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INTRODUCTION

I N recent years the quantum-mechanical theory of
many-particle systems has received much attention.
Important advances in this field have been the result
of the successful application of well developed methods
of quantum field theory to the study of systems made
up of large numbers of interacting particles. Since in
a brief survey it is impossible to include all of the
various approaches that have been developed, we shall
present mainly (as the most promising method) the
method of Green's functions,1 which in its application
to many-body problems has been most intensively de-
veloped in papers by Soviet authors,2"11 and also in
some other papers.12 '13 The advantage of the Green's-
function method lies not only in a clear formulation of
the problems and in the existence of flexible methods
for solving them, but also in the possibility of extend-
ing the results to the case of temperatures other than
absolute zero. In this connection there have recently
been many papers devoted to the study of important
problems of statistical physics on the basis of the
Green's-function method.14"35

The present review gives a more or less detailed
exposition of this method as applied to statistics. The
basis adopted is the widely used method of Matsubara, u

which has been significantly improved in recent papers
by Soviet authors.15 '16"20

In the first section we present a new thermodynamic
perturbation theory based on the methods of quantum
field theory, and at the same time explain the main
ways to apply the mathematical apparatus of quantum
field theory for the purposes of statistical physics.
The exposition is given in considerable detail. The
contents of this section convincingly show the advan-
tages of the new thermodynamic perturbation theory.
Whereas in the old thermodynamic perturbation theory
mathematical complications made it impossible to ad-
vance beyond the first (one or two) approximations in

the interaction between particles, in the new formula-
tion the use of the diagram technique makes the con-
struction of the perturbation-theory series so intui-
tively clear that it is possible to carry out a selective
summation of an infinite number of terms of the ser ies .
Such a selective summation leads to physical approxi-
mations that go beyond the framework of the perturba-
tion theory itself.

The second section is devoted to calculations with-
out the use of thermodynamic Green's functions. Here
particular attention is given to methods for working
with Green's functions. The size of the article does
not allow a really full treatment of the applications to
specific problems. The exposition needed can, how-
ever, be found in the original literature to which ref-
erences are made. This remark also applies to the
third section, which is devoted to time and tempera-
ture dependent Green's functions.

In the fourth section we examine the application of
the principles here expounded to a certain class of
problems in kinetics. The case of the deceleration of
a particle in passing through a plasma is used as an
illustration. The method is so general, however, that
it can be extended without difficulty to other similar
problems, namely: bremsstrahlung and pair produc-
tion in the passage of particles through plasmas, plas-
ma radiation, stopping of electrons in metals, and so
on.

1. THERMODYNAMIC PERTURBATION THEORY

The perturbation-theory ser ies . Let us consider a
quasi-closed statistical system, which in general can
consist of several types of fermions and bosons. For
simplicity in the writing, however, we shall suppose
that the system contains only one type of fermions and
one type of bosons, since the extension of the results
to the case of many-component systems presents no
difficulties. We regard the particles—the fermions
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and bosons—as quanta of fermion and boson fields, so
that in the Schrodinger representation (Matsubara14)
the Hamiltonian of the statistical (for example, elec-
tron-phonon) system is of the following form:

'о = 2
Р, г

2 <
к

(1.1а)

(1.1b)

(1.1с)

where Ho is the Hamiltonian of the noninteracting elec-
tron and phonon fields; Ht is the operator for the inter-
action of these fields; a p r and ap"r are the respective
operators for absorption and production of an electron
with momentum p, polarization r, and energy ep
= p2/2m; bfc and b£ are analogous operators for a
phonon with momentum к and energy wjj = Й | к | s;
V is the volume of the statistical system; and the
coupling constant g is given by the expression

# = V N'Ms1

in which M and N' are respectively the mass and
total number of lattice ions, С is the ordinary constant
for the interaction of electron and lattice, and s is the
speed of sound. The operators for production and ab-
sorption of particles satisfy the commutation relations:

брр',

= [aPr, aPvL = 0,
]. = 0. (1.2)

B y m e a n s o f t h e o p e r a t o r s f o r t h e f r e e e l e c t r o n

field ф (x) and the free phonon field cp(x),

fr (x) = V-V. 2 a9ru
P, г

)= 2 ( 5

(1.3a)

(1.3b)

where u r , r = 1, 2, are spin wave functions of the elec-
tron, corresponding to the two different spin projections,
the interaction operator Щ can conveniently be written
in the following form:

Ф (X ( 1 . 4 )

All of these operators act on the Schrodinger func-
tion ФП№ which for the case in which the system con-
sidered is completely closed satisfies the Schrodinger
equation

(1.5)

where the index n numbers the energy levels of the
system consisting of phonons and N electrons. It fol-
lows from the form of H i that the operator for the
total number of electrons

commutes with the Hamiltonian H (in what follows
the operator for the total number of particles and its
eigenvalues will be denoted by the same symbol N).
Consequently, in addition to the total energy of a
closed system, the number of electrons is also a con-
served quantity, and therefore each state Ф п ^ of the
system is characterized not only by the energy quan-
tum number n but also by an indication of the number
N of electrons. Furthermore, the energy levels EnN
of the system are also different for different values
of N. If the system under consideration is quasi-
closed, both the energy and the total number of elec-
trons will fluctuate around their average values. To
describe the behavior of such a system in thermody-
namic equilibrium one uses a Gibbs distribution with
variable number of particles, according to which the
probability for the system to contain N particles and
furthermore be in a state with energy En j j is given
by the expression (cf., e.g., Landau and Lifshitz36)

и ^ = е

( П+^-Еп*>е, (1.7)

where /3 = 1/kT, Q is the thermodynamic potential of
the system, and ц is the chemical potential of the
electrons.

For the determination of the thermodynamic char-
acteristics of the system it is sufficient to calculate
the statistical sum

Z =
пЛ, = Sp е<^- (1.8)

w h e r e t h e o p e r a t o r s N a n d H t h a t a p p e a r u n d e r t h e

t r a c e s i g n a r e d e f i n e d i n E q . ( 1 . 6 ) a n d E q s . ( 1 . 1 a ) —

(1.1c). For example, the thermodynamic potential Я
of the system is given by

Q= (1.9)

If F is an operator that refers to the entire system,
then the statistical average value of this operator
over the ensemble of interacting particles, [ F ] a v , is
given by

bnN = Sp

It is easy to see that the density matrix,

(1.10)

o p , (1.11)

which appears in the expressions (1.8) — (1.10), satis-
fies the following equation:

| | = (nJV-tf) e. (1.12)

Following the work of Matsubara, u let us represent
the density matrix (1.11) in the form

(1.13)

from which it can be seen that the operator S (/3) can
be defined as the solution of the equation

2 awaw (1.6) (1.14)
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with the init ial condition S I
definition

n y(x) = e~(v-

0) = 1, and with the

(1.15)

The t r a n s f o r m a t i o n (1.15) from the Schrodinger o p e r a -
t o r Hj to the o p e r a t o r H J ( T ) , which depends on т, i s
a t r a n s i t i o n to a pecu l ia r " i n t e r a c t i o n r e p r e s e n t a t i o n . "
The dependence of o p e r a t o r s on т given by Eq. (1.15)
differs f rom that used in the well known p a p e r of M a t -
s u b a r a 1 4 by the p r e s e n c e of the chemical potential д .
As will be seen l a t e r , the p r e s e n c e of the p a r a m e t e r
ц in Eq. (1.15) g reat ly faci l i tates the calculat ions and
enables us to obtain a cons iderable extension of the
M a t s u b a r a m e t h o d . 1 4 The dependence of the o p e r a t o r s
on ц a s shown in Eq. (1.15) was f i r s t introduced inde-
pendently by Abrikosov, Gor'kov, and Dzyaloshinski i l s

and by F r a d k i n . 1 6 - 1 8 ' 1 9

As is well known (cf., e.g., the book by Akhiezer
and B e r e s t e t s k i i 3 7 ) , the solution of (1.14) with the in i-
t ia l condition S ( 0 ) = 1 can be wr i t ten in the form of
the s e r i e s

в
- J Hi (T) dx

T и

in which, in a c c o r d a n c e with Eqs . (1.15) and (1.4), the
o p e r a t o r Н 4 ( т ) is given by

%{z)d3x, (1.17)

w h e r e the var iab le x denotes the combination of x
and т, and the dependence of the o p e r a t o r s <^+(x),
ф(х), and cp(x) on the var iab le т is the s a m e as
that of H J ( T ) shown in Eq. (1.15); for example,

|з+ (x) = е-См-л'-Но) (1.18)

that i s , the field o p e r a t o r s in Eq. (1.17) a r e wr i t ten in
the " i n t e r a c t i o n r e p r e s e n t a t i o n . " The symbol T
placed before any o p e r a t o r s A ( T t ) В ( т 2 ) . . . F ( т п )
indicates the T-product of these o p e r a t o r s , which by
definition i s of the form (Wick 3 8 )

T [A (T l) В (т2) ...F (t,,)] = 6PB (т2) F (т„) . . . ,1 (T,), (1.19)

where В ( т 2 ) F ( r n ) . . . A (Tj) is the s a m e set of o p e r -
a t o r s as A ( r t ) В ( т 2 ) . . . F ( т п ) , but a r r a n g e d so that
the n u m e r i c a l value of т in the o p e r a t o r s i n c r e a s e s
from r ight to left. 6p = + 1 or — 1, depending on the
p a r i t y of the n u m b e r of in terchanges of f e rmion o p e r a -
t o r s that m u s t be m a d e .

If we u s e the following definition of the s t a t i s t i c a l
average value of an a r b i t r a r y o p e r a t o r F in the a b -
sence of in teract ion between the p a r t i c l e s ( H t = 0 ) :

{F) = Sp(e^N~11'>^ P F)/Sp g(n-"v-iJo) Pt (1.20)

then by using E q s . (1.11), (1.13), (1.16), and (1.17) we
can put the par t i t ion function in the form of an infinite

s e r i e s in wh ich e a c h t e r m i s the s t a t i s t i c a l a v e r a g e of

a T-product of f ie ld o p e r a t o r s o v e r the e n s e m b l e of

n o n i n t e r a c t i n g p a r t i c l e s

(1.21)

w h e r e d 4x = d3x йт and the integra l over x is taken
over the volume of the sys tem, while the integra l o v e r
the var iab le т is taken over the interval from 0 to /3.

Similar ly we have for the thermodynamic potential

Q = Q 0—P"4n<5(P)>, (1.23)

where the logar i thm of < S ( / 3 ) > can a l so be r e p r e -
sented as a s e r i e s ( s e e be low).

The index 0 is always used to designate quantit ies
that r e f e r to the s y s t e m of noninteract ing p a r t i c l e s .
If the convergence is rapid, the s e r i e s (1.21) - (1.23)
can s e r v e as the b a s i s for the calculation of all the
t h e r m o d y n a m i c c h a r a c t e r i s t i c s of the s y s t e m ; this
i s the main content of the new thermodynamic p e r t u r b a -
tion t h e o r y (cf. a l so an i n t e r e s t i n g v e r s i o n of the new
thermodynamic per turbat ion theory in p a p e r s by Hugen-
holtz 3 9 and Ch'en C h ' u n - H s i e n 4 0 ) .

Rules for calculating the t e r m s of the s e r i e s . The
s e r i e s (1.22) for the o p e r a t o r S(/3) has a g r e a t formal
r e s e m b l a n c e to the s e r i e s for the S m a t r i x in quantum
field theory, for which t h e r e is a well developed m a t h e -
m a t i c a l a p p a r a t u s . Unlike the c a s e of quantum field
theory, however, in Eq. (1.22) we m u s t ca lculate the
average values of the T-products of free-field o p e r a -
t o r s not over the ground s ta te ( v a c u u m ) , but over
s t a t e s of the sys tem which contain a r b i t r a r i l y l a r g e
n u m b e r s of p a r t i c l e s ( s t a t i s t i c a l a v e r a g e ) . F o r th i s
r e a s o n we m u s t r e e x a m i n e the well known p r o p o s i -
t ions of the m a t h e m a t i c a l a p p a r a t u s of quantum field
theory as applied to the calculation of s ta t i s t ica l av-
e r a g e s of T-products of o p e r a t o r s .

Since the s ta t i s t ica l averages in Eq. (1.22) a r e
taken over the s y s t e m of noninteract ing p a r t i c l e s , the
free-field o p e r a t o r s that appear in Eq. (1.22) have the
following f o r m s :

(1.24)

(1.25)

Let us put ф+, ф, and <p in the form of s u m s of two
p a r t s

cp (ж) =

(1.26)

(1.27)

w h e r e
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vl(x) = \

- qvr)

(1.28)

(1.29)

and the operators v 2 (x), v^(x) and <p+(x) are found
from Eqs. (1.26) — (1.29) by simple subtraction. Ac-
cording to the work of Wick38 we define the ^f-product
of operators v 1 (x)v 2 (x)vj ' (x) v 2 ( x ) . . . <p_ (x)<p+(x). . .
as a product in which all the vj are to the left of all
v t, v2, and v2

+, all v2 are to the left of all v t and v2,
all v2 are to the left of all v1 ( and, finally, all <p+ are
to the left of all <p_, so that:

JT {vt (x) v2 (x) vl (x) v; (x) ... ф_ (x) ф+ (x) .. .)

= V r (x) vl (*') • • • y2 (x) vl (x') ... a, (x) y2 (x')

...Vl (x) Vl (x') ... Ф+ (i) q>+ (x') .. . ф. (x) Ф. (*') . . . , (1.30)

where the sign symbol 6p is equal to ± 1, depending
on the parity of the number of interchanges of fermion
operators. The T- or ^'-product of a sum of opera-
tors is equal to the sum of the T- or ,#'-products of
the individual terms, so that for the working out of an
expression of the form

JT (Щ* . . . o r T (i]«|>* • • • Ф (1.31)

o n e m u s t u s e E q s . (1 .26) , (1 .27) , a n d (1 .30) . W i t h t h i s

d e f i n i t i o n of t h e ^ ' - p r o d u c t t h e f e r m i o n f i e l d o p e r a t o r s

(1.24) a n t i c o m m u t e u n d e r t h e s i g n of t h e , y f - p r o d u c t ,

a n d t h e b o s o n o p e r a t o r s (1.25) c o m m u t e . T h e d i f f e r -

e n c e of t h e T - a n d . ^ ' - p r o d u c t s of t w o o p e r a t o r s A

and В of the types (1.24) — (1.27) is called the con-
traction AB

AB. (1.32)

As is well known, the T- and «^'-products (1.19) and
(1.30) — (1.31) of operators ABCDE . . . F obey Wick's
algebraic theorem, 3 8 according to which the T-product
of a set of operators is equal to the sum of all the Jf'-
products of the same operators with all possible con-
tractions:

T (ABCDE ... F) = JT (ABCDE . .. F)

+ J*(ABCDE...F)+ . ..+JT (ABCDE .. . F)

...+JT (ABCDE... F). (1.33)

Since we are concerned only with the statistical av-
erage of a T-product of a set of operators of the types
(1.24) — (1.25) over a system of noninteracting particles,
we shall try to choose the constants qp r , f̂ , and i2^
in Eqs. (1.28) and (1.29) in such a way that all statis-
tical averages of Ж-products will satisfy the equation

(Ж (i|>i|>+ . . . <p . . . ) ) = 0. (1.34)

T h e n W i c k ' s t h e o r e m (1.33) f o r f r e e - f i e l d o p e r a t o r s

A B C D E . . . F of E q s . (1.24) — (1.25) w i l l r e a d s i m p l y :

{T (ABCDE ...F)) = ABCDE ... F+..., (1.35)

where the right member is the sum of products of the
operators with all possible contractions. The expres-
sion (1.35) is different from zero only if there is an
even number of boson operators cp under the sign of
the T-product, and if the fermion operators ф and ф*
occur in pairs. This is a consequence of the fact that
for arbitrary values of qp r , f̂ , and f^ there are
only two nonvanishing contractions of the operators
(1.24)-(1.25):

-(8p-ti)(t-t')
(1.36)

2 K / 2 F ) [(1 - / l k ) (1 - /2 k)

| K / 2 F ) [(1 - / ) k / 2 k )

On the other hand, by using Eqs .
can eas i ly verify that

(1 - <aP rap r» « W p

= 2 -g- [(1

P.

- V'1

(Г(ф(х)ф(а

т>т',

Х ) / " + И ^ ' - Т ) ] , Т'>Т.

( 1 . 3 7 )

( 1 . 2 4 ) a n d ( 1 . 2 5 ) o n e

т>т',

T < T ' ,

(1.38)

(1.39)

w h e r e < a i r a p r > a n d < b ^ b ^ > a r e t h e s t a t i s t i c a l

a v e r a g e s of t h e n u m b e r s of e l e c t r o n s w i t h t h e e n e r g y

e p a n d p o l a r i z a t i o n r a n d of p h o n o n s w i t h t h e e n e r g y

w^, i n t h e a b s e n c e of i n t e r a c t i o n b e t w e e n t h e p a r t i c l e s .

In o r d e r t o c a l c u l a t e < a p " r a p r > a n d < b ^ b i c > , l e t u s

c o n s i d e r

Zo = Sp eW-и.) P (1.40)

a n d t h e s t a t i s t i c a l o p e r a t o r WQ of t h e s y s t e m of n o n -

i n t e r a c t i n g p a r t i c l e s 4 1

w h e r e
- Ho = 2 J (Ц - ep) aprtzp, + J. w k 6 k

P, r k

(1.42)

Since the different t e r m s of the s u m s in Eq. (1.42)
commute with each other , the s t a t i s t i c a l o p e r a t o r
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( 1 . 4 1 ) c a n b e r e p r e s e n t e d a s a p r o d u c t o f s t a t i s t i c a l

o p e r a t o r s r e f e r r i n g t o e a c h i n d i v i d u a l s t a t e o f a n

e l e c t r o n o r p h o n o n ( t o t h e i n d i v i d u a l f i e l d o s c i l l a -

t o r s ) :

w h e r e

Z o = ] ! Z p r | | Z k .
к

(1-43)

(1.44)

Using the n o r m a l i z a t i o n of the s ta t i s t ica l o p e r a t o r s ,
Sp W p r = 1, Sp Wfc = 1, and a l so the diagonal va lues
of the o p e r a t o r s й р Г and n^, which a r e respect ive ly
0, 1 and 0, 1, 2 , . . . , » , we eas i ly find that

Zpr = l + elv-ef)fi, Z t = ( l - e - M k P ) - 1 - (1.45)

F r o m Eqs . (1.45) and (1.44) we get, by the way, the
well known expres s ion for the thermodynamic poten-
tial Щ of the e lectron-phonon s y s t e m in the absence
of in teract ion between the p a r t i c l e s

In (1 - In (1

(1.46)
w h e r e i n p a s s i n g f r o m t h e s u m t o t h e i n t e g r a l w e h a v e

u s e d t h e r e l a t i o n

2V d3p ( 1 . 4 6 a )

Knowledge of t h e s t a t i s t i c a l o p e r a t o r s Wpr and Wk
for the individual p a r t i c l e s t a t e s enables us to ca lcu-
late the dis t r ibut ion functions n p r and nfc of n o n i n t e r -
acting e l e c t r o n s and phonons:

ft) " Sp e<"-V p r V^ r = (e'^-"» 4 I)" 1 .

k P " k n k = ( e ^ - l ) " 1 . (1.47)

The a v e r a g e number of e l e c t r o n s with a given energy
€p, Eq. (1.47), does not depend on the spin s ta te of the
elec t ron . Therefore we shall he reaf te r omit the index
r on the dis t r ibut ion function (1.47): n p r = n p .

Thus if we take for the constants q p r , f^, and f2k
the va lues

/1 к = ( 1 + е Ш к Р / 2 ) Л /2к = ( 1 - е Ш к Э / 2 ) ' 1 , (1-49)

then accord ing to E q s . (1.36) — (1.37) and (1.38) — (1.39)
( M a t s u b a r a 1 4 ) we have

(*)**(*'))> = °, U"(«P(*)<P (*'))> = (1.50)

a n d t h e c o n t r a c t i o n o f a p r o d u c t i s e q u a l t o t h e s t a t i s -

t i c a l a v e r a g e o f t h e T - p r o d u c t o f t h e g i v e n o p e r a t o r s .

If for ф (x ) and ф*(х) we i n s e r t t h e i r s e r i e s ex-
pansions (1.24), then in v i r tue of the s ta t i s t ica l i n d e -
pendence of the individual s t a t e s of the p a r t i c l e s , Eq.
(1.43), the t h e o r e m (1.50) will a l so be t r u e for each
t e r m of the sum so obtained; for example,

= 0, (1.51)
where as before the J> -product is understood in the
sense of Eq. (1.30), and the parts of vlt vj\ v2, and
v2

+ a r e played by t h e i r individual t e r m s О ф Г , a j p r ,
a 2 p r , and a 2

+ p r , which a r e given by ( T h o u l e s s 4 2 )

ttlPr = ( 1 — Qpr) й р г , Ol2pr — ' / p r ^ p r ,

= a T B r - : - « 2 l l r . ( 1 - 5 2 )

All unessent ia l factors a r e omitted in Eqs . (1.51) and
(1.52).

An ,yf-product of a l a r g e r number of factors фф*
is expanded into a sum of J -products of o p e r a t o r s
a p r a p ' r ' • • • • И all the fermion o p e r a t o r s a p r and
а«' Г / and p a i r s a p r a p r of such o p e r a t o r s r e f e r to dif-
ferent s t a t e s of the e lect ron, then the average of such
an ^ - p r o d u c t is z e r o by Eq. (1.51). If t h e r e a r e any
two identical o p e r a t o r s among the a p r ( o r among the
a p ' r ' ) , then b e c a u s e of t h e i r ant icommutat ion the jf-
product is z e r o . Consequently, when Eqs . (1.50) and
(1.51) hold, the average of an Jt '-product containing an
a r b i t r a r y number of fermion o p e r a t o r s ф (x) and
ф+(х) i s equal to z e r o . This l a s t a s s e r t i o n a l so holds
for boson o p e r a t o r s (p(x) ( T h o u l e s s 4 2 ) . To s e e this ,
according to Eq. (1.35) we have only to show that the
average of the T-product of any number of boson o p -
e r a t o r s (1.25) is identically equal to the sum of all
products of t h e s e o p e r a t o r s with all poss ib le c o n t r a c -
t ions, w h e r e by a contract ion we m e a n the expres s ion
given by Eqs. (1.37) and (1.49).

The s ta t i s t ica l o p e r a t o r Wo, Eq. (1.43), which d e -
t e r m i n e s the average value, i s factored. There fore
we can c a r r y out the proof of the t h e o r e m for each
individual boson s ta te . The expres s ion < T (<pk(x)
( р ^ ( х ' ) cpk(x" ) . . . ) > , where cp^ix.) i s the t e r m of

the sum (1.25), <p(x) = Т^<р^(х), that r e f e r s to the
к

boson state with the energy ŵ , breaks up into a sum
of t e r m s containing Because of the o r -

thogonality of the wave functions <£nN with r e spec t to
which one takes the average , the only nonvanishing
t e r m s will be those that contain equal numbers of p r o -
duction o p e r a t o r s b£ and absorpt ion ope ra to r s b ^
(Z = m ) .

According to Eq. (1.2) the occupat ion-number op -
e r a t o r s n^ = b^bjj satisfy the following re la t ions
(Bloch and DeDominicis 4 1 ) :

nkbk = bk(nk— 1),

(1.53)
f r o m w h i c h w e h a v e

x (nk — m + 2) (nk — m + 1) = rak(nk — 1) . . . (лк — m + 1).
(1.54)
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Averaging Eq. (1.54) by means of the statistical
operator W^ of Eqs. (1.43) — (1.45),

Wk = (1 - = (1 - Z ) Z"*, (1.55)

we get

(1-56)

i.e., in the averaging of < b £ m b m > the first factor
b£ can be combined in a pair with any of the m fac-
tors bjj, the second bj£ with any of the m — 1 remain-
ing factors bfc, and so on, making m! combinations
in all.

The result (1.56) applied to < T (<pk(x) <pk(x')
<р^( x" ) . . . ) > means that the average of the T-product
of any number of boson operators cp^ix), <py^(x'),
cp^ix"),... is equal to the sum of all products of these
operators with all possible contractions; as in Eqs.
(1.37), (1.49), this sum is given by42

фк(а;)фк(ж') = - ^ - [ ( 1
2V

(1.57)

The diagram technique. The individual terms of the
perturbation-theory series (1.22) are averages of T-
products of free-field operators. Since the average of
a T-product is different from zero only for an even
number of boson operators <p(x), the sum (1.22) con-
tains terms with even values of the summation index.
In the expansion of a T-product into a sum of products
with all possible contractions we must not contract op-
erators ф(х) and ф*(х) that have the same variable
of integration, because the term with such a contraction

is zero:14

(x) Ф (x) Ц (x))

(1.58)

where the integral of the function i250(x) over all the
space of x is zero, since the sum (1.37) does not con-
tain the term with phonon momentum к = 0.

It is convenient to represent an individual term in
the average of the T-product (1.22) by a graph accord-
ing to the following rule (the analogous method of con-
structing graphs in quantum electrodynamics is de-
scribed in detail, for example, in the book of Akhiezer
and Berestetskii,3 7 to which reference is made). To
each variable of integration xj there corresponds a
point, a vertex of the graph. Since the variable xi is

contained in t h r e e o p e r a t o r s ф+( XJ ) cp ( XJ ) ф (x j ) , t h r e e
lines come together at a vertex —two solid lines, cor-
responding to the operators ф+(х±) and $(xf), and
one dotted line, corresponding to <p{x{).

The operators ф+, ф, and <p occur only in the form
of contractions. Therefore the solid and dotted lines
will begin and end at vertices of the graph; to the con-
traction §t)(x— x ') of fermion operators there corre-
sponds in the graph a solid line going from the vertex
x' to the vertex x, and to the contraction SDU (x — x ')
of boson operators there corresponds a dotted line con-
necting the vertices x and x'. The operators ф*(х')
and ф (x) that are involved in *?0 (x — x') contain only
production and absorption operators, respectively.
Therefore it is said that a solid line going from a
vertex x' to a vertex x describes the motion of a
virtual electron produced at the point x' and absorbed
at x, and ^ 0 (x — x') is called the propagation function
of the electron. Analogously, 3)0 (x - x ' ) is called the
propagation function of the phonon. As has been noted
earlier, the graphs consist of even numbers of ver-
tices. For example, there is only one term of order
g2 in the series (1.22),

to which t h e r e c o r r e s p o n d s a g r a p h with two v e r t i c e s
(Fig. 1). Conversely, f rom the form of the graph one
can w r i t e down the corresponding t e r m of the expan-
sion of the T-product, r e m e m b e r i n g that to each
graph with n v e r t i c e s t h e r e c o r r e s p o n d s a factor
( — l ) n + ' g n / n ! , where I is the number of closed elec-
tron loops contained in the graph in question. The ad-
ditional factor (— 1У comes from the anticommutation
of the Fermi operators under the sign of the T-prod-
uct. In order to get all graphs with n vertices, one

FIG. 1
must connect n points х1? x 2 , . . . ,x n (the vertices)
by lines in all possible ways such that two solid lines
and one dotted line meet at each vertex. Then to each
such graph there will correspond a definite term of
the expansion of the T-product (1.22), proportional to
g n . In writing down the terms from the forms of the
graphs one must take account of the fact that several
terms can be numerically equal, differing only by in-
terchanges of the variables of integration. For ex-
ample, the graphs of different structures with four
vertices are shown in Fig. 2. The four-vertex graphs
not shown are obtained from the graphs of Fig. 2 by
giving different designations to the vertices. One
thus gets, for example, six different graphs of type
c) and three of type d); to such sets of graphs there
correspond numerically equal terms in the expansion
of the T-product.
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FIG. 2

Thus < S ( j8)> i s the sum of al l poss ib le graphs
with closed solid l ines . Since to each line of a g raph
t h e r e c o r r e s p o n d s a function of a difference of c o o r -
dinates , t h e e x p r e s s i o n corresponding to an individual
connected closed graph is proport ional to the volume
V. In p a r t i c u l a r , the sum < S ( / 3 ) > contains t e r m s
that each c o r r e s p o n d to s e v e r a l s e p a r a t e connected
closed g r a p h s , for example, the g r a p h s d) of Fig. 2.
Each such t e r m in the sum < S ( / 3 ) > i s proport ional
to V m , w h e r e m i s the number of s e p a r a t e connected
g r a p h s .

On the o t h e r hand, the t h e r m o d y n a m i c potential
(1.23) m u s t be proport ional to the f i r s t power of the
volume V. It follows that the sum < S ( / 3 ) > m u s t be
of the form exp L, w h e r e L is the sum of al l con-
nected closed g r a p h s . In fact, if we denote by L s the
contribution from one connected closed g raph of type
s, then a t e r m of the sum < S (/3)> that b r e a k s up
into s e v e r a l types of connected g raphs is obviously
equal to Д ( J g ! ) " 1 ( L s ) s, w h e r e ls i s the n u m b e r

s
of g r a p h s of a given type. Then the e n t i r e infinite
sum < S (/?)> can be wr i t ten in the following way
(Vedenov and L a r k i n 4 3 ) :

one can get a d e e p e r understanding of the s t r u c t u r e of
the higher approx imat ions . Given the poss ibi l i ty of
wri t ing down any t e r m of the p e r t u r b a t i o n - t h e o r y
s e r i e s , one can sum an infinite se t of t e r m s of a defi-
nite c l a s s , and thus get a r e s u l t that i s different from
o r d i n a r y calculat ions by per turbat ion theory (an ex-
pansion in t e r m s of a different p a r a m e t e r , which i s
especia l ly valuable in c a s e s in which p e r t u r b a t i o n
theory i s inappl icable) . Moreover , in the d iagram
technique one can v e r y s imply get e s t i m a t e s of the
o r d e r s of magnitude of omitted g r a p h s , and thus can
eas i ly es tab l i sh the range of applicabil ity and the a c -
curacy of a se lect ive summation. A r e m a r k a b l e ex-
ample of this is a p a p e r by Vedenov and L a r k i n , 4 3 in
which a se lect ive summat ion of an infinite n u m b e r of
t e r m s in the p e r t u r b a t i o n - t h e o r y s e r i e s i s used to find
the free energy of a completely ionized gas [with the
Hamiltonian (1.71a) — (1.71c), in which v ( x — x ' ) is the
Coulomb potent ia l for the in teract ion of a p a i r of p a r -
t ic le s ] in the form of an expansion in the density n.
In addition to the Debye t e r m , the a u t h o r s succeeded in
getting the next two t e r m s of the expansion, p r o p o r -
tional to n 2 In n and to n 2 .

The change to the p r e p r e s e n t a t i o n . The technique
for calculat ing the t e r m s of the s e r i e s (1.22) is g reat ly
facil i tated by going from the coordinate r e p r e s e n t a t i o n
to the m o m e n t u m r e p r e s e n t a t i o n of the functions &0

and 2>0. In doing so it m u s t be kept in mind that the
contract ions */0 ( x j - x 2 , т1-тг) and Зй (xj - x2, т1-т2)
a r e functions of the differences xi — x2 and i^ —т2, and
that a s functions of Tj — т 2 they a r e defined only in the
range f rom - /3 to /3. Let us define the functions
^o (x, T ) and 3>0 (x, T ) on the e n t i r e т axis by continu-
ing them per iodica l ly . Then we can expand &0 (x, r )
and i£>0 (x, T) in Fou r i e r s e r i e s with r e spec t to the
va r i ab le т, and in F o u r i e r in tegra l s with r e s p e c t to
the space coordinates x; for example :

w h e r e 2 L S is the sum of al l connected closed g r a p h s .

F o r the t h e r m o d y n a m i c potential (1.23) we have п

= O e - j 3 - 1 Z L s .
Bes ides s impl ic i ty and the well known " a u t o m a t i c "

c h a r a c t e r of the calculat ions, th is method has the ad-

l
(P. ш„) = -j

-P
(1.60)

The change to the p r e p r e s e n t a t i o n is much simplified
owing to an i m p o r t a n t p r o p e r t y of the functions §й and
^>0. According to the definition (1.32) of a contract ion
of o p e r a t o r s , and a l so Eqs . (1.50), (1.20), and (1.18),

v a n t a g e t h a t b y m e a n s of i n t u i t i v e l y s i g n i f i c a n t g r a p h s w e h a v e f o r t h e f u n c t i o n

F r o m this we have for т1 — т2 = т< О

г.- s P е(^-но)э е-(^-но)(г 1-

- Z . - ' Sp е О ^ - Н . » . - ^ - * .

Z,- S P , И - Я * , - ^ - Я Л ' г

- Z , - Sp ^ - H » , - ^ - W

X J - X J , T ) = — ^ 0 ( X j - X 2 , (1.61)
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where the minus sign of ^ o ( x i - X2> T + Э) i s due to
the anticommutation of the fermion operators. An
analogous relation also holds for the contraction of
the boson operators for т < О

3)0(x, т) = ,2>0(х, t + Q>), (1.62)

If we continue the functions ^ 0 (x, т) and Щ (x, т)
of the variable т periodically along the entire т axis,
then the relations (1.61) and'(1.62) will be satisfied for
all т (Abrikosov, Gor'kov, and Dzyaloshinskii1 5).

As we have shown by the diagram technique, each
vertex of a graph joins an even number of fermion

lines. Therefore all of the integrals J . . . dr that
о

/3
occur in Eq. (1.22) can be replaced by 5 J . . . dr. In

-P
fact, by making a change of variables and using Eqs.
(1.61) and (1.62), we get

0 (ж, - ж) £ti0 (x3 - x) g0 (x - ж2) dt

0

This fact allows us to carry out the Fourier transfor-
mation easily in all of the terms of the series (1.22).

It also follows from the relations (1.61) and (1.62)
that in the Fourier expansion (1.60) of the fermion
contraction g0 (x, т) the only nonvanishing components
are those with wn = (2n + 1) TT/J3, and in the expansion
of the boson contraction ,2>0 (x, т) there are only com-
ponents with wn = 2nff/j3, where n = 0, ± 1, ± 2, ± . . . .
According to Eqs. (1.38), (1.39), and (1.47) the explicit
forms of &й(р, шп) and ^ 0 ( k , a>n) are as follows:

, <on) = - (to» +1* - e,)"1««,, con = (2n +1) я/р, (1.64)

ton

(1.65)

In the p representation a propagation function
^0 (P> ш п ) corresponds to each solid line of a graph,
and a function yj0 (k, con) to each dotted line. To each
vertex of a graph there corresponds a factor
6 ( S p ) 6 0 2 W n . where Sp and Scon are sums of the
components of the four-dimensional momenta of the
solid and dotted lines that come together at the vertex
in question, and 6 0 2 Ш п is the Kronecker б symbol,

l f o r

0 for 0.

We can agree to include in the sums Sp and Sa)n the
momenta of the particles that are produced at the ver-
tex with the plus sign, and those of particles absorbed

at the vertex with the minus sign. There is to be an
integration over all the three-dimensional momenta
of the solid and dotted lines, and a summation over
all the fourth components of the momenta. To an in-
dividual graph with n vertices there corresponds a
factor

(- i r 'g n [(2 j t fc) 3 Pr m M!,
where I is the number of closed loops of fermion lines
and m is the number of solid and dotted lines con-
tained in the given graph. For example, the expres-
sion Z ( 1 ) that corresponds to the graph of Fig. 1 has
the following form in the p representation:

S«.(2яЬ)« [

шх = (2n + 1) л/р,

where we have used

= 2тя/Р,

p=o (2л?.)3

(1.66)

(1.67)

since the integration over the space coordinate x is
always over the volume V of the statistical system
under consideration. The summation over ш and w4

in Eq. (1.66) leads to the following result:

\
3

3 d3k ( 1 6 8 )

L.63) where np and n^ are the respective distribution func-
p

tions of the electrons and phonons, Eq. (1.47). To
terms of order g2 the partition function of Eq. (1.21)
is

Z = ZO(1 + Z«»), (1.69)

and the thermodynamic potential Я of the system is

Q = - (1.70)

where - / 3 " 1 Z ( 1 ) is the first correction to the thermo-
dynamic potential fl0 = - / Г 1 In Zo [Eq. (1.46)] of the
noninteracting particles, caused by the interaction.

Generalization to various cases of interaction of
the particles. The apparatus of the thermodynamic
perturbation theory has been illustrated by the ex-
ample of the electron-phonon system. It is easy to
see, however, that the apparatus is suitable for the
study of any statistical system composed of fermions
(or bosons) that interact in pairs through a potential
v = v ( x - x ' ) .

Let us consider a statistical system of identical
particles of a single type, which interact in pairs with
the potential energy v ( x - x ' ) - Extension of the r e -
sults to a multicomponent system presents no diffi-
culty. We regard an individual particle as a quantum
of the ф -field, which is a function of the coordi-
nates and satisfies a definite equation. In the second-
quantization scheme the Hamiltonian of the statistical
system (Matsubara 1 4) is written

я=яо+я1, (1.71a)
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- U ) * (x) d*x, (1.71b)

Я! = i- [ v (x - x') i|)+ (x) (ф+ (x') * (х')) Ф (x) d3x d3x', (1.71c)

where for a system of fermions

[apr, ap'r']+ = 6pp'6rr', [apr, ap>r']f = [apr, apV], = 0, (1.72)

and for a system of bosons

•ф (x) = V~lh 2 bke
itx'n, if* (x) = F~~1/2 2 6ке-4|™/\

к к
[6 k, 6i']_ = 6kk', [6 k , ^ k ' ] . = [6i, 6j'] = 0 . |(i.73)

With an interact ion of the type (1.71c) the total n u m b e r
of p a r t i c l e s

ty* (x) if (x) dzx (1.74)

is conserved along with the total energy (1.71a), if the
s y s t e m is closed. To d e s c r i b e a quas i-c losed s y s t e m
with a var iab le n u m b e r of p a r t i c l e s we again use the
Gibbs dis t r ibut ion (1.7), in which the p a r a m e t e r JU now
m e a n s the chemica l potential of the p a r t i c l e s (1.74) of
the system. Just as in Eq. (1.7), the parameter д is
chosen so as to obtain the correct average number N
of particles in the system,

As before, the partition function of the system is of
the form of Eqs. (1.21), (1.16),

= 2 2 ^ 5 * , $ A,
n=0 0 0

x ит п <Г[Я 1 (т 1 )# 1 (т 2 ) . . .Я 1 (т п ) ]>,
6

where

(1.75)

x т|з (х', т)) г)) (x, T) dax d3x', (1.76)

and the dependence of ф(х) and ф+(х) on the variable
т is the same as in Eq. (1.18) ("interaction represen-
tation").

To use the rules of calculation developed previously,
we rewrite the expression (1.76) in the form

= 4- \ U (x - x') T W {*) * (*)) W (*') Ф (*'))] dlx d V

d'x, (1.77)

:-X') = V(X-X')6(T-T'), (1.78)

where

e x p ( й и я т /р). (1.80)

Noting that for arbitrary operators A, B , . . . we
have the relation

T[T(A), T(B), ...] = T[A, B, . . . ] ,

let us rewrite the partition function (1.75) in the con-
venient form

Ze<T [exp { — -|-

xU(x- x') (т|з* {Х') г|) (Ж')) d4

(1.81)

to which all of the rules of calculation previously es-
tablished can be applied. In the case of Fermi-Dirac
statistics the contraction of two operators is given by

(1.82)

and for Bose-Einstein statistics

A difference from the case of the electron-phonon
system is that in expanding the T-product of Eq. (1.81)
we must include among the possible contractions con-
tractions that contain ф(х) and #>+(x) with the same
argument. To each such contraction there corresponds
in the graph a solid-line loop that begins and ends at
the same point. To a dotted line in the graph there
corresponds the factor U ( x - x ' ) . Besides vertices
at which three lines (two solid and one dotted) meet,
the graphs now have vertices at which only two solid
lines meet. The appearance of these is due to the ex-
pression fif>*(x.)4>(x)dix in Eq. (1.81). The graphs
that correspond to terms of the series (1.81) propor-
tional to the first power of the potential v are shown
in Fig. 3. Corresponding to these graphs we have as
the expression Zj (for fermions)

• 0)], —^c\U(x — z') 3Oaa (0) 3 m (0) d'x d V

\ x • i У ) 2 j / O o B V •*/ / с? Q O Q V**' " >*

A s t h e 6 ( T ) o f E q . ( 1 . 7 9 ) w e c a n t a k e , f o r e x a m p l e , U s i n g t h e r e l a t i o n s

ix'. (1.84)



32 A. I . A L E K S E E V

, 0-..-O оFIG. 3
•̂оав (0) = - v~x 2 Мае, v №) = V'1 2 °р.

р р

2F' 2 2 2 "P (1 - V)
p p' ''-<V-Vl*-*'l

where Vp is the Fourier component of v ( x ) , we
transform Eq. (1.84) to the form (Matsubara 1 4)

- ty_pnp (1 — np,)}Zj = V~XP 2 2

= - v-ip 2 2 (2o 0 - V - P

p p'
from which it can be seen that the presence of the
expression

v(0)\ $*(x)y(x)d*x

in Eq. (1.81) means the subtraction of a proper-energy
term in the final result. In the case of Bose-Einstein
statistics there will be a plus sign in the round brack-
ets of Eq. (1.85), the term v0 is not multiplied by 2,
and the entire expression is divided by 2.

The calculation of the terms of the series (1.81) can
also be done in the p representation. In fact, by using
a general property of the propagation functions (1.82),
(1.83),

D (x, т ) = (1.86)

( t h e u p p e r s i g n i s f o r f e r m i o n s , t h e l o w e r f o r b o s o n s ) ,

a n d t h e f a c t t h a t a n e v e n n u m b e r of f e r m i o n l i n e s m e e t

at each vertex, and that U (x, т + /3) = U (x, т) , one
can easily verify that the equation

. . . dx - i ... dx

holds for each of the variables т in all the terms of
the series (1.81). Then the expansion in Fourier series
can be carried out in each term of the series (1.81), if
the term does not reduce to a mere constant.

In the p representation there corresponds to each
solid line a factor ^оа/з(Р> w n ) . Eq. (1.64), for fermi-
ons, and a factor

for bosons .
l ine is

(1.87)

The factor that c o r r e s p o n d s to a dotted

U (к, ш„) = vk, Vy. = \ v (x) e-ik*/« d3x. (1.88)

The further remarKS on the diagram technique are the
same as in the case of the electron-phonon system.

I n t h e g e n e r a l i z a t i o n t o d i f f e r e n t f o r m s o f p a i r i n -

t e r a c t i o n o f t h e p a r t i c l e s i t h a s b e e n t a c i t l y a s s u m e d

t h a t t h e r e i s n o s u p e r c o n d u c t i v i t y i n t h e F e r m i s y s t e m

c o n s i d e r e d , a n d t h a t t h e B o s e s y s t e m i s a t a t e m p e r a -

t u r e a b o v e t h a t o f t h e B o s e c o n d e n s a t i o n , s i n c e o u r

p r o o f o f t h e v e r y i m p o r t a n t t h e o r e m o f E q s . ( 1 . 3 4 ) a n d

( 1 . 3 5 ) , w h i c h i s t h e b a s i s o f t h i s t h e r m o d y n a m i c p e r -

t u r b a t i o n t h e o r y , d o e s n o t e x t e n d t o s u c h c a s e s . A

t h e r m o d y n a m i c p e r t u r b a t i o n t h e o r y f o r F e r m i s y s t e m s

w i t h s u p e r c o n d u c t i v i t y m u s t b e c o n s t r u c t e d o n t h e

b a s i s o f a n e x t e n s i o n o f t h e w o r k o f G o r ' k o v , 7 a n d s u c h

a t h e o r y f o r B o s e s y s t e m s b e l o w t h e p o i n t o f t h e B o s e

c o n d e n s a t i o n m u s t b e b a s e d o n a n e x t e n s i o n o f t h e w o r k

o f B e l y a e v . 6

2 . T H E R M O D Y N A M I C G R E E N ' S F U N C T I O N S

T h e s y s t e m o f c o u p l e d e q u a t i o n s . I n t h e p r e c e d i n g

s e c t i o n w e h a v e e x p o u n d e d t h e n e w t h e r m o d y n a m i c

p e r t u r b a t i o n t h e o r y b a s e d o n t h e m e t h o d s o f q u a n t u m

f i e l d t h e o r y . T h e a p p l i c a t i o n o f t h e m e t h o d s o f q u a n -

t u m f i e l d t h e o r y t o s t a t i s t i c a l p r o b l e m s c a n b e g r e a t l y

e x t e n d e d i f w e u s e G r e e n ' s f u n c t i o n s . J u s t a s i n q u a n -

t u m f i e l d t h e o r y , i n s t a t i s t i c a l p h y s i c s t h e G r e e n ' s -

f u n c t i o n m e t h o d m a k e s i t p o s s i b l e t o o b t a i n p h y s i c a l

a p p r o x i m a t i o n s w h i c h d i f f e r f r o m t h e e x p a n s i o n s o f

t h e p e r t u r b a t i o n t h e o r y , b e i n g a s a r u l e t h e r e s u l t o f

t h e s u m m a t i o n o f a n i n f i n i t e s e t o f d e f i n i t e t e r m s o f

t h e p e r t u r b a t i o n - t h e o r y s e r i e s . T h e u s e o f G r e e n ' s

f u n c t i o n s h a s b e e n e s p e c i a l l y f r u i t f u l i n t h e s t u d y o f

t h e t h e r m o d y n a m i c p r o p e r t i e s o f a s y s t e m , i n t h e c a l -

c u l a t i o n o f t h e t o t a l e n e r g y , a n d a l s o i n c a l c u l a t i n g t h e

e n e r g y s p e c t r u m o f w e a k l y e x c i t e d s t a t e s o f a s t a t i s -

t i c a l s y s t e m .

L e t u s f i r s t c o n s i d e r t h e s o - c a l l e d t h e r m o d y n a m i c

G r e e n ' s f u n c t i o n s o f a s t a t i s t i c a l s y s t e m , w h i c h w e d e -

f i n e i n t h e f o l l o w i n g w a y :

( 2 . 1 )

( 2 . 2 )

\ x l • • • x n ' x i • • • x n )

(2.3)

and which we call respectively the one-particle func-
tion, the two-particle function, and so on. In the case
of the electron-phonon system the ф operators that
appear in the electron thermodynamic Green's func-
tions, Eqs. (2.1) — (2.3), are defined in Eqs. (1.18) and
(1.3), and the function S = S(y3) is given in Eqs. (1.16)
and (1.17); the phonon Green's functions are defined
in analogy with Eqs. (2.1) — (2.3). For example,

35 г (x, x') = (T [Ф (x) Ф (*') S))/(S) (2.4)

is the one-particle phonon thermodynamic Green's
function.

ш the case of a statistical system with particles
interacting by pairs, Eqs. (1.71a) — (1.71c), we must
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take for the function S = S (/3) in Eqs. (2.1) — (2.3) the
function given by Eqs. (1.16) and (1.77).

In working with Green's functions it is convenient
to use the following well known theorem connecting the
T and N products of operators, which is proved in de-
tail in the papers of Anderson44 and Matsubara. u Let
F(ty+, ф, <p) be a functional (regarding functional dif-
ferentiation, see Appendix 1) which can be expanded
in a functional series in the operators ф*, ф, and <p
(for definiteness we shall think of an electron-phonon
system); then

T [F(ф*.

w h e r e

Ре (У)

(2.5)

(2.6)

(2.7)

(2.8)

J+ L

( 2 ' 9 )

When applied to the thermodynamic Green's func-
tions (2.1) — (2.4) this theorem gives, for example,

x'n) = (JT [еле

(2.10)

(2.11)

Here the operator exp (— Д) exp (— S) is replaced by
unity, since the wave functions of the statistical sys-
tem, with respect to which the averaging in Eq. (2.10)
is done, are not functionals of the operators ip*, ф,
and <p, and consequently all terms of the series
exp (— Д) exp ( — S) that contain functional derivatives
are zero.

It is easy to obtain the system of coupled equations
for the thermodynamic Green's functions (2.1) — (2.3)
if we use the commutation relations

a (x) = ^ (x) (x-y)

(2.12)

which can be verif ied by d i r e c t calculat ion. In fact,
let us commute the factor exp S with ф (xt) in
Eq. (2.10), remembering that terms in which opera-
tors ф (or ф*) and <p stand to the left of exp 2 and
exp Д, respectively, are zero in accordance with the
theorem about averages of ^-products . As the result
of this commutation we get a functional-derivative
operation 6/6ф*, and on taking the derivative accord-

ing to the rules (2.8) we get among other things, a
term with the operator <p, according to the formula

(2.13)

It is easy to get rid of the <p(y), however, by commut-
ing the operator exp Д with cp(y) by means of Eq.
(2.12). As the result we get the following infinite sys-
tem of coupled integral equations:

n
Sn (X, . . . Xn, x[ . . . X'n) = 2 ( - l)"*'8o (Xl - X'*)

y) 30 (y - 2) g n t l (yx2 . . . XnZ,

n = l , 2, . . . , со. (2.14)

Here for brevity the spinor indices in the "3 functions
are included in the coordinate variables, so that inte-
gration with respect to a coordinate also implies sum-
mation over the corresponding spinor index. This
system of coupled equations (2.14) for the Green's
functions is very similar to the integral equations con-
necting molecular distribution functions of different
orders, which have been found by Born and Green4 5

and by Kirkwood46 in classical statistical mechanics
(in this connection see papers by Bogolyubov47 and by
Ch'en Ch'un-Hsien2 8). Since it is impossible to find
the exact solution of the system of equations (2.14),
one tries to find various approximate solutions. Thus
in studying the infinite system of equations (2.14) one
usually breaks it off by assigning a definite form to
the Green's function of some fixed order, and finds
the solution of the "broken off" closed system of equa-
tions. For example, if one prescribes a definite form
of the three-particle Green's function Оз^ХгХз, xjx^x^)
then the one- and two-particles Green's functions are
found from the equations

(2.15)

-g*^d*ydiz$o(x1-y)2>o{y-z)$3(yxiz, zxft). (2.16)

In writing the equations for the Green's functions
one can take into account the interaction between the
electrons by introducing a self-consistent field in the
operator for the interaction energy, Eq. (1.4), and con-
sequently also in the operator S, Eq. (1.16). In this
way Matsubara1 4 has determined the energy spectrum
of the electrons in a metal. His results agreed with
those of Bardeen,4 8 which were obtained in an entirely
different way.

Equations for the thermodynamic Green's function.
In applications it is most convenient to use equations
that contain only the one-particle thermodynamic
Green's functions. The shortest way to obtain such
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equations i s to use the Schwinger technique of v a r i a -
tional der iva t ives (Schwinger 1 ) . As an i l lus t ra t ion
let us cons ider a s ta t i s t i ca l sys t em of e lec t rons and
pos i t rons in teract ing with each o ther through the e l e c -
t romagne t i c field ( a p l a s m a ) . F o r genera l i ty we shal l
take the re la t iv i s t i c p rob lem. The Hamiltonian of the
sys tem in the Schrbdinger r ep resen ta t ion is wr i t ten
as follows:*

H = H0 + Hlt (2.17a)
4 2

£ 6^ V ) + 2 <BkC^ckx, (2.17b), = 2 <
p

(ie/2) Y x) to (x) -

(2 .17c)

(х)Ы*)],
(2.17d)

••£
P, r=l

4
P. i"=34
p, r=3

( - P)

(2.18)

or , what i s the s a m e thing, of the difference between
the total number of e lec t rons N~ and the total number
of pos i t rons N+ ,

Л
2

= 2
P. r=

4
2 (2.22)

T h e r e f o r e it i s convenient to d e s c r i b e a quas i-c losed
s t a t i s t i c a l s y s t e m of e l e c t r o n s and p o s i t r o n s by m e a n s
of a Gibbs d i s t r ibut ion with a v a r i a b l e n u m b e r of p a r -
t i c l e s , in which the probabil i ty W n >N-_N+ for the s y s -
t e m to have a given difference N" - N + between the
n u m b e r s of e l e c t r o n s and p o s i t r o n s and to b e in the
s ta te with the energy E n N ~ _ N + i s

~N >-En, jv"-N+)P) (2.23)
where \x and — JLI are the respective chemical poten-tials of electrons and positrons. Repeating the argu-ments of the preceding section, we can easily find thepartition function Z for the system,

Z = Sp e W " - " V H , P =

Here Ho is the Hamiltonian of the free electron-
positron and photon fields, and Щ is the Hamiltonian
for the interaction between them; u r ( p ) with r = 1 , 2
is a solution of the Dirac equation

(ip + m) ur (p) = 0 (2.19)

for positive energy, e p = (p 2 + m 2 ) ^ 2 = - i p 4 , and for
r = 3, 4 it is a solution for the negative energy
- (p 2 + m2)^2; u r = u r *y 4 ; Av is the four-dimensional
vector potential of the electromagnetic field; a p r ( b p r )
and ap~ r(bp r) are the operators for absorption and pro-
duction of an electron (positron) with momentum p,
polarization r, and energy ep = (p2 + m 2 ) 1 / 2 ,and ск\ and
CUA. a r e * n e analogous operators for a photon with mo-
mentum k, polarization vector ft and energy ш^ = | к | .
The operators for changes of the numbers of particles
satisfy the commutation relations:

[flpr. apVL = [bpr, бр'г']. = бгг'брр-, Окъ c k / V ] . = 6 u . 8 k k ' .
(2.20)

In a p p l i c a t i o n s t o s t a t i s t i c s i t i s a v e r y i m p o r t a n t
fact that b e s i d e s c o n s e r v a t i o n of the e n e r g y (2.17a) in
a c l o s e d s y s t e m w e a l s o h a v e c o n s e r v a t i o n of t h e t o t a l
c h a r g e Q,

v i {ie)n Г £i;K С ^ 4 ж

(2.24)

n=0

...N$(xn)A(xn)q(xJ)], (2.25)

w h e r e , a s in the c a s e of Eqs . (1.16) and (1.75), the
field o p e r a t o r s a r e wr i t ten in a spec ia l " i n t e r a c t i o n
representation," so that the dependence of the opera-
tors ф(х), гр(х), and A(x) on the variable т is
given by a single law for all operators, for example

* (x) = e~WN' - w * > - ^ (X) eWN~ -»*)-=•>«. (2.26)

By using Eq. (2.25) one can find the electronic and
photonic thermodynamic Green's functions, and also
other thermodynamic characteristics of the system,
by the methods of perturbation theory, but with the
modification that as the contractions of the electron-
positron operators, ip (x) ip (x ') = ,?0 (x - x ' ) , and of

the photon-f ie ld o p e r a t o r s , A ^ ( x ) Av ( x ' ) = .

one m u s t u s e the fo l lowing e x p r e s s i o n s :

— x'),

Q = у ] Sp №
2

= e( 2
p, r=l

) - * (x) ф* (ж)] Л

— 2 *pr*pr)-
p, r=3

, ( * - * ' ) =

(2.21)

. С rf3P r/n- 1 \ р«Р(х-х')-(вр-11) ( т - f )

(2Я)1

+ n;e- ip(I-x'>+(8p+w «*-*'>], t > T', (2.27)

*'p Un* 1\,-*Р( х -^ ' )+(е р +ц) (Т-Г)
gr— Ц"р — *•) e v

*In what follows we use a system of units in which h = с = 1,
eV4irhc = 1/137, and adopt the following rule of summation over
vector indices: pq = Pvqv " Pi4i + РгЪ + РаЧз + Р*Чл- Further-
more ^ •= 4vYv, where y4 and y w , 3 = -iy\2.»

 a r e Ле usual Dirac
matrices. N denotes the N-product in the sense of quantum
electrodynamics." (2.29)
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w h e r e Пр, Пр, and njj a r e the r e s p e c t i v e d i s t r ibut ion
functions for e l e c t r o n s , p o s i t r o n s , and photons,

rip = (е<е'Г11)е +1)"1, п к = ( е и к Р „ 1)"1. (2.30)

M o r e valuable ca lcula t ions, however, a r e m a d e without
p e r t u r b a t i o n theory, on the b a s i s of the solution of the
equations for the G r e e n ' s functions. To d e r i v e t h e s e
equations we note that by m e a n s of the re la t ions

T[A(x) ... A(x')S] = ST[A(x) ... A(x')] (2.31)

the t h e r m o d y n a m i c G r e e n ' s functions can a l so be w r i t -
ten in a different form. F o r example, for the o n e -
p a r t i c l e t h e r m o d y n a m i c G r e e n ' s functions (we shal l
h e r e a f t e r omit the index " 1 " ) we get

(x, x') = SP
-»Vfl) P T ($ a (x)

(x, x') = . (x) Av (x1))}

(2.32)

p u r p o s e we c o n s i d e r T [ф(х, т ) ф(х', г')] a s a func-

tion of т. F o r т = т' this function has a discontinuity

equal to /36 ( x - x ' ) . Consequently,

d_
dx

(2.37)

P e r f o r m i n g an averaging [ . . . ] a v of both m e m b e r s of
Eq. (2.37) and using E q s . (2.34), (2.1), and (2.36), we
eas i ly find

(p — ie [А (х)]„+ т - ieyv

w h e r e the t i lde ~ denotes o p e r a t o r s in the Heisenberg
r e p r e s e n t a t i o n ,

ib yx\ = 6 ib (x) 6 . (2.oo)

By using the commutat ion r e l a t i o n s of the o p e r a t o r s
ф(х), ф(х), and A ( x ) one can verify without diffi-
culty that the Heisenberg field o p e r a t o r s satisfy the
following equat ions:

(2.34)

), (2.35)

which coincide with t h e corresponding equations of
quantum e lec t rodynamics if we m a k e the r e p l a c e m e n t s
т — it, /i — 0.

In o r d e r to get the equations for the t h e r m o d y n a m i c
G r e e n ' s functions (2.32) we formally introduce an aux-
i l i a ry e x t e r n a l - c u r r e n t function J ( x ) , where J ( x ) is
an unquantized function. Then in the in teract ion o p e r -
a t o r (2.17 c) t h e r e is an addit ional t e r m - Jj (x ) A ( x ) d 3 x ,
and the Heisenberg o p e r a t o r s of the e l e c t r o n - p o s i t r o n
and photon fields will satisfy the s a m e equations (2.34),
(2.35), except that the ex terna l c u r r e n t J ( x ) is added
to the e l e c t r o n - p o s i t r o n c u r r e n t in Eq. (2.35). Let us
c o n s i d e r the G r e e n ' s function in the p r e s e n c e of the
externa l field; we define it by the formulas (2.1), (2.4),
and (2.32), in which

c>(p) = JeJ . (Z.ob)

In this c a s e the G r e e n ' s functions a r e functionals of
the ex terna l field J ( x ) .

We can se t up equations for t h e s e G r e e n ' s functions,
and for J = 0 the solution of t h e s e equations will give
t h e t h e r m o d y n a m i c G r e e n ' s functions of the r e a l s t a -
t i s t i c a l s y s t e m without the ex terna l field. F o r this

(2.38)

Similar ly, averaging the equation for A (x) and then
taking the var ia t ional der ivat ive with r e s p e c t to the
c u r r e n t , 6/6Jv(x'), on both s ides of th is equation and
using Eq. (2.31), we get

w h e r e we have used the notation
(2.39)

which for J = 0 a g r e e s with the definition of the t h e r -
modynamic G r e e n ' s function, E q s . (2.32), (2.4), s ince

[ X ( x ) ] a v l j = o = °-
The s y s t e m of equations (2.38), (2.39) is usual ly

wr i t ten in a different form by expres s ing the v a r i a -
t ional der iva t ives in t e r m s of a m a s s o p e r a t o r M,
a polar iza t ion o p e r a t o r ILj,,, and a ver tex o p e r a t o r
Гу, by the f o r m u l a s :

— ieyv "y ' '

= e ^ yvg (x, y) Lp (yz, у )

= { Mix, z)3(z, x')d4,

— levuap 6 j " ,x'» = e2 Sp \ уц& (х, у))

x)9(z, x')

(2.40)

, » ' )» (« . «)

y, x')d%

(2.41)

(y ) е [A

(2.42)

When t h e e x t e r n a l f ie ld i s turned off, J = 0, the
G r e e n ' s funct ions that a p p e a r in the r e l a t i o n s (2.38) —
(2.42) c o i n c i d e wi th the t h e r m o d y n a m i c G r e e n ' s func-
t i o n s (2 .32) , w h i c h b e c a u s e of the h o m o g e n e i t y of t h e
s t a t i s t i c a l s y s t e m under c o n s i d e r a t i o n a r e funct ions
of the d i f f e r e n c e s of c o o r d i n a t e s , $ ( x , x ' ) = "S ( x - x ' ) ,
3> ( x , x ' ) = 3 ( x - x ' ) [ o n e c a n e a s i l y v e r i f y t h i s by
d i r e c t c a l c u l a t i o n , by c a r r y i n g through the a r g u m e n t s
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that lead to Eq. (3.4)]. Consequently, the mass, polari-
zation, and vertex operators are also functions of the
differences of coordinates,

M(x, x')s=M(x-x'), = U{x-x'),

Г(ху, z)s=T(x-y, y — z),

and as functions of the difference of the fourth coordi-
nate, т — т', all of these functions are defined in the
range from — /3 to /3. We can, however, define them
on the entire т axis by continuing them periodically.
By repeating the proof of Eq. (1.61) for the functions
"3 and zt> one easily finds that also in the general case
Ht ^ 0 these thermodynamic Green's functions have
the properties (1.61) and (1.62) (Abrikosov, Gor'kov,
and Dzyaloshinskii1 5). According to the definition
(2.40) — (2.42), the mass and polarization operators
have these same properties:

M(x, т ) = - Л / ( х , П(х, т) = П(х, (2.43)

In the change to the p representation this fact allows
P

us to replace all integrals J. . . dr contained in the
о

P
relations (2.38) — (2.42) by integrals \ J . . . dr. After

-P
this the Fourier transformation (1.60) is easily carried
out in all of the expressions (2.38) — (2.42). As the re-
sult one gets the following equations in the p represen-
tation for the thermodynamic Green's functions (2.32)
(Fradkin1 8 '2 0):

[»PY-(V«+ u) Y4+ m + M (p)] 9{p) = 1, (2.44)
[k* — Il{k)]$(k) = U (2.45)

M (p) = ,-^TR 2J \ V% 0° + k) Г (P + fc- Л> -® (/c)d3/c' ( 2 ' 4 6 )

P4
T(p,

p'),
(2.47)

Here Л(р, р ' ) is defined as a series in e 2 which con-
tains the set of all vertex-part graphs except the
simple vertex (point).

Let us rewrite Eqs. (2.44) and (2.45) in the form

(2.48)
{к), (2.49)

where the zeroth-approximation (e 2 = 0) thermody-
namic Green's functions

£o(P) = [tPY-(*4 + H)Y4+m]-\ 3>, (ft)»*"1 (2-50)

are the same as the contractions of operators, Eqs.
(2.27) and (2.29), written in the p representation. If
we solve Eqs. (2.48) and (2.49) by the iteration method,
then we get the perturbation-theory series for "3 and
3). A better physical approximation, however, is found
by expanding the kernels of Eqs. (2.48) and (2.49) in

series in e2 or in another parameter of the thermody-
namic problem, and then solving exactly the equation
with an approximate kernel. For example, if in Eq.
(2.49) we keep only the first nonvanishing approxima-
tion П 1(к) to the kernel П(к) [this approximation is
obtained if in Eq. (2.47) we replace all functions by
their zeroth approximations ], we find

Ш)^(к) = Г 2 [1 - Г 2 П1 (к)]£, (2.51)

where [ 1 - к " 2 П*(к)]д£, is the matrix that is the r e -
ciprocal of the matrix 6^,v - к " 2 Пду(к). In the lan-
guage of perturbation theory, the solution (2.51) is the
result of the summation of an infinite number of terms
of a definite class,

. . . , (2.52)

to which there correspond the graphs of Fig. 4.

+—-O-— + — O ~ О — + -
FIG. 4

In the concrete use of the solution of Eqs. (2.48) —
(2.49) infinities may appear which are associated with
the renormalization of the mass and charge of the par-
ticle. These infinities, however, are easily removed
by the same recipes as exist in electrodynamics. This
question has been treated by a number of authors in
connection with the application to statistics, for ex-
ample by Fradkin18 and by Akhiezer and Peletminskii.23
The latter authors have calculated the thermodynamic
potential of a gas of electrons, positrons, and photons
to and including terms proportional to e4(ln e)2. The
divergences that arose were removed by renormaliza-
tion of the charge and mass of the electron and redefi-
nition of the vacuum level.

In the nonrelativistic approximation, in which the
mean energy of the thermal motion of a particle is
much smaller than its rest mass, /3"1 « m, we must
make the replacement €p —»m + (p2 /2m), д — m + ц',
yi —» 6ap (a and /3 run through the values 1,2) and
regard all quantities as small in comparison with m;
then

"ap (2.53)

which agrees with Eq. (1.64). Similarly, the expres-
sion (2.27) goes over in the nonrelativistic case into
Eqs. (1.38), (1.47), since the positron distribution func-
tion (2.30) becomes identically zero. Neglecting terms
of the type of a retarded interaction, we get for the
function i£'u(k) in the nonrelativistic case

(2.54)

and in the polarization operator (2.47) we must set
Ti,2,3 = °> Ji ~ 6a/3» a n d replace &0 by the nonrela-
tivistic value (2.53). Remembering these points, one
can write down without difficulty the equation for the
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thermodynamic function &(p) (and also that for the
function SD) that describes a system of nonrelativistic
particles interacting through the Coulomb field [ see
later argument, Eqs. (2.66) — (2.71) ].

When we go to the absolute zero of temperature
P — °° in all of the relations (2.44) — (2.49) and the
sums over discrete frequencies p4 and k4 are r e -
placed by integrals,

d*p. (2.55)

In nonrelativistic formulas (for example, in the use
of perturbation theory) one may encounter integrals
of several factors of the form (2.53). In such integrals
one can change the variable of integration, p£ = ip4,
and then turn the path of integration back to the real
axis. Then the passage around the poles will be as
shown in Fig. 5 (Abrikosov, Gor'kov, and Dzyaloshin-
skii15).

V*

FIG. 5

In the case of the electron-phonon system, Eqs.
(1.1a) — (1.1c), the equations for the electron and pho-
non thermodynamic Green's functions "S and ii> of
Eqs. (2.1) and (2.4) will also be of the form of Eqs.
(2.48) — (2.49) and (2.46) — (2.47), in which, however,
one must put e —• g, у —» 1 and reverse the signs +
and - in the right members of Eqs. (2.48) — (2.49).
Furthermore the zeroth-order thermodynamic Green's
functions §0 and i£0 must now be taken to mean the
expressions (1.64) and (1.65).

In the case of statistical systems of particles inter-
acting in pairs, Eqs. (1.71a) — (1.71c), the equations
for the Green's functions have been studied in papers
by Abrikosov, Gor'kov, and Dzyaloshinskii15 and by
Fradkin.19

Connection between the thermodynamic Green's
functions and the thermodynamic functions of the
system. We shall find some general relations by con-
sidering as an example a statistical system consisting
of a gas of electrons, positrons, and photons, Eqs.
(2.17a) — (2.17c). The extension of the results to other
systems can be made without difficulty.

Let us formally differentiate the thermodynamic
potential of the system, U = - 0 " 1 In Z, with respect
to the charge e; then according to Eqs. (2.24) — (2.25)
and (2.40) — (2.41) we get

d*z (T [N (ф (x)A (x) ф (x)) S] )/(S)

(2.56)

V (x,. y) £lvll {y, x

С М (x, Z)S(Z, x) d*Z.

Integrating Eq. (2.56) with r e s p e c t to the charge and
remembering Eq. (2.48), we can express п in terms
of the electron-positron thermodynamic Green's
function

di d3p ( 2 - 5 7 )

where Щ is the thermodynamic potential for the case
of no interaction between the particles (e 2 = 0). If the
system consists of particles that interact in pairs
through a potential v ( x - x ' ) , Eq. (1.71c), then instead
of the charge e one introduces an auxiliary parameter
Л through the formula v (x - x ' ) — Av (x - x ' ) , and in-
tegrates from 0 to 1 with respect to this parameter. In
this case there is an additional factor \ before the in-
tegral in Eq. (2.57).

It is often advantageous to express Я in terms of
the polarization operator. To do this we again carry
out a Fourier transformation in Eq. (2.56), use Eq.
(2.49), and then integrate with respect to the charge;
then

. (2.58)

For applications it is quite sufficient to solve Eq.
(2.49) with the kernel П1, proportional to e2; then the
relation (2.58) can be rewritten (Akhiezer and Pelet-
minskii 2 3):

(2.59)

where we have kept only the terms proportional to e2

and also terms of the form e4f (e 2 ) , where f (0) = °°.
A study of the photon polarization operator П ^ ^ к )
in the relativistic region has been made in papers by
Fradkin2 0 and by Akhiezer and Peletminskii.2 3

When the thermodynamic potential is known it is
not hard to determine all the other thermodynamic
characteristics of the system (cf. Landau and Lifshitz3 6).

As is well known, the mean energy E of a statis-
tical system is determined by the relation

(Q+V.N-EnN)fi dQ (2.60)
n,N

where N is the mean number of particles in the sys-
tem (or the difference of the mean numbers of elec-
trons and positrons, N~—N+). When one neglects the
fluctuation of the total number of particles in the sys-
tem it is easy to express the change of the energy of
the system caused by the interaction of the particles,
ДЕ = E — Eo, in terms of the change of the potential,
Дй = п — п0 (the index " 0 " always denotes the value
for no interaction between the particles). According
to Eq. (2.60) we have at the absolute zero of tempera-
ture
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(2.61)

where Щ = Eo — /iN0. By using the expression

we can eliminate the chemical potential from ДЙ in
Eq. (1.61) and express it in terms of N~—N+; then the
energy correction ДЕ caused by the interaction of the
particles (at the absolute zero of temperature) can
be written in the form (Fradkin 1 7)

T $ «*** [S (P) - $o (P)U S 3 . (P)

< 2 ' 6 2 )

Putting ( S- .̂ o) ^ o 1 = M^ in the form of an infinite
series in e2, we get the well known expansion of the
energy (2.62) in terms of connected diagrams (for
more details on this point 'see the paper by Klein and
Prange 1 2 ) .

By applying Eqs. (2.62) and (2.59) to a gas of elec-
trons, positrons, and photons, Akhiezer and Peletmin-
skii2 3 have calculated the thermodynamie potential, and
have used it to compute the energy correction ДЕ
caused by the interaction in this system. Their r e -
sults in part overlap the well known results of Gell-
Mann and Brueckner,4 9 Vedenov,50 and Fradkin. 1 8 ' 1 9

Because the result is cumbersome in form, we p r e -
sent here only the limiting values ДЕ П Г for the non-
relativistic case and Д Е е г for the extreme relativ-
istic case (at low temperatures):

&Em = - (Зл2)4/3 (2л)4 Vn1/3 ег

+ (1 - In 2) (2я)'4 Vmne* In (е*тгГУз),

Д£ е г = (Зя 2 ) 4 ^" 1 (2я)-4 Vn'3e*

+ (Зл2)4/3 2"1 (2я)-в Fn4/3 e4 ID e2,

(2.63)

(2.64)

where the first terms, proportional to e2, a re the
values of the exchange energy, and the second terms
are the values of the correlation energy, which is of
higher order in e 2; n = ( N " - N + ) / V , and m is the
mass of the real electron.

In particular, by setting ц = 0 in the general for-
mulas for a system of electrons, positrons, and pho-
tons, these authors 2 3 found the correction to the energy
of black-body radiation caused by the interaction of
the particles; in the extreme relativistic limit /3"1

» m the result becomes quite simple, namely

<2-65>

where E i d = ЗЗтг2У/18О0* is the energy of the ideal gas
1

of electrons, positrons, and photons for /3"1 » m.
System of particles interacting by Coulomb's law.

Let us first consider the case of a multicomponent

system of various types of fermions interacting through
the electromagnetic field in the relativistic region.
Each particular type of fermions \ is described by a
Hamiltonian H\, which after the subtraction of

LJ U)kckA.'ckA/ i s exactly of the form of Eqs. (2.17a)
k,X'=i
— (2.17c), except that the fermion operators carry the
additional index \, which designates the given type of
fermions. The total Hamiltonian of such a multicom-
ponent system is equal to the sum of the Hamiltonians
H^ of all the separate types of fermions plus the
Hamiltonian of the free electromagnetic field. By
repetition of the previous arguments, it is not hard
to write down the partition function and construct the
thermodynamie perturbation theory for a multicom-
ponent system. The most interesting procedure, how-
ever, is to study the system by means of Green's
functions. Previously, in writing down the equations
for the Green's functions we started from the equa-
tions for the field operators in the Heisenberg repre-
sentation, Eqs. (2.34) and (2.35). In the case of a
multicomponent system each individual operator tp-^
of the fermion field of type \ also satisfies Eq. (2.34)
with the chemical potential д = M\ and the mass m
= m^, and the right member of (2.25) for the electro-
magnetic field operator A (x) will contain the sum of
the currents from all the types of fermions. There-
fore the equation for the thermodynamie Green's func-
tion S\ of the fermion of type X will have the previ-
ous form (2.44), and the equation for the photon ther-
modynamie Green's function £й' will contain a polari-
zation operator equal to the sum of polarization op-
erators calculated from Eq. (2.47) with 'S replaced
by S\. In the nonrelativistic approximation these
equations can describe a system of ions and electrons
interacting by Coulomb's law. By the results noted in
Eqs. (2.53) and (2.54), the equations that describe a
multicomponent system of nonrelativistic fermions
interacting by Coulomb's law are of the following
forms:

(2.66)
(2.67)

(P) = So*(P) - »rt 0») Mx

(к) = 2)й (к) + 3>й (к) П (к) SL (к),

(р + к)Т(р + к, к) 3> (к) d*k, (2.68)

(2.69)
(2.70)Т(р, р ' )=

where р 4 = (2п + 1) тг//3, к 4 = 2nur//3 (m, n = 0, ± 1,
± 2 , . . . ) ; Z^e is the charge of a fermion of type X
(for the electron Z = - 1); the zeroth-order Green's
functions are

(2.71)

where and are respectively the chemical po-
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tential and mass of the fermion of type Л, and the
spinor indices a and /3 run through the values 1, 2
for fermions of spin \. With Eq. (2.66) written as it
is, we could dispense altogether with the spin of the
fermion. Then 3 would not depend on the spinor in-
dices, and in Eq. (2.71) 6ap — 1. We could then take
account of the spin of the fermion when we write the
number of states of a particle with a given momen-
tum, Eq. (1.46a); this procedure is especially con-
venient when the spin of a fermion is larger than \.

Let us find the thermodynamic potential by using
the solution of the equation (2.67) with the kernel П
in the first nonvanishing approximation in e2, which
in this case is

Е р + к e p llc

X
•(Pp.

ш_, = еь-4-к —

(2.72)

]-i. (2.73)

According to Eq. (2.59) the thermodynamic potential
of the multicomponent system of fermions is of the
form

- ( 2 ' 7 4 )

If we separate out from Аи = п~п0 as given by Eq.
(2.74) the self-consistent part proportional to e 2, the
remaining correlation part Д Я С 0 Г of the thermody-
namic potential can be written in the following way
(Fradkin 1 8 - 1 9 ):

(2.75)
Let us see what Д Я С 0 Г corresponds to in the clas-

sical limit К = 0, п ^ п ^ / З т " 1 « 1 (high temperatures
and small densities n) . For this purpose we rewrite
Eq. (2.75) in the form

[к«-Ш(к,А4)]к" КЛ-'Ь}

from which it can be seen that small values of k2 are
the main region for the integration. At high tempera-
tures the function П^к, k 4) falls off exponentially as
k2 increases, and for small k2 has different behaviors,
depending on the value of k4, namely: for k2 —* 0 we
have пЧк,к4 * 0)— 0, whereas пЧк, О) — пЧо, 0)
* 0, where

(2.77)

Here к is the reciprocal of the Debye radius, and
is the density of fermions of type Л.

(2.78)

Thus in the entire sum over k4 in Eq. (2.76) the larg-
est contribution comes from the term with k4 = 0.
Assuming that the screening is weak, e2

/Sn1/'3 « 1, we
use in the denominator (and also in the numerator)
the value of the function П^к, 0) at к = 0: пЧк, 0)
= их(0, 0). The integral over the variable к is then
easily calculated, and we arrive at the well known r e -
sult of the Debye-Hiickel theory6 3

inx* dk

The present method, however, also allows us to deter-
mine without especial difficulty all of the subsequent
corrections to the thermodynamic potential in terms
of the small parameter e2/3n^3 « 1 of the Debye-
Hiickel theory and the parameter for classical theory
to apply, n ^ . K ^ m " 1 « 1. For example, for a mixture
of two types of ions at high temperatures, /8 —• 0, and
equal densities, Fradkin1 9 has given an expansion of
the thermodynamic potential per unit volume which
contains in addition to the Debye term (2.79) other
terms proportional to /3 and /S3/2.

In applying the present theory to solutions of ions
one can formally include effects of a medium which
weakens the Coulomb interaction of the ions by the
substitution Z\ — Z^e"1/2, where e is the dielectric
constant of the solvent, e = const. In this connection
we mention papers by Vedenov,50'51 and also papers
by Dzyaloshinskii and Pitaevskii2 1 and by Dzyaloshin-
skii, Lifshitz, and Pitaevskii.2 2 In the latter papers 2 1 ' 2 2

the method of Green's functions is extended to the case
of an absorbing medium with a complex dielectric con-
stant.

The formula (2.74) is also valid for the opposite
limiting case of low temperatures and large densities
of the components of the mixture, for which the small
parameter is meVfiV/3 (the Gell-Mann—Brueckner
approximation). Setting /3 — °° in Eq. (2.75), we find
Aucor for the electron gas m\ = m, Z\ = — 1 at ab-
solute zero temperature in nonrelativistic approxima-
tion. After this, by means of Eqs. (2.62), we get the
following expression for the correlation energy E c o r

of an electron gas with /3 = 0 (Fradkin 1 8 ' 1 9 ) :

(2.80)

If we expand the E c o r of Eq. (2.80) in powers of the
small parameter me2/K2n1/'3 « 1 , we get the well known
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r e s u l t s of Gell-Mann and B r u e c k n e r , 4 9 Sawada, 5 2 and
Sawada and o t h e r s . 5 3

3. TIME-DEPENDENT GREEN'S FUNCTIONS

The analyt ical p r o p e r t i e s of t ime-dependent G r e e n ' s
functions. As h a s been noted e a r l i e r , the u s e of t h e r -
modynamic G r e e n ' s functions i s e x t r e m e l y helpful in
the study of the t h e r m o d y n a m i c p r o p e r t i e s of a s y s t e m .
F o r o ther p u r p o s e s , however, such as the study of the
weak excitat ions ( q u a s i - p a r t i c l e s ) of a s y s t e m , and
a l s o t h e study of v a r i o u s kinet ic phenomena, for ex-
a m p l e the p a s s a g e of p a r t i c l e s through m a t t e r , the a b -
sorpt ion or s c a t t e r i n g of light and sound, and so on, it
i s n e c e s s a r y to know t e m p e r a t u r e G r e e n ' s functions
which depend on the t i m e t, o r , a s they a r e s o m e -
t i m e s cal led, t ime-dependent G r e e n ' s functions

G (x, x') = - i Sp {e(G+mv-H)p f ($ (x) $+ (x'))}

t * (x'))]av, (3.1)

w h e r e the sign ~ denotes o p e r a t o r s in the Heisenberg
r e p r e s e n t a t i o n

гр (x) = e1 (3.2)

and N is the operator for the total number of particles
(which is conserved along with the total energy of a
closed system) or the difference of the operators for
the total numbers of electrons and positrons. Equa-
tion (3.1) defines the one-particle time-dependent
Green's function both for fermions and for bosons.
Many-particle time-dependent Green's functions are
defined in analogy with Eqs. (2.2) and (2.3).

Comparing the definitions of the thermodynamic
Green's function §{x,x'), Eqs. (2.1) —(2.4) and (2.32)
— (2.33), and of the time-dependent Green's function
G(x, x ' ) , Eq. (3.1), we see that for homogeneous sys-
tems both functions depend on the difference x — x'
and that the change from "3 to G in coordinate space
and in the range of т from - ^ to /3 is accomplished
by replacing т by it and multiplying 'S by the factor
- i. It is useful, however, to know the relation between
the Fourier components of these functions, and for this
purpose we shall examine the Fourier expansion of the
time-dependent Green's function (Landau5).

The matrix element of the operator (3.2) is obvi-
ously of the form

Em + Ц, = Pn
(3.3)

X i - x,) =

±

Л0)|2

г (0) |2

t>0,

t<0,

(3.4)

where the upper sign is for fermions and the lower for
bosons, and x = x t — x2, t = t t —1 2 . In the double sum
with t < 0 it is convenient to interchange the summa-
tion indices, m —» n, n — m, and use the fact that the
matrix element ^ is different from zero only for
N m = N n + 1. Then the e x p r e s s i o n u n d e r the s u m m a -
tion sign for t < 0 will differ f rom that for t > 0 only
by the factor exp Шщц/З. Defining the Fourier t rans-
formation by

oi(px-(j)() (3.5)

we get from Eq. (3.4) the following Fourier expansion
with respect to the space variables:

G(p,t) =

g (p, E) e~iEl dE, t > 0,

(3.6)

T i ^ g (p, E) e-E»e-iEt dE, t < 0,

= - (2я)« 2 . в ( 0 + ^ в - * » » | Цпт (0) |*6 (p + P n m ) б (£ + Ш п и ) .
nm

(3.7)
In going to the F o u r i e r component with r e s p e c t to

the v a r i a b l e t we m u s t use the formula

eiat dt = jtd (a) -f -i-.

We then have finally

G
 (P.

 ffl) = ^ X T e " E P ) d E + i n

p, со).

(3.8)

(3.9)

A c o m p a r i s o n of the two t e r m s in Eq. (3.9) leads to
the conclusion that t h e r e is a definite re la t ion between
the r e a l p a r t G' of the t ime-dependent G r e e n ' s function
and the imaginary p a r t G" ( L a n d a u 5 ) : for F e r m i
s t a t i s t i c s

(З.Ю)

and for Bose statistics

w h e r e n a n d m d e n o t e s t a t e s of a c l o s e d s y s t e m i n « , . i f t a n h £ P G"(P,E) J J , in n \
( j - I p . ( i ) i = - * - L c L l J . l l — j j = UJLL . \O • 1. Л-/

w h i c h t h e t o t a l e n e r g y E , t h e t o t a l n u m b e r o f p a r t i c l e s я ^ M

N , a n d t h e t o t a l m o m e n t u m P h a v e d e f i n i t e v a l u e s , a n d

for a self-adjoint operator ф* we get ( ф + ) п т = (^+)mn- Thus the Fourier transform G(p, ш) of the time-
Using Eq. (3.3), we rewrite the Green's function (3.1) dependent Green's function is not an analytic function
in the form of the variable w. The following two functions are
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analyt ic in the upper half of the plane of w:

G'(p, ^ - G " ( p , ш),

G'(p, co) + j t a n h - | - G " ( p , со),

(3.12)

(3.13)

as b e c o m e s obvious if we r e p r e s e n t each of t h e s e func-
t ions a s a contour integra l , for e x a m p l e :

G' (p, o,)+ icoth^-G" (p, со) = 1 . (3.14)

It t u r n s out that the functions (3.12) and (3.13) a r e the
F o u r i e r t r a n s f o r m s of the so-ca l led r e t a r d e d function
G R ( x j — x 2 ) (Bogolyubov and Tyablikov, 2 5 Abrikosov,
Gor'kov, and Dzyaloshinskii t l s )

R,

Ь (xx — x2) = >
±

0 h<ti

(3.15)

w h e r e the upper sign i s for F e r m i s t a t i s t i c s [for which
the F o u r i e r t r a n s f o r m i s Eq. (3.12)] and the lower sign
is for Bose s t a t i s t i c s [for which the F o u r i e r t r a n s f o r m
of G R i s given by Eq. (3.13)]. Using Eqs . (3.12) —
(3.14), we can r e p r e s e n t the F o u r i e r component
G R (p, ш) of the r e t a r d e d function (3.15) by an ex-
pansion of the Lehmann type 5 4

w h e r e

Q(p, E) = g(p, (3.17)

is a r e a l function, whose integra l J p (p, E ) d E is

finite. ~°°
It is easy to obtain the s a m e s o r t of Lehmann ex-

pansion for the thermodynamic G r e e n ' s function
3 (xj — x 2 ) of Eq. (2.32). In fact, by repeat ing the a r -
guments that led to Eq. (3.6) we get for G (p, т )

- \ g (p, E) e~Ex dE, т > 0,

(3.18)

w h e r e the upper sign i s for f e rmions , the lower for
bosons, and g ( p , E ) is given by Eq. (3.7). Then
making the F o u r i e r t r a n s f o r m a t i o n (1.60) we have

(3.19)

w h e r e p (p, E ) is given by Eq. (3.17). Comparing Eqs .
(3.16) and (3.19), we find (Abrikosov, Gor 'kov, and
Dzyaloshinski i 1 5 )

.У (p, coj = - GR (p, icon), con > 0. (3.20)

If we cons ider the integra l (3.19) formal ly as a func-

tion of the complex var iab le ia>n, it defines a function
that i s analyt ic in the upper half-plane. According to
Eq. (3.20), th is function coincides with G R ( p , ш) at
the infinite set of points iw n ( ш п > 0 ) , which have a
point of condensation. F r o m the t h e o r e m of analytic
continuation we conclude that - G R ( p , w) is the
analytic continuation of the function G (p, - i ( i w n ) )
to the upper half-plane of the complex v a r i a b l e :

(3.21)— G (p, (o) = c§ (p, — гсо).

In addition to the s p e c t r a l resolut ion (3.5) — (3.21)
of the o n e - p a r t i c l e G r e e n ' s functions (which has a l so
been t r e a t e d in p a p e r s by Gor 'kov, 7 Mar t in and
Schwinger, 1 3 ' 3 5 F r a d k i n , 1 8 ' 1 9 Bonch-Bruevich, 2 6 and
Kogan 2 7 ) it can b e helpful in s o m e p r o b l e m s (for
example, in the theory of e l e c t r i c conductivity, cf.
Bonch-Bruev ich 3 0 ) to have the s p e c t r a l r e p r e s e n t a -
t ions of m a n y - t i m e t e m p e r a t u r e G r e e n ' s functions.
A p a p e r by Bonch-Bruevich 2 4 i s devoted to this p r o b -
l e m .

Determinat ion of the energy s p e c t r u m of a sy s tem.
The use of quantum-fie ld-theory methods has been
p a r t i c u l a r l y fruitful in the study of the weak exc i ta-
tions of a s y s t e m consis t ing of a l a r g e n u m b e r of i n -
t e r a c t i n g p a r t i c l e s . As i s well known, the a p p e a r a n c e
of e l e m e n t a r y excitat ions in such a s y s t e m can be in-
t e r p r e t e d as the a p p e a r a n c e of q u a s i - p a r t i c l e s . A se t
of e l e m e n t a r y exci tat ions f o r m s a gas of q u a s i - p a r -
t ic le s , which can be descr ibed very conveniently
by the a p p a r a t u s of G r e e n ' s functions. As has
been noted in p a p e r s by Gal i t sk i i and Migdal 3 and
by Gal i tski i , 4 the descr ip t ion of a s y s t e m of an e n o r -
m o u s n u m b e r of p a r t i c l e s by the method of e l e m e n t a r y
excitat ions ( q u a s i - p a r t i c l e s ) is exact only in the c a s e
of an ideal g a s . When t h e r e is in teract ion between the
p a r t i c l e s the weakly excited s t a t e s a r e not s ta t ionary
s t a t e s of the sys tem, and th i s leads to damping of the
e l e m e n t a r y exci tat ions .

F o r c o n c r e t e n e s s let us cons ider the e l e c t r o n -
phonon s y s t e m of Eqs . (1.1a) — (1.1c). We define the
e l e c t r o n and phonon s ing le-par t ic le G r e e n ' s functions
G ( x - x ' ) and D ( x - x ' ) by Eqs . (3.1) and (3.2) and

D(x—x') = - i (ц(х)ф')]а (3.22)

The equations for t h e s e G r e e n ' s functions a r e der ived
by m e a n s of the prev ious ly d e s c r i b e d technique of v a r i -
ational der ivat ives (cf., e.g., p a p e r s by F r a d k i n , 1 6 ' 1 8

Bonch-Bruevich, 5 5 and Kogan 2 7 ) o r by summing infi-
nite s e t s of g raphs of definite c l a s s e s . An example
of such a summat ion is shown in Fig. 4, which leads
to Eq. (2.49) with П 1 a s an approximate kerne l for П.
Without going into the r a t h e r s imple ca lculat ions, we
p r e s e n t the equations for G and D in the p r e p r e s e n -
tat ion:

G (P) = Go (p) - Go (p) M (p) G (p), (3.23)

D (k) = Do (A) + Do (к) П (k) D (fc), (3.24)
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к, k)D (k)d*k, (3.25)

(3.26)

(3.27)

where G Q ( P ) and D 0 (p) are the Green's functions of
the electron and phonon in the absence of interaction:

Go (P. ш ) = со —еp+(J- + i со— е„+Ц —1"6 (3.28)

A , ( k , e )

= 2 V e -
l + nk

e+co u —гб

(3.29)

and Л(р, p ' ) is the set of all vertex-part graphs ex-
cept the simple vertex (point).

There is a simple connection between the one-
particle Green's function and the spectrum of elemen-
tary excitations, or quasi-particles (Galitskii and
Migdal,3 Galitskii,4 Bonch-Bruevich,56 Fradkin, 1 8 ' 1 9

and Kogan2 7). The energies and dampings of the quasi-
particles are determined by the poles of the analytic
continuation of the one-particle time-dependent Green's
function as function of the fourth component of the four-
dimensional momentum. There can, however, also be
excitations in a system of a large number of interact-
ing particles that are not of a one-particle character.
The energy spectrum of such excitations is determined
in terms of the two-particle Green's function (Galit-
skii and Migdal3). When in G"1 (p, w) = w + \i - ep
+ M (p, ш) we set the variable w equal to Ep — ц — iyp
we find the following equation for the determination of
the poles of the analytic continuation of the electron
Green's function of Eq. (3.23):

>— 'YP — 8P + M (p, £ p — ц — 0. (3.30)

the damping yp of a quasi-particle: Ep < ц cor re-
sponds to holes in the Fermi distribution, and Ep > д
corresponds to quasi-particles above the Fermi
sphere. If the damping is small, yp/Ep « 1, then we
get from Eq. (3.30) the approximate relations

, £ p - |x ) = 0, (3.31)

( 3 . 3 2 )

Similarly, the poles of the analytic continuation of the
phonon Green's function D(k, e) of Eq. (3.24) give the
energies and dampings of the phonon excitations. In
this way Migdal8 has found the energy spectrum of the
electrons and the dispersion of the lattice vibrations
in a normal metal at absolute zero temperature with-
out assumptions about smallness of the interaction be-
tween electrons and phonons.

As an illustration we shall determine the energy
spectrum of the electrons for a temperature different
from absolute zero in the case of a superconductor.

The energy spec t rum of a superconductor . As i s
well known (cf., e.g. , the review by Abrikosov and
Khalatnikov5 6) in a smal l r ange of ene rg ies in the
neighborhood of the F e r m i sphe re a gas of fe rmions
with a d i r ec t in teract ion between the p a r t i c l e s (of the
na tu re of a weak a t t r ac t ion) shows the p rope r ty of
superconductivi ty. In this connection le t us cons ider
a quas i -c losed sys t em of e l ec t rons , Eqs . (1.71a) —
(1.72), with a d i r ec t four- fermion in teract ion v ( x - x ' )
= g6 (x — x ' ) , where g i s a smal l coupling constant
that i s different from z e r o only in a na r row range of
energies ep near the Fermi surface, е р - к < € р < е р
+ к (Gor'kov 7). The electron-field operators in the
Heisenberg representation, ip(x) and ф+{х), Eq. (3.2),
satisfy the equations

0, (3.33)

0. (3.34)

T h e r e f o r e for the e l e c t r o n t ime-dependent G r e e n ' s
function G ( x , x ' ) = G ( x - x ' ) of Eq. (3.1) we have

A s o l u t i o n of t h i s equat ion g i v e s the e n e r g y Ep and w h e r e

х-х'). (3.35)

Let us now use a physical idea of Cooper, 5 7 according
to which the weak a t t r a c t i o n n e a r the F e r m i sur face
between two e l e c t r o n s with opposite m o m e n t a and spins
leads to the formation of a bound s ta te of the p a i r of
e l e c t r o n s with a negative binding energy. F u r t h e r m o r e
the in teract ion between the e l e c t r o n s will be taken into
account to the extent that it l eads to the format ion of a
s ta t ionary p a i r . Then the average of the T-product of
o p e r a t o r s in Eq. (3.35) can b e wr i t ten in the following
way ( G o r ' k o v 7 ) :

~x'), (3.36)

(3.37)

x') = [N\% (x) $ p (x') IN + 2] a v ,

F r o m E q s . (3.34) and (3.36) it i s not h a r d to w r i t e
down the equation for the function F + (x - x ' )

.!. >'(0) G ( ж - (3.38)

To determine the energy spectrum of the system it is
necessary to find the electron Green's function G (p, w)
in the p representation. By carrying out the Fourier
transformation (3.5) in Eqs. (3.35), (3.36), and (3.38),
we get

(со - | p ) G (p, со) - igF (0) F* (p, со) = 1,

(со + lv)P* (p, со) + igP* (0) G (p, со) = 0, (3.39)

where

It follows from the definition (3.37) that F (0) and
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F + (0) are of the forms J =
/'(0)= -JJ, (3.40a)

where J can be regarded as a real constant, since in
the equations (3.39) one can always split off a phase
factor exp ia from J and include it in the unknown
functions G(p, w) and F + (p, w). According to Eq.
(3.39) the function F + (p, w) is also proportional to
the matrix I

P* (p,a>) = IF* (p,a>), (3.40b)

which can thus be got rid of in Eq. (3.39), since I 2 = - 1.
After this we rewrite the system of equations (3.39) in
the form

(<o»-^-gV2)/'+(p, co) = -igJ, (3.41)
(со- У G (p, со) = 1 + igJF* (p, со). (3.42)

The Green's function G (p, w) is defined as a particu-
lar solution of Eq. (3.42), but in finding F + (p, w) we
must take into account both a particular solution of
Eq. (3.41) and also the general solution of the corre-
sponding homogeneous equation, which is A (p, /3)

2 1 /
[б(ш + E p ) + б ( ы - Е р ) ] , where E p =

2 2 2

Д 2 ) 1 / 2 ,
p р p p

Д2 = g2J2, and A (p, /3) is an arbitrary real function
of the momentum and the temperature. Therefore

F* ( P Ш) =

+ - 5 = г А ( Р > Р ) t 6 ( ш + ь ' " ) + б ( и - £ Р ) ] -

T h u s t h e i m a g i n a r y p a r t o f t h e G r e e n ' s f u n c t i o n

G ( p , w ) i s n o t c o m p l e t e l y d e t e r m i n e d b y E q s . ( 3 . 4 1 )

a n d ( 3 . 4 2 ) . L e t u s c h o o s e t h e a r b i t r a r y f u n c t i o n

A ( p , / 3 ) s o t h a t t h e r e a l a n d i m a g i n a r y p a r t s o f

G ( p , w ) s h a l l s a t i s f y t h e w e l l k n o w n r e l a t i o n ( 3 . 1 0 ) .

S i m p l e c a l c u l a t i o n s l e a d t o t h e f o l l o w i n g r e s u l t :

) = ( е я Р Э + ! ) - ! , (3.43)) = - nAnp/Ep, «P = (e pP + I) ' 1 ,

and the Green's function takes the final form:

G (p, со) = ul (со - E9 + i&y1 + v\ (со + Ep - гб)"1

+ 2яшр К б (со - Ер) - vyb (со + £„)],

(3.44)

The spectrum of the elementary excitations is deter-
mined by the positive pole of the function G (p, w),
which gives

(3.45)

where Д is a function of the temperature, which is
found from the conditions (3.40a) and (3.40b)

Jg Г

or
tanh-

1 - 2 (2л)' J 1/
| 6 p | < » c .

(3.46)

(3.47)

At a b s o l u t e z e r o t e m p e r a t u r e , /8 —• °°, t a n h ( E p / 3 / 2 )

= 1, f o r s m a l l n e g a t i v e g ( a t t r a c t i o n ) E q . (3.47) h a s

t h e w e l l k n o w n s o l u t i o n

(3.48)

a n d n e a r a b s o l u t e z e r o t e m p e r a t u r e t h e s o l u t i o n of

E q . (3.47) i s of t h e f o r m (cf . , e . g . , t h e r e v i e w of

A b r i k o s o v a n d K h a l a t n i k o v 5 6 )

(3.49)

A s c a n b e s e e n f r o m E q . (3 .45) , t h e e x c i t e d s t a t e s of

t h e s y s t e m a r e s e p a r a t e d f r o m t h e g r o u n d s t a t e b y a

gap of width Д, which leads to the phenomenon of
superconductivity (Bardeen and others, 5 8 Bogolyubov,59

Gor'kov,7 Abrikosov and Khalatnikov56).
Another interesting feature of the Green's-function

method is that it enables us to construct a gauge-in-
variant quantum-field-theory technique in the theory
of superconductivity. By this method Abrikosov,
Gor'kov, and Khalatnikov32 have investigated super-
conductors in high-frequency electromagnetic fields,
and in particular have calculated the frequency and
temperature dependences of the impedance of a mas-
sive superconductor. The further development of this
technique has been pursued in a series of papers by
Gor'kov3 3 on the behavior of superconductors in mag-
netic fields, and also in a paper by Abrikosov and
Gor'kov3 4 on superconducting alloys in constant mag-
netic fields.

Recently Migdal60 has developed a method for t reat-
ing superfluidity and calculating the moments of iner-
tia of nuclei that is based on the application of Green's
functions to systems of finite dimensions that consist
of interacting Fermi particles. In subsequent papers
this method of Migdal has been successfully applied
to the study of pair correlation in nuclei with an odd
number of particles (Grin' and others 6 1 ) and to the
excitation of collective states of nuclei in the scatter-
ing of charged particles (Drozdov6 2).

The connection between time-dependent Green's
functions and the thermodynamic characteristics of
a system. Given the time-dependent Green's function,
it is not hard to determine all the thermodynamic
quantities of a system. To do so we need only find
the number of particles n as a function of the tem-
perature 1//3 and the chemical potential ц. The par-
ticle density n as a function of (3 and /J is expressed
in terms of the time dependent Green's function
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G (x - x ' ) of Eq. (3.1) in the following way:

(3.50)

where the upper sign is for Fermi statistics and the
lower is for Bose statistics. Using the expansion

^(x) = F- 1 / 2 2a P e i p x . ii)+(x) = y - I / 2 2 a ; e - i p x . (3-51)
p p

where al and «p are the operators for production
and absorption of a particle, we rewrite Eq. (3.50) in
the form.

(2л)4 (3.58)

G (0) | „ = ± iV-i Р а Р = ± г У - 1 2 п р
р

~ ^ (2л)-

On t h e o t h e r h a n d

(3.53)

On comparing Eqs. (3.52) and (3.53) we find that the
distribution function np of the particles at an arbitrary
temperature is connected with the Green's function in
the following way (Migdal2):

(3.54)

We shall now express the mean energy in terms of the
Green's function for the case of a system of particles
interacting by pairs, Eqs. (1.71a) — (1.71c). By defini-
tion the mean energy E of the system is given by

+ -i ^ d** d3x'v (x - x') W (x) ̂  (x') t (x') t|> (x)]

= T'Л d3x~^G^xt' x'->x
f-ft+0't, xt; xt', x't')t'-*t+O

, (3.55)

where ep = p2/2m and the integral over ш is taken in
the same sense as in Eq. (3.54). For absolute zero
temperature the formula (3.58) was first obtained in
a paper by Galitskii and Migdal3 '4 for the case of
fermions and in a paper by Belyaev6 for bosons. The
latter author also included the energy of the particles
in the Bose condensed phase, which does not appear
explicitly in Eq. (3.58). In the papers cited, the ener-
gies of the ground states of nonideal Fermi and Bose
gases are calculated on the basis of Eq. (3.58).

(3.52) 4. SOME APPLICATIONS TO SPECIFIC PROBLEMS

where G(xt, x ' t ' ) and G2 ( x ^ , х 2^; xjtj, x^tj) are
the one-particle time dependent Green's function of
Eq. (3.1) and the two-particle function

As before, the upper sign is for fermions and the lower
for bosons. Let us introduce the mass operator M (x,y),
which is defined by the formula

— i\ diyM{x, y)G(y, x')

= \ d3x"v(x-x")G2 (x"t, xt; x't', x't). (3.57)

The mass operator M(x, y) = M ( x - y ) is usually
represented as a power series in the interaction
(cf., e.g., the review of Klein and Prange 1 2 ). Per-
forming a Fourier transformation in Eq. (3.55) and
using Eq. (3.57), we finally get

The scattering and stopping of charged particles
passing through matter, and the ionization and radia-
tion that accompany these phenomena, have been a
central object of interest to physicists from the very
beginning of the development of present ideas about
atoms, nuclei, and elementary particles. Accordingly
it is natural to apply to these phenomena the new
methods, which give the clearest and most accurate
solutions of these problems.

Let us consider as a whole a neutral system of
electrons and ions that are in thermal equilibrium.
In passing through this system an external charged
particle will lose energy mainly through collisions
with electrons and with the lighter particles. In their
application to this problem the Green's-function
method and the diagram technique were first devel-
oped by Larkin.3 1 From the beginning, however, he
confined himself to the nonrelativistic case. For the
sake of generality we shall expound the method in a
form that can be applied for arbitrary speeds of the
particles. In the present version the method can
easily be extended to other problems (bremsstrahlung
and pair production in the passage of particles through
plasmas, radiation from a plasma, stopping of elec-
trons in metals, and so on).

To calculate the stopping power of an electron-
positron plasma we write down in the Schrb'dinger
representation the Hamiltonian of the system of elec-
trons and positrons and the external particle passing
through it, with all of these particles interacting
through the electromagnetic field,

Н=Не+Ну+Н1+Щ+Н'1, (4.1)

where H e and Ну are the Hamiltonians of the free
electron-positron field and the free photon field and
Щ is the Hamiltonian for their interaction, Eqs. (2.17a)
— (2.18), Щ is the free-field Hamiltonian of the exter-
nal particle (a fermion), and Hi is the Hamiltonian
for its interaction with the photon field. Щ and Щ
have the same structures as the corresponding oper-
ators for the electron-positron field.

The S matrix that describes the quantum-mechan-
ical transitions of the plasma particles and the exter-
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nal particle satisfies the equation

Let us use the transformation

(4.2)

(4.3)

a n d go o v e r t o a d i f f e r e n t r e p r e s e n t a t i o n , i n w h i c h t h e

field operators ф'(х) of the external particle are writ-
ten in the interaction representation

г|/ (x, t) = eiH°' i|/ (х) e'iHo', (4.4)

and the operators ф (х) of the electron-positron field
and A (x) of the photon field are in the Heisenberg
representation

\ p ( x , t ) = e У % f ( n . ) e * ,

A ( x , t ) = « « ( H . + H y t H x ) ! A ( x ) e - i ( H e + H y + H l ) t ( 4 - 5 )

T h e o p e r a t o r A ( x , t ) t h e n s a t i s f i e s t h e e q u a t i o n

( V2 — -|^-") A (x) = — ieN( •ф (х) уф (х)), (4.6)

w h i c h h a s a s i t s s o l u t i o n

A(x) = A°(x) + ))dlx', (4.7)

where A°(x) is the free photon field and D ° ( x - x ' ) is
the zeroth-order propagation function of a photon in
quantum electrodynamics.

In accordance with the sense of the problem, this
representation presupposes that the interaction be-
tween the external particle and the plasma particles
is turned on at the time t = — °° and off at t = °°,
while the interaction between the plasma particles is
always turned on.

In the present representation the •& matrix is de-
fined in the following way:

Я ; (x) = -ie'N W (x) "A (X) I |/ (X)), ( 4 . 8 )

w h e r e e ' i s t h e c h a r g e o f t h e e x t e r n a l p a r t i c l e . T h e

ef m a t r i x ( 4 . 8 ) d e s c r i b e s t h e s c a t t e r i n g o f t h e e x t e r n a l

p a r t i c l e b y t h e e l e c t r o n - p o s i t r o n p l a s m a t a k e n a s a

w h o l e . T h e e x p r e s s i o n ( 4 . 8 ) c a n e q u a l l y w e l l b e a p -

p l i e d t o t h e p h e n o m e n a o f r a d i a t i v e s c a t t e r i n g , p a i r

p r o d u c t i o n , a n d s o o n .

W e s h a l l a s s u m e f u r t h e r t h a t t h e e x t e r n a l p a r t i c l e

i s a f a s t p a r t i c l e ( e e ' / K v « 1 ) , s o t h a t i t s i n t e r a c t i o n

w i t h t h e e l e c t r o m a g n e t i c f i e l d p r o d u c e d b y t h e p l a s m a

c a n b e t r e a t e d b y p e r t u r b a t i o n t h e o r y . T h e n t h e e l e -

m e n t o f t h e of m a t r i x t h a t d e s c r i b e s s c a t t e r i n g i n

w h i c h t h e e x t e r n a l p a r t i c l e m a k e s a t r a n s i t i o n f r o m

a s t a t e w i t h m o m e n t u m p a n d p o l a r i z a t i o n r t o a

s t a t e w i t h m o m e n t u m p ' a n d p o l a r i z a t i o n r ' , a n d t h e

p l a s m a g o e s f r o m s t a t e n t o s t a t e m , i s g i v e n , i n

v i e w o f E q . ( 4 . 7 ) , b y t h e f o l l o w i n g f o r m u l a :

.-, „pr = — ее' ( mp'r' \ -ф' (ж) yvij;' (x)

У- D"(x — x') i|) (ж') Yvi|> (ж') # г d4a;'

__ (2п)Чее' -, , -

= p - p ' , ш =

ЩГ

; P ~ E p - q > Pmn= P m -

:„, e p = ] / p a + A / 2 , (4.9)

where q and ш are respectively the momentum and
the energy transferred to the plasma in the scattering
of the external particle with mass M and charge e'.

The probability dW of this process, averaged over
initial and summed over final spin states of the exter-
nal particle and also averaged statistically over the
Gibbs distribution (2.23), is determined as follows:

= ~

= (6vn (pp'

(q,

' (q, ш) = (2nf g е(а+^ЛГп-
TIT71

- (0))т„ б (q - p m j б («о - <от„).

Irf3?, (4.10)

(4.11)

(4.12)

where N is the difference between the total numbers
of electrons and positrons, and ФаРа'/З'^Ч' ш ) c a n b e

expressed in terms of the two-particle thermodynamic
Green's function (2.2) of the plasma, with the argu-
ments set equal in pairs, &2 ( x ^ j , x^xj) = К (x4 -x}).
To bring out the connection, we follow the method of
Landau,5 Eqs. (3.4) — (3.11), and make a spectral reso-
lution of the function K ( x ) . We get

' (q, to) e-«"'da>, T > 0,

' ( q , t ) = • ( 4 . 1 3 )

Фара-р- (q, Ш) ^> dto, X < 0 ,

I. -oo

where — /3 < т < /3.
After being periodically continued on the entire т

axis the function (4.13) satisfies the condition К (q, т)
= K(q, T + /3) for arbitrary т. Furthermore, accord-
ing to Eq. (1.60), we have

- „ ) = l (4.14)

A s a f u n c t i o n of t h e v a r i a b l e i w n t h e i n t e g r a l (4.14)

d e f i n e s a f u n c t i o n ^ ( q , w ) w h i c h i s a n a l y t i c i n t h e

u p p e r h a l f - p l a n e ,

( l - e - ^ ) , (4.15)
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and is the analyt ic continuation of the function
K ( q , - i ( i o ) n ) ) into the upper half-plane [cf. a l so
Eqs . (3.20), (3.21)]

*'(q, со) = K(q, — ia>). (4.16)

Since ТицУцарУ1>а'рфа13а'Р'(Ч> ш ) i s a r e a l function of
w on the real axis, we get from Eqs. (4.15) and (4.16)

(a w) -
_Mp

(4.17)

Thus the p r o b l e m r e d u c e s to that of finding the function

since by the formal in terchange un —~ ia>n we a r e e n -
abled to d e t e r m i n e <&(q, w) a t once from Eq. (4.17).
E l e m e n t a r y ca lculat ions lead to the following re la t ion :

e2Yuop Yva'P' — X') d*x'

(4.18)

or in the p representation

where the polarization operator and the thermodynamic
Green's functions are defined in Eqs. (2.44) — (2.52).
We finally get for the probability dW of Eq. (4.10) the
following expression:

dW =
, (q, — «о)П^, (q, — i(o) ̂ . v (q, — im)]

= Wqd
3q,

d3q

(4.20)

and t h e e n e r g y l o s t p e r unit t i m e by t h e p a r t i c l e p a s s -
ing through the p l a s m a i s g i v e n by

(4.21)

Using Eq. (2.51) and neglecting terms of higher order
in e 2 [cf. Eq. (2.59)], we get for Wq for arbitrary
speed of the external particle and arbitrary tempera-
ture of the plasma

where the term к" 2 П1 ~ e2 has been kept in the de*-
nominator in order to avoid an infrared divergence
in the calculation of the energy loss.

Let us study in more detail the simple case of a
nonrelativistic particle being stopped in a nonrelativ-
istic plasma. Here the expression for the energy loss
to the electron gas coincides with the result of Larkin3 1

*у <4-2 3>b —i

v is the speed of the particle moving through the
plasma.

Let us take for the polarization operator П the
first nonvanishing approximation (2.72),

П(Ч, _»«,) (2я)3 J pq/m —со ^'

w h e r e np i s t h e d i s t r i b u t i o n funct ion of t h e e l e c t r o n s
in the nonrelativistic region, Eq. (1.47). At high tem-
perature np = exp (ju - ep) p, ep = p2/2m, and there-
fore the imaginary part of П is

1тП(д, -йв) = п (4.25)

w h e r e n i s the density of e l e c t r o n s in the p l a s m a .
Suppose the ex terna l p a r t i c l e moves with a speed

v m u c h l a r g e r than t h e m e a n t h e r m a l speed of the
e l e c t r o n s , v » (/3m)"1/2. We b r e a k up the integra l
over q in Eq. (4.23) into two r a n g e s q > q ' and q < q',
with a value of q' d e t e r m i n e d from the condition m//3
» q'2 » к2, where к2 = - П ( 0 , 0) = /3ne2 is the square
of the reciprocal Debye radius (Larkin 3 1 ). Since
n(q, - i w ) does not exceed к in order of magnitude,
in integrating over the first range we can neglect the
term П in comparison with q2; then

d e p ' \ _ e'Vn Vr2it
dt J~ 4л 5

„ f . f , vx-q/2M -4-(°*-4J^r)X \ dq \ dx 1̂  e 2 v 2 m M ' .
.1 J 1
,/ -l

If in Eq. (4.26) we neglect terms of the order
у - Ч / З т ) " 1 ^ , then

(4.26)

dt •In 2 m »
4itmv q' (M + m)

(4.27)

In the s e c o n d r a n g e q2 < q ' 2 « m//?, and t h e r e f o r e in
ш we can neglect the term q2/2M in comparison with
mvx. This enables us to change from integration over
x to integration over w = vqx, and

dt 2я>
dq^Tm 7 c
vq 1 Ш ) е -

cocfo П (q,
-i<i>) •

( 4 . 2 8 )

The m a x i m u m v a l u e of w/3 in Eq. (4.28) i s vqjS. L e t
u s c h o o s e q' s o that the quantity w/3 d o e s not e x c e e d
unity, i . e . , q' = l/v/3. Then q' s t i l l s a t i s f i e s o u r
f o r m e r c o n d i t i o n s q ' 2 « m//3 if the s p e e d of the e x -
t e r n a l p a r t i c l e i s l a r g e c o m p a r e d w i t h the t h e r m a l
v e l o c i t y . With t h i s c h o i c e of q' the in tegrand in
Eq. (4.28) i s a n a l y t i c i n s i d e a c i r c l e of r a d i u s vq.
L e t u s d i s p l a c e t h e path t o the upper a r c ; then q 2

« т/Зш2, and consequently we can use for n(q, - i w )
the expression

(4.29)

where x = v • q/vq, ш = € p - ep_q = vqx - q2/2M, and The integral along the upper arc then takes the form
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— й > Р _ . 0)2 М 2
(4.30)

where w0 = ( п е 2 / ш ) ^ 2 is the Laлgmuir frequency. If
we bring the path of integration back down to the real
axis, the integral (4.30) is found to be zero for vq < w0,
and for vq > w0 it is equal to half the sum of the res i-
dues at the points ±w0, which gives for the integral
(4.30) the value тгпе2/2т. Finally, the integral (4.23)
over the second range q < q' is given by

dt
ne'e"

ittmv
(4.31)

In the nonrelativistic region the total energy loss in
the slowing down of the particle is given by the sum
of Eqs. (4.27) and (4.31):

dt

ne'e1"

iitmv

2Mrnhv (4.32)

The expression (4.32) gives the total energy loss that
comes from two-particle collisions in which the mo-
mentum transferred is much larger than the recip-
rocal of the Debye radius, and also from the excitation
of plasma waves. One of these kinds of loss can be
separated from the other only with logarithmic accu-
racy. The energy loss by excitation of plasma waves
is determined by the pole of the integrand in Eq. (4.28).
This pole also gives the spectrum of the plasma oscil-
lations.

In reference 31 the formula (4.23) is also used as
the basis for a detailed study of other limiting cases
of the stopping of a nonrelativistic particle, for ex-
ample the cases of low temperature, of small speed
of the external particle in comparison with the mean
thermal velocity of the plasma electrons, and so on.

APPENDIX 1

FUNCTIONAL DIFFERENTIATION

Let there be given a class of functions у (x) defined
on the interval [ a , b ] . Then I (y) is a functional of
the functions у (x) if to each function of the given class
there corresponds a certain numerical value of I ( y ) .
A general form of a functional I (y) can be written as
follows:

I (V)= (x, y, y)dx, "die' (1)

For example, the length of a curved line is a functional
of its shape; in this case F (x, y, y) = (1 + y 2) 1/ 2,
where y ( x ) is the given curve.

Together with the function y ( x ) let us consider an
infinitesimally different function y ( x ) , which coincides
with у (x) at the ends of the interval. The difference
y ( x ) - y ( x ) = 6y(x) is called the variation of the
function у (x) at the point x. Thus the variation 6y (x)

is the increment of the function у (x) caused by a
change of the form of the function itself. Similarly, the
variation 61 of the functional is the main linear part of
the increment of the functional I (y) caused by a change
of the form of the function у (x) :

(2)

where Fy and Fy are the partial derivatives with r e -
spect to у and y.

The concept of the functional can be regarded as a
generalization of a function of many variables. In fact,
let us replace the integral (1) by the integral sum

CO

/t=t
Then I(y) will be a function of the "var iables" у (xj),
у ( x 2 ) , . . . , since for fixed values of x t, x 2 , . . . a
change of the form of the function у (x) leads to
changes of the numerical values of the entire set
У (xj), у (x2) This analogy suggests how we can
introduce the concept of the variational (functional)
derivative. Whereas the total differential df of a func-
tion of many variables f (xj, x2, . . . , x n ) is equal to the
sum of the partial derivatives multiplied by the incre-
ments of the variables,

(4)

the variation 61 of the functional I (y) is equal to the
61

integral of the variational derivative (taken
6y(x)

at the point x) multiplied by the increment 6y (x) of
the function:

6/ by(x)dz. (5)

By comparing (5) and (2) we find that the variational
derivative of I (y) with respect to the function у taken
at the point x is by definition equal to

y, y)-± (6)

The concept of the variational derivative can also
be approached in a somewhat different way. To each
form of the function у (x) there corresponds the area
bounded by the axis Ox and the curve у (х). То а
change of the form of the function у (x) there corre-
sponds a change of the area by the amount

a= \ by (x) dx. (7)

Suppose the change of form of the function у (x) has
occurred only in an infinitely small neighborhood of the
point x0, for example 6y (x) = e6 ( x - x 0 ) . Then in
generalizing the operation of partial differentiation to
the case of functionals it is natural to give the name



48 A. I . A L E K S E E V

of the variational derivative at the point x0 to the limit
lim { [ I ( y + 6y) — I (y)] /o"} as the change of area a
contracts to the point x0:

ёу (х„)'

(8)

We can regard the function у (x) at a fixed argu-
ment x = x' as a special case of a functional, I (y)
s y ( x ' ) :

y(x')=^ &(x'-x),j(x)dx.
a

Then according to Eqs. (5) and (2) we have

0)

(10)

If I is a functional of a function В (x) and В (x)
for fixed x is a functional of the function b (y), then
I is also a functional of b (y), and the variation of the
functional I caused by a change of the form of the
function b ( y ) ,

ы= 6/ ЬЬ (у) dy,
ЪЪ(у)

c a n a l s o b e w r i t t e n i n t h e f o r m

) 6B(x) K ' 3 6^(a:) S6 (г/)

w h e r e w e h a v e u s e d t h e r e l a t i o n

&B(x)

dx bb (y) dy,

bb(y) bb(y)dy.

F r o m a c o m p a r i s o n of (11) a n d (12) w e f ind

a/ r а/ бв{х)
bb(y) ) ЬВ(х) Й6(у) dx.

(ID

(12)

(13)

(14)

If 1(Ф) is a functional of operators Ф(х), we de-
fine the variational derivative in the following way:

6/ dx. (15)

L e t u s c o n s i d e r t w o f u n c t i o n a l s I t a n d I 2 of t h e

operators Ф(х). Suppose [6Ф, I i ] ± = 0 . Then the
variational derivative of ( I j ^ ) .

(16)

can also be written in the following way:

a UJ2)=/, (Ф+бФ) /2 ( ф + а Ф ) - / ! (Ф) h (Ф)=(fl/i) h+h?>h

F r o m a c o m p a r i s o n of (16) a n d (17) w e h a v e

(18)

" 8Ф (z) '
(19)

This last relation is to be understood in the sense that
the result of acting on an arbitrary functional with the
left and right members of Eq. (19) is the same expres-
sion. Setting Ф=ф(х), Ii = ^ ( y ) , or Ф = 0 ( х ) ,
4 - Ф*(у), or Ф = (p (x), I t = <p(y), and so on, we
get the formulas (2.8) and (2.9).

APPENDIX 2

THE SUMMATION OF SERIES ENCOUNTERED IN
PROBLEMS OF STATISTICAL PHYSICS BY THE
USE OF METHODS OF QUANTUM FIELD THEORY

In using quantum-field-theory methods for the pur-
poses of statistical physics one frequently has to sum
series over discrete values of the fourth component of
the four-dimensional momentum vector. It turns out
that one can establish certain general rules and for-
mulas for such summations, which are extremely use-
ful in applications.

For example, by performing the Fourier transfor-
mation (1.60) on the zeroth-order phonon thermody-
namic Green's function s o ( x , т), Eqs. (1.37) and
(1.49), and using Eq. (1.65) we get for 5!0 (p, т)

If we take the limit т — 0 in both members of Eq. (I),
we get

^ - Y — -L_ - ± 4 - и (in
ft ŷ  1 9 9 — о I It ' \ /

n

where wn = 2п7т//3, п^ is defined in Eq. (1.47), and wfc
is an arbitrary positive quantity w^ > 0 of the dimen-
sions of energy.

Similarly, performing the Fourier transformation
on the zeroth-order electron thermodynamic Green's
function § 0 (x, T ) , Eqs. (1.36) and (1.48), and using
Eq. (1.64), we get for So (p, т)

Т' т > 0 ' (Ш)

Since So (p. T ) has a discontinuity at the point т = 0,
for т —* 0 we must use in Eq. (Ill) the half-sum
[ S 0 ( p , T + 0) + S 0(p, т - 0 ) ] / 2 , which is equivalent
to multiplying both members of Eq. (Ill) by б (т) and
then integrating over т. The result is

a ~ 2 "P (IV)

or

where p 4 = (2n + 1) тг//3, ер > 0, and np is defined in
Eq. (1.47).

We also note that an analogous treatment of the
boson Green's function of Eq. (1.83) and (1.87) leads
to the following extension of Eq. (II) to the case д * 0:
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l
» 2 + V (V)

w h e r e p 4 = 2шг//3, ер > 0, and np i s given by Eq. (1.83).
Repeating t h e s e a r g u m e n t s for the r e l a t i v i s t i c e l e c -

t r o n t h e r m o d y n a m i c G r e e n ' s function, Eq. (2.27), we get

т - » ; ) ( » - т . < P - ' Y P ) ] - (v i )

L e t u s t a k e t h e t r a c e of b o t h m e m b e r s of E q . (VI):

4
 Пр "'"

a r ew h e r e p 4 = (2n + 1)тг//3, €p > 0, and np and p
defined in Eq. (2.30).

This device can a lso be extended without much dif-
ficulty to other c a s e s of summat ion. The r e s u l t s a r e
genera l formulas of m o r e complicated fo rms [cf., e.g.
Eqs . (1.66) and (1.68)].
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