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1, INTRODUCTION

ALMOST all the scientific and technological discov-
eries of our time are related to the use of electronic
devices. Among these are, for example, the charged
particle accelerators of nuclear physics, high-fre-
quency amplifier and oscillator tubes, the electron
microscope, photomultipliers, electron beam devices,
etc.

The basis of every electronic device is a beam of
charged particles, in the majority of cases a beam of
electrons. In such a beam, as in any statistical en-
semble of particles, characteristic internal forces
act on the particles. These forces may manifest them-
selves under various conditions, but we may disregard
them entirely and treat the beam as consisting of a
number of noninteracting charged particles. This
neglect of internal forces in the beam is the procedure
in electron microscopy and in most problems of elec-
tron optics. With the development of technology, there
are more and more applications of long beams of
charged particles with high current density. The ob-~
taining and, more important, the focusing of such
beams over a sizeable length has many special fea-
tures which result from the interaction of the charged
particles with one another and which are referred to
as ‘‘space charge effects.”

Beams of charged particles in which the internal
forces play an important part, and cannot be neglected,
are said to be intense. It is obvious that the concept
of intense beams is introduced simply as a convention,
though it is also very convenient from the practical
point of view. Thus the magnitude of the space charge
is characterized by the ratio of the current strength I
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carried by the beam to the 3/2 power of the voltage (or
energy) ¢ of the beam (the ‘‘perveance’’ of the beam).
Computation shows that the influence of space charge
can be neglected in electron beams with a perveance
less than 10~7 amp/v¥2,

For obtaining intense beams, one can use ordinary
thermionic and oxide cathodes, powerful L-cathodes,!»?
and also the phenomenon of surface ionization,® which
consists in the formation of ions during the passage of
neutral atoms through heated metallic surfaces. The
focusing of beams which have a high density of space
charge presents considerable difficulties. One can no
longer speak of focusing in the sense in which it is
used in electron optics. The term ‘‘focusing of an in-
tense beam’’ should be taken to mean the forming of
a current of particles into a beam with a more or less
sharp boundary and with, possibly, laminar flow of the
particles, as well as the maintenance of a given con-
figuration over a given length and its preservation
from the disrupting action of space charge and other
perturbations along the path of motion of the particles.
The shape of an intense beam and the distribution of
particles over its cross section can be found in many
cases by the use of a system of electrical probes, and
can be recorded on ordinary photographic plates.*

This is explained by the fact that an intense beam pro-
duces strong ionization along its trajectory even at

low pressures of residual gas. The subsequent recom-
bination with oppositely charged particles produces a
noticeable illumination of the ionized region.

Although the methods of forming and focusing of
beams in electronic devices are closely related to the
mechanism of interaction of the beam with the control-
ling fields of the grids, decelerating electrodes and
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resonators, there are various general requirements
on beams which permit us to disregard the interaction
mechanism and treat the different focusing systems
from a unified point of view.

The theoretical analysis of the behavior of intense
beams in electromagnetic fields involves the solution
of systems of nonlinear partial differential equations,
so it is an extremely complicated mathematical prob-
lem. Over the course of the last few years, a large
number of approximate solutions have been found, and
several successful devices have been found for obtain-
ing and focusing intense beams. An important part in
the development of this vital branch of electronics was
played by the work of S. A. Boguslavskii and V. R.
Bursian on the influence of space charge on the motion
of beams of charged particles, of V. S. Lukoshkov on
methods for modeling intense beams, the work of Ya.
I. Frenkel’, S. A. Bobkovskii, M. M. Bredov, and S. M.
Braginskii on problems of neutralization of space
charge in beams, the work of V. T. Ovcharov and Z. S.
Chernov on the theory and on new methods for focusing
nonrectilinear flows. Of the work in other countries
we should mention the surveys and original work by
d. Pierce and H. Ivey, and the papers of P. Kirstein,
B. Meltzer, G. Walker and others.

The purpose of the present survey is to collect and
summarize the results of papers on the formation and
preservation of intense beams of charged particles
which have appeared in many different journals and
books, and to point out problems which still await
solution.

The existing literature surveys on the effects of
space charge treat the problems of formation and fo-
cusing of intense beams only indirectly, and are al-
ready obsolete.
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2. FUNDAMENTAL ASSUMPTIONS CONCERNING
PROPERTIES OF INTENSE BEAMS

An individual charged particle in a beam is sub-
jected along its path to the action of the following types
of electromagnetic fields: 1) external electric and
magnetic fields, usually stationary; 2) a certain aver-
aged field, which results from the action on the par-
ticle of the other particles in the beam and the resid-
ual gases and ions in the system; 3) fluctuating fields
which result from collisions of particles or from fluc-
tuations of the current density in the beam.

Usually one assumes that the electromagnetic field
strengths satisfy Maxwell’s equations, and that the mo-
tion of the individual particle is described either by
Newton’s laws, if the particle velocities are small, or
by the Einstein equations if the velocities are relativ-
istic. However, if the fields change by a sizable
amount over distances comparable to the de Broglie
wavelength, A = h/p (where h = 6.624 x 10727 erg-sec
is Planck’s constant, and p the momentum of the par-

ticle), we cannot use the concept of a trajectory to de-
scribe the motion of the particle, and we must take the
particle’s wave properties into account. In addition we
must include the fact that every charged particle!® has
an intrinsic orbital angular momentum and magnetic
moment. Finally, in any electronic vacuum system
there are molecules of residual gas which will interact
with the particles in the beam, and this interaction is
described by the laws of quantum mechanics.

In most designs the vacuum is so high that we can
neglect collisions of particles in the beam with mole-
cules of residual gases. The effect of residual gas
manifests itself in an additional focusing of beams of
particles of the opposite charge!®:!® and in oscillatory
behavior of the current density in the beam®~2° (Fig. 1).

FIG. 1. Current oscillo-
gram along axis of beam. The 5—!—“ z
pressure in the system was
5 x 100" mm Hg. As the pres-
sure is increased, the pulse
1 changes to the shape 2 (the
pressure at this time was
~ 10~ mm Hg). 5 pusec ‘*—"I
This focusing is explained by the fact that particles of
the opposite charge which are formed as a result of
ionization of the residual gases are captured inside
the beam and are kept there by the attractive electro-
static forces. This type of compensation of the space
charge is the simplest, and is observed at pressures
from 1072 to 10°" mm Hg. However, the processes of
ionization and trapping of charged particles are sub-
ject to strong fluctuations over the length of the
beam.2!2 In addition, the presence of residual gases
in the system speeds the destruction of the electrodes
through bombardment by ions of the residual gases.

The de Broglie wavelength A in the systems which
are in use at present is of the order of 1078 —107° cm,
so that we may?$»% disregard quantum effects. How-
ever these effects impose a limit on the resolving
power of electron microscopes. A consistent quantum
mechanical analysis of the behavior of intense beams
of charged particles has not been carried out.

As was pointed out by Meltzer?®~2T and Winwood,?8
the magnetic interaction of particles in a beam can be
neglected only for the case of nonrelativistic veloci-
ties and for low values of the ratio of width to length
of the beam. For example, let us consider the flow
of electrons in an infinite plane capacitor. Let us
consider a current tube of radius r. According to
Ampere’s law, around the current tube there is a
magnetic field which will have a focusing action on
the current, and will change its motion and the charge
distribution in it. The magnetic forces can be neg-
lected only?' if r/1 <« 6 (¢/v)?, where r/l is the ratio
of the radius of the beam to its length, and ¢ = 3 x 1010
cm/sec is the velocity of light. For example, if the
accelerating voltage is 50 kv, r/l must be less than
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30. The main effects associated with magnetic inter-
actions in beams are discussed in references 29 — 31.
Hydrodynamical analogies have received extensive
application in the study of intense beams. For example,
it is often possible to mark off a set of nonintersecting
layers in the flow of charged particles, where the be-
havior of the current at each point of a particular layer
can be characterized at any one time by a single ve-
locity vector. By analogy with hydrodynamics, such
flows are called laminar. Usually it is assumed that
the individual particle moves, not in a discrete, but in
a continuous, electrically charged medium. However
in experimental work many phenomena are encountered
which cannot be described by means of the concept of
laminar flow. For example there are the formation of
voids in beams, irregular fluctuations of current den-
sity along the beam, anomalous distributions of par-
ticle velocities, etc. Studies have been made of the
conditions for breakdown of the laminar character of
the flow in strong magnetic fields3?>% and the break-
down from resulting nonuniform distribution of veloci-
ties over the cross section of the beam,3 fluctuation
of charge density,%>% various thermal effects,"~% etc.

3. TYPES OF FOCUSING. SPECIAL PROBLEMS OF
THE THEORY

Intense beams with the desired dimensions and shape
can be obtained only by the use of external restricting
forces, which must compensate the disruptive forces
of the space charge. Such forces may be those of ex-
ternal electrostatic fields, external magnetic fields,
or the force fields of particles with the opposite charge
which are produced as the intense beam passes through
the residual gas in the system. In accordance with this
description, we distinguish three types of focusing:
electrostatic, magnetic, and gas focusing. There are
also combined methods of focusing.*®4! For example,
in M- and O-type carcinotrons, perpendicular elec-
tric and magnetic fields are used!?~4 for the focusing
of electron beams. However, attempts to produce high
efficiency electron guns of this type meet with serious
difficulties associated with the changing electromag-
netic fields which act at the point of entry of the beam
into the focusing system. Moreover, focusing by
crossed electric and magnetic fields is closely related
to the mechanism of removal of energy from the beam,
so that the focusing effect cannot in this case be treated
separately from the method for removing the high fre-
quency energy.

Gas focusing methods have a strong influence on
electron beams, but with increasing mass of the
charged particles these effects decrease rapidly be-
cause of the high leakage of electrons from the region
of the ion beam. In Sec. 2 we discussed the basic phe-
nomena which accompany the neutralization of the
space charge of a beam. An excellent survey of litera-
ture concerning this question can be found in refer-
ence 45.
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The methods of focusing by use of electric and mag-
netic fields can, in turn, be divided into focusing by in-
homogeneous and by uniform fields. In the first case
the focusing fields do not change along the beam, while
in the second the beam configuration is preserved by
having it pass through a set of magnetic or electric
lenses, prisms or mirrors.

Attempts to find the shape of the forming and focus-
ing electrodes analytically leads to the problem of
solving the Laplace equation, which gives the distribu-
tion of the potential outside a certain, in general, open
surface, on which the values of the potential are known
and where we impose the condition that there be no
forces normal to the surface. In mathematical physics
such a problem is called the Cauchy problem for ellip-
tic equations. It is known® that this problem is not
correct in the ordinary sense, i.e., its solution is very
sensitive to slight changes in the boundary conditions.
For example, if the exact value of the potential is given
at two points on the x axis which are separated by the
distance a, while the potential is known with an error
€ sin (7x/a) at the intermediate points on the x axis,
one can show that in the region y > 0 the error in the
solution will be given by € sin(rx/a) cosh(wy/a), i.e.,
the error will increase rapidly with increasing y. With
increasing precision in the fixing of the boundary con-
ditions, i.e., with decreasing a, the error will oscil-
late and increase in absolute value. Such an instability
of the solution was found in the work of Brewer,%’
Hechtel,*® and Berz.** In reference 48, for example,
the value of the potential at the boundary of the beam
was expanded in power series; when three terms of
the expansion were used, he obtained a shape for the
electrodes which made physical sense, but these elec-
trodes were completely changed in shape when six
terms of the series were used.

It can be shown®%»%! that the Cauchy problem has a
solution expressed in analytic functions only in re-
stricted cases. Let us consider an ideally conducting
plane which is at zero potential, and several isolated
regions of accumulation of electric charge. Then as
a result of induction a charge distribution appears on
the plane, whose density at any point of the plane is
determined by the value of the normal derivative of
the potential. If now we forget how this distribution
of charges on the plane was produced, and find the
value of potential at an arbitrary point outside the
plane, we are required to solve the Laplace equation
with boundary conditions of the Cauchy type. However
this solution must surely be incorrect in regions of
accumulation of the electric charges, since there we
must satisfy the Poisson equation which contains the
density of the charges in such regions.

The stability of the plane Cauchy problem for the
Laplace equation was demonstrated by Carleman.%
Estimates characterizing the stability of the spatial
Cauchy problem have been obtained by M. M. Lavrent’-
ev9%5¢ for functions which are given over an arbitrary
domain with sufficiently smooth boundary, and by E. M.
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Landis® for second-order elliptic equations with cer-
tain restrictions on the coefficients in the equation.
Radley®® has shown how to find the solution of the
Cauchy problem by using convergent series.

From the practical point of view, the instability of
the solution has its bright side, since even sizable in-
accuracies in the shaping of electrodes will produce
only small perturbations of the flow along their bound-
aries. This permits us to apply conclusions which have
been drawn for the case of infinite electrodes to actual
focusing systems of finite dimensions.

4. FUNDAMENTAL CONSERVATION LAWS IN THE
HYDRODYNAMIC THEORY OF INTENSE CURRENTS

According to Lorentz, the equation of motion for an
individual particle of the beam has the form
(’) v
(Gt 0" )= — 1BV, B, (1)*
where the electric and magnetic fields E and B sat-
isfy the Maxwell equations:

rotEﬁr-%ZO, divEZ%,

1 o @)
mtB#FE =pugv, divB=0,

[N

and p is the charge density, € and p are the perme-
ability and dielectric constant of the vacuum, v is the
velocity vector of the particle, and 7 is the charge-to-
mass ratio of the particle.

In place of the field intensities, we use the vector
potential A and scalar potential ¢, with

0A
E= ’V(p——rﬁ .

B=rot A, (3)

Just as in hydrodynamics, we can obtain the following
fundamental conservation laws.
The law of conservation of charge:

divov + 92 =0.

4

In the case of conservative fields, i.e., when A and
¢ are independent of the time, along any trajectory of
the charged particles the law of conservation of energy
is satisfied:

2

A
V1" (v/e)?

®)

— NP = const,

or, in the nonrelativistic case,

(6

v? — 21 ¢ = const.

As Gabor®® has shown, Lagrange’s theory is valid
for intense beams: the value of the integral

$(p—eA)al (7)
C
along a closed contour C surrounding a current tube

is a constant for the given current tube. Obviously if

*[v, Bl=vxB; vB=v-B.

trot = curl.
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the current tube emerges from a point, the Lagrange
invariant is equal to zero. In the absence of magnetic
fields and for nonrelativistic velocities, the Thomson
theorem, which is well known in hydrodynamics,?® fol-
lows from Lagrange’s theorem:

@ v dl = const. 8)
C

In investigating nonlaminar flows with different sta-
tistical distributions of the velocities of the particles
in the beam, one uses Liouville’s theorem (cf. refer-
ences 60 and 61). In this case the motion of an indi-
vidual particle is treated as a motion in phase space,
characterized by the coordinate triple x, y, z and
the corresponding momentum values px, Py, Pz, where
the density of charges in a portion of phase space which
moves with the particle does not change with time,
i.e., the equation

S dedydzdp,dp,dp, = const 9)

is satisfied along the trajectory of the charged particle.

The fundamental conservation laws which have been
enumerated enable us, in many cases, to simplify cal-
culations and to obtain quickly the necessary relations
between various parameters of intense flows. Thus
the study of one-dimensional flows of charged par-
ticles (the computation of plane, cylindrical, and
spherical diodes) is based on the laws of conservation
of charge and energy, and on Gauss’ theorem, which
enables us to find the value of the field intensity E. In
making electron-optical systems, extensive use is made
of Lagrange’s theorem and its special case, Busch’s
theorem (cf. reference 62). The study of the propaga-
tion of electromagnetic waves of space charge®3:5
along intense beams in the linear approximation is
based on the Maxwell equations and the general laws
of motion. The investigation of different models of
the statistical distribution of the initial velocities of
the particles®%! and the finding of the limits to focus-
ing of beams as a function of cathode temperature are
based mainly on Liouville’s theorem.

5. STATIONARY NONRELATIVISTIC BEAMS IN THE
ABSENCE OF MAGNETIC FIELDS

If we set vi/c? « 1 and B =0 in (1) and (2), the
following equations, which describe the motion of an
individual particle in such beams, will be satisfied:

WWV=meI
divE = % , (10)
rotE=0. l

In order for the system (10) to be complete, we
must give the connection between the velocity and the
charge density. To do this, we use the charge conser-
vation equation (4), which in this case has the form

divov=0. (11)
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The system (10) and (11) can be solved for the velocity:

div {vV (vV) v} =0,

rot {(vV) v} =0. (az2)

If we neglect the initial velocities of the particles
and assume that the potential of the cathode is constant,
all the particles in the beam will have the same energy.
Such beams are said to be ‘‘normal’’; the necessary
and sufficient condition for such beams® is that

[v, rotv]=0, i.e., (¥9)v= Vv (13)
Thus, for normal beams the second of equations (12)
is identically satisfied, and the problem reduces to the
solution of the single scalar equation

div{vAu?} =0. (14)

Further simplifications of Eq. (14) were made by
Spangenberg®® and Walker®” by using the Thomson
theorem (8). The condition for the existence of lami-
nar flows, in which all the particles in the beam move
with the same velocity, is

rotv=0, ie., v=VW, (15)

where W is a scalar function which is called the action
function (in hydrodynamics it is called the velocity po-
tential). Then Eq. (14) can be replaced by a single non-
linear fourth-order partial differential equation for the
determination of the single scalar function W. The
other beam parameters are determined from W as
follows:

wy

the potential ¢ = 7

?

the charge density = —;ﬁA (VW )2, (16)
s dz _dy _ dz
the trajectory = 5=

br 0y 0z

To investigate equations (14) and (15), we choose
the orthogonal, curvilinear coordinates x;, X, X3 so
that the surface x; = const corresponds to W = const.
We know®® that the square of the line element ds? in
such a coordinate system is expressed in terms of the

Lamé coefficients h;, hy, h;y as follows:

ds? = hida} + hidx? 4 hida}. (17)

The necessary and sufficient condition for the existence
of a one-dimensional laminar flow of charged particles,
i.e., for a flow in which all the beam parameters are
constant on the surface x; = const, and where the ve-
locity vector is perpendicular to xy, is%- the equation

hahg WP

h ’ ’ ’ hh
ks YW+ A S

h ’ A4 a
e WAV P + g

=F (2,%5),

where F is an arbitrary function of the variables x,
and x3, and the prime denotes differentiation with re-
spect to x;.

Consequently such a flow is possible only when
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either

Mo p L= F(z.5), 1.6, W’ =const,
1 1
or (18)

"L;Ths =M (z,) N (z,25) + 2 M () N; (z7,25),

where M, Mj and Nj are arbitrary functions of the
corresponding variables.

A similar investigation has been made recently?? of
two~dimensional flows of charged particles in systems
with an external magnetic field.

No general methods for solving Egs. (14) and (15)
exist at present. Therefore only special cases are
studied. Thus in references 67 and 82 the method of
separation of variables was applied to the problem of
propagation of a strong flow of charged particles be-
tween plane non-parallel electrodes and between two
coaxial right cones with a common vertex. In refer-
ences 83 — 85, the method of separation of variables
was applied to systems with cylindrical and spherical
symmetry. To find the action function, one some-
times uses conformal mapping methods.”>% How-
ever, as Meltzer®” has pointed out, in multielectrode
systems the beam parameters cannot be expressed in
terms of analytic functions. In such systems it is
suggested that one seek a solution of the Hadamard
form 46,54,55

6. SHAPING OF BEAMS BY MEANS OF PIERCE
ELECTRODES

The spreading of beams under the action of space
charge forces can be neutralized by external electro-
static fields. A practical method for achieving such
a result was first proposed by Pierce.?»3 This method
consists of the following. If, say, in a plane diode
which is completely filled with space charge, we look
at a portion of the flow of charged particles, then at
the boundary of this partial beam the repulsive space
charges will be compensated by the volume charge of
the other particles. The same result can obviously be
achieved if the region of space outside the beam is free
of charge, but the electrodes are given such a geomet-
rical shape and their potentials are so chosen that the
location of the edges of the beam is unchanged. In gen-
eral only two electrodes, which are at the potentials of
the cathode and anode, respectively, are required for
this. Such a system of electrodes is called a *‘Pierce
gun,’”” and the electrodes are called Pierce electrodes.

This problem of compensating the repulsive forces
of the space charge at the boundary of the beam can be
solved for the general case if one knows the potential
distribution over the beam boundary. In mathematical
physics, this problem is called the Cauchy problem
for elliptic equations, and all the difficulties in solving
it were discussed by us in Sec. 3. The required poten-
tial distribution over the beam boundary can be found
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by solving the Poisson equation in the interior of beam,
or by experiment. We give below the electrode shapes
as found analytically for different types of beams.

a) Ribbon beam:%:88

@ (r, 0)=r*cos & 9. (19)
The shape of the electrodes is shown in Fig. 2.
b) Wedge beam:58,8°
¢ (r, 9)=Re {0"/? 3 o'}, (20)
k=0

where

©=1In Ik (B —B).
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FIG. 2. Equipotential lines of the field required for producing a
parallel beam of rectangular cross section. x,y — cartesian coor-
dinates; d — interelectrode distance.

The shape of the electrodes is shown in Fig. 3.

¢) Cylindrical beam:%

2 D=z (<19 (2) 0y (L),
k=0

where a is the beam radius. In the region near the
edge of the beam

0,=1, ®,( 2 )=5{(Z) ~2m L1},
(%)
=1_;_g€{(%>“_8<%>2 Lln%-——t—] -—4In%—5}...,

while in the region R < a?,

(21)

4 5/3
¢(r, z)=R2/3cos-;—1‘}+R {sini——isin%ﬁ}-‘r...,(ZZ)*

4a 3 7

where
a

re-
R=2"+(r—a)? ¥ =arctg—o.

*arctg = tan™.
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FIG. 3. Equipotential lines of the field required for producing a
wedge beam, for different values of 4 (40 and 60°). d — interelec-
trode distance; x — distance from cathode to a fixed point in the
beam; ¢ — anode potential; ri/r — ratio of cathode radius to fixed
radius; y — distance from cathode along the beam axis.
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FIG. 4. Equipotential lines of the field required for producing a
plane cylindrical beam. y — angle of inclination of the shaping
electrode relative to the beam.

The shape of the electrodes is shown in Fig. 4.

d) Hollow cylindrical beam.%

If the inner and outer radii of the beam are equal
to a and b respectively, the shape of the equipoten-
tials outside the beam is given by Egs. (21) and (22),
while for the region inside the beam we must replace

a by b.
e) Conical beam:%6%1

_/sinB\1/2 o 4 2 7
¢ (r, ﬁ)—<sin1‘} 0] {cosgw——?mcos§w
: 4 -
+%m7c_g‘%;r_.°t_gﬂsm%¢+0(m2)} i (23)*
where
*ctg = cot.
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r . G —9

w= Inr—K+z(ﬁ~1‘}o) , xp:arctg—n(rT/;’) .
The shape of the electrodes for different opening
angles «; is shown in Fig. 5.

f) Azimuthal cylindrical beam:"™"

P (rv ﬂ)': — 274372

4cos (ﬂ—l—% n)
r

2
_%cos<4ﬂ:—3 n)_{_.“]

x[1.402+
(24)
if r > 1, and

2cos(2f}——% n)

@ (r, B) =242 [ -

+1.402+—[§Trcos ('ﬁ—l—%n)—l—%r“cos <4ﬁ+%n>+ ] ,

(25)

if r<1. .
The shape of the electrodes is given in Fig. 6,
where a is the radius of the limiting trajectory of

the beam.
g) Azimuthal spherical beam:™

@(r, 9)=6(0, B, {1+2<1_§>
+[3— (26% sin 9)°1) < 1—L >2

4[4 — (6%/2 sin 9)] (1 —%>’+ . (26)

where 0 (4, ¥4) is the function tabulated in reference
74, and a is the limiting trajectory of the beam. The
shape of the electrodes for particular angles J; is
given in reference 74.

By writing the Laplace equation in orthogonal curvi-
linear coordinates for the small region in front of the
cathode, Radley®® showed that the focusing electrode
at zero potential should in general make an angle of

0

i

vl

\ v\
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\\
\

G,
/ Cathode
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FIG. 5. Shape of equipotential electrodes which produce a con-
verging conical beam with opening angle & (40 and 60°).
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FIG. 6. Polar plot of shape
of equipotential electrodes for
obtaining an azimuthal cylin-
drical beam.

67.5° with the boundary of the beam. Changing this
angle® changes the angle at which the beam leaves the
cathode, and also changes the current at the point
where the electrode intersects the beam. In Fig. 7 we
show the dependence of the angle B which the cathode
shaping electrode makes with the vertical (measured
clockwise from the vertical) on the angle o between
the electrodes and the boundary of the beam.

If we know how to construct the gun using a two-
electrode system, we can use® this solution to obtain
a triode type Pierce electron gun. For example, let
us consider a typical system of equipotential lines,
found by analytic methods or by various modeling ap-
paratus, and shown schematically in Fig. 8. If we ex-
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FIG. 7. Dependence of the angle 8, which the cathode shaping
electrode makes with the vertical, on the angle o between the
electrode and the boundary of the rectangular beam. The angle 8
is measured clockwise from the vertical.
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FIG. 8. Shape of equipotential curves of a two-electrode Pierce
gun.
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tend the zero-potential electrode along the equipoten-
tials C;D; and CyD,, and extend the electrode at anode
potential along the equipotentials A;B; and AyB,, the
forces exerted by the space charge in the beam will be
compensated by the external field. It is obvious that
the boundary of the beam will not change its shape if
1) we place an electrode with the appropriate positive
potential ¢, at the position of any equipotential G;H,
and GyH,; 2) we replace the electrodes C;D; and
C,D, by any other pair of electrodes at zero potential,
located along equipotentials C;C3 and C,C, and put
electrodes with the appropriate negative potential ¢,
at the position of the equipotentials EF; and E,F,.
In the first case we get a triode with a positive grid
bias, and in the second one with negative grid bias.
Thus in the general case one should proceed as fol-
lows: first find the position of the zero equipotential
in the triode system; then use this equipotential as
the cathode for a new beam-shaping system, whose
anode is the anode of the triode; by various approxi-
mate methods, find the shape of the equipotential
curves in the resultant two-electrode system. If we
now replace the electrodes which are at zero potential
by another pair of electrodes which are placed along
the zero potential equipotentials which have been
found, and if we put at the position of the correspond-
ing equipotential an electrode at the potential of the
_grid of the triode, then in the beam-forming system
thus obtained the repulsive forces of the space charge
will be compensated.

The shapes found for Pierce electrodes are, strictly
speaking, valid only for solid, infinitely extended elec-
trodes. However, in practice the Pierce system is
used for extracting intense beams through an anode
aperture onto the screens of oscillograph tubes, in
regions of high frequency fields, to obtain reaction
drives,™ etc. The defocusing of the beam in the anode
aperture is found from formulas of electron optics,%
95-97 4y from the empirical results of Glewe.?® For
the case of converging cylindrical beams, the location
and size of the minimum beam cross section beyond
the anode opening were found by Pierce.’ Wedge-
shaped beams in systems with a cylindrical cathode
were treated®®® by a similar method recently. Re-
gions were found with partial focusing (the beam nar-
rows in width, but does not reach the axis) and com-
plete focusing (the beam intersects the axis of the
system ) of wedge flows in systems with eccentric
cylindrical electrodes and in systems with a rod anode
(Fig. 9). The shapes of the electrodes needed to form
such beams were also studied.

The formulas of electron optics are vali only
for thin lenses, and are not applicable to beam-shaping
systems in which the diameter of the anode opening is

190,101

comparable with the interelectrode spacing. Copeland!®?

tried to replace the anode apertures by thick electro-
static lenses, but this replacement was very crude. If
the aperture is large, the space charge forces are most
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FIG. 9. Region of focusing of wedge-shaped beams in a system
of eccentric cylindrical electrodes. rx and r, are the radii of
cathode and anode, respectively; & is the distance between the
centers of curvature of the electrodes; the sign of § is taken to be
positive if the center of the anode is to the left of the center of
the cathode. The region of partial focusing is shaded.

important in the region of the anode, which leads to a
violation of the boundary conditions and to defocusing
of the beam in front of the anode aperture. It has been
suggestedi03:1% that one take account of the influence of
the finite dimensions of the anode opening by computing
the capacity of the beam-shaping system and comparing
it with the capacity of the similar system of solid elec-
trodes. In this way one can determine the perveance of
any complex beam-shaping system. The most complete
enumeration of effects associated with divergence of in-
tense beams in anode openings is given in reference 91
for values of the perveance between 1 and 8 x 1077
amp/v¥?, where it is shown by laborious computations
that the focal length is usually 10% less than the values
which are obtained from thin lens theory. Extensive
graphical material is given in this paper.

Various new designs have been proposed to reduce
the effect of the anode aperture on focusing of beams.
Thus, in reference 106 an auxiliary anode, whose po-
tential was higher than that of the main anode was used
(Fig. 10b) for forming a conical beam with a perveance
of 2.2 x 1078 amp/v¥2. I another construction, it is
proposed to change the shape of the cathode shaping
electrode (Fig. 10c), so that the potential distribution
along the boundary of the beam satisfies Langmuir’s
1aw™® T out to distances equal to 0.6 of the interelec-
trode separation, and then approaches asymptotically
the potential distribution in a cylindrical diode with an
anode radius equal to %; of the true radius.

Figure 11 shows a beam-shaping system with an
ellipsoidal cathode.!®” I this case the effect of the
spherical aberrations of the anode aperture is balanced
by the inhomogeneous distribution of the space charge
density over the cross section of the beam. Such a
system of electrodes is very sensitive to the choice
of sizes of its individual elements. Below we give the
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4
FIG. 11. Electron gun with ellipsoidal cathode.

main dimensions for a focusing system with ellipsoidal
cathode, whichl® had a perveance of 3 x 1078 a.mp/v3/ 2
and a ratio of the minimum beam diameter to its size
at the cathode equal to 75:

a=1,0, f=0.360, j=1.655,
b=13 =128 k=040,
c=0,152, h=0.424, [=0.234,
d=0,292, i=1.931, r=0.276.
e=1.055

In 1922 it was already proposedm” to protect the
cathode of electronic vacuum systems from ion bom-
bardment by using hollow beams. With the develop-
ment of research in the microwave region, another
advantage of hollow beams became apparent: the in-
teraction of a beam with the decelerating structure
is most effective at the edge of the beam and drops
off toward the center. The largest perturbations pro-
duced by the anode aperture are also at the axis of the
beam, and are thus unimportant for hollow beams.
However, the use of hollow beams faces serious dif-
ficulties — for stable focusing of such beams it is nec-
essary that the current density in the beam vary in-
versely as the fourth power of the beam radius.

Another defect of the Pierce system is the need for
thermal insulating gaps between the cathode and the
shaping electrodes at zero potential. Experiments
have shown!? that the current density at the anode
and, consequently, the focusing conditions depend to
a large extent on the size and shape of the gaps. There
is as yet no theoretical explanation of these phenomena.
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FIG. 10. Effect of anode aperture on shape of
conical electron beam, Thae Perveance of the sys-
tem is ~ 2.2 x 10™° amp/v . a) Langmuir case;

b) method of auxiliary anode; c) method of auxil-
iary cathode shaping electrode.

7. INTENSE BEAMS OF CHARGED PARTICLES IN
MAGNETIC FIELDS

To compensate the electrostatic forces of the space
charge one can also use external magnetic fields. Such
focusing of beams has been studied carefully only for
systems whose cathode is screened from the magnetic
field, and for beams with a uniform distribution of par-
ticle velocities over the cross section of the beam.
Problems of magnetic screening of the cathode were
discussed in references 111 — 114, where it was shown
that both from theoretical and experimental considera-
tions the optimum position of the magnetic screen
should be that for which the longitudinal component of
the magnetic field, at the point where the beam is nar-
rowest, is about 70% of its maximum value. If an in-
tense beam is placed in a sufficiently strong longitudi-
nal magnetic field, which may be produced by a solenoid
or a permanent magnet, the charged particles will move
along the magnetic force lines. Using a longitudinal
magnetic field enables us to obtain very stiff focusing,
i.e., to retain a given beam configuration in the pres-
ence of large perturbations of the motion of the charged
particles in the beam. However, this method has some
fundamental defects, which include the following: 1) the
need for cumbersome and heavy permanent magnets or
solenoids, whose magnetization requires additional
power: 2) the precision of matching of the individual
elements of the focusing system; 3) the requirement
of strict homogeneity and laminarity of the intense flow;
4) sensitivity to slight temperature changes, etc. All
these deficiencies hinder the application of focusing
methods which use a longitudinal magnetic field to
present-day microwave equipment.

A further development of the methods of focusing
using a magnetic field was the ¢‘Brillouin flow.”’115-117
Such a flow rotates as a whole in an external magnetic
field. A radial force acts on the particles of the beam
which, in certain cases, can balance the centrifugal
force and the repulsive forces of the space charge.

The conditions for obtaining stable Brillouin flow are
derived from the general theory of focusing of currents
which was developed by V. T. Ovcharov.l18

For a circular cylindrical beam of radius r, which
propagates inside a cylinder of radius R having poten-
tial ¢4, these conditions give the result that the maxi-
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mum current I which can be carried in such a beam is
equal to

1:13(1+21n§>", (27)

and that the value of the magnetic field should be taken
to be

H=Hg <1+21n§>"1’2 , (28)
where
8ne A
IB:T 3 Tl(ps/z L (29)
_ (Pa
HB—T D 5

Values of I/Ig and H/Hp as a function of r/R are
shown in Fig. 12; the focusing of hollow beams in a
magnetic field has been treated in references 116, 117,
119 — 121. If the inner and outer radii of the beam are
equal to ry and r, respectively, and the potential at the
outer boundary is ¢4, then the maximum current I
and the magnetic field intensity H are equal, respec-
tively, to

_ oy (i) —1
T =1o ey } (30)
H=Hg(1—(ryr™™,

where Ig and Hp are determined by Egs. (29).
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FIG. 12. Focusing of beams in a magnetic field. The solid
lines correspond to focusing of cylindrical beams, the dashed
lines to focusing of ribbon beams. The abscissa is the ratio of
the geometric parameter of the beam to the corresponding quantity
for the accelerating electrode: 1—r1¢/R; 2 —a/d; the ordinates
give the values of I/Ig and H/Hg.
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As Hines!?? has shown, inhomogeneous magnetic
fields are necessary for Brillouin focusing of con-
verging intense beams. For small angles of converg-
ence &, the field can be produced by parabolic pole
tips. The maximum value of the current in such a
beam is found from expression (29), while the mag-
netic field must have the following components:

Ho=oae ()" Ho= =25 (527"

where x is the distance from the focus.

(31)

The focusing of ribbon beams of width a by a mag-
netic field of intensity H between plane parallel elec-
trodes separated by a distance d was treated by
Pierce® and Brillouin.!®® If ¢, is the potential of the
electrodes, the maximum value of the current carried
by the beam and the corresponding value of the mag-
netic field H are

a [3 1/2
I=1p55— H=HB<2d—a> ’ (32)
where the quantities Ig and Hp are given by the
equations:
_ 168 /2 3/2 4 pg N\ B
By met(%)" e

Graphs of the dependence of I/Ig and H/HB on a/d
are shown by the dashed lines in Fig. 12.

It has not been possible in practice to obtain an
ideal Brillouin flow: usually for stable focusing of a
beam one requires a magnetic field which is 1.5 —2
times as strong as that predicted by theory. This is
explained by the nonuniformity and nonlaminarity of
the flow at its entrance into the focusing system.
From the practical point of view, Brillouin flow has
made possible only a slight reduction in the value of
the magnetic field necessary for focusing, while it
has retained and in some cases aggravated the de-
fects of focusing by a longitudinal magnetic field.

Another characteristic feature of the behavior of
intense flows in magnetic fields is their marked tur-
bulence.”™ Thus, for certain values of the current,
depending on the geometry of the beam, the flow be-
comes unstable.!2371%5 It wags found32736,126,127 that
with increasing magnetic field the beam changed its
shape, forming periodic arrow-shaped pieces, or
broke up into several vortices moving in the inter-
electrode space.

8. METHODS OF CENTRIFUGAL AND PERIODIC
FOCUSING

We require of any focusing system (and especially
of the focusing system of high-frequency electronic
apparatus) that it have, on the one hand, reliable and
long-time operation, and on the other hand that it be
compact and lightweight. The electrostatic focusing
systems which we have considered are very cumber-
some, and have a short life under conditions of high
current density. Magnetic focusing systems can
guarantee steady focusing of intense beams with high
current density, but the dimensions and weight of such
systems become very large. Thus magnetic focusing
inethods are applied at present exclusively in labora-
tory models of electronic apparatus. Thus one of the
most pressing problems of present day electronics is
to find new and effective methods of electrostatic fo-
cusing and to reduce the weight and size of magnetic
focusing systems. This problem is partially solved
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by the use of centrifugal-electrostatic and periodic
focusing,

The space charge of a beam is subject to strong
irregular fluctuations, which must be taken into ac-
count in constructing focusing systems. One there-
fore deliberately introduces into the focusing system
some additional defocusing forces, so that in this back-
ground the repulsive forces of the space charge are a
small contribution. Such systems are more reliable
and more flexible. The additional defocusing force is
usually the centrifugal force resulting from rotation
of the beam in a homogeneous or periodic external
field. K the external field is a homogeneous electro-
static field, this method is called centrifugal-electro-
static focusing.1?8:12® It ig based on the stability of the
motion of a charged particle in the radial field of a
cylindrical capacitor.!?® In this case, the electrode
system consists of an electron gun and two coaxial
cylinders (Fig. 13) between which a voltage is applied
with the inner cylinder at the higher potential. Be-
cause of the helical cuts on the cathode and anode, the
electron is given some angular momentum and, having
entered the field of the cylindrical capacitor at some
angle to the axis, begins a motion along a spiral tra-
jectory. Devices in which such a focusing method is
used are called ‘‘spiratrons.’”’ A computation of the
stability of beams in such systems?® shows that it is
possible to send sizable currents through the system.,
Experimentally, beams have been obtained with a cur-
rent of several tens of milliamperes and coefficients
of current transmission of 90 — 98%. Centrifugal-
electrostatic focusing can be applied!®! to backward-
wave tubes.

The advantages of centrifugal-electrostatic focusing
are: 1) the absence of extrenal cumbersome focusing
systems and any additional expenditure of power for
focusing: 2) the possibility of dispensing with exact
adjustment of the system; 3) simplicity and reliability
of control of current and beam shape; 4) high efficiency
of interaction of the beam with the high frequency fields
of the decelerating structure: 5) increased length of
service of emitting electrodes, their protection against
bombardment by ions of residual gases, etc. A defect
of such focusing systems is the need to add auxiliary
electrodes in the decelerating structure, which some-
times cannot be done.

Another method of centrifugal focusing is the
Harris-Crumly!%2:13 method for focusing hollow
beams. In this case the hollow beam is formed in a
magnetically screened gun, and then brought into the
field of a cylindrical condenser. The initial twisting
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FIG. 13. Electron-optical system with centrifugal-
electrostatic focusing, .

of the electrons into the spiral trajectories is accom-

plished in a transition region in which the hollow beam
passes through a radial magnetic field. The defect of

such a system is the necessity for introducing a cum-

bersome magnetic circuit into the vacuum system, and
selecting carefully the magnitude and configuration of

the focusing electric and magnetic fields in the transi-
tion region.

In addition to focusing methods using homogeneous
electric and magnetic fields, one also uses for focusing
purposes fields which vary periodically with position.
In this case the beam alternately converges and di-~
verges as it passes through the system of magnetic or
electric lenses, prisms or mirrors. The stability of
the beam is determined by the stability of the oscilla-
tory motion which is performed by the particles of the
beam as they pass through the system of alternating
fields. Characteristically, such an oscillatory process
results in a series of stable and unstable bands.

Periodic electrostatic focusing!34-140,167,213 ;¢
achieved by compensating the defocusing forces of the
space charge by the radial component of an external
electric field which is periodic along the beam. The
simplest electrode system consists of a series of cir-
cular disks with holes, having alternately higher and
lower potentials. The beam of charged particles moves
along the axis of the system, and periodically narrows
and spreads out. The conditions for stability of solid
and hollow beams in such focusing systems were dis-
cussed in references 140 — 142. Compared with focus-
ing by homogeneous fields, periodic electrostatic fo-
cusing enables one to obtain an almost parallel beam,
and the length of such a beam can be large, since the
periodic field can be extended easily by adding electro-
static lenses. The main defect of such systems is that
the resultant focusing is weak, and the beam is de-
stroyed by small perturbations. A way of getting
higher rigidity has been proposed by Chang, by using
biperiodic systems,!? and systems with a rotating
beam 44

In the first case the beam is focused by the action
of two external electrostatic fields which change di-
rection rapidly. A bifilar helix is an example of such
a focusing system. The usual methods of focusing by
means of periodic fields are based on the periodic
action on the beam of external electric forces, where
the magnitude and period of these forces varies slowly
along the length of the beam. Because of this, any per-
turbations which arise in the space charge of the beam
may not be compensated by the slowly rising focusing
forces. The way out of this situation is to reduce the
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period of the focusing electric fields. However, short-
ening the period of the focusing system leads to over-
lapping interaction of the fields in neighboring lenses.
Such a mutual influence of neighboring electrostatic
lenses can be avoided by adding a sharp drop in the
electric field at the end of each of the focusing sec-
tions. This last effect is achieved in a system using
a bispiral, as a result of the interaction between the
electric fields of the two helices. A system with a
bispiral may have a very small period and an expo-
nentially decreasing (or increasing) electric focus-
ing field. According to Chang’s calculations, a system
with a bispiral will guarantee stable focusing of elec-
tron beams with perveances up to 107° amp/v3/2. Ex-
perimentally, focusing has been obtained for beams
with a perveance of 2 x 10~% amp/v¥? and a total cur-
rent of 4 ma, for a current transmission coefficient

of 97%.

The possibility of obtaining higher rigidity in
rotating-beam systems amounts essentially to intro-
ducing additional defocusing forces into the system,
so that the repulsive forces of the space charge play
an unimportant part in the balance of forces. The ini-
tial rotation of the beam is usually started by means
of a radial magnetic field located in the region of the
entrance of the beam into the focusing system. The
centrifugal force which comes from this turning of
the beam is balanced by the focusing forces of the
periodic field of the bispiral. Even though the theory
shows that there are important advantages of such a
system with stiffer focusing over the usual periodic
systems, the values of beam current achieved in ex-
perimental models (about 1 ma) are practically equal
to the limiting current for focusing by the usual peri-
odic fields. In addition, the combination of an electro-
static focusing method with magnetic turning of the
beam is illogical, and the construction is complicated.

An original type of periodic electrostatic focusing
was proposed by Kompfner.!45:4¢ This focusing has
been called ‘‘slalom’’ focusing, and is shown schemat-
ically in Fig. 14. In this case the beam moves through

FIG. 14. Electron-optical system with ‘‘slalom’’ focusing.
1 — heater; 2 ~ cathode; 3 — focusing electrode; 4 — first
anode; 5 — second anode; 6 — beam; 7 — insulator; 8 — fo-
cusing rod.

a system of successive electrostatic prisms, and per-
forms a wave-like motion as it turns past the focusing
rods. In each cell the motion of the beam is similar
to the motion in the deflecting field of a cylindrical
condenser. The focusing rods may be the elements

of a delay line of a microwave component like the
traveling wave tube. The problem of stability of a
‘‘slalom’’ beam was discussed in reference 147. An
experimental backward-wave oscillator, using this
type of focusing, was able to achieve continuous tuning
over the range 3300 — 4700 Mc/sec, with a coefficient
of current transmission of 97%. A positive feature of
‘““slalom’’ focusing is the high efficiency of interaction
of the beam with the electromagnetic field of the de-
celerating system, since in such a system the beam
goes completely around the delay line. A disadvantage
of this type of focusing is the need to have a monochro-
matic beam and precise adjustment of the periodic
system.

In the work of Hogg,*? another type of biperiodic
electrostatic focusing is proposed, which the author
calls a ‘‘double staircase.”” The system consists of
two parallel long rectangular sheets which are con-
nected electrically. The sheets have transverse slots,
and the slots in one are opposite the cross ties in the
other. At a certain distance from these sheets there
are two other solid sheets, which are at the same fo-
cusing potential, negative with respect to the potential
of the inner sheets. The beam passes alternately past
the slots and is deflected in the focusing field. The
maximum transmission in devices with this type of
focusing reached 70% for a beam of 750 volts, a focus-
ing voltage of 300 volts, and a beam angle of 21° at the
entrance to the system.

Methods of periodic magnetic focusing are used
very often in practice.106,139,149-152,211-212 The reason
for this is that one can send much greater currents
through such systems than through systems with elec-
trostatic focusing. The methods of periodic magnetic
focusing are based on the collecting action of a se-
quence of short or long magnetic lenses. Such focus-
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ing is characterized by the occurrence of stable and
unstable regions, %15 and depends on how the beam

is brought into the magnetic field, i.e., on how much
the cathode of the system is screened from the mag-
netic field.® The beam stability for periodic mag-
netic focusing depends on two parameters: one of
these is related to the space charge density in the
beam, and is equal to a = 1540K (L/d)? (where K is
the perveance of the beam, d is the initial diameter
of the beam, and L is the period of the magnetic field),
and the second is related to the magnetic field, b
=5.58 x 10" H2L%/p (where H? is the mean square
of the magnetic field strength in gauss, and ¢ is the
beam voltage in volts). If b is small, the amplitude
and period of oscillation of the circulating beam is
quite large, but in the absence of disturbances the
beam retains its original diameter. With increasing
b the period and the amplitude of oscillation decrease,
and when b = a the current becomes approximately
parallel. K b > a, the space charge can be neglected,
the oscillation amplitude increases and destroys the
laminarity of the flow. The paths of the electrons
cross the axis, but the electrons still do not leave the
beam, even though the oscillations may be large. For
b =~ 0.7, the flow becomes unstable and the beam
rapidly loses electrons, while for b > 0.7 new bands
of stability and instability of the beam appear. In these
stability regions, the electron orbits cross the axis
often.

In comparison with focusing by homogeneous fields,
periodic magnetic focusing has a whole series of ad-
vantages, some of which should be mentioned: 1) in-
crease in the limiting perveance of the beam, and
2) reduction in weight and size of focusing system.
For example, in 2 low power traveling wave tube, the
value of the perveance was approximately equal to 1.5
x 10~T amp/v¥%. The limiting value of the perveance®
for which focusing is possible in a tube or spiral of
diameter D and length I is equal to 3.9 x 1075 (D/I)%,
If the beam is focused by n magnetic lenses whose
separations are equal to L =1I/n, the limiting perve-
ance of such a system will be proportional to the
square of the number of focusing lenses. Thus the
typical value for the perveance of a traveling wave
tube can be obtained for n =2 and 1I/D = 32.

Furthermore, suppose there is a permanent magnet,
which produces a homogeneous field over a certain
length, and we want to increase the size of the region
with this magnetic field strength by a factor of n. To
do this we would have to multiply all the dimensions
of the magnet by n, whereas in the case of periodic
focusing it would be sufficient to multiply only the
length by n. Consequently the weight of the periodic
system will be n times smaller than the weight of the
corresponding homogeneous system. Experiments
have shown'® that a periodic system weighing 1.5 kg
was required for a 100-watt traveling wave tube,
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whereas a homogeneous magnet system would have
weighed 25 kg.

Disadvantages of periodic magnetic focusing systems
are: 1) more complicated control of the magnetic sys-
tem: 2) the presence of regions in which the current is
in an unstable state: 3) high sensitivity to temperature
changes; 4) the necessity for special magnetic mate-
rials, and various others. Thus, for example, for val-
ues of the perveance exceeding 2 x 1078, the lenses
must be placed at such a distance from one another
that the field of a lens influences the field in neighbor-
ing lenses, the zone of stability of the beam becomes
very much smaller, and control of the focusing system
becomes complicated. An essential requirement on the
flow is that it must be homogeneous and laminar at its
entrance into the focusing system. However in practice
it is difficult to satisfy this requirement, so that the
values of the focusing fields usually exceed the com~
puted values by 50 — 100%.

By means of quadrupole magnetic fields, one can
introduce a centrifugal defocusing force, and thus in-
crease the stiffness of focusing. Such focusing has
been called ‘‘meander’ focusing (and is shown sche-
matically in Fig. 15). By using quadrupole magnets
we make the field have opposite directions on the two
sides of the axis. An electron which enters the system
in a plane perpendicular to the magnetic field will move
along a zigzag curve which periodically crosses the
axis. Such a beam has been used for excitation of high
frequency oscillations in a resonator. In this case the
first instability zone begins!®® when the magnetic field
parameter b = 0.44.

Top view

Side view

FIG. 15. Schematic .of ““meandet’’ focusing of a beam.

9. APPROXIMATE METHODS OF COMPUTING IN-
TENSE BEAMS

As we have seen, the general equations of motion
of charged particles in stationary fields, when we in-
clude the effects of space charge, are too complicated
for general application. I, however, we limit our-
selves to treating the paths of particles which move
near the axis of the system and make small angles
with it (the so-called paraxial rays), the differential
equations take on a relatively simple form. The meth-
ods of paraxial optics have found wide application in
electronics for the study of complex electrostatic and
magnetic lenses, and have been applied successfully
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in the work of Sturrock and Kirstein!%®1% to the study
of space charge effects in curvilinear beams. Waters3®
has applied the method of paraxial optics to the study
of periodic focusing of beams.

Let us consider briefly the basic idea of the method.
Suppose that we know the distribution of potential along
the trajectory S of a charged particle. In the paraxial
region in the vicinity of the curve S we may regard all
trajectories of charged particles as parallel to S. We
choose an orthogonal curvilinear coordinate system
with its x axis along S and its y axis along the normal
to the trajectory. In this coordinate system we repre-
sent the action function as a series

W=3 Y @y (2)
H=0

and substitute W in Eqgs. (14) and (15). Collecting the
coefficients of the zeroth power of the variable y, we
obtain the fundamental equation of the paraxial ray

dz 2wz

dz wy

(33)

where z = Rpyw;, where R is the distance from a par-
ticular point on S to the axis of the system. The co-
efficients of higher powers of y give equations de-
scribing corrections to the paraxial trajectories.

If the boundary of the beam is given by the equation
2w,y
Wy
important relation y;z = const. Since the convergence

of the beam is determined by the ratio y;(0)/y,(x)
=2z (x)/z(0), it can be found by solving the one par-
axial equation (33).

Reference 159 gives a comparison of the results of
exact and paraxial calculations of trajectories of hollow
beams of charged particles in systems with a ring
cathode. The results of the comparison are given in
Fig. 16, where the solid lines are the trajectories
found from the exact solution3:® of the differential
equations, while the dashed lines are the paraxial tra-
jectories. Thus, in computing focusing systems, there
is no need to give the curve S and the potential distri-
bution along it analytically; a numerical assignment of
these data along the curve is sufficient, except for a
small region near the cathode.

Comparatively recently, Stuart and Meltzer!®® have
proposed the use of perturbation theory methods for
studying stationary intense beams of charged particles.
If one assumes that the beam parameters differ only a
little from the values which can be found easily by ana-
Iytic methods, corrections to these values can be found
by solving ordinary differential equations. In solving
the space charge equations, Kirstein®® used a more
general method, which includes not only the perturba-
tions of the solutions of the differential equations but
also perturbations of the space metric. By this method
he found the solution of the space charge equations in
a system with a toroidal cathode, by using the corre-
sponding solution for a circular cylindrical beam.

y = 2y (x), then by using %—Z{J— = we get the
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FIG. 16. Shape of trajectories of charged particles in a hollow
cylindrical beam, obtained by the methods of paraxial optics
(dashed curves) and by exact calculation (solid curves). The num-
bers along the trajectories give the percentage error in the deter-
mination of the potential. Numbers along the trajectories (in %)
give the relative errors of the potential values along the particular
trajectory.

Among the other approximate methods, we should
mention the method of the equivalent diode,s161 which
is based on the assumption that the shapes of the equi-
potential surfaces in systems with a cylindrical or
spherical cathode are the same in the presence of
space charge as in its absence, but differ only in the
values of the potential at each surface in the two cases.
In this method the anode of a complex configuration is
replaced by a fictitious electrode with such a geometry
that it forms, together with the cathode, a diode with
straight-line trajectories for the motion of the par-
ticles, and the dimensions of the anode are chosen so
that the equivalent diode has the same capacity as the
real system. To determine the capacity of the whole
system, one uses the standard methods of conformal
mapping. Ivey!®2 has tabulated 27 cases of computation
by this method of complex configurations of electrodes
with cylindrical and spherical external and internal
cathodes.

10. THE INFLUENCE OF RELATIVISTIC EFFECTS
AND INITIAL VELOCITIES

Relativistic effects manifest themselves in the in-
crease of mass of the charged particles with increas-
ing velocity, and thus in the reduction of the beam cur-
rent, and also in the increasing magnetic interaction
of the individual particles in the beam. As was shown
in references 168 — 170, the potential distribution for
relativistic velocities of the beam particles in systems
with plane, cylindrical, and spherical symmetry differs
considerably from the familiar Langmuir solution.
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With increasing accelerating voltage, the mag-
netic field produced by the beam current increases,
and this in turn has a focusing action on the beam.

The effect of this is that the beam can carry a current
which is [1 + ( n(p/ZC"')]s/ 2 times greater than the value
obtained when relativistic effects are omitted. Thus
for a voltage of 50kv the increase in electron current
is 1.07, and it reaches 1.82 for a voltage of 500kv.
Relativistic effects result in an increase of the focal
lengths of electrostatic and magnetic lenses.

It should be noted that in general, as the velocities
of charged particles approach the velocity of light,
their interactions with one another (i.e., space charge
effects) decrease to zero. However the interaction
cannot change sign,!™! so the beam cannot become self-
focusing. Obviously the change of the potential distri-
bution over the boundary of the beam and the increase
in magnetic interaction of the particles leads to a
change of the previously found shapes of Pierce elec-
trodes.

In the case of magnetic focusing of intense beams,
relativistic effects cause a decrease in the value of the
Brillouin field Hp by a factor'®® [1 + (n¢,/2c?)]7V4,

The effect of initial velocities of the particles on the
parameters of intense beams are related mainly to the
fact that the charged particles leave the cathode along
directions which are not perpendicular to its surface.
This results in an inhomogeneous distribution of par-
ticle velocities over the cross section of the beam.%%
81,12-1% ) Brillouin flow, for example, the effect of
the thermal velocities of the particles is that part of
the beam current is carried outside the computed lim-
iting radius. Pierce and Walker®s% found the depend-
ence of the fraction of the total current carried beyond
the radius r on the value of the ratio r/rg and the
parameter p = 1.76 x 1078 (rg/rg)*(I/TV ¢ ), where
rg is the Brillouin radius, rg is the cathode radius,
T is the cathode temperature (°K), I is the total
beam current in amperes, and ¢ is the anode poten-
tial in volts. This dependence is shown in Fig. 17.

The initial velocities of the particles affect the
quality of the focusing system. In addition to distor-
tion of images, the thermal velocities limit the current

o7
a"\\\\

az\\\ I~ -

NN

AL WAY

0.06‘\\‘\ \\ \5 \\\\ \‘

204! X N\ N \\
MIAEY ANAAN

19 2 14 {6 18 0 22 24 7’.

FIG. 17. Effect of initial particle velocities on focusing of
cylindrical beams in a magnetic field.
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which can be carried by the beam, which causes an in-
crease in the diameter of the beam. The solution of
the space charge equations for a given distribution of
particle velocities at the cathode is quite complicated,
and gives quite involved results, among which we
should mention those of Van der Ziel'”® and Langmuir!®™
for plane electrodes, and the solution of this problem in
systems with cylindrical and spherical symmetry;76-180
there has also been a study of intense beams with in-
homogeneous distributions of the particle velocities by
the density matrix method.!®! The investigations of
Meltzer®! on different types of statistical distributions
of initial velocities in an intense beam are interesting.

In practice the initial velocities are usually taken
into account by Pierce’s method:® one first finds the
condition for focusing of the beam in the absence of
space charge, but including the initial velocities of the
particles; then one compares this with the results ob-
tained when the initial velocities are neglected, but the
space charge effects are included. At high anode volt-
ages, the minimum dimensions of beams and the aber-
rations of focusing systems are determined mainly by
the action of the space charge, whereas they are de-
termined by the thermal velocities of the particles®s%®
when the voltage is low.

11. APPLICATION OF ANALOG COMPUTER SYSTEMS
AND METHODS FOR MODELING INTENSE BEAMS

The rapid development of radar technique during the
Second World War is closely connected with the use of
self-consistent field methods for space charge prob-
lems. The self-consistent field method, which has been
applied extensively in quantum physics!® and in solid
state physics,!® consists of the following. From phys-
ical considerations we know some initial potential dis-
tribution, with which we compute numerically the tra-
jectories of the charged particles and the density dis-
tribution of the charge in this field. From the values
found for the charge density, we find the solution of
the Poisson equation for the required boundary condi-
tions. With this solution of the Poisson equation we
repeat the procedure until the difference in the distri-
bution functions for two successive cycles is less than
the required accuracy. It turns out!® that this method
of successive approximations converges very slowly.
The use of the method is largely limited by the speed
of computing and the size of the memory of present-
day digital computing machines.

The “‘electrical analog’’78:184-18 1 ethods have much
faster convergence. Here, the actual electrode system
is replaced by a set of resistances which are connected
electrically. The voltage drops in the resistors are
chosen to correspond to the potentials at which the
electrodes of the system are kept. The potential at
an arbitrary point of the electrical network will cor-
respond to the voltage drop in the interelectrode space,
and can be measured easily. The space charge is mod-
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eled in such a system by supplying a current to the net-
work; the point of supply and the size of the current are
found by successive approximations, subject to the
boundary conditions of the problem.

Among other modeling methods, the most widely
used are the electrolytic tank methods: 1) the method
of profiling the tank bottom,%0-1%2 2y the method of
current input elements,10%134-1% anq 3) the method of
the three-dimensional electrolyte.l®” In the first
method the bottom of the tank is made of rubber, so
that one can easily change the depth h(x,y) of elec-
trolyte in the tank. Since the conductivity of a homo-
geneous electrolyte is proportional to the depth of the
electrolyte, in the stationary case it follows from
Ohm’s law that div (oV¢) = 0, and consequently,

Ag -+ (V) Vin & = 0. (34)

We denote by d/ds the derivative along a force line of
the electric field, and introduce the absolute value of
the field strength | Ve |; the right side of (34) can be
written as

dlnh
Ap="721Vg .

It is obvious that to solve the Poisson equation by the
electrolytic tank method, one must, in addition to pro-
ducing the appropriate boundary conditions in the tank,
give the bottom of the tank such a shape that the ex-
pression

dinh
ds

IVpl=—2 (35)
is valid.

For practical computations it is more convenient to
write Eq. {(35) in integral form:

Inh= —
)

If one has a sufficiently dense family of force lines
marked in the tank, which cover the region under in-
vestigation, one can by computing the integral along
each of them find the distribution h(x,y) over the
whole region of the tank bottom which is of interest.

It is obvious that the equation A¢ = —p/€ can be solved
by this method only by using successive approxima-
tions, since in calculating the distribution h(x,y) over
the tank bottom we need to know | V¢ | and the distri-
bution of lines of force, for which we may take the cor-
responding values found in the tank in the preceding
approximation. This method requires very laborious
computations and converges slowly.

In the method using current input elements, the
space charge is modeled by little conducting rods
connected to external electrical elements. By re-
peated reflection in the inclined tank bottom and in
the surface of the electrolyte, one produces a model
of a discrete cloud of space charge. In order to avoid
jumps in the potential at the current supply elements,

Qds

2] (36)
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they are made in the form of wires which barely
emerge from the bottom of the tank, or are simply
holes in the bottom of the tank which are filled with
electrolyte,198 while the shape of the cathode is mod-
eled by a plate electrode whose plane makes an angle
of 37/8 with the surface of the electrolyte.

In the method of the three-dimensional electrolyte
the modeling is done with an electrolyte having aniso-
tropic conductivity, which makes possible a consid-
erable increase in the rate of convergence of the
successive approximations.

We should also mention the rubber sheet method'®
199-202 5nd the conducting paper method.?%:2% In the
first, the space charge is modeled by a distribution
of loads which, at each point of the membrane, is pro-
portional to the density of space charge, and the po-
tentials of the external electrodes are modeled by ad-
ditional loads along definite lines in the sheet. Using
heavy steel balls and stroboscopic illumination, one
determines the trajectories and velocities of the par-
ticles in zeroth approximation, from which one com-
putes a new distribution of the volume charge, and
thus achieves the required accuracy by successive
approximations. For the solution of three-dimen-
sional space charge problems by this method, it is
suggested?®! that one reduce the air pressure below
the membrane.

If one adds a small amount of carbon black and
graphite to a mass of paper pulp, one can obtain a
whole range of specific resistances of the paper sheets,
from tens of ohms to tens of megohms per sheet. The
modeling of an electric field by regions of different
conductivity can be accomplished using such paper,
either by perforating it or by pasting pieces from dif-
ferent types of paper, in accordance with the given
relative conductivities. To change the resistance, one
can also tint and retouch the paper. Electrodes for the
conducting paper are prepared from metal foil, or are
deposited on the paper by using silver paint, a suspen-
sion which has a high conductivity. Such suspensions
are used for making printed circuits, and are a mix-
ture of metallic silver, bakelite lacquer and alcohol.
For probes one uses a hard graphite pencil or a sharp
metal needle. The actual process of modeling the
space charge is that described above using current
input elements, which consist of a set of needles ap-
propriately arranged on the paper. It is possible to
use modeling systems with variable current inputs to
various points on the paper,2® and also systems with
fixed values of the current but with varying numbers
of modeling elements.?'* In practice one usually uses
isotropic conducting paper. However as the technol-
ogy of preparing the paper develops, applications are
being found also for anisotropically conducting paper.
A defect of the conducting paper is its quite high nega-
tive temperature coefficient of resistance.

In systems of modeling the volume charge of beams,
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there is extensive application of methods for comput-
ing particle trajectories which take account of their
interaction with one another,8,152,203-209

Reference 210 describes an original electrolytic
tank with an arrangement for automatically construct-
ing the trajectories of charged particles in electric
and magnetic fields having axial symmetry. The pre-
cision of drawing the trajectories was 1%.

12. COMPARISON OF DIFFERENT FOCUSING
METHODS

In comparing magnetic and electrostatic focusing
systems, we should point out that, in principle, elec-
trostatic systems have an obvious superiority over
magnetic systems, in that their weight, size, and
power cost is much less. However the electrostatic
methods which have been developed are not yet brought
to perfection and cannot supplant magnetic focusing in
the most important UHF equipment. Thus for the prac-
tical focusing of an intense beam with a current density
of 1000 — 10 000 amp/cm? by the methods known at
present, it would require either a magnetic field of
tens of thousands of gauss or an electrostatic field of
millions of volts per cm, which has not yet been pro-
duced. Thus the development of new methods of focus-
ing, and in particular electrostatic methods, is one of
the main problems of electronics.

As for the comparison of focusing methods using
homogeneous or periodic fields, the latter require
strict matching of geometrical dimensions and equal-
ity of amplitudes of the field in each period of the sys-
tem. To solve this problem is more difficult than to
produce a homogeneous focusing field along the whole
length of the beam, though the latter case requires con-
siderably higher weight of equipment. Therefore, in
laboratory models, and sometimes in practical con-
structions, the use of homogeneous fields for focusing
is preferred.

A long stable beam of charged particles can be pro-
duced by compensating all the radial forces acting on
the particles of the beam. However in actuality the
particles of the beam are subjected to different per-
turbations at their entrance into the focusing system
and during their passage through it. Thus focusing
imposes the requirement of stability under random
perturbations of the intense beam. In other words,
the law of variation of the focusing and defocusing
forces in the system must be such that for a random
displacement of the charged particle from its equilib-
rium trajectory, the required restoring force will de-
velop. The faster this force increases with change in
radius of the beam, the higher the stiffness of the fo-
cusing, other things being equal. In Fig. 18 we show
a graph of the change in the restoring forces for dif-
ferent focusing methods (where, for convenience, the
defocusing force is assumed always to have the same
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FIG. 18. Dependence of restoring force on displacement of
charged particle from the equilibrium trajectory in systems with
various. types of focusing. 1 — Brillouin flow; 2 — intense flow in
a longitudinal magnetic field; 3 — system with periodic electro-
static focusing and rotating hollow beam; 4 — system with centri-
fugal electrostatic focusing.

value at the equilibrium point). The rigidity of the
focusing method is characterized not only by the rate
of rise but also by the magnitude of the restoring force
for random displacements of the charged particlesfrom
the equilibrium radius. As we see from the graph, the
rate of rise of the restoring force is almost the same
for Brillouin flow and for the method of centrifugal
focusing; it is largest for the system using periodic
electrostatic focusing and for magnetically limited
beams. Nevertheless the actual value of the restoring
force is very small in the case of periodic focusing.
Therefore in this case, even though rapidly increasing
forces begin to act on a beam which leaves the equilib-
rium trajectory, the magnitude of these forces is of the
same order as the space charge forces. The result is
that periodic focusing has very low rigidity. As we
have seen in Sec. 8, to increase the rigidity of such a
system the distribution of charge density over the
cross section of the beam must be nonuniform. The
rigidity of focusing systems can be increased by intro-
ducing into the system additional defocusing forces
which produce a background in which the action of the
space charge and its random fluctuations appear
smoothed out. Therefore centrifugal methods of fo-
cusing are always more rigid, and such systems are
more reliable and easily controlled.

The principles of formation and focusing of intense
beams discussed here do not, of course, exhaust the
whole multitude of processes which occur in intense
flows of charged particles. We have considered only
the most important methods of focusing, which have
been applied successfully in electronics; this may
help the development of new, more perfect focusing
systems.
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