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J.HE classical ideas regarding the mechanism in- percent. The advance of the edges of uncompleted
volved in the formation of the crystalline phase of layers, i.e., steps (Fig. 1), is then rapid, and does not
matter were formulated by Gibbs,1 and were developed furnish an additional factor limiting the crystallization
by Volmer,2 Kossel,3 Stranski,4 '5 Kaischew,6"9 Becker rate. The conclusions arrived at in the classical
and Db'ring,10 and others. According to the classical theory were confirmed in specific experiments.2 '11

theory, the ideal " close-packed" (or dense-packed) In an enormous number of instances, however,
face of a growing crystal advances at a rate that is crystals grow even at less than 1% supersaturation,
proportional to the frequency with which the nuclei just as though the problem of nucleation did not exist
of new atomic (or molecular) layers are created on for them. Morphological studies of the surfaces of
the given face. (These are the so-called two-dimen- these crystals have revealed a large number of steps
sional nuclei.) The probability of nucleation, and varying in height from one lattice parameter to many
therefore the growth rate of a face, is negligibly small hundreds or thousands of lattice parameters. The
until supersaturation reaches the order of a few tens sources of these steps are the contacts between crys-
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FIG. 1. Steps on the surface of a crystal at T = 0 and T > 0.
Particles denoted by cubes are 1 — edge components of an incom-
plete layer (i.e., step), 2 —adsorbed on a step, 3 —faces of kinks,
4 — adsorbed on the surface, 5 — vacancies in the surface atomic
layer. The arrow between 3 and 4 symbolizes exchange between
kinks and an adsorbed layer, and that between 1 and 2 symbol-
izes the creation of kinks by fluctuations.

tals and holders, intergranular boundaries, foreign
macroscopic particles, and the surface points at which
screw dislocations emerge (Ch. II, III). It was first
shown by Frank1 2 that a dislocation intersecting a
crystal surface produces a step that does not disap-
pear during the growth process. Nucleation of a new
surface is unnecessary when a screw dislocation is
present.

When the rate of growth is not limited by slow step
formation, the entire kinetics is determined by the
motion of steps already existing, and by their shapes,
relative positions, heights, interactions with each
other and with dislocations and impurities etc. The
present article discusses the layer growth of crystals.
Chapter I investigates the structure of a crystal sur-
face in equilibrium with the surrounding medium,
considering several general questions with regard to
crystalline surface energy, as well as the creation
and stability of macroscopic steps on the surfaces
of crystals.

The kinetics of layer growth from the gaseous
phase, solutions, and melts is discussed in Ch. II and
III, essentially on the basis of dislocations as sources
of steps. Chapter IV deals with impurity capture and
with the effect of impurities on the growth rate.

Certain basic ideas regarding the mechanisms of
selective etching are explained in Ch. V.

Chapter VI discusses the statistical approach to
the description of collective effects in the motion of
different steps on a crystal surface, and specifically
the kinetic equation for steps.

The present review gives no account of the results
obtained in the aforementioned classical publications
on the theory of crystal growth. The reader can find
these, for example, in the books by Volmer2 and
Buckley, and more concisely in the books by
Shubnikov137"139 and by Obreimov.1 4 0

Among the comprehensive publications on the mod-

ern dislocation theory of spiral growth, to the develop-
ment of which the present review is devoted, one must
mention first of all the original paper by Burton,
Cabrera, and Frank,1 4 the authors of the theory, and
the books by Varma,4 4 Amelinckx and Dekeyser,3 7

and Friedel. 1 4 4

The general aspects of the kinetics of phase tran-
sitions and, specifically, of crystal growth, are dis-
cussed in a review article by Turnbull.76

The proceedings of conferences on crystal growth
are also of interest . 1 4 1 " 1 4 3

I. CRYSTAL SURFACES IN EQUILIBRIUM WITH THE
SURROUNDING MEDIUM. THE SURFACE ENERGY
OF CRYSTALS

As already mentioned in the introduction, the ki-
netics of crystal growth depends on surface structure,
including both the microscopic atomic (or molecular)
structure and macroscopic steps.

The present chapter deals with the structure of
crystal surfaces in equilibrium with the surrounding
medium. The most important feature of microscopic
surface structure is the existence of kinks — reentrant
trihedral corners in elementary (monolayer) steps,
which are one interatomic spacing in height (configu-
ration 3, Fig. 1). Large numbers of kinks are created
by fluctuations, and play an extremely important part
in crystal growth, since they provide the sites at which
new atoms or molecules are added to crystals. The
formation of kinks is discussed in Sec. 1.

A crystal surface composed of elementary steps
does not generally possess minimum surface energy;
its shape will therefore change. It will be shown in
Sec. 4 that the conditions for minimum surface energy
require the merging of elementary steps and the cre-
ation of macroscopic steps whenever the equilibrium
shape of a bounded closed crystal (according to
Wulff) possesses edges (i.e., practically always at
low temperatures). This points to a general condi-
tion where the surface energy favors the stability of
surface form while the form is nevertheless, unstable.

1. Kinks in Elementary Steps13'14

Steps are found on a crystalline surface that is
slightly inclined from the orientation corresponding
to any close-packed face [such as the (1,10, 0) surface
of a cubic crystal in Fig. 1 ]. The steps can have any
height beginning with one interatomic spacing (an ele-
mentary step). Let there be a (0,1) step in the close-
packed (0,1, 0) plane (Fig. 1). At absolute zero (T = 0)
the front of the step will be atomically smooth. When
T > 0, fluctuations lead to the appearance of kinks,
i.e., trihedral corners in the step (configuration 3,
Fig. 1).

For a step making the small angle в with the z
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axis, the mean distance between kinks is

where

(1.1)

(1.2)

is the separation of kinks for a close-packed step
parallel to the z axis (a is the interatomic spacing),
and wj is the formation energy of a single kink.

In the passage of a single atom (or molecule)
from a position in a step (position 1, Fig. 1) to an
adsorbed position (position 2) four kinks are formed.
In the case of a (11) step on a (111) face of a face-
centered cubic lattice this transition breaks two bonds
between nearest neighbors, i.e., one-third of the en-
ergy of crystallization W is thus expended. There-
fore Wt = Vi2 W. When vapor surrounds the crystal,
W is the energy of sublimation. Taking W/kT = 24,
we obtain from (1.2):

т^г ) ~ 4а.

For а (10) step on а (100) face of a simple cubic
crystal, assuming interactions only between nearest
neighbors, w t ~ VeW, and the separation of disloca-
tions must be ~ 30a. This distance is reduced when
next nearest neighbors are taken into account.

The presence of kinks in a step changes the free
energy per unit length of the step front, as well as its
anisotropy. This is shown schematically by the dashed
lines in Fig. 2a.

FIG. 2. Polar diagram of surface
energy a) in the two-dimensional
case (solid curve at T = 0, dashed
curve at T > 0); b) in the three-
dimensional case.

2. Crystal Surface Energy. Herring's Formula

We turn now to the phenomenological description
of macroscopic surface structure, and shall begin with
certain general properties of the surface energy.

The free energy of a unit surface element will be
denoted by a (n), where n is the normal to this ele-

ment and indicates its orientation. For values of n
representing close-packed faces, a ( n ) has a sharp

minimum, such that the derivatives —— and/or
дер дв

become discontinuous here (<p and в being spherical
coordinate angles), i.e., the surface a(cp, в) ex-
hibits corner points and l ines 1 5 " 1 7 (Fig. 2b). Fluctua-
tion smearing of the sharp minima of surface specific
energy, similar to the spreading of minima in the
case of the linear specific energy of a step (Fig. 2a),
can only occur for certain faces near the melting
point (reference 14) and does not usually take place.
Since the edges and vertices of a macroscopic crys-
tal are equivalent to steps with regard to the possi-
bility of fluctuations, these edges and vertices must
be smeared off at T > 0.

The chemical potential j ^ m of a medium in equi-
librium with a crystal possessing a smooth surface
(i.e., without macroscopic corners and edges) is
given by

+ ЯЛ,Га+4^-), (2.1)

where HQ is the chemical potential of an infinite
crystal with a plane surface, п is its atomic (or
molecular) specific volume, k t and k2 are the
curvatures of the crystal surface in the planes of its
principal sections through the considered point, and
<p! and <p2 are angles measured in these planes. Equa-
tion (2.1) was derived by Herring, 1 8 ' 1 9 and extends
Thomson's familiar formula for liquids.

We shall now determine the relationship2 0 between
(2.1) and the familiar problem of the equilibrium shape
z (x, y) of a bounded crystal with constant volume
(see references 17 and 21, for examples):

\ \ a(n)rfs = min, \ V z(x, y) dxdy = const. (2.2)

The solution is the envelope of the family of planes

(n, r) = а ( п ) Л (2.3)

where r i s the r a d i u s vector of a point on each plane,
and n, as previously, is the normal to the crystal sur-
face. The constant Л is the Lagrangian multiplier of
the variational problem (2.2) that arises from the
condition of constant volume.

Equation (2.3) expresses the familiar Wulff theorem
to the effect that the minimum surface energy corre-
sponds to a surface which is the envelope of planes
perpendicular to the radius vectors through each point
of the polar diagram of crystalline surface energy. In
other words, the distances between the center of a
crystal with equilibrium shape and its faces are pro-
portional to the surface specific energies of these
faces.

We first ascertain that the product ЙЛ has the
physical meaning of a supplementary chemical poten-
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tial associated with the surface energy. Indeed, we
require constancy of the chemical potential /xm of the
medium above the entire surface of the crystal, i.e.,
of Mm =MC0 + 0 Л , or

A1(a + aii,,i) + Aa(a + a ^ s ) = A, (2.4)

where Л is a constant. Equation (2.4) is the differen-
tial equation of the surface shape which satisfies the
condition of constant д т . On the other hand, from the
method of deriving (2.1), Eq. (2.4) is the Lagrangian
equation of the variational problem (2.2) with the La-
grangian constant Л. Therefore Л = Л, and ЙЛ is
the departure of the chemical potential of a medium
in equilibrium with the given crystal, from the value
required for equilibrium between the medium and an
infinite crystal (for which Л = 0). The constant Л
and the left-hand side of (2.4) have the dimensions
of pressure.

As shown at the beginning of this section, the aniso-
tropy of a (n) is such that for surface orientations
corresponding to close-packed faces, the first deriva-
tives aL and aL are discontinuous, i.e., the second
derivatives in (2.4) are infinite. Therefore, on close-
packed faces, the supplementary chemical potential
of the crystal will be finite only when the curvatures
kj and k2 vanish (the corresponding surfaces become
planes). This dictates the physical requirement of
plane faces on crystals of equilibrium shape.

In the case of nonequilibrium shapes the left-hand
side of (2.4) is not constant and the chemical potential
of the medium varies over different portions of the
crystalline surface. When, for example, the medium
is a solution, its concentration varies on the surface.
As a result, diffusion begins, leading to the dissolution
of some parts and the growth of other parts of the
crystal. This process terminates only when the crys-
tal assumes its equilibrium shape, with the concentra-
tion of the solution (more accurately, the chemical
potential) becoming uniform over the entire surface.

3. Corner Points in the Profiles of Crystal Surfaces22

The solution of (2.2) is the envelope of the family
of planes (2.3), and, because of the anisotropy of a,
generally contains self-intersecting and self-revers-
ing lines (Fig. 3). Since such configurations are mean-
ingless on a real physical surface, we must investigate
specifically the possibility of the existence of corner
lines on the crystal surface, as well as their stability.

For the sake of simplicity, we shall investigate the
two-dimensional case of the contour у (x) with line

dy
specific free energy a (p) where p = -f~. The con-
tour can be treated as the section of the (x, y) plane
by a cylindrical surface that is infinite in the z direc-
tion. We shall therefore speak of the surface energy
of the contour (rather than of its line energy), mean-
ing the surface energy per unit length in the z direc-
tion.

b)

FIG. 3. a) Polar diagram of surface energy (dashed curve); en-
velope plotted from Wulff's theorem (solid curve). The shaded in-
terior of the envelope depicts the equilibrium shape of the crystal,
b) The upper left-hand corner of the Wulff envelope for surface-
energy anisotropy differing somewhat from that in a).

We now drop the assumption (made in Sec. 2) of
smoothness of у (x), and permit the existence of
corner points on у (x). Above the portions of a two-
dimensional crystal that are bounded by a smooth con-
tour, the chemical potential of the medium is deter-
mined, as previously, from Herring's formula (2.1)
(here for the two-dimensional case). We now deter-
mine the supplementary chemical potential MQ of the
crystal associated with the corner point (x c , y c ) .
Transferring <5N particles to the crystal in the vicinity
of a corner point (Fig. 4) and attributing to 6N the r e -
quired change б J a ds of contour energy, we obtain

where (бх с, 6y c ) is the displacement of the corner
point in the variational process, and

dF~ , и г . . -, . I i .

rp^=-gjp, [Л\=А | Р = р ( х с + 0 ) — ^|p=p(xc-0>-

T h e s u p p l e m e n t a r y t e r m i s o b t a i n e d f o r 6 N — 0 .

F i g u r e 4 s h o w s t h a t

Crystal

FIG. 4
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and, consequently, as бхс, бус, £ and r\ approach
zero the right-hand side of (3.1) will increase without
limit in all cases except when

Fp\p=p_ = F'p\p=Pt, pFp-F\p=p_ = pF'p-F\p=spt, (3.2)

where p_ = p (x c - 0) is the tangent of the slope of the
contour to the left, and p+ = p (x c + 0) is that to the
right of the corner point (x c , y c ) . In other words, the
supplementary chemical potential of the crystal for a
contour у (x) possessing a corner point is infinite
whenever the orientation of the surface profile to the
left and to the right of that corner does not satisfy
(3.2). Whenever (3.2) is fulfilled the additional term
vanishes, and the chemical potential of the medium
above the surface of the crystal is given by Herring's
formula, using the curvature of the smooth parts of
the contour.

Thus when the system (3.2) in the two unknowns p +

and p_ has one or more nontrivial solutions* (such
that p + ^ p_ ), the given surface profile can exhibit
corner points, where the contour direction is discon-
tinuous while the slope on both sides of each point is
determined by pairs of roots of (3.2).

Since the supplementary chemical potential term
(3.1) is either zero or infinite [when (3.2) is not sat-
isfied], the configuration determined by (3.2) will
exist not only when the crystal and surrounding me-
dium are in equilibrium, but also for small depar-
tures from equilibrium, i.e., in crystal growth or dis-
solution. Therefore the contour shape determined by
(3.2) is extremely stablet with respect to small de-
partures from equilibrium. With large departures,
considerable probability exists for disruption of the
surface shape by a finite rather than infinitely small
amount (6N is finite and does not approach zero),
i.e., the nucleation process, which requires surmount-
ing of the potential barr ier and is thus only possible
under considerable supersaturation.

When (3.2) has no nontrivial solution in the form of
a pair of actually different roots, corner points will not
exist on the surface profile. The surface will then be
macroscopically smooth (rounded, without vertices).

Equation (3.2) could be derived formally as the equa-
tions for contour slopes at self-intersection points of
the curve for x(p, Л), у(р, Л), where p = dy/dx is a
parameter:

Ax = F'p{p) + const, Ay = pFp(p)~F(p) + const. (3.3)

This curve results from integrating the Lagrangian
equation of the variational problem for the equilibrium
shape of a smooth curve. This shows the equivalence
of the self-intersection points and the corner points
determined from (3.2).

*If p+ and p_ ate roots of (3.2), P+1 and p^1 will also be
roots.

tThe minimization of the energy [Eq. (4.1)] must also be sat-
isfied.

The conditions (3.2) have the simple geometrical
meaning that at the points p + and p_ the tangents to
the curve F ( p ) must coincide (Fig. 5a).

FIG. 5. a) Schematic representation of the function F(p) =
<Чр)>Д + ра. Values of p, such as p+ and p_, where double
tangents to F(p) are possible (Q7Qj+, <2Г0£. Q7Q*) determine the
slope of the crystalline surface to the right and left of a corner
point, b) Plots of the functions F(p) corresponding to the Wulff
envelopes in Fig. 3 (the solid curve for Fig. 3a and the dashed
curve for Fig. 3b).

4. Surface Stability Conditions

All solutions obtained so far satisfy the condition
for constancy of the chemical potential over the en t i re
crys ta l l ine sur face , and a r e ex t remal s ince they en -
su re vanishing of the f i rs t var ia t ion 6j a ds of the
surface energy. However, minimizat ion a lso r e q u i r e s
a posi t ive value for the second var ia t ion of J ads,
i .e . , on smooth reg ions :

\ F (p) dx ,= 1 Jj -|~- (bpf dx > 0,

whence

dp2

,-1

o r a -j- > О,

(4.1)

(4.1а)

where ц> - tan * p. Consequently, the surface energy
permits the stability only of regions whose profile does
not contain orientations <p leading to a + a" < 0.

The condition (4.1a) denotes positive curvature of
F (p). Thus thermodynamically stable macroscopic-
ally smooth surface regions must have slopes corre-
sponding to segments of F (p) that are concave up-
wards. Stability disappears at inflection points, where
92F

= 0.

Not all the corner points satisfying (3.2) are associ-
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ated with an absolute minimum of the surface energy,
and therefore not all of them can exist on a real sur-
face under conditions of equilibrium. Equation (4.1a)
for corner points is equivalent to the statement that
the only stable corner points on a surface profile are
those for which the tangent to F (p) that determines
the profile slope discontinuity at a given corner point
occupies the lowest position. For example, in Fig. 5a,
of all possible corner points corresponding to the tan-
gents Q2Q^, QJQ^ and Q3Q3, only those correspond-
ing to QJQjf and QJQ4 will be stable on a real surface.
The simple proof for this will not be given here.

To sum up, we shall establish the correspondence
between motion along F (p) and motion along the
Wulff envelope for Л" 1 F (p) . F (p) is depicted quali-
tatively in Fig. 5b (solid curve), and the Wulff enve-
lope in Fig. 3a. The orientation p = 0 [thepoint Q t on
F(p)] corresponds to a close-packed face; here a(p)

has a sharp minimum, where
92F
Эр2 On the equi-

librium shape the point Qj corresponds to the rect i-
linear segment (the close-packed face) connecting the
points 2' and 2. The length of segment 2'2 (but not of

Г_8«1
dcp

the equilibrium face!) is Л Ч W h e r e

— for <p = 0. Thethe discontinuity of the derivative
segment Q1Q3 of F(p) corresponds to the envelope 23

92Faccording to Wulff's theorem. Here —-5- < 0, and the
Эр

curvature of the envelope is negative [see Eq. (2.1)].

At the inflection point Q3, Эр2 = 0, and the corre-

sponding curvature of the envelope at the point 3 is in-
finite. The interval Q3Q5 produces the smooth curve
36. This is followed by the inflection point Q6 on
F (p) and the reversal point С on the envelope, the
smooth segment 67 and the straight line 78 which is
orthogonal to the radius vector 08.

The curvature of the envelope at the point with

slope p is ЯЛ

sharp minimum

P 2

-1
Therefore if F (p) had a

d2F

" )
instead of a smooth

minimum between Q3 and Q6, 36 would be a straight
segment.

At the self-intersection point 4 of the envelope, the
transition from 12 to 36 can be made directly, avoiding
the unstable segment 23. This jump corresponds to
the direct transition from Qj to Q4 on F (p) . Analo-
gously, the corner point 5 arises in the jump from Q5

to infinity [ cp = — ) . A direct transition from 12 to

78 is theoretically possible, with the formation of the
corner point C. But, by the selection rules for corner
points, the contour 1C8 (the tangent QjQoo) does not
provide an energy minimum. For this reason the
corner point is unstable.

The equilibrium form, one corner of which is
shown in Fig. 3b, corresponds qualitatively to some
modification of a (p) (the dashed curve in Fig. 5b).

5. The Equilibrium Shape of an Open Curve

We shall determine the equilibrium profile of a
crystalline surface that is unbounded in all directions,
the mean slope of which does not coincide with any
close-packed grid and is described by complex Miller
indices2 2 (such as the surface in Fig. 1).

Let us first consider the equilibrium shape of the
contour between the two fixed points A (0, 0) and
В (Z,h) in Fig. 6. This shape must satisfy both Eq.
(2.2) and the conditions

= h. (5.1)

It is convenient to replace the condition that the two-
dimensional volume is constant by giving the value of
the chemical potential of the medium in equilibrium
with the crystal, i.e., the constant Л = fi"1 (/лщ —MC0)-
The relation between V and Л is given by the form

I
of the function у (х, Л) and the condition Jу (х, Л) = V.

0
Let us first assume Л * 0 (Л § 0). The solution

у (х, Л) must satisfy (2.2) for the two-dimensional
case. Therefore we must plot a closed equilibrium
contour (according to Wulff's theorem) for a given
value of Л, and insert this contour between A and В
in such a way that the crystallographic orientations of
the closed equilibrium shape and of the crystalline
matter between A and В will coincide, у (х, Л) is
determined from (3.3), and for Л ^ 0 there will be a
one-to-one correspondence between V and Л. The
contours a and b in Fig. 6 correspond to Л > 0,
while the contours f and g correspond to Л < 0.

Let, now, Л = 0, i.e., the chemical potential of the
medium equals the chemical potential HQ of an infi-
nite crystal. In this case no closed equilibrium shape
and one-to-one correspondence between V and Л can
exist. In accordance with (3.3) the smooth segments
of у (х, Л) can only be straight lines for Л = 0. There-
fore in this case the solution of (2.2) and (1.11) must
be a broken line connecting A and B, the segments
of which (intersecting at the corner points) must be
oriented in agreement with (3.2).

The solution with a single corner point and Л = 0
is represented in Fig. 6 (c and e) and corresponds to
unique values of the volume V.* The solution with two
corner points has the form of a step; Fig. 6d c o r r e -
sponds to an entire interval of values of V, and as V
increases or decreases this form is converted into a
broken line with a single corner point. A broken line
with a large number of corner points gives a stepped
surface profile.

*The straight line AB does not give an energy minimum ac-
cording to the selection rales for corner points, and is transformed
into a solution such as that shown in Fig. 6d.
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FIG. 6. EquUibrium profile of the crys-
tal surface between the points A and B.
a, b-when the chemical potential of the
surrounding medium is greater than the po-
tential of the unbounded crystal (Л > 0);
c, d, e —when Л = 0; f, g —when Л < 0.

It m u s t be emphas ized that, depending on the c h a r -
a c t e r of the anisotropy of a ( p ) , the r e c t i l i n e a r s e g -
m e n t s compr i s ing a s tepped profi le m a y o r may not
be c lose-packed.

The equi l i l ibr ium shape of an infinite sur face obeys
the per iodic i ty condition y ' ( 0 ) = y '(Z) a s well a s (2.2)
and (5.1). The only ones of the above-descr ibed solu-
t ions that satisfy this r e q u i r e m e n t a r e those with an
even number of corner points for Л = 0. Consequently,
the profile of an infinite surface must consist of mac-
roscopic steps when nontrivial solutions of (3.2) sat-
isfy the stability conditions or, equivalently, when the
equilibrium shape of a bounded two-dimensional crys-
tal has corner points.* Otherwise the profile of an
infinite surface will be a straight line. The chemical
potential of the medium above a stepped surface is

MC0-
It can be shown that in the general three-dimen-

sional case an infinite surface must consist of plane
regions intersecting to form both edges and vertices;
this also holds true for a bounded crystal with equi-
librium shape.

At temperatures T > 0 the edges of salient corners
(but not those of reentrant corners) are smeared by
fluctuations. Therefore on a microscopic scale the
edge of a salient dihedral edge of a step will be
rounded, while the edge of a reentrant corner will
be like that for T = 0. The same applies to vertices.

ш the model under consideration the edge energy
of a crystal (the intrinsic energy of corner points in
the surface profile) has not been taken into account.
Therefore the heights of macroscopic steps and the

distances between them cannot affect the surface en-
ergy, and will thus assume any arbitrary values. The
breakdown of macroscopic steps into elementary'
steps is equivalent to the disappearance of the former
and is thus not advantageous.

It was shown above that macroscopic steps can ap-
pear on a surface only when F (p) has segments of
both positive and negative curvature. F (p) is deter-
mined by the energy of interaction between elementary
steps on non-close-packed boundaries. In the absence
of this interaction the energy is simply the sum of the
energies of the close-packed segments and of the end
faces (or fronts) of elementary steps, i.e., for a
simple cubic lattice we have1 5

where

we have

a((p) = a0([cos(p|-b|sinq>|), (5.2)

| p |, which means that for 0 < p < «

= 0 (a + a" = 0). F ( p ) is a straight

F =
32F
Эр5

line in this case, any pair of values for p satisfies
(3.2), and the contour can have any shape between A
and В if the sign of p does not change. Therefore the
creation of a rough stepped surface is associated ex-
clusively with the departure of the asymmetry of a
from (5.2).

Experiments for the determination of crystalline
surface energy are known to require great accuracy
and do not always permit an unambiguous interpreta-
tion. The pertinent literature is partially collected
in a monograph by Kuznetsov.24 Lemmlein and Kliya2 5"2 7

observed directly the change of shape of small NH4C1
crystals that results from surface energy under iso-
thermal conditions, and finally obtained rounded
crystals.

The production of macroscopic steps by thermal
etching in a vacuum has been observed by Lukirskii,2 8

Geguzin and Ovcharenko29 for Cu, by Moor for Ag,30

and by Young and Gwatemy for Cu.31 However, these
experiments were not performed under conditions of
equilibrium. Geguzin and his co-workers have ob-
served the production of macroscopic roughness under
equilibrium conditions, at constant vapor pressure
and temperature.*

II. CRYSTAL GROWTH FROM VAPOR

In this chapter we shall consider the motion of steps
during growth from the gaseous phase, 1 4 following a
brief description of the properties of adsorbed atoms
and molecules. 1 3 ' 1 4 The condition used here for par-
ticle exchange between elementary steps and an ad-
sorbed layer leads to somewhat different expressions
than those given in reference 14 for the speed of motion
of an individual step, or of a group of parallel steps,
and the normal growth rate determined by a screw
dislocation.

We shall also discuss the kinetics of the motion of

*Except when F = 1+ |p | and the surface is in a state of neu-
tral equilibrium with a constant sign of p.

•The author is indebted to Ya. E. Geguzin for the communica-
tion of unpublished results.
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macroscopic steps in growth from a vapor and their
stability against decay into lower steps.

6. Particles Adsorbed on a Surface

Whether a crystal is in equilibrium with the sur-
rounding medium or not, its surface holds adsorbed,
particles (atoms, molecules, atomic complexes etc.)
of the crystalline material (position 4 in Fig. 1). Ad-
sorbed particles perform thermal oscillations in three
directions, two of which are parallel and one perpen-
dicular to the surface. Energy fluctuations of the per-
pendicular oscillations separate particles from the
surface and transform them into vapor. As a result of
the parallel oscillations, adsorbed atoms (or mole-
cules ) jump to neighboring positions of the two-dimen-
sional grid, i.e., they migrate by diffusion over the
surface.

The oscillatory frequency of an adsorbed particle
will be denoted by v, and its binding energy on the
surface by W s. Then the mean lifetime of an ad-
sorbed atom or molecule on the surface will be

(6.1)

where ys < 1 is a coefficient associated with the nec-
essity for surmounting the activation barr ier in t ran-
sitions between the adsorbed layer and the vapor. The
density of adsorbed particles can be expressed by

s = nsoexp ( — ~kf (6.2)

where W s is the energy required to transfer a particle
from position 3 in a kink to position 4 on the surface
(Fig. 1). n s ~ a"2 for atoms and simple molecules,
but differs from a"2 by an entropy factor for more
complex particles (of necessarily lower concentra-
tion). Equation (6.2) reflects the possibility of par-
ticle exchange between the crystal and the adsorbed
layer via kinks in a step. The value of n s can also
be derived from the condition for equilibrium between
the adsorbed layer and the medium.

The energy of attachment of particles to different
positions on a crystal was calculated in the classical
papers by Kossel3 and by Stranski,4 who showed that
the transition energy when an atom or molecule
passes from a kink to the surrounding medium equals
the heat of crystallization: W = W s + W s.

If U s and a are the height and width of the poten-
tial barr ier between neighboring adsorption positions,
the surface diffusion coefficient is

Ds - a 2 v e x P l —w (6.3)

The average path traversed by an adsorbed particle
during its lifetime on the surface is

e x P
W's — b

2kf~

w

(6.4)

is a typical value when the surrounding medium is a
vapor), and also, following Mackenzie,1* that U s = %
we have

W,

{^)~A.Wa.

The values of nS ( ), T S , A.S, y s , D s , W s and Wg
depend on the orientation of the face to which they per-
tain. The crystallization energy W must, of course,
be identical for all faces.

The foregoing considerations apply both to crystal-
vapor and crystal-solution interfaces.

7. The Motion of an Isolated Step

Consider a crystal surrounded by a supersaturated
vapor, so that its chemical potential IXQ is smaller
than the gas potential HQ. AS a result of particle ex-
change between a step (i.e., kinks) and the adsorption
layer, extra particles join the crystal at the kinks,
and the value of the chemical potential of adsorbed
particles (and vapor) around the step is close to HQ.
Therefore diffusion begins in the vapor and adsorbed
layer in the direction of the step, on which crystalli-
zation will be continuous so long as supersaturation
is maintained.

Few particles reach the end-face of a step directly
from the vapor because of low vapor pressure and
small end-face area. This circumstance induced
Volmer3 2 to suggest an adsorbed layer in order to in-
terpret experiments on mercury platelet growth from
a vapor. The principal contribution therefore comes
from a two-dimensional diffusion current of atoms or
molecules adsorbed on close-packed portions of the
surface, where particles cannot make the transition
to the crystalline phase. The area of these regions
is large, and a considerable number of particles is
deposited upon them in unit time before diffusing to
the step.

Let us consider the motion of an elementary step,
assuming that matter reaches its end-face only by
two-dimensional diffusion. In view of the subsequent
investigation of macrostep motion, it is more conven-
ient to employ, instead of the density n s of adsorbed
particles, their chemical potential ц, which under
conditions of equilibrium is independent of face
orientation.

The current of adsorbed particles on the surface
is given by

(7.1)

where
T,P

D s and the gradient V is

taken along the crystal surface, fii first approximation
the current from the gas to the surface is

(7.2)

where

Assuming W s = W s = % W, y s = 1, — = 24 (which ", P
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Since the motion of a step is considerably slower14

than the characteristic diffusion rate Ds A s , the step
can be regarded as fixed in solving for the diffusion of
adsorbed particles. In this approximation the matter
conservation law div j s = j v , in conjunction with (6.1),
(6.4), and (7.2), gives

Х|Дц — ()х — Цо) = 0. (7.3)

When the step is parallel to the z axis, we have
ц - ц (x). The step can be regarded as a line sink for
adsorbed particles. It is reasonable to assume that
the strength of this sink is proportional to the depar-
ture from the equilibrium chemical potential of the
immediately surrounding particles. Therefore on
the step (x = 0)

(7.9)

P = PL
T,P

can be represented by а/т,

where т is the aforementioned relaxation time. For
the factor playing the part of p* here we now have

i t
dx x=0+0 dx

where /3„ is a coefficient characterizing the rate of
particle exchange between the step and adsorbed layer.
Pp obviously characterizes only the step and does not
depend on the distribution of diffusion currents in the
system. /3„ is also smaller than the density of kinks
in the step.

Burton, Cabrera, and Frank1 4 used, instead of (7.4),
a somewhat different condition, which for the chemical
potential pi (0) of particles adsorbed near the step is
given by

Here the dimensionless coefficient /3*, like Рц in (7.4),
reflects the necessity of a finite relaxation time т be-
fore equilibrium is established between the crystal and
adsorbed layer near the step. Since it relates super-
saturation around the step, ц (0) - д о w i t n supersatu-
ration A*G~MC i n t n e vapor far from the step, the co-

which agrees with the expression for p* in reference
14 within a factor of 2. The velocity (7.9) of an iso-
lated step is independent of the crystallographic ori-
entation of the step, being determined by the isotropic
diffusion current. Anisotropy of v can result from
anisotropy of the two-dimensional diffusion coefficient
D s and of p.

8. Parallel Sequences of Elementary Steps

Let an infinite sequence (or " s ta i rcase") of par-
allel elementary (unit) steps exist. If the separation
of neighboring steps is Л & \ s their diffusion fields
overlap, and the speed of motion will diminish as Л
decreases. The speed of step motion in a sequence,
calculated by analogy with that of an isolated step
(Sec. 7), is

^ . ( 8 Д ) *

Equations (7.9) and (8.1) contain the dependence of
step velocity on their curvature к if the radius of
curvature is 1/k » \ s . Indeed, д к = ц.%. + пак when
a is isotropic, and

M-G— Rc=((*G- ^ = АГа(1-Л в е),

efficient p* =
\

1 + must depend on the geom- where p c = па
a T s /

etry of the diffusion field. In reference 14, however,
it was regarded as constant.

In solution of (7.3) with the boundary condition (7.4)
at x = 0, and \x = IXQ at x = ± «, is

H(K) = t l G -(HG-^c)fl + ^ ) ~ 1 e x p ( T ^ r ) . (7.6)

The negative sign pertains to the region x > 0, and the
positive sign to x < 0. The velocity of step motion is
thus

is the critical radius of curva-
G 0ture of a two-dimensional nucleus under supersatura-

tion HQ-IIC0- Hence,

v = vo(l-kQc). (8.2)

If Р о is the equilibrium vapor pressure above the
crystal, and P is the actual vapor pressure, then for
small departures from equilibrium we have

(7.8)

For an isolated step v0 is given by (7.9), and for a
step in a sequence by (8.1). Portions of a step with
curvature к > l / p c will dissolve, rather than grow,
under super saturation. When к = l/p we have v = 0.

9. The Normal Rate of Spiral Growth

The motion of steps regardless of their source has
been considered in Sees. 7 and 8. In the classical
theory 2" 1 0 the sources of steps are two-dimensional
nuclei formed on close-packed crystal faces. How-
ever, the probability of the formation of these nuclei
on unit surface area in unit time is proportional to

Г жпяа2 } , ^ .exp < — TZT~, : r , and attains an appreciable
I k T <MG^c)J

Using (6.1) — (6.4) and (7.8), we obtain from (2.11) *th = tanh.
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value only at supersaturations ~ 50%, while for
smaller departures from equilibrium there will be
practically no growth. Crystals actually grow at the
easily measurable rates of 10~5—10~4 cm/sec at
supersaturations & 1%. This contradiction between
theory and experiment was accounted for in 1949 by
Frank, who pointed out that a surface intersected by
a screw dislocation acquires a step, equal in height
to the projection of the Burgers vector of the disloca-
tion on the normal to the surface, which does not dis-
appear during the growth process (Fig. 7). Growth at
dislocations can proceed even under low supersatura-
tion; therefore it becomes unnecessary to regard the
growth rate as limited by the nucleation rate.

FIG. 7. A screw dislocation in a crystal and the initial devel-
opment of a spiral step to — angular rate of spiral "rotation";
n - normal to step (in close-packed plane). The Burgers vector a
has the same direction as <u and is equal in magnitude to the
height of the step resulting from incomplete slip in the crystal.

A crystal containing one screw dislocation con-
sists, if the lattice is simple, of a single helicoidal
atomic layer. The step, which terminates on the sur-
face at the emergence point of the dislocation, grows
spirally around that point as a center. Heck33 ob-
served the typical spiral on paraffin crystals as early
as 1937, but the significance of his observations was
not duly appreciated. In 1945 Lemmlein3 4 rediscovered
the spiral topography, on the basal face of a SiC crys-
tal. X-ray studies of polytypism by Zhdanov and Miner-
vina35 at about the same time enabled Lemmlein to de-
termine the relationship between the spiral topography
of the face and the helicoidal-polytypic structure of
silicon carbide crystals.* At that same time Lemmlein
spoke of spiral centers as continuous sources of
layers. 3 4

However, an intensive study of the spiral topogra-
phy began only after the publication of Frank's paper, 1 2

when the significance of dislocations for growth under
low supersaturation was understood. The spiral pattern
was observed on a huge number of crystals grown from
vapor 3 4 ' 3 8 ' 3 7 and from solution,39 on a much smaller
number grown from the melt, 4 0 and in electrolytic
growth.4 1 '4 3 Spirals generated by dislocations have

been observed on crystals with different types of bonds,
lattice structure, and symmetry.

At the present time it can be asserted confidently
that spiral growth, if it is not the only form of growth
in conditions of low supersaturation, must, in any
event, be regarded as quite typical and universal.

Let us consider the formation of a spiral growth
pattern, and determine the normal growth rate of a
face resulting from a screw dislocation. Let the crys-
tal exhibit a rectilinear elementary step AB (Fig. 7),
where A is the emergence point of the screw disloca-
tion. During growth all points except A begin to move
with the same linear velocity v along the normal to
AB. Thus the entire step acquires a spiral form and
a " h i l l " grows on the face of the crystal.

In growth the spiral " r o t a t e s " around the point A

—— , where v0 is givenwith the angular velocity w s' 2 Pc
by (8.1), and the separation of adjacent turns is

(9-1)

since the spiral is represented by r = 2pc0 in polar
coordinates (г, в). A more accurate calculation some-
what reduces ы (Fig. 22),46 and Л. ss 19p c .

The foregoing expressions for the shape of a spiral
and for its velocity of " rota t ion" on a crystal surface
depend on the mechanism for step motion only through
Vo, and, depending on the specific form of v0, are ap-
plicable to growth from a vapor, solution, or melt. In
the given model the separation Л between successive
turns is entirely independent of the growth mechanism
and depends only on supersaturation (or undercooling).
Using (9.1) and (8.1), we obtain the normal rate for a
face that is determined by a dislocation with a screw
component of the Burgers vector equaling the inter-
atomic spacing a:

v = T" v =

where

e x p ( ~~ T F

(9.2)

2nQa
Ш 7 "

•Polytypism has been discussed in the books by Varma" and
by Amelinckx and Dekeyser," and in Mitchell's review article.45

With a « ac, when the turn separation of the spiral
is Л » Лч, the diffusion fields of the turns do not over-

8 , Г Л8 1
lap, and V ~ a2 . If cr » max i ac, <rc r , then

I PTs J
V ~ <T. When jS is much smaller than the character-
istic surface diffusion rate Л.д/т8, a linear segment
can be initiated only at extremely high supersatura-
tions .

Equation (9.2), which is basically the same as the
corresponding expression in reference 14, differs
from the latter in the presence of the denominator
/ 2A.S a c \-i
( 1 + — — tanh j depending on supersaturation,
\ prs a I

and also because under high supersaturation the role
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of /3* in reference 14 is here played by the coefficient
y s , which is related to the relaxation time required to
establish equilibrium between the adsorbed layer and
the vapor (rather than the step, as in reference 14).

A'

Ve l A
The function \kT / has been plotted in Fig. 8

for = 0 and 1, <JC = 0.1, which are obtained from

v
the relaxation time т s — exp I - 7 - J with the follow-

ing numerical values: kT = 5 x 10 1 4 erg, a = 3 x 102

erg/cm2, \ s = 4 x 102 x 3 x 10"8 cm, and Й = 3 x 10"2 3

cm"

о ш az 0.3 at as

FIG. 8. Normal rate of dislocation-induced growth of a face as
2Л

a function of supersaturation [Eq. (2.14)]. Curve 1 — for g-2- = 0,
P T s

curve 2 — for я-*' = 1. For smaller /3 curve 2 can be considered to

to be the function V(cr) in the presence of impurities.

10. The Motion of Macroscopic Steps

We shal l now invest igate the motion of m a c r o s c o p i c
s t e p s , the shape and v e r y ex i s tence of which in condi-
t ions of c r y s t a l - m e d i u m equi l ibr ium i s d e t e r m i n e d by
the anisotropy of the sur face specific energy (Ch. I).

When the end face of a s t e p i s a c lose-packed m a c -
roscopic c r y s t a l face, c rys ta l l i za t ion upon it i s poss ib le
only through the motion of s t e p s . When dis locat ions do
not e m e r g e on the end face, the s o u r c e s of s teps m u s t
be nuclei , which can be formed m o s t eas i ly at the edge
of a r e e n t r a n t c o r n e r such a s C C (Fig. 9). If the
height of a m a c r o s c o p i c s tep is s m a l l e r than the r a d i u s
of the c r i t i c a l nucleus , t h e l a t t e r cannot a p p e a r on the
end-face of the m a c r o s t e p . There fore the m a c r o s t e p
will move only at s u p e r s a t u r a t i o n s

0 > a*
Qa sin

= kTh

With increasing step height h > the
Sla sin <рй

кТст

step velocity must increase because of higher nuclea-
tion probability.

The end surface of a step will not necessarily be
close-packed (Sec. 3). Moreover, if the step height is
of the order of tens of interatomic spacings or less,

FIG. 9. A macroscopic step in conditions of equilibrium (solid
lines); distortion of its end-face BB'C'C in growth (dashed curves).
1 and 2 are nuclei of new growth monolayers; 3 is an evaporation
nucleus. The edge BB' and part of the end-face can in actuality be
smeared out by fluctuations.

the end sur face is subject to fluctuation s m e a r i n g . In
such c a s e s an apprec iab le n u m b e r of kinks i s found in
the end-face, and the nucleat ion s tage does not l imit
the r a t e of the growth p r o c e s s . Of p r i m a r y i m p o r -
tance, however, i s the r a t e at which the end-face is
supplied with crys ta l l iz ing m a t t e r — an aspect that we
have lately been cons ider ing . 2 2 * 2 3 It is r e a s o n a b l e to
a s s u m e that adsorbed p a r t i c l e s m i g r a t e o v e r both
close-packed and non-close-packed sur face reg ions ,
but with different diffusion coefficients. In conditions
of equi l ibr ium let the end sur face m a k e the angle <p0

with a close-packed face (Fig. 9 ) , a n d i n t h e growth let it
move at velocity Vt and a s s u m e a s ta t ionary form
r e p r e s e n t e d by <p{s), w h e r e s i s the length along the
sur face profi le m e a s u r e d from the point O. The con-
dition for a s ta t ionary profile of the end-face will be

(10.1)

The chemical potential ju ( s ) of adsorbed p a r t i c l e s
obeys the equation

The second t e r m d e s c r i b e s flow from the gas to the
adsorbed layer , while the t h i r d t e r m d e s c r i b e s that
from the adsorbed layer to the crystal. The coeffi-
cients D^g, Ypi. and /Зр depend generally on (p.

From (2.1) we have

(10.3)

On the close-packed faces ABB'A' and CDD'C (Fig. 9).
ex + a" = °° and <p = const = 0.

The orientation of ABCD to the left and right of the
corner points В and С will, as in the case of equilibri-
um, be given by <p = 0 and <р0, and migrating particles
will flow continuously through BB' and C C . In addi-
tion, ц (±°°) = HQ. These boundary conditions, to-
gether with (10.1), (10.2), and (10.3), determine the
unknown functions <p ( s ) and /x ( s ) and the velocity
Vt of an isolated macroscopic step.

The solution of our problem in first approximation
with respect to a is
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= cosec ф0 Y*o
(10.4)*

1
I
1
1

Я/1
V

/ i

-^. 1
( Ii i

FIG. 10

t h e a b s o l u t e v a l u e o f t h e m a x i m u m d e v i a t i o n o f <p f r o m

i t s e q u i l i b r i u m v a l u e i s

on t h e s e r e g i o n s the s u r f a c e e n e r g y w i l l not favor s t a -

b i l i t y and the s t e p w i l l d i s i n t e g r a t e . F o r e x a m p l e , l e t

a r a n d o m d e v i a t i o n M L N ( t h e dot ted l i n e in F i g . 1 1 )

a r i s e in the p r o f i l e of a s t e p . Then b e c a u s e of the

deviation б
ds

of surface curvature and the effect of

1 0 1 U\

( 1 0 . 5 ) *

w h e r e SQ s i n <p0 = h / 2 i s t h e h a l f - h e i g h t o f t h e s t e p ,

D Q i s t h e d i f f u s i o n c o e f f i c i e n t o v e r c l o s e - p a c k e d f a c e s ,

a n d D j i s t h e d i f f u s i o n c o e f f i c i e n t o n t h e e n d f a c e o f

t h e s t e p .

T h e s t e p p r o f i l e c o r r e s p o n d i n g t o ( 1 0 . 5 ) i s r e p r e -

s e n t e d i n F i g . 9 b y a d a s h e d c u r v e . D u r i n g g r o w t h t h e

e n d - f a c e " s a g s " a n d , b e c a u s e <p(s) -<po= -(<p(-s)

-cpa) (Fig. 10, curve 1), the points В and С occupy
the relative positions as in equilibrium, i.e., the slope
of the straight line is cp0, as previously. When s 0 « Xt,

surface energy, the speed of the step on MLN will
change, in accordance with (10.1) and (10.3) by the
amount

sin фo6F ( = — Qp (a 4- a") $ -j-.

(The r e d i s t r i b u t i o n of diffusion c u r r e n t s which i s a s -

sociated with the deviation MLN has not been taken

into account, and a + a" i s taken to be cons tant . )

When a+ a" > 0 the sign of 6Vj- i s opposite to that

of б
ds

so that a random modification of the sta-

tionary shape tends to disappear. On the other hand,
when a + a" < 0, a random deviation will be aug-
mented so that segments with a + a" < 0 disappear.

—»i

FIG. 11

Let cpct and <pc2 be values of q> at which the sign
of a + a" changes. It follows from the preceding dis-
cussion that a step will be stable at supersaturations
and macroscopic step heights where

min ф (s) > i
—so<s<so

max <p (s) < <p
Sf\<S<Sf)

(10.8)

and w e h a v e the function, d e c r e a s i n g m o n o t o n i c a l l y

w i t h he ight ,

/(A)scosec q>0 ( 1 + 2 у ХДА

1 п ф р ) " 1 . (Ю.7)

The "sagging" of the step profile (Fig. 9) results
from the fact that the regions around B' and С are
better supplied with migrating particles than is the
central zone around O'. The warping of the profile
and the change of the supplementary chemical poten-
tial that is associated with surface energy compensate
the nonuniform supply. In the absence of surface en-
ergy the end-face region around С would move faster
than the central region, and the step would be unstable
and smeared, becoming a non-steep sequence of ele-
mentary steps Л It follows from Sec. 4 that the step
shape will be stable only if a + a" > 0 everywhere on
the end face. If kinetic processes result in orienta-
tions on the end face of the step for which a + a" < 0,

*sh = sinh, ch = cosh
tA high velocity around BB' would lead to the formation of a

layer overhanging the surface.

i.e., when <p(s) (Fig. 10) remains within the strip
bounded by the straight lines <p = <pCj and <p = <pc .
With rising supersaturation the maximum departure
of <p(s) from its equilibrium value cp0 increases,
and the symmetry of <p ( s ) will generally be destroyed
because of higher-order supersaturation terms, and
also because the end-face of the step is not built up
uniformly from the gaseous phase (Fig. 10, curve 2).
Therefore the curve of <p(s) can first touch either
<p = cpC2 or <p = <pCl. In the first case the macrostep
at the point s t divides into two steps with the heights
(SQ + s t ) sin cpQ and (SQ — st) sin <p0. The latter, being
lower, has a higher velocity and will overtake the
former. Therefore, with rising supersaturation the
original macrostep will break down until it reaches a
height for which (10.8) is fulfilled. Using (10.6) for a
tentative estimate, we find that at any given supersatu-
ration the only stable steps will have heights obeying

h <Acconst-o-1/s. (10.9)

It must be remembered that steps resulting from
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the foregoing separation process are also macroscopic,
like the initial step.

If with rising supersaturation the second condition
in (10.8) is violated first, a macroscopic layer will
appear above the surface; this is essentially a lamel-
lar dendritic crystal.

The described mechanism of macroscopic step
breakdown comes into operation only when the super-
saturation exceeds a critical value corresponding to
the step height.

It follows from (10.9) that h c •» cr"^3, thus dimin-
ishing quite slowly as the supersaturation r i ses . At
high supersaturations a second mechanism of macro-
scopic step decay becomes effective. This involves
the nucleation of elementary steps at a reentrant cor-
ner such as CC (2 in Fig. 9). When this process be-
gins to become intense, the mean step height on the
surface drops sharply to the order of a few lattice
parameters. Under such degrees of supersaturation
macroscopic steps can arise and remain stable for
purely kinetic reasons alone (Ch. VI). For example,
an annular macroscopic step can arise around a screw
dislocation if the stream intensity of elementary steps
separated from the macroscopic step is less than that
emitted by the dislocation (see Sec. 11, Fig. 13d).

Let us imagine two surfaces with identical orienta-
tions but different mean step heights h. On the sur-
face with greater step height the mean step separation
X is greater. If on this surface X Z Xs, step breakdown
under the same supersaturation will lead to an in-
creased normal rate of growth. Indeed, V ~ ( h / \ ) f (h) ,
and, if h ~ X, then V ~ f (h). The surface with lower
step height uses the current from the gaseous phase
"more efficiently."

The sole cause of macroscopic step stability con-
sidered in this section has been the anisotropy of sur -
face energy. Kinetic processes, on the contrary,
tended to destroy macrosteps by converting them into
sequences of elementary steps. However, it is pos-
sible to have kinetic factors that promote the relative
stability of a step (see Sees. 18 and 22, for example).

11. Some Experimental Results

The quadratic form of V(a) for V & 1% is indi-
cated by the data in the paper of Volmer and Schultze48

on the growth of iodine crystals from vapor.
A distinctly nonlinear form of V (<r) was obtained

from measurements of the normal growth rate of an
individual spiral hill on crystals of /3-methyl naphtha-
lene and p-toluidine (Fig. 12) grown from vapor with
5% £ CT £ 80%. The normal growth rate in this case
depends on the screw component of the Burgers vector
of the dislocation that generates the hill (curves 1, 2,
and 3 in Fig. 12).

The shape of the V (cr) curve is correlated with the
stepped structure of the surface. The transition from
a nonlinear to a linear segment of V (cr) is character-

FIG. 12. Normal rate of spiral growth from vapor on the (001)
face of a j3-methyl naphthalene crystal. The Burgers vector for 1
is 4c; for 2 it is 40c and for 3 it is 60c. The lattice constant
along the с axis is 23.5 Л.

ized by s u p e r s a t u r a t i o n at which d i r e c t m i c r o s c o p i c
observat ion of the intense decay of high s teps is p o s -
sible. F i g u r e s 13a — d shows success ive s tages of the
dis integrat ion of a s p i r a l s tep a s s u p e r s a t u r a t i o n r i s e s .
The f i rs t two photographs show the breakdown of a
s p i r a l m a c r o s t e p t o form m a c r o s c o p i c s teps that a r e
vis ible microscopica l ly . At s u p e r s a t u r a t i o n a ~ 40%
intense decay of the s p i r a l l a y e r begins, with the a p -
p a r e n t c rea t ion of low s teps that a r e not m i c r o s c o p i c -
ally dis t inguishable. The vis ible s p i r a l d i s a p p e a r s ,

FIG. 13a—d). Disintegration of a spiral step as supersaturation
increases, e—h) Disintegration of a layer with the emission of a
macroscopic step (indicated by arrows).
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and a high circular step appears around its former
center (Figs. 13e — h). a ~ 50% corresponds to the
beginning of the linear segment of V (cr). If the super-
saturation is now lowered, a growth spiral reappears
at the previous site. One possible cause of the ob-
served nonlinearity of V(a ) is the disintegration of
steps discussed in Sec. 10 and the increase of their
mean density with rising supersaturation.

Successive motion-picture frames in Figs. 13e —h
show the disintegration of a macroscopic step with the
evolution of another, lower, macrostep.49 This proc-
ess was photographed at constant supersaturation.

The decrease of step velocity as height increases
has been noted qualitatively by many authors, and
specifically in reference 50 for growth from a solu-
tion. Quantitative measurements of f (h) in growth
from vapor have been performed by Lemmlein and
Dukova,51 and by Kozlovskii52 on crystals of p-toluidine
and /3-methyl naphthalene. These data agree satisfac-
torily with f (h) in (10.7) when h is smaller than \ u

the mean free path of an adsorbed particle on the end
face of a step.53 When h £ 0.1 micron the measured
velocity of an end face approaches asymptotically a
value close to the velocity of the corresponding
macroscopic face.

12. Evaporation*

The discussed molecular kinetic ideas concerning
the motion of elementary steps can obviously be ap-
plied completely to the case of evaporation, i.e., nega-
tive values of a. In evaporation, steps move in the
opposite direction, and depressions, instead of hills,
are formed at dislocations. Within the framework of
the ideas already developed regarding the role of sur-
face energy in the lifetime of macrosteps, their veloc-
ity and shape can be derived from (10.4) and (10.5) by
the substitution cr — - a. If, however, the edge BB'
of a salient dihedral corner is extremely smeared by
fluctuations, the splitting-off of elementary steps does
not necessarily require nucleation, and will proceed
more intensely and at lower values of a than for
growth. Similarly, a crystal edge will serve as a
source of steps in evaporation. This hypothesis has
been corroborated experimentally by Hirth and Pound54

and by Sears.55 When a narrow (~ 1 micron) microjet
of undersaturated vapor impinged on the edge of a
crystal plate of para-toluidine, Sears observed the
splitting of layers from this edge, whereas a stream
directed at the middle of a perfect crystal did not
cause evaporation of the latter.

According to reference 54 the separation of elemen-
tary steps is ~ 6 As when they are far removed from
the emitting edge. Unfortunately, it has not been pos-
sible to repeat the calculations in reference 54 per-
taining to the distribution of steps near the crystal
edge. Frank56 has presented a phenomenological
theory of the surface profile near an edge during

*See also Ch.V, "Etching."

evaporation, without account of surface energy (see
Sec. 22).

III. CRYSTAL GROWTH FROM THE SOLUTION AND
FROM THE MELT

13. Introduction

Crystals are usually grown in practice from the
liquid phase —either the solution or the melt. Crys-
tallization from the condensed phase has been studied
in a large number of special investigations, but the
mechanism of growth, especially from the melt, is at
present much less well understood than that from the
vapor.

The rate of crystal growth from the gaseous phase
is not limited by mass transfer in the vapor, since such
transfer proceeds quite rapidly, at least in the case of
a pure gas. When the feeding of the growing crystal is
impeded by the presence of a gaseous impurity or by a
solvent (in growth from the solution), mass transfer
in the body can proceed more slowly than the diffusion
of adsorbed particles on the crystal surface; this c i r -
cumstance must not be neglected. Thermal conduction
must also be considered in growth from the melt, and
sometimes in growth from the solution.

We shall consider growth from the solution first.
If the entire solution is motionless and of sufficiently
large volume, the growth rate will be limited by the
diffusion resistance of the solution, which is directly
proportional to the linear size of the space occupied
by the solution, and is inversely proportional to the
diffusion coefficient. If the solution is stirred, pure
diffusion transfer (without hydrodynamical transfer)
actually occurs nowhere. However, it may be.as-
sumed approximately that a thin layer of liquid r e -
mains motionless at the liquid-crystal interface, and
that the diffusive transfer of dissolved matter takes
place through this layer.

In the original version of the diffusion theory of
growth57'58 the concentration of the solution at the
crystal surface was taken to be its equilibrium value
at the given temperature. This simplest isotropic
model cannot account for the different growth rates
of different faces. It was subsequently59 suggested
that the concentration in the boundary layer at the
interface differs from the equilibrium value and
varies on different faces depending on the properties
of the latter. Bravais long ago,60 and Niggli fifty
years later,61 developed the idea of a relationship be-
tween the growth rate of a face and its reticular den-
sity. These views regarding the role of the reticular
density were developed further by Kossel3 and by
Stranski,4 who analyzed the activities of different
atomic sites on several crystal faces and showed that
steps and kinks must exist for crystal growth. The
sources of steps in growth from the solution or melt,
as in the case of growth from the vapor, are either
two-dimensional nuclei or dislocations. The dislo-
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cation model of growth from the solution and its em-
ployment in analyzing growth from the melt 6 2 lead, as
for growth from the vapor, to a normal growth rate V
of a face that is quadratically dependent on supersatu-
ration or undercooling a at low values of these quan-
tities. This conclusion can be reached regardless of
the detailed mechanism and velocity of advance of each
step (Sec. 9). A more detailed analysis requires the
calculation of the temperature and concentration near
the stepped surface; this is performed in the present
section.6 3 These effects yield a function V (a) that,
over a wide range of a, is well approximated by Ma111,
where m ~ 1.6 — 1.8, but that becomes linear for
larger values of a, so that the corresponding straight
line in the (V, a) plane does not pass through the co-
ordinate origin. The diffusion field, rate of advance,
edge shape, and stability of macroscopic steps are
calculated in Sec. 15.

The foregoing discussion of growth also applies to
dissolution and etching, although certain new effects
also arise, such as the more intense decay of macro-
scopic steps (Sec. 12 and Ch. VII) and nucleation at
sites with enhanced energy.

14. The Motion of a Parallel Sequence of Elementary
Steps

We now consider the motion of parallel elementary
steps. Let us assume, as in Sec. 2, that matter is
transferred to the crystal only on the end faces of
steps and only by diffusion within the volume of a
fixed boundary layer of thickness б adjacent to the
crystal, i.e., the flow of adsorbed particles on the
crystal toward the steps can be neglected compared
with the direct flow from the solution. Estimates of
the relative roles of these currents 1 4 unfortunately do
not furnish a unique criterion for the applicability of
the hypothesis in question. We shall assume, finally,
that the rate of advance of steps is considerably
slower than the characteristic diffusion rate in the
solution (D/6). With the diffusion coefficient D

~ 10"5 cm 2/sec and б ~ 10~4 —10" 5 cm this inequality
is well satisfied.

We denote the concentration of the solution at the
edge of the boundary layer by eg, the height of each
step by a, and the distance between steps by X
(Fig. 14). The z axis coincides with one of the steps,
and the (x, y) plane intersects the crystal surface
along the x axis on the average. Since step motion
can be neglected in the diffusion problem, the concen-
tration c(x, y) of the solution obeys Laplace's equa-
tion Дс = О everywhere in the boundary layer, while
on a step, which we assume to be a semicylinder of
radius a, it satisfies

for r*=a (14.1)

Here /3 characterizes the rate of particle exchange
between a step and the solution, diminishing as the
number of kinks in the step decreases.

C-Cg

FIG. 14. Diffusion field near the stepped surface of a growing
crystal. The steps are perpendicular to the plane of the figure and
intersect it at the points x = 0, ± X, ± 2Л..., у = 0.

At the assumed limit of the boundary layer, у = б,
we have с (0, б) = eg. There is no flow through the

3c
contour ABOCD, i.e., on this contour -r— = 0, the

on
derivative being taken normal to the contour.

By conformal mapping of the half-strip - X/2 < x
< X/2, у > 0 on the upper half-plane, we obtain the
following distribution for the concentration of the solu-
tion in the interval — Л./2 < x < Л./2:

с (x, y) = Aln |/sin 2 -£- x + sh2^- у + В, (14.2)

where

f, — ce) l = c e - ^ ] n s h - f 6.

Hence the velocity of advance of elementary steps in
the sequence is

(14.3)
Bo , X , л fi 'т г In — s h — 6D na X

where cr = , and fl is the specific volume of

a molecule (or atom) in the crystal.
In deriving (14.2), and thus (14.3), the boundary con-

dition с (0, б) = eg was used, although in actuality a
boundary condition would be required along the entire
straight line у = б as well as at the point (0,6) in the
(x, y) plane. However, when 7гб » X, for large у we
find that с (х, у) is practically independent of y, and
the condition used at the point (0, б) is equivalent to
a condition along the line у = 6: When 7гб « X it is
required, from a rigorous point of view, that we use
the conformal mapping, by the Schwarz-Christoffel
integral, of the rectangle ABCD on the upper half-
plane, rather than of the half-strip. However, for
7гб « A. steps exist which are actually isolated from
each other. Therefore near each such step the con-
centration can be represented approximately by

where A and В are derived from the conditions с (б)
= eg and (1.41). Then В = eg - A In 6, and A and v
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coincide with the e x p r e s s i o n s obtained from (14.2) and
(14.3) when 6/X — 0.

F r o m the foregoing c o n s i d e r a t i o n s we can expect
that (14.3) with 7r6 « X will hardly r e s u l t in a g r e a t e r
e r r o r than the or ig inal physical a s s u m p t i o n s .

15. The Normal Growth Rate

The d i s tance A. between s teps depends on the
s t r e n g t h of the s tep s o u r c e . A s c r e w dis locat ion p r o -
duces a s p i r a l s t e p . F a r from the c e n t e r of a s p i r a l ,
w h e r e the r a d i u s of s tep c u r v a t u r e cons iderably ex-
ceeds the d i s tance between s teps , the r a t e of advance,
a s in the c a s e of s t ra ight s t e p s , i s given by (14.3).
Near the c e n t e r of the s p i r a l the velocity of a s tep
m u s t be somewhat s lower, i .e . , the equation of the
s p i r a l m u s t take into account the dependence of s tep
velocity on d i s tance from the c e n t e r . However, in
calculating the fundamental c h a r a c t e r i s t i c s of the
p r o c e s s it i s sufficient to a s s u m e

Then the n o r m a l growth r a t e of a face, due to a single
s c r e w dis location, is

V- " ,,- $ak

pa dar , a4 r In —-sh —D aa ac

(15.1)

w h e r e crc = 4па (кТ6) 1 . The product /За is the
"d i f fus ion" coefficient of c r y s t a l p a r t i c l e s through
the c rys ta l - so lu t ion inter face. /За ~ D can be taken
a s a rough approximation, although a s m a l l e r value i s
actual ly poss ib le because of entropy factors and b e -
cause of the high activation energy of diffusion in a
par t ia l ly o r d e r e d l a y e r of liquid d i r e c t l y in contact
with the c r y s t a l .

F o r the purpose of obtaining a qualitat ive e s t i m a t e
we a s s u m e п = 3 x i o ~ 2 3 c m 3 , a = 3 x 102 e r g / c m 2 ,
kT = 5 x 10" 1 4 e rg , б = 7 x 10" 5 cm, D = 10" 5 c m 2 / s e c ,

c e = 10 2 1 cm -3 and obtain ao = 10
/3akTce

:, = 0.4
4o;

for 6 = 7 x 10~5 cmc m / s e c . A plot of „ , _
/3akTc e

(o-c = 10~2) and б = 3.5 x 10" 5 cm (стс = 2 x 10~2)
i s shown in Fig. 15. At v e r y low s u p e r s a t u r a t i o n s
a « crc we have V ~ a2. In this c a s e s p i r a l s t e p s a r e
widely s e p a r a t e d , t h e i r concentrat ion fields do not
over lap (7гб « A.), and they do not i n t e r f e r e with each
o t h e r ' s supply of m a t e r i a l . With i n c r e a s i n g a and
c l o s e r s p i r a l t u r n s we have the a lmost l i n e a r re la t ion

This s t r a i g h t l ine p a s s e s below the coordinate or ig in

and i n t e r s e c t s the <r axis at a = /За a c .

F o r crc = 2 x 10 2 , б = 3.5 x 10" 5 cm, i .e. , curve 1 in
Fig. 15, in the interva l 0.01 < a < 0.2 the following
approximat ion i s a c c u r a t e to within ~ 3%:

w h e r e M = 400 and m = 1.65. F o r different n u m e r -
ical va lues of ac and б a s i m i l a r approximat ion can
be m a d e , using somewhat different values of M and
m . * The exponent m i n c r e a s e s as a c i n c r e a s e s o r
б d e c r e a s e s ; the region of the quadrat ic form of V (a)

i s enlarged as the solution i s s t i r r e d m o r e vigorously.

* s к w го
FIG. 15. Normal rate of dislocation growth from the solution

as a function of supersaturation, assuming unit Burgers vector
and no disintegration of the step with increasing supersaturation.
Curve 1-8 = 3.5 x 10"5 cm; curve 2 - S = 7 x 10'5 cm.

dV
In the assumed model the slope —— depends on

da
face orientation only in the nonlinear region. In the
l i n e a r region the s t ra ight l ines V (б ) for different
faces (and identical 6) have identical s lopes . This
should not occur if p a r t i c l e s adsorbed on c r y s t a l faces
play an es sent ia l r o l e in the growth p r o c e s s (Ch. II).
There fore exper imenta l information concerning the
anisotropy of dis locat ion-induced growth r a t e s at dif-
ferent s u p e r s a t u r a t i o n s could be important in studying
the effect of se l f-adsorpt ion and surface diffusion on
the k inet ics of growth from solution.

16. Some Experimental Results

Exper imenta l de te rminat ion of the growth r a t e s of
single c r y s t a l s from solution has s o m e t i m e s confirmed
the ex i s tence of a l i n e a r region at low s u p e r s a t u r a t i o n s .
Examples of this a r e the old data of M a r c 6 4 and of
Wenk,6 5 which, to be s u r e , w e r e i n t e r p r e t e d by them
on the b a s i s of ideas concerning b imolecu lar r e a c t i o n s .
Simi lar evidence is found in the effect of s u p e r s a t u r a -
tion on c r y s t a l habi t s .

Kozlovskii 6 6 has m e a s u r e d d i rec t ly the angular v e -
locity of " r o t a t i o n " of a s p i r a l s tep on c r y s t a l s of /3-
methyl naphthalene growing from an alcohol solution
flowing over them. A computation based on Kozlov-

*In the interval al<a <a1 we can determine M and m by
using, for example, least-square deviation condition:

[ [V(a)— Mam\* do = mm.
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skii's data gives V ~ <r1-83 for the normal growth rate
of a spiral hill, in good agreement with the result
given above.

A somewhat different nonlinear form of V (a) has
been obtained by Dunning and Albon67 for saccharose
and by Follenius6 8 for NaC103. The former investi-
gators obtained a straight line not passing through
the origin. Growth is entirely absent at supersatura-
tions below a critical value. A similar critical point
is described by Follenius, with subsequent increase
of the growth rate showing a better than linear de-
pendence on supersaturation.6 8

17. Growth from the Melt

It is difficult at the present time to furnish a unique
description of the crystal-melt interface. This bound-
ary can have a stepped structure, entirely analogous
to that of the discussed crystal-vapor interface. On
the other hand, in the case of some other crystals,
face orientations, and temperatures, thermal fluctu-
ations can apparently 1 4 ' 6 9 ' 7 0 disrupt close-packed faces,
making them rough on an atomic scale. These faces
will lack steps entirely, or, more accurately (refer-
ence 142, p. 304), will have them everywhere, i.e.,
kinks are uniformly distributed over the entire sur-
face. The growth of these faces does not require nu-
cleation, dislocations etc., and is limited only by ther-
mal conduction and the relaxation times required for
incorporating individual particles into the crystal lat-
tice.

The appearance, during growth, of rounded sur-
faces that coincide with isotherms, favors the hypoth-
esis of uniformly distributed kinks. Also, spiral
growth from the melt has been observed directly on
crystals of /3-methyl naphthalene66 and salol.7 1 Stepped
surfaces have been observed, following removal of the
melt, by Graf,72 Elbaum and Chalmers, 7 3 and Tiller7 4

(for Zn, Cd, Au, Pb, Sn, and NaCl). In addition,
some experiments (see the table) have revealed a
nonlinear dependence of the normal growth rate on
undercooling, which also indicates the possibility of
layer growth at dislocations.

Substance

Water62

Water" from -2° to -3. l2c
from -3° to -6.5t

Glycerin™
Salol'0 ( < )
Salol" ( Д Т > 6 ° ) .
Tin'1

Phosphorus"'"

Experimental function V(AT)

1 , 6 - 1 0 - I

l ,3-10- 2

7,55-Ю-2

8-КГ»
4-10-*
1,56-10-5
7-10-1

1-0

AT1,
AT2,
AT1,
AT1

AT1,
AT2,
AT1,
AT1,

We s h a l l now c o n s i d e r the g r o w t h k i n e t i c s of s u r -

f a c e s that a r e not d i s t u r b e d by t h e r m a l fluctuations.

We s h a l l f i r s t d e t e r m i n e t h e r a t e of a d v a n c e of a s e -

q u e n c e of e l e m e n t a r y s t e p s . On the e n d - f a c e s of s t e p s ,

w h e r e c r y s t a l l i z a t i o n t a k e s p l a c e , the fo l lowing 'con-

dit ion, s i m i l a r to (14.1), m u s t b e ful f i l led:

дТ
(17.1)

where к is the coefficient of thermal conductivity, q
is the latent heat of crystallization, and To is the
melting point. A step adjacent to the melt possesses
a high density of kinks (higher, at least, than in a
step adjacent to the vapor). Therefore the coefficient
/?T'. which plays the same part as /3 in Ch. II and
which characterizes the crystallization rate on a step,
is derived in the simplest case from the general
theory of the motion of a phase boundary possessing
a large number of active sites:

(17.2)

w h e r e D ~ vl e x p
\ - w ) 1

i s t h e c o e f f i c i e n t of diffu-

s i o n through the potent ia l b a r r i e r , of l ength I c m and

he ight AU e r g , n e a r the e n d - f a c e of a s t e p . We note

that an e x p r e s s i o n for /3 in S e c . 15 can b e obta ined

s i m i l a r l y . A s s u m e that the h e a t of c r y s t a l l i z a t i o n i s

conducted away m o s t i n t e n s e l y through the c r y s t a l .

T h i s i s m o s t typ ica l , s i n c e t h e t h e r m a l conduct i v i ty

of c r y s t a l s i s u s u a l l y m o r e than one o r d e r of m a g n i -

tude g r e a t e r than that of l i q u i d s . * A l s o , l e t the t e m -

p e r a t u r e g r a d i e n t in t h e c r y s t a l b e d e t e r m i n e d f r o m

the characteristic distance б and T(0, 6) = Tg. (The
same coordinate system is used as in Sec. 14; for the
case of the growth of a crystal platelet on a refrigera-
tor, for example, б is the platelet thickness.) For a
rigorous solution, instead of introducing 6, the fine
structure of the temperature field near the stepped
surface must be considered as well as the macro-
scopic temperature distribution over the entire crystal.

The temperature distribution is determined by
equations of the same type as for the concentration
distribution considered in Sec. 14. Therefore
(14.3) and (15.1) can be used immediately to write the
following expressions for the rate of advance of a se-
quence of elementary steps and for the normal rate of
spiral hill growth:

(17.3)

Втоа X я
^ - l n — sh-т-ё

•к па I.
V = -

4a , . Pr?a . foe , о '
H In sh —

V. ao Oc

T o - T5
w h e r e a = - and <7c = 4 f i a : ( q 6 ) l . When

cr » <TC, w e c a n r e w r i t e the s e c o n d equat ion in (17.3) a s

V — 4a
(17.3a)

The f o r m u l a of Hi l l ig and Turnbul l , 6 2 w h i c h a s s u m e s

•The conduction of heat of crystallization through a stirred
melt (in the case of an isolated crystal in the melt) is entirely
analogous to growth from the solution.
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к = «о, can be obtained from (17.3), to within a factor

of the o r d e r of unity, for —• 0. We then have
a/3Tq

V ~ cr. On the other hand, l a r g e r va lues of
к

r e s u l t in the l inear i ty of V ( a ) . There fore , to observe
the quadrat ic r a n g e of V (a) we r e q u i r e high t h e r m a l
conductivity к and a smal l c h a r a c t e r i s t i c s ize 6.

We shal l now e s t i m a t e the o r d e r of magnitude of
the coefficients in (17.2) and (17.3). Assuming, for
water , N a = 3 x Ю " 8 cm, Q, = 3 x Ю " 2 3 c m " 3 , a = 5
e r g / c m 2 , q = 1.4 kca l/mole , T o = 3 x Ю 2 deg, к = 5
x 10" 2 c a l / c m - s e c - d e g , D = 0.5 x Ю" 5 c m 2 - s e c , we

obtain /3x = 3 x 1O22 cm 2 s e c ' d e g " 1
a/3Tq

= 1.4 x Ю 3 c m / s e c , and стс = 6 x 10 9 б

= 4 x 10

-9 *- i

-5

Values of the s a m e o r d e r a r e obtained for c r y s t a l s
with higher mel t ing t e m p e r a t u r e s , such as t in.

4aV(cr)
As in the c a s e of growth from solution, — — —

а/?то Tn
can be approximated by Мег111. М and m a r e d e t e r -
mined from the values of the p a r a m e t e r s in (17.3). F o r
example, with a c c u r a c y ~ 2 — 3 % , in the interval 10~3

< cr < 16 x 10" 3 , — — ^ ~ = 0.275 cr1'85 when
а/ЗтОЛо к(тс

= 3 x Ю 2 (for the n u m e r i c a l va lues given above this

c o r r e s p o n d s to б = 5 x 1O~2 c m ) , while the r e s u l t i s
0.085 a 1 ' 7 1 o r 0.0275 a 1 ' 6 for

кис

= 6 x Ю2

' c m ) o r
/COV>

= 12 x Ю 2 (б з 2 x Ю " 1 c m ) ,

respect ive ly . These e s t i m a t e s indicate a re la t ive ly
a/3xq a/3Tq26

slight dependence of = — — on the expo-

nent m , but s t rong dependence on M.

The dependence of the growth r a t e on undercooling
a g r e e s sa t i s factor i ly with s o m e of the data in the table .
The d i s c r e p a n c i e s for w a t e r and salol ( m > 2) can be
assoc ia ted with the l a r g e d e g r e e s of undercooling to
which t h e s e exper imenta l data p e r t a i n , and with growth
due to nucleat ion. An exponent of cr g r e a t e r than 2 has
a lso been observed in dis locat ion growth from v a p o r 2 3

(Sec. 11); the s i m i l a r value in growth from the mel t
can r e s u l t f rom the s a m e cause .

The foregoing calculat ions have ignored completely
the probabi l i ty that two-dimensional nuclei appear on
the c r y s t a l sur face, although this probabil i ty can be
l a r g e in v i r tue of the low surface energy a t the c r y s t a l -
m e l t in ter face . Hillig 7 7 has obtained exper imenta l ly
the dependence of the growth r a t e of ice on undercool-
ing, due to the format ion of two-dimensional nuclei .

A value of M agree ing in o r d e r of magnitude with
exper imenta l r e s u l t s has been obtained for g lycer in
and salol . In (17.2) D, the diffusion coefficient through
the boundary potential b a r r i e r , was a s s u m e d to equal
the self-diffusion coefficient in the m e l t and was found
from v i scos i ty data . This assumption, in the opinion

of the a u t h o r s , can account for the fact that the values
of M calculated for water , tin, and phosphorus a r e
one to t h r e e o r d e r s of magnitude lower than the ex-
p e r i m e n t a l va lues . A m o r e important cause evidently
l i e s in the imperfect sur faces of rapidly growing Pb,
Sn, and H2O.

18. The Diffusion Field and Rate of Advance of a
Macroscopic Step

In o r d e r to d e t e r m i n e the r a t e of advance and shape
of a m a c r o s c o p i c s tep in growth from solution, one
m u s t f i rs t d e t e r m i n e the concentrat ion dis t r ibut ion of
the solution above the s tep. This has been done by
Seeger in a s ta t ionary approximation to within additive
and mult ipl icat ive c o n s t a n t s . 8 4 He found that the con-
centra t ion с (x, y ) sat i s f ies L a p l a c e ' s equation Дс = 0,
and that the profi le of a m a c r o s c o p i c s tep is a s d e -
picted in Fig. 16. The front ВС i s a sink for dissolved

p a r t i c l e s , with the c u r r e n t D —— = j = const . On the
Эу

other sur faces we have -—- = 0. When the upper left-
Эп

hand reg ion of the complex plane z = x + iy is mapped
conformally on the upper half of the plane f = £ + Щ
with the aid of the Schwarz-Christoffel in tegra l

we obtain

jh (18.1)

The unknown constants R and j , the l a t t e r of which
is proport ional to the r a t e of advance of the s tep, a r e
eas i ly obtained for a sequence of p a r a l l e l m a c r o s c o p i c
s teps s e p a r a t e d by Л. » 2s 0 = 2h sin<p0. F o r 6 > V x2 + y 2

> s 0 the diffusion field of each s tep coincides with the
field of a l ine s o u r c e of s t rength 2js 0, and с (0, 6) = eg.
This concentrat ion dis t r ibut ion is given by (18.1). When
corresponding coefficients a r e equated, we have

nD
(18.2)

F o r s teady-s ta te advance of s teps at low s u p e r s a t u r a -
tion,

/ = P (c {x, 0) - ce) = ^- sin ф0. (18.3)

The equi l ibr ium concentrat ion of the solution (Sec. 2)
is

" l « » T kT dp2 ZJL = c I £ "5
kT dp2

 p=po=tgcpo<^ e0 dx
(18.4)

Equations (18.3), (18.4), and (18.1) de te rmine a
f i r s t - o r d e r differential equation for p (£ ). The two
boundary conditions p (± 1) = p 0 furnish the integrat ion
constant and V^. The depa r tu re of the profi le of ВС
( r e p r e s e n t e d by the dashed l ine in Fig. 16) from a
s t ra ight line i s thus calculated to be proport ional to
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FIG. 16. Profile of a macroscopic step. The dashed line rep-
resents the profile change of a non-close-packed end face in
growth from solution.

a. A small correction ~ a2 takes account of the cor-
responding distortion of the diffusion field* of the
step. Thus

% +1 5!° !Ei.

(18.5)

The rate of advance of a step (in the sequence) is

V, = f{h, 6,

where

/(A, 6, *.) = g
secq>0

2<P<A o h я

<Po Фо

V

Surface energy enters the expression for Vt only
through the angle <p0. so that Vt is independent of its
absolute value. When /За ~ D the second, third, and
fourth terms in the denominator of f are, as a rule,
considerably larger than unity. Therefore, in accord-
ance with (14.3) the rate of advance of a step decreases
with height as ~ l/h.

The shape of a non-close-packed end face is de-
scribed by the complicated function (18.5). Simplify-
ing the problem and assuming a linear increase of
concentration of the solution from В to C, we find,
by the same procedure as for (18.5) and (18.6), that
at low supersaturations cp ( s ) is the parabola 3 in
Fig. 10.

The corresponding step profile is represented
schematically by the dashed line in Fig. 16. If the
condition (10.8) for the stability of a macrostep, which
condition is associated with the surface energy is
violated for p = p 0 + p c , then all steps for which

h > const + [(pc - p0) a]"1'*,

must break down.
It is clear from Fig. 16 that breakdown should r e -

sult in the formation of a layer overhanging the sur-

• T e m k i n " a n d o t h e r s h a v e c o n s i d e r e d t h e w a y i n w h i c h t h e

s t a b i l i t y o f a f l a t s u r f a c e i s a f f e c t e d b y t h e t e m p e r a t u r e r e d i s t r i b u -

t i o n t h a t a c c o m p a n i e s a r a n d o m c h a n g e o f s h a p e .

f a c e , r a t h e r t h a n i n t h e f o r m a t i o n o f a l o w e r m a c r o -

s c o p i c s t e p a s i n g r o w t h f r o m v a p o r ( S e c . 1 0 ) . T h i s

r e s u l t s d i r e c t l y f r o m n e g l e c t o f t h e s t r e a m o f p a r -

t i c l e s a d s o r b e d o n t h e s u r f a c e a n d f r o m f e e d i n g o f

t h e e n d f a c e o n l y t h r o u g h v o l u m e d i f f u s i o n , w h i c h o b -

v i o u s l y i n s u r e s a h i g h e r c o n c e n t r a t i o n o f t h e s o l u t i o n

around the salient corner В than near the reentrant
corner С (Fig. 16). This distribution not only fails
to generate macrosteps, but also supports the stability
of the original step against not too great variations of
its shape that maintain the basic character of the <p ( s)
curve. In the assumed model, decay resulting in the
emission of lower steps can occur, either through
nucleation in the reentrant corner С (Sec. 10) or for
some other kinetic reasons.

IV. THE INTERACTION OF GROWING CRYSTALS
WITH IMPURITIES

The interaction of growing crystals with impurities
is known to bring about several effects — change of the
growth rate, impurity capture, crystal defect forma-
tion (internal strains, dislocations, micro- and macro-
inclusions, etc.) . Some of these effects are discussed
in the present section. Our entire treatment will, as
heretofore, be based on the layer growth of crystals
resulting from the motion of steps.

We shall first consider two of the possible mechan-
isms of slowed crystal growth due to impurities during
layer growth from different phases. We shall then
study the conditions for equilibrium and non-equilibri-
um impurity capture, and shall calculate the coefficient
of non-equilibrium impurity capture depending on the
growth rate and the orientation of the growing face
(the sector structure of crystals 8 5) and on the height
of the steps whose advance produces growth. At a
given growth rate, the greater the average step height,
the more the capture coefficient departs from its
equilibrium value.

19. The Influence of Impurities on the Growth Rate

An impurity usually lowers the growth rate. The
strongest effect is produced by organic substances
with large molecules. 8 6 ' 8 7 A considerable reduction
of the growth rate is observed even when only one
such molecule is present in 104 — 106 molecules of
the solution. An important characteristic of this kind
of impurity is its inability (at least at low concentra-
tions ) to influence appreciably the dissolution rate of
crystals. Certain inorganic ions are also effective in
very small quantities. For example, Fe 3 + at molar
concentrations ~ 10~6 reduces by about one order of
magnitude both the growth rate and the dissolution
rate of LiF crystals. 8 8 Also, the addition of ~ 0.02%
Na2SO4 to the solution lowers the growth rate of octa-
hedral faces of NaClO3 crystals to one-fourth, and
halves the growth rate of cubic faces.8 9

The few experiments in which the growth rate in-
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creased 9 0 ' 9 1 are accounted for either by the catalytic
effect of an impurity, 9 0 ' 9 1 or by lowered surface en-
ergy, smaller size of the critical nucleus, and en-
hanced probability of nucleation.9 2"9 4

Impurities lower the growth rate primarily as a
result of their adsorption on surfaces and at active
growth sites. The theory of impurity adsorption at
crystallographically different surface positions, of
the influence of adsorption on surface energy, and of
nucleation probability was developed and is continuing
to be developed by the Stranski-Kaischew school.4"9 '
92,93.95,96 W e s h a l l discuss the fundamental kinetic
effects, without considering the energy aspects in
detail.

a) Strongly adsorbed impurities captured by a
growing crystal.^7 Let some large (organic) crystals
be adsorbed strongly on a crystal surface. During the
growth process steps are retarded at the points of con-
tact with these molecules and are therefore forced to
"fi l ter through" the "pal i sade" of surface impurities.
All of these impurity particles are captured by advanc-
ing steps, and are replaced with new impurity mole-
cules passing from the parent liquid to the newly de-
posited layers. If pc is the radius of curvature of a
critical nucleus, a is the step height, and Jj is the
impurity current to the growing surface, then growth
in the presence of impurities takes place only at super-
saturations where the normal growth rate without im-
purities is

In other words, when pc ~ <т~1 and V ~ cr011 growth in
the presence of impurities takes place only at super-
saturations

о > o* = const • (19.1)

At the c r i t i c a l s u p e r s a t u r a t i o n given by (19.1) the d i -
a m e t e r of the c r i t i c a l nucleus equals o r exceeds the
m e a n d i s tance between adsorbed p a r t i c l e s , between
which the s tep cannot " f i l t e r t h r o u g h " in this c a s e .

The d i s c u s s e d model of C a b r e r a and Vermi lyea 8 7

should a l so furnish c o r r e c t r e s u l t s for the growth r a t e
in a p o r o u s medium (such a s a ge l ) when the c h a r a c -
t e r i s t i c p o r e s ize i s comparab le with the c r i t i c a l d i -
a m e t e r of nucle i .

An impur i ty slows the advance of e l e m e n t a r y s teps
whose height i s c o m p a r a b l e to that of the adsorbed
impur i ty m o l e c u l e s ; th i s effect i s reduced a s s tep
height i n c r e a s e s . The influence of i m p u r i t i e s on the
n o r m a l growth r a t e m u s t t h e r e f o r e depend p a r t i c u l a r l y
on the m e a n s tep height.

Equation (19.1) is applicable when the re laxat ion
time т required to establish an equilibrium concen-
tration of impurities on the surface is small compared
with the time h/V that elapses between the deposition
of successive layers. Therefore, when V ~ 10~3 — 10 ~4

cm/sec and h - 10"7 cm, if т к. 10"3 —10~4 sec the

dependence of Ji on the growth rate of a face must be
taken into account.5 6

b) Impurity poisoning of kinks. When adsorbed im-
purities have a short lifetime on the surface, the de-
scribed mechanism cannot play an essential role, but
is replaced in importance by impurity poisoning of
active growth sites (kinks). Impurity adsorption on
a surface and step, and in kinks, is represented sche-
matically in Fig. 17 (positions 5, 2, and 3). When an
impurity is only poorly captured by a growing crystal,
it is practically impossible to incorporate new par-
ticles into the crystal in poisoned kinks. Assuming
that the kinks are uniformly distributed on the surface
and that the growth rate V is proportional to the num-
ber of active sites free of impurities, Bliznakow96 de-
rived the dependence of V on impurity concentration
ci in the form

Ci) = F(0)-[F(0)-F(oo)]- (19.2)

where
+ В

represents the fraction of active sites

occupied by impurities (Langmuir's adsorption iso-
therm ).

Kinks are actually concentrated in steps instead of
being uniformly distributed on the surface. With r e -
spect to the diffusion of crystallizing material, the
actual kink distribution is qualitatively equivalent to
a uniform distribution only when the distance Л be-
tween steps is much smaller than the characteristic
diffusion parameters ( \ s in Ch. II and б inCh. Ill),
or when the distance between impurity-free kinks is
\ 0 (ci) > X. The first of the given conditions is ful-
filled for growth at dislocations or at high supersatu-
rations with a linear form of V (cr), while the second
condition is fulfilled at very high impurity concentra-
tions. The kink distribution in steps will be used
below.97

The density A.JJ"1 of kinks unoccupied by impurities
is easily derived in the same manner as the kink den-
sity in a pure step (Ch. П, Sec. 6). For a crystal in
contact with an ideal gas impurity

(19.3)

where P i is the p a r t i a l gas p r e s s u r e of the impuri ty,
m i s the m a s s of an impur i ty p a r t i c l e , v (~ 10 1 2 s e c " 1 )
is i t s v ibrat ional frequency in the adsorbed s ta te , Wg
is the p a r t i c l e energy in the gaseous phase, w2 i s i t s
energy in the adsorbed posit ion at the s tep (posit ion 2,
Fig. 17), Wi i s the energy of a f ree kink, and W3 i s
the energy of an impuri ty-occupied kink. When the ad-
sorpt ion energy in a kink is w g + w t - w 3 = 0.5 ev (~ 12
k c a l / m o l e ) , T = 300° K, and m = 50 x 1.6 x 10" 2 4 g, then
£g = 10"2 a / b a r . Consequently, at impur i ty p r e s s u r e s
of the o r d e r of 1 m m Hg mos t kinks should be poisoned,

fii the case of an ideal solution of an impur i ty with
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FIG. 17. Impurity particles (the dark blocks) on a crystal sur-
face: 2 — adsorbed on a step, 3 — in a kink, 5 — on the surface,
4-in a step,6-in the surface layer. Oandl are crystal particles.

concentration
similarly,

surrounding the crystal, we obtain,

(19.4)

Here | s = 2O»»3

к т \з/2 w s + w t - w 3

2тгт exp kT is

the molecular volume of the solution, w s is the energy
of ah impurity particle in the solution, and v is its
vibrational frequency in the adsorbed state. When, for
the purpose of an estimate, we take w s + wj —w3 ~ 0.4
ev (~ 10 kcal/mole) and v ~ 3 x 1012 sec, we obtain
£g ~ 104a, i.e., an impurity concentration ~ 10~3 is
sufficient for greatly increased distances between near-
est free kinks. The expressions given for the constants
£g and £ s are approximate, but their magnitudes are
very strongly dependent on the adsorption energy, tem-
perature, vibrational frequency, and mass of an im-
purity particle. The given estimates are thus of a
provisional nature, and only indicate the theoretical
possibility of the step-poisoning effect.

We shall now explain the way in which the tangential
and normal growth rates from the vapor depend on im-
purity concentration. This dependence obviously enters
through the coefficient /3, which at low kink density can
be assumed to have the form*

P = |^-. (19.5)

Substituting in (7.9) and (9.2) and using (19.3) for \0 ,
we obtain the tangential and normal growth rates as
functions of the impurity partial gas pressure, which

2\s 2A.SA.O( 0)
i s p l o t t e d i n F i g . 1 8 f o r — — = Г = 1 > i - e - >

р т 8 a T S

W
X 0 ( 0 ) = 4 a , —— = 24, vr = 50 [т is the relaxation

time (Sec. 7)], and £g = 10"2 a/bar. If it is assumed
that even a completely poisoned step can grow,96'84

then as Pi —» °° the rate V should approach a finite
limit, as in (19.2) when Ci —• °°. The relationship
(19.2), which is close to that represented in Fig. 18,
was observed by Bliznakow96 for growth from solution.
When /3 is reduced, an impurity should not only slow
the normal growth rate V, but also extend the non-

•Reference 14 contains a detailed calculation of v(Ae). How-
ever, the incorrect step boundary condition (7.5) used there makes
the result only qualitatively correct.

FIG. 18. The normal
rate of dislocation-induced
growth as a function of im-
purity gas pressure.

linear region of V ( a ) . This effect is illustrated in
Fig. 8, where curve 2, which was plotted for smaller
/3, can be regarded as representing the function V(<r)
in the presence of impurities.

The impurity adsorption energy on a step is gener-
ally dependent on step orientation. Therefore we can
expect that in the presence of an impurity the aniso-
tropy of X0(p i) w i U be accompanied by anisotropy of
the rate of step advance, manifested by a noncircular
step shape and, specifically, in the polygonization of
steps. The impurity effect should depend on tempera-
ture [see (19.3)].

Impurity adsorption in a step lowers the surface
energy a of the end-face and therefore, according to
(9.2), (15.1), and (17.3), should tend to enhance the
growth rate at a dislocation.94'96 The diminishing of
a increases both the probability of nucleation and the
growth rate of a perfect face. The latter effect has
been observed experimentally by Sears.94

An impurity that is adsorbed at kinks of a step in
contact with the solution reduces /3 according to (19.5)
and (19.4). Therefore the character of the dependence
of the normal growth rate from solution on impurity
concentration, as well as the impurity effect on the
form of V (<T) will be the same as in growth from the
gaseous phase. A moving step rejects an impurity and
becomes its line source. In the case of very slow
crystal growth, the impurity concentration CJ near a
step can be identified with its mean concentration in
the solution. When the growth rate exceeds the im-
purity diffusion rate in the solution, the concentration
near steps exceeds the volumetric concentration. The
diffusion field of impurities above a sequence of ele-
mentary and macroscopic steps can in the simplest
cases be calculated as in Sees. 14 — 15.

Kinks in a step are poisoned by impurities in both
growing and evaporating (or dissolving) crystals.
Therefore the formulas used in growth can describe
the effect that impurities of the considered type have
on the evaporation rate.

In the steady-state advance of a macroscopic step
the concentration of impurity repelled by the crystal
near the reentrant corner CC (Fig. 9) is higher than
near BB'. If the impurity slows growth, this distribu-
tion should obviously promote macrostep stability. In
growth from the melt an impurity distributed in the
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described manner drops the melting point lower in
the better cooled region around CC and less in the
better heated region near BB'; breakdown of the mac-
rostep is thus prevented.75 The method of conformal
representation used above will perhaps furnish a solu-
tion of the still unsolved problem of obtaining jointly
the impurity concentration and temperature near a
macrostep.

20. Nonequilibrium Capture of Impurities in Crystal
Growth

When the system consisting of a crystal and the sur-
rounding medium contains an impurity, the impurity
concentration cc in the crystal and CL in the medium
under conditions of equilibrium are related to the
phase diagram. The ratio C Q / C L = k0 is called the
(equilibrium) coefficient of distribution (or capture).
If the crystal grows very slowly, its impurity concen-
tration is determined by the equilibrium capture coef-
ficient and by c£ in the medium at the interface. When
k0 < 1 (the crystal rejects the impurity), c^ will in-
crease with the growth rate. Therefore the equilibrium
capture coefficient increases effectively with the growth
rate. Rigorous calculations of the impurity concentra-
tion in the surrounding medium, of the macroscopic
temperature distribution, and of the associated effects
for different cases are to be found in papers by Lyubov
and his co-workers,98 '99 by Ivantsov,100'101 and by Tiller,
Chalmers and others.102"104 Without pausing to con-
sider the results obtained in this important direction
of phenomenological investigation, we shall concen-
trate our attention on the elementary processes of
nonequilibrium impurity capture.105*

The equilibrium impurity concentration is not con-
stant throughout the crystal, since a difference exists
between its value near the surface and in the bulk. The
equilibrium concentration can be characterized approx-
imately by three quantities — the concentrations cy in
the bulk crystal, eg in the surface layer (position 6,
Fig. 17), and eg ins teps (position 4, Fig. 17). These
quantities, which are determined by the heats of solu-
tion and entropies of the three-, two-, and one-dimen-
sional "solid solutions," can differ considerably from
each other (by a factor of several units).105 eg and
eg depend on the crystallographic orientation of the
surface and step.

Different relaxation times are also required to e s -
tablish equilibrium in the three "phases" ( three-
dimensional, two-dimensional and one-dimensional).
A (three-dimensional) volume possesses the longest
relaxation time, while the shortest time is associated
with the one-dimensional case (relaxation by means
of diffusion in the crystal) .

•"Elementary processes" are microscopic phenomena in the
macroscopic interfacial layer whose thickness is of the order of
the characteristic size of a surface inhomogeneity, such as the
distance between steps, a step height etc.

If the crystal grows very slowly, an equilibrium
impurity concentration exists in all three "phases ."
At high growth rates equilibrium is not established in
the bulk, but in the surface layer and steps, or only in
the steps. However, each surface layer soon becomes
an interior layer with an equilibrium impurity concen-
tration. This also applies to the line or band of atoms
forming the end face of a step. At still higher growth
rates none of the three equilibrium concentrations
(cy, eg, and CE ) is achieved. Therefore when new
layers are deposited on the crystal surface (as a r e -
sult of advancing steps, for example) the impurity
concentration in these layers will not generally be in
equilibrium, and impurity diffusion from or to the
crystal will begin. If the thickness of a newly de-
posited layer is denoted by h, and the impurity dif-
fusion coefficient in the crystal by Dj, the diffusion
rate is of the order Dj/h. If Dj/h exceeds appre-
ciably the normal crystal growth rate V, impurity
capture can reach equilibrium, but if Dj/h S V, then
the crystal will have a nonequilibrium impurity con-
tent.

For germanium at ~ 900° С the impurity diffusion
coefficient of group-III and group-V elements is
10~9 —10~12 cmVsec. Consequently, for h ~ 10~7 —
10"e cm we have Dj/h ~ 10"2 — 10~6 cm/sec, i.e.,
even at such relatively high temperatures the capture
of impurities cannot be regarded as in equilibrium
when V > 10"4 - 10"5 cm/sec. The diffusion coeffi-
cient falls off exponentially with temperature. There-
fore equilibrium impurity capture certainly does not
exist at lower temperatures and the ordinary growth
rates (such as growth from the solution at V ~ 10~5

— 10"6 cm/sec). As an example of nonequilibrium
impurity capture one must, of course, mention the
sectoral structure of crystals (the "hourglass fig-
ures") that have been well-known for a long t ime. 8 5 ' 1 3 9

Nonequilibrium impurity capture by germanium and
silicon crystals growing from the melt were evidently
observed in 1953 by Hall,1 0 6 who established the de-
pendence of the capture coefficient on growth rate and
on face indices. The latter of these dependences is
hardly amenable to interpretation if we confine our-
selves to the consideration of diffusion in the liquid
phase.

We shall now determine the nonequilibrium capture
coefficient when diffusion in the solid phase is impor-
tant (Di/h ~ V). We shall assume that crystal growth
involves the successive deposition on the surface, at
equal time intervals, of identically thick layers, and
that the velocity of advance of the step terminating
each layer is infinite compared with the diffusion rate.
The coefficient of impurity capture by steps is given.
Let с (x, t) be the impurity concentration in the crys-
tal, c o (x) its equilibrium value, c t the initial concen-
tration in a new layer, and u (x, t) = с (х, t) - c o ( x ) .
Then in the time interval between the depositions of
successive layers, i.e., 0 < t < т п = h/V, the impurity
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distribution in the crystal is described by the solution
of the following boundary problem:

ди
~дТ

ди

дх*

и (x, 0) =
С ! - С 0 (Ж), О- к
u(x—h,xh) + c0(x-h)-c0(x), x>h. (20.1)

If D* is the coefficient of impurity diffusion through
the phase boundary of width ~ a, then we have the

Di
length b ~ тгу а < a, since diffusion through the in-

D i
terface is easier than diffusion in the bulk of the solid
phase, and D* > Dj.

As an approximation to the true equilibrium im-
purity distribution in the crystal we take the function

cs 0 < x < I,

w h e r e I i s the t h i c k n e s s of t h e s u r f a c e l a y e r in w h i c h

t h e e q u i l i b r i u m i m p u r i t y c o n c e n t r a t i o n e g d i f f e r s

f r o m the bulk e q u i l i b r i u m c o n c e n t r a t i o n c y ; I i s of

the o r d e r of m a g n i t u d e of the i n t e r a t o m i c s p a c i n g .

We a l s o a s s u m e that at the ins tant w h e n e a c h n e w

layer is deposited the constant value u (x, т) = UQ
is established. Then (Fig. 19)

C-Cv

C,-Cs

u»

u(x,0)

i .

h Ы

FIG. 19. Impurity distribu-

tion near a crysta l surface im-

mediately after the deposi t ion

of a new layer of t h i c k n e s s h.

1 i s the t h i c k n e s s of t h e sur-

f a c e layer where t h e equil ib-

rium impurity concentration

differs from i t s va lue in the

bulk crystal .

u(x, 0 ) = Cy-Cv
- Cs — <« с

О < х < I,
l<x<h,
h<x<h + l,
x > h + 1.

( 2 0 . 2 )

W e p r o c e e d a s f o l l o w s f o r t h e p u r p o s e o f d e t e r m i n -

i n g t h e u n k n o w n c o n s t a n t u c . W h e n a n e w l a y e r o f

t h i c k n e s s h i s d e p o s i t e d , i m p u r i t i e s e n t e r t h e c r y s t a l

in the amount c ^ . During the time т^ impurities

rh8n
leave the crystal in the amount — Dj I —— dt.

j[ dx
x = o

O n t h e o t h e r h a n d , f r o m t h e d e f i n i t i o n o f u c t h e

c h a n g e o f i m p u r i t y c o n t e n t w i t h i n t h e t i m e f r o m t = 0

t o t = Th i s

oo oo

{ [uc + c 0 (x)] dx-^ [uc+ c0 (x - h)] dx = ( a c + cv) h.

0 h

T h e r e f o r e ,

UC is obtained by substituting u (x, t) derived from
(20.1) — (20.2). The impurity capture coefficient к is
then determined as the ratio of the mean impurity con-
centration in the crystal, uc + cy, to the impurity con-
centration с ^ in the liquid at the interface. Introduc-

Cg Cj
ing the notation к = and кн = , we obtain the

C L C L
following expression for the capture coefficient:

^ks

b-g(O) (20.3)

where

X erf с |
\V2DiTh

- b УВлЛ - (Д + 6) erf с

Equation (20.3) can be simplified in the two limiting
cases of large and small normal growth rate V =
as follows:

for

for

(20.3a)

Equation (20.3) is meaningful only for degrees of
undercooling and step heights where the tangential rate
of step advance obeys Vt » Щ /h. With Vt » V,
Eq. (20.3) has a broad range of applicability.

The coefficient k t in (20.3) is not constant and can
in turn depend on the growth rate according to (20.3).
Indeed, if a high step can be represented as a cluster
of parallel elementary monatomic steps, the calcula-
tion of kj becomes the foregoing problem with h r e -
placed by the elementary step height a and with k t r e -
placed by the coefficient of impurity capture by this
step. Therefore at low growth rates the third term in
(20.3) is actually quadratic in V and the entire function
will be represented by Fig. 20.

The capture coefficient is dependent on the crystal-
lographic orientation of the face primarily through kj
and k s . The parameter b and the diffusion coefficient
Di in (20.1) also depend on the indices of the growing
surface.

Equation (20.3) furnishes evidence that the impurity
capture coefficient depends on the stepped structure
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FIG. 20. The coefficient of nonequilibrium impurity capture as
a function of the normal rate of layer growth.

of the surface (on the magnitude of h ) . Consequently,
the factors that affect this structure (surface energy,
supersaturation or undercooling, temperature, im-
purities etc.) can change the capture coefficient. We
have so far assumed that a surface is formed of iden-
tical equidistant steps. The actual structure of a face
is, of course, more complicated, being represented by
the distribution p (h, X), where X is the distance be-
tween steps (Sec. 10). When p (h, X) is found the true
capture coefficient is expressed by the integral
Jjk (h, X) p (h, Л.) dh dX. A more detailed investigation
should also take into account the nonuniform impurity
distribution on the fronts of high steps (Sec. 18), their
finite advance rate, and several other factors.

21. Dislocation Production in Impurity Capture

Impurity atoms (or molecules) captured by a growing
crystal differ in size from the crystal constituents and
therefore induce tensile strains in the lattice. A non-
uniformly distributed impurity is associated with a
nonuniform strained state. Large strains can be r e -
solved by dislocations. Tiller 7 5 has suggested a spe-
cific mechanism. Consider a crystal growing from
the melt by the deposition of macroscopically thick
surface layers. In view of the nonuniform impurity
distribution on the step front (from BB' to C C ) ,
the impurity concentration in a thin crystal layer of
thickness Д remaining behind the C C edge will be
greater than in other parts of the layer deposited
during step movement. If the radius r s of impurity
atoms exceeds that of crystal particles by Дг, then
the Д layer induces tensile strains in the remainder
of the crystal; these are resolved by the dislocation
grid shown in Fig. 9. If the crystallization isotherm
is parallel to the mean surface of the crystal, making
the angle в with the orientation of the close-packed
face, and if the lattice deformation is proportional to
the impurity concentration, the dislocation density is

where m =
/ elt \

i /]
is the lowering of the crys-

\ 9Ci / p
tal melting point due to an impurity concentration
This analysis does not conflict with experiment.

Cabrera and Vermilyea87 have discussed disloca-
tion formation during the growth of a region with large
local impurity content.

Kozlovskii107 has described the production of screw
dislocations when macroscopic (1 — 10 micron)
graphite particles were overgrown with lamellar
crystals of /3-methyl naphthalene. The mechanism
involved here is very similar to that of dislocation
production in the reentrant corner of a dendritic
crystal (without impurities), as observed by Lemm-
lein and Dukova108 and by Kozlovskii.107 Dislocation
production in pure crystals has also been discussed
in references 109 — 116.

V. ETCHING

Etching is known to represent either the simple
dissolution or evaporation of a crystal (such as ther-
mal etching in a vacuum), or its dissolution in a
chemical reaction. In both instances elementary etch-
ing processes, like decrystallization generally, must
run counter to the processes of crystal layer growth
(Sec. 12). It is very important to note that etching
sometimes takes place at very large undersaturations,
whereas the above-discussed theory of growth and de-
crystallization pertains to small deviations from equi-
librium. Nevertheless, the theory has qualitative ap-
plication to this case also.

Regel', Urusovskaya, and Kolomiichuk117 have pub-
lished a review of work on the etching of dislocations,
including an extensive bibliography of 264 titles and
tables of etchants for different crystals. We shall here
discuss briefly only the fundamental aspects of elemen-
tary processes of selective etching.

Let us consider a close-packed crystal face in con-
tact with an etchant. Dissolution of the crystal sets in
since the chemical potential /x of the crystal sub-
stance in the etchant is lower than the chemical poten-
tial JUQ of the crystal. Dissolution takes place by step
movement in the direction opposite to that for growth.
The sources of steps will again be screw dislocations,
two-dimensional nuclei of dissolution (hollows of
monatomic thickness in the surface layer of the lat-
tice), subgrain boundaries, and the crystal edge. The
probability of nucleation is greater on surface regions
where the lattice energy density and the chemical po-
tential are higher. These favored regions include the
vicinity of points of emergence of dislocations, espe-
cially edge dislocations, as well as the sites of point
defects. Therefore nuclei appear at dislocations more
frequently than elsewhere, and etch pyramids are
formed in these areas . 8 8 The shape of a pyramid de-
pends on the ratio of the normal dissolution rate V,
determined by the nucleation rate, to the tangential
velocity Vt of the steps that originate at this time.
For low values of V/Vj the pits are shallow, but be-
come deeper and more easily observable as V/Vt
increases. Therefore the addition of an impurity that
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slows s tep motion but has a re la t ive ly s l ight effect on
the probabi l i ty of nucleation i m p r o v e s the quality of
the p i t s . Impur i t ie s that i n c r e a s e V should have a
s i m i l a r effect. If a dis locat ion leaves i ts posit ion we
have V = 0; the pit a c q u i r e s a flat bottom and then
d i s a p p e a r s ent i re ly , a s in the etching of point defects .

А Ф С \
k T }'

change in the t h e r m o d y n a m i c potential of the s y s t e m
r e q u i r e d for the production of a s ingle dissolut ion
nucleus of c r i t i c a l s ize p c . When a dissolut ion n u -
c leus with r a d i u s r is c r e a t e d the t h e r m o d y n a m i c
potential changes by the amount

We have V ~ exp I - w h e r e ДФ С i s the

АФ(r) = - ^ c *' + nraa - -£ \| —dr,
о

pt 2
Here G i s the s h e a r modulus and - — г i s the s t r a i n

47Г1Г

e n e r g y d e n s i t y n e a r t h e d i s l o c a t i o n . F i g u r e 2 1 s h o w s

plots of Д Ф ( г ) for different va lues of Д/л = цп —jn.

FIG. 21. Energy of forma-
tion of an etch nucleus with
radius r.

When Ди < Ацхп = — r j - , both a min imum and a m a x i -

mum of Д Ф ( г ) exis t . The m i n i m u m , a t r = r c , c o r r e -

sponds to the formation of a hollow cyl inder of r a d i u s

r c along the e n t i r e dis locat ion l ine; the sur face energy

gain involved in the formation of the wal l s of th is chan-

nel is s m a l l e r than the l o s s i n c u r r e d when the s t r a i n e d

region around the dis locat ion l ine i s r e m o v e d from the

c r y s t a l ( in the c a s e of a l a r g e B u r g e r s v e c t o r ) . The

m a x i m u m of Д Ф ( г ) at r = p c d e t e r m i n e s the energy

b a r r i e r for the formation of c r i t i c a l nuclei . With in-

c r e a s i n g Ди the values of p c and r c approach each

o t h e r , the b a r r i e r d i s a p p e a r s , and etch channel is

formed n e a r the dis locat ion without surmount ing a

potent ia l b a r r i e r . 4 6 ' 1 1 8 ' 1 1 9 When Ац > Д д с the d i s l o c a -

tion " i s e x p o s e d . "

The s t r a i n s around a dis locat ion, which lead to the

cons idered effect, a l so a c c e l e r a t e the c r y s t a l d i s s o l u -

tion ( o r evaporat ion) caused by a s c r e w dis locat ion.

The s t r a i n s i n c r e a s e the angular velocity of rotat ion

of the s p i r a l s t e p 4 6 (Fig. 22).

Orlov and F i s h m a n 1 2 0 have cons idered phenomeno-
logical ly the diffusion k inet ics of the a p p e a r a n c e of an
etch pit at a dis location, s t a r t i n g with the as sumpt ion
that the m a c r o s c o p i c r a t e of d issolut ion at each s u r -

1,65

FIG. 22. Angular velocity of rotation ш of a spiral (in the unit

v»/pc) a s a function of the parameter s0 = „ 2jt .

face point is ~MC -M ^MC =I and is in-

dependent of the sur face or ientat ion, i .e. , of s tep d e n -
sity. In r e f e r e n c e 120 the depth of the pit at the point
of e m e r g e n c e of a dis location i s given a s ~ V F , w h e r e
t i s the etching t i m e ; the ro le of sur face energy i s not
cons idered.

It is obvious that etch pi ts can a p p e a r at d is locat ions
only when the dis locat ions a r e the s t r o n g e s t s o u r c e of
s teps on the sur face . F o r example, if the density of
s t e p s coming from the c r y s t a l edge exceeds the d e n -
sity resu l t ing from dis locat ions under the given con-
dit ions, then the n o r m a l dissolut ion r a t e will be a p -
prox imate ly uniform o v e r the e n t i r e sur face and etch
pits cannot be formed.

Amelinckx, Bontinck, and D e k e y s e r 1 2 2 have proposed
a k inemat ic s c h e m e for the formation of m a c r o s c o p i c
sp i ra l l a y e r s in the p r o c e s s of evaporat ion a t a h e l i -
coidal dis locat ion. The l ine of a hel icoidal dis locat ion
in a c r y s t a l is twisted sp i ra l ly so that i t s point of in-
t e r s e c t i o n with the sur face, i .e. , the c e n t e r of the
s p i r a l s tep in the etching p r o c e s s , moves c i r c u l a r l y .
A m a c r o s c o p i c s p i r a l r e s u l t s from this " w o b b l i n g "
(Fig. 23). The height of the m a c r o s t e p t h e r e f o r e
equals the s c r e w pitch of the helicoidal dis location.
Lang 1 2 3 had somewhat e a r l i e r d i s c u s s e d " w o b b l i n g "
for the c a s e in which t h e s tep s o u r c e s a r e nuclei of
growth o r dissolut ion with t h e i r c e n t e r s on a c i r c l e .
References 122 and 123 do not cons ider the depend-
ence of the r a t e of advance of s teps on t h e i r densi ty .

The chemica l potential of a c r y s t a l n e a r the point
of e m e r g e n c e of a dis locat ion depends essent ia l ly on
the segregat ion of i m p u r i t i e s at d i s l o c a t i o n s . 1 2 4 ' 1 2 6

This plays an important p a r t in m e t a l s , w h e r e etch
pits a r e not usual ly formed in the absence of i m p u r i -
t i e s . 1 2 5

VI. COLLECTIVE EFFECTS IN THE MOVEMENT
OF STEPS

The d i scuss ion and exper imenta l data p r e s e n t e d in
the preceding sect ions show that the stepped s t r u c t u r e
of a c r y s t a l sur face depends on the conditions of
growth — s u p e r s a t u r a t i o n , t e m p e r a t u r e , and the p r e s -
ence of i m p u r i t i e s . On the other hand, growth i n -
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FIG. 23. The circular movement of the center of a spiral step
leads to the bunching of steps; the result is a spiral with a much
greater distance between turns.

volves the movement of steps, so that the surface
structure affects the growth rate and the properties
of the resulting crystal. Some examples of this are
the dependence of the coefficient of nonuniform im-
purity capture on the heights and distances between
steps (Sec. 20), the nonuniform influence of certain
impurities on the velocities of steps of different
heights (Sec. 19), the influence of the number of spiral
turns on the normal growth rate (Sec. 10) etc. The
surface structure is therefore, at least in some cases,
a connecting link between the growth conditions and
properties of a crystal.

In the present section we shall consider some proc-
esses in the formation of a stepped topography, con-
centrating our attention on collective effects that ac -
company step movement rather than on the shapes,
stability and rates of advance of individual steps. We
shall investigate the generation, motion and disappear-
ance of kinematic ("shock") condensation waves of in-
dividual steps. The second section treats the kinetic
equation for steps of different heights and presents
some solutions of the equation. For one special case
we determine the temporal dependence of the increase
of mean step height due to the merging of steps.

22. "Shock Waves" of Step Density

It was shown in Ch. II and III that the rate of ad-
vance of a sequence of elementary steps depends on
the distance between the steps, i.e., on the number of
steps intersecting a unit line segment parallel to the
x axis and perpendicular to the step fronts. This
"step density," which depends in general on both x
and t, will be denoted by p (x, t ) . If a is the height
of each step, then ap is the tangent of the angle of
inclination of the macroscopic face formed by the

steps. The rate of step advance is v (| p | ).*
With conservation of the number of steps, the den-

sity p (x, t) must satisfy the equationt

_£L + JL ( e t ) ) = ; =o. (22.1)

The step current J = pv multiplied by the step height
is the normal rate of growth (or dissolution, or melt-
ing) of the face formed by the given steps. For in-
creased values of p the rate of advance decreases

g2j
and — r < 0. p (x, t) is constant for values of x and

Эр
t lying on the characteristics of Eq. (22.1), i.e., they

dxsatisfy the equation -— = —— tL

dt dp
for the correspond-

ing values of p.
At initial time, t = 0, let the step density distribu-

tion p 0 (x) have the character depicted in Fig. 24b.

d)

FIG. 24. Formation (a) of a step density discontinuity [at
x = 0 (c)] from an initial perturbation po(x) (b). (d) is the surface
profile.

я т
Drawing characteristics with slopes ——

dp
from

each point of the x axis, we find that a discontinuity
of step density arises at a time т+ (Fig. 24a), i.e.,
a corner A (Fig. 24d) appears in the surface profile.
The velocity of advance Vt of this discontinuity of
elementary step density (i.e., of the kinematic or
"shock" wave of the steps) is determined from the
conservation of the number of steps at the density dis-
continuity point, whose position on the x axis obeys
a law x = X ( t ) :

Qj(»i- X\) = e 2 (y 2 - X't),

*p can be taken as positive or negative, depending on the sine
of the inclination angle of the vicinal face formed by the steps
under consideration.

tThis equation is a special case of the general kinetic equa-
tion for steps that was formulated by the authors in 1957 and that
is discussed in Sec. 23.
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or

V.=X't=
a—Qi

(22.2)

where J t = J ( p t ) and J 2 = J ( p 2 ) , while p t and p 2

are the values of the step density on both sides of the
discontinuity. [The denominator p 2 —Pi t n u s r epre-
sents the discontinuity of the tangent of the crystal
surface angle at the corner A (Fig. 24d), divided by
the step height. ] The formation of "shock waves" of
steps was first investigated by Frank, 5 6 and also by
Cabrera and Vermilyea,87 using the general analysis
of kinematic waves by Lighthill and Whitham.126 The
formation of packets of elementary steps in growth
from the melt was earl ier investigated qualitatively
by Elbaum and Chalmers. 7 3 The combining of steps
was discussed still earl ier by Volmer.3 2 '1 1 7

We shall now study in greater detail, by analogy
with the general theory in reference 126, the forma-
tion of a density discontinuity and its temporal evolu-
tion. 1 2 8 Let us consider, specifically, the case of
growth where v > 0 and p < 0. The initial form of
the density perturbation is given as a function p 0 (x)
such that p o(±°° ) = p M = const (Fig. 24b). The per-
turbation can result, for example, from a momentar-
ily increased strength of the screw dislocation that
served as the source of the step sequence. The in-
creased strength can result from a random rise of
supersaturation or from breakdown of the spiral
step (Sec. 10). Other kinds of perturbation will be
considered below.

Since the step density is constant along each char-
й T

a c t e r i s t i c x = P + - — t ( w h e r e £ i s t h e v a l u e
dP PO<«)

of x a t t = 0 a n d p = p 0 ) , t h e d i s c o n t i n u i t y a r i s e s

after the time т+ given by

dx
where

T, _ dj

and ijj and £2 are values of x depending on the shape
of the initial perturbation, the difference between them
being of the order of magnitude of the half-width of the
perturbed region. The higher the supersaturation, the
more abrupt the initial perturbation; also, the greater
the anisotropy of the normal growth rate, the more
rapidly will density discontinuities arise. In estimat-

dp
ing т+, we let — aJ ~ a J" ~ 10 cm/sec and

QX
—1010 cm" 2

- p

The latter value is obtained when
106 cm" 1 (corresponding to ~ 2° face inclina-

6 1 4
p

" 1 and £ 2 - £ i ~ 10"4
cm.

p
tion), p 2 - P i ~ Ю6 cm
(This value corresponds to the tangential velocity
v = J/p = 3 x Ю"4 cm/sec if the perturbation occurs
during a time ~ 0.3 sec) . Then т+ ~ 3 x 102 sec. An

improvement of the selected numerical values can only
increase т+, in our opinion. Therefore the described
formation of density discontinuities could be observed
experimentally.

We shall now give the law of motion of a density
discontinuity and the change of its magnitude in time.
Since we are interested in the behavior of an already
existing discontinuity, we can let it have the form de-
picted in Fig. 24c [p 0 (x) = Poo for x < 0 ] and assume
Pl = pTC in (22.2).

We replace t with the new variable | , the x-coor-
dinate of that step density at t = 0 which at the later
time t determines the density discontinuity in the
shock wave:

X(t) = t + J'(Qo(Z))t. (22.3)

The differential equation for X ( | ) , obtained from
(22.2) and (22.3), is solved subject to the initial condi-
tion X(0) = 0, giving

5
(22.4)

where

Equations (22.3) and (22.4) determine t ( £ ) and X ( | ) ,
representing the exact solution of the problem in para-
metric form. If po ( I ) — p « is small, then up to terms
of the order po (£) - p » we have

5
(Qo — Q*>)dl- (22.5)

2JL

Putting t — °°, we obtain p0 — p« and x£ — J'^; the
shock wave thus tends to be smoothed out into a uni-
form step sequence.

When t and £ are large, the integral in (22.5) can
be extended to infinity, and in conjunction with (22.3)
leads to the asymptotic formula

Qo —
1/2 (22.6)

from which it follows that the magnitude of the density
discontinuity decreases as ~ t~^2. A kinematic wave
of elementary steps should appear visually as a
smeared macroscopic step of total height

OO
a j (p (x) -p.,,,) dx. It follows from (22.5) that this

о
macrostep is smeared more and more; experimentally
this can look like a reduction of step height, although
the overall height actually remains constant. The
time т_ for the "disappearance" of a kinematic wave
is reasonably defined as the time required to reduce
the density discontinuity Po — р т е *° а given value de-
pending on the conditions of observation. т_ is in-
versely proportional to the supersaturation [ see Eq.
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(22.6)] and the path traversed by the discontinuity
during this time is practically independent of super-
saturation. 1 2 8

Thus a perturbation of the density of elementary
steps results in the production of a "shock wave,"
after which the perturbation is smoothed out. The r e -
laxation times T + and т_, and the path traversed by
the perturbation before disappearing, are large enough
to permit observation.

Density perturbations of the type shown in Fig. 24d
are not the only ones possible. A density discontinuity
will result from many different kinds of perturbations
that produce a surface region where the absolute value
of the step density is enhanced (see the equation for
T+). Figure 25 shows some of the permissible surface
profiles.

FIG. 25. Some of the con-
ceivable surface profiles involved
in the production of shock waves.

The kinematic wave contains a discontinuity of ele-
mentary step density, i.e., the surface profile exhibits
a macroscopic corner, to the left and right of which
the slopes vary in time and differ from those required
by surface energy anisotropy (Ch. I). No inconsistency
arises if the expression for J takes surface energy
into account, as follows:

where цт and HQ are the chemical potentials of the
medium and crystal, respectively. At low elementary
step density p there is practically no energetic inter-

82F
action between steps, — - j - is small, and surface en-

dp
ergy plays no important part (Sec. 5). Therefore for
sufficiently small departures of the crystal surface
from close-packed orientation, energy effects can be
neglected while kinematic phenomena alone are con-
sidered, as in the present section. All results ob-
tained here can obviously be extended to the cases of
crystal dissolution, evaporation etc.

Macroscopic steps of two types can therefore exist
on crystal surfaces. First, for the " t r u e " steps, sta-
bility is determined by surface energy anisotropy;
these steps have a stationary shape and constant rate
of advance. The second type comprises macrosteps
which are weak kinematic waves of elementary step

density. Kinematic waves with large densities should
become steps of the first type; this can be one of the
mechanisms responsible for the formation of " t r u e "
steps.

It is difficult to determine which type of steps
exists on any real surface, in the absence of direct
investigations of step profiles. The available obser-
vations of growth steps 1 2 9 point to their relative sta-
bility (at low supersaturations) and constant rate of
advance, which diminishes with height approximately
as 1/h and is independent of the separation of succes-
sive steps until their almost complete merger. These
are evidently steps of the first type. However, the
fronts of growth steps have been observed to depart
as little as 1:200 from a close-packed face.1 3 0 Some-
times the gradual disappearance of macrosteps is ob-
served, accompanied by an accelerated rate of ad-
vance;4 9 these steps can be treated as kinematic
waves. Some dissolution macrosteps also resemble
kinematic waves.66

23. A Kinetic Equation for Steps

We have so far considered only the collective mo-
tion of steps with identical heights, whereas a real
crystal surface includes many macro- and microsteps
with different heights and different rates of advance
that make merging possible. The breakdown of steps
is also possible. A statistical description of the
stepped structure of a surface is required by the
very large number of steps.

We shall first consider the case of " t r u e " steps,
assuming a constant rate of advance for each step up
to the instant of merger with another step. We intro-
duce the step distribution function (or density)
p (m, r, t ) , where r is the radius vector of a point
on the surface and m is step height expressed in
interatomic spacings. p is the number of steps in-
tersecting a unit line segment perpendicular to the
step fronts and passing through the point r . The rela-
tive rate of advance of two steps with heights m and
m' is v (m) — v (m') = | a\ f (m, m ' ) . Finally, w (/u, v)
will denote the probability per unit time that a step
with height v will be detached from a step with height
/u. The following kinetic equation is obeyed by p:

j= + div qvn = ^ Q (v, r, t) f (v, m — v) g (m — v, r, /) dv

.— Q(m, t, t) [ \ e(v, r, t)f(v, m) dv
о

со 2m

+ V Q ( v , r , £) / (m, v ) I rfv + \ Q ( v , r , t ) ш ( v , v — те) rfv

m m

m
oo "2"

+ V Q(V, r, t)w(v, m)dv — Q(TO, Г, <) \ ш(/ге, v)dv,
L о (23.1)

where т = | cr 11, the vector n is normal to the step
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front and lies in the plane of the close-packed face
(Fig. 7), and v = v ( n ) . Equation (23.1) describes
processes in both growth and dissolution, as distin-
guished by the sign of the supersaturation. We shall
discuss some deductions from this equation.

1. Kinematic waves. If all steps are identical in
height [p •» б (m — m 0 )] and cannot break down, then
steps do not merge; the right-hand side of (23.1) thus
disappears leaving the simple equation (22.1) already
considered in Sec. 22, with the stationary solution
p = const and the nonstationary solution representing
a kinematic density wave. If at initial time p ~ б
x ( m — m 0 ) , but w * 0, the right-hand side does not
vanish, and in time p as a function of m is " s m e a r e d , "
i.e., steps both higher and lower than m 0 appear.

2. The equation of a spiral. If p (m, r, t)
= б ( m - m 0 ) б ( r - r (0, t)) and w = 0, the right-hand
side of (23.1) disappears, while the left-hand side,
after multiplication by n, gives the equation of motion
of a step:

>£)-»=<>• (23.2)
In the steady case where r(0,t)=ro(0) + wx r0t,
Eq. (23.2) has the spiral solution described in Sec. 9
N l r . n (Fig. 7)].

3. Growth and dissolution shapes. Equation (23.2)
also permits a step contour r = r0 (в) that remains

similar with the lapse of time. I f r ( 0 , t ) = r o ( 0 ) — ,
to

we obtain

(nro) = t>(n)<o, (23.3)

where t 0 is a constant. Replacing v (n) t 0 with a (n) Л" 1

gives Eq. (2.3) for a family of straight lines whose en-
velope represents the equilibrium shape of the crystal
(Sec. 2). Therefore a stationary growth shape, the en-
velope of the family (23.3), is plotted on the polar dia-
gram of v (n) according to the Wulff theorem. This
rule for constructing growth and dissolution shapes of
crystals was proposed in geometric form by Gross 1 3 2

as early as 1918; see also reference 133. These early
investigators also studied the geometry of etch pits.
By analogy with (2.2) and (2.3), Eq. (23.3) can be con-
sidered the solution of the variational problem
Jv (n) ds = min. A condition for the stable (similarity)
transformation (23.3) in growth is v + VQQ > 0, and in
dissolution, v + V"QQ < 0. The " i n n e r " envelope of the
family (23.3) must correspond to the stationary growth
shape, while the outer envelope (Fig. 26) corresponds
to the stationary dissolution shape, v + V'QQ = const
must hold true over the entire surface of the station-
ary shape. Taking r 0 and n to be three-dimensional
vectors, Eq. (23.3) can be used to derive the growth
shape of a three-dimensional crystal, not merely of a
step. According to the kinematic theory of nonstation-
ary shapes developed by Frank5 6 the shape changes in
such a way that surface regions with given orienta-

FIG. 26. The dashed curve is the polar diagram of growth rates.
The closed solid lines are Wulff envelopes of v(n). The inner line
gives the stationary shape for growth; the outer line gives that for
dissolution.

tions move along straight paths in the directions of
normals to the polar diagram of reciprocal velocities
v 4 ( n ) .

The velocity v ( n ) , like a ( n ) has sharp minima
for orientations of n corresponding to close-packed
faces. These faces can therefore be present on both
equilibrium shapes and growth shapes, although the
given correspondence is not required for all faces,
not to mention their sizes. Both growth and equilib-
rium shapes depend essentially on the structure, but
are not related directly, since the former are deter-
mined kinetically, and the latter are determined
therm odynamically.

It has been assumed above that the normal growth
rate depends only on face orientation, although the rate
is actually determined, in addition, by the macroscopic
diffusion and thermal fields around the crystal. As a
result the equilibrium shapes for both growth and dis-
solution can be modified and unstable shapes (den-
drites, cellular structure etc.) can appear.

4. The development of stepped roughness.1 3 1 We
shall now consider the case where, at the initial time,
steps of different heights, which are unable to break
down, are distributed uniformly on the surface
[p = p (m, T ) ] . The lower steps, having greater ve-
locities, overtake and merge with higher steps to
form still higher steps. The mean step height varies
with time as follows:

m(x) = -
Q (m, T) dm

Q (m, T) dm
(23.4)

It follows clearly and directly from (23.4) that

оэ оэ

\ /ид (m, T) dm = \ mq (m, 0) dm = — = const, (23.5)
о о

w h e r e p i s the tangent of the m e a n angle of inclination
oo

of the s tepped sur face . J p dm is eas i ly d e t e r m i n e d
о

for the case in which f (m, m' ) is a homogeneous



function of the d e g r e e - k , i .e. , f (\m, \ m ' ) = \~^ x
f ( m , m ' ) , and the solution of (23.4) can be put into
the form

p (m, т) = (T + TO)"S

 Ф (m (т + хпу>),

w h e r e т 0, s and q a r e cons tants . The values of t h e s e

OO

constants m u s t be such that J mp dm is not t i m e -

o

dependent and (23.4) is satisf ied by a function <p of a

single var iab le . This is poss ib le when

S = 2q, q l
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Hence the t e m p o r a l i n c r e a s e of m e a n s tep height is
given by

(23.6)

When к = 1 we have m ~ p vat , and the m e a n step
densi ty d e c r e a s e s as ( o t ) " 1 / 2 .

The foregoing descr ip t ion of the es tab l i shment of
m a c r o s c o p i c sur face roughness has l imited appl ica-
tion. Martynov and Bakanov 1 3 4 have shown* that the
asymptot ic behavior of the equation for the coagulation
of so l s , which is s i m i l a r to (23.4) and was investigated
e a r l i e r by Todes , 1 3 5 depends on the initial dis tr ibut ion,
so that cp i s not a universa l function for all d i s t r i b u -
t i o n s . Equation (23.6) i s thus r igorous ly a c c u r a t e only
if the init ial d is t r ibut ion is given by ср. This equation
t h e r e f o r e furnishes only a qualitat ive e s t i m a t e of the
coagulation p r o c e s s .

When the coa lescence of s teps is compensated by
breakdown, a s t e a d y - s t a t e s tep-height dis t r ibut ion is
establ i shed, d e s c r i b e d by a function w (ц, v). The
height dis t r ibut ion of low s teps is given by p ( m )
= w (m ) v ( m ) , if w (/л, v) = w (д ), i .e. , the frequency
with which s teps of a given height a r e emit ted does
not depend on the height /x of the d is integrat ing s tep.
This re la t ionship e x p r e s s e s the k inemat ic s tabi l i ty
of a m a c r o s t e p , which r e s u l t s when the c u r r e n t pv
of low s teps that m e r g e with it equals the c u r r e n t w
of emit ted s t e p s .

A complete s ta t ionary d is t r ibut ion function p ( m )
and genera l asymptot ic laws for the nonstat ionary
p r o c e s s e s of s tep coa lescence have not yet been found.

Howes 1 3 6 r ecent ly undertook an exper imenta l inves-
tigation of the t e m p o r a l change of stepped surface
roughness in l ine with the foregoing d i scuss ion. He
studied the e lectrodepos i t ion of copper on a sur face
forming a s m a l l angle with (100), obtaining the s t e p -
height dis t r ibut ion at success ive 15-minute in terva l s
(Fig. 27). Unfortunately, the exper imenta l technique
was l imited to m a c r o s t e p s above ~ 0.1 m i c r o n . F i g -
u r e 27 shows c l e a r l y the reduced density of low s teps
that m e r g e with high s teps , the a p p e a r a n c e of a d i s -

tr ibut ion peak, and the shift of this peak toward higher
s t e p s . The m e a n d i s tance \ between s teps i n c r e a s e s
with t i m e according to Л = CiVt~ + c 2 , and c 4 and c 2

a r e constants (Fig. 28). The data in r e f e r e n c e 136
thus a g r e e qualitat ively with the s ta t i s t ica l theory.
It would be highly d e s i r a b l e to have fur ther e x p e r i -
m e n t s taking lower s teps into account (down to e l e -
m e n t a r y s t e p s ) , for different m e a n or ienta t ions of
the stepped sur face; a lso, e x p e r i m e n t s to d e t e r m i n e
the d i s integrat ion function w, and to invest igate the
effects of i m p u r i t i e s and of super sa tura t ion on s ta t ion-
a r y and nonstat ionary d i s t r ibut ions p both in c r y s t a l
growth from different m e d i a and in decrys ta l l i za t ion.

FIG. 27. The distribution of step heights H at 15-minute in-
tervals.

10

30

FIG. 28. Mean step separation as a function of time.

*The author is indebted to G. A. Martynov and S. P. Bakanov
for communicating their results before publication.
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