, which
varies over a finite range from zero to the reciprocal
of the temperature, l/T.* Correspondingly, in place
of an integration over the time from — °° to °°, at
each vertex of the diagram one carr ies out an integra-
tion with respect to т between the limits from 0 to
l/T.

We here give a brief presentation of Matsubara's
argument. Let us consider for example a system of
charged particles interacting with the electromagnetic
field. The Hamiltonian of such a system has the form

where Ho is the Hamiltonian of the free particles and
photons, which depends quadratically on the operators
of the respective fields ф ( г) and A a ( r ) in the Schro-
dinger representation, while H m t is the interaction
operator:

#int= -] Aa(r);a(r)d3r,

j a ( r ) is the current operator for the particles,t which

•In Sees. 2, 3, and 4a we use a system of units in which
1r = с = 1; the temperature i s measured in energy units.

tHere and in the following Greek indices a, /3 = 0, 1, 2, 3
number the components of 4-vectors and tensors, while Latin
indices i, k, . . . = 1, 2, 3 number the components of vectors
and tensors in three-dimensional space.

i s s o m e q u a d r a t i c f u n c t i o n of t h e p a r t i c l e o p e r a t o r s

* ( r ) .

T h e t h e r m o d y n a m i c p r o p e r t i e s of t h e s y s t e m a r e

d e t e r m i n e d b y t h e s t a t i s t i c a l m a t r i x

ехр - ^ г

through which the free energy F is expressed by
means of the relation

F = -

In computing the a v e r a g e value of any quantity ( in this
case , the average value of p ) , one u s e s in field theory
the equations of motion for the field o p e r a t o r s . The
fundamental idea of M a t s u b a r a c o n s i s t s in a shift from
the time t to an "imaginary t ime" т, preserving the
formal similarity with the usual equations of motion.
To do this, let us first go over to the "interaction rep-
resentation," which is the analogue of the usual quan-
tum mechanical interaction representation, by using
the formulas

Aa (r, T) = exH»Aa (г) е- т Н», i|) (г, т) = етНог|) (г) е~хИ<>,

гр (Г, Т) = е*н<>г|)+ (г) е-хЯ«, /0 (г, т) = е т Н % (г) е-тЯ«,

Obviously

Hint(r)= - ^ Л, (г, т)/ а (г, x)d3t.

Let us a l so introduce the m a t r i x

0 (x) = exp ( - xH)

and let us r e p r e s e n t it in the form

The matrix @ (т) thus defined is the analogue of
the S-matrix in field theory. It satisfies the equation

which is obtained from the corresponding equation of
field theory by replacing t by ir. Its solution is

w h e r e T T i s t h e t i m e - o r d e r i n g o p e r a t o r w h i c h o r d e r s

the operators H in order of increasing " t i m e " т.
For the statistical matrix p = p ( l / T ) we obtain

the obvious formula

(2.1)
' J

from which we have for the free energy :

F = F0- T InSp {е(Ро-н„)/г3); ( 2 .2)

w h e r e F o i s the f ree energy of the noninteract ing p a r -
t i c l e s ,
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Fo= -

F o r m u l a (2.2) can be wr i t ten as

w h e r e we unders tand by the symbol < .

average over free p a r t i c l e s t a t e s

(2.3)

. > the Gibbs

Expanding the expres s ion for 8 in powers of

averaging each t e r m in the s e r i e s and, finally, taking

its logar i thm, we obtain the per turbat ion s e r i e s of

thermodynamic theory for the free energy. This av-

eraging r e d u c e s to computing the average values of

o r d e r e d products of var ious n u m b e r s of o p e r a t o r s for

the e lec t romagnet ic field and the p a r t i c l e s , for e x a m -

ple :

{Tx {Aa (rv
r2, та) г|> (r3, т3) яр (r4, (2.4)

E x p r e s s i o n s of th i s s a m e type o c c u r in quantum field
theory.

The Feynman d i a g r a m technique i s b a s e d on t h e
following two p r o p e r t i e s of the equations of field t h e -
ory : f i rst , on the poss ibi l i ty of r e p r e s e n t i n g al l quan-
t i t ie s of the theory ( S - m a t r i x e t c . ) as averages of
o r d e r e d p r o d u c t s ( T - p r o d u c t s ) of v a r i o u s n u m b e r s
of field o p e r a t o r s ; and secondly, on Wick's t h e o r e m ,
according to which the average of a T-product of any
n u m b e r of o p e r a t o r s for f ree p a r t i c l e s is e x p r e s s e d
in t e r m s of p r o d u c t s of al l poss ib le a v e r a g e s over
p a i r s of t h e s e o p e r a t o r s . The p a i r a v e r a g e s a r e d e -
s c r i b e d by the above-mentioned G r e e n ' s functions for
the f ree p a r t i c l e s . Thus the average of any n u m b e r
of quant i t ies i s e x p r e s s e d in t e r m s of t h e s e G r e e n ' s
functions.

F o r m u l a s (2.1), (2.2), and (2.4) show that the f i rs t
p r o p e r t y a l so holds in the t h e r m o d y n a m i c theory. It
a l so t u r n s out that in this c a s e Wick's t h e o r e m r e -
m a i n s valid, but h e r e it b e c o m e s a s ta tement which
is exact only a s the total number of p a r t i c l e s N tends
to infinity ( for a given d e n s i t y ) : m o r e p r e c i s e l y ,
Wick's t h e o r e m i s valid to t e r m s of o r d e r l / N . Ap-
plying Wick's t h e o r e m to e x p r e s s i o n s of the type (2.4)
we obtain, for example:

(Tx [Aa(г!, тх) At(rv t 2 ) г|>(r3, T3ft)(r4, T4)}>

= (Tx{Aa(rv т,)Л р(г 2, т2)}>(Гт {г|)(г3, Т з Ж ' 4 . *4)}>,

(Tx {Aa (r,, t,) At (г2, т2) Ay (r3, T 8) Ай (r4, T4)}>

= {Тх{Аа(Г1, Т ! ) ^ ( г а 1 т2)}>{Тт{Л¥(г3, т 3)Л в(г 4, т4)})

+ (Гх{Аа(тг, т , ) Л ( ' 8 . т3)}>(Гт{.4э(г2, т2)Лв(г4)т4)}>

+ {Тх {Аа (г„ хх) А6 (т„ т4)} > {Тх {Лр (г2, та) Ау (г3, т„)}>

e t c . It i s c l e a r that the technique thus developed i s
completely analogous to the field theory technique,
with the one difference that the z e r o t h o r d e r G r e e n ' s
functions for the f ree p a r t i c l e s and photons a r e r e -
placed by the t e m p e r a t u r e G r e e n ' s functions for the
free p a r t i c l e s

and the photons

(2.4a)

(2.4b)

and in place of an integrat ion over the t i m e between
infinite limits, there appears an integration with r e -
spect to the "imaginary t i m e " т between the limits
zero and 1/T.

The Feynman diagrams which describe the cor-
rections to the free energy have the form of closed
loops. For the case of interaction of particles with
the electromagnetic field the diagram for second order
is shown in Fig. la, the diagrams for fourth order in
Fig. lb, lc , and Id. (The solid lines show the Green's
function of the particle, the dashed lines the Green's
function of the photon.) We note that in the corrections
for any order of perturbation theory one should include
only connected diagrams of that order, i.e., diagrams
which do not split up into parts which are not con-
nected by any lines. (The order of a diagram is ob-
viously equal to the number of vertices in the diagram.)
For example, the diagram of Fig. 2 should not be in-
cluded in the sixth order corrections. This property
is related to the fact that the expression for the free
energy has the form In < . . . > . It can be shown that
in taking the logarithm all the unconnected diagrams
cancel one another.

o : : : o

b)

FIG. 1

FIG. 2

The perturbation series for the free energy, how-
ever, has an unpleasant property. It turns out that the
diagrams appear in it with a coefficient which depends
essentially on the order n, namely with the coefficient
l/n. (A coefficient of the form a11, with a constant a
which is common to diagrams of all orders, would ob-
viously be unimportant, since a can for example be
included formally in the charge.) This property of
the series for the free energy makes it practically un-
suitable for problems where the coupling constant is
not small and where one has to sum infinite sequences
of diagrams. Fortunately, it is present only in dia-
grams which have the form of closed loops, whereas
for diagrams which have external lines the coefficients
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do not depend essentially on the order of approximation
in perturbation theory.

Among these latter diagrams, the most important are
diagrams with two free ends, for example, diagrams
of the type of Fig. 3. The sum of all possible coupled
diagrams with two external photon lines is called the
total temperature Green's function of the photon. It

- - O -

FIG. 3

obviously depends on eight variables: the space coor-
dinates and the " t i m e s " т of the free ends. It is not
difficult to write an analytic expression for it in terms
of the operators in the interaction representation [cf.
(2.4b)]:

i . т * ) = - "

A n a l o g o u s f o r m u l a s a l s o a p p l y f o r t h e G r e e n ' s f u n c -

t i o n s o f t h e p a r t i c l e s . W e a l s o g i v e a v e r y u s e f u l f o r -

m u l a w h i c h e x p r e s s e s t h e t o t a l t e m p e r a t u r e G r e e n ' s

f u n c t i o n o f t h e p h o t o n i n t e r m s o f t h e o p e r a t o r s i n t h e

S c h r o d i n g e r r e p r e s e n t a t i o n :

f - Sp {e

[

e-H (т,-т8) A

2 ) gH (Ti-T8)^

(2.5)

The formula for the Green's function of the free
photon is obtained from this by the substitution H —- HQ
F - F o .

From formula (2.5) it is immediately clear that ®
is a function of the difference Tt - т2 = т CS)ap = ® a £
(r1 ( r2, T ) ) . In the case of systems which are uniform
over space, the coordinates will also appear only in
the form of a difference rj — r2.

The total temperature Green's function is related
to the free energy by very simple and convenient for-
mulas. Knowing it is sufficient to determine all the
thermal properties of the system. However, its actual
calculation by the Matsubara technique is still quite
difficult. The point is that the success of field theory
methods is related to a very high degree to the auto-
matic procedure in computations which is achieved by
expanding all quantities in Fourier integrals over all
the coordinates and times. However, in Matsubara's
method this automatic procedure does not exist be-
cause of the finite interval of variation of т: Ф° and
®° are discontinuous functions of the variable т, and
all the integrals with respect to т actually split up
into integrals over a very large number of regions,
the number of which increases very rapidly (~ 2 n )
with increasing order of approximation.

The Matsubara technique can be improved consid-
erably if one uses certain general properties of tem-
perature Green's functions (Abrikosov, Gor'kov,

Dzyaloshinskii,8 Fradkin 9). As already pointed out,
the Green's function depends only on the difference
T i ~ T2> а п £* a s s u c n is given in the interval from
- 1/T to 1/T. It is therefore useful to expand it in
a Fourier series in the variable т = Tj - т2:*

® (In) = 4 dx> = nnT (2-6)

[and similarly for Ф ( т ) ] .
The following property of © is very important for

transformations of the perturbation series. From ex-
pression (2.5) for Ф it follows that the photon Green's
function for negative values of т is related with Ф for
т > 0 by the simple relation

- ! - ) , t < o . (2.7a)

Such a connection results obviously also for the Green's
function of bosons. For fermions we have, in place of
(2.7a)

- l ) , T < 0 . (2.7b)

Formulas (2.7a) and (2.7b) are easily derived if one
realizes that one can change the order of the operators
under the trace cyclically in (2.5) and in the analogous
formula for fermions. Relations (2.7a) and (2.7b) are
obviously also valid for the free Green's functions.

If furthermore we consider that an even number of
fermion lines enter at each vertex of the Feynman dia-
gram, it is easy to see that all of the integrals
1/T
J . . . dr in the perturbation series can be replaced
/

J

1/T/
by 2 J • • • dT, after which the transformation is eas-

- 1 / T
ily carried out. Relations (2.7a) and (2.7b) also have
the consequence that, in the Fourier expansion for the
boson (and photon) Green's function, there are only
components with "frequencies" £n = 27mT, while in
the expansion for the fermion function there are only
components with £n = (2п + 1)тгТ.

Making a Fourier transformation with respect to
the coordinatest and the " t i m e " т in all the terms of
perturbation series for the Green's function (or for
the free energy), one can easily show that the proce-
dure thus obtained is completely equivalent to the dia-
gram technique of quantum field theory in the impulse
approximation. Each line of the diagram corresponds

*The Fourier components © (£n) should be distinguished
from the function © ( т ) itself by still another index; we do not
do this in order to abbreviate the notation.

TThis i s of course possible only in the case of bodies
which are uniform in space.
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to a free particle Green's function (#°(p, | n ) , and
each vertex to а б function which expresses the con-
servation laws Sp = 0, S | n = 0. Integration and sum-
mation is carried out over all the momenta and " f r e -
quencies" corresponding to each of the lines. For-
mally, the expression for the corrections coming from
any diagram in this theory can be obtained from ex-
pressions which would correspond to this diagram in
field theory by making the substitutions

•«En,

T h e c l o s e c o n n e c t i o n o f t h e t h e o r y p r e s e n t e d h e r e

w i t h t h e t e c h n i q u e o f q u a n t u m f i e l d t h e o r y m a k e s i t

p o s s i b l e t o a p p l y m a n y o f t h e r e s u l t s o f t h a t t h e o r y t o

t h e p r e s e n t c a s e . A s i n f i e l d t h e o r y , t h e t e m p e r a t u r e

G r e e n ' s f u n c t i o n s s a t i s f y a n i n t e g r a l e q u a t i o n o f t h e

t y p e o f t h e D y s o n e q u a t i o n .

F o r e x a m p l e , l e t u s c o n s i d e r d i a g r a m s o f v a r i o u s

o r d e r s f o r t h e G r e e n ' s f u n c t i o n o f a p h o t o n . In a d d i -

t i o n t o t h e d i a g r a m i n F i g . 3 , t h e r e a r e a l s o d i a g r a m s

o f t h e t y p e o f F i g . 4 a n d o t h e r m o r e c o m p l i c a t e d o n e s .

T h e w h o l e a g g r e g a t e o f d i a g r a m s c a n b e p i c t u r e d b y

t h e m e t h o d d e s c r i b e d i n F i g . 5 , w h e r e t h e s h a d e d l o o p

d e n o t e s a s u m o f a l l g r a p h s w h i c h d o n o t b r e a k u p i n t o

p a r t s a n d w h i c h a r e c o n n e c t e d t o o n e a n o t h e r o n l y b y

a s i n g l e p h o t o n l i n e . S u c h a s u m m a t i o n o f d i a g r a m s

i s o b v i o u s l y p o s s i b l e o n l y b e c a u s e t h e c o e f f i c i e n t i n

f r o n t o f t h e d i a g r a m d o e s n o t d e p e n d e s s e n t i a l l y o n

i t s o r d e r ( i n t h e s e n s e i n d i c a t e d a b o v e w i t h r e s p e c t

t o t h e s e r i e s f o r t h e f r e e e n e r g y ) .

Thus, to calculate the total Green's function of the
photon one must sum the series which is shown sche-
matically in Fig. 5. It has the form (for the case of
a spatially inhomogeneous system)

l t r2; ln) =
t r2; a v (r l t r3; \n r3, r4;

S v K . r3; i n ) n v e ( r 3 , r4; g n ) ® X » ( * 4 . V . U

(r6, r6; ln) %%?,(г„ r2; gn) dt3drt drsdr,+. ..

Here П о ^ г ^ r 2 ; | n ) i s t n e so-called polarization
operator of the system, which is equal to the sum of
the graphs shown in Fig. 5 by the shaded loops. Re-
writing (2.8) as follows:

Фар ('l. 'a! £„) = ®ар К , «У. ln)

rfrjdr^Sv^, r3; i n )n v 6 ( r 3 , r4; ln) {ф°6р(г4, r2; У

Л 5 Л „ ф ^ ( г 4 , г5; |„)ПцУ(г5, re; | n)® vp(r e, r2; £n)

r6 rfre dr, dr, ф?„ (r4, r6; ln) П ^ (r5, r6; | n ) ф ^ (г„ г,; £„)

X П м (г„ г8; £п) ®°р (г8, г2; £„) + .

it is easy to show that it is an integral equation for Ф,
of the form

, r4; у £>°efs(r4, r2; r4. (2.9)

The summation process is shown graphically in Fig. 6.
In the general case it is not possible to write a

closed equation for the polarization operator. Never-
theless, the Dyson equation is very useful in various
specific problems, since it frequently is possible to
find approximate equations for the polarization oper-
ator which enable one to go beyond perturbation theory.

(2 .8 )

In the case of long-wave photons, which is of inter-
est to us, the polarization operator, as we shall see
later, can be expressed in terms of the dielectric con-
stant of the body.

3. THE ENERGY OF A CONDENSED BODY ASSOCI-
ATED WITH LONG-WAVE ELECTROMAGNETIC
FLUCTUATIONS

Let us proceed now to solve our main problem —
the computation of the additional terms in the energy
of a condensed body which come from long-wave fluc-
tuations of the electromagnetic field. To do this we
separate out of the total Hamiltonian of the system a
part describing the energy of interaction of the par -
ticles with the electromagnetic field with wave lengths
much greater than interatomic distances (A. » a ) ,
and we treat it as a perturbation*

tf = ff0 + tfint= Ho - J Aa (r) /„ (r) d3r.

The interaction of the particles (electrons and nuclei)
with the short-wave field we assign to the unperturbed
Hamiltonian. From these we get the short range inter-
atomic forces which keep the body in its condensed

*The separation of the long-wave part means mathemati-
cally that the integral in this formula is cut off somehow at
small distances. However, we shall not introduce this cutoff
explicitly since the answer does not depend on it.
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sta te . We a lso include in the unperturbed Hamiltonian
the energy of the long-wave e lec t romagnet ic field in
vacuum.

Let us now calculate the c o r r e s p o n d i n g c o r r e c t i o n s
to the f ree energy. As i s eas i ly seen, the r e s u l t s p r e -
sented in the preceding sect ion a r e not ent i re ly app l ic-
able in our c a s e . The point is that to establ i sh the
M a t s u b a r a technique it was v e r y i m p o r t a n t to m a k e
use of Wick's t h e o r e m , according t o which the average
value of a product of a l a r g e n u m b e r of o p e r a t o r s can
be e x p r e s s e d a s a product of v a r i o u s p a i r a v e r a g e s .
But Wick's t h e o r e m i s valid only if the Gibbs a v e r a g e
is taken o v e r s t a t e s of noninteract ing p a r t i c l e s . In
our c a s e , the l a t t e r i s valid only with r e s p e c t to the
o p e r a t o r s of the long-wave e lec t romagnet ic field, while
the averaging of the o p e r a t o r s for the p a r t i c l e s o c c u r s
over t h e i r s t a t e s in the condensed body and t h e r e f o r e
the a v e r a g e values of the p r o d u c t s of the o p e r a t o r s
will no longer r e d u c e to p a i r a v e r a g e s .

F o r this r e a s o n we p r o c e e d a s follows: In the p e r -
turbat ion s e r i e s for the f ree energy ( o r for the G r e e n ' s
function of the long-wave photons) the p a r t i c l e o p e r a -
t o r s a p p e a r only in combinations of the form

T J ip (rz, t , ) ! ^ , т2) г|з(г2, т,)}>,

, Ж г 2 , T2)t (г2, т2)

X ^(гз, Т3)1|з(г3,т3)1р(г4, т4)г|з(г4, t4)}>

e t c . , i .e . , the n u m b e r of o p e r a t o r s under the averaging
sign is always a mult ip le of four, where they always
appear in pairs of the type ф (rt, Tj) ф ('i> Tj). We r e -
move from the average value of the product of eight
operators the quantity

(Tx

x

X

(r2, т2) -ф (r2,

4, т4

З , T , ) J >

4, т4)г|)(г4, т4)}>

Ж ^ , т4)}>

X (Tx $ (г2, т2) г|) (г2, т2) ф (г3, т8) i|) (г3, т3)})

( i . e . , the value which would be obtained if the average
w e r e c a r r i e d out only to al l poss ib le f o u r - t e r m a v e r -
a g e s of th i s t y p e ) , and we call th is difference an i r r e -
ducible q u a d r i l a t e r a l and denote i t by a shaded s q u a r e .
F u r t h e r m o r e , f rom the average value of twelve o p e r -

ators, we subtract the quantity obtained when we split
it up into all possible combinations of four and of eight
operators. The remaining quantity we call an irreduc-
ible hexagon (the shaded hexagons in Figs. 7 and 8)
etc.

It is now not difficult to see that the perturbation
series will be described by diagrams of the type of
Fig. 7 (for the free energy) and Fig. 8 (for the
Green's function of the long-wave photons). The
shaded loops show the quantity obtained from the av-
erage value of four particle operators. The fact that

a)

b)

FIG. 7

we have used for it the symbol which was applied in
the previous section for the polarization operator will
be justified by the later results.

Physically it is immediately clear that diagrams
containing irreducible quadrilaterals, hexagons, etc.
are negligibly small in number since they take into
account various nonlinear processes of the type of
the scattering of light by light. This statement can
also be proved in the following fashion: Since we have
included in H m t only the interaction with long-wave
photons, we should assume that all the integrals over
the momenta of the virtual photons are cut off at some
value k0 which is much smaller than the reciprocal of
the interatomic distances l/a. It is therefore obvious
that each long-wave photon line over which an integra-
tion is carried out gives a small quantity of the order
of koa. The only diagrams in which the integration
over photon momenta is not carried out are the dia-
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grams of Figs. 7a and 8a. (One should realize that
the Green's function of the photon in zeroth approxi-
mation depends only on the coordinate difference.)

Thus, in the approximation where koa « 1, only
the diagrams of the type of Fig. 7a give a correction
to the free energy. The corresponding expression for
the free energy is

3, r4;

('4, «Y. ln)
 dtl

, r2; | n ) Щу (r2, r3;

r2m; |n)®°va (r2m, r i dr
2m+ . . .

(3.1)

where П а д ( r t , r 2 ; | n ) is the quantity indicated on the
diagram by the shaded loop. One should also note the
coefficients in front of the integrals ( l /m for the
m-th t e r m ) , which represent the contributions of
the various diagrams.

Including in this same approximation for the photon
Green's function only the contribution of the diagram in
Fig. 8a by the same procedure as was used in the p r e -
ceding section for obtaining the Dyson equation, we ob-
tain for it an equation which coincides formally with
(2.9); however, in our approximation the polarization
operator П which was derived in the preceding section
does not Include the contribution of virtual photon lines
and is a fixed function, depending only on the properties
of the body.

The fact that the wave lengths of electromagnetic
waves which are of interest to us are large compared
with interatomic distances enables us to express the
polarization operator (and with it the photon Green's
function and the free energy of the system) in terms
of only the macroscopic characteristics of the body.
The only quantity which characterizes the interaction
of the condensed body with long-wave radiation is its
dielectric constant.*

The dielectric constant e in the case of absorbing
media is an integral operator acting on functions de-
pending on the ordinary time variable t. Because of
this it is difficult to take over directly the concept of
a dielectric constant into a theory which operates with
an imaginary " t i m e " т. We shall therefore use the
connection obtained by Abrikosov, Gor'kov, and Dzyalo-
shinskii8 (cf. also Landau10) between the temperature
Green's functions and the Green's functions of field
theory.

It turns out that the temperature Green's function
of the photon ^а/З^и r2> £n) *s related simply to the

so-called retarded Green's function of the electromag-
netic field D^o( r t , r2; t ) defined as:

*Here and throughout the following we shall completely
neglect magnetic properties of matter, since in the frequency
ranges of importance to us they play no role whatsoever.

-н)/г [Aa { t v h

2, t,)Aa(rv

2) у

(3.2)

[Here A a ( r , t ) are Heisenberg operators.] Calcula-
tions analogous to those carried out in the paper of
Abrikosov et al. 8 for the case of a homogeneous body
lead to the conclusion that ®а/з(г1> Tz> £n) i s e x ~
pressed in terms of the Fourier component of the func-
tion D R . If we define

££р (т„ г2; со) = \ е««" D^ (Tl, r2; t) dt,
—со

t h e n f o r | n > 0 w e h a v e t h e r e l a t i o n

T r r

2 ; ' i n ) -
(3.3)

The value of Фауз for | n < 0 can be obtained from the
formula for the complex conjugate quantity Ф*^ which
follows directly from the definition of the temperature
Green's function (2.5) and the hermiticity of the opera-
tors for the electromagnetic field:

ар ( г х
( 3 . 4 )

W e n o w g i v e t h e e q u a t i o n f o r t h e r e t a r d e d - f u n c t i o n

D^. An important point here is the gauging of the vec-
tor potentials. The tensor D§o (or ® а а) has alto-
gether ten different independent components. However,
there remains a considerable arbitrariness associated
with gauge invariance. In fact, the quantities D§o,
which are formed from the components of the vector
potential, do not themselves have physical significance,
but rather only the six corresponding quantities which
are formed from the components of the electric field
intensity. Thus there are only six physical conditions
imposed on the ten quantities, so that we have four ar-
bitrary functions at our disposal. This arbitrariness
can be used to make the components D ^ and D ^ equal
to zero. This choice obviously corresponds to a gaug-
ing with zero scalar potential. In this case the Heis-
enberg operators E and H are related to A by the
formulas*

E = -
dA
dt rotA.

In order to express D ^ in terms of e (со) we pro-
ceed as follows: Let us imagine that our system, con-
sisting of a body and electromagnetic radiation in equi-
librium, is placed in an external field produced by an
external current j e x t ( r , t ) . If we limit ourselves to
the case of low frequencies, we can write the equa-
tions for the average values, i.e., the Gibbs averages
of the electric and magnetic field intensities < E ( r , t ) >

*rot A = curl A.
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fies the equations

{e (r, iln) Й , + rot i m rotmI} %lh (г, г'; gn) = - 4лб (г - г') bih

and < H ( r , t ) > . These equations natura l ly coincide
with the usual Maxwell equations in a medium with
d i e l e c t r i c constant e, and ( in t i m e F o u r i e r compo-
nents ) have the form

rot (H (г, со)) = 4iljexVr, со) — ie (со) со (Е (г, со)),
rot <E (г, со)) = гсо (Н (г, со)).

The averaged vec tor potential < A > in the gauge
chosen by us sat i s f ies the equation

[ (г, со) a>%k - rot u rotth] (Ak (r, co)> = - 4rt/fx t( r, со), (3.5)

whose solution can be wr i t ten in the form

г, со)) = - С Dih (г, г'; со) / ^ ( r ' , со) tfV, (3.6)

w h e r e D^ i s the G r e e n ' s function for equation (3.5).
Dijj, a s we know, sat i s f ies the equation

[s (r, a) o>26u - ro t i m rot m ! ] ~Dlh (г, г', со) = 4лб ;кб (г - r '). (3.7)

h e r e denotes the o p e r a t o r

i s the completely a n t i s y m -

The symbol c u r l ,
eikZ (9/9x;), w h e r e
m e t r i c unit t e n s o r .

On the other hand, < A e x t > in the p r e s e n c e of ex-
t e r n a l c u r r e n t s can be calculated using the appara tus
of quantum field theory. The o p e r a t o r for the vec tor
potential Ае х*-(г, t ) in this case is related to the op-
erator A ( r , t ) in the absence of external currents by
the relation

where S (t) is the S-matrix of field theory, which in

our case has the form

•W*) = Texp ( i { dt\ dr j e ! r t ( r , t) A(r, t)\ .

H e r e T i s the o r d e r i n g o p e r a t o r over the usual t i m e .
To t e r m s of f i r s t o r d e r in j e x * the e x p r e s s i o n for

< A e x t > now has the form

(Aext(r, t))=-i dt' dt',T\t' t')({Ak(r' . 0

(3.8)

The r ight s ide of (3.8) can be
the r e t a r d e d G r e e n ' s function
definition (3.2) we have

j r e s s e d in t e r m s of
According t o the

(A?\T, t))=- ^ dt' d*t'

Changing to t i m e - F o u r i e r components in this r e l a -

tion, we finally obtain

r, a)>= - ^ rfV £ « ( ' . r ' : «0 / * " V . «)• (3.9)

Comparing (3.9) and (3.6) we s e e that , because of the
a r b i t r a r i n e s s of j e x ^ , the function DJ^ coincides with
the G r e e n ' s function of (3.5).

Thus D ^ sa t i s f ies Eq. (3.7). Replacing oi by i £ n

in (3.7), we find that the function ® i k ( r , r ' ; £ n ) s a t i s -

(3.10)

for £ n > 0.

The d ie lec t r i c constant which appea r s in th is equa -
tion for imaginary values of the frequency i s r e l a t ed
simply to the imaginary p a r t of the d ie lec t r i c constant
for r e a l f requencies , e" (w) (see, for example , the book
of Landau and Lifshitz,1 1 Sec. 58):

e ( i £ n ) i s a r ea l posi t ive monotonically dec reas ing
function of | n .

Because e ( i | n ) i s r e a l , the Green ' s function % k
(for £ n > 0) i s a lso r e a l . Its value for £ n < 0 is d e -
t e rmined by the re la t ion [cf. Eq. (3.4)]

-£„ ) • (3.12)

Using the Dyson equation (2.9) it i s easy to show that
the polar iza t ion ope ra to r

r,; - (3.13)

sa t i s f ies the s a m e re la t ion .
Now we can e x p r e s s the polar iza t ion ope ra to r of

the sys t em in t e r m s of e ( i £ n ) - T o do this we opera te
on Eq. (2.9) (for our choice of the gauge the compo-
nents of ^a/3 with a = 0 o r /3 = 0 a r e equal to z e r o )
from the left with the opera to r

SnSi ; rot,

Making use of the fact that ® sa t i s f ies Eq. (3.10), and
Ф 0 the s a m e equation with e ( i £ n ) = 1, we obtain:

\ П 1 ( (Гц г'; g j®, f t ( r ' , r2; g J W

_ e ( r 1 , ign) — 1 ; , ф , . t \

f r o m w h i c h w e i m m e d i a t e l y h a v e ( f o r £ n > 0 ) :

D e t e r m i n i n g t h e p o l a r i z a t i o n o p e r a t o r f o r | n < 0 f r o m
t h e r e l a t i o n (3 .13) , w e f i n a l l y h a v e f o r a l l £ n ,

П,ь (г., г2; gn) = e ( r " ' ' l n l ) ~ 1 Sitf (r, - г.). (3.14)

The fact that the polarization operator is proportional
to 6 ( r t — r 2 ) is associated with the neglect in the ma-
crosopic theory of effects of space correlations. These
effects are important in metals (especially in super-
conductors) at frequencies where an anomalous skin
effect occurs. However, in the following we shall be
interested in much higher frequencies (infrared and
above) in which region there is no spatial dispersion.

Having expressions for the polarization operator
in terms of the dielectric constant of the body, we
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could in pr inc ip le compute the cor responding c o r r e c -
t ion to formula (3.1). [The Green ' s function of the
free photon can be found d i rec t ly from the definition
(2.4b) o r by solving equation (3.9) with e = 1. ] But,
as we have a l ready r e m a r k e d , the s e r i e s (3.1) cannot
be summed d i rec t ly . Instead we de te rmine the add i -
tional p r e s s u r e ( m o r e p rec i se ly , the additional s t r e s s
t e n s o r ) which a r i s e s a s a r e s u l t of in te rac t ion with
the long wave fluctuating field.

For this purpose we imagine that the body i s s u b -
jected to a smal l deformation with d isplacement vec tor
u ( r ) . Then the change in the f ree energy 6F i s equal
to J f u dV where f is the force p e r unit volume of the
body in the deformation. The cor responding change of
the unper turbed energy 5F 0 is

— \ xigTadpodV,

where p 0 (p , T ) i s the p r e s s u r e , when we omit the c o r -
r ec t ions , at the given density and t e m p e r a t u r e T. F r o m
this d isp lacement t he r e a r i s e co r rec t ions only in the
polar iza t ion opera to r , s ince it alone depends on the
p r o p e r t i e s of the medium:

Snlft (tlt r2; | n ) = -^ £»6 (P! - г2) бе (г„ i | £n | ) uik.

Varying the s e r i e s (3.1) we obtain

' i ; s jUft iCi . **; 6m) аде*.»; £j<

i?ft(p, r i ; |„)П к 1 (Pt, r2; U®?m(r2, r3; i j

X Ф», (r4, r; ln)

The series in curly brackets is just the series for the
photon Green's function corresponding to the diagrams
of Fig. 8a. Therefore

Using relation (3.12), we finally obtain:

6F= OF,—£• 2 ' Ц \ Ф„(г, г; У 6e(r, Hn)d°r. (3.15)

The prime on the summation symbol means that the
term with n = 0 is given only a weight of V2. We r e -
mind the reader that | ц = 2ттТ.

The variation of e is related to the displacement u
as follows:

deбе = — u grad 8 — Q ~ div u. (3.16)

Substituting t h i s in (3.15) and c a r r y i n g out an i n t e g r a -
tion by p a r t s , we obtain for the force acting on unit
volume of the body the formula

f = - grad p0 - -^ r, r; U grad e

n=0

(3.17)

This formula enables us without difficulty to com-
pute the correction to the chemical potential of the
body. For this purpose we note that at chemical equi-
librium f = 0. Equating the expression (3.17) to zero
and noting that for a fixed temperature we have the
relations

grad e (Q, T) = pQ grad;e, dp0 (Q, T) = Q d£0 (e, Г) (3.18)

[where £0(p, T) is the unperturbed chemical potential
of the body, per unit mass ], we obtain after a simple
transformation:

Q grad С = 0, t (с, Г) = £0 (Q, T) - ~ 2 ' ЙФн (г, г; У | .

(3.19)

We know that the condition of equi l ibr ium of any i n -
homogeneous body is the constancy throughout the
body of the chemical potential ; it i s t h e r e f o r e c l e a r
that the expres s ion (3.19) d e t e r m i n e s this potential
( taken p e r unit m a s s ) .

Let us now t u r n to a computation of the p r e s s u r e .
To do th i s we m u s t change the express ion for the force
acting on unit volume of the body (3.17) to a form

/ . - - § • (3-2 0>

w h e r e crik i s t h e s t r e s s t e n s o r which we want to find.
The computat ions r e q u i r e d for this p r a c t i c a l l y coin-
cide s tep by s tep with the calculat ions m a d e in e l e c -
t r o d y n a m i c s for finding the Maxwell s t r e s s t e n s o r .
(Cf., for example, r e f e r e n c e 11, Sec. 15.)

However we shall p r e s e n t t h e m h e r e brief ly.
As a p r e l i m i n a r y we introduce, in addition to the

photon G r e e n ' s function % k ( r » *"; | n ) , two o t h e r
functions:

( п 4 ( n)

Фй(р, г'; Б„) = гоЦ,го«тф1 ш(р, г';
(3.21)

which are made up of the operators for the electric and
magnetic field according to the same rules by which
% к was made up from the operators for the vector
potential.

We rewrite the expression for the force (3.17) in
the new notation:*

- Q I Ф& (r, r; | n ) } - J L 2 ' ш (r, £|n) ± %%, (r, r; gA).

(3.22)

*For purposes of brevity we shall omit the arguments f
and i ^ of the functions Э1 к and e in the intermediate for-
mulas.
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Consequently we have only to transform the last term
in (3.22). We rewrite it (disregarding the summation
and the factor T/4?r) in the form

е ( г ' ) А ф * ( r , г ' ) + 8 ( г ) ^ ф * (r, p'),

w h e r e we intend to s e t r = r ' a t the end of t h e compu-
tat ion. P r o c e e d i n g with fur ther obvious t r a n s f o r m a -
t ions, we obtain

(3.23)

From Eq. (3.10) for the Green's function we can obtain
the identities

i(r,r') = 4r tJLa(r-r ' ) ,-§-

Substituting them in (3.21) and setting г = г', we find:

Substituting this in (3.22) we obtain finally that the
force can be expressed in the form (3.20) with the
stress tensor

+ е(г,1-Бя)ФЙ(г,г;!п)

(3.24)

However, th i s formula st i l l does not have a d i r e c t
physical meaning, s ince the quanti t ies D ^ ( r , r ' ) and
S>^ ( r , r ' ) which a p p e a r in it go to infinity at r = r ' .
This i s r e l a t e d to the fact that if we do not m a k e an
a p p r o p r i a t e cut-off, t h e r e i s an infinite contribution
to o-jjj of f luctuations with s m a l l wave lengths, which
have no r e l a t i o n to the inhomogeneity of the body in
the s e n s e that t h e i r contr ibutions a r e the s a m e both

in homogeneous and inhomogeneous bodies which, at
a particular point, have the same value of e. The con-
tribution of long-wave fluctuations to the s t ress tensor
of an inhomogeneous medium, in which we are inter-
ested, does not depend on the nature of the cut off, and
is obtained by the appropriate subtraction in formula
(3.24). Actually, the Green's function ® ^ ( r , r ) (and
similarly for ф]£) in this formula should be under-
stood to be the limit of the difference

lim[®£(r, r ' ) - $ 5 ( r , r')],

where Ф ^ is the Green's function of a homogeneous
unbounded medium whose dielectric constant coincides
with that for the inhomogeneous body at the point at
which the s tress tensor is computed. To avoid too
complicated formulas, we shall, in the following,
write formula (3.24) in its previous form, with the
understanding that the subtraction we have indicated
has already been carried out. Then p 0 (p, T) is the
pressure in the unbounded homogeneous medium for
given values of p and T.

The same remarks also apply to formula (3.19) for
the chemical potential which, when we take account of
(3.21), can be written in the form

(3.25)

We note that among inhomogeneous media we also
include systems which consist of several bodies each
of which is homogeneous. In such a case in solving
Eqs. (3.10) the components of ®ik must satisfy defi-
nite boundary conditions at the boundaries of the bodies.
We remind the reader that in Eqs. (3.10) the independ-
ent variables are the coordinates r, while the coordi-
nates r ' play the role of parameters. Therefore we
are dealing with boundary conditions on the variables
r. These conditions correspond to continuity of the
tangential components of the electric and magnetic
fields. Since to the point r there corresponds [in the
sense of the definition (3.2)] one of the indices i of
the tensor ®ik, the tangential components of the ten-
sors ®S and ФЙ must be continuous in this index.

Formula (3.24) coincides in appearance precisely
with the usual formula for the Maxwell s tresses in an
electromagnetic field, where the quadratic combina-
tions of components of electric and magnetic fields
are replaced by the corresponding functions D ^ and
D|£. However, this analogy should not be given any
too profound significance. The point is that there is
serious reason to think that the concept of a s t ress
tensor for a variable electromagnetic field in an ab-
sorbing medium has no meaning in general. Di formula
(3.24), however, we are dealing not with an arbitrary
electromagnetic field, but with the thermodynamic
equilibrium fluctuation field in the medium.

Formulas (3.24) and (3.25), which were obtained by
Dzyaloshinskii and Pitaevskii,5 in principle solve the
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problem of computing the van der Waals' part of the
thermodynamic quantities for a body, reducing it in
each specific case to the solution of Eqs. (3.10) for
the Green's function

4. MOLECULAR FORCES BETWEEN SOLIDS

a) Derivation of the general formula. Let us apply
the general theory developed above to computing the
van der Waals' forces which act between solid bodies
whose surfaces are brought to very short distances
from one another. When this is done, the gap separat-
ing the bodies may still be filled with some liquid. In
the following we shall denote by indices 1 and 2 quan-
tities referring to the two solid bodies, and by index 3
quantities referring to the medium which fills the gap.

Although we shall assume that the gap is plane par -
allel, it should be kept in mind that in actuality for
correct formulation of the problem of the force of in-
teraction between bodies, we must regard at least one
of them as having finite dimensions and as being sur-
rounded on all sides by medium 3, so that we can de -
termine the total force acting on it; in view of the very
rapid fall-off of molecular forces with distance, this
resulting force actually can be ascribed completely
to the forces acting through the narrow gap separat-
ing the two bodies.

The total force acting on body 2 can be computed
as the total flux of momentum flowing into the body
from the medium 3 which surrounds it; i.e., it can be
written in the form of an integral ^aikdfk over the
surface surrounding it. Here it should be kept in
mind that medium 3 is in thermodynamic equilibrium,
one of the conditions for which consists in the con-
stancy of its chemical potential: £ = const, where £
is given by formula (3.25). Since corrections to the
density of the medium associated with long wave fluc-
tuations of the field are small, we may assume that
the density p is constant along medium 3, while the
change in chemical potential £0(p,T) coincides [by
virtue of (3.18)] with the change of the quantity
po(p, T) /p . Therefore the condition £ = const can be
written as

In view of this condition the part (3.24) of the total
stress tensor is a constant uniform pressure through
the liquid and gives no contribution to the total force
acting on the body. Dropping this constant part, i.e.,
subtracting from cr^t the left side of Eq. (4.1) multi-
plied by 6ik, we come to the conclusion that to deter-
mine the required force it is actually sufficient to
write the stress tensor in medium 3 in the form

i r 2 '

We direct the x axis perpendicular to the plane of
the gap, whose width we denote by I (so that the sur -
faces of the bodies 1 and 2 are the planes x = 0 and
x = I). Then, by virtue of what has been said above,
the force F acting on unit area of the surface of body 2
is equal to

'; U i; E»)+*>£('.
(4.3)

A positive force corresponds to an attraction of the
bodies, a negative force to a repulsion.

The Green's function Ф^к( г» г ')> because of the
homogeneity of the problem along the у and z direc-
tions, depends only on the differences y - y ' and z - z ' .
We make a Fourier transformation with respect to
these variables:

and draw the у axis along the vector q. Equations
(3.9) for the Green's function take the form:

x')= - 4 я в ( * -( я » 1 - 9 1 ~ E

where w = v e | n + q 2 , and x' plays the role of a pa-
rameter (the components of the Green's function
®xz and S)yZ are equal to zero, since the equations
for them are homog-eneous).

The solution of this system reduces to the solution
of just two equations:

(4.4)

after which © x y and
t are determined by

4 я » / „ _ . , N (4.5)

The boundary conditions corresponding to continuity
of the tangential components of the electric and mag-
netic field stresses reduce to the requirement that the
quantities © E

k , Ф^к, $>|^, and Ф^. be continuous, or,
what is the same thing, that the quantities

(4.2) rot,,,®,,,,
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be continuous. Using the first of the equalities (4.5),
we find that at the boundary of separation the quantities

— — Ф
vv w1 dx vv

(4.6)

must be continuous.
Since we are interested only in the Green's function

in the region of the gap 3, we can immediately restr ict
ourselves to the case of 0 < x' < I. In the region 0 < x
< I the functions Фуу and £>Z2 are determined by Eqs.
(4.4) with e = e3, w = w3 = V e3^ + q2 . fii regions 1
(x < 0) and 2 (x > I) they satisfy the same equation
with the right sides omitted (since now we always have
x * x ' ) with elf Wj and e2, w2, respectively, in place
of e, w.

The subtraction which was mentioned at the end of
Sec. 3 reduces to the following: we should subtract
from all the functions ©ik in the region of the gap
their values for e t = e2 = £3 and Wj = w2 = W3. As a
result, in particular, we can immediately omit the
term with the 6 function in the second of the relations
(4.5), so that the functions ® x y and ®xx in the region
of the gap are given by the formulas:

_d_,
• dx

iq
dx

(4.7)

Before we go on to solving the equations, let us
make one further remark. The general solution of
Eqs. (4.4) has the form f + ( x - x ' ) + Г ( х - х ' ) . Using
(4.4), (4.7), and the definition of the functions © ^ and
5>^, one can show that the parts of the Green's func-
tions which depend on the sum x + x' give no contribu-
tion to the expression (4.3) for the force F. We shall
not spend time on this here since this result is obvious
beforehand from physical considerations: setting x = x'
in the solution of the form f (x + x ' ) , we would obtain
a flux of momentum in the gap which would depend on
the coordinates, in contradiction to the conservation
law. In the following we shall therefore as a rule p r e -
sent only the expression for the part of the Green's
functions ©jk which depends only on x — x'.

Let us proceed now to find the function © z z . It sat-
isfies the equations

х<0,

From these we find

x < 0 ,

«TV-'! 0 < x < I.

Determining the constants A, B, C l t C2, from the
boundary conditions of continuity of ® z z and d ® z z /dx,
we find for ® z z :

where

A = 1 — е2шз (4.8)

Subtracting the value of ® z z for щ = w2 = w3 (so that
1/Д goes to zero), we finally obtain

(4.9)11

Similarly, solving the equation for ©yy, we find
(after the subtraction)

(4.10)

(4.11)

and using relation (4.7):

(4.12)

Now computing the quantities Ф^(х, x'; q; | n ) and
^ , x'; q; ^ n ) and substituting them in formula (4.3),

we obtain

n = 0 0

T r a n s f o r m i n g t o a n e w i n t e g r a t i o n v a r i a b l e p u s i n g

t h e s u b s t i t u t i o n q = | n V e 3 ( p 2 — 1 ) a n d c h a n g i n g t o t h e

u s u a l s y s t e m o f u n i t s , w e a r r i v e a t t h e f i n a l e x p r e s s i o n

f o r t h e f o r c e F a c t i n g o n u n i t a r e a o f e a c h o f t h e t w o

b o d i e s ( m e d i a 1 a n d 2 ) , s e p a r a t e d b y a g a p o f w i d t h I,

f i l l e d w i t h m e d i u m 3 ( c f . F i g . 9 ) :

where

dp,

I

-3-

FIG. 9
*sh = sinh, ch = cosh.
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c l t e2, e3 are functions of the imaginary frequency ш
= i£n ( e = e (iijn)), and к is the Boltzmann constant.
The summation is carried out over integer values of
n, and the prime on the summation sign means that
the term with n = 0 is taken with a weight of V2. Posi-
tive values of F correspond to attraction, and nega-
tive values to repulsion of the bodies.

This formula (for e 3 = 1, i.e., for bodies which are
separated by an empty gap) was first obtained by Lif-
shitz4 by a different procedure without using the meth-
ods of quantum field theory. However, the use of these
methods is necessary for its generalization to the case
of a gap filled with an arbitrary medium (Dzyaloshin-
skii, Lifshitz, and Pitaevskii 6).

b) Discussion of the general formula and limiting
cases.* The general formula (4.13) contains the func-
tions e (w) — the dielectric constants as functions of
the frequency w of the field — for both of the solid
bodies ( e t and e2) and for the liquid medium which
fills the space between them ( e 3 ) . We recall that
e (ш) is a complex quantity [ e = e' (ш) + ie"(w)]
whose imaginary part is always positive and deter-
mines the dissipation of the energy of an electromag-
netic wave propagating in the medium. The function
e (w) is related to the index of refraction n and the
absorption coefficient к of the medium by the well-
known relation -/F = n + i/c. As is well known, by
formally treating the function e (ш) as a function of
the complex variable w, one can establish definite
integral relations between e'(w) and e"(u>), the
so-called Kramers-Kronig formulas.

A partial consequence of these formulas is the r e -
lation (3.11), which determines the values of the func-
tion e of the pure imaginary argument w = i£ in
terms of the values of the function e" (w) of the real
argument cj; e ( i | ) is a real quantity which decreases
monotonically from the value e0 (the static value of
the dielectric constant) for | = 0 to unity for | — °°.
It is precisely these functions e ( i | ) which appear in
formula (4.13). We may therefore say that the only
macroscopic characteristics of bodies which deter-
mine their forces of molecular interaction are essen-
tially the imaginary parts е"(ш) of their dielectric
constants, t

Before proceeding to discuss the formulas which
we have obtained, we must make the following general
remark. If two bodies are separated by an empty gap,
the electromagnetic forces computed by us are the

*Most of the results presented in sections 4b, c, and d are
due to E. M. Lifshitz.4

tFormula (4.13) was derived on the assumption that all me-
dia are isotropic. Therefore its application to crystals implies
that it is possible to neglect the anisotropy of their dielectric
constant. Although this is completely permissible in most cases,
it should be kept in mind that anisotropy of bodies leads in gen-
eral to still another physical phenomenon—the appearance of
moments which tend to turn the bodies with respect to one an-
other.

only forces of interaction between the bodies. But if
the gap is filled with some medium, then in this m e -
dium there are also possible fluctuations associated
with other oscillations, aside from electromagnetic
(for example, sound vibrations), which can also give
a contribution to the interaction. However, as will be
shown in Sec. 5b on the example of the forces in films,
the contribution of these nonelectromagnetic forces is
small in the majority of cases.

If both bodies are identical (£i = e2), then the inte-
grand in each of the terms of the sum in (4.13) is a l -
ways positive,* and for given p and | n falls off mono-
tonically with increasing I. From this it follows that
F > 0 and dF/dZ < 0, i.e., identical bodies attract one
another for any layer thickness between them, and the
force of attraction decreases monotonically with in-
creasing distance.t This assertion is also valid for
two different bodies separated by an empty space
(e3 = 1). But if the bodies are different and the space
between them is filled with liquid, then the interaction
between them can be either an attraction or a repulsion
(cf. below).

The general formula (4.13) is very complicated. How-
ever, it can be simplified considerably by noting that the
effect of the temperature on the interaction of the bodies
turns out to be usually completely unimportant.J

The point is that because of the presence of the ex-
ponential in the integrands in (4.13), the main contribu-
tion to the sum comes only from those terms for which
£n ~ c/l or n ~ cfi/ПсТ. In the case where ZkT/cK « 1,
the important terms will be those with large values of
n, and we can in (4.13) change from summation to inte-
gration with respect to the variable dn = (H/27rkT) d | .
Then the temperature drops out of the formula and we
obtain the following result:

(4.14)

According to what we have said above, this formula is
applicable for distances I « cK/kT; at room tempera-
ture this already gives distances approximately up to
10"4 cm.

Formula (4.14) is still complicated. It permits of
further essential simplification in two important lim-
iting cases.

*This can easily be seen by noting that for s = у е—1+p2

(where p > 1), the inequality 6p > s > p holds for e > 1, and
Ep < s < p for e < 1.

tSuch an assertion was already made previously by Hamaker"
on the basis of the assumption of additivity of the molecular
forces (which is actually not the case).

tWhen we speak of the influence of temperature, we are dis-
regarding the temperature dependence which is associated
simply with the dependence of the dielectric constant itself on
temperature.
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Let us first consider the limiting case of " sma l l "
separations, by which we mean separations which are
small compared with the wave lengths Xo which are
characteristic for the absorption spectra of the bodies.
The temperatures with which one may be concerned
for condensed bodies are in all cases small compared
with the values of fiw which are important here (for
example, in the visible region of the spectrum), so
that the inequality kTZ/fic « 1 is surely satisfied.

Because of the presence of the exponential factor
exp (2p|Z -fe^/c) in the denominators of the integrand,
the main contribution to the integral over p comes
from those values of p such that p|Z/c ~ 1. In this
case p » 1, and therefore in determining the main
terms we may set s ( « s2 » p . In this approximation
the first term in the curly brackets in (4.14) goes to
zero. The second term, after we introduce the inte-
gration variable x = 2Zp| / ^ 7 / c , gives

(4 1

(in this same approximation the lower limit of integra-
tion with respect to x is set equal to zero) .

In this case the force turns out to be inversely p ro -
portional to the cube of the distance which, besides,
was to be expected in accordance with the usual law
for van der Waals' forces between a pair of atoms.
The functions e ( i | ) - 1 decrease monotonically with
increasing | , tending toward zero. Therefore values
of £, starting with a certain | ~ £o, cease to give any
essential contribution to the integral; the condition that
I be small means that we must have I « c / | 0 .

To estimate the accuracy of this limiting law, it is
useful to have the next term in the expansion of the
function F (I). A calculation using the general for-
mula (4.14) gives (for identical bodies separated by
vacuum) the expression

(4.16)

which must be added to (4.15). However, it is not pos-
sible to make any definite estimate of the range of va-
lidity of the limiting law without knowing the specific
form of the function e ( i | ) .

One can, with an accuracy which is practically com-
pletely satisfactory, represent formula (4.14) in a still
simpler form by neglecting unity compared with the
term e x in the square brackets. The accuracy of this
simplification is associated with the fact that an inte-
gral of the form

oo
а Г xndx { 4 . 1 7 )

c h a n g e s i n s i g n i f i c a n t l y w h e n a v a r i e s f r o m « t o 1 :

i t v a r i e s f r o m 1 t o 1 . 2 f o r n = 2 , t o 1 . 0 8 f o r n = 3 , t o

1 . 0 4 f o r n = 4 , e t c . T h e n t h e i n t e g r a t i o n w i t h r e s p e c t

t o x c a n b e c a r r i e d o u t i n a n e l e m e n t a r y f a s h i o n , a n d ,

i n p l a c e o f ( 4 . 1 5 ) w e o b t a i n

F = ЪяЧ* (4.18)

T h e q u a n t i t y | w | p l a y s t h e p a r t of a c h a r a c t e r i s t i c

f r e q u e n c y f o r t h e a b s o r p t i o n s p e c t r a of a l l t h r e e m e d i a .

W e n o w p r o c e e d t o t h e o p p o s i t e l i m i t i n g c a s e of

" l a r g e " d i s t a n c e s : I » A.o. H e r e , h o w e v e r , w e s h a l l

a s s u m e t h a t t h e d i s t a n c e i s s t i l l n o t s o l a r g e t h a t w e

v i o l a t e t h e i n e q u a l i t y ZkT/fic « 1.

In t h e g e n e r a l f o r m u l a (4.14) w e i n t r o d u c e a n e w

i n t e g r a t i o n v a r i a b l e , x = 2 p Z | / c , b u t a s t h e s e c o n d

v a r i a b l e w e k e e p n o t | ( a s b e f o r e ) , b u t r a t h e r p :

SZn'l1 J j р 3 I L («1 — Р ) ( « 2 —р)
о (

L (Н—РЧ
ea/e3)

/83) (»
| - 1

s = e { i x c / 2 p l ) , s = | / e ( i x c / 2 p l ) — 1 + p 2 .

B e c a u s e o f t h e p r e s e n c e o f t h e t e r m e x p ( x V e 3 ) i n t h e

d e n o m i n a t o r s , t h e i m p o r t a n t r e g i o n i n t h e i n t e g r a t i o n

w i t h r e s p e c t t o x i s t h a t f o r v a l u e s o f x ~ 1 / V e 3 < 1 ,

a n d s i n c e p £ 1 t h e a r g u m e n t o f t h e f u n c t i o n f o r l a r g e

v a l u e s o f I i s c l o s e t o z e r o o v e r t h e w h o l e i m p o r t a n t

r e g i o n o f v a l u e s o f t h e v a r i a b l e s . I n a c c o r d a n c e w i t h

this, we can replace elf e2>
 е з simply by their values

for | = 0, i.e., by the static dielectric constants. After

doing this and also making the substitution x — x/V e 3 0 ,

we obtain the following final result:

_ fa ? f x 3 r r Ы +

Г ("io + P^iol^o)(4(, + P «20/630) „* Л " 1

L (зю-рею/езо) (**>-/> <We3o) J

\ (4.19)

where e 1 0 , e 2 0 , e 3 0 are the static values of the dielec

tric constants.

In connection with the property of integrals of the

type of (4.17) which was mentioned above, formula

(4.19) can be represented with very high accuracy in

the simpler form

F = -
16л2/41

Г j j f j o
\ I («JO

—P)

0 P el(l/
о/езо)

d£_
P3

H e r e t h e r e r e m a i n s o n l y a s i n g l e q u a d r a t u r e w h i c h

c a n , i n p r i n c i p l e , b e r e d u c e d t o e l e m e n t a r y f u n c t i o n s ;

t h e r e s u l t , h o w e v e r , i s s o c o m p l i c a t e d t h a t f o r s p e c i -

f i c c a l c u l a t i o n s i t a p p e a r s t o b e m o r e r e a s o n a b l e t o

p r o c e e d t o a n u m e r i c a l i n t e g r a t i o n .

W e h a v e a l r e a d y p o i n t e d o u t a b o v e t h a t if t h e t w o

b o d i e s a r e d i f f e r e n t a n d t h e s p a c e b e t w e e n t h e m i s

f i l l e d w i t h l i q u i d , t h e n t h e i n t e r a c t i o n m a y b e e i t h e r

a t t r a c t i v e o r r e p u l s i v e . T h u s i t i s c l e a r f r o m (4.18)

t h a t , if i n t h e i m p o r t a n t r e g i o n of f r e q u e n c i e s t h e d i f -
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ferences e10 - e30 and e20 - e30 have opposite signs,
then F will be less than zero, i.e., the bodies repel
each other at " sma l l " distances. At " l a r g e " d is-
tances the nature of the force will be determined by
the relative value of the static dielectric constants;
for the same signs of the differences e 1 0 - e30 and
e20 ~ e30> w e h a v e F > °. while for opposite signs we
have F < 0. Moreover, since the relative values of
e10, e20 and €з0 a re not in general related to the be-
havior of the functions ei(i£), e 2 ( i | ) a n d е з ( ^ ) i n

the region of frequencies which is important for the
bodies, it is possible in principle to have a case where
F changes sign for a certain value of I.

Let us turn to formula (4.19) and consider some of
its special cases. A particularly simple result is ob-
tained when both of the bodies are metals. For metals
we know that the function e (i£ ) —• « for £ — 0; there-
fore for such materials we may assume e0 = « . Set-
ting ею = €2o = °°, we have

a;3 dp dx tic
= Ш-^=7Г- (4.21)

T h i s f o r c e in g e n e r a l d o e s not depend o n the n a t u r e of

t h e m e t a l s ( a p r o p e r t y w h i c h d o e s not ho ld a t s m a l l

d i s t a n c e s , w h e r e t h e v a l u e of t h e i n t e r a c t i o n d e p e n d s

on t h e b e h a v i o r of t h e funct ion e ( i £ ) f o r a l l v a l u e s of

I and not j u s t for ij = 0 ) . F o r e 3 0 = 1, f o r m u l a (5.6)

c o i n c i d e s w i t h the f o r m u l a obta ined by C a s i m i r 2 0 f o r

t h i s s p e c i a l c a s e b y a t r e a t m e n t of the n o r m a l m o d e s

of the f i e ld in the gap b e t w e e n t w o w a l l s w h i c h a r e

i d e a l l y r e f l e c t i n g at a l l f r e q u e n c i e s .

If the two bodies are the same (е 1 0 = €%>), formula
(4.19) can be represented as

я 2 U 1 /6,o— e 3 oV
= 2 4 6 Z i - 7 ^ U ^ f W

(A.92\

w h e r e ( ? D D ( X ) * S a function whose computed va lues

a r e given in Fig. 10 ( c u r v e DD) o v e r the r a n g e of
values of the argument from 1 to °o; in the appendix
we shal l show that cpDD(O) = 0.52. F o r x—» °°
tends to unity according to the law

. <PDD
1,1
Vx

for x — 1 it tends to a finite limit 0.35; (correspond-
ing to the limiting law (4.35); cf. below).

On the same figure we show the curve DM of the
analogous function describing the force of attraction
between a dielectric and a metal (e 2 0 = °°) according
to the formula

240 г*
(л
( 4 -

F o r e 3 o — «> e x p r e s s i o n ( 4 . 1 9 ) t e n d s t o z e r o . T h i s

m e a n s t h a t w h e n t h e g a p b e t w e e n t h e b o d i e s i s f i l l e d

w i t h a l i q u i d m e t a l , t h e f o r c e o f a t t r a c t i o n d e c r e a s e s

a t l a r g e d i s t a n c e s w i t h a h i g h e r p o w e r o f l / Z . T h i s

p e c u l i a r c a s e h a s a c e r t a i n i n t e r e s t i n p r i n c i p l e , a l -

t h o u g h i t c a n h a r d l y h a v e a n y p r a c t i c a l s i g n i f i c a n c e .

f(sa)W
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0.6
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To t r e a t i t one m u s t turn t o the in i t ia l f o r m u l a (4.14)

and inc lude in i t t h e s p e c i f i c l a w a c c o r d i n g t o w h i c h

the d i e l e c t r i c c o n s t a n t of the m e t a l i n c r e a s e s w i th

d e c r e a s i n g f requency .

The b e h a v i o r of e ( w ) for a m e t a l in t h e in f rared

r e g i o n of the s p e c t r u m i s d e s c r i b e d a c c u r a t e l y enough

by the f o r m u l a

e ( m ) = _ * * ! ! £ , (4.24)

w h e r e N i s the n u m b e r d e n s i t y of f r e e e l e c t r o n s . If

w e s u b s t i t u t e e ( i £ ) = 4тгЫе 2 /т£ 2 in f o r m u l a (4 .14) , the

exponent ia l f a c t o r s i n the d e n o m i n a t o r s of t h e i n t e g r a n d

b e c o m e

V 1Ш]

i.e., £ drops out of them, and since p runs through
values p > 1, we come to the conclusion that this r e -
gion of frequencies gives a contribution to the force F
which falls off exponentially with distance I.

The main contribution to the interaction in this case
comes from the region of still smaller frequencies in
which e (oi) is related to the usual electrical conduc-
tivity of the metal by the formula

*>)=—. (4.25)

Substituting €3(i£) = 47rcr3/| in the integrand of for-
mula (4.14) (in the exponents and in the factor ef2

It is sufficient in other places to set e3 = °°) and in-
troducing in place of the integration variable £ the
variable x = 4pl V ira3£/c2 , we obtain

T h e c o m p u t a t i o n o f t h e d o u b l e i n t e g r a l [ u s i n g t h e

p r o p e r t y p o i n t e d o u t a b o v e o f i n t e g r a l s o f t h e t y p e o f

( 4 . 1 7 ) ] g i v e s a v a l u e f o r i t w h i c h i s e q u a l t o 1 3 . 5 a n d ,

a s a r e s u l t , w e g e t t h e f o l l o w i n g f o r m u l a :

F = 0 , 0 0 3 4 <т3г» *
(4.26)

Thus, in the c a s e of a liquid m e t a l l a y e r between the
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bodies the molecular interaction force between them
changes from the law Г3 at " s m a l l " distances to an
Гь law at " l a r g e " distances; the appearance of the
latter is held back, it is true, by the presence in (4.26)
of the small numerical coefficient.

Naturally the questions arises of the actual value of
7Ц) with which one must compare the distances /. An
answer to this cannot be given in general form and de-
pends on the specific form of the spectral distribution
of the absorption of the bodies [i.e., on the properties
of the function е"(ш)]. Let us examine, for example,
the region of applicability of formula (4.21) for the in-
teraction of two metals (which we shall assume to be
identical) which are separated by vacuum.

Formula (4.21) is obtained from (4.14) if we set
ej = e2 = oo (e 3 = i ) in the latter. But if we also want
to obtain the next term in the expansion, we must use
the form (4.24) of the function e (w), which is valid in
the important region of frequencies in the integral.
[ The region of still lower frequencies, in which e (ш)
is given by formula (4.25), gives a very small contri-
bution to this integral. ] After substituting e (i£) in
(4.14), we must replace £ by xc/2pl; expanding the
integrand in powers of l/l, we get:

\l5~~ el Ш

from which we have finally

{ / ^ } ( 4 < 2 7 )

Setting N = 5.9 x 1O22 cm" 3 (the case of si lver), we
find that the second term is small compared to the
first if I » 0.6 x 1O~4 cm. We note that the value for
the next term in the expansion which we have found
here could not be obtained by the method which Casi-
mir used for getting the first term.

В is not the purpose of this paper to give a summary
of the experimental data concerning van der Waals'
forces. Here we mention only the fact that the first
trustworthy measurement of molecular attractive
forces between solids (quartz*) was made by B. V.

•The case of quartz presents certain peculiarities because
of the specific properties of its absorption spectrum. Quartz
has a strong absorption in the ultraviolet (beginning approxi-
mately at 0.15 li) and in the infrared (beginning at several fi)
regions, between which it is transparent. For separations /
which lie in the region of transparency, a reasonable estimate
of the force F can be made by assuming that I is small com-
pared with ~X on the right, and large compared with X on the
left boundary of this region. The contribution of the ultraviolet
absorption region to the force can be estimated according to
formula (4.22), by setting £,„ = %t = So (eJ0 = 1) equal to the
square of the index of refraction in the optical region of trans-
parency. The contribution of the infrared region is given by
formula (4.18); in order of magnitude it is lao/c times smaller
(where со„ are the infrared absorption frequencies). Thus, to
estimate the attractive forces one can use formula (4.22) with
the optical (in place of the static) value of the dielectric con-
stant for e0. Such an estimate is too low for large separations
and too high for small separations.

D e r y a g i n a n d I. I. A b r i k o s o v a 1 3 a n d I. I . A b r i k o s o v a , "

a n d t u r n e d o u t t o b e i n g o o d a g r e e m e n t w i t h t h e t h e o r y .

A d e t a i l e d p r e s e n t a t i o n a n d d i s c u s s i o n of t h e s e d a t a

i s g i v e n i n t h e s u m m a r y p a p e r of D e r y a g i n , A b r i k o s o v a ,

a n d L i f s h i t z . 1 5 S i m i l a r m e a s u r e m e n t s h a v e a l s o b e e n

m a d e b y K i t c h e n e r a n d P r o s s e r 1 6 a n d b y D e J o n g h . 1 7

c) T h e e f f e c t of t e m p e r a t u r e . A l l t h e f o r m u l a s p r e -

s e n t e d i n S e c . 4 b w e r e o b t a i n e d o n t h e a s s u m p t i o n t h a t

t h e i n e q u a l i t y kTZ/Kc « 1 i s s a t i s f i e d ; a c c o r d i n g l y , i n

g o i n g f r o m (4.13) t o (4.14) w e l i m i t e d o u r s e l v e s t o j u s t

t h e f i r s t ( z e r o t h ) t e r m i n t h e e x p a n s i o n i n p o w e r s of

t h e t e m p e r a t u r e . T o e s t i m a t e t h e e r r o r m a d e i n t h i s

p r o c e d u r e w e m u s t f ind t h e n e x t t e r m i n t h e e x p a n s i o n .

L e t u s d o t h i s f o r t w o i d e n t i c a l m e t a l s s e p a r a t e d b y

v a c u u m .

T h e r e p l a c e m e n t of t h e s u m b y a n i n t e g r a l w h i c h

w a s d o n e i n d e r i v i n g (4.14) c o r r e s p o n d s t o u s i n g t h e

f i r s t t e r m i n t h e E u l e r s u m m a t i o n f o r m u l a

n=0

In t h e p r e s e n t c a s e , t h e f u n c t i o n f ( n ) i s t h e i n t e g r a l

w h i c h a p p e a r s u n d e r t h e s u m m a t i o n s i g n i n ( 4 . 1 3 ) . In

m a k i n g t h e c a l c u l a t i o n w e s h a l l a s s u m e t h a t I i s s m a l l

c o m p a r e d w i t h R c / k T , b u t s t i l l l a r g e c o m p a r e d w i t h

t h e q u a n t i t y ( c / e ) V m / N w h i c h i s c h a r a c t e r i s t i c f o r

t h e m e t a l [cf . E q . ( 4 . 2 7 ) ] . T h e n f ' ( 0 ) = o, f ' " ( 0 ) = 2

a n d t h u s ,

240 I* 9 V be
(4.28)

So a t r o o m t e m p e r a t u r e t h e c o r r e c t i o n t e r m i s s m a l l

e v e n if ? £ 5 x 1 0 " 4 ; c o m p a r i s o n w i t h t h e c r i t e r i o n o b -

t a i n e d f r o m (4.27) s h o w s t h a t t h e r e i s a r e g i o n i n w h i c h

f o r m u l a (4.21) i s a p p l i c a b l e .

For ZkT/йс » 1 we need to keep only the first term
in the sum (4.13). However, we cannot immediately set
n = 0 in it because of the indeterminacy which results
(the factor & goes to zero, but the integral over p
diverges). This difficulty can be avoided by first in-
troducing in place of p a new integration variable x
= 2p|nZ V e 3 0 /c (as a result of which the factor | n

disappears). Then setting £n = 0 we get

kT
16л/3

= 8я/3

С д.2 Г (e10 + e3o) (Ем + Езо) СХ {Т1

.) I («ю—е3о)(Е2о — Езо) J

0 — езо) (4.29)

T h u s a t s u f f i c i e n t l y l a r g e d i s t a n c e s t h e fa l l-of f i n t h e

i n t e r a c t i o n f o r c e s i s r e t a r d e d , a n d a g a i n g o e s a c c o r d -

i n g t o a n l~3 l a w , w i t h a c o e f f i c i e n t d e p e n d i n g o n t h e

t e m p e r a t u r e a n d t h e s t a t i c v a l u e s of t h e d i e l e c t r i c

c o n s t a n t s .

Al l t h e s u c c e e d i n g t e r m s i n t h e s u m (4.13) fa l l off

e x p o n e n t i a l l y f o r l a r g e I. T h u s , f o r t w o m e t a l s s e p a -

r a t e d b y v a c u u m , w h e n t h e f i r s t c o r r e c t i o n t e r m i s

i n c l u d e d , w e o b t a i n t h e f o r m u l a
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(4-30>

d) Interaction of individual atoms. We shall now
show how one can go over from the macroscopic for-
mula (4.14) to the interaction of individual atoms in
vacuum. For this purpose we formally assume that
both of the bodies are sufficiently rarefied. From
the point of view of macroscopic electrodynamics this
means that their dielectric constants are close to unity,
i.e., the differences £ i - l and e 2 - l are small.

Let us start with the case of " sma l l " distances.
From formula (4.15) with e3 = 1 we have to the r e -
quired accuracy:

64n2i

(4.31)

Expressing e (i£) in terms of e" (w) on the real w
axis, in accordance with (3.11), we get

4 С { С <Oid>2e" (to,) e; (uia)
0 0 0

о о
> d d

и о

from which we find for the force F :
oo oo

ft
* * * * - •

( 4 . 3 2 )

This force corresponds to an interaction of atoms with

an energy*

/ 7 -
U - ~

3fe

w h e r e R i s t h e s e p a r a t i o n o f t h e a t o m s , N j a n d N 2

a r e t h e n u m b e r s o f a t o m s p e r u n i t v o l u m e i n t h e f i r s t

a n d s e c o n d b o d i e s r e s p e c t i v e l y . T h e i m a g i n a r y p a r t

of the dielectric constant is related to the spectral den-

sity of the "oscillator strength" f (со) by the relation

( c f . , f o r e x a m p l e , r e f e r e n c e 1 1 , S e c . 6 2 ) . S u b s t i t u t i n g

t h i s i n ( 4 . 3 3 ) , w e f i n d

( 4 ' 3 4 )

*If the interaction energy of molecules 1 and 2 is U »— aR~6,
the total energy of pair interactions of all the molecules in the
two half-spaces separated by a gap / is equal to
- r airN t N.

This expres s ion coincides p r e c i s e l y with the wel l-

known London 1 formula which was obtained by using

o r d i n a r y p e r t u r b a t i o n theory, applied to the dipole in-

t e r a c t i o n of two a t o m s . Suppose, for example, we a r e

consider ing the in teract ion of two hydrogen a t o m s .

Using t h e fami l ia r e x p r e s s i o n

, _ 2m . „ _ g -, ,2

for t h e o s c i l l a t o r s t rength of the t r a n s i t i o n between

s t a t e s E n and E o (xon i s t n e cor responding m a t r i x

e l e m e n t of the coordinate of an e l e c t r o n in the a t o m ) ,

and changing in (4.34) from integrat ion o v e r the f r e -

quencies to summat ion over the energy leve l s of the

atom, we obtain the London formula for hydrogen

a t o m s

6e* 41 1*о„

Thus we see that this "microscopic" formula is de-

rivable from a purely macroscopic theory.

At " l a r g e " distances the formula for the force of

attraction of two rarefied bodies has the form

•dp,

or

l* 640я2 ° ' (8го )' (4.35)

T h i s f o r c e c o r r e s p o n d s to an i n t e r a c t i o n of the two

a t o m s w i t h an e n e r g y

(4.36)

w h e r e at and a2 a r e the s t a t i c p o l a r i z a b i l i t i e s of t h e

two a t o m s ( e 0 = 1 + 47rNa). F o r m u l a (4.34) c o i n c i d e s

w i t h the r e s u l t of the q u a n t u m - m e c h a n i c a l c a l c u l a t i o n

of C a s i m i r and P o l d e r 2 for t h e a t t r a c t i o n of t w o a t o m s

at su f f ic ient ly l a r g e d i s t a n c e s , w h e n r e t a r d a t i o n ef-

f e c t s b e c o m e important .

In an a n a l o g o u s fash ion, by c o n s i d e r i n g on ly o n e of

t h e b o d i e s ( s u p p o s e i t t o b e body 2 ) a s a r a r e f i e d m e -

dium, o n e c a n find t h e i n t e r a c t i o n of an indiv idual m o l e -

c u l e w i t h a c o n d e n s e d body. Thus, in t h e c a s e of

" l a r g e " d i s t a n c e I of the m o l e c u l e f r o m the s u r f a c e

of t h e body, w e obta in for t h e i n t e r a c t i o n e n e r g y the

fo l lowing f o r m u l a :

(4.37)

w h e r e

.8+1 fl щ~Г—

(4.38)1

This also includes the correspondence of formulas (4.33) and (4.32). *Arsh = sinn"1.
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The function (?AD * s shown graphically in Fig. 10.
For e 1 0 — =o this function tends toward 1; the expres-
sion

3a,ftc
U: (4.39)

coincides with the result of Casimir and Polder2 for
the energy of interaction between an atom and a metal-
lic wall. For e 1 0 = 1 the function

«PAD = 2 3 / S 0 = 0.77.

Now let us consider the interaction of two atoms
which are in a liquid (Pitaevskii 1 8). For this purpose
we imagine that the two bodies are made up of weak
solutions of atoms of different types, with concentra-
tions (numbers of particles per cc) N t and N2, r e -
spectively, in the same solvent. Furthermore we shall
assume that the gap is filled with pure solvent. The
dielectric constants of the solutions, e t and e2, for
low concentrations of dissolved atoms differ very little
from the dielectric constant of the pure solvent which
we denote by e 3 = e. To first order in the concentra-
tions,

_de^
e, = «

K e e p i n g on ly t e r m s of t h e s a m e o r d e r in the f o r -

m u l a (4.15) for the f o r c e at " s m a l l " d i s t a n c e s , w e o b -

t a i n [ i n t h e s a m e w a y a s for t h e t r a n s i t i o n t o f o r m u l a

( 4 . 3 1 ) ] :

dNt

To this force there corresponds an energy of interac-
tion between the dissolved atoms equal to

oo
3ft

(4.40)

In s i m i l a r f a s h i o n w e find for t h e e n e r g y at " l a r g e "

d i s t a n c e s

23fic f de
0 \ f дет Л (А АЛ\

We .see that when the molecules of the dissolved
material interact strongly with the solvent, the inter-
action forces between them are no longer determined
by their polarizabilities.

Another interesting example is the interaction of
small spherical particles in a liquid. Let us assume
that the two bodies constitute such an emulsion, formed
by spherical particles of volume V, with dielectric
constant e', in a liquid with dielectric constant e. As
before, the gap is filled with pure solvent. Under the
condition NV « 1, (where N is the number of par-
ticles per unit volume), the dielectric constant of the
emulsion has the form

the smallness of the differences ej - e and e2 - e in
the same way as above, we find for the interaction en-
ergy of the particles in the emulsion

.. (4.42)

'• * > * • • ( 4 - 4 3 )

r e s p e c t i v e l y at " s m a l l " and " l a r g e " d i s t a n c e s . The

d i m e n s i o n s of the p a r t i c l e s t h e m s e l v e s m u s t b e s m a l l

on ly c o m p a r e d with the d i s t a n c e b e t w e e n t h e m (but not

necessarily compared with Л.о).

5. THIN FILMS ON THE SURFACE OF A SOLID

a) Chemical potential of a film. The general theory
of van der Waals' forces developed here can also be
applied for calculating thermodynamic quantities for
a thin liquid film located on the surface of a solid; the
thickness I of the film is, of course, assumed to be
large compared with interatomic distances.

Above we have derived formula (3.25) for the chem-
ical potential of a liquid, per unit mass, in terms of the
Green's function of the fluctuating electromagnetic field
existing in the film. However, this formula is inconve-
nient for two reasons: first, it contains the quantity
Эе/Эр for the whole frequency range, and this quantity
has not at all been studied experimentally; secondly,
it gives the chemical potential J as a function of den-
sity p, whereas we need to know £ as a function of
pressure p.

Let us consider a film 3, located on the surface of
the solid body 1 and in equilibrium with its vapor 2
(Fig. 11). With respect to its electromagnetic proper-
ties we shall treat the vapor as a vacuum, i.e., we
shall set its dielectric constant e2 equal to unity
throughout.

According to the condition for mechanical equilib-
rium, the normal component Oxx of the s t ress tensor
must be continuous at the surface of the film. From
this we find the equation

w h e r e p i s the v a p o r p r e s s u r e , Po(p, T ) i s the p r e s -

s u r e of the l iqu id m a s s at g i v e n d e n s i t y and t e m p e r a -

t u r e , and Oxx d e n o t e s a l l the t e r m s in e x p r e s s i o n

(3.24) f o r the s t r e s s t e n s o r in the f i l m , e x c e p t for the

f i r s t t e r m . Solv ing th i s equat ion for p , w e f ind the

d e n s i t y e x p r e s s e d in the f o r m *

Q = Qo(P + oxx, T).

Now subs t i tu t ing t h i s e x p r e s s i o n in f o r m u l a (3.25) for

the c h e m i c a l po ten t ia l , w e find

£- 2 ' $

(cf., for example, reference 11, Sec. 9). Making use of
*axx is also a function of p, but since axx is a small cor-

rection to the pressure, we may set p = po(p, T) in it.
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I

- 3 - -

FIG. 11

where now Ц(р, T) is the chemical potential of the
bulk liquid. Expanding £0 in powers of the small quan-
tity (Txx and using the thermodynamic relation
(Э£/8р)т = 1/p. we bring this expression to the form

Цр, Г) =
n=0

Finally, substituting the expression for c r^ from (3.24),
we find that the term with Эе/Эр drops out, and we are
left with

where a ^ is the component of the " truncated" s tress
tensor (4.2). This quantity is constant throughout the
thickness of the film (as a result of the constancy of
the momentum flux) and the force F (I) is determined
by it in accordance with (4.3).

We introduce the notation /x for the "van der Waals'
p a r t " of the chemical potential of the film, per unit
volume of liquid:

^ - (5.1)

According to the previous statements,

When I tends to °°, i.e., for the bulk liquid, \x tends
to zero.

Thus, for the determination of the quantity д in
which we are interested, there is no need to repeat
any of the computations. It is determined by the for-
mulas obtained above for F (I) [the general formula
(4.13) and the limiting formulas considered in Sec. 4b],
in which we need only set e2 = 1.

The function ц (T, I) determines all the thermody-
namic properties of the film. Thus if the film is in
equilibrium with vapor at pressure p, the condition
for equality of the chemical potentials of liquid and
vapor leads to the well-known equation

(5.2)
Psat

w h e r e m i s the m a s s of a m o l e c u l e , and p s a t i s t h e
s a t u r a t i o n vapor p r e s s u r e above the sur face of the bulk
liquid at given t e m p e r a t u r e T. The equUibrium th ick-

ness of the film is determined by this equation.*
If we are dealing with a liquid film forming on a verti-

cal wall in a gravity field, then p = p s a t exp ( - mgz/kT)
(where z is the height above the level of the liquid in
the vessel), and we find from (5.2) the equation

u (/) -\- Qgz = 0, (5.3)

which determines the profile of the liquid, i.e., the de-
pendence of its thickness on height.

For " s m a l l " thicknesses of the film (in the sense
described in Sec. 4), we have the limiting law [cf.
(4.18)]

SnH3

( е 3 — 1 ) ( е 3 - е г ) (5.4)

For " l a r g e " thicknesses ц (I) is proportional to Z~4,
with a coefficient which is determined [in accordance
with (4.20)] by the static dielectric constants of the
film (e 3 0 ) and the solid ( e 1 0 ) ; here the sign of /x co-
incides with the sign of the difference e3 0 - e l o . t The
function \x (I) can have a varying sign and be non-
monotonic [ cf. the analogous remark concerning the
force ¥ (I) on page 168]. The breakdown of monotonic
behavior of ц (I) in some region of values of I is r e -
lated in general with a change in sign of the difference
e 3 ( i | ) - et(i£) in the wave length region X ~ I.

In addition to the potential ц it is convenient to use
for describing the properties of the film the "effective
surface tension" a on the boundary between the solid
and the vapor 2, taking into account the presence of
the liquid layer between them. This can be done for-
mally by using the well-known formula of adsorption
theory

/ da

w h e r e у i s the s u r f a c e c o n c e n t r a t i o n of a d s o r b e d m a -

t e r i a l ( n u m b e r of p a r t i c l e s p e r s q u a r e c m ) , £' i s i t s

chemical potential per particle (cf., for example, ref-
erence 19, Sec. 144). With our definition of ц (here
and throughout the following we assume that the liquid
is incompressible) this relation is expressed as

and is applicable both to macroscopically thick
("wetting") films, as well as to adsorbed films of
"molecular thickness"; in the latter case, of course,

*In deriving (5.2) we use the formula

for the chemical potential of the vapor, while the liquid is as-
sumed to be incompressible, i.e., we neglect the dependence of
the chemical potential of the bulk liquid on pressure.

tSo long as no important dispersion in the dielectric con-
stant sets in (as it does, for example, in water) for very large
wave lengths.



G E N E R A L T H E O R Y OF V A N D E R W A A L S ' F O R C E S 173

I has only a conventional meaning of a quantity which
is proportional to the surface concentration у
(I = my/p, m is the mass of the molecule). Inte-
grating (5.4) and assuming that as I — °° the function
a (I) must go over into the sum ai3 + a32 of the sur-
face tensions at the boundaries of the bulk phases 1,
3 and 3, 2, we get

(5.5)

We also note that the necessary condition for ther-
modynamic stability of the film is the inequality

> 0. (5.6)

If Eq. (5.2) is satisfied for several values of I, then
the stable state of the film corresponds to that one for
which a is a minimum; the larger values then corre-
spond to metastable states.

Let us look at a few typical cases which may occur,
depending on the nature of the function /Lt (I):

a) If ix (I) is a monotonically decreasing, every-
where positive function (Fig. 12a), the liquid does not
wet the solid surface, and no film is formed at all. We
emphasize that we are talking of macroscopically thick
films, to which the whole theory developed here applies.

FIG. 12

As for adsorption in the narrow sense of the word, we
know it always occurs to a greater or lesser extent.
To this there corresponds the fact that, no matter what
the behavior of the function p. (I), in the region of mo-
lecular dimensions (not shown in Fig. 12) it finally
tends (for I —- 0) to - «o according to the law ц ~ In I,
corresponding to " a weak solution" of the adsorbed
material on the surface.

b) If /u (I) is a monotonically increasing, every-
where negative, function (Fig. 12b), then this usually
corresponds to a liquid which completely wets the sur-
face of the solid and (depending on the vapor pressure
over it) forms a stable film of arbitrary thickness. In

particular, on a vertical wall there is formed a film
with a thickness which tends toward zero for z —• °°;
the decrease first occurs according to the law I ~ z~^i

and then as z~^s.
However, in this case also the liquid may not wet if

the behavior of ^ (Z) in the microscopic region is such
that it leads to smaller values of the surface tension a;
then the molecular absorption film, and not the wetting
film, will be stable.*

с) ц (I) goes through zero and has a maximum as
shown in Fig. 12c. With the same comments as in case
b), we here have a case of wetting, but with formation
of a film which is stable only for thicknesses less than
some definite limit. Li equilibrium with the saturated
vapor there is a film of finite thickness corresponding
to point a. This state is separated from the other
stable state — the equilibrium of the solid wall with the
bulk liquid—by the metastable region AB and the r e -
gion of complete instability ВС.

The curve ц (I) of this type must lead to interesting
peculiarities in the formation of the angle of contact в
of a liquid drop on a solid surface. In this case the drop
is in equilibrium with a film of finite thickness Z m a x

(Fig. 13), and according to the usual elementary for-
mula we have:

(5.7)

where a (Zmax) w i t n a (*) from (5.5) plays the role
of the surface tension between phases 1 and 2. Since
the term in (5.5) is a small quantity, we obtain from
(5.7)

a23 J dl affl J (5.8)

Interpolating between the laws ц ~l 3 and ц ~ l~A, we
then obtain the estimate

10/rr
(5.9)

with w from (5.4). Thus for Йш ~ 10 ev, a23 ~ 20 erg/

cm'
2 . 'max ~ 5 x 10"5 cm, we then obtain в ~ 0.1°
Thus in this case the angle of contact should have

a finite, but very small value (different from the value
0 = 0 when there is complete wetting, and в ~ 1 for
the usual cases when there is no wetting). Of course,
such an assertion has a truly observable meaning only

*Such a behavior can be regarded as a big "bump" on the
curve y.(l) in the molecular region of "thicknesses^"
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on the condition that the thickness of the drop be large
compared with the thickness of the film, i.e., we must
have L0 » Z m a x , where L is the diameter of the drop
(Fig. 13).

d) The curve shown in Fig. 12d corresponds to a
film which is unstable over a definite range of thick-
nesses. The straight line BF, which cuts off equal
areas BCD and DEF, joins points В and F with the
same values of a (for the same values of ц), as is
easily seen from (5.5). The branches AB and FQ cor-
respond to a stable film; the interval CE is completely
unstable, while the intervals ВС and EF are metastable.

Both boundaries of the instability region (points В
and F) in this case correspond to macroscopic thick-
nesses of the film. The instability in the interval from
some macroscopic thickness to molecular dimensions
should correspond to the curve shown in Fig. 12e (for
I —* °o this curve, like the curve of Fig. 12a, tends to-
ward - « ) . Actually, however, such a curve will most
likely simply lead to the case where there is no wetting.
In fact, the boundary of stability would correspond to
such a point on the branch ВС at which the horizontal
line would cut off equal areas below the upper and
above the lower parts of the curve. But the latter
area, which is associated with van der Waals' forces,
will be small compared to the first which is associ-
ated with the much greater forces at molecular dis-
tances. This means that the surface tension over the
whole branch ВС will be greater than that which cor-
responds to molecular absorption on the surface of
the solid, and thus the film will be metastable.

b) Forces of nonelectromagnetic origin. As already
mentioned at the beginning of Sec. 4b, in addition to the
van der Waals' forces there is a definite contribution
to the chemical potential of a film from sources of
nonelectromagnetic origin; this contribution, however,
is usually small. We here present the appropriate es-
timates without going into detail on particular calcula-
tions.

Acoustic fluctuations (in media which are acoustic-
ally nondispersive) at the absolute zero of tempera-
ture give a contribution to the chemical potential of

At temperatures other than absolute zero, there
occurs in general for ц а с the opposite limiting case,
where the influence of temperature is predominant.
The appropriate criterion is the value of the ratio
ZkT/fiu. The condition ZkT/Ku » 1 (like the condition
ZkT/fic » 1 for the electromagnetic case) is essen-
tially a condition for classical behavior (Кш « kT
with a) ~ Z/u or w ~ Z/c). Therefore it is clear be-
forehand that the corresponding contribution to pi
should not contain K, and then, simply from dimen-
sionality considerations, it is obvious that

kT
l*ac~-jr

[cf. formula (4.29)]. This quantity is comparable with
Me.m. o n l y a t distances Z ~ Kc/kT, which are so large
that ц is already very small.

The same applies to the contribution of surface vi-
brations. The dependence of frequency on wave vector
к for capillary oscillations on the surface layer of a
liquid of depth Z is given by the well-known formula*

„ roc3 ., ,
Ш2 = • t h KI,

w h e r e a i s t h e s u r f a c e t e n s i o n ( c f . , f o r e x a m p l e , L a n -

d a u a n d L i f s h i t z , 2 2 S e c . 6 1 ) ; i n a d e e p l i q u i d (Z —• » ) ,

w 2 = ctKZ/p. C o m p u t i n g t h e e n e r g y o f z e r o p o i n t v i b r a -

t i o n s ( a n d s u b t r a c t i n g t h e s a m e e n e r g y f o r Z — « ) ,

w e f i n d t h a t a t a b s o l u t e z e r o t h e c o r r e s p o n d i n g c o n -

t r i b u t i o n t o t h e c h e m i c a l p o t e n t i a l i s

where u is the velocity of sound.* It should be com-
parable with the electromagnetic part м е . т . ~ Rc/Z*
for I » A.o or Me.m. ~ й с / ^ о f o r г « V a i s d e a r
that /xac « Me.m. a * ^ distances which are large com-
pared to atomic dimensions, which is the only case
when the entire theory presented here is applicable.

"This expression is analogous to the expression
for the electromagnetic part (in a nondispersive medium). It can
be obtained, for example, by computing the energy of the zero
point acoustical vibrations in the gap (of width Z) in the same
way as was done by Casimir30 for the electromagnetic zero
point vibrations. We note that the result of Atkins,21 who ob-

tained for цас a' different dependence on film thickness (~ l~2),

i s related to an incorrect procedure for cutting off the divergent

integral.

surf' •£/?.
A c t u a l l y , h o w e v e r , t h e r e e x i s t s a n o p p o s i t e l i m i t i n g

c a s e w h e n ( K / k T ) V a / p I'3/2 « 1 , i . e . , w h e n t h e c o n -

d i t i o n f o r c l a s s i c a l b e h a v i o r i s s a t i s f i e d ; t h e c a l c u l a -

t i o n a c c o r d i n g t o g e n e r a l r u l e s o f s t a t i s t i c s l e a d s t o

t h e n a t u r a l r e s u l t t h a t t h e c o n t r i b u t i o n nsurf ~ kT/l3

i s o f t h e s a m e o r d e r a s i n t h e a c o u s t i c c a s e . t

T o u n d e r s t a n d t h e p r o p e r t i e s o f h e l i u m f i l m s , v a r i -

o u s a u t h o r s h a v e a l s o i n v o k e d m e c h a n i s m s a s s o c i a t e d

w i t h i n h o m o g e n e i t y o f t h e d i s t r i b u t i o n o f t h e l i q u i d d e n -

s i t y t h r o u g h o u t t h e f i l m t h i c k n e s s . In i t s c r u d e s t f o r m

t h e c o r r e s p o n d i n g c a l c u l a t i o n i s c a r r i e d o u t b y t r e a t -

i n g t h e h e l i u m i n t h e f i l m a s a n i d e a l g a s , t h e w a v e

f u n c t i o n s o f w h o s e p a r t i c l e s h a v e n o d e s a t t h e w a l l

a n d t h e s u r f a c e o f t h e f i l m . S u c h a m o d e l l e a d s t o a

m a r k e d l y i n h o m o g e n e o u s d i s t r i b u t i o n o f d e n s i t y , w i t h

a m a x i m u m a t t h e c e n t e r a n d a c o n t r i b u t i o n t o t h e

chemical potential ju which is proportional to Г2.
However, such a treatment is completely inapplicable
(as already pointed out by Mott2 3), since the interac-
tion between atoms actually smooths out the wave func-

*th = tanh.
tThroughout we give only algebraic estimates, but it should

be remembered that actually the expressions ft s u rf and цас

still contain (as more detailed analysis shows) small numerical

coefficients, just as do the expressions for the electromagnetic

part fie.m,. The occurrence of comparatively small numerical

coefficients i s a characteristic of the theory presented here.
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tion of the ground state of the system, and the inhomo-
geneity in the density is pushed (at the bottom of the
liquid) only to a distance of the order of interatomic
distances. The contribution to the chemical potential
associated with this inhomogeneity falls off exponen-
tially with film thickness.

The contribution associated with the specific prop-
erties (superfluidity) of helium below the A. point
also falls off according to this same law. Only in the
immediate vicinity of the A. point, where the density
of the superfluid component is very small, does the
inhomogeneity of the distribution of the latter lead to
a significant effect (cf. Ginzburg and Pitaevskii24).
But already at a distance of the order of 0.01° from
the A point the decrement of the exponential becomes
comparable with interatomic distances. The result of
Franchetti,25 who found the contribution to the chem-
ical potential to be proportional to Z~2, is associated
with the inadequacy of the model of noninteracting ele-
mentary excitations in helium which he used.

c) Film of liquid helium. Let us consider in par -
ticular films of liquid helium, to which an extensive
literature has been devoted.

For helium films the general formula (4.14) can be
simplified considerably if we use the fact that the di-
electric constant of liquid helium is very close to unity,
i.e., the difference e 3 ( i | ) - l is small. Carrying out
the appropriate expansions in the integrand of (4.14)
we obtain:

(5.10)

H o w e v e r , t h e c a l c u l a t i o n e v e n w i t h t h i s s i m p l i f i e d f o r -

m u l a i s d i f f i cu l t b e c a u s e o n e m u s t k n o w t h e f o r m of t h e

f u n c t i o n s e ( i | ) f o r l i q u i d h e l i u m a n d f o r t h e s o l i d w a l l

o v e r a w i d e r a n g e of f r e q u e n c i e s , a n d i n p a r t i c u l a r i n

t h e f a r u l t r a v i o l e t r e g i o n : i n t h e i n t e g r a l (5.10) t h e i m -

p o r t a n t r e g i o n of w a v e l e n g t h s i s A. ~ Z, w h i l e t h e a c -

t u a l t h i c k n e s s of t h e h e l i u m l a y e r i s of t h e o r d e r of

1 0 " 6 c m .

It i s r e a s o n a b l e t o m a k e a f u r t h e r s i m p l i f i c a t i o n of

f o r m u l a (5.10) b y m a k i n g u s e of t h e f a c t t h a t t h e m a i n

a b s o r p t i o n r e g i o n of h e l i u m i s in t h e f a r u l t r a v i o l e t ,

w h e r e a s t h e m a i n a b s o r p t i o n of t h e s o l i d w a l l ( m e t a l s

o r q u a r t z ) i s a t m u c h l o w e r f r e q u e n c i e s . In o t h e r

w o r d s , w e s h a l l a s s u m e t h a t t h e f u n c t i o n e ( i | ) p r a c -

t i c a l l y c o i n c i d e s w i t h t h e s t a t i c v a l u e e 3 0 o v e r t h e

w h o l e r a n g e of v a r i a t i o n of £ i n w h i c h t h e d i f f e r e n c e

e j ( i £ ) - 1 [ a n d w i t h i t t h e w h o l e i n t e g r a n d i n (5.10) ]

i s s t i l l n o t t o o s m a l l . T h e n e 3 - 1 c a n b e t a k e n ou t

f r o m u n d e r t h e i n t e g r a l s i g n a n d w e c a n p r o c e e d w i t h

t h e r e m a i n i n g i n t e g r a l i n t h e s a m e w a y a s in t h e l i m -

i t i n g c a s e of s m a l l t h i c k n e s s e s Z (Z s m a l l c o m p a r e d

w i t h w a v e l e n g t h s Ao i n t h e m a i n a b s o r p t i o n r e g i o n

f o r t h e s o l i d ) . In o t h e r w o r d s , b y i n t r o d u c i n g i n p l a c e

of p t h e i n t e g r a t i o n v a r i a b l e x = 2 p | Z / c a n d n o t i n g

t h a t t o v a l u e s x ~ 1 t h e r e c o r r e s p o n d l a r g e v a l u e s of

p , w e r e p l a c e t h e c u r l y b r a c k e t i n (5.10) b y 2 p 2 ( e t - 1 ) /

( t j + 1 ) a n d o b t a i n a s a r e s u l t :

=i> (5.11)

where we have introduced the quantity

(5.12)

which is some average frequency characteristic for
the particular solid.

We note that the function [e (w) - 1 ]/[e (w) + 1]
has the same analytic properties in the upper half
plane of the complex variable w as the function
e (w) - 1 . This is enough to enable us to apply to it
the same formula for transformation of an integral
along the imaginary axis into an integral along the
real axis which is valid for the function e (ш) -1
(cf. reference 11, Sec. 62). Namely, we can repre-
sent the integral in the form

oJ

2e" (OJ) da (5.13)

where e' (ш) and e" (ш) are the real and imaginary
parts of the dielectric constant for real values of the
frequency, i.e., these are quantities directly measur-
able in experiment.

Thus, for the actually observed thicknesses of
helium films we should expect the dependence д ~ l~3

and the corresponding film shape Z ~ z~1//3. Calcula-
tion of the coefficient in this formula requires, how-
ever, a knowledge of the optical properties of the solid
body (the wall) over a broad range of frequencies.
We must emphasize that the computation of this coef-
ficient on the basis of data concerning interaction of
individual atoms of the solid with helium is not ad-
missible.

We also give an expression for ^ for " l a r g e " film
thicknesses (l»\0). The corresponding transition
in (5.10) is carried out by introducing the variable x
= 2p£Z/c in place of £ and replacing et by e10. The
integration over both x and p is carried out analytic-
ally, and as a result we find

3ftc(E30 —1
32я2/4 «PAD Oho) (5.14)

w i t h t h e f u n c t i o n cpj\j) of ( 4 . 3 8 ) . F o r a m e t a l «PAD = 1

( e i o = ° ° ) ' F o r q u a r t z , w h i c h h a s a b r o a d r e g i o n of

t r a n s p a r e n c y ( f r o m ~ 0.15/u t o s e v e r a l m i c r o n s ) , i t i s

a l s o m e a n i n g f u l t o c o n s i d e r t h e c a s e w h e r e t h e t h i c k -

n e s s Z l i e s i n t h i s r e g i o n of s i z e s . T h e c o r r e s p o n d i n g

l a w f o r fi (Z) i s t h e n d e t e r m i n e d f r o m t h e s a m e f o r -

m u l a (5 .14) , i n w h i c h h o w e v e r w e s h o u l d u n d e r s t a n d b y

ejo n o t t h e s t a t i c , b u t t h e o p t i c a l v a l u e elt i . e . , t h e

s q u a r e of t h e i n d e x of r e f r a c t i o n i n t h e o p t i c a l r e g i o n

of t r a n s p a r e n c y (cf. t h e f o o t n o t e on p a g e 1 6 9 ) .

E x p r e s s i o n s (5 .10) , (5 .11) , a n d (5.14) d o n o t c o n t a i n

t h e t e m p e r a t u r e , i . e . , t h e y r e f e r , s t r i c t l y s p e a k i n g , t o
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absolute zero. However, temperature corrections
should be relatively small, and there is no reason to
expect any essential change in the profile of the film
when the temperature is changed, in particular below
and above the X-point (except in the Immediate vicin-
ity 6f the \-point).

The difficulties in an experimental determination
of thickness and profile shape of a helium film under
conditions sufficiently close to the ideal case of ther-
mal equilibrium are very great, and apparently only
very recently have these been overcome to the extent
that the results obtained in the helium II region can
be considered in any way trustworthy (see the sum-
maries of Jackson and Grimes 2 6 and Atkins2 7).

In accordance with our remarks in Sec. 5 there is
no physical reason to expect the profile of the film to
have the form pgz = aZ~3 + bZ~2.

Anderson, Liebenberg, and Dillinger28 point out that
their results on the thickness of a helium film on a
steel surface (up to heights of 40 cm) are well de-
scribed by the law pgz = aZ~3 (the absolute values of
the thicknesses are not given). This same law de-
scribes the results of the measurements of Hamm
and Jackson2 9 and Grimes and Jackson3 0 (in the in-
terval of heights from 0.4 to 7 cm) with a coefficient
a » 4.5 x 10"1 5 erg. Comparing this value with the co-
efficient of Z~3 in formula (5.11) (setting e 3 0 - l
= 0.057) we obtain Йш и 7.5 ev. This value is rea-
sonable for a metal (steel) .

The coefficients in formulas (5.11) and (5.14)
(for eio~*°°) are comparable for Z~ 3c/2w, i.e.,
in the present case for Z ~ 5 x 1O~6 cm. This means
that in the interval of film thicknesses (100 — 400 A)
observed in experiment we are near a region which
represents the transition between the Z~3 and Z~4
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