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INTRODUCTION A more detailed examination of this question shows

THE propagation of radio waves in a real medium is
usually accompanied by amplitude, phase, and frequency
fluctuations which are due to the spatial inhomogeneity
of the medium and to the time variation of its proper-
ties. The temperature, density, and water vapor ten-
sion fluctuations connected with the turbulent processes
that take place in the troposphere manifest themselves
in the case of electromagnetic waves in fluctuations of
the dielectric constant €. These fluctuations lead to
such phenomena as the flicker of stars, fading of di-
verse kind, etc., and are due to scattering of the waves
by the inhomogeneities.

The extent of the influence of fluctuations on the
propagation of waves in an unbounded medium has
been investigated for a long time. The first to call at-
tention to this effect was Smoluchowski. Einstein has
calculated the scattering by the fluctuations, and Ray-
leigh showed that it causes the blue color of the sky.

A considerable number of investigations have been
devoted to these problems.l'“‘ In many cases, particu-
larly in the propagation of electromagnetic waves in
the troposphere, the separation boundary (the earth’s
surface) exerts an appreciable influence, for its pres-
ence gives rise to an interference structure, or, as it
is sometimes called, a ‘‘lobe’’ structure of the radia-
tion field in space, due to the reflection of the waves
from the surface. The experimental data obtained in
the presence of a separation boundary can therefore
differ substantially from the results obtained by cal-
culating the fluctuation effects for free space.
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that the inclusion of the separation boundary leads to
qualitatively new phenomena. We shall indicate two

of these by way of illustration. If the separation bound-
ary can be approximated by a highly-reflecting plane,
the Fresnel coefficient of which is close to unity, then
we know?! that the regular component of the field van-
ishes (or is very small) at some points in space,
owing to interference between the direct and reflected
waves. In addition, at small glancing angles the tan-
gential field components decrease much more rapidly
at the start of the first interference lobe than in free
space, namely in inverse proportion to the square of
the distance, rather than to the first degree of the dis-
tance (the region of applicability of the so-called
“‘quadratic formula’’ of Vvedenskiil®).

In either case, the absolute fluctuations of the field
do not increase appreciably compared with free space,
whereas the relative fluctuations should obviously in-
crease sharply.

An investigation of the fluctuations of electromag-
netic waves above the separation boundary makes it
possible to determine many important characteristics
of the medium, such as the average dimension of the
inhomogeneities, the mean square fluctuations, the
correlation function of the dielectric constant, etc.,
and also to explain the influence of external factors
on these characteristics.

Although fluctuations in unbounded space have been
investigated rather thoroughly!™" and two monographs
have been published on the subject,!»112 the influence
of the separation boundary on the fluctuations has
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been the subject of relatively few investigations, and
this problem has not been considered in the review
literature.

In the present review we discuss the results of
theoretical and experimental investigations of fluctua-
tions of the amplitudes, phases, and other character-
istics of electromagnetic waves propagating above a
separation boundary.

The first (theoretical) part of the survey is de-
voted to an examination of fluctuations above a plane
separation boundary. Fluctuations in an unbounded
medium are considered quite briefly, and principal
attention is paid to those aspects of the problem which
have not been sufficiently discussed in the literature.
The second part contains a description of the proce-
dure and the results of experimental investigations
of the fluctuations.

Both theoretical and experimental results apply
essentially to the case of the far zone (LA > 2,

L —length of the path, A —wavelength, ! —charac-
teristic dimension of the inhomogeneities ), where

the influence of fluctuations is most significant. Since
A < I at the centimeter waves used in the experiments,
the far zone corresponding to a troposphere with charac-
teristic parameters |6€| ~ 1078, I ~ 1 to 10 m and

A ~ 10 cm amounts to L = 1000 m. Let us note that
although we speak everywhere of electromagnetic
waves, the theoretical results can be applied in most
cases without modification to acoustic waves.

I. THEORY

1. Statistical Characteristics of the Electromagnetic
Field

A complete statistical description of a random vec-
tor is given by the distribution function of its compo-
nents. If the point of observation is separated from
the source by a distance much greater than the char-
acteristic radius of correlation I of the fluctuations
¢ of the dielectric constant, then the distribution of
the electromagnetic field is normal. Actually, as will
be shown below, the random fluctuations of the electro-
magnetic field are a linear functional of de. Dividing
the entire path of propagation of the wave into seg-
ments on the order of the correlation radius, we can
readily see that the fluctuations of the electromagnetic
field at the point of observation are determined by the
sum of the field fluctuations at each of the segments.
Since the number of segments is large and the fluctua-
tions on each segment are practically independent, the
field at the point of reception is the sum of the large
number of independent random terms, which has, in
accordance with the limit theorem of probability the-
ory, a normal distribution (see note added in proof at
the end of this article).

Thus, the distribution function of each component
of the field, & = & + i&; (&€ and &j —real and
imaginary parts of €) has the form

f(8,, 8)=4gexp [ — (§> <§> 429k 51] . (L)
where
§r=8r—Er’ Ei=gi_Ei’ E=(g)’
a?=2(1-q%) &, b =2(1—q%)(EH,
1 —g2y¥/2 .
4=t =G -2

The angle brackets denote statistical averaging.

Thus, for a complete statistical description of the
fluctuating electromagnetic field it is necessary to
know the average and the mean square values of the
real and imaginary parts of each field component, as
well as their autocorrelation function <{,£;>>. The
question of determining these quantities will be con-
sidered later on.

From formula (1.1) we readily obtain the distribu-
tions of the phase and absolute value of the quantity
£=§p+ig
e cos2 sm2q> __2gsingcos ¢\~
k T )

Ay
2
| ‘2+b2:|><

(9)=
F(|&]) = 2n4, exp [

><L<

where ¢ = arg ¢ and I(x) is the modified Bessel
function of zero order.

The equations in (1.3) have been described in detail
in the literature (see, for example, references 16 and
17). By knowing the distribution function (1.1) we can
determine any statistical characteristic of the fluctu-
ating field.

Let us consider two limiting cases. The first cor-
responds to the case where the square of the average
field is much greater than the square of the fluctua-
tions (|E2| » <|£%|>) and the second to the case
when the average field can be neglected compared with
the fluctuation field (|E?| « <|&2]|>).

In the first case we have the following formulas
for the statistical characteristics of the electromag-
netic field:

1. The average phase <¢> is

)

|

;

25 [(a® — b2)? + 4qPa®b?]'r2), ;
3

18,19

= & N
(@) = \arctg < Z, )—{—ns (ér)/

=@ ({8 — (E1)) (sin @o c0s @y cos 29g)| E-2), (1.4)*

where ¢, is the phase of the average field E = |E| x
exp i@y, 8(x)=0(x>0), s(x) =1(x<0), tan~!
is defined in the interval (—#/2, n/2), and the phase
is defined in the interval (—7/2, 37/2).

2. Mean square phase fluctuation <8¢?>:

(6% = {(@ —(@)*) = | E*| ((E}) sin® g,
-+ (E}) cos? @, — (E:E,) sin 2¢,).
3. Average amplitude <|Z[>:

*arctg = tan™'.

(1.5)




FLUCTUATIONS OF ELECTROMAGNETIC WAVES IN THE TROPOSPHERE 53

(1E]) = (& = &Ny = | E|+ (E)cos’e

+ (€% sin® @, — (§;E,) sin2 @, (2| E ). (1.6)

4. Mean square of the amplitude fluctuations <86A2>:

(4% = (| € || €] )% = (£ c0s® ¢, + (ED sin? ¢ 4- (&,&:) sin 2,

(1.7)
5. Autocorrelation of the amplitude and phase
6A
<8pToT E |
v Q_\ _ / (1E1—=<181~
((ES)y — (&7y) sin 29 (E,E;) cos 2¢,
= ST S\FI ° (1.8)

Thus, since d¢ and SA are linear functions of £,
and ¢ when <|£2|> <« |E?|, they also have a normal
distribution. Formulas (1.4) — (1.8) were obtained by
expanding the corresponding expressions in powers of
¢&/|E| and £,./|E]|. A very important case is one in
which <tZ> = <g3> =%<]£ >, and <gp8;> = 0.

In this case

0= (3g%) =y L (1.9)
and the autocorrelation between the fluctuations of the
amplitude and the phase vanishes.

In the second limiting case the inequality <|&2|>
> | E?| holds. In order to simplify the analysis, we
shall assume conditions (1.9) to be satisfied. Then the
phase has a uniform probability distribution and the
amplitude a Rayleigh distribution. The statistical
characteristics of the electromagnetic field satisfy
the following relations

2

f(\anzzaﬂa»oxp( B cren= (guw e (1.10)

Formulas (1.10) for <¢> and <&@?> are obviously
related with the choice of the interval (—n/2, 31/2)
in which the phase is defined.

The relative variation in amplitude is conveniently
described by the following quantity

(In[&1—(n[&])*) ~((In|E|—(In|E])*)y=2/24.  (1.11)

2, Fluctuations of Electromagnetic Field in Unbounded
Space

To solve the problem it is necessary to determine
the dependence of the first two moments on the propa-
gation conditions (length of the route, frequency, and
polarization of radiation, etc.) and the statistical char-
acteristics of the dielectric constant €. Without loss
of generality, we can assume the average dielectric
constant € to be unity:

e=1-L0e, (2.1)

where 6¢ is the fluctuation of the dielectric constant.
The correlation of the fluctuations of the dielectric
constant will be assumed to be a homogeneous func-
tion, i.e., we shall assume that it has the form

(8e (r,) e (r)y = (B ) W ({2 — 2,0, lyi — 42 |s 20— 25]) (2.2)

In view of the statistical homogeneity of the medium,
<6e?> is independent of the coordinates, and the cor-
relation coefficient W depends only on the moduli of
the differences of the components of the vectors r,;
and r,.*

As a rule, we shall not specify the details of the
correlation function, since the final results depend
little on this function.

The Maxwell equations that describe the propaga-
tion of electromagnetic waves from a point source in
a medium with a fluctuating dielectric constant can
be reduced to the form

rot rot & — k% (1 -+ 0e) & = pd (r —r,). @.3)f

The time dependence is assumed in the form

exp (—iwt), k =w/c = 2n1/A, p = 47k?d (d is the di-
pole moment of the source and r, the radius vector
of the location of the source).

The fluctuations of the dielectric constant in the
troposphere are small, so that we can use the per-
turbation method to determine the electromagnetic
field. The use of the perturbation method in its usual
form, corresponding to the Born approximation in
scattering problems, leads to a contradiction with
the energy conservation law.? To avoid this contra-
diction, we must either resort to renormalization of
the solution,? or to take into account the second ap-
proximation in the method of smooth perturbations.20
Suitable results can be obtained in the most consist-
ent and clearest fashion by using the method of small
perturbations in the form proposed in reference 21.

Let us average (2.3) and subtract the averaged
equation from the unaveraged one. We obtain as a
result the following system of equations for E and ¢&:

rot rot E — k2 (E + (8eE)) = pd (r —r,),

rot rot § — k% = k2 E de. (2.4)

In the derivation of the second equation of the system
we discarded terms quadratic in be.
The solution of the second equation of (2.4) in free
space is known?! to have the form
] -EI: (l‘

S0 = S ar e () [ (Bt 016 ja:;;)
(2.5)

Substituting (2.5) into (2.4) we obtain the equation for
the average field

expik|r—r’|
[r—r’|

*We shall not consider the time correlation due to the motion
of the inhomogeneities.
trot = curl.
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92 k2 (Be?
[A+8) 80 — 5o | Bu () + 522

X [ (B + g ) SRR

Bzidzn

S dr'W (r—r') E, (v')

] = — pid (r —1,).
(2.6)

This integro-differential equation is readily solved by
the Fourier method. We consider two limiting cases.
We assume first that the distances over which the
electromagnetic field changes substantially is much
greater than the characteristic correlation radius 1.

In other words, the wavelength is large compared with

! (small-scale fluctuations). We can then move Eg(r’)
in Eq. (2.6) outside the integral sign at the point r, so
that Eq. (2.6) assumes the form?2

(Aéik+k28ik - g%;) Ey= —pd(r—r,), (2.7)
where
e
+ ika;i‘gz) [éih S deW (g)_% S dog? agWo(g‘i) 2.8)

The formula (2.8) for ¢;; was obtained under the as-
sumption that W (p) depends on all three components
of the vector p. In the one-dimensional case, when
W (p) depends only on a single coordinate (say, x),
we have

Ern=1—(88%), &, =(1+ikl (8e2))5,,  (2.9)

where i and k are not equal to x simultaneously.
o0

Here I = f dx W(x). It follows from (2.7) that the
0

average electric field in a medium with random aniso-
tropic homogeneous fluctuations of the dielectric con-
stant is described by the same equations as in a single
crystal, and consequently two waves with diiferent
phase velocities can propagate in such a medium.23

If W(p) depends only on the modulus of p, it turns
out? that

[1 —5(0e%) (1 2ik31_3)] Bier (2.10)

where

= OSOdQQZW (-

0

In the second limiting case, when the characteristic
correlation radius is much greater than the distances
over which the electromagnetic field changes appre-
ciably (large-scale fluctuations, kI >» 1), Eq. (2.7)
does not reduce generally speaking to a differential
equation. At considerably large distances from the
source, however, the wave can be regarded as plane
in the entire significant region of integration in Eq.
(2.6), i.e., we can put E(r') = E(r) exp {ik(r-r')}.
In order for such an approximation to be legitimate,
the relation ki?2 «< L must be satisfied, where L is

the distance from the source to the point r; this dis-
tance is of the same order of magnitude as the radius
of the wave front.

It will be shown later on that the effect of the fluc-
tuations on the average field manifests itself only at
large L, and therefore the assumption of a plane
wave front is not an essential limitation.

Taking everything said into account, we readily ob-
tain® for the average field, with kI > 1, the following
equation

[a+e(1+ 5 (de?) ik1+%(ée2)>] E= —pb(r—r,). (2.11)

Thus, the influence of fluctuations of the dielectric
constant on the average field is taken into account by
introducing a complex effective dielectric constant

€ etr = 14+ (882) ikl 4 - (Be?). (2.12)
The real part of €gep—1 describes the variation of the
phase velocity of the electromagnetic waves, (v ph—¢ )/¢
= — <6€2>/8, while the imaginary added term in e€gff
is due to the transfer of energy from the average field
by scattering on the fluctuations.?

Let us proceed to determine the second moments of
the fluctuations of the electric field. We confine our-
selves here only to the case kI > 1. If the radiation
is from a point source, the average field away from
the source has at a point R the form

E=<#>exp{ik[1+ (ikl+%)]3}.

Substituting (2.12) in (2.5) and averaging, we obtain for
<|£%|> at the point (L, 0, 0)

(D=t [ ¢

On the other hand, we have at the same point for | E?|

(2.13)

¢0e?)
4

—exp ( — 18 kZLl>:| (2.14)

| E?| = (,mL)z exp( — (652)k21L>\. (2.15)
From (2.14) and (2.15) it follows that
(8 )+ B = (2.16)

(4nL)2 :

This is the law of conservation of energy: the sum of
the energy of the fluctuating field and of the energy of
the average field is equal to the energy of the field in
the medium without fluctuations.

In order for the damping to play an essential role,
the exponent in formula (2.14) should be on the order
of unity, corresponding to KL ~ 1/<6€2> » 1, Thus,
allowance for the attenuation of the average field be-
comes essential only at distances L s 1/(k% < 6e2>).

I <6e2> K*LI « 1, it follows from (2.14) and (2.15)
that

. P2 (Be?y k2
(8D~ S5

from which we see that <|£2|> « | E?|.

EARE (2.17)
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Substituting (2.17) in (1.9) we obtain the usual ex-
pressions for the mean square of the fluctuations of
the amplitude and phase in the far zone (see, for ex-
ample, references 3 and 11): <|£%|> ~ p?/(4rL)?
> | E?| when <6€2> k%L » 1. As indicated in Sec. 1,
at this ratio of the average field to the fluctuation field
the phase of the latter has an equiprobable distribution.

In view of smallness of <6e2> in the troposphere
(< 6€*> ~ 10712) the last case can be realized only
for very short electromagnetic waves.

3. Influence of Boundaries on the Fluctuations of the
Electromagnetic Field (Qualitative Discussion)

Before we embark ona rigorous solution of the prob-
lem of the influence of the separation boundary on the
fluctuations of the electromagnetic field, it is advisable
to clarify the main physical phenomena that are asso-
ciated with the specific nature of this problem. It turns
out that in many cases of practical importance the nec-
essary result can be obtained by using an approximate
method, in which the resultant field is represented as
the sum of a direct wave and a wave reflected from
the boundary. Using this procedure we can, in accord-
ance with the results of references 25 and 26, find the
connection between the phase fluctuations d¢ and the
relative amplitude 6A/| E| of the summary field and
the individual components 8¢; and 6A,/| E;|. This
connection is

542 - 1,7 843
/lF2|> z(é(pl)cbg _—(1' )+_ | 1‘><1+I/VA)’

\ ctg®ay (1— W)
(8.1)*
Here W, and Wp are the coefficients of the correla-
tion between the fluctuations of the phases and the am-
plitudes of the components, a_ =7y, @, =T+,
v =~ 2khh,/L is the angle of the space lag between the
interfering components, the plus and minus signs de-
note the normal and tangential components of the field,
respectively, while h and hy are the heights of the
corresponding points.

In analogy with the formulas for the average field!
we can call (3.1) the ‘‘reflection’’ formulas for the
fluctuations.

As follows from (3.1), <6A%>/|E?| and <6¢%>
tend to infinity near the interference minima, where
o ~ 2mn, although actually this growth has a finite
limit at these points, as will be shown later (Sec.4).

To develop the qualitative picture, we can assume
in first approximation that the fluctuations of the am-
plitudes and phases of the individual components of
the field are not greatly distorted by the presence of
the boundary. Let us illustrate the result for a par-
ticular case. Let the correlation function of the pul-
sations of the dielectric constant have the form

2
(e,de,) = (be*)exp ( — % ,

(0p?) = *2“

(8g) (1+ W)+ 2\ |

(3.2)

*ctg = cot.

55
where p is the distance between the points in space.
For the far zone we ha.ves’s’9

Wo=Wa="_L erf( ) (3.3)
842 1
oo} = =g (Be2) % (3.4)
where
2 N ) 2hh, i h—h 1
erf(z)—ﬁ§exp(~xz)d1, Z*/l’f_;; ( °>>

Substituting (3.3) and (3.4) in (3.1) we get

= o= oo [~ () e

e z
+ [1+ =i ()]}
In the region of small angles, where the Vvedenskii

quadratic formula is valid for the average field, we
can simplify (3.5). Putting cot(a_ /2) ~ 2/0, and

[1-% e ()]G )

we obtain

(3.5)

],

L3 a2 i3

642
4 =2 ety AL 3

\IF2|/_<6(P)“’

[1._ f(,_> {3.6)

To illustrate the relations obtained, Figs. 1, 2, and 3
show the calculated curves for F{(L), F(A), and
F (hy), respectively:

eory L (0P (L) Bg(A))
(L= 892 (10km)) ° Fy= dey 1 -4.1072
and
F(hy) = LT LD 4 g0,

As follows from (3.5) and (3.6) the intensity of the fluc-
tuation increases with increasing distance in the start
of the first interference zone of the average field as
1X, where 1 =x =< 3, depending on the correlation of
the fluctuations of the direct and reflected waves (see
Fig. 1, on which are marked the experimental data ob-
tained in the experiments described below). The pres-
ence of a boundary leads to an appreciable weakening
of the frequency dependence of the fluctuations (see
Fig. 2), compared with free space, where F(A) ~ A2,
The dependence on height (see Fig. 3) is also quite
distinct. Below the maximum of the first fringe we
have F(h) ~ h~? for small values of the parameter I,
and practically no altitude dependence for large I. It
follows thus from the qualitative discussion that the
presence of a smooth boundary can cause an appre-
ciable change in the fluctuations compared with the
case of free space. Although the foregoing discus-
sion does enable us to visualize, in the main, the
physical picture of the processes associated with

the influence of the boundary on the fluctuations,
nevertheless many important questions, such as the
magnitude of the fluctuations at the minima of the
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FIG. 1. Dependence of the intensity of fluctuations on the dis-

tance; o (L) is normalized to its value at L =10 km. h; = 10 m,
h=4m, A=10 cm. 0, X, A —experimental measurements.
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FIG. 2. Dependence of the intensity of the fluctuations on the
wavelength. L =30 km, h, =40 m, h =5 m, F()) = [0/<88>1]x
4 x 107*? deg’/m.
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FIG. 3. Altitude dependence of the fluctuations L = 30 km,
h=5m, A =10 cm, F(hy) =[o/<88>] 4 x 102 deg??

average field, the dependence on height at arbitrary
heights h and h;, etc. can be solved only within the
framework of the rigorous theory, which will be con-
sidered in the following sections.

4. Fluctuation and Average Fields above the Boundary

In the presence of a boundary surface, Maxwell’s
equations (2.4) must be supplemented by the boundary
conditions for the components of the average and fluc-
tuation fields. We shall consider a plane surface.

The coordinate system is chosen such that the Oz

axis coincides with the outward normal to the surface
z = 0, and passes through the point r, with coordinates
(0, 0, hy) where the source is located (h, is its height
above the surface). The Ox axis is chosen along the
projection of the ray joining the point of observation
R(L, 0, h) with the point r, on the surface.

We shall assume that the surface has infinite con-
ductivity (allowance for the finite conductivity will be
discussed later). Accordingly, the following boundary
conditions are satisfied on the surface:

o 8
) =@h=(5), = (), =0
The minus and plus signs, as in Sec. 3, correSpond to
the tangential and normal components, The subscript
zero denotes that the corresponding quantities are
taken at z = 0.

The solution of (2.4) for the random component can
be readily written in explicit form by using the well
known expressions for the Green’s function of the op-
erator A + k? with boundary conditions (4.1).

This solution has the form?’

(4.1)

£y (R)=A? g dr'g, (R, r') E, (r) e (1), (4.2)

2’20
where

exp ikg

PQ)=—r - *.3)

Pu(nr)=¢(r—r'|) Lo(r,—1"),
The point ry is the mirror image of the point r in the
plane z = 0. Integration in (4.2) is over the half space
z’ = 0 above the surface. When the average field
E.(r) is known, (4.2) yields a solution for ¢ (R) with
the aid of which we can find all the interesting mean
square quantities. To determine E (r) we obtain after
substituting (4.2) into the first Eq. (2.4) an integro-
differential equation analogous to (2.6)

(A4 K?) By (r) 4 k* (8e2) g dr'gs (r, r')Ey (F) W (r — 1)
220

= —pid(r—rp). (4.4)

The integral term in (4.4), as in (2.6), determines the
attenuation of the average field due to the transfer of
energy from the average signal to the fluctuations.
All the subsequent analysis will be subject to the
condition kI >» 1 (large-scale fluctuations). In this
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case we can disregard the small corrections connected
with the terms (8/6xi) div E in (2.6). Exact esti-
mates show that the relative order of the discarded
terms is (kl)™1 « 1.

Inasmuch as the attenuation is small and becomes
significant only at sufficiently large distances from
the source, we replace the integral term in (4.4) by
its asymptotic expression for large r. (At small dis~
tances the form of this term is immaterial, since it
can be neglected anyway.) It can be shown that at suf-
ficiently large L, when D = 2L/kI? > 1, the following
asymptotic formula holds true

S dr'es (r, 1) W (r—1)E(r)= \ dr'p(r—1'])

2'>0 —20

XW (r —r')E(r') (1 +0(1/D)). (4.5)
Let us change over from the integro-differential equa-
tion (4.4) to an integral equation for E (r) using the
corresponding Green’s function

dr'ey (r, v') S dr'py (v, 1)

0

E; (r)=p:9. (r, r) + k* (8e?) S
220

X W (r" —1')Ey (1), (4.6)

The solution of Eq. (4.6) by the usual method of itera-
tion, corresponding to the Born approximation, is, as
shown in Sec. 2, convenient only when <6e2> k2Ll « 1,
i.e., bounded on the side of large L.

Let us make the substitution r” =r’ + p in the inte-
gral

S D () ¥)W (X — ') Es (')

= (arw@E. (" +olo@ = w(|27etel)l, @)
where e is a unit vector in the Oz direction.

An estimate of the integral with respect to r’ in
(4.6) by the stationary-phase method shows that at
large r the main contribution is made by the region
of values |z —z’| & (L/k)¥2. Therefore, accurate to
W (V¥ L/k ) «< 1, we can replace the lower limit in (4.7)
by —«, when D > 1, and we can neglect the second
term [with an accuracy which is at any rate not less
than* O (1/VD)]. Consequently, at large distances
Eq. (4.4) assumes the form

)

(A+ k*) E (r) + & (6e?) S deW ()@@ E(r+e)= —pib(r—rp)

—0

(4.8)

We shall be interested throughout in the case when the
height of the source h; and of the point of observation
h above the surface are small compared with the dis-
tance between them. In this case the average field
E(r + p) can be represented in the form E (r) x

exp (ik - p), where the vector k has the same direc-
tion as r—ry. Thus, to find the average field above

*More accurate estimates show that the relative error due to neg-
1,
lecting this term is much less, namely on the order of p-%
x exp (—k*/*/2) with W(p) = exp (—p*/I?.
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an ideally conducting plane it is enough to replace the
propagation constant k by its effective value «:

Es (r) = pro{® (r, 1o), (4.9)
where k is given by
wo= k4 (8e%) g dog(0)W (g) exp (tko).  (4.10)

—co

Let us note!® that in the case when the correlation co-
efficient W (p) depends only on |p| we arrive at the
same formula (4.10) for «k, but without the limitations
h, hy « L on the heights.

Equation (4.10) can be written for the effective di-
electric constant egff = k2/k?:

€ ott = 11 (8e?) k2 (4m) 2 S dQu \ dooW (em) exp [ike (1 — nny)].
o (4.11)

where n and n, are unit vectors in the directions of
p and k. In the case of large-scale fluctuations, which
we are considering, the quantity kp can be assumed
to be large (p ~ ). It is easy to verify by the method
of stationary phase that the main contribution to the
integral over the angles is obtained from directions
for which n.n; = 1, i.e., n = n,. After elementary
integration we obtain
1. ¢ 1.
et — 1=y ik (de?) { do W (ong) = L ik (de2) 1.
0

The attenuation coefficient of the field « in the pres-
ence of a boundary obviously coincides in the case of
large-scale fluctuations with the coefficient for free
space [compare with (2.12)]:

4.12)

o =Imx»=FkIme —~%(6£2) k2,

- (4.13)

where the effective radius of the correlation is

l= fw(g, 0, 0)d¢, inasmuch as ny;= (1, 0, 0).
0

5. Fluctuations of the Amplitude and Phase in the
Far Zonel!s1?

It is most interesting to investigate the fluctuations
in the far zone, where the following inequalities, which
have been used above, are satisfied

k<l (L)Y (x:%:%:%) (5.1)

As usual, we assume the heights h and h; to be
small compared with L. In the calculations we make
use of the fact!® that in the far zone [ « (XL)Y?] the
fluctuations of the relative amplitude and phase are
equal to each other, with a relative accuracy on the
order of (lnD/D) <1 (D= 2L/ki* > 1), and are de-
termined by formula (1.9).

Substituting (4.9) in (4.2) we obtain for <|£Z|>:
m of the last inequality is that the dimension of
the first Fresnel zone ()\L)% should be large compared with the
average dimensions of the inhomogeneous zone.
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(erR)y=en kot (| drarou (R ) o (', 1)

27, 2">0

X @% (R, v') ¢ (", r) W (' — 1), (5.2)

where the asterisk denotes the complex conjugate.
Using the inequalities (5.1) we can calculate the in-
tegral in (5.2):

K2 o2} 1
(1B (R)]) = (8e?) (%) L1 Sdg g dt exp (— 2aLt)
0 0

X {W (& 0,0)+ 3 W [, 0, 2ht + 2, (1~ 1)]

+ 3 WE0, | 2ht—2h (1 — )]

2khh0

[W (€, 0, 2ht) + W (E, O, 2k, (l—t))]} (5.3)

4 cos ——
where
1
= Z k2l (682>.
The square of the average field has under these

assumptions the form

2al) [1 4 (cos 2khhy/ L)) (5.4)

2p%
VB | =y (4ncL)? exp (—

Let us consider several different limiting cases.
At very large distances, when aL > 1,

2khhyg
L

(184 (B) | yox gt (1 eos 22%0) (g (2, 0, 0)
0

+W (E, 0, 2h,)}, (5.5)

ELD
[£2]

- [1+(z)-1_§ dEW (8, 0, 2h0)] exp(2aL) > 1. (5.6)
0

As can be seen from (5.6) the fluctuating part of the
field is much greater than the regular component, and
consequently <&¢?> = 7%/3, and

(In|&]—(n|E[))) = 5

[see (1.10)].

It should be noted that in the presence of a boundary
the ratio <|£%|>/|E?| is not equal, generally speak-
ing, to the ratio of the energy fluxes of the scattered
and average fields — unlike the case of infinite space —
inasmuch as the summary field is a superposition of
direct and reflected waves.

Let us consider the case when the attenuation plays
no role. In the far zone, away from the zeros of the
average field, we have according to (1.9)

(de?y k2L

(542) _
T 4(1+ cos (2khhy/L))

(ORI b}
0: = (8p?) = (B = 2|§2|

e 1
x § 3 § dt {W(g, 0, 0) 5 W (&, 0, 2kt -+ 2k, (1 — 1)}

AW [ 0,2t — 2k, (1)1 ] £ co s 2% 1 (&, 0, 2ht)

W 0, 28 (1 —0)] } - (5.7)

0= Sl

Henceforth, in order to simplify the notation, we shall
assume that W(x, y, 2) = W(x)W(y) W (z), with
W(0) = 1. Let us consider several particular cases.

On the edge of the first interference minimum,
where (2khh, /L )2 < 1, we have

1
8
a,=%}l‘f—;—’ {5 (arw @ne 4 2m, (1 — 1))
0

+W(|2ht —2h,(1—1)|)

— 2 (1 — 2Kh L) (W (2ht) +W(2h o}, (5.8)
o, =g ekl {1+ §dt[W(2ht+2h (1—1)
+ W (12ht — 2y (1 — 1) |) + 20 (2h) + 20 @2t} } . (5.9)

Formulas (5.8) and (5.9) show that the fluctuations
in a horizontal polarized wave are independent of the
frequency and increase as the cube of the distance,
whereas in a vertically-polarized wave the intensity
of the fluctuations is proportional to w?L.

In the case of relatively large altitudes (h, hy » 1,
where I, is the radius of correlation along the normal
to the surface) we have

_ (dery 13l

1 kh
= 3 (8e?)k2LI, g:=< Lh° )*<<1. (5.10)

At small heights (h, hy < ;)

o= (de?) SL;; WV (0), o, = 5 (0% KL, (5.11)
4
where WIV(O) = d—‘ggaﬁl and it is assumed that
Z=0

W (z) is an even function of ¢ =z/lz; W(g) =W (z/13).
When either h or h; is much greater than I;, and
the other is much less, we have

=1 (se2) k2 L Ny =1 g2y 12
o. 4<as>ku{1+3<khmlz> Wi}, o= (8L,

(5.12)

where hp, .. is equal to the greater of the quantities
h or h,.

We can consider also other limiting cases!® of the
general formula (5.7).

Comparing the results of the approximate and rigor-
ous theory, it should be noted that in a case when at
least one of the heights h or hy > Iz, it is quite per-
missible to neglect the influence of the boundary on
the correlation functions W(p and Wy, i.e., to assume
them to be the same as in free space (see Sec. 1). In
this case the results of the exact and approximate cal-
culations coincide in the first approximation, and for
calculations involved in engineering practice one can
use the formulas and the curves given in Sec. 3, using
for the values of the fluctuations at the field minima
the expressions derived in the exact theory [(1.10)
and (1.11)]. At low heights (h, hy « I,), and also in
the higher-order approximations, the surface exerts
an appreciable influence on the form of the functions
W<p and Wp, and the exact theory must be used.




FLUCTUATIONS OF ELECTROMAGNETIC WAVES IN THE TROPOSPHERE 59

As was already noted, the increase in the fluctua-
tions near the minima of the regular field is due to
the interference structure of the electromagnetic field
in the space above the boundary. Interference effects
are most clearly pronounced when the amplitudes of
the direct and reflected waves are the same. If the
modulus F of the coefficient of reflection F exp (iy)
is different from unity, interference does not give
rise to so strong a growth in the fluctuations. In the
limiting case of small F, we can use the formulas
obtained for unbounded space.

In the case of a boundary of finite but sufficiently
large conductivity, the difference in the intensities of
the fluctuations for the horizontal and vertical polari-
zations should disappear. This is due to the fact that
the phase ¥ of the reflection coefficient changes
sharply from 0 to 7 with increase in elevation angle,
whereas the amplitude F remains close to unity.
Therefore the regular component of a vertically-
polarized field decreases as L% and not as L7!, as
in the case of infinite conductivity (‘‘the lobe rises’’),
and the fluctuations of the vertical component are de-
scribed by the same relations as in horizontal polari-
zation. Finally, in the intermediate region of values
of F, the fluctuations should increase with the dis-
tance more rapidly than L, but more slowly than L3.

Let us note that, as was indicated above, the sharp
increase in the relative fluctuations near the interfer-
ence minima and at large distances is connected not
with the sharp increase in the absolute fluctuations of
the field, but with the decrease in the regular compo-
nent. From this point of view it is expected that when
the curvature of the surface (for example, the spher-
ical form of the earth) is taken into account the rela-
tive fluctuations outside the direct line of sight, where
the regular field diminishes exponentially with the
distance, should apparently increase exponentially.

A detailed investigation of this question is highly
desirable.

6. Correlation of the Fluctuations above the Boundary??

Along with fluctuations of the amplitude and the
phase at one point, important statistical characteristics
are the correlation relations of the fluctuations of the
phases and amplitudes at two different points of space.
The question of correlation of fluctuations in the case
of infinite space has been investigated by many (see
references 4, 5, 6, 9, 10, 11, and 13, for example). We
shall therefore discuss only the singularities of the
present problem, which are connected with the pres-
ence of the boundary,2

It can be shown that in the region where the fluctu-
ating part of the field is small compared with the regu-
lar component, we have

1181 —EriE i) (Biora—Erolli
Ko = (8¢, 0¢,) = EinEri—En ]é);‘ | 2—§ 2)) (6.1)
<6A 6‘42) ((ErlErl'L Ellpll) (§12E72TE1"by2))
Ka | ELEs | Ef | (6.2)

The subscripts 1 and 2 denote two different points in
space. It is also possible to determine the mixed
amplitude-phase correlation; in the case of the far
zone (D = 2L/kI* » 1) this correlation function is
small and will be disregarded here.

As in the case of amplitude and phase fluctuations,
the functions K, and Ka are equal in the far zone,
inasmuch as the real and imaginary parts <£;&,>
= <é&rbr,—&1,8i,> +1<&jér, + £r,£i,> are small
compared w1th IRe <48 >| and | Im < £4£F > | in the
ratio ln D/D. Taking this fact into account, we obtain

K =Ko=Ky =gz Re (5E exp [i (0~ g}, (6.3)
where ¢, — ¢, is the phase difference of the regular
components at the points R, and R;.

With the aid of formula (4.2) for ¢ we can calculate
<& 15;‘ > and then find the correlation function K. We
neglect here the attenuation of the average field, since
we shall consider henceforth only small fluctuations of
the amplitude and of the phase. We give the results of
the calculations for two cases: a) transverse correla-
tion and b) longitudinal correlation.

a) In the first case the points Ry (L, —d/2, h-b/2)
and Ry (L, d/2, h +b/2) lie in the plane x = L.

Assuming, as before, W(x, vy, z) = W(Xx)W (y)W(z),
we calculate the following value for the transverse cor-

relation

1
(de?)y K2LI

’ kh.,b
4 {cos (khob/L) - cos (2khhy/ L)) S dtW (td) {

K=

% [W (bt) 4+ W (2ht 4 20y (1 - 1))

l\,}

S 122k, (1—1)]) ]

. osﬁhB[W(mzt)Jr W (2hy (1— 1)+ bt)

LW (] 2h JA=0—bt))]} . (6.4)

This general formula is valid under the same assump-
tions as the formulas of the preceding section [* «<
< (?cL)l/z, h, hy « L]. It shows that transverse decor-
relation of the phases and amplitudes in the direction
of the z axis (d = 0) takes place when b ~ I, while
the correlation in the direction of the y axis (b =0)

is significant when d ~ ly. At large heights

khyb 1

(&e?y k2Ll cos I \- oW ([d) [/V(bt)
0

K.= (6.5)

4 [cos (khob/ L) £ cos (2khiy/ L)]
For large b or d (d »ly, b » 1), K. diminishes
as 1/b or as 1/d. A discussion of numercus limiting
cases is contained in reference 28.

b) We shall take longitudinal correlation to mean
the correlation of the fluctuations at two points
R, (L, 0, hy) and Ry (L + A, 0, hy), located at the
same height hy on a straight line parallel to the x
axis, at a distance A apart (A « L). In addition, we

2,02 2
specify an explicit form for W (r) = exp (— —}—(Z—;L - lz—z->
X z
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and we assume that hy > 1,. Then

. (8e) KL ikh3A
K+ = rcos ka1 —cos @R/ I)] B exP( - TIE

1

Qa1 5 1+ 5

where [ = (7)1, /2.

It is seen from (6.6) that longitudinal correlation
takes place at distances on the order k??, i.e., approxi-
mately at the same distances as in the case of an infi-
nite medium. In other words, the fluctuations are cor-
related in the direction of propagation of the wave over
considerably greater distances than in the transverse
direction. It can be shown?® that this general conclusion
is independent of the relation between hy and 7.

In the case when A > kiI2, the correlation function
decreases as A™Y2, In the interference region K is
an oscillating function of the distance A and vanishes
when A = (Lz/kh%)(n + 1/4)'rr, n=1,2,3... . The
oscillations vanish on the first interference minimum

(kh3L"! « 1). In this case we have for A > kI and
Ix=1lz =1

6.6)

wil3

K= (8¢} g

(’%ﬁ)"’z, K, =gyl (5" 6.7)

From an examination of various limiting cases we
can draw the general conclusion that the correlation
of the vertically-polarized component always increases
in proportion to L, whereas the correlation function
for horizontal polarization increases with the distance
as L? (see above). The frequency and altitude depend-
ences for the longitudinal and transverse correlations
are different. The considerations expressed regard-
ing the influence of the finite conductivity on the inten-
sity of fluctuations, given in Sec. 5, pertain equally
well to the correlation functions.

The foregoing results are valid away from the zeros
of the regular part of the field. It is readily seen, how-
ever, that the decorrelation of the phases and the am-~-
plitudes near the interference minima occurs at dis-
tances not greater than in the case considered here.
Actually, by virtue of the central limit theorem, £,
and £i have normal distributions. At distances for
which the fluctuations of the fields at different points
of space are practically uncorrelated, the function of
the simultaneous distribution of the quantities £, and
£; breaks up into a product of the distribution functions
f(&p) and £(&;).

II. EXPERIMENTAL INVESTIGATIONS OF THE
FLUCTUATIONS

In investigating the conditions for the propagation
of uhf waves, it has been noted many times that the
radio signals passing through the troposphere are sub-
ject to intense fluctuations.'$,2~% Ag the uhf wave be-
came more widely used, more and more attention was
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paid not only to the average field intensities, but also
to the fluctuations of the phases, amplitudes, angles
of arrival, etc. at these wavelengths. Although such
investigations began a relatively long time ago,33-35
the experiments were set up until recently in a way
that the results obtained reflected to a great degree
the characteristics of the regions where these ob-
servations were carried out, and did not lead to gen-
eral conclusions necessary for comparison with the
theory.

The complexity and variety of the earth’s topogra-
phy, along with the difficulties connected with account-
ing for its effect on either the average field intensities
or on their fluctuations, have made it necessary for
most recent high-accuracy experiments®*4? to be car-
ried out with a beam ‘‘detached from the earth,”’ by
suitable choice of paths and apparatus. The data ob-
tained in these experiments were practically the same
as apply to unbounded space, and could be compared
with the theoretical deduction obtained for that case.!l»12
It is obvious that for an experimental investigation of
the influence of the boundary on the fluctuations, it
would be most advantageous to perform such experi-
ments over a smooth surface, particularly over the
sea. Such investigations were begun only in recent
times,?%:43:4 and the data obtained in these investiga-~
tions permit, to some extent, a quantitative compari-
son with the theory developed to account for the in-
fluence of the boundary on the fluctuation of radio
signals.

7. Procedure for the Measurement of Fluctuations of
Radio Signals

In an investigation of fluctuations it is essential to
be able to determine the laws of distribution of the am-
plitudes, phases, angles of arrival, etc. as well as the
spectral characteristics and the space and time corre-
lation functions and their dependence on the geometry
of the path, the wavelength, the meteorological condi-
tions, etc. These measurements must be carried out
both in the ‘‘illuminated’’ zone, for which the theory
has been developed (see Chap. I), as well as in the
‘‘penumbra’’ and ‘‘shadow’’ zones where, in spite of
the lack of theoretical calculations, it is also extremely
desirable to obtain experimental data.

As follows from the theoretical analysis, differences
in the fluctuation characteristics are to be expected
even in the ‘‘illuminated’’ zone, depending on whether
the measurements are carried out in the near (VLA
< 1) or far (\/ﬁ_ > 1) zones. However, in the case
of waves with A > 1 cm, practical interest attaches in
most cases to measurements for the far zone, in which
the fluctuations are maximal.

From the point of view of measurement techniques,
a study of fluctuations is a much more complicated
technical problem than the determination of the aver-
age values, since the influence of various errors (in
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particular, apparatus errors) on the measured effects
increases sharply.

From the point of view of measurement procedure,
the simplest is to determine the amplitude fluctuations,
using linear or logarithmic amplifiers with balanced
output (up to the recording system) to increase the
accuracy, with the average value cancelled out (see,
for example, reference 42). Thus, the quantity deter-
mined in the experiments is In| &| - <ln| & |>, or
the quantity | €] — <| & |>, which differs little from
the former if the fluctuations are of low intensity.

A more complicated problem is the measurement
of the phase fluctuations. Such measurements call for
the design of rather complex precision apparatus.41™45
Particularly great difficulties are encountered in the
measurement of fluctuations of the ‘‘absolute’’ phases
of the signals,* which characterize the variability of
the ‘“electric length’’ of the path of the radio waves.
Such measurements call for a high relative accuracy
(10~° and better) in the carrier frequency and precise
location of the corresponding points.? Much simpler
is the differential procedure —the measurement of the
phase difference ¢i— ¢ in two (or more) points sep-
arated in space, a procedure frequently used in phase
measurements. What is essentially determined in this
case are the first spatial increments of the function
that describes the fluctuations of the ‘‘absolute’’
phases. By measuring ¢;—¢i and determining the
mean square of this quantity <(¢; —(pk)2> (the so-
called structural function), it is possible to determine
both the intensity and the correlation function of the
phase fluctuations. Such measurements are usually
carried out in two variants, in which the phase differ-
ences are measured at reception points that lie on a
line which is either parallel or perpendicular to the
direction of propagation of the radio waves. In the
former case one speaks of ‘‘transverse’’ correlation
of the fluctuations, and in the latter of ‘‘longitudinal’’
correlation. It is possible to determine with such
measurements the dependence of the fluctuations on
the distance L between the corresponding points and
the spatial separation of the reception points d.

In addition to these measurements, it is desirable
to determine the height relationships, for comparison
of experiment with theory. Such experiments can be
carried out by varying the heights of the antennas in
one (or several) of the corresponding points.

From the methodological point of view, it is best to
set up experiments with fixed antenna positions and
with a series of fixed values of L, d, h, and hj, and
to vary these parameters by switching.

As follows from the preliminary measurements,
the fluctuations should be recorded without time delay
by means of high-precision apparatus with long-time
stability. Such apparatus should reproduce without
distortion the spectral composition of the fluctuations

*What is meant here is the measurement of the phase at the
receiving part of the apparatus, relative to the transmitter phase.

in the frequency range from hundreds or tens of cycles
down to the lowest frequencies (hundredths and thou-
sandths of a cycle).

While the reproduction of the spectrum entails no
particular technical difficulties on the high frequency
side (hundreds of cycles), in the domain of very low
frequencies (thousandths of a cycle) there are limi-
tations due both to the insufficient precision of the
apparatus and to the finite measurement time. It
should be noted that not enough attention was paid in
most investigations to the distortion of the spectrum
of the fluctuations. Thus, apparatus subject to time
delay was used in reference 41, and consequently the
spectrum of the fluctuation frequencies is distorted
starting with 0.1 —1 cps. As will be shown below,
such distortions of the spectrum lead to several in-
correct conclusions, and in precision measurements
of fluctuations serious attention must be paid to this
aspect of the question.

In analyzing the measurement procedure it must
be recognized that a specific feature of the fluctua-
tions due to the turbulence of the troposphere is that
they are essentially non-stationary. Consequently,
when determining the space decorrelation of the fluc-
tuations, the altitude dependence, etc., preference
should be given to the method of simultaneous syn-
chronized measurements over all the investigated
paths. It became clear even in the preliminary meas-
urements that in many cases it is practically impos-
sible to compare non-simultaneous experiments, par-
ticularly prolonged ones. A certain approach to this
procedure is the simultaneous measurement at least
on two neighboring paths, so that one of the preceding
measurements can be duplicated to take account of
nonstationarity in subsequent measurements. %4

8. Principal Characteristics of Fluctuations

As was already noted above, for a comparison with
the theory it is necessary to use experiments on fluc-
tuations on paths that lie wholly over the sea. Such
experiments have been carried out at a frequency near
3000 Mc/sec, and particular attention was paid to fluc-
tuations in the phase difference®:* for vertically-
polarized radiation on a path 33 km long. The receiv-
ing and transmitting antennas were stationary, but
provision was made for changing the height of the
transmitting antenna by using alternately three trans-
mitters with antennas 9, 18, and 35 m above sea level,
respectively. The receiving antennas of the measur-
ing apparatus were at a height h = 4 m along a line
perpendicular to the direction of propagation of the
radio waves. By switching it was possible to measure
the transverse correlation of the fluctuations at dis-
tances d from 2 to 100 m between the measurements
points. The stability of the transmitting and receiving
apparatus was such that the fluctuation spectrum was
reproduced within a range from 0.01 to 100 cps. This
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apparatus was used to measure a series of main char-
acteristics of the phase-difference fluctuations. Fig-
ure 4 shows typical integral distributions of the modu-

F. G. BASS et al.

terized by an inhomogeneity of the spectral density
and by time variability. For illustration, Fig. 5 shows
the running intensity spectrum of the phase-difference

lus of the phase difference relative to the average value, fluctuations in the frequency interval from 0.03 to 0.36

plotted on a scale that linearizes the normal distribu-
tion, for an experiment performed in the summertime.
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FIG. 4. Integral distributions of the fluctuations of the phase
difference (absolute value) | ¢~ | =Aqg, for different distances
d between receiving antennas. hy=35m, h =4 m, L =33 km,
A=10cm, Ag, = ¢, — ¢, is the deviation of the phase difference
from the average value, in electrical degrees, W — probability that
the fluctuations will exceed A’ (in absolute value). ®, A, 0, 0,

x —d=2,5, 10, 30, 100 m, respectively, A, ®, ® — repeated
measurements.

In these experiments the phase difference was meas-
ured relative to the first (reference) antenna. The
data for distances d from 2 to 100 m are identified on
the figure by different symbols. As seen from the fig-
ure, the experimental data, in agreement with theory,
lie well on the straight lines corresponding to a nor-
mal distribution with different values of dispersion.

In the experiments, the results of which are shown in
Fig. 4, the antenna heights were hy=35m and h=4m,
i.e., the corresponding points were in this case, in the
zone of the line of sight. Qualitatively similar results
were obtained for hy=18 and 9 m, h=4m, i.e., in
the ‘‘shadow’’ and ‘‘penumbra’’ regions.

A very important feature of the observed fluctua-
tions is that they are not stationary. In measurements
lasting 5 — 10 minutes, the nonstationarity was ob-
served quite frequently, particularly in the low-fre-
quency part of the spectrum. This nonstationarity in-
creased with increasing height of the receiving anten-
nas and with increasing distance between them. Al-
though the low-frequency components are appreciably
attenuated in measurements of phase-difference fluc-
tuations (unlike in measurements of absolute-phase
fluctuations ), nevertheless*!*# an increase in the
spectral density with decreasing frequency is observed
in this case, too. Such a tendency is noticeable down
to frequencies 0.01 — 0.001 cps, which can still be
handled by the apparatus used in these investigations.
The running spectra of these fluctuations, unlike the
spectra of stationary random processes, are charac-

cps with an equivalent analysis band of about 0.005 cps.
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FIG. 5. Normalized “‘running’’ spectra of the intensity of
phase-difference fluctuations, for different distances d hetween
receiving antennas. ®*— fluctuation power in a 0.005 cps band
relative to the given frequency, o — mms value of the total ‘‘power’’
of the fluctuations, hy=9m, h=4m, L =33 km, A = 10 cm,

A, 0,0, x—d=2,5, 10, 30, and 100 m respectively, A ®, ® — re-
peated measurements.

The figure shows the values of the intensity of fluctua-
tions for several discrete frequencies, referred to the
total intensity, obtained by measurements with differ-
ent distances d. Some experiments were performed
twice (at d =5, 10, and 30 m). As can be seen from
Figs. 4 and 5, in repeated measurements performed
only 5 minutes apart the nonstationarity causes the
appearance of considerable (up to a factor of 2 or 3)
changes in the intensity and the frequency spectrum
of the fluctuations.

Even more appreciable are the oscillations in the
fluctuation intensities (reaching 25 — 100 times on a
fixed path) noticed in different experiments. Figure 6
shows the results of measurement of the intensity of
the phase-difference fluctuations, obtained in summer
and fall for distances d of 2 and 100 m between re-
ceiving antennas.*

It is interesting that the greatest changes in inten-
sity were noted on different days at small distances

*In these experiments only the low-frequency part of the fluc-
tuations spectrum (F < 0.36 cps) was reproduced.
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between the measurement points. This effect, which
is observed directly above the boundary, is expected
in the far zone and in an unbounded inhomogeneous
medium, since in the case of small d (d <) the
phase-difference fluctuations depend on the properties
of the medium in a more complicated manner than in
the case of large d. Actually, when d <7 and Rg~ 1
(Rq is the coefficient of transverse correlation of the
fluctuations at points located a distance d apart), the
intensity of the phase-difference fluctuations is deter-
mined both by the fluctuations of the absolute phases
of the signals and by the degree of their decorrelation

o (d)=((p; — ¢,)") = 2{e (1 — R,); (8.1)

In measurements with long base d > 1 (Rg—0) the
correlation of the fluctuations is insignificant, and the
intensity of the fluctuations of the absolute phases, as
shown in references 3 and 5, is practically independent
of the explicit form of the correlation function for ode€.

The noted tendency of the spectral density of the
phase-difference fluctuations to increase with decreas-
ing frequency becomes naturally more aggravated in
the measurement of the fluctuations of the absolute
phases. Thus, according to data obtained by continu-
ously measuring the fluctuations for 40 hours,® the
density changes as F2% in the frequency interval
from 10 to 107 cps.

In spite of the presence of nonstationarity and of
the difference in the intensities of the fluctuations and
in the degree of their decorrelation in space, which
were observed in prolonged measurements on fixed
paths, it was possible to detect certain general laws
common to all the experiments performed. In par-
ticular, one sees in the majority of the experiments
a similar character of variation of the intensity of
the phase~-difference fluctuations o (d) as a function
of the distance d, i.e., similar structural and corre-
lation functions of the fluctuations of the absolute
phases.

(9 = (9}) = (97).

Much more variability is seen in the height function
of the fluctuation intensity, o (h). Experiments have
shown*34¢ that, depending on the singularities of this
function and on the degree of nonstationarity, four
qualitatively different types of phase-difference fluc-
tuations can take place.

Let us consider each case separately.

9. Different Types of Phase Fluctuations

The phase fluctuations observed most frequently
have characteristics that can be called standard and
quasi-stationary. A characteristic of fluctuations of
this type in the region below the maximum of the first
interference zone is a reduction in intensity with in-
creasing heights of the corresponding points. Meas-
urements have shown that the fluctuation intensity o
varies as h™@, where a < 2.

A standard guasi-stationary type of fluctuation is
characterized by relatively high repeatability of both
the intensity o (d) and of the time (spectral) charac-
teristics.

To illustrate fluctuations of this type, Fig. 7a shows
the height dependence of o(d). As can be seen from
the figure, o ~ h~? independently of d. Such a height
dependence is in good qualitative agreement with the
theoretical deductions.!$192528 1t g impossible, how-
ever, to make a quantitative comparison of the experi-
mental data with the theory, for in these experiments*!
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FIG. 7. Dependence of the structural function of the signal
phase fluctuations ¢(d) on the height of the transmitter h, and
on the distance between the receiving antennas d. L = 33 km,
h=4m, A = 10 cm. Experimental values: a) 0, X, A, 0~ d
=100, 30, 10, 5m; b) 0, X, A —hy =9, 18, 35 m.
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the height dependence was investigated not only for the
illuminated zone, but also for the penumbral region.

In particular, the quantity I/Lj (Lp —the distance
of the radio horizon) ranged from 0.8 to 1.2. As is
well known,®-30 at these values of L/Lp it becomes
necessary to take into account the curvature of the
boundary.

Figure 7b shows the structural functions of the
phase-difference fluctuations ¢ (d) for different trans-
mitter heights hy. As can be seen from the figure,
o(d) first increases rapidly with increasing d, but
its rate of increase slows down at d = 5— 10 m and
then stops completely. A unique ‘‘saturation’’ of o (d)
sets in, which is evidence of the decorrelation of the
fluctuations in the separated antennas (i.e., d > [).
The o(d) curves can be used to determine the cor-
relation radii dy. Using (7.1), we have

o6(d)  1—R(d)
0 (dnax) 1—R(dmax)

~ 1—R(d), 9.1)

where dmgx is the distance at which ‘‘saturation’’ of
g (d) is observed, and R (dpyax) = 0.

A plot of R(d), based on data of Fig. 7b, is shown
in Fig. 8, from which it follows that the correlation
radii dy corresponding to R(d) = 0.5 are on the order
of 4 — 8 m for heights varying from 9 to 35 m. As can
be seen from (9.1), the scale of the inhomogeneities
can be determined by knowing the form of the function
R(d). Unfortunately, in the absence of experimental
data for d < 2 m, the spread in the experimental
points, due to the nonstationarity of the fluctuations,

04t

02

g2t
FIG. 8. Dependence of the transverse correlation of the fluc-
tuations of the absolute phases on the distance d between the

receiving antennas. L =33 km, h =4 m, A = 10 cm. Experimental
values: 0, X, A —h, =9, 18, 35 m.

does not make it possible to determine from these ex-
periments the exact form of the functional dependence
R(d), or the minimum distance dp,j, where the linear
relation o2 = £(d) is violated. Estimates show that
dmin does not exceed several meters, and that the re-
gion corresponding to the transition of this dependence

from linear growth to saturation ranges from 1—2 to
5—10 m. These results are apparently not specific
for measurements over a separation boundary, for a
similar form of a structural function was obtained for
the phase fluctuations*! at A = 3 cm when working with
a beam ‘‘detached’’ from the surface. Unfortunately,
the measurement procedure in that investigation did
not provide for a rapid determination of the structural
function for different values of d,* and in addition an
appreciable distortion of the fluctuations spectrum took
place, so that the data obtained in reference 41 are es-
sentially only qualitative in nature.

By comparing with the calculations the results of
the experimental measurements of the structural func-
tions ¢ (d), normalized beforehand to their maximum
values corresponding to dpy, 5%, we can determine the
‘‘scales of inhomogeneities’’ I. Although the results of
such a determination of I depend on the specific form
of the chosen correlation function, nevertheless, as
shown in references 5 and 28, the differences for dif-
ferent correlation functions are small. In particular,
for a Gaussian correlation function we have

"m 1
o(d) 1—}"2— H"OM(%>

6 (dnax) l—l'/?i‘d 2 ort (du’;ax> .
nax

The values of the parameter ! determined by the
measurements of reference 44 are shown, in accord-
ance with (9.2), for different experiments in Fig. 9,
from which it follows that in the height interval from
9 to 35 m above the boundary the parameter I can,
depending upon the meteorological conditions of the
experiments, vary by a factor of 5 — 10 times, amount-
ing on the average to 3 —6 m. It is interesting to note
that greater heights hy usually correspond to greater
values of I.
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FIG. 9. De termination of the scales of inhomogeneity from
measurements of the structural function of the phase fluctuation,
made on a fixed path over the sea. L =33 km, A=10cm, h =4 m.
Experimental values: ®, X, & —hy, =9, 18, 35 m.
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*The total time during which the structural dependence was
measured in reference 41 was several hours.
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It must be emphasized that the results of such an
experimental determination of the scale of inhomoge-
neities are determined essentially by the degree of
reproducibility of the measurements of the spectrum
of the fluctuation frequencies.

The elimination of the high-frequency components
of the spectrum leads to the slowing down of the growth
of o(d) with increasing d, and to the contrary, the
elimination of the low-frequency components of the
spectrum causes a more rapid decorrelation of the
fluctuations than in the case when the spectrum is
completely reproduced. This premise can be illus-
trated by the data presented in Fig. 10, showing the
results of individual measurements of the fluctuations
in the high-frequency (Flim > 0.36 cps) and low-fre-
quency (Flim < 0.36 cps) intervals of the spectrum.
A series of experiments yielded, for a limiting fre-
quency Fijm = 0.36 cps, I =1—3 m (high-fre-
quency measurements) and I; = 10 —30 m (low-fre-
quency measurements). If Fljm is reduced, the ex-
perimentally measured value of [ increases, and vice
versa,'?:43 | decreases with increasing Fjjm,. Meas-
urements of this kind show that, in agreement with
the theory of turbulence,1+:12 the investigated fluctua-
tions are due to ‘‘inhomogeneities’’ of different dimen-
sions, and the high-frequency portion of the fluctua-~
tions spectrum is connected with the small-scale for-
mations, while the low-frequency part is due to the
large-scale ones. Thus, a possibility is afforded of
investigating the spectrum of the inhomogeneity di-
mensions in the troposphere with the aid of suitable
apparatus.

It follows from the foregoing that the influence of
the high-frequency part of the spectrum of the phase-
difference fluctuations is most appreciable at small
distances d between antennas, where it comprises the
main ‘““energy’’ of the fluctuations. This result is also
in agreement with direct determination of the spectra
and the temporal correlation functions for different d.
A similar effect is usually observed also when the
heights of the antennas are changed. A reduction in
the antenna height, like a reduction in the distance be-
tween receiving antennas, leads to a relative broaden-
ing of the fluctuation spectra.

In all cases, a tendency is observed towards a rapid
reduction in spectral density with increasing fluctua-
tion frequency. On the upper side, the energy spectrum
of the phase-difference fluctuations is limited to fre-
quencies on the order of 10 cycles when 2 m <d
<100 m. As already noted, a reduction in the fluctua-
tion frequency is accompanied by an increase in the
spectral density up to frequencies ~ 1073 e¢ps. How-
ever, there are no more detailed data on the spectrum
of the phase-difference fluctuations in the literature,
and only fluctuations for the absolute phases are men-
tioned.4

The other type, which can be called standard non-
stationary, includes fluctuations that are marked by
sharp nonstationarity. Appreciable changes of qual-
itative character and in the intensity, reaching a factor
of 2 or 3 and more, are observed in repeated measure-
ments, shifted in time by five or ten minutes, and even
during a single measurement. Experiments have shown
that in spite of the nonstationarity, the main character-
istics of the fluctuations remain in many experiments
qualitatively the same as in the first case. In particu-
lar, the height dependence oq (hy), the structural func-
tion ¢(d) remain qualitatively the same as shown in
Fig. 7.

Experiments carried out over the sea, in which the
fluctuations had quasi-stationary and nonstationary
standard characteristics, amounted to 70 percent
(during the summer-fall season) to 90 percent (in
the fall-winter season) of the total number of meas-
urements, 4344

At the same time, height dependences of the fluc-
tuations greatly different from standard are observed
in many cases. At heights corresponding to points
considerably below the maximum of the first zone,
the fluctuations can increase monotonically with in-
creasing altitude h;, or pass through a maximum,

Such nonstandard height dependences appear quite
strongly in slow fluctuations, i.e., when the high-fre-
quency components are not reproduced.* The data ob-
tained in one of the experiments, in which such an
anomalous type of fluctuations was observed, are

¥If the fluctuation spectrum is completely reproduced, the
anomalous character of the altitude dependence is less pronounced.
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case of an anomalous height dependence: L = 33 km,
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shown in Figs. 11a and b. Typical of fluctuations of
this type is the fact that the anomalous height depend-
ence is most sharply pronounced at maximal distances
d, when the main fraction of the ‘‘energy’’ of the fluc-
tuations is due to large inhomogeneities. As the dis-
tance d is decreased, the height dependence of the in-
tensity of the fluctuations usually approaches standard.

It is typical that in such measurements the height
dependence is close to standard for ‘‘fast’’ fluctuations,
investigated without reproducing the low-frequency
part of the spectrum. We note that measurements with
sharply pronounced height anomalies are encountered
relatively rarely. The cases much more frequently
encountered are those with weakly pronounced or no
height dependence. Such cases are apparently inter-
mediate between the measurements of the first two
types and experiments of the third type. An example
of such measurements with degenerate height depend-
ence, carried out with complete reproduction of the
spectrum, may be Fig. 1lc.

An even greater nonstationarity in measurements
along a fixed path in regions considerably below the
maximum of the first zone has been noted in individ-
ual cases in short-duration measurements, accompa-
nied by an exceedingly sharp increase in the intensity

of the fluctuations — the so-called ‘‘fluctuation flashes.”’

Such flashes are usually preceded by large nonstation-
ary fluctuations. During several minutes the phase
fluctuations increase rapidly (6¢ > 27) and are ac-
companied by deep and frequent fading of the amplitude.
The duration of such a state does not as a rule exceed
several tens of minutes, after which the usual picture
is restored.

The relatively good qualitative agreement in the ex-
perimental data and the theory enable us to suggest
that the idealization of the turbulent medium, used in
theory, by which the medium is assumed to be locally
isotropic and statistically homogeneous, does not con-
tradict the experiments made in the troposphere layers
closest to the earth.

In spite of the fact that the real troposphere con-
tains formations with different inhomogeneity scales,
many regularities, such as the form of the altitude
dependence, the structural functions, etc., can be ex-
plained by describing the medium with the aid of the
correlation function of the pulsations of the dielectric
constant, which has a single characteristic scale.

The situation is quite different in the case of the
anomalous fluctuations. The presence of height char-

020 30 @ 060 0 A0 Wdm

acteristics, by which the intensity of the fluctuations
may increase with increasing height, cannot be ex-
plained by the theory developed in Chapter 1. From
the experimental data given it can be concluded that
to explain the observed effects in this case it is nec-
essary to make use of the anisotropy and inhomoge-
neity of the large-scale formations in the vertical
direction. Such an assumption is to some extent in
agreement with the fact that the anomalous height
characteristics are usually observed when the fluc-
tuations are highly nonstationary.

The explanation of the phenomenon of fluctuation
flashes is quite unique. It is obvious that a sharp in-
crease in the fluctuations when the phase difference
changes by more than 27 could be explained, if ob-
served in an unbounded medium, only by an increase
by some tens or even hundreds of times in the inten-
sity of the fluctuations of the dielectric constant along
the paths, which apparently is of little likelihood.

Allowance for the boundary shows that such an
anomalous increase in the fluctuations may be due to
the change in the average refraction along the path,
leading to an interference minimum at the point of
reception. The latter is in agreement with the fact that
the ‘‘fluctuation flashes,’’ if received in the region be-
low the maximum of the first interference zone, are
usually at reduced refraction, i.e., with rising of the
zone.

10. Dependence of the Fluctuations on the Distance
and on the Meteorological Conditions

The dependence of the fluctuations of the phases on
the distance between the corresponding points in the
direct line of sight and beyond the radio horizon was
investigated recently?®:2® by measuring the fluctuations
of the phase differences between the receiving antennas
10 m apart by the ‘‘moving transmitter’’ method.
These experiments, which were carried out for fixed
antenna heights h; = 10 m and h = 4 m, show that the
character of the dependence of the intensity of the fluc-
tuations on the distance does not remain unchanged in
the various experiments, and deviates from the law
o ~ L, which would be expected in the case of an un-
bounded inhomogeneous medium.*

*We note that measurements carried out under conditions ciose
to the case of an ‘‘unbounded medium’’ (for example in reference
42, where the fluctuations of the absolute phases were investi-
gated) are in good agreement with this law.
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Certain results of a series of such measurements
were shown together with the calculated relationships
in Fig. 1, which illustrates the dependence of the dis-
persion of the phase-difference fluctuations on the dis-
tance, normalized to its value for a distance of 10 km.
As follows from the figure, within the zone of the direct
line of sight (the standard distance to the radio horizon
in these measurements was Ly = 22 km ), this varia-
tion is always faster than I, and may reach L3. Be-
yond the limits of the radio horizon, in the ‘“penumbra’’
region, an even faster growth in the fluctuations was
observed, reaching as much as L% for 1 = L/Ly < 2.

We have already noted several times the variability
of the fluctuation characteristics, both during the time
of the experiment and from experiment to experiment.
In this connection it is natural to attempt to seek a cor-
relation between the fluctuations of the radio signals
and the meteorological conditions. It should be pointed
out that the results of radio measurements are as a
rule integral in character, since they are determined
by processes that occur in the entire region adjacent
to the propagation path, whereas meteorological meas-
urements are usually of local character. In view of
this, it would be advantageous to carry out simultane-
ous meteorological measurements in different points
of space. Unfortunately, there are no detailed data on
this question in the literature. A certain simplification
can be admitted in the analysis of very slow quasi-
stationary tendencies, which can be estimated by
carrying out measurments in the low-frequency part
of the spectrum of the fluctuation frequencies, since
it is expected in this case that the measurements in
different points in space are significantly correlated.
Such determinations of the fluctuations of the absolute
phases at a frequency of 9400 Mc/sec and at a refrac-
tive index determined from recorded values of the tem-
perature, pressure, and humidity have been carried
out in reference 45 under conditions close to those of
unbounded space, on a path 9.4 miles long, and have
shown that an appreciable correlation, reaching 0.915,
exists between them.

A comparison of the phase fluctuations, carried out
in a considerably broader frequency band, with certain
results of averaged meteorological measurements,
carried out* on both ends of a path 33 km long, is
shown in Fig. 12. As follows from the data of this
work, it is impossible to establish a direct functional
connection between the magnitude of the fluctuations
and the meteorological measurements (temperature,

pressure, humidity, etc.) on the ends of the path.
Nonetheless, many of the measurements carried out
above the surface of the sea do disclose certain ten-
dencies. Thus, for example, an increase in the wind
velocity, independently of the wind direction, and an
increase in the waviness of the sea, are usually ac-
companied by a reduction in the intensity of fluctua-
tions. A reduction in fluctuations was noted also, as
a rule, at increased radio refraction, up to an equiva-
lent earth radius agq — « during overcast and rainy
weather. The greatest fluctuations were observed in
quiet sunny days in the absence of waviness of the sea.
Analogous results of preliminary measurements are
given also in reference 45. ,

The influence of meteorological conditions can be
given a natural explanation within the framework of
the model proposed above, in which the boundary is
taken into account. The presence of wind, the inten-
sification in the waviness of the sea, etc. lead to a
diffuse scattering of the radio waves and to a reduc-
tion in the effective coefficient of specular reflection.
Therefore the interference effects, which cause an in-
crease in the fluctuations, become less sharply pro-
nounced and this in turn leads to a reduction in the
fluctuations. From this point of view it is understand-
able why the fluctuations increase in the absence of
wind and waviness of the sea.

CONCLUSION

As follows from a theoretical analysis and from the
experimental data given in the present survey, the sep-
aration boundary has an appreciable influence on the
fluctuations of the radio signals. The presence of the
boundary leads to a faster decrease in fluctuation with
the distance, changes the frequency dependence, causes
the appearance of fluctuation flashes, leads to a sharp
increase in the intensity of fluctuations in the minima
of the average field, determines the unique height de-
pendence, etc. Although the data obtained on the fluc-
tuations of the signals above the boundary are of great
interest, nevertheless many questions connected with
this problem have not yet been answered, principally
because a detailed investigation of these questions was
started in fact only in recent years.

In view of the novelty of the problem and its urgency,
it is advisable to point to several directions which we
believe further research should follow.

On the theoretical end it is important to determine
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the influence of the curvature of the boundary and de-
termine the fluctuations not only in the zone of the
direct line of sight, but also in the ‘‘penumbra’’ and
‘“‘shadow’’ regions, where the intensity of fluctuations
becomes quite considerable and where their influence
is of greatest importance in practice.

Another important theoretical problem is the fullest
possible evaluation of the anisotropy and temporal in-
stability of the medium. It would be desirable in par-
ticular, even in the development of the phenomenolog-
ical theory, to take into account the existence of a
spectrum of inhomogeneity scales in the turbulent
medium.?

The experimental investigations should attempt a
detailed determination of the frequency dependence of
the intensity of fluctuations over the broadest possible
range. In addition, it is desirable to set up experi-
ments in which extensive meteorological investiga-
tions are made along with the radio measurements,
so that a connection can be established between them,
and the meteorological measurements can be used to
forecast the character and intensity of the fluctuations
of the radio signal.

Since the reproduction of various fluctuation spectra
of the radio signals already enables us to judge the
dimensions of the inhomogeneities, it will be advan-
tageous in the future to attempt to investigate more
consistently the radio methods for the study of physical
processes that occur in the turbulent troposphere.

Note added in proof. The question of field distribu-
tion calls for a more detailed analysis. The amplitude
distribution fits the normal Gaussian curve only in the
case of small field fluctuations, when <&%> » |E?%|,
in other words, if the distance L is small compared
with the ‘‘attenuation length”’ o~! [« is the damping
factor of the average field, due to scattering by in-
homogeneities, see (2.12) ff]. In this case the fluctua-
tions of the field and of the dielectric constant are ac-
tually linearly related. At large distances (aL > 1)
the field distribution apparently obeys the normal-
logarithmic law,%!1:!2 a5 in the case of one-dimen-
sional large-scale fluctuations, for which this can be
rigorously proved by the WKB method. However, the
method given for calculating the first two moments of
the field distribution function?! is essentially independ-
ent of the specific form of this function, and uses
merely the law of energy conservation. It is conse-
quently valid for all distances. As applied to the
troposphere, this question is of purely academic in-
terest, since the attenuation length is as a rule so
great that the distribution is practically always
normal.
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