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INTRODUCTION

IN recent years the quantum-mechanical theory of
many-particle systems has received much attention.
Important advances in this field have been the result
of the successful application of well developed methods
of quantum field theory to the study of systems made
up of large numbers of interacting particles. Since in
a brief survey it is impossible to include all of the
various approaches that have been developed, we shall
present mainly (as the most promising method) the
method of Green’s functions,! which in its application
to many-body problems has been most intensively de-
veloped in papers by Soviet authors,?~!! and also in
some other papers.l%1® The advantage of the Green’s-
function method lies not only in a clear formulation of
the problems and in the existence of flexible methods
for solving them, but also in the possibility of extend-
ing the results to the case of temperatures other than
absolute zero. In this connection there have recently
been many papers devoted to the study of important
problems of statistical physics on the basis of the
Green’s-function method.!4-%

The present review gives a more or less detailed
exposition of this method as applied to statistics. The
basis adopted is the widely used method of Matsubara, 1
which has been significantly improved in recent papers
by Soviet authors.15,16-20

In the first section we present a new thermodynamic
perturbation theory based on the methods of quantum
field theory, and at the same time explain the main
ways to apply the mathematical apparatus of quantum
field theory for the purposes of statistical physics.
The exposition is given in considerable detail. The
contents of this section convincingly show the advan-
tages of the new thermodynamic perturbation theory.
Whereas in the old thermodynamic perturbation theory
mathematical complications made it impossible to ad-
vance beyond the first (one or two) approximations in
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the interaction between particles, in the new formula-
tion the use of the diagram technique makes the con-
struction of the perturbation-theory series so intui-
tively clear that it is possible to carry out a selective
summation of an infinite number of terms of the series.
Such a selective summation leads to physical approxi-
mations that go beyond the framework of the perturba-
tion theory itself.

The second section is devoted to calculations with-
out the use of thermodynamic Green’s functions. Here
particular attention is given to methods for working
with Green’s functions. The size of the article does
not allow a really full treatment of the applications to
specific problems. The exposition needed can, how-
ever, be found in the original literature to which ref-
erences are made. This remark also applies to the
third section, which is devoted to time and tempera-
ture dependent Green’s functions.

In the fourth section we examine the application of
the principles here expounded to a certain class of
problems in kinetics. The case of the deceleration of
a particle in passing through a plasma is used as an
illustration. The method is so general, however, that
it can be extended without difficulty to other similar
problems, namely: bremsstrahlung and pair produc-
tion in the passage of particles through plasmas, plas-
ma radiation, stopping of electrons in metals, and so
on.

1. THERMODYNAMIC PERTURBATION THEORY

The perturbation-theory series. Let us consider a
quasi-closed statistical system, which in general can
consist of several types of fermions and bosons. For
simplicity in the writing, however, we shall suppose
that the system contains only one type of fermions and
one type of bosons, since the extension of the results
to the case of many-component systems presents no
difficulties. We regard the particles—the fermions
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and bosons—as quanta of fermion and boson fields, so
that in the Schrodinger representation (Matsubaralt)
the Hamiltonian of the statistical (for example, elec-
tron-phonon) system is of the following form:

H=H,+H,,
H,= Z Eplprpr 1 Zl\ ki by,
p.7 <

(1.1a)
(1.1b)

©. 12
Hi=g 3 (%) (@5 1x,r@prbi + ap—i saprbi),  (L.1€)

P,k

where H, is the Hamiltonian of the noninteracting elec-
tron and phonon fields; H; is the operator for the inter-
action of these fields; ap, and af;r are the respective
operators for absorption and production of an electron
with momentum p, polarization r, and energy €p

= p%/2m; bg and bk are analogous operators for a
phonon with momentum k and energy wy =1 |k|s;

V is the volume of the statistical system; and the
coupling constant g is given by the expression

Ver N2
g= <W> :
in which M and N’ are respectively the mass and
total number of lattice ions, C is the ordinary constant
for the interaction of electron and lattice, and s is the

speed of sound. The operators for production and ab-
sorption of particles satisfy the commutation relations:

[apr; apr], = apapr + gy = 8By, [apr, apr],
= [a;)Tr ap'r’]+ = 07

[k, bie]. = bibi — biob = dywers [bis ] = [y i) .= 0. (1.2)

By means of the operators for the free electron
field ¥ (x) and the free phonon field ¢(x),

Vo (X) = V=2 Y apauge™ ", s (x) = V-2 D) ajuy e P (1.3a)
p. 7 p, 7

0, N\ /2 ) .
P (x)= 2 (7;) (byet<>/n 4 be—ikx/ny, (1.3b)
Kk

where uf, r =1, 2, are spin wave functions of the elec-

tron, corresponding to the two different spin projections,

the interaction operator H; can conveniently be written
in the following form:

Hy=g {4 (00 (%) u (9 d%. (1.4)

All of these operators act on the Schridinger func-
tion @,N, which for the case in which the system con-
sidered is completely closed satisfies the Schrodinger
equation

ih 0Dy = H®,n,

p (1.5)

where the index n numbers the energy levels of the
system consisting of phonons and N electrons. It fol-
lows from the form of H, that the operator for the
total number of electrons

(1.6)

S .
N= Z’J AprQpr
p.r
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commutes with the Hamiltonian H (in what follows
the operator for the total number of particles and its
eigenvalues will be denoted by the same symbol N).
Consequently, in addition to the total energy of a
closed system, the number of electrons is also a con-
served quantity, and therefore each state &N of the
system is characterized not only by the energy quan-
tum number n but also by an indication of the number
N of electrons. Furthermore, the energy levels EjN
of the system are also different for different values
of N. If the system under consideration is quasi-
closed, both the energy and the total number of elec-
trons will fluctuate around their average values. To
describe the behavior of such a system in thermody-
namic equilibrium one uses a Gibbs distribution with
variable number of particles, according to which the
probability for the system to contain N particles and
furthermore be in a state with energy E,N is given
by the expression (cf., e.g., Landau and Lifshitz%)

Wy = o @TN=E )8,

(1.7)

where B =1/kT, 2 is the thermodynamic potential of
the system, and p is the chemical potential of the
electrons.

For the determination of the thermodynamic char-
acteristics of the system it is sufficient to calculate
the statistical sum '

7 — Zv e(“N—En.V) B__ ZV Dy eN—H)B D,y — Sp e(WN—H) B, (1_3)
n .

where the operators N and H that appear under the

trace sign are defined in Eq. (1.6) and Egs. (1.1a) —

(1.1c). For example, the thermodynamic potential &
of the system is given by )

Q= —pB 1 1n Sp eN-H)B, 1.9)

If F is an operator that refers to the entire system,
then the statistical average value of this operator
over the ensemble of interacting particles, [Flgy, is
given by

[Flav= 2 WanDiy FD,y = Sp (¥ 58 F)/Spe N —H8 | (1.10)
nv

It is easy to see that the density matrix,

Q= eN—H)B (1.11)

which appears in the expressions (1.8) — (1.10), satis-

fies the following equation:

17}

35 =N —H)¢.
Following the work of Matsuba.ra,14 let us represent
the density matrix (1.11) in the form

(1.12)

o = emN—Ho B § (B), (1.13)

from which it can be seen that the operator S(8) can
be defined as the solution of the equation

S
ﬁ‘;_ﬁzyl(g)s (1.14)
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with the initial condition S(0) =1, and with the
definition

H, (1) = e~WN=HO) T { (N-Ho) T, (1.15)

The transformation (1.15) from the Schriodinger opera-
tor H, to the operator H,(7), which depends on 7, is
a transition to a peculiar ‘‘interaction representation.”’
The dependence of operators on T given by Eq. (1.15)
differs from that used in the well known paper of Mat-
subara!® by the presence of the chemical potential u.
As will be seen later, the presence of the parameter
u in Eq. (1.15) greatly facilitates the calculations and
enables us to obtain a considerable extension of the
Matsubara method.!* The dependence of the operators
on p as shown in Eq. (1.15) was first introduced inde-
pendently by Abrikosov, Gor’kov, and Dzyaloshinskiil
and by Fradkin.16,18,19

As is well known (cf., e.g., the book by Akhiezer
and Berestetskii3"), the solution of (1.14) with the ini-
tial condition S(0) =1 can be written in the form of
the series

8
—S Hy(t)dt

S(Py="Te °

8

B B B
»,1 n * . .
=2ih g dr, g dr, ..- § dv, T[H, (va) H, (%a)... Hy (T,)].
i1 Q

n!
0 9 (1.16)

n:

]

in which, in accordance with Egs. (1.15) and (1.4), the
operator Hy(T) is given by

Hi(t)=g S P (&) @ (2) o (x) doe, 1.17)

where the variable x denotes the combination of X
and T, and the dependence of the operators *(x),
¥»(x), and @(x) on the variable 7 is the same as
that of H;(7) shown in Eq. (1.15); for example,

P* () = e~ (N —Ho) Top* (x) eBN—Ho) T, (1.18)

that is, the field operators in Eq. (1.17) are written in
the ‘““interaction representation.’”’” The symbol T
placed before any operators A(1{)B(T7y)...F (1)
indicates the T-product of these operators, which by
definition is of the form (Wick®)

TIA(T)B(T) ... Ft) =8,BT)F(r,) ... A(t), (1.19)

where B{(Ty) F(7y)...A(7y) is the same set of oper-
ators as A(7{)B(7y)...F (1), but arranged so that
the numerical value of 7 in the operators increases
from right to left. 6p =+1 or —1, depending on the
parity of the number of interchanges of fermion opera-
tors that must be made.

If we use the following definition of the statistical
average value of an arbitrary operator F in the ab-
sence of interaction between the particles (H; = 0):

(1.20)

then by using Egs. {1.11), (1.13), (1.16), and (1.17) we
can put the partition function in the form of an infinite

(Fy = Sp (eWN=1o) B }'}/Sp eMN—Ho) B,

series in which each term is the statistical average of
a T-product of field operators over the ensemble of
noninteracting particles

Z=2,(S (). (1.21)

Sy =3 SN @ § e\ @ (110 (1) 00 ¥ ()
n=y

XA () @ (2o} B (2)) - - - (" () @ (2,) B {2 )]),s (1.22)
where d% = d®xdr and the integral over x is taken
over the volume of the system, while the integral over
the variable T is taken over the interval from 0 to 8.
Similarly we have for the thermodynamic potential

Q=0,— B 1In(S (B)), (1.23)

where the logarithm of <S{p)> can also be repre-
sented as a series (see below).

The index 0 is always used to designate quantities
that refer to the system of noninteracting particles.

If the convergence is rapid, the series (1.21) — (1.23)
can serve as the basis for the calculation of all the
thermodynamic characteristics of the system; this

is the main content of the new thermodynamic perturba-
tion theory (cf. also an interesting version of the new
thermodynamic perturbation theory in papers by Hugen-
holtz*® and Ch’en Ch’un-Hsien®?).

Rules for calculating the terms of the series. The
series (1.22) for the operator S(B) has a great formal
resemblance to the series for the S matrix in quantum
field theory, for which there is a well developed mathe-
matical apparatus. Unlike the case of quantum field
theory, however, in Eq. (1.22) we must calculate the
average values of the T-products of free-field opera-
tors not over the ground state (vacuum), but over
states of the system which contain arbitrarily large
numbers of particles (statistical average). For this
reason we must reexamine the well known proposi-
tions of the mathematical apparatus of quantum field
theory as applied to the calculation of statistical av-
erages of T-products of operators.

Since the statistical averages in Eq. (1.22) are
taken over the system of noninteracting particles, the
free-field operators that appear in Eq. (1.22) have the
following forms:

—1 Al . ipX - h— —
q) (l) . /2 2 ap,'lf(’lp‘\ h—(&p—n) 1:’
p.r

‘P* (r) _ 1~—1/2 2 ai"luue—ipx,’h—{r(ep—r—u)r’

(1.24)
p.7
(0(.'1') - E <-;,}>1/2 (/}keikx,’rhmkr . /}‘;()~ikx/,’; —(akt)' (1.25)
Kk
Let us put 7, ¥, and ¢ in the form of sums of two
parts

(1.26)
(1.27)

P(z) =0, () +0, (%), P (2) =0, (2) +-0,(2),
@ (2) =o_ () + ¢, (x),

where
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vy (z) =V 2 (1— gpr) apu’e ™/
v, (2)= V“"*p}_ (1 — g3) azu

¢4@=§<%y“

—ipx/fi+(8p—u) T (1 28)

‘_ftk) bkelkx/ﬁ-—mkt ‘f‘ ka bie«ikx/ﬁ-l—mkt]’
(1.29)

and the operators vy(x), v;(x) and ¢,(x) are found
from Eqgs. (1.26) — (1.29) by simple subtraction. Ac-
cording to the work of Wick® we define the .#~product
of operators v(x) vo(x)vi(x)vi(x)... @  (X) @, (x)...
as a product in which all the v{ are to the left of all
Vi, Vg, and vy, all vy are to the left of all v, and v,,
all v, are to the left of all v, and, finally, all ¢, are
to the left of all ¢_, so that:

S (01 () v (2) 0 (2) 05 (2) - - - @ ()P, (2) .. )
=d8,0; (x)v) (@) ... v; (2)v; (z7) ... v, (z) Uy ()
o (2) vy () - 9, (D)@, (27) - oo (@) @ (27) ..,

where the sign symbol 6p is equal to 1, depending
on the parity of the number of interchanges of fermion
operators. The T- or ./ -product of a sum of opera-
tors is equal to the sum of the T- or. s ~products of
the individual terms, so that for the working out of an
expression of the form

NP ... ¢...) or T(Ppp*...q...) (1.31)

one must use Egs. (1.26), (1.27), and (1.30). With this
definition of the .#-product the fermion field operators
(1.24) anticommute under the sign of the .#"-product,
and the boson operators (1.25) commute. The differ-
ence of the T- and .#-products of two operators A
and B of the types (1.24) — (1.27) is called the con-
traction 1}_{3

(1.30)

T(AB)— 4" (4B) = 4B. (1.32)

As is well known, the T~ and .#-products (1.19) and
(1.30) — (1.31) of operators ABCDE...F obey Wick’s
algebraic theorem,® according to which the T-product
of a set of operators is equal to the sum of all the .#™-
products of the same operators with all possible con-
tractions:

T(ABCDE ... F)= " (ABCDE . .. F)

4 S (ABCDE ... F)+ ...+ " (4BCDE ... F)

4+ ...4 4" (ABCDE ... F). (1.33)

Since we are concerned only with the statistical av-
erage of a T-product of a set of operators of the types
(1.24) — (1.25) over a system of noninteracting particles,
we shall try to choose the constants qpr, fik, and fox
in Egs. (1.28) and (1.29) in such a way that all statis-
tical averages of 4 ™-products will satisfy the equation

(A" (P ¢...0=0. (1.34)

ALEKSEEV

Then Wick’s theorem (1.33) for free-field operators

ABCDE. .. F of Egs. (1.24) — (1.25) will read simply:
(T(ABCDE ...F)y=ABCDE ... F+ ..., (1.35)

e

where the right member is the sum of products of the
operators with all possible contractions. The expres-
sion (1.35) is different from zero only if there is an
even number of boson operators ¢ under the sign of
the T-product, and if the fermion operators ¥ and *
occur in pairs. This is a consequence of the fact that
for arbitrary values of qpr, fik, and fyi there are
only two nonvanishing contractions of the operators
(1.24) — (1.25):

Y (2) ¥ (2') =

{ V1§ 1,_|qu| urua ot (X—X)/R—(gp—p) (V— 1) >t
H P,

Goap (. — ')

= ‘ —y1 Zlqwlz u’ugmm("_")/r‘ (ep—W) (1— T’) <,
(1.36)
fp (Y (z) = Dy(x— )

i}

Z (ok/.?,V) [ —fu) (1 —fex) oK Z=%)/h—oy (T—T7) _
__/“(kae —ik (X—x')/ht-oy (1:—1’)]’

3 (0/2V) [(1 — fuafan) e X9k

T>1,

>
(1.37)

On the other hand, by using Eqs. (1.24) and (1.25) one
can easily verify that

(T (a (2) bh ()

+ (frafox — frx — fax) €7 (x’—x)/”mkw—r)],

( v 2 (1 —(aprap)) u(’;us‘eip(x"x')m’(ep_”) =) >y,
J p, T

i = V1Y (apap) uﬁuﬁ*e‘“’ oxDA=(ep=) (=T ¢ g,
" (1.38)

©®, ik (X} flim o

(T @)@ (@) =) 5 [(1 4 (biby)) e FT¥ o tee

K

(B ™ GO, (1.39)

where <a'5rapr> and <bgby > are the statistical
averages of the numbers of electrons with the energy
€p and polarization r and of phonons with the energy
wk, in the absence of interaction between the particles.
In order to calculate < 3pra'pr> and <bgbg>, let us
consider

7, = Sp e®WN—Ho) B (1.40)

and the statistical operator W of the system of non-
interacting particles?!

W, = e@otuN—Ho) B — Z-1e(uN—Ho) B, (1.41)

where

pN —Ho = (1w —ep) aprapr + Z wbiby. (1.42)
P, k

Since the different terms of the sums in Eq. (1.42)
commute with each other, the statistical operator
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(1.41) can be represented as a product of statistical
operators referring to each individual state of an
electron or phonon (to the individual field oscilla-
tors):

W, = [] 2= B [Tz e o = [[ W, [[Wer  (1.43)
»r k B, T k
where

Rpr = pelpr, M= bibe,  Zo= |1Zp |12 (1.44)
p.r k

Using the normalization of the statistical operators,

Sp Wpr =1, Sp Wk =1, and also the diagonal values

of the operators figy and fig, which are respectively

0,1 and 0,1, 2,...,», we easily find that

T =170 7 (1 — ) (1.45)

From Eqs. (1.45) and (1.44) we get, by the way, the
well known expression for the thermodynamic poten-
tial @, of the electron-phonon system in the absence
of interaction between the particles
21

(In(1— ooty aon— 2

(L—€p) B
Qo= kg ) 0 (TP,

v
(2nhy B
(1.46)

where in passing from the sum to the integral we have
used the relation

__ 2y dip
= T (1.46a)
P 7T
Knowledge of the statistical operators Wpr and Wk
for the individual particle states enables us to calcu-
late the distribution functions npr and nk of noninter-

acting electrons and phonons:

pr = (aprapr) = (1 + €#7W B2 Sp 708 oy, — (0710 ),

M = (bith) = (1 — eOkB) Sp e KBy, o (xF _ 1)1, (1.47)

The average number of electrons with a given energy
€p,» Eq. (1.47), does not depend on the spin state of the
electron. Therefore we shall hereafter omit the index
r on the distribution function (1.47): npy = np.

Thus if we take for the constants qpr, fik, and fx
the values

(1.48)
(1.49)

then according to Egqs. (1.36) —(1.37) and (1.38) — (1.39)
(Matsubaral?) we have

B @M =0, (e (D)) =0,

and the contraction of a product is equal to the statis-
tical average of the T-product of the given operators.

If for ¥ (x) and $*(x) we insert their series ex-
pansions (1.24), then in virtue of the statistical inde-
pendence of the individual states of the particles, Eq.
(1.43), the theorem (1.50) will also be true for each
term of the sum so obtained; for example,

[ gor = (PP ),

Fix= (14 €™P7 %), (1 — kB2,

fox =

(1.50)

(A (apeap)) =0, (1.51)

where as before the .#~product is understood in the
sense of Eq. (1.30), and the parts of vy, v{, v;, and
v; are played by their individual terms aypy, @{pr,
Qprs and a{pr, which are given by ( Thouless?)

Qppr = (1—qpr) Apry  Q2pr = §prllprs

pr = Qipr ’JF a%pn (152)

a}')r = a‘l‘m - Wopye

All unessential factors are omitted in Eqs. (1.51) and
(1.52).

An #-product of a larger number of factors yy*
is expanded into a sum of .4 ~products of operators
aprap’r’-... If all the fermion operators apr and
a.i;:r' and pairs apraf;r of such operators refer to dif-
ferent states of the electron, then the average of such
an J/~product is zero by Eq. (1.51). I there are any
two identical operators among the apr (or among the
aﬁfr' ), then because of their anticommutation the 4/~
product is zero. Consequently, when Eqs. (1.50) and
(1.51) hold, the average of an .4 -product containing an
arbitrary number of fermion operators ¥ (x) and
$*(x) is equal to zero. This last assertion also holds
for boson operators ¢(x) ( Thouless*?). To see this,
according to Eq. (1.35) we have only to show that the
average of the T-product of any number of boson op-
erators (1.25) is identically equal to the sum of all
products of these operators with all possible contrac-
tions, where by a contraction we mean the expression
given by Egs. (1.37) and (1.49).

The statistical operator W,;, Eq. (1.43), which de-
termines the average value, is factored. Therefore
we can carry out the proof of the theorem for each
individual boson state. The expression <T (¢k(x)
ok(Xx" ) eg(x”)...)> where gi(x) is the term of
the sum (1.25), @(x) =25 ok(x), that refers to the

boson state with the energy wk, breaks up into a sum
of terms containing <b£l bﬁ‘ >>. Because of the or-

thogonality of the wave functions &, with respect to
which one takes the average, the only nonvanishing
terms will be those that contain equal numbers of pro-
duction operators bﬁ and absorption operators by
(Il=m).

According to Eq. (1.2) the occupation-number op-
erators ng = bpby satisfy the following relations
{Bloch and DeDominicis*!);

by = by (e — 1),
nubE = b (ny —2),

.........

bl = bf(ny —m), (1.53)
from which we have
By™bT = by b = b PbI Y (g — m - 1) = bV
X(;lk—m+2)(;lk—m+1)=;lk(;1k— 1) ... (ak—m‘*‘i)-
(1.54)
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Averaging Eq. (1.54) by means of the statistical
operator Wy of Egs. (1.43) — (1.45),

W= (1— e Okbye~obfc = (1 _7) 7%, (1.55)

we get

™y =(1~2) D n(n—1) ... (n—m+1) 2"

n=0
=(1—Z)Zm<7dz—>m%’()Z"_:(i—Z)Zm(d_‘;_)mﬁ

=m) (%)’" = m! (bpby)™, (1.56)
i.e., in the averaging of <bg™b> the first factor
b can be combined in a pair with any of the m fac-
tors by, the second bg with any of the m —1 remain-
ing factors by, and so on, making m! combinations

in all.

The result (1.56) applied to <T ( ¢k(x) pk(x’)
@k(x”)...)> means that the average of the T-product
of any number of boson operators ¢g(x), ¢r(x’),
ok(x”),. is equal to the sum of all products of these
operators with all possible contractions; as in Egs.
(1.87), (1.49), this sum is given by*?

P (@) @x (&) = i [(1 -+ (Bibu)) € Xl
—_—

+ (bl‘;bk) e-ik (x—x’)/htog |t —1/| . (157)
The diagram technique. The individual terms of the
perturbation-theory series (1.22) are averages of T-
products of free-field operators. Since the average of
a T-product is different from zero only for an even
number of boson operators ¢(x), the sum (1.22) con-~
tains terms with even values of the summation index.
In the expansion of a T-product into a sum of products
with all possible contractions we must not contract op-
erators ¥ (x) and ¥*(x) that have the same variable
of integration, because the term with such a contraction
is zero:!

—_ e

(@ @e@vE) .. (0 @)oE)p@) . ded’

-

= {9 e-0)Z@—2) .. @) P .. dedi

=50 2,@a= (.. @@ ve) ... d,  (158)
e ) ieed.

where the integral of the function Zy(x) over all the

space of X is zero, since the sum (1.37) does not con-

tain the term with phonon momentum k = 0.

It is convenient to represent an individual term in
the average of the T-product (1.22) by a graph accord-
ing to the following rule (the analogous method of con-
structing graphs in quantum electrodynamics is de-
scribed in detail, for example, in the book of Akhiezer
and Berestetskii,% to which reference is made). To
each variable of integration x; there corresponds a
point, a vertex of the graph. Since the variable xj is
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contained in three operators ¥*(xj) @ (x;) ¥ (xi), three
lines come together at a vertex —two solid lines, cor-
responding to the operators #*(x;) and ¥ (x{), and
one dotted line, corresponding to ¢(xj).

The operators ¥*, ¢, and ¢ occur only in the form
of contractions. Therefore the solid and dotted lines
will begin and end at vertices of the graph; to the con-
traction y(x —x’) of fermion operators there corre-
sponds in the graph a solid line going from the vertex
x’ to the vertex x, and to the contraction & (x—x’)
of boson operators there corresponds a dotted line con-
necting the vertices x and x’. The operators y*(x’)
and p (x) that are involved in %;(x—x’) contain only
production and absorption operators, respectively.
Therefore it is said that a solid line going from a
vertex x’ to a vertex x describes the motion of a
virtual electron produced at the point x’ and absorbed
at x, and %,(x-x’) is called the propagation function
of the electron. Analogously, % (x~x’) is called the
propagation function of the phonon. As has been noted
earlier, the graphs consist of even numbers of ver-
tices. For example, there is only one term of order
g? in the series (1.22),

"gz—z g d*ry A%, G, (2, — 25) Do (21— 2,) Gy (X, —z,), (1.59)

to which there corresponds a graph with two vertices
(Fig. 1). Conversely, from the form of the graph one
can write down the corresponding term of the expan-
sion of the T-product, remembering that to each
graph with n vertices there corresponds a factor
(—1)8*lgh/n1, where ! is the number of closed elec-
tron loops contained in the graph in question. The ad-
ditional factor (- l)l comes from the anticommutation
of the Fermi operators under the sign of the T-prod-
uct. In order to get all graphs with n vertices, one

.z}‘z.:

FIG. 1

must connect n points Xy, Xp,...,%Xp (the vertices)
by lines in all possible ways such that two solid lines
and one dotted line meet at each vertex. Then to each
such graph there will correspond a definite term of
the expansion of the T-product (1.22), proportional to
g, In writing down the terms from the forms of the
graphs one must take account of the fact that several
terms can be numerically equal, differing only by in-
terchanges of the variables of integration. For ex-
ample, the graphs of different structures with four
vertices are shown in Fig. 2. The four-vertex graphs
not shown are obtained from the graphs of Fig. 2 by
giving different designations to the vertices. One
thus gets, for example, six different graphs of type

c) and three of type d); to such sets of graphs there
correspond numerically equal terms in the expansion
of the T-product.
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FIG. 2

Thus <S(B)> is the sum of all possible graphs
with closed solid lines. Since to each line of a graph
there corresponds a function of a difference of coor-
dinates, the expression corresponding fo an individual
connected closed graph is proportional to the volume
V. In particular, the sum <S(B)> contains terms
that each correspond to several separate connected
closed graphs, for example, the graphs d) of Fig. 2.
Each such term in the sum <S(p)> is proportional
to VB, where m is the number of separate connected
graphs.

On the other hand, the thermodynamic potential
(1.23) must be proportional to the first power of the
volume V. It follows that the sum <S(8)> must be
of the form exp L, where L is the sum of all con-
nected closed graphs. In fact, if we denote by Lg the
contribution from one connected closed graph of type
s, then a term of the sum <S(B)> that breaks up
into several types of connected graphs is obviously
equal to [ (Ig!) 1(Ls) 8, where lg is the number

s
of graphs of a given type. Then the entire infinite
sum < S(B)> can be written in the following way
(Vedenov and Larkin®®):

@)= 3 IT 4@ = [Jete=ette,

1s=0 s
where IZLg is the sum of all connected closed graphs.
For the thermodynamic potential (1.23) we have @
=Q, - g~ 12Lg.
Besides simplicity and the well known ‘‘automatic’’
character of the calculations, this method has the ad-
vantage that by means of intuitively significant graphs

i

—Z;18p o(MN—Ho)B,

Bo (X1 —Xa, Ty—To) = (T (P (2;) $* (22))

i

—Z318p (RN—Ho)B,

From this we have for 7y -7, =7< 0

Go(xy—xy )= — 5y (x,

{ Z;) Sp (WN—Hopy (AN —H0)(T, —7)

Z5'Sp e(uN_,Ho)ﬁe—(u.N-Ho)(tz—‘rfi—ﬂ) P () e(HN—Ho)(r2—11+ﬁ) P (xy),

one can get a deeper understanding of the structure of
the higher approximations. Given the possibility of
writing down any term of the perturbation-theory
series, one can sum an infinite set of terms of a defi-
nite class, and thus get a result that is different from
ordinary calculations by perturbation theory (an ex-
pansion in terms of a different parameter, which is
especially valuable in cases in which perturbation
theory is inapplicable). Moreover, in the diagram
technique one can very simply get estimates of the
orders of magnitude of omitted graphs, and thus can
easily establish the range of applicability and the ac-
curacy of a selective summation. A remarkable ex-
ample of this is a paper by Vedenov and Larkin,*® in
which a selective summation of an infinite number of
terms in the perturbation-theory series is used to find
the free energy of a completely ionized gas [with the
Hamiltonian (1.71a) — (1.71c), in which v (X —Xx’) is the
Coulomb potential for the interaction of a pair of par-
ticles ] in the form of an expansion in the density n.

In addition to the Debye term, the authors succeeded in
getting the next two terms of the expansion, propor-
tional to n® In n and to n?.

The change to the p representation. The technique
for calculating the terms of the series (1.22) is greatly
facilitated by going from the coordinate representation
to the momentum representation of the functions 9
and %,. In doing so it must be kept in mind that the
contractions 9g(X;~Xy, T{—Ty) and Py (X;—Xy, T{—Ty)
are functions of the differences x;~x, and 7, -7y, and
that as functions of 1, -7, they are defined only in the
range from —f to 3. Let us define the functions
&y (x,7) and Ty (X, T) on the entire T axis by continu-
ing them periodically. Then we can expand %,(x, 1)
and 94 (X, 7) in Fourier series with respect to the
variable 7, and in Fourier integrals with respect to
the space coordinates x; for example:

G (x, 1) = (2:‘1—’11)33 2 S B (p, @) gipx/m—on7) d3p,

B
P, n) _ 1 S S dgxgo (X, T) e—HPXR/A—@nT), (1 .60)

The change to the p representation is much simplified
owing to an important property of the functions %, and
#y. According to the definition (1.32) of a contraction
of operators, and also Egs. (1.50), (1.20), and (1.18),
we have for the function %

UNZHOCED g (2,

WN=HOE=T)

P(x;) e
VBT

T > Ty,
Ty > T,

T > Ta,

—(WN—Ho)(T,— T, +B) Pt (Ka) Ta> T

¥ (%) LN —HOT, ~ Ty +B)

— Xgy -c.l..ﬁ), (1.61)
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where the minus sign of %,(x; —X,, 7+ 8) is due to
the anticommutation of the fermion operators. An
analogous relation also holds for the contraction of
the boson operators for 7< 0

‘@o(x’ T):"@o(xv T+ﬂ)

If we continue the functions &,(x, 7) and & (x, 7)
of the variable T periodically along the entire 7T axis,
then the relations (1.61) and (1.62) will be satisfied for
all 7 (Abrikosov, Gor’kov, and Dzyaloshinskiil®).

As'we have shown by the diagram technique, each
vertex of a graph joins an even number of fermion

B
lines. Therefore all of the integrals f . . .d7 that
0

(1.62)

B
occur in Eq. (1.22) can be replaced by %f ...d7r. In
-B
fact, by making a change of variables and using Egs.
(1.61) and (1.62), we get

B
\ o (21— 2) Do (23— 2) Gy (a — ) dr
0

0
= S Go(2,—2) Dy (X3 —X, T3 —1+B) Ty (x—x,) dr
-8

0
={5@0—2 2, (@~ ) 9, (e =) dx. (1.63)

-B
This fact allows us to carry out the Fourier transfor-
mation easily in all of the terms of the series (1.22).

1t also follows from the relations (1.61) and (1.62)

that in the Fourier expansion (1.60) of the fermion
contraction ;(x,7) the only nonvanishing components
are those with wp = (2n + 1) 7/8, and in the expansion
of the boson contraction %, (x,7) there are only com-
ponents with wp = 2n7/8, where n=0, £1, £2, +... .
According to Eqs. (1.38), (1.39), and (1.47) the explicit
forms of %,(p, wn) and Z;(k, wy) are as follows:

Goap (P ;) = — (10, + p — 8p) " Ogp, 0, = (2n+1)7/B, (1.64)
i op
D 0 (k7 (‘Dn) = m ’
In the p representation a propagation function
%, (p, wp) corresponds to each solid line of a graph,
and a function %, (k, wp) to each dotted line. To each
vertex of a graph there corresponds a factor
8 (Zp) 8yzy, » Where Ip and Zwp are sums of the
components of the four-dimensional momenta of the
solid and dotted lines that come together at the vertex
in question, and dgx, is the Kronecker 6 symbol,

o, = 2nn/B. (1.65)

1 for ¥ o,=0,

Sozon =1 0 for 3o, #0.

We can agree to include in the sums Zp and Zwy the
momenta of the particles that are produced at the ver-
tex with the plus sign, and those of particles absorbed
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at the vertex with the minus sign. There is to be an
integration over all the three-dimensional momenta
of the solid and dotted lines, and a summation over
all the fourth components of the momenta. To an in-
dividual graph with n vertices there corresponds a
factor

(— 1) g" [(2mh)* B]*"/nl,
where [ is the number of closed loops of fermion lines
and m is the number of solid and dotted lines con-
tained in the given graph. For example, the expres-
sion Z that corresponds to the graph of Fig. 1 has
the following form in the p representation:

o} d3p; 4%

Zw g Z S
(2mh)e Bm . (ioyF-p—ep ) [i (014 0) +p—ep 4y ] (0f+00)
L 3
o, =2n+ 1)/, w=2mna/p, (1.66)
where we have used
1 v
8(0) =gy Pt |_ =1 (1.67)

since the integration over the space coordinate x is
always over the volume V of the statistical system
under consideration. The summation over w and wy
in Eq. (1.66) leads to the following result:

O 2g%VB | [(np_np-('—k) nk+(1'—"p+k) np] Oy d®p d%k 68
20 = i 3 epre— T Oy pdk, (1.68)
where np and nk are the respective distribution func-
tions of the electrons and phonons, Eq. (1.47). To
terms of order g? the partition function of Eq. (1.21)
is

Z=Zy(1+Z%), (1.69)

and the thermodynamic potential £ of the system is

Q= —p1InZ=0Q,--p1Z%, (1.70)

where —p~1Z jg the first correction to the thermo-
dynamic potential Q= ~p"11n Z, [Eq. (1.46)] of the
noninteracting particles, caused by the interaction.

Generalization to various cases of interaction of
the particles. The apparatus of the thermodynamic
perturbation theory has been illustrated by the ex-
ample of the electron-phonon system. It is easy to
see, however, that the apparatus is suitable for the
study of any statistical system composed of fermions
(or bosons) that interact in pairs through a poteuntial
v=v(x-Xx).

Let us consider a statistical system of identical
particles of a single type, which interact in pairs with
the potential energy v (x—x’). Extension of the re-
sults to a multicomponent system presents no diffi-
culty. We regard an individual particle as a quantum
of the y -field, which is a function of the coordi-
nates and satisfies a definite equation. In the second-
quantization scheme the Hamiltonian of the statistical
system (Matsubaralt) is written

H=HO+H11

(1.71a)‘
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S v (X)< >1p(x) d’z, (1.71b)

(x —x") " (x) (P (x) p(x")) $ (x) d*z &%, (1.71c)
where for a system of fermions
Yo (X) =V Y apuget™, i (x) =
) I

[aprs @prrr).=0pp:drry  [apr, @prrr], =
and for a system of bosons

PO =V by, (x) =YV 3 b,

Kk k
[bk, bike]l. =0k, [b, bi].=[bf, bir].=0. ’ (1.73)

With an interaction of the type (1.71c) the total number
of particles

H1=%S

V—l/‘zz a uroe_{px/"

[aPTv aP'r’] —0 (l 72)

N={v @y (1.74)
is conserved along with the total energy (1.71a), if the
system is closed. To describe a quasi-closed system
with a variable number of particles we again use the
Gibbs distribution (1.7), in which the parameter u now
means the chemical potential of the particles (1.74) of
the system. Just as in Eq. (1.7), the parameter p is
chosen so as to obtain the correct average number N
of particles in the system,

N = Sp NeWsN—H)B/Sp eN—HB,

As before, the partition function of the system is of
the form of Egs. (1.21), (1.16),

Z=20§_‘| L—#lgdtlpgdrz

bR A
x idt (T[Hy(v) Hy(3y) . .- Hy(v)D, (1.75)
where0
Him=5{ox—x)9 D@ &0
x4 (x', 7)) P (x, T) dz &%, (1.76)

and the dependence of P (x) and y*(x) on the variable
T is the same as in Eq. (1.18) (‘‘interaction represen-
tation’’).

To use the rules of calculation developed previously,
we rewrite the expression (1.76) in the form

B
V@ dr=g (T =) T @v )@ ) e dedts
—50(0) S v* (o) ¥ (z) d*z, 1.77)
Uz—z')=v(x—x)d(r—1), (1.78)
where
]
\ Fle—v)8(@—v)dv =3 [F(+0)+F(—0)],
0
8(v4B) =8 (r). (1.79)

As the 6 (7) of Eq. (1.79) we can take, for example,
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o<

8(v)=p1 _2_ exp (i2nnt/B). (1.80)

Noting that for arbitrary operators A, B,... we

have the relation

T[T(A), T(B), ...]1=T[A, B, ...],

let us rewrite the partition function (1.75) in the con-
venient form

z2=2,{T[exp{ -3 { W' @ (o)
x U (@—') (" (') (&) d'z de’

1 -
+300 (v @e@a=} ], (1.81)
to which all of the rules of calculation previously es-
tablished can be applied. In the case of Fermi-Dirac
statistics the contraction of two operators is given by

1Pa (.Z) 'PE (Z,) = ‘?Oaﬁ (.’L‘ - .Z’)

;

and for Bose-Einstein statistics

P (2) 9" (z) = G (z —2')

;

A difference from the case of the electron-phonon
system is that in expanding the T-product of Eq. (1.81)
we must include among the possible contractions con-
tractions that contain ¥ (x) and ¢*(x) with the same
argument. To each such contraction there corresponds
in the graph a solid-line loop that begins and ends at
the same point. To a dotted line in the graph there
corresponds the factor U(x—x’). Besides vertices
at which three lines (two solid and one dotted) meet,
the graphs now have vertices at which only two solid
lines meet. The appearance of these is due to the ex-
pression fz/)*(x)zp(x)d“x in Eq. (1.81). The graphs
that correspond to terms of the series (1.81) propor-
tional to the first power of the potential v are shown
in Fig. 3. Corresponding to these graphs we have as
the expression Z; (for fermions)

Z1=—%U(O)S?

1 ¢ “Ne g y ,
— 7 YU (3 —2) F00q (0) Gy (0) di dia

- X=X}/ (B (Tt
1% é(i—np)éage"’(x X')/h—(ep—p)(v 1:)’ >,

(1.82)

—y? Z ﬂp5a3eip(x_")/"_(EP'_")(‘""'), T<T,
P

np = (7P 4 1)1,

V1Y (4 ny) e P30 (Epmine=v)
r

V-1 2‘ npeip(X—x ’)/n—(sp—u)(r—t’)’
P

>,
1< v, (1.83)

np= (e(ep—u)ﬂ _ 1)-1'

e (0) a2

+5 S U(2—2") og (8 — 2') G (& — 2) diz dia’.  (1.84)

Using the relations



32 A. 1.

A ) @@ .

FIG. 3
Foap (0)= — V1 X nybag, 0(0)=V"1 Y vy,
P P
S v(x—x)d¥z =y,

gO(zﬂ (x - .’L") yoﬁa (x, - .’l?)

= =2V-2) 2 ny (1= ny) ei(P—p')(x—x")/n—(ep/—ep)n—rq,
P

where v, is the Fourier component of v(x), we
transform Eq. (1.84) to the form (Matsubara!t)

Z,=V1p ? g {wpny — 20 npnp — vpr_ptip (1 — nyr)}

= — V3B 3 21 (2v,— Upr—p) Nphpes (1.85)

pp
from which it can be seen that the presence of the
expression

2O ¥ (@)% (@) d'

in Eq. (1.81) means the subtraction of a proper-energy
term in the final result. In the case of Bose-Einstein
statistics there will be a plus sign in the round brack-
ets of Eq. (1.85), the term v, is not multiplied by 2,
and the entire expression is divided by 2.

The calculation of the terms of the series (1.81) can
also be done in the p representation. In fact, by using
a general property of the propagation functions (1.82),
(1.83),

Go(x, 1) =F Gy (x, v+ ) (1.86)

(the upper sign is for fermions, the lower for bosons),
and the fact that an even number of fermion lines meet
at each vertex, and that U(x, 7+ 8) = U (X, 7), one
can easily verify that the equation

=B

holds for each of the variables T in all the terms of
the series (1.81). Then the expansion in Fourier series
can be carried out in each term of the series (1.81), if
the term does not reduce to a mere constant.

In the p representation there corresponds to each
solid line a factor Yj’wﬁ(p, wn), Eq. (1.64), for fermi-
ons, and a factor

G,(p, 0,) = — (io, +p—ep)™t, o, =2nm/p (1.87)

for bosons.
line is

The factor that corresponds to a dotted

Uk, ©,) =0k vx= S v (x) e=ikx/n gz, (1.88)

The further remarks on the diagram technique are the
same as in the case of the electron-phonon system.
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In the generalization to different forms of pair in-
teraction of the particles it has been tacitly assumed
that there is no superconductivity in the Fermi system
considered, and that the Bose system is at a tempera-
ture above that of the Bose condensation, since our
proof of the very important theorem of Egs. (1.34) and
(1.35), which is the basis of this thermodynamic per-
turbation theory, does not extend to such cases. A
thermodynamic perturbation theory for Fermi systems
with superconductivity must be constructed on the
basis of an extension of the work of Gor’kov,” and such
a theory for Bose systems below the point of the Bose
condensation must be based on an extension of the work
of Belyaev.®

2. THERMODYNAMIC GREEN’S FUNCTIONS

The system of coupled equations. In the preceding
section we have expounded the new thermodynamic
perturbation theory based on the methods of quantum
field theory. The application of the methods of quan-
tum field theory to statistical problems can be greatly
extended if we use Green’s functions. Just as in quan-
tum field theory, in statistical physics the Green’s-
function method makes it possible to obtain physical
approximations which differ from the expansions of
the perturbation theory, being as a rule the result of
the summation of an infinite set of definite terms of
the perturbation-theory series. The use of Green’s
functions has been especially fruitful in the study of
the thermodynamic properties of a system, in the cal-
culation of the total energy, and also in calculating the
energy spectrum of weakly excited states of a statis-
tical system.

Let us first consider the so-called thermodynamic
Green’s functions of a statistical system, which we de-
fine in the following way:

Gy (@, ) =(T [y (2} P* (=) SH/(S), (2.1)

Gy (2120, 2,23) = (T [¥ (23) § (22) ¥* () §" (2,) SHAS),  (2.2)
gn (xl xnv xl x';l)

=(T[§(z)) - -« Pl&) P* () - . - ¥ (7) SDHAS), (2.3)

and which we call respectively the one-particle func-
tion, the two-particle function, and so on. In the case
of the electron-phonon system the § operators that
appear in the electron thermodynamic Green’s func-
tions, Egs. (2.1) — (2.3), are defined in Eqgs. (1.18) and
(1.3), and the function S = S(g) is given in Eqgs. (1.16)
and (1.17); the phonon Green’s functions are defined
in analogy with Eqs. (2.1) — (2.3). For example,

2y (z, ") =(T 9 (z) ¢ (z') SHKS)

is the one-particle phonon thermodynamic Green’s
function.

In the case of a statistical system with particles
interacting by pairs, Egs. (1.71a) — (1.71¢), we must

(2.4)
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take for the function S = S(g8) in Egs. (2.1) — (2.3) the
function given by Egs. (1.16) and (1.77).

In working with Green’s functions it is convenient
to use the following well known theorem connecting the
T and N products of operators, which is proved in de-
tail in the papers of Anderson® and Matsubara.! Let
F (¢*, ¥, @) be a functional (regarding functional dif-
ferentiation, see Appendix 1) which can be expanded
in a functional series in the operators »*, ¥, and ¢
(for definiteness we shall think of an electron-phonon
system ); then

TF (Y, b, @)] =" [e8™F (§", ¥, pye~2e 2],  (2.5)
where
\ & 5]
3= g 8 Y5 10y (2~ ) S5 T T (2.6)
=%S d4xd4y@0(x—y)€qf(—z)3q%, (2.7)

[ar WO ], = [ %], = tud @—)

[—awi(x) » %(y)]f[gﬁw, ] =0 28
r o) P}
“lww ww ]
(s v ] =3C-0 [wmm w@ ] =0 @9

When applied to the thermodynamic Green’s func-
tions (2.1) — (2.4) this theorem gives, for example,

G @y o oe Ty @) o ) =N [€2€3 () . .. P (z0) P (2])
<P (@n) GDAS), (2.10)
0=exp< —g Sq;'(ac)cp(x)ip(z)d“x). (2.11)

Here the operator exp(—A) exp(—2Z) is replaced by
unity, since the wave functions of the statistical sys-
tem, with respect to which the averaging in Eq. (2.10)
is done, are not functionals of the operators »*, ¥,
and ¢, and consequently all terms of the series
exp (—A) exp (—Z) that contain functional derivatives
are zero.

It is easy to obtain the system of coupled equations
for the thermodynamic Green’s functions (2.1) — (2.3)
if we use the commutation relations

s .
g (%) = Pa (2) €2+ S YT oap (EY) Ty

b (2) = ¢ (2) eA—{-S d*y D, (x-—y)s%y)e“, (2.12)

which can be verified by direct calculation. In fact,
let us commute the factor exp Z with ¥ (x,) in

Eq. (2.10), remembering that terms in which opera-
tors ¥ (or %) and ¢ stand to the left of exp = and
exp A, respectively, are zero in accordance with the
theorem about averages of .#~products. As the result
of this commutation we get a functional-derivative
operation 6/6y*, and on taking the derivative accord-

ing to the rules (2.8) we get among other things, a
term with the operator ¢, according to the formula
8

[m](’: —89 () bp (y) o- (2.13)
It is easy to get rid of the ¢(y), however, by commut-
ing the operator exp A with ¢ (y) by means of Eq.
(2.12). As the result we get the following infinite sys-
tem of coupled integral equations:

n
Golzy oo Ty 2y - 2y = 2 {— 128, (2, — x5)
s=1

g ' ’ ’ 2
XGp 1 (Ty oo Ty Ty oo i Zigy ... Tn) — 8 S d'y d*z3,

X(2y—y) Do(y—2) Gnu1 (Y22 - - - Tn2, 22, . .. Tn),

n=1,2 ..., co.

(2.14)

Here for brevity the spinor indices in the % functions
are included in the coordinate variables, so that inte-
gration with respect to a coordinate also implies sum-
mation over the corresponding spinor index. This
system of coupled equations (2.14) for the Green’s
functions is very similar to the integral equations con-
necting molecular distribution functions of different
orders, which have been found by Born and Green?®

and by Kirkwood*® in classical statistical mechanics
(in this connection see papers by Bogolyubov4? and by
Ch’en Ch’un-Hsien®®). Since it is impossible to find
the exact solution of the system of equations (2.14),
one tries to find various approximate solutions. Thus
in studying the infinite system of equations (2.14) one
usually breaks it off by assigning a definite form to
the Green’s function of some fixed order, and finds

the solution of the ‘‘broken off’’ closed system of equa-
tions. For example, if one prescribes a definite form
of the three-particle Green’s function Gj(xXyXs, X{X3x3),
then the one- and two-particles Green’s functions are
found from the equations

5., 2)=8,(x—2")

—g* S Ay d*2 8, (x —y) Dy (y — 2) G, ¥z, zx'), (2.15)

Ga (1125, ,2;) = Gy (21— 2) Gy (%0 27) — Fo (21— &) G1 (22, ;)
—g*{ dy diz G, (01— y) o (y—2) Gy (ymaz, i) (2.16)

In writing the equations for the Green’s functions
one can take into account the interaction between the
electrons by introducing a self-consistent field in the
operator for the interaction energy, Eq. (1.4), and con-
sequently also in the operator S, Eq. (1.16). In this
way Matsubara!® has determined the energy spectrum
of the electrons in a metal. His results agreed with
those of Bardeen,*® which were obtained in an entirely
different way.

Equations for the thermodynamic Green’s function.
In applications it is most convenient to use equations
that contain only the one-particle thermodynamic
Green’s functions. The shortest way to obtain such
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equations is to use the Schwinger technique of varia-
tional derivatives (Schwinger!). As an illustration
let us consider a statistical system of electrons and
positrons interacting with each other through the elec-
tromagnetic field (a plasma). For generality we shall
take the relativistic problem. The Hamiltonian of the
system in the Schrodinger representation is written
as follows:*

H=H0-{-Hl, (2.17a)

2 4 2

Ho=2ep (X apeape + 3 bprbpr) + ) oxckpcry, (2.17b)
) r=t r=3 k, a=1

Hy= — j(x) d(x) aos, (2.17¢)
Jo (%) = ielN ( (x) ywip (X)) = (i€/2) Vvap [%a (X) bp (%) — b (x) e (x)],
(2.17d)

2 4
P(x)= y-1/2 ( 2 . apu” (p) €iP% - 2 by (—p) e~ipx), ]
P, T p, r=3

»

— 2 B i _
P(x)=V"12 (p ) ) ayu (p)e—ix4 Y ) byt ( — p) e—19%),
= pr=

y T

4
A= N (Qoul) "V (cune™= o+ cipemn) 1.

(2.18)

Here H, is the Hamiltonian of the free electron-
positron and photon fields, and H; is the Hamiltonian
for the interaction between them; uf(p) with r =1, 2
is a solution of the Dirac equation

(ip+m)u" (p)=0 (2.19)
for positive energy, €p = (p* + m?)Y2 = _ip,, and for
r =3, 4 it is a solution for the negative energy

—~(p? + m?)¥%; uT = ul*y,; A, is the four-dimensional
vector potential of the electromagnetic field; apr(bpy)

and af;r(bf;r) are the operators for absorption and pro-

duction of an electron (positron) with momentum p,
polarization r, and energy ep = (p? +m?)
ci», are the analogous operators for a photon with mo-

mentum k, polarization vector I* and energy wi = |k|.

The operators for changes of the numbers of particles
satisfy the commutation relations:
[Ckm Cf(:hr]- = 6;,;,'6“(’-
(2.20)

In applications to statistics it is a very important
fact that besides conservation of the energy (2.17a) in
a closed system we also have conservation of the total
charge Q,
Q=% \ Splw* (x) ¥ (x) — ¥ () ¥* (x)] d%

2
= e( Z a;ra'pr"— 2 b;)rbpr)r
p p, r=3

, =1

[aprv a{)'r’]_ = [bprv b;)'r']_ = 61‘1"6[)])’1

(2.21)

*In what follows we use a system of units in whichh=c=1,
e*/4rhe = 1/137, and adopt the following rule of summation over
vector indices: pg = pyqy =p;9; + P29 *+ Ps9s + P«Q. Further-
mote § = qyyy, where y, and y,,, = —iy®,,, are the usual Dirac
matrices. N denotes the N-product in the sense of quantum
electrodynamics.®”
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or, what is the same thing, of the difference between
the total number of electrons N~ and the total number
of positrons N7,

2 4
N = Zia;,apn Nt = 231;,;,};,,. (2.22)
p, =

p, r==
Therefore it is convenient to describe a quasi-closed
statistical system of electrons and positrons by means
of a Gibbs distribution with a variable number of par-
ticles, in which the probability Wy N-.N* for the sys-
tem to have a given difference N~ —~N* between the
numbers of electrons and positrons and to be in the
state with the energy Ej N-_N* is
(Q+u(N” —N*)-E, N~ -N"B,

Wa v~ —n*t=c¢ (2.23)

where p and —pu are the respective chemical poten-
tials of electrons and positrons. Repeating the argu-
ments of the preceding section, we can easily find the
partition function Z for the system,

Z =SpeN" ~N~HB =7 (S (B)), (2.24)
@)= TeS (x)A (x) dax
= S (a2, T IV @ () d@) b))
n=0
s N (2,) A () 9 (@), (2.25)

where, as in the case of Egs. (1.16) and (1.75), the
field operators are written in a special ‘‘interaction
representation,’’ so that the dependence of the opera-
tors P (x), ¥ (x), and A (x) on the variable T is

given by a single law for all operators, for example
¥ (z) = O ~N‘)—Ho)r1p (x) BN ~N-Hor (2.26)

By using Eq. (2.25) one can find the electronic and

Y2 and ck, and photonic thermodynamic Green’s functions, and also

other thermodynamic characteristics of the system,

by the methods of perturbation theory, but with the

modification that as the contractions of the electron-

positron operators, ¥ (x)¥(x’) = §(x-x’'), and of
[ S——— ]

the photon-field operators, Au(x)Ay(x’) = :ZOW,( X-Xx'),
—_—
one must use the following expressions:

5_ 3 ; . .
{2“);". S ‘2181’ [(ng— 1) X=X —(ep—p) (v—7')
P

+ e PETHEI 7], o> 1, (2.27)

Gy(z —2)=

P B (g — 1) e X Heptn) (=)

@y ) Ze,
+n;eip{x—x')—(ap~u) (r—t’)]_’ t<, (2.28)
ES ) J
P="Y1 (5‘?—p)+Yv = 'ng‘z.—v"‘P'V«i'
n Buy ok - o
Dopw(x— ') = (2;3; S 2oy [(1+m) D L
+ mye~ Koy | 1T |]' (2.29)
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where np, nf,, and ni are the respective distribution
functions for electrons, positrons, and photons,
nF = (e(ap4=u)ﬂ+ 1)—1

ng = (%P — 1)1 (2.30)

More valuable calculations, however, are made without
perturbation theory, on the basis of the solution of the
equations for the Green’s functions. To derive these
equations we note that by means of the relations

T[$(2)... ()S]=ST [ (@) ... $(=)],
T[A(z) ... A(z')8)=8T[A(z) ... 4(")] (2.31)

the thermodynamic Green’s functions can also be writ-
ten in a different form. For example, for the one-
particle thermodynamic Green’s functions (we shall
hereafter omit the index “1’’) we get

Gap (2, 2') = Sp (€@ 1N NI BB T (3 (2) 5 ()

= [T(‘Pa (=) ‘Pﬂ (=" )]avs
Dy (z,2") =Sp [e@+pN" =N-WBT (4, (z) 4y (7))}

= [T (4 (%) 4y (2")]aw (2.32)

where the tilde ~ denotes operators in the Heisenberg
representation,

V(z)=e
By using the commutation relations of the operators
P(x), P(x), and A(X) one can verify without diffi-
culty that the Heisenberg field operators satisfy the
following equations:

| (p— ied () + m) P (2) =
S

—(u(N" —N*)—H)rw (x) N =ND-my (2.33)

(2.34)

Tf:_z> A (2)= —ieN (b (2)v9 (@), {2.35)

which coincide with the corresponding equations of
quantum electrodynamics if we make the replacements
T—it, u — 0.

In order to get the equations for the thermodynamic
Green’s functions (2.32) we formally introduce an aux-
iliary external-current function J(x), where J(x) is
an unquantized function. Then in the interaction oper-
ator (2.17c) there isanadditional term — f J(x)A(x)d%,
and the Heisenberg operators of the electron-positron
and photon fields will satisfy the same equations (2.34),
(2.35), except that the external current J(x) is added
to the electron-positron current in Eq. (2.35). Let us
consider the Green’s function in the presence of the
external field; we define it by the formulas (2.1), (2.4),
and (2.32), in which

S (ﬁ) — TeS(J'(JC)+J(x))A(x) ddx. (2 .36)

In this case the Green’s functions are functionals of
the external field J(x).

We can set up equations for these Green’s functions,
and for J = 0 the solution of these equations will give
the thermodynamic Green’s functions of the real sta-
tistical system without the external field. For this
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purpose we consider T [%(x, T) Tp(x', 7')] as a func-
tion of 7. For T = 7’ this function has a discontinuity
equal to 86 (x—x’). Consequently,
o
=7 [y @) ] +B8(x—x)b(r ).
(2.37)

2rHE @)

Performing an averaging [...]gy of both members of
Eq. (2.37) and using Egs. (2.34), (2.1), and (2.36), we
easily find

(P —ie[A)aytm = iepy 5707 ) 9 (@ 2) =8 (2 —2).
(2.38)

Similarly, averaging the equation for A (x) and then
taking the variational derivative with respect to the
current, 6/6J,(x’), on both sides of this equation and
using Eq. (2.31), we get

) Lo 3%, (=, 2)

( o )wuv (z, z') = — 80 (z — 2") + ievyop 6?: (=)
(2.39)

where we have used the notation

3[4, ()] - T

—Ta.%mal = [T (Au(x) Av(2’))]av

- [‘qu (z)]aV[l‘TV (Y av= Dy (z, ')

which for J = 0 agrees with the definition of the ther-
modynamic Green’s function, Egs. (2.32), (2.4), since
[ (®)lay | g=¢ = 0.

The system of equations (2.38), (2.39) is usually
written in a different form by expressing the varia-
tional derivatives in terms of a mass operator M,

a polarization operator II“V, and a vertex operator
T'y, by the formulas:

8% (=, z')
—leyy &, (=)

=t (NI (@ 9 Tz 1) By, 29 (a0 o) diy dty’ d

(2.40)

S M (z, 2) 5 (2, z")d%2,

635(1 (=, )

wvuab—,g(—T e* Sp S I (%, y) Cw (y2, ') § (2, %)

X Bonly's 2y ' a5 = (T (@, 4) Dun =) d'y,

(2.41)

n_ . 8%71(y, 3) N 8M(y, 2)
r , =l = v6 —2)8(z— o ot
v(y2, ¥') A e (y—2)8(z y)+l§e[Av(y,)]m
(2.42)

When the external field is turned off, J = 0, the
Green’s functions that appear in the relations (2.38) —
(2.42) coincide with the thermodynamic Green’s func-
tions (2.32), which because of the homogeneity of the
statistical system under consideration are functions
of the differences of coordinates, 9(x,x’') = §(x—-x’),
D(X,x') = 2(x—x") {one can easily verify this by
direct calculation, by carrying through the arguments
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that lead to Eq. (3.4)]. Consequently, the mass, polari-
zation, and vertex operators are also functions of the
differences of coordinates,

Mz, 2'y=M@x—=z), O, 2)=0x—=z'),

Ty, 2) =T (@ —y, y—2),
and as functions of the difference of the fourth coordi-
nate, 7—T7’, all of these functions are defined in the
range from —g to 8. We can, however, define them
on the entire 7 axis by continuing them periodically.
By repeating the proof of Eq. (1.61) for the functions
% and @ one easily finds that also in the general case
H, # 0 these thermodynamic Green’s functions have
the properties (1.61) and (1.62) (Abrikosov, Gor’kov,
and Dzyaloshinskii15 ). According to the definition
(2.40) — (2.42), the mass and polarization operators
have these same properties:

M, ty=—M(x, 1+8), O(x, 1)=U(x, t-+f).

In the change to the p representation this fact allows
B
us to replace all integrals f . . . d7 contained in the
0

(2.43)

B

relations (2.38) — (2.42) by integrals 4 f . ..dr. After

-B
this the Fourier transformation (1.60) is easily carried
out in all of the expressions (2.38) — (2.42). As the re-
sult ene gets the following equations in the p represen-
tation for the thermodynamic Green’s functions (2.32)
( Fradkin!®,2%).

[ipy — (ipa+ W) ya+m+M (p)] G (p) = 1, (2.44)
(k2 ~ 11 (k)] & (k) = 1, (2.45)

M(p)= o 2 Y9 (p+HT (p+k B2 W) &k, (2.46)
ky

M) =goep D § SPYS @+ BT (p+k, B) I (5) &P,
Pa

T'(p, pY=v+A(p P}

p=o,=02n+1)n/p, ky= o0, =2mx/p. (2.47)

Here A(p, p’) is defined as a series in e? which con-
tains the set of all vertex-part graphs except the
simple vertex (point).

Let us rewrite Egs. (2.44) and (2.45) in the form

Z(p)=5,(p) =G (P) M (p) G (D). (2.48)
D (k) = Do (kY + Do (k) 1L (k) D (k), (2.49)

where the zeroth-approximation (e? = 0) thermody-
namic Green’s functions

Go(p) =lipy —(ips+ W va +m]2, Do(k)=k?  (2.50)

are the same as the contractions of operators, Egs.
(2.27) and (2.29), written in the p representation. If
we solve Eqs. (2.48) and (2.49) by the iteration method,
then we get the perturbation~theory series for $ and
2. A better physical approximation, however, is found
by expanding the kernels of Egs. (2.48) and (2.49) in
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series in e? or in another parameter of the thermody-

namic problem, and then solving exactly the equation
with an approximate kernel. For example, if in Eq.
(2.49) we keep only the first nonvanishing approxima-
tion (k) to the kernel I(k) [this approximation is
obtained if in Eq. (2.47) we replace all functions by
their zeroth approximations ], we find

Dy (k) =72 [1 — k211 (k)] (2.51)

where [1~k™21I'(k)]z} is the matrix that is the re-
ciprocal of the matrix 6y —k™21},(k). In the lan-
guage of perturbation theory, the solution (2.51) is the
result of the summation of an infinite number of terms
of a definite class,

D =D+ BB+ BIDIID ...,  (2.52)

to which there correspond the graphs of Fig. 4.

FIG. 4

In the concrete use of the solution of Eqs. (2.48) —
(2.49) infinities may appear which are associated with
the renormalization of the mass and charge of the par-
ticle. These infinities, however, are easily removed
by the same recipes as exist in electrodynamics. This
question has been treated by a number of authors in
connection with the application to statistics, for ex-
ample by Fradkin!® and by Akhiezer and Peletminskii.??
The latter authors have calculated the thermodynamic
potential of a gas of electrons, positrons, and photons
to and including terms proportional to e*(ln e)?. The
divergences that arose were removed by renormaliza-
tion of the charge and mass of the electron and redefi-
nition of the vacuum level.

In the nonrelativistic approximation, in which the
mean energy of the thermal motion of a particle is
much smaller than its rest mass, B" <« m, we must
make the replacement €y —m + (p?/2m), g —m +u’,
Ys — 0ap (o and B run through the values 1, 2) and
regard all quantities as small in comparison with m;
then

—i i —3d
=

which agrees with Eq. (1.64). Similarly, the expres-
sion (2.27) goes over in the nonrelativistic case into
Egs. (1.38), (1.47), since the positron distribution func-
tion (2.30) becomes identically zero. Neglecting terms
of the type of a retarded interaction, we get for the
function %4(k) in the nonrelativistic case

‘suv 1

T TR (2.54)

@ouv (k) =

and in the polarization operator (2.47) we must set
Y1,2,3 = 0, ¥4 = 6B, and replace %, by the nonrela-
tivistic value (2.53). Remembering these points, one
can write down without difficulty the equation for the
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thermodynamic function %(p) (and also that for the
function %) that describes a system of nonrelativistic
particles interacting through the Coulomb field [see
later argument, Egs. (2.66) — (2.71) ].

When we go to the absolute zero of temperature
B — = in all of the relations (2.44) — (2.49) and the
sums over discrete frequencies p, and k, are re-
placed by integrals,

1 1
_ﬁ—z.”__)?ﬂ—j
Py

In nonrelativistic formulas (for example, in the use

of perturbation theory) one may encounter integrals
of several factors of the form (2.53). In such integrals
one can change the variable of integration, pj = ip,,
and then turn the path of integration back to the real
axis. Then the passage around the poles will be as
shown in Fig. 5 (Abrikosov, Gor’kov, and Dzyaloshin-
skiils).

)

g ... dip.

—~

(2.55)

o~

FIG. 5

In the case of the electron-phonon system, Egs.
(1.1a) — (1.1c), the equations for the electron and pho-
non thermodynamic Green’s functions % and £ of
Egs. (2.1) and (2.4) will also be of the form of Egs.
(2.48) — (2.49) and (2.46) — (2.47), in which, however,
one must put e —g, v — 1 and reverse the signs +
and — in the right members of Eqgs. (2.48) — (2.49).
Furthermore the zeroth-order thermodynamic Green’s
functions %, and #; must now be taken to mean the
expressions (1.64) and (1.65).

In the case of statistical systems of particles inter-
acting in pairs, Egs. (1.71a) — (1.71c), the equations
for the Green’s functions have been studied in papers
by Abrikosov, Gor’kov, and Dzyaloshinskiil® and by
Fradkin.!®

Connection between the thermodynamic Green’s
functions and the thermodynamic functions of the
system. We shall find some general relations by con-
sidering as an example a statistical system consisting
of a gas of electrons, positrons, and photons, Egs.
(2.17a) — (2.17c). The extension of the results to other
systems can be made without difficulty.

Let us formally differentiate the thermodynamic
potential of the system, £ = —3~!1n Z, with respect

to the charge e; then according to Eqs. (2.24) — (2.25)
and (2.40) — (2.41) we get
2= { a0V (o ()4 (@)% () SHIS

=~ (o (2, 9) Zou (y, )y

= —piet S M (z, Z) % (Z, x)d*Z. (2.56)

Integrating Eq. (2.56) with respect to the charge and
remembering Eq. (2.48), we can express  in terms
of the electron-positron thermodynamic Green’s
function

Q=0+ g § T2

Py

&®p (5 (p)— 5o (P))ap Fo'pa (D), (2.57)
where &, is the thermodynamic potential for the case
of no interaction between the particles (e? = 0). If the
system consists of particles that interact in pairs
through a potential v(x-x’), Eq. (1.71c), then instead
of the charge e one introduces an auxiliary parameter
A through the formula v(x—-x’) — Av(Xx~-%x’), and in-
tegrates from 0 to 1 with respect to this parameter. In
this case there is an additional factor 1 before the in-
tegral in Eq. (2.57).

It is often advantageous to express Q in terms of
the polarization operator. To do this we again carry
out a Fourier transformation in Eq. (2.56), use Eq.
(2.49), and then integrate with respect to the charge;
then

. (2.58)

b 3 G (1 )]

For applications it is quite sufficient to solve Eq.
(2.49) with the kernel M, proportional to e?; then the
relation (2.58) can be rewritten (Akhiezer and Pelet-

minskii??);
(o1t (1

Q=0 4}-2(231)aﬂ Z S d3h
=Qy+ﬂ£#$238ﬁkMdm

kg

. (2.59)

1
S |

where we have kept only the terms proportional to e?
and also terms of the form e'f (e?), where f(0) = o.
A study of the photon polarization operator Hliw(k)
in the relativistic region has been made in papers by
Fradkin®® and by Akhiezer and Peletminskii.?
When the thermodynamic potential is known it is
not hard to determine all the other thermodynamic
characteristics of the system (cf. Landau and Lifshitz%).
As is well known, the mean energy E of a statis-
tical system is determined by the relation

E-pﬁ:Z(

n,N

(@+RN~Ep B )

Ean— MN) € pT

—Q—p (2.60)

where N is the mean number of particles in the sys-
tem (or the difference of the mean numbers of elec-
trons and positrons, N"— N¥). When one neglects the
fluctuation of the total number of particles in the sys-
tem it is easy to express the change of the energy of
the system caused by the interaction of the particles,
AE = E - Ey, in terms of the change of the potential,
AQ = Q ~Qy (the index ‘0’ always denotes the value
for no interaction between the particles). According
to Eqg. (2.60) we have at the absolute zero of tempera-
ture
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E—pN=0Q=0Q,+AQ, (2.61)

where §, = E,-uN,. By using the expression

AT- AT+ 2V - +
N =N =g \ (e —mi) @

we can eliminate the chemical potential from AQ in
Eq. (1.61) and express it in terms of f\f‘—ﬁ*; then the
energy correction AE caused by the interaction of the
particles (at the absolute zero of temperature) can
be written in the form (Fradkin!?)

€

AE= o \ T\ @419 () — o ())us Gk )
0

e

e et (g

Putting ( $— %) 95! = MF in the form of an infinite
series in €%, we get the well known expansion of the
energy (2.62) in terms of connected diagrams (for
more details on this point see the paper by Klein and
Prange!?).

By applying Egs. (2.62) and (2.59) to a gas of elec-
trons, positrons, and photons, Akhiezer and Peletmin-
skii?® have calculated the thermodynamic potential, and
have used it to compute the energy correction AE
caused by the interaction in this system. Their re-
sults in part overlap the well known results of Gell-
Mann and Brueckner,* Vedenov,’® and Fradkin. 18,1
Because the result is cumbersome in form, we pre-
sent here only the limiting values AEpy for the non-
relativistic case and AEgy for the extreme relativ-
istic case (at low temperatures):

(2.62)

AEns = — (3a2)"3 (2m) ¢ Vn'/? ¢2

+ (1 —1n 2) (2n)"¢ Vmnet In (e2mn™3), (2.63)
AE o = (3n2)*/3271 (2n1) ™4 Vn'/3%¢?
+(3n2)/2 271 (2n) 8 V'3 et In €2, (2.64)

where the first terms, proportional to e?, are the
values of the exchange energy, and the second terms
are the values of the correlation energy, which is of
higher order in e?; n=(N"=N*)/V, and m is the
mass of the real electron.

In particular, by setting u = 0 in the general for-
mulas for a system of electrons, positrons, and pho-
tons, these authors® found the correction to the energy
of black-body radiation caused by the interaction of
the particles; in the extreme relativistic limit g1
> m the result becomes quite simple, namely

8¢8
5V 3 > !
where E;q = 3372V/1808* is the energy of the ideal gas
of electrons, positrons, and photons for B! > m.

System of particles interacting by Coulomb’s law.
Let us first consider the case of a multicomponent

25

Sor (2.65)

AE=:2_Ey( e —
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system of various types of fermions interacting through
the electromagnetic field in the relativistic region.
Each particular type of fermions A is described by a
Hamiltonian H), which after the subtraction of

i WkCEA’Cky is exactly of the form of Egs. (2.17a)
k, A=1
— (2.17c), except that the fermion operators carry the
additional index A, which designates the given type of
fermions. The total Hamiltonian of such a multicom-
ponent system is equal to the sum of the Hamiltonians
H, of all the separate types of fermions plus the
Hamiltonian of the free electromagnetic field. By
repetition of the previous arguments, it is not hard
to write down the partition function and construct the
thermodynamic perturbation theory for a multicom-~
ponent system. The most interesting procedure, how-
ever, is to study the system by means of Green’s
functions. Previously, in writing down the equations
for the Green’s functions we started from the equa-
tions for the field operators in the Heisenberg repre-
sentation, Egs. (2.34) and (2.35). In the case of a
multicomponent system each individual operator %»
of the fermion field of type A also satisfies Eq. (2.34)
with the chemical potential u = u) and the mass m
=m,, and the right member of (2.25) for the electro-
magnetic field operator A (x) will contain the sum of
the currents from all the types of fermions. There-
fore the equation for the thermodynamic Green’s func-
tion %) of the fermion of type A will have the previ-
ous form (2.44), and the equation for the photon ther-
modynamic Green’s function % will contain a polari-
zation operator equal to the sum of polarization op-
erators calculated from Eq. (2.47) with ¥ replaced
by &\. In the nonrelativistic approximation these
equations can describe a system of ions and electrons
interacting by Coulomb’s law. By the results noted in
Eqgs. (2.53) and (2.54), the equations that describe a
multicomponent system of nonrelativistic fermions
interacting by Coulomb’s law are of the following
forms:

1 (P) = Gor. (B) — Fon (1) M1 () G (),
D (k) = Dy (k) + D, (k) TL(K) Z (k)

(2.66)
(2.67)

Z2 2
M,u(p)=(7nﬁ)§5h2 S?A(p + KT (pt+k, k) D (k)dk, (2.68)

Z2e?
Nk = 3 gasg D |05 (P + BT (P+k )5, (p) &,
A P, (2.69)
L, p)=1+A(p, p'), (2.70)
where py = (2n+ 1) n/8, k; = 2mn/B (m,n=0, +1,
+2,...); Zpe is the charge of a fermion of type A

(for the electron Z = —1); the zeroth-order Green’s
functions are
—98 5 4
G (p)= ———5, Do) =iz (2.71)
lPrH";v-E

where uj and m; are respectively the chemical po-
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tential and mass of the fermion of type A, and the
spinor indices a and B run through the values 1, 2
for fermions of spin 3. With Eq. (2.66) written as it
is, we could dispense altogether with the spin of the
fermion. Then % would not depend on the spinor in-
dices, and in Eq. (2.71) 5aB — 1. We could then take
account of the spin of the fermion when we write the
number of states of a particle with a given momen-
tum, Eq. (1.46a); this procedure is especially con-
venient when the spin of a fermion is larger than 3.

Let us find the thermodynamic potential by using
the solution of the equation (2.67) with the kernel II
in the first nonvanishing approximation in e?, which
in this case is

2,2
M ()= 3 228 ( ) %P
~ (2'":)3 gh M ik
p-tk™ ~p 4

2Z2e?
= L mPJ\. (nP'H( np) 3 2.7
Z};‘ (2m)® S o, Tk a’p, (2.72)
A
eh= 2%2 , Op=¢ehi—eh, nh=[PTE L (2.73)

According to Eq. (2.59) the thermodynamic potential
of the multicomponent system of fermions is of the
form

Q=90+2—(2—"W 3 S d3k1n<1-—ki2111(/c)> . (@2.74)
kg

If we separate out from AQ = Q- Q, as given by Eq.

(2.74) the self-consistent part proportional to e?, the

remaining correlation part AfQqor of the thermody-

namic potential can be written in the following way

{ Fradkin!®.19);

2——(22% 3 S @k [In (1— 0 (k))-{-% (k) | .
e (2.75)
Let us see what AQ gor corresponds to in the clas-
sical limit i = 0, n¥3#%3m™! « 1 (high temperatures
and small densities n). For this purpose we rewrite
Eq. (2.75) in the form

AQcor =

% §de » S [T (K, k,)J? &%

Afeor =~ (g } "o &} i1 (i, Bk

(2.76)

4
from which it can be seen that small values of k? are
the main region for the integration. At high tempera-
tures the function IT'(k, k,) falls off exponentially as
k? increases, and for small k? has different behaviors,
depending on the value of k,, namely: for k* — 0 we
have ni(k,k, = 0) — 0, whereas IIi(k, 0) — 11!(0, 0)
= 0, where

ZZ 2B
(0, 0)= Z @ S G

Pp=—2

S nkd®p

= —ep ) Zyn, = — %%
3

(2.77)

Here k is the reciprocal of the Debye radius, and ny
is the density of fermions of type A

nx=(2—;t°‘)—3 S b d*p. (2.78)
Thus in the entire sum over k; in Eq. (2.76) the larg-
est contribution comes from the term with k, = 0.
Assuming that the screening is weak, e’ n¥/3 « 1, we
use in the denominator (and also in the numerator)
the value of the function I(k,0) at k =0: 1i(k,0)
=1'(0, 0). The integral over the variable k is then
easily calculated, and we arrive at the well known re-
sult of the Debye-Hiickel theory®?

e

\ de & 4ot S dk

Afdcor= Py
0

2n)3

2VnV (2.79)

51/32 Zin, )3/2.
A

The present method, however, also allows us to deter-
mine without especial difficulty all of the subsequent
corrections to the thermodynamic potential in terms
of the small parameter e28nY3 << 1 of the Debye-
Hiickel theory and the parameter for classical theory
to apply, n¥3#28m™! « 1. For example, for a mixture
of two types of ions at high temperatures, 8 — 0, and
equal densities, Fradkin!® has given an expansion of
the thermodynamic potential per unit volume which
contains in addition to the Debye term (2.79) other
terms proportional to g and g¥2.

In applying the present theory to solutions of ions
one can formally include effects of a medium which
weakens the Coulomb interaction of the ions by the
substitution Z) — st'i/z, where € is the dielectric
constant of the solvent, € = const. In this connection
we mention papers by Vedenov,?®% and also papers
by Dzyaloshinskii and Pitaevskii?! and by Dzyaloshin-
skii, Lifshitz, and Pitaevskii.?2 In the latter papers?l»??
the method of Green’s functions is extended to the case
of an absorbing medium with a complex dielectric con-
stant.

The formula (2.74) is also valid for the opposite
limiting case of low temperatures and large densities
of the components of the mixture, for which the small
parameter is me?/fin¥/3 (the Gell-Mann—Brueckner
approximation). Setting B — « in Eq. (2.75), we find
AQcor for the electron gas my =m, Z) = —1 at ab-
solute zero temperature in nonrelativistic approxima-
tion. After this, by means of Egs. (2.62), we get the
following expression for the correlation energy Egor
of an electron gas with 8= 0 (Fradkin®1);

v " 20t Oy(n,—np)
Feor =g { 4% [1n (1 = gty § )
2¢? @p (Ppyi—"p)
oy § e ]
2 0 for g >,
BP=PE’ Wp = Eptx ~ &p, np={ 1 for 8p<l‘- (2-80)

If we expand the Egqp of Eq. (2.80) in powers of the
small parameter me?/h*nY3 « 1, we get the well known
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results of Gell-Mann and Brueckner,* Sawada,’? and
Sawada and others.5?

3. TIME-DEPENDENT GREEN’S FUNCTIONS

The analytical properties of time-dependent Green’s
functions. As has been noted earlier, the use of ther-
modynamic Green’s functions is extremely helpful in
the study of the thermodynamic properties of a system.
For other purposes, however, such as the study of the
weak excitations (quasi-particles) of a system, and
also the study of various kinetic phenomena, for ex-
ample the passage of particles through matter, the ab-
sorption or scattering of light and sound, and so on, it
is necessary to know temperature Green’s functions
which depend on the time t, or, as they are some-
times called, time-dependent Green’s functions

G(z, ©')= —iSp {e@FN-HBT (§ (z) §" ("))

= —i[T (%(2) ¥ (' )]an (3.1)
where the sign ~ denotes operators in the Heisenberg
representation

P (z) = & E WMy (x) g HTHME, (3.2)

and N is the operator for the total number of particles
(which is conserved along with the total energy of a
closed system ) or the difference of the operators for
the total numbers of electrons and positrons. Equa-
tion (3.1) defines the one-particle time-dependent
Green’s function both for fermions and for bosons.
Many-particle time-dependent Green’s functions are
defined in analogy with Egs. (2.2) and (2.3).

Comparing the definitions of the thermodynamic
Green’s function 9 (x,x’), Egs. (2.1) —(2.4) and (2.32)
—(2.33), and of the time-dependent Green’s function
G(x,x’), Eq. (3.1), we see that for homogeneous sys-
tems both functions depend on the difference x —x’
and that the change from % to G in coordinate space
and in the range of 7 from —§ to B is accomplished
by replacing 7 by it and multiplying % by the factor
—i., It is useful, however, to know the relation between
the Fourier components of these functions, and for this
purpose we shall examine the Fourier expansion of the
time-dependent Green’s function (Landau®).

The matrix element of the operator (3.2) is obvi-
ously of the form

Bam () = g (0) ¢ 7 P1m®,
Opm=E,— E, 4+ U, pop=P,— P, (3.3)

where n and m denote states of a closed system in
which the total energy E, the total number of particles
N, and the total momentum P have definite values, and

for a self-adjoint operator $* we get (¢* )nm = (¥* )mn-

Using Eq. (3.3), we rewrite the Green’s function (3.1)
in the form

ALEKSEEV

G (zy— )= —1 2 ETHTEDBIP (0 (2)) 9" (2,)) ]
n
—i ;1 e RN IR o (0) 2 € @nm!Pr® g5 )

= + i }_1 e(9+uNu——En)ﬂ l 'lpmn (0) ,2 ei(mmni—pmnx)’ t< 0,
(3.4)

where the upper sign is for fermions and the lower for
bosons, and X = X; —X;, t =t; —t,. In the double sum
with t < 0 it is convenient to interchange the summa-
tion indices, m —n, n — m, and use the fact that the
matrix element ¥y, is different from zero only for
Nm = Np + 1. Then the expression under the summa-
tion sign for t < 0 will differ from that for t > 0 only
by the factor exp wpmB. Defining the Fourier trans-
formation by

1 i (px—
6 (x, )= e S G (p, w) &' PO, (3.5)
we get from Eq. (3.4) the following Fourier expansion

with respect to the space variables:

©

f

J i S g(p, E) e~iE' dE, £>0,
G(p, t)= - (3.6)
Fi § g (p, ) e-BBe—iBt 4, <0,
g(p, E)
= —(2m)2 2 FHNTER gy (0))2 8 (P + Do) O (E + Op)-
o 3.7)

In going to the Fourier component with respect to
the variable t we must use the formula

o

(e dt=ad(a)+—. (3.8)
'0 ~
We then have finally
G(p, 0)= %%—p_’fz—)(l + e EB)ydE - ing (p, 0) {1 F eh)
=G (p, ©)+iG" (p, 0). 3.9)

A comparison of the two terms in Eq. (3.9) leads to
the conclusion that there is a definite relation between
the real part G’ of the time-dependent Green’s function
and the imaginary part G” (Landau®): for Fermi
statistics

& (p @) =5 {cothE E D ap, (3.10)
and for Bose statistics
¢ (p,0) = §tanh B £ B gp 3.11)

Thus the Fourier transform G (p, w) of the time-
dependent Green’s function is not an analytic function
of the variable w. The following two functions are
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analytic in the upper half of the plane of w:

G’ (p, w)-+icoth 2P-¢" (p, w), (3.12)

G (p, o) +itanh 6" (p, o), (3.13)

as becomes obvious if we represent each of these func-
tions as a contour integral, for example:
, . off 1 o'f 6" (p, ®) , ,
G (pa (1))‘—+— lcoth—z— G (p, (l)) == S coth—z—_m,—__T dw'. (3.14)
nva

It turns out that the functions (3.12) and (3.13) are the
Fourier transforms of the so-called retarded function
GR (x,-x,) (Bogolyubov and Tyablikov,? Abrikosov,
Gor’kov, and Dzyaloshinskiil®)

qB (2, — 7)) = | — L (1) 7 (25) £ V(%) Y (T1)]ays 8 > 1,

| 0 y b <y,

(3.15)

where the upper sign is for Fermi statistics [for which
the Fourier transform is Eq. (3.12)] and the lower sign
is for Bose statistics [for which the Fourier transform
of GR is given by Eq. (3.13)]. Using Egs. (3.12) —
(3.14), we can represent the Fourier component
GR (p, w) of the retarded function (3.15) by an ex-
pansion of the Lehmann type®

¢ 0= | 2Bk, (3.16)
where
e(p, B) =g (p, £) (1 £ e~ FF) 3.17)

=]

is a real function, whose integral f p(p,E)dE is

—00

finite.

It is easy to obtain the same sort of Lehmann ex-
pansion for the thermodynamic Green’s function
g(x,—%y) of Eq. (2.32). In fact, by repeating the ar-
guments that led to Eq. (3.6) we get for G(p, 7)

{ oo
| ~ Jewmerar, c>o0

=1 7 (3.18)
| £ ) g(p B)ee0dE, 1 <0,

where the upper sign is for fermions, the lower for
bosons, and g (p, E) is given by Eq. (3.7). Then
making the Fourier transformation (1.60) we have

F(p,w,) = - S o L) 4y (3.19)

E—iw,
where p (p, E) is given by Eq. (3.17). Comparing Eqgs.
(3.16) and (3.19), we find (Abrikosov, Gor’kov, and

Dzyaloshinskii'®)

G(p, 0n)= — G (p, in), @, > 0. (3.20)

If we consider the integral (3.19) formally as a func-

tion of the complex variable iwy, it defines a function
that is analytic in the upper half-plane. According to
Eq. (3.20), this function coincides with GR (p, w) at
the infinite set of points iw, (wp > 0), which have a
point of condensation. From the theorem of analytic
continuation we conclude that — GR( p, w) is the
analytic continuation of the function G (p, —i (iwp))
to the upper half-plane of the complex variable:

—G®(p, 0) =G (p, — iw). 3.21)

In addition to the spectral resolution (3.5) — (3.21)
of the one-particle Green’s functions (which has also
been treated in papers by Gor’kov,’ Martin and
Schwinger,!3:% Fradkin,®>1®* Bonch-Bruevich,? and
Kogan?") it can be helpful in some problems (for
example, in the theory of electric conductivity, cf.
Bonch-Bruevich®®) to have the spectral representa-
tions of many-time temperature Green’s functions.

A paper by Bonch-Bruevich?! is devoted to this prob-
lem.

Determination of the energy spectrum of a system.
The use of quantum-field-theory methods has been
particularly fruitful in the study of the weak excita-
tions of a system consisting of a large number of in-
teracting particles. As is well known, the appearance
of elementary excitations in such a system can be in-
terpreted as the appearance of quasi-particles. A set
of elementary excitations forms a gas of quasi-par-
ticles, which can be described very conveniently
by the apparatus of Green’s functions. As has
been noted in papers by Galitskii and Migdal® and
by Galitskii,* the description of a system of an enor-
mous number of particles by the method of elementary
excitations (quasi-particles) is exact only in the case
of an ideal gas. When there is interaction between the
particles the weakly excited states are not stationary
states of the system, and this leads to damping of the
elementary excitations.

For concreteness let us consider the electron-
phonon system of Egs. (1.1a) — (1.1c). We define the
electron and phonon single-particle Green’s functions
G(x—x") and D(x—-x’) by Egs. (3.1) and (3.2) and

Da—z')= —i [p@)PE")av (3.22)

The equations for these Green’s functions are derived
by means of the previously described technique of vari-
ational derivatives (cf., e.g., papers by Fradkin,!6-18
Bonch-Bruevich,® and Kogan®') or by summing infi-
nite sets of graphs of definite classes. An example

of such a summation is shown in Fig. 4, which leads

to Eq. (2.49) with ! as an approximate kernel for II.
Without going into the rather simple calculations, we
present the equations for G and D in the p represen-
tation:

G (p)=Gy(p) —~ Go (1) M () G (p), (3.23)

D (k)= Dy (k) + Do (k) YL (k) D (&), (3.24)
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M (}7)—(2—n~ S G(p+Ek)T(p+k, k) D (k) d*k, (3.25) The energy spectrum of a superconductor. As is
well known (cf., e.g., the review by Abrikosov and
(k)= oo (211)4 S SpG(p+k)T(p+k k)G(p)dp, (3.26) Khalatnikov®®) in a small range of energies in the
neighborhood of the Fermi sphere a gas of fermions
T'(p, p'y=1+A(p, p'), (3.27) With a direct interaction between the particles (of the

where Gy(p) and Dy(p) are the Green’s functions of
the electron and phonon in the absence of interaction:

1—n, n,
GO (pv 0)) = m_gp+p+i§ + m—ep—HL—l& (3.28)
D, (k, &)
®y 1-4+n, ny ny 14-n;
=T< g—o 118 e—w,—id + et +id ~ eto,—ibd
(3.29)

and A(p, p’) is the set of all vertex-part graphs ex-
cept the simple vertex (point).

There is a simple connection between the one-
particle Green’s function and the spectrum of elemen-
tary excitations, or quasi-particles (Galitskil and
Migdal,® Galitskii,* Bonch-Bruevich,® Fradkin,!819
and Kogan®"), The energies and dampings of the quasi-
particles are determined by the poles of the analytic
continuation of the one-particle time-dependent Green’s
function as function of the fourth component of the four-
dimensional momentum. There can, however, also be
excitations in a system of a large number of interact-
ing particles that are not of a one-particle character.
The energy spectrum of such excitations is determined
in terms of the two-particle Green’s function (Galit-
skii and Migdal®). When in G™'(p, w) =w +p ~ ¢p
+ M (p, w) we set the variable w equal to Ep—u-iyp
we find the following equation for the determination of
the poles of the analytic continuation of the electron
Green’s function of Eq. (3.23):

Ep—iyp—ep+ M (p, Ep— p— iyp) =0. (3.30)

A solution of this equation gives the energy Ep and
the damping Yp of a quasi-particle: Ep <u corre-
sponds to holes in the Fermi distribution, and Ep >u
corresponds to quasi~-particles above the Fermi
sphere. If the damping is small, yp/Ep < 1, then we
get from Eq. (3.30) the approximate relations

Ey,—ey+ReM (p, E,—n) =0, (3.31)

p= 1 [ (1 (G oz )

Similarly, the poles of the analytic continuation of the
phonon Green’s function D (k, €) of Eq. (3.24) give the
energies and dampings of the phonon excitations. In
this way Migdal® has found the energy spectrum of the
electrons and the dispersion of the lattice vibrations
in a normal metal at absolute zero temperature with-
out assumptions about smallness of the interaction be-
tween electrons and phonons.

As an illustration we shall determine the energy
spectrum of the electrons for a temperature different
from absolute zero in the case of a superconductor.

vp=Im M (p, E,

(3.32)

nature of a weak attraction) shows the property of
superconductivity. In this connection let us consider

a quasi-closed system of electrons, Egs. (1.71a) —
(1.72), with a direct four-fermion interaction v (x—x’)
=gé(x—x'), where g is a small coupling constant
that is different from zero only in a narrow range of
energies ¢p near the Fermi surface, ep—«k s €p <e€f
+#x (Gor’kov'). The electron-field operators in the
Heisenberg representation, 3 (x) and $*(x), Eq.(3.2),
satisfy the equations

(igr+0+5 ) 3@ @ @P @) 9@ =0, (3.33)

(-
at
Therefore for the electron time-dependent Green’s

function G(x, x’) = G(x—x') of Eq. (3.1) we have

(i it ) Gt

~ 2 )V @+ @ F (D)) =0.  (3.34)

[T (95 (2) ¥, (2) By (@) B ('] gy = 0ugd (z—27).  (3.35)

Let us now use a physical idea of Cooper,’" according
to which the weak attraction near the Fermi surface
between two electrons with opposite momenta and spins
leads to the formation of a bound state of the pair of
electrons with a negative binding energy. Furthermore
the interaction between the electrons will be taken into
account to the extent that it leads to the formation of a
stationary pair. Then the average of the T-product of
operators in Eq. (3.35) can be written in the following
way (Gor’kov'):

[T (3 (2) %, (2) %, (2) ¥ (5 Way= — Fao (0) Fig(z ~ '), (3.36)
where
Fop(@—2') =[NV |9, (@) ¥ (z) |V + 2ays
Fag(@—a') =[N+ 2|, + ()95 (') | Nay-

From Eqs. (3.34) and (3.36) it is not hard to write
down the equation for the function F*(x-x’)

2
(i% v ) F @
To determine the energy spectrum of the system it is
necessary to find the electron Green’s function G (p, w)
in the p representation. By carrying out the Fourier
transformation (3.5) in Egs. (3.35), (3.36), and (3.38),
we get

(3.37)

—2') +igh* (0)G(x—12')=0. (3.38)

(©—Ep)G (p, 0)—igh (0) F* (p, @) =1,
(0 +Ep)F* (p,0) + igh” (0) G (p, w) =0, (3.39)

where

p2
= gm

It follows from the definition (3.37) that F (0) and
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F*(0) are of the forms

£ (0) =J<_(1’ ) =7l ROy= —Ji, (3.402)
where J can be regarded as a real constant, since in
the equations (3.39) one can always split off a phase
factor exp i from J and include it in the unknown
functions G(p,w) and F*(p, w). According to Eq.
(3.39) the function F*(p,w) is also proportional to

the matrix 1

F (p, 0) = 1F* (p, 0), (3.40b)

which can thus be got rid of in Eq. (3.39), since {2= —1.

After this we rewrite the system of equations (3.39) in
the form

(3.41)
(3.42)

(@*—Ep— g% F* (p, 0) = —ig/,
(0—&) G (p, ©) =1+ igJF" (p, 0).

The Green’s function G(p,w) is defined as a particu-
lar solution of Eq. (3.42), but in finding F*(p, w) we
must take into account both a particular solution of
Eq. (3.41) and also the general solution of the corre-
sponding homogeneous equation, which is A (p, 8)
[6(w+ Ep) + 6(w—Ep)l, where Ep = (£ + IND LA
A? = g23% and A (p,B) is an arbitrary real function
of the momentum and the temperature. Therefore
_ —igJ

{0+ E,—ib) (0—EB,+i8)

£ (p, o)

+ A(p, B) [0 (@ + £y) + 80— By},

o+Ey
(0-+E,—i8) (0—E,+i6)

G (p,0)=

1
T

®

E AR BB (o £+ 8 (0= B

Thus the imaginary part of the Green’s function
G (p, w) is not completely determined by Egs. (3.41)
and (3.42). Let us choose the arbitrary function
A (p, B) so that the real and imaginary parts of
G (p, w) shall satisfy the well known relation (3.10).
Simple calculations lead to the following result:

A(p,B)= — nAny/Ep,  np=("PP L 1)1, (3.43)
and the Green’s function takes the final form:
G(p, 0)=up (0 — Ep+i8)™" + vf (0 + £p — i8)
+ 2ning [upd (0 — Ep) — v3d (0 4 Ep)],
(3.44)

1 3 1 3
uz = _— 14 =P vi=—(1-— =k .
P ( - E, P2 ( Ep>
The spectrum of the elementary excitations is deter-

mined by the positive pole of the function G (p, w),
which gives

Ep=VE + A%, (3.45)
where A is a function of the temperature, which is
found from the conditions (3.40a) and (3.40b)

1 .
J=F(0) = | F (b 0) d%p do
- __Jg Mlﬁ_ 3
=TTy S Viata ¢ .46
or
E
tanh—gﬁ— ‘
= g § yare ol [hi<x (3.47)

At absolute zero temperature, g — «, tanh (Ep,B /2)
=1, for small negative g (attraction) Eq. (3.47) has
the well known solution

Ay=2ue~10,  o=pp|g|m/2a?, (3.48)

and near absolute zero temperature the solution of
Eq. (3.47) is of the form (cf., e.g., the review of
Abrikosov and Khalatnikov®®)

A=a,— |/51%A—° ¢—dob (3.49)
As can be seen from Eq. (3.45), the excited states of
the system are separated from the ground state by a
gap of width A, which leads to the phenomenon of
superconductivity (Bardeen and others,*® Bogolyubov,®
Gor’kov,” Abrikosov and Khalatnikov®),

Another interesting feature of the Green’s-function
method is that it enables us to construct a gauge-in-
variant quantum-field-theory technique in the theory
of superconductivity. By this method Abrikosov,
Gor’kov, and Khalatnikov®? have investigated super-
conductors in high-frequency electromagnetic fields,
and in particular have calculated the frequency and
temperature dependences of the impedance of a mas-
sive superconductor. The further development of this
technique has been pursued in a series of papers by
Gor’kov3? on the behavior of superconductors in mag-
netic fields, and also in a paper by Abrikosov and
Gor’kov on superconducting alloys in constant mag-
netic fields.

Recently Migdal®® has developed a method for treat-
ing superfluidity and calculating the moments of iner-
tia of nuclei that is based on the application of Green’s
functions to systems of finite dimensions that consist
of interacting Fermi particles. In subsequent papers
this method of Migdal has been successfully applied
to the study of pair correlation in nuclei with an odd
number of particles (Grin’ and others®!) and to the
excitation of collective states of nuclei in the scatter-
ing of charged particles (Drozdov®?).

The connection between time-dependent Green’s
functions and the thermodynamic characteristics of
a system. Given the time-dependent Green’s function,
it is not hard to determine all the thermodynamic
quantities of a system. To do so we need only find
the number of particles n as a function of the tem-
perature 1/8 and the chemical potential u. The par-
ticle density n as a function of 8 and p is expressed
in terms of the time dependent Green’s function
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G(x—x’) of Eq. (3.1) in the following way: Fe (fnl)f S [Sp T %M (P, m)] G(p o) dpdo, (3.58)
G(0) ]t’=1+0 = i Sp e@FuN—IDB E“ (z) @ ()= i—11v7= + in,
@3.50) Where ep = p/2m and the integral over w is taken in

where the upper sign is for Fermi statistics and the
lower is for Bose statistics. Using the expansion

P(x)=V""2 2 apeiPx, Pt (x)=V"2 Y ape—irx,  (3.51)
P

where a and @y, are the operators for production

and absorptlon otP a particle, we rewrite Eq. (3.50) in

the form

GO) |y =2V } Sp e@+uN—HBgra, = + iV1 Z np

= +i ET)“ S np d°p. (3.52)
On the other hand

G () |1'=t+0 (2:1:)4 SG(p’ w)etd®pdo | too-  (3.53)

On comparing Egs. (3.52) and (3.53) we find that the
distribution function np of the particles at an arbitrary
temperature is connected with the Green’s function in
the following way (Migdal?):
1 .

np=F ign SG’(p, o) e do|_ . (3.54)
We shall now express the mean energy in terms of the
Green’s function for the case of a system of particles
interacting by pairs, Eqs. (1.71a) — (1.71c¢). By defini-
tion the mean energy E of the system is given by

E={aw[ v Frem],,

+§ S diz dx’o (x — x") [P* (x) p* ()P (x") P (x)]ay

X'—X
t'—t+0

= Fi{au TG (xt, x't')

——% Sd%d%’v(x—x’) G, (x't, xt; xt', x't') (3.55)

=+ 0’
where G (xt, x’t’) and Gy (X4ty, Xyty; X{t{, Xjt3) are
the one-particle time dependent Green’s function of
Eq. (3.1) and the two-particle function

23y = (= ) [T (§ (1) § (22) $"(2}) §" (2;)] 0y (3.56)

As before, the upper sign is for fermions and the lower
for bosons.
which is defined by the formula

Gy (21, Ty; @

—iS d'yM (z, y)G(y, ')

= \ d3x’v (x — X") G, (x"t, xt; X't’, x"t). (3.57)
The mass operator M(x,y) = M (x—y) is usually
represented as a power series in the interaction

(cf., e.g., the review of Klein and Prange!?). Per-
forming a Fourier transformation in Eq. (3.55) and

using Eq. (3.57), we finally get

Let us introduce the mass operator M(x,y),

the same sense as in Eq. (3.54). For absolute zero
temperature the formula (3.58) was first obtained in
a paper by Galitskii and Migdal® for the case of
fermions and in a paper by Belyaev® for bosons. The
latter author also included the energy of the particles
in the Bose condensed phase, which does not appear
explicitly in Eq. (3.58). In the papers cited, the ener-
gies of the ground states of nonideal Fermi and Bose
gases are calculated on the basis of Eq. (3.58).

4. SOME APPLICATIONS TO SPECIFIC PROBLEMS

The scattering and stopping of charged particles
passing through matter, and the ionization and radia-
tion that accompany these phenomena, have been a
central object of interest to physicists from the very
beginning of the development of present ideas about
atoms, nuclei, and elementary particles. Accordingly
it is natural to apply to these phenomena the new
methods, which give the clearest and most accurate
solutions of these problems.

Let us consider as a whole a neutral system of
electrons and ions that are in thermal equilibrium.

In passing through this system an external charged
particle will lose energy mainly through collisions
with electrons and with the lighter particles. In their
application to this problem the Green’s-function
method and the diagram technique were first devel-
oped by Larkin.’! From the beginning, however, he
confined himself to the nonrelativistic case. For the
sake of generality we shall expound the method in a
form that can be applied for arbitrary speeds of the
particles. In the present version the method can
easily be extended to other problems (bremsstrahlung
and pair production in the passage of particles through
plasmas, radiation from a plasma, stopping of elec-
trons in metals, and so on).

To calculate the stopping power of an electron-
positron plasma we write down in the Schrédinger
representation the Hamiltonian of the system of elec-
trons and positrons and the external particle passing
through it, with all of these particles interacting
through the electromagnetic field,

H=H+Hy+- B+ H A8, “.1)

where He and Hy are the Hamiltonians of the free
electron-positron field and the free photon field and
H, is the Hamiltonian for their interaction, Egs. (2.17a)
—(2.18), Hj is the free-field Hamiltonian of the exter-
nal particle (a fermion), and H} is the Hamiltonian
for its interaction with the photon field. Hj and Hj
have the same structures as the corresponding oper-
ators for the electron-positron field.

The S matrix that describes the quantum-mechan-
ical transitions of the plasma particles and the exter-
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nal particle satisfies the equation

=(H.+Hy4+H,+H,4+H)S. (4.2)
Let us use the transformation
S = e—i(He+Hv+H1+H6)t & (43)

and go over to a different representation, in which the
field operators y’(x) of the external particle are writ-
ten in the interaction representation

,'p/ (X, t) — 6iH‘;t ,q)/ (X) e—-iHét’
and the operators ¥ (x) of the electron-positron field

and A (x) of the photon field are in the Heisenberg
representation

(4.4)

P (x, t) = M HeTHyHHDL () g—iHot Hy - HUX
A(x, t)= " HetHytHL g (g p=iHet HytHD! (4.5)
The operator A(x,t) then satisfies the equation
(V=5 ) 4@ = — eN(H (@) v (2)), (4.6)
which has as its solution
A@) =A@ +e § De—a ) NG @) vp@)d,  @.7)

where A%x) is the free photon field and D%x —x’) is
the zeroth-order propagation function of a photon in
quantum electrodynamics.

In accordance with the sense of the problem, this
representation presupposes that the interaction be-
tween the external particle and the plasma particles
is turned on at the time t = —= and off at t = =,
while the interaction between the plasma particles is
always turned on.

In the present representation the .# matrix is de-
fined in the following way:

L 0F , Y
i——=H, &=Te Jiass

H, (4.8)

(@)= —ie'N (' (x) 4 (2) ¥’ (2)),

where e’ is the charge of the external particle. The
& matrix (4.8) describes the scattering of the external
particle by the electron-positron plasma taken as a
whole. The expression (4.8) can equally well be ap-
plied to the phenomena of radiative scattering, pair
production, and so on.

We shall assume further that the external particle
is a fast particle (ee’/hv < 1), so that its interaction
with the electromagnetic field produced by the plasma
can be treated by perturbation theory. Then the ele-
ment of the & matrix that describes scattering in
which the external particle makes a transition from
a state with momentum p and polarization r to a
state with momentum p’ and polarization r’, and the
plasma goes from state n to state m, is given, in
view of Eq. (4.7), by the following formula:

Fmprr, npr = — €€’ (mp'r' l S P () yop’ ()
X D (z—2") P (z) v (2') dx dz’ I npr>

2m)tiee ,
— e (V) s (Fa (0) 95(0))

X 6((1 - pmn)(s(m - mmn)’

q=P—P', W =£&p—Ep_q, pmnzpm—Pn’

sz sz_l_ jV[2’

where q and w are respectively the momentum and
the energy transferred to the plasma in the scattering
of the external particle with mass M and charge e’.
The probability dW of this process, averaged over
initial and summed over final spin states of the exter-
nal particle and also averaged statistically over the
Gibbs distribution (2.23), is determined as follows:

mmn:Em——Env (4:.9)

(ee')?

aw = T2 (0f —giE Yvﬂuaﬂvm ﬁ'CDaBa B’ (q. w)dq, (4.10)
Top= Oy (pp + M>— pypy— Pvpu)/ZEpep“ (4.11)

Dapupr (@, ©) = (20)° 3 o@+m¥a—EwB (3, (0) P (0))re
< (o (0) Ppr (0))r 8 (G — Pra) O (0 — w0, 4.12)

where N is the difference between the total numbers
of electrons and positrons, and ®,g844’(q, w) can be
expressed in terms of the two-particle thermodynamic
Green’s function (2.2) of the plasma, with the argu-
ments set equal in pairs, ¥, (x;x;, x5x3) = K (x; -x{).
To bring out the connection, we follow the method of
Landau,® Egs. (3.4) — (3.11), and make a spectral reso-

lution of the function K(x). We get
( fee)
l % aparp (. ©) 9T dw, T >0,
Kapap (a, ”Z*{ N (4.13)
| 5 Doporg (g, @) e B0 do, v <0,
L —»

where —8 =7 = B.

After being periodically continued on the entire 7
axis the function (4.13) satisfies the condition K (q, 7)
=K (q, 7+8) for arbitrary 7. Furthermore, accord-
ing to Eq. (1.60), we have

Y i—e™)

K(q, 0,)= S D@ o)ii- (4.14)

do, o, =2nx/.

(L)—Z(L
As a function of the variable iwy the integral (4.14)
defines a function # (q, w) which is analytic in the

upper half-plane,

#(q, 0)= | 2@ o) (A—e¥P) g

7
- [0 @

(g, o) (1—e
@ —®

B
) do’ 4+ in® (g, ©)(1—e-98), (4.15)
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and is the analytic continuation of the function
K(q, —i(iwp)) into the upper half-plane [cf. also

Eqs. (3.20), (3.21)]
# (q, ©)=K (q,— iw). (4.16)

Since Tyyv,apYva’8®apa’p’ (2 @) is a real function of
w on the real axis, we get from Eqgs. (4.15) and (4.16)
Im (Tvuyuaﬂ Vva B’ af}a'ﬂ' (Qv "_l(’)))
1—e o8
FA=e (.17)
Thus the problem reduces to that of finding the function

TopYunos Yvo'p' Qapapr (q, ©)=

Yuo YvapKaparpr (€ @),

since by the formal interchange w, — iw, we are en-
abled to determine ®(q,w) at once from Eq. (4.17).
Elementary calculations lead to the following relation:

€*Yuap Yvarpr S 2, (2 —2") Koparp (z— 2") d*z’

= — S My (2 — ') Sy (27 — x) dia’, (4.18)
or in the p representation
i Huv' (q' mn) zv’v (q’ ‘Dn)
Yuop Yva'gKaparps (4, 0) = — 2D, (4, ) , (4.19)

where the polarization operator and the thermodynamic
Green’s functions are defined in Eqgs. (2.44) — (2.52).
We finally get for the probability dW of Eq. (4.10) the
following expression:

2
e Im[Tvuz'“low, (g, —io)L,.,. (q, ——iw):ﬁp‘.v (g, —iw)]

mﬁ_i)

dW = d3q

4n® (w2 —q2)2 (e

= Wqd%q, (4.20)

and the energy lost per unit time by the particle pass-
ing through the plasma is given by
de

— =) (o= e Wads-

T (4.21)

Using Eq. (2.51) and neglecting terms of higher order
in e? [cf. Eq. (2.59)], we get for Wq for arbitrary
speed of the external particle and arbitrary tempera-
ture of the plasma

e’ Tyy M, (0, —io)

q2)2 (8—0’5__ 1 Im - ’

1-{—k—2 I, {4, —io) 4.22)

Wa= 43 (wf—
where the term k211! ~ e? has been kept in the de=
nominator in order to avoid an infrared divergence

in the calculation of the energy loss.

Let us study in more detail the simple case of a
nonrelativistic particle being stopped in a nonrelativ-
istic plasma. Here the expression for the energy loss
to the electron gas coincides with the result of Larkin®!

2 oo

(an oo

(g, —iw)

Mg —w %)

dt Zn“‘

—mﬁ_1

where X =v-q/vq, w =é€p—é€p_q = VaX -q%/2M, and

ALEKSEEYV

v is the speed of the particle moving through the
plasma.

Let us take for the polarization operator II the
first nonvanishing approximation (2.72),

Loy 2e? Tprqs27 Mp—qs2
(g, — i) =5 S Wit ut gy, (4.24)
where ny is the distribution function of the electrons

in the nonrelativistic region, Eq. (1.47). At high tem-
perature np = exp (u —€p) B, €p= p?/2m, and there-
fore the imaginary part of II is

2
ImII (q, —i0) = m) | (4.25)

n _I/_Z:rzrqnﬁ_ez (e—mﬂ
where n is the density of electrons in the plasma.
Suppose the external particle moves with a speed
v much larger than the mean thermal speed of the
electrons, v > (fm) Y2, We break up the integral
over ¢ in Eq. (4.23) into two ranges q = q’ and q = ¢,
with a value of q’ determined from the condition m/8
> q'? >» k2, where k%= —II1(0,0) = Bne? is the square
of the reciprocal Debye radius (Larkin®'). Since
I1(q, —iw) does not exceed x in order of magnitude,
in integrating over the first range we can neglect the
term II in comparison with q?; then

( )_ e’ e%élﬁfnmﬁ

- 1 B g M N2
X \ dq dzw—e 2 47 5mM (4.26)
. q
q —1
If in Eq. (4.26) we neglect terms of the order ‘
v-1(Bm)-¥2, then
de 2,02
p __ne®e 2mMv
(' di )1— Gamo g (Mtm) (.27)

In the second range q* < q’% <« m/B, and therefore in
w we can neglect the term q%/2M in comparison with
mvx. This enables us to change from integration over
X to integration over w = vgx, and

dep . e’?
dt )2— 2n2

The maximum value of wB in Eq. (4.28) is vgB. Let
us choose q’ so that the quantity w8 does not exceed
unity, i.e., q’ = 1/vB. Then q’ still satisfies our
former conditions q'2 « m/B if the speed of the ex-
ternal particle is large compared with the thermal
velocity. With this choice of q’ the integrand in

Eq. (4.28) is analytic inside a circle of radius vq.
Let us displace the path to the upper arc; then g2

« mpw?, and consequently we can use for II(q, —iw)
the expression

. 2 2 2
H(Qv—lm)=%—(ﬂ7+0(;—,¥s—m{>‘

The integral along the upper arc then takes the form

]

q
? —v

odo
eBo_1  ¢*—

I (g, — i)
H(q, —iw)
(4.28)

ot

(4.29)
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vq

do [0
OB _1 o*—e} '’
—vq

(4.30)

where w; = (ne?/m)¥? is the Langmuir frequency. If
we bring the path of integration back down to the real
axis, the integral (4.30) is found to be zero for vq < w,,
and for vq > wy it is equal to half the sum of the resi-
dues at the points +w,, which gives for the integral
(4.30) the value mne®/2m. Finally, the integral (4.23)
over the second range q =< q’ is given by

de neze'> q'v
P —_ R
<— dt >2“ 4rtmu In w,
In the nonrelativistic region the total energy loss in

the slowing down of the particle is given by the sum
of Eqs. (4.27) and (4.31):

(4.31)

de 2,12 3/2
atp __nele 2Mm v_ ) (4.32)
dt 4ntmo (M+m)Vnez

The expression (4.32) gives the total energy loss that
comes from two-particle collisions in which the mo-
mentum transferred is much larger than the recip-
rocal of the Debye radius, and also from the excitation
of plasma waves. One of these kinds of loss can be
separated from the other only with logarithmic accu-
racy. The energy loss by excitation of plasma waves
is determined by the pole of the integrand in Eq. (4.28).
This pole also gives the spectrum of the plasma oscil-
lations.

In reference 31 the formula (4.23) is also used as
the basis for a detailed study of other limiting cases
of the stopping of a nonrelativistic particle, for ex-
ample the cases of low temperature, of small speed
of the external particle in comparison with the mean
thermal velocity of the plasma electrons, and so on.

APPENDIX 1

FUNCTIONAL DIFFERENTIATION

Let there be given a class of functions y (x) defined
on the interval [a,b]. Then I(y) is a functional of
the functions y (x) if to each function of the given class
there corresponds a certain numerical value of I(y).
A general form of a functional I(y) can be written as
follows:

- dy

L=\ F(z v y)dz,  y=2L. (1)

R o

For example, the length of a curved line is a functional
of its shape; in this case F(x,y, §) = (1 + y?)¥2,
where y (x) is the given curve.

Together with the function y (x) let us consider an
infinitesimally different function y(x), which coincides
with y (x) at the ends of the interval. The difference
y(x) - y(x) = 6y (x) is called the variation of the
function y (x) at the point x. Thus the variation 8y (x)

is the increment of the function y (x) caused by a
change of the form of the function itself. Similarly, the
variation 61 of the functional is the main linear part of
the increment of the functional I(y) caused by a change
of the form of the function y (x):

b
S = I (y+dy)—1I ()= % (Fy_%@ )(Sy(z)dx, @)

where Fy and F)" are the partial derivatives with re-
spect to y and y.

The concept of the functional can be regarded as a
generalization of a function of many variables. In fact,
let us replace the integral (1) by the integral sum

L= F(zr, y (21), ¥ (20)) Az, ®3)

h=1

Then I(y) will be a function of the ‘‘variables’ y(xy),
y(x3),..., since for fixed values of x4y, X5,... a
change of the form of the function y (x) leads to
changes of the numerical values of the entire set
v(x4), y{(x3),.... This analogy suggests how we can
introduce the concept of the variational (functional)
derivative. Whereas the total differential df of a func-
tion of many variables f(xy, x5,...,Xp) is equal to the
sum of the partial derivatives multiplied by the incre-
ments of the variables,

n
' Of

9=, 1(3;@, (4)
the variation 61 of the functional I(y) is equal to the
integral of the variational derivative 5y6(IX) (taken

at the point x) multiplied by the increment 6y (x) of
the function:
$ ool
81 = % 5_(;)6?/ (x) dx. (5)
By comparing (5) and (2) we find that the variational
derivative of I(y) with respect to the function y taken
at the point x is by definition equal to

74 R . d .- .
Sy = P @ v = Fy o). (6)

The concept of the variational derivative can also
be approached in a somewhat different way. To each
form of the function y (x) there corresponds the area
bounded by the axis Ox and the curve y(x). To a
change of the form of the function y (x) there corre-
sponds a change of the area by the amount

’
o= S oy (z) dr. (7)

Suppose the change of form of the function y (x) has
occurred only inan infinitely small neighborhood of the
point xy, for example 0y (x) = €6 (x —xy). Then in
generalizing the operation of partial differentiation to
the case of functionals it is natural to give the name
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of the variational derivative at the point X, to the limit
lim {[I(y + 6y) — I(y)]/o} as the change of area ¢
contracts to the point xg:

b
o1 . I{ydy)—I(y)_ ,. 1 d
it in e =t (g e
a
d "
=<Fy—$1y)x:x0. ®

We can regard the function y (x) at a fixed argu-
ment X = X’ as a special case of a functional, I(y)
=y(x'):

b
v@)= 0=y @) ax. 9)
Then according to Egs. (5) and (2) we have
Sy (=)
8y (=”)

If I is a functional of a function B (x) and B (x)
for fixed x is a functional of the function b (y), then
I is also a functional of b(y), and the variation of the
functional I caused by a change of the form of the
function b (y),

(10)

=0 (z'—2").

61=g 51?(Iy) 8b (y) dy (11)
can also be written in the form
_ _ 81 8B (x)

o= S s3i7 08 ()= S«SB Sy 4ot ) dy (12)

where we have used the relation
OB (z):S %lzgy)) &b (y) dy. (13)

From a comparison of (11) and (12) we find

of 81 OB () 14
8b (y) Q 88 (z) 6b(y) dz ( )

If 1(®) is a functional of operators ®(x), we de-
fine the variational derivative in the following way:

5
M:S Bw(z)sﬁd

Let us consider two functionals I; and I, of the
operators ®(x). Suppose [6®, I;], = 0. Then the
variational derivative of (LI,),

6(]112)=S d® (z) M dx

8® (z) (16)

6an also be written in the following way:
8 (I11) =1, (0+3D) I (D4 0@) — I, (D) I (D) =(811) 1o+ 1,81,

=g 5®(I)<6® @ Th 6£1(2z)> o

From a comparison of (16) and (17) we have

a7

[} on o1,

N R Y P RCR Y YR (18)

or

(15) |,

ALEKSEEV

[ ] s =
This last relation is to be understood in the sense that
the result of acting on an arbitrary functional with the

left and right members of Eq. (19) is the same expres-
sion. Setting ® = ¢ (x), ; = ¢ (y), or & =P (x),

I =y*(y), or & =¢ (x), I, = ¢(y), and so on, we

get the formulas (2.8) and (2.9).

APPENDIX 2

THE SUMMATION OF SERIES ENCOUNTERED IN
PROBLEMS OF STATISTICAL PHYSICS BY THE
USE OF METHODS OF QUANTUM FIELD THEORY

In using quantum-field-theory methods for the pur-
poses of statistical physics one frequently has to sum
series over discrete values of the fourth component of
the four-dimensional momentum vector. It turns out
that one can establish certain general rules and for-
mulas for such summations, which are extremely use-
ful in applications.

For example, by performing the Fourier transfor-
mation (1.60) on the zeroth-order phonon thermody-
namic Green’s function Z,(x,7), Egs. (1.37) and
(1.49), and using Eq. (1.65) we get for Z,(p, 7)

-0 1 9k —0 T} ok Tl
=y __k Oy 7 K LA B
B %ﬁ)i"‘r‘@ﬁg 5 I( +"k)e +nke i (I)
If we take the limit 7 — 0 in both members of Eq. (I),
we get

Oy 1 1
T STt @

where wp = 2n7/B, nk is defined in Eq. (1.47), and wi
is an arbitrary positive quantity wy > 0 of the dimen-
sions of energy.

Similarly, performing the Fourier transformation
on the zeroth-order electron thermodynamic Green’s
function $%4(x,7), Eqgs. (1.36) and (1.48), and using
Eq. (1.64), we get for %4(p,T)

— b4 ipar_ [ (1—np) 8qg e~ BPTMT, 7>0,

Py (o

_—npéaﬁ e~ (Ep—HIT ¢ 0.

Since %4(p, 7) has a discontinuity at the point 7 = 0,
for 7 — 0 we must use in Eq. (II) the half-sum
[4y(p, T+0) + % (p, T—0)]}/2, which is equivalent
to multiplying both members of Eq. (III) by 6 (7) and
then integrating over 7. The result is

Ep— 1 1
B2 ATE T )
Py

where p, = (2n + 1) n/8, €p > 0, and np is defined in
Eq. (1.47).

We also note that an analogous treatment of the
boson Green’s function of Eq. (1.83) and (1.87) leads
to the following extension of Eq. (II) to the case u = 0:
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e —u 1
2 p4+(€ —pp T W

where p, = 207/B, €p > 0, and np is given by Eq. (1.83).

Repeating these arguments for the relativistic elec-
tron thermodynamic Green’s function, Eq. (2.27), we get
—ipy+(ipstn) vatm

?’Iﬁ% (ps—ip)? +S 28 |:< 2

+ (——n )(m 4ep—ivp)]-

Let us take the trace of both members of Eq. (VI):

m ) (m Vet —ivD)

(VD

P 1 .
B ;} (P4fiu)2+8‘.2,_1 o
where p,=(2n+ 1) /8,
defined in Eq. (2.30).
This device can also be extended without much dif-
ficulty to other cases of summation. The results are
general formulas of more complicated forms [cf., e.g.,
Egs. (1.66) and (1.68)].
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