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1. INTRODUCTION

1 . 1. Di this review we present an account of the ex-
perimental and theoretical research on the hydrody-
namics of oscillating solids immersed in rotating
helium II. The progress achieved of late in this direc-
tion is quite significant with respect to the present day
status of the superfluidity problem. A successful so-
lution of this problem has made it possible to advance,
within less than a decade, from an aggregate of con-
tradictory facts concerning the rotation of helium II
to a deep insight into the physical nature of the ob-
served phenomena and to the development of a quantum
theory of vortical motion of a supe'rfluid liquid.

1.2 Supercritical phenomena connected with the r o -
tation of helium II were noted first by Kapitza,1 who
observed the transfer of heat along a capillary within
which a glass rod was placed. Rotation of the rod in-
side the stationary capillary led immediately to a
sharp reduction in heat transfer. The properties of
rotating helium II were subsequently investigated by
Osborne and, independently, by Andronikashvili and
Kaverkin,3 who observed visually the form of the me-
niscus of the liquid helium contained in a transparent
vessel and set in motion by rotation of the latter. The
visual observations allowed this investigation to be
conducted only at speeds in excess of 6 sec" 1 .

If, as would follow from the Landau theory (see ref-
erence 4, p. 610), the superfluid component were to be
at rest in these experiments with only the normal com-
ponent of helium II participating in the rotation, then
the depth of the meniscus would be

» - ^ , (1-1)

where p n is the density of the normal component, p
the total density of helium II, шй the angular velocity of
rotation, R the radius of the cylindrical vessel, and
g the acceleration due to gravity.

In actuality, the depth of the meniscus did not differ,

over in the entire range of speeds investigated, from
six to 40 sec" 1 , from that for a classical liquid, and
satisfied the expression

Л = 4 ^ . (1.2)

This means, therefore, that at these angular velocities
the helium II moves as a whole. This situation is to be
explained on the hypothesis that for sufficiently high
rotational velocities the superfluid component is drawn
into motion along with the vessel, either by the latter
directly, or as a consequence of the passage of the rela-
tive velocity of motion of the superfluid and normal
(entrained by the beaker) component through a critical
value corresponding to the onset of interaction between
the two.

One might think that the effect observed is due to
the loss by the helium of its superfluid properties.
However, such typically superfluid phenomena as the
thermomechanical effect, which was investigated in
rotating helium II by Andronikashvili and Kaverkin,3

as well as the propagation of second sound under the
same conditions, observed subsequently by Hall and
Vinen5 and by Lane's group,6 are preserved at all
speeds of rotation.

The experiments of Osborne2 and of Andronikash-
vili and Kaverkin3 have demonstrated that to rotating
helium П there must be attributed special physical
properties. Attempts along these lines were under-
taken in many theoretical papers,7»8 '9 but a correct
explanation of these experiments was obtained only
in conjunction with the hypothesis, proposed by On-
sager 1 0 and independently by Feynman,1 1 that quantized
vortex filaments can be produced in helium II.

The principal premises of the Feynman theory,
as well as the results of the most important experi-
mental investigations, which have confirmed this the-
ory and which in turn have stimulated its further de-
velopment, will be detailed later on.

1.3. The Onsager-Feynman hypothesis is that in the



E . L. A N D R O N I K A S H V I L I e t a l .

superfluid component of helium П there can arise vor-
tex filaments, the circulation Г of which is an integral
multiple of 27rK/m and is expressed by

Г = < , dl = n
2лЬ

(1.3)

w h e r e v s / i s the p r o j e c t i o n of the super f lu id c o m p o n e n t

v e l o c i t y a l o n g the tangent to the c o n t o u r of i n t e g r a t i o n ,

w h i l e m i s t h e m a s s of t h e h e l i u m a t o m .

E a c h v o r t e x h a s a def in i te e n e r g y e, amount ing to

e = n2nos —j- In — (1.4)

p e r unit l e n g t h of t h e v o r t e x . H e r e a 0 i s the r a d i u s of

the c o r e of the v o r t e x ( o n the o r d e r of i n t e r a t o m i c d i s

t a n c e s ) and b i s t h e e f f e c t i v e r a d i u s of t h e v o r t e x ,

i . e . , t h e e f f e c t i v e r a d i u s of t h e r e g i o n in w h i c h the

super f lu id c o m p o n e n t of h e l i u m II e x e c u t e s p o t e n t i a l

r o t a t i o n about a g i v e n v o r t e x w i t h a v e l o c i t y i n v e r s e l y

p r o p o r t i o n a l t o the d i s t a n c e r to i t s a x i s : *

v, = -~— = n— (n=i,2, ...)
s 2яг mr v '

(1.5)

S i n c e t h e e n e r g y of t h e v o r t e x f i l a m e n t i s p r o p o r -

t iona l t o i t s l e n g t h ( E = el), the v o r t e x r e s i s t s the

f o r c e that t e n d s to s t r e t c h i t and, a s c a n b e r e a d i l y

seen, possesses a tension e, which coincides numer-
ically with its energy per unit length (дЕ/dl = e) .

Feynman's ideas concerning the possibility of for-
mation of vortex filaments of the type just described
in the superfluid component of helium II have contrib-
uted to the understanding of previously unexplained
peculiarities of critical phenomena. It was ascer-
tained that in the supercritical mode a superfluid
liquid is somewhat like a turbulized ideal liquid. By
the same token it was shown that the low experimental
values obtained for the critical velocity (0.1 — 100
cm/sec) do not by any means contradict the Landau
theory,1 2 which predicts destruction of superfluidity
at velocities on the order of 70 m/sec. At the observed
critical velocities, the superfluid component interacts
with solids and with the normal component of helium П
via the vortex formation which commences at these ve-
locities, and not through loss of its capacity to undergo
non-viscous motion. However, these aspects of the
Onsager-Feynman theory are beyond the scope of the
present survey, and we shall consequently confine our-
selves solely to the application of the theory to the r o -
tation of helium II.

1.4. By solving the corresponding variational prob-
lem it can be shown that in a liquid situated in a vessel
which rotates uniformly with an angular velocity COQ,
the velocity distribution

f = fflor, (1.6)

*It is interesting to note that when r reaches a value on the
order of interatomic distances, v s increases to about 70 m/sec,
whereupon, according to the Landau theory, destruction of super-
fluidity should occur.

which corresponds to rotation of the liquid as a whole,
is the most desirable from the thermodynamic point
of view.

Rotation of this kind is ensured in solids and in vis-
cous liquids by an interatomic or viscous interaction,
but it is very difficult to visualize any mechanism
which could set into motion of this sort a superfluid
liquid, the individual layers of which do not interact
with each other.

According to Feynman,1 1 the superfluid component
of helium II is entrained by the rotating vessel through
a specific mechanism, wherein a system of quantized
vortex filaments, such as described above, is gener-
ated in the liquid. It should be noted that the question
of how the widely-known requirements of the classical
theorems of Helmholtz, Thomson, and Lagrange, for-
bidding vortex formation in classical ideal fluids, are
evaded, still remains open. Bypassing this problem,
however, Feynman13 provided a quantum-mechanical
description of the possibility of vortex formation in a
superfluid liquid. On the other hand, he showed,11 that
a specific system of vortex filaments, which will be
described presently, will establish in a superfluid
liquid a velocity distribution very close to the thermo-
dynamically desirable distribution (1.6).

Feynman proposed that superfluid helium situated
in a vessel rotating with an angular velocity co0 is
permeated by a system of uniformly distributed vor-
tex filaments parallel to the axis of rotation. The
number of such vortices per unit cross-sectional area
perpendicular to this axis is given by

N = ( n = i , 2, . . .) (1.7)

The interaction of these vortex filaments with each
other causes them to move together with the vessel at
a velocity v- ,̂ given by

»L = <V- (1.6')

The array of vortices just described produces in the
superfluid component of helium II a rather complicated
distribution of velocities, as shown schematically in
Fig. 1. Examining this figure, one can readily see that
the average velocity of the superfluid component v s is

B. = «V (1.6")

(like the velocity of the vortex filaments and the veloc-
ity of the normal component). The distribution of ve-
locities in the superfluid component rotated by the
quantized vortices is found to be the closer to the
thermodynamically most desirable distribution, the
greater the number of vortex filaments extending
through the rotating liquid. In this connection, in using
formulas (1.3) — (1.5) and (1.7), we shall henceforth as-
cribe to the quantum number n its most probable mini-
mum value, n = 1 (see references 11 and 14).

As regards the conditions under which vortex fila-
ments begin to form in helium II in a rotating vessel,
these are determined from the condition that the free
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c)

FIG. 1. Distribution of velocities in a superfluid liquid moved by vortices, a) Single (stationary) vortex, a0; b) aggregate of
moving vortices; c) result of averaging the velocity distribution shown in the preceding figure.

energy of the liquid must be a minimum. This leads
to the following formula1 5 for the critical angular ve-
locity for vortex formation ш о с г :

(oocr=; • i n * - , ( 1 . 8 )

w h e r e R i s t h e r a d i u s o f t h e c y l i n d r i c a l v e s s e l . U s i n g

t h e l a s t f o r m u l a , w e c a n r e a d i l y s e e t h a t e v e n f o r r e l a -

t i v e l y s m a l l v e s s e l s , o n t h e o r d e r o f o n e c e n t i m e t e r i n

r a d i u s , t h e c r i t i c a l v e l o c i t y i s e x c e e d i n g l y s m a l l ( w o c r

~ 1 0 ~ 3 s e c " 1 ) . C o n s e q u e n t l y , t h e r o t a t i o n o f h e l i u m II

u n d e r n o r m a l c o n d i t i o n s i s a l w a y s s u p e r c r i t i c a l , a n d

t h e l i q u i d c o n t a i n s e n o u g h v o r t i c e s t o c a u s e r o t a t i o n o f

t h e s u p e r f l u i d c o m p o n e n t i n a c c o r d a n c e w i t h ( 1 . 6 " ) .

It s h o u l d b e n o t e d t h a t t h e d e r i v a t i o n o f ( 1 . 6 " ) i s o n e

o f t h e s i m p l e s t e x a m p l e s o f t h e e x p e d i e n t , w i d e l y u s e d

in the hydrodynamics of rotating helium П, of averag-
ing-out the details of a complicated pattern of motion.
This makes it possible to avoid second-order details,
and to describe, using averaged quantities, only the
basic aspects of the phenomena under consideration.

1.5. In the preceding section we have shown how
potential rotation about individual vortices [formula
(1.5)] leads on the average to a vortical rotation
[formula (1.6")] with non-vanishing average curl of
the superfluid component velocity Zo;

to = 2coo. (1.9)

Inasmuch as a noticeable deviation from (1.6") is
observed only in micro-regions surrounding the cores
of individual vortices, macroscopic observation of the
form of the meniscus naturally produces the impres-
sion of rotation of the liquid as a whole.

On the other hand, there is a quite distinct differ-
ence between the character of the rotation of the super-
fluid component and the rotation of a classical liquid
under similar conditions. In the case of a classical
liquid we deal with a dense (continuous ) vortex layer,
for which Eq. (1.6) is satisfied with absolute rigor,
while formula (1.9) is valid for the curl of the velocity
curl v = 0) at any point of the volume occupied by the
liquid, and not for its average value w. In the case of
a superfluid liquid, however, the circulation is distrib-

uted among the individual quantized vortices, forming
a discrete array. The energy of these vortices is lo-
calized in individual regions associated with the singu-
larities in the velocity microdistribution of the super-
fluid component.

It would be natural to expect these singularities in
the rotation of the superfluid liquid to be detected by
a suitably arranged experiment; the ideas following
from Feynman's theory have received brilliant confir-
mation in a series of experiments described in the sur-
vey (references 14 and 16, and especially 17) and by
Vinen.15

Investigating the propagation of second sound in a
direction parallel to the rotational axis of the resonator
(i.e., along the direction of the vortex filaments), Hall
and Vinen17 established the virtual absence of any ex-
cess attenuation of the second-sound waves due to the
rotation, while propagation in the transverse direction
led to a considerable increase in attenuation as com-
pared with stationary helium II. Here the excess at-
tenuation, as expected from the Feynman theory, de-
pends on the angular velocity of rotation; i.e., on the
vortex density. The authors have also shown that the
mutual friction between the normal and superfluid com-
ponents is due to scattering of the helium II thermal
excitation quanta by the vortices, and have determined
the values of the coefficients of mutual friction along
the three axes of the cylindrical coordinate system.
Hall and Vinen were able to derive from their experi-
mental data information on the value of the elementary
circulation, which was found to be unity in units of
27rfi/m.

A special experiment, aimed at measuring a single
quantum of circulation, was undertaken by Vinen,15 who
proved in the most direct fashion that its value is in-
deed 27rK/m.

Since it is not the purpose of the present article to
describe all the investigations connected with vortex
production in helium II, the foregoing is fully adequate
for an understanding of the nature of the phenomena
associated with the oscillation of bodies immersed in
rotating helium II, and for relating it to the properties
of the Onsager-Feynman vortex system.
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2. OSCILLATIONS OF SOLID BODIES Ш ROTATING
HELIUM II

2.1. bi the experiments which we shall now describe,
solid bodies oscillating in rotating helium П had the
same function as did second sound in the investigations
of Hall and Vinen,17 described above; they played the
role of special " p r o b e s , " with which the peculiar fea-
tures of vortical rotation of the superfluid component
detailed in the preceding chapter were investigated.

2.2. Among these peculiarities the chief is the pres-
ence in the rotating helium of a system of vortices, the
energy properties of which render each vortex similar
to a stretched string (see Sec. 1.3). In this connection,
the deformation of a vortex filament, or of a system of
such filaments, should lead to the development of elas-
tic forces within the rotating helium II. It is obvious
that these elastic forces should manifest themselves
most prominently in oscillatory experiments, in which
they can cause a reduction in the period of oscillations
of a body immersed in rotating helium II. For this
purpose it is clearly necessary that the surface of the
body intersect the vortex filaments and that their ends
be attached (at least partially) to the vibrating sur-
face.

It is appropriate in this connection to consider the
conditions under which the ends of the vortex filaments
are secured to a solid surface. It is essential to note
that although the ends of the vortices are indeed at-
tached to the surface by "suct ion" with a force e, this
does not by any means require that the vortex must
follow all of its displacements.* If this displacement
is perpendicular to the vortex direction, then in order
to follow the surface the vortex would have to become
longer, which is not economical, energetically speak-
ing. Therefore the vortices can slip along the surface
(if the end of the vortex filament follows the moving
surface, the tension of the deflected vortex restores
it to its initial position).

Full slippage, however, is possible only for the case
of an absolutely smooth surface. For a rough surface,
it is especially disadvantageous for the vortices to slip
off the projecting regions, which thus localize the ends
of the vortex filaments. In this case a surface dis-
placement perpendicular to the vortices causes the
vortex filaments to bend and their tension acquires a
component tangent to the plane containing the irregu-
larit ies. It is precisely this component of the vortex
tension which causes their elastic properties to mani-
fest themselves in the laws that govern the oscillations
of solids of suitable shape immersed in rotating helium
II.

2.3. That rotating helium II has the expected elastic
properties was directly demonstrated in the experi-
ments of Andronikashvili and Tsakadze,1 8 who observed

the oscillations of a stack of thin discs, superimposed
on a rotation in synchronism with that of the liquid.
The distance between discs was uniform and equal to
0.2 mm.

By showing that the rotation of helium П can lead to
a reduction in the period of the oscillations of the stack,
Andronikashvili and Tsakadze have thus demonstrated
the existence of shear elasticity in rotating helium,
analogous to that observed in the twisting of a solid
body.

2.4. Concurrently with Andronikashvili and Tsakadze,
Hall19 carried out a similar but more detailed investi-
gation of the oscillations of a stack of discs in rotating
helium II. Hall's stack was dismountable. By varying
the number of discs, he could alter the distance be-
tween them from 0.2 to seven millimeters.

Particular attention was paid to the question of the
influence of surface roughness, for which purpose the
experiments were carried out both with smooth discs
and with discs whose surfaces were covered with sand
grains of the order of 50ц in diameter.* As expected,
it was found that smooth and rough surfaces behave
differently. For long periods of oscillation (25 sec),
however, a smooth surface becomes similar in its
properties to a rough one (cf. Sec. 2.6).

Hall expressed the results of his experiments in
terms of an effective density p' for the superfluid
component participating in the motion of the disc, de-
termined from the experiment with the aid of the r e -
lation

I-T! is

(2.1)

where To is the oscillation period in stationary helium,
Т ш is the period in helium rotating with angular veloc-
ity Wo, Ti and T2 are the periods corresponding to
moments of inertia Ц and I2 at room temperature,
(Ij -1 2 ) is the known moment of inertia, and I s is the
moment of inertia of a solid body with density p s fill-
ing the space between the discs.

Hall's experimental results are illustrated in Figs.
2 and 3.

The curve shown in Fig. 2 was obtained under con-
ditions of " r a p i d " rotation, for which the oscillation
frequency ft is much less than twice the angular ve-
locity of rotation (П « 2co0). In this case the value of
p ' / p s increases monotonically with increasing product
Ju^l (21 is the distance between discs in the stack)
for both smooth and rough discs, and tends asymptotic-
ally to p'/ps = 1 (see Sec. 4.9).

In the opposite limiting case, that of " s low" rotation
(п » 2 ш 0 ) , the period of oscillation of a stack of smooth
discs is practically independent of the speed of rotation
or of the distance between discs. However, in the case
of rough discs, as can be seen from Fig. 3, the rotation

•Formula (1.4) for e can be obtained by using Bernoulli's equa-
tion to determine and to integrate over the surface the reduction in
pressure due to the rotation of the liquid about the vortex filament
[formula (1.5)].

*It should be noted that the stack used by Andronikashvili and
Tsakadze was not subjected to similar treatment; however, the
discs employed acquired a sufficient roughness during the course
of their production (by pressing).
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FIG. 2. Dependence of the effective density of the superfluid
component on the speed of rotation and on the spacing between
discs for the case 0 « 2<u0 (see also caption to Fig. 3).

FIG. 3. Dependence of the effective density of the superfluid
component on the velocity of rotation and the spacing between
discs" in the case when 0 » 2UJ0. The dotted (theoretical) curve
was constructed by Hall without allowance for slippage (see Sec.
4.9). The solid curve was obtained by suitable choice of the'slip
coefficient (see Chapters 3 and 4).

exerts quite a strong influence on the period of the os-
cillations.

If we take ft — 2шЛ as abscissas and as
^o Ps

ordinates, then the experimental points fit a curve
similar to the dispersion curve associated with the
presence of resonance effects. Here, as in the experi-
ments of Andronikashvili and Tsakadze,1 8 rotation may
cause the period of oscillations not only to increase,
but also to decrease.

2.5. Postponing a more detailed discussion of the
theoretical problems until Chapter 4, we shall merely
make a few remarks necessary for a qualitative under-
standing of the experimental data, as well as for a
clear idea of the goals sought in the formulation of
subsequent experiments.

On the basis of the results of his experiments, Hall
(in the same paper 1 9 ) developed a theory to explain
the phenomenon just described by using the concept of
circularly-polarized elastic transverse waves, propa-
gating along the vortex filaments as the disc surfaces
oscillate. Under conditions in which an odd number
of half-waves fits between neighboring discs, the r e -
sultant resonance can lead to infinite peaks in p'/ps-
Partial slippage of the vortices, however, which takes
place even in the case of a rough surface, reduces the
resonance values of p'/ps to zero (there exists here

a fundamental analogy with the theory of anomalous
dispersion of light).

As shown by Hall, when 2u)0 < ft the principal role
is played by one of the waves generated by the oscilla-
tions of the discs in the superfluid component and in
the vortices permeating it (see Sees. 4.3 and 4.8).
This is the wave whose wave number is given by

Q-2(o0 (2.2)

The quantity us in this formula (vs = r]s/ps = e / p s F )
is one of the principal parameters of the hydrodynam-
ics of rotating helium (see Chapter 3). It follows from
formula (2.2) that the aforementioned resonances are
determined by the condition

- 2eon / = (2л - 1) -~ 1ЛГ (ra = l, 2, . . . ) , (2.3)

which enabled Hall to determine, using the data given
in Fig. 3, the numerical value of the parameter vs

= (8.5 ± 1.5) x 10"4 cmVsec.
Thus, Hall's main premises were essentially in

complete agreement with those ideas regarding the
elastic properties of the Onsager-Feynman vortex
system which were described in the beginning of this
chapter, in Section 2.2, and which served as the basis
of the experiment by Andronikashvili and Tsakadze.
However, without making direct use of the theory which
he himself developed, Hall, placing primary emphasis
on the concept of an effective density for the superfluid
component participating in the oscillations, represented
the reduction in the period (Тш < To) as the appear-
ance of negative values of p', associated in his opinion
with the ability of the superfluid component to move in
phase opposition with the motion of the stack.

Without wishing to belittle the significance of Hall's
work,18 which was one of the first and most fundamental
investigations of oscillatory phenomena in rotating he-
lium II, we cannot ignore the shortcomings of the con-
cept of effective density. This concept not only hinders
the correct understanding of the physical nature of the
phenomena under consideration, but, as will be shown
in Chapter 4 (see Sec. 4.8), leads to further e r r o r s in
principle.

The difference between Hall's ideas and those of the
Tbilisi group, which insists that the elastic properties
of the vortices are of prime importance, was empha-
sized in the statements made by Andronikashvili in
the discussion following Hall's paper at the Fourth
АИ-Uriion Conference on Low-Temperature Physics
(Moscow, 1957). It was noted in this statement that
information on the period of the oscillation is not suf-
ficient to establish the complete hydrodynamic picture,
but that data on the damping are also necessary.

2.6. In the cryogenic laboratory of Tbilisi Univer-
sity, a systematic investigation was made of the damp-
ing of the oscillations of bodies with axial symmetry
immersed in rotating helium II.

The first subject of these investigations was a
single "heavy" disc; i.e., a disc with sufficiently large
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moments of inertia so that the changes in its frequency of
oscillation caused by interaction with the liquid were
insignificant. A disc of this description was suspended
from an elastic fiber, placed in a vessel filled with
helium П, and set in rotation together with the vessel
and a special measuring apparatus, while at the same
time it executed axial-torsional oscillations.

The results of the very first measurements of the
damping of the oscillations of the disc, carried out in
1958,20 have disclosed a most unique feature of the
dependence of the logarithmic damping decrement
upon the speed of rotation; specifically, it was demon-
strated that this dependence is characterized by a
maximum which occurs at the same speed of rotation
for various helium temperatures, and for both rough
and smooth surfaces.

Before we proceed to describe in greater detaU the
data on the damping of the oscillations of the disc in
rotating helium II, we must note that this effect was
quite unexpected from the point of view of the hydro-
dynamics of a classical liquid. Actually, Mamaladze
and Matinyan20»21 have shown that for classical viscous
liquids the dependence of the damping of the disc's os-
cillations on the speed of rotation is characterized not
by a maximum, but by a minimum at 2w0 = п, as
shown in Fig. 4, in which is plotted the formula2 0 '2 1

(2.4)

8.6
82
7.8
7A
7.0
6.6
62
5.8
5/,
5.0
iS

FIG. 4. Dependence of
the logarithmic damping
decrement of a disc oscil-
lating in water on the speed
of rotation.
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H e r e R a n d I a r e t h e r a d i u s a n d t h e m o m e n t of i n e r t i a

of t h e d i s c a n d p a n d TJ a r e t h e d e n s i t y a n d d y n a m i c

v i s c o s i t y of t h e l i q u i d . T h e l a s t f a c t o r i s a c o r r e c t i o n

for edge effects. In this factor, d denotes the thick-
ness of the disc and Л ( ± ) the penetration depth of the
two waves generated by the oscillating disc in the r o -
tating liquid:

2v
|Q ±2<u0l

(2.5)

Formula (2.4) was confirmed by the experimental
data of Mesoed and Tsakadze,2 2 obtained for a disc os-
cillating in rotating water, and also plotted in Fig. 4.

It is easy to see that the presence of a maximum in
the damping vs. speed of rotation, of the helium П curve
cannot be attributed to energy dissipation due to mutual
friction between the superfluid component, rotating in
the manner described in Sec. 1.4, and the normal com-
ponent of the helium II, which is directly entrained by
the oscillations of the disc. In reality the mutual fric-
tion, which increases with increasing number of vor-
tices, can give r i se only to a linear increase in damp-
ing with increasing speed of rotation. In addition, it
was found that the damping due to the mutual friction
cannot exceed a value at least one order of magnitude
smaller than that obtained.

Thus, it was beyond any doubt even in the first stage
of the investigation, while the subsequently established
direct connection between the observed phenomena and
the elastic properties of the vortices (see Chapter 4,
particularly Sec. 4.5) was as yet unclear, that the ve-
locity dependence of the damping observed by Androni-
kashvili and Tsakadze was uniquely characteristic of
rotating helium II and that this phenomenon deserves
detailed experimental and theoretical study.

The velocity dependence of the damping of the os-
cillations of a disc was investigated in 1959 — 1960 over
a considerably expanded range of rotational speeds;
both smooth and rough discs having various periods of
oscillation were investigated. The results of these
measurements 2 0 ' 2 3 ' 2 4 a re illustrated in Figs. 5,6,7,
and 8.

Figure 5 shows typical data obtained with a rough
disc, the surface of which was covered with sand grains
with linear dimensions on the order of 50^. As can be
seen from this figure, the experimental curve first
r ises, then reaches a maximum at 2шо/П = 0.21, and
again decreases sharply, thereafter running parallel
to the x axis. As 2шо/П approaches unity, the curve
r ises and the behavior of helium II simulates to some
extent the behavior of a classical liquid. This can be
readily verified by comparing the curve described with
Fig. 4, or with the velocity dependence of the damping
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FIG. S. Dependence of the logarithmic damping decrement of
the oscillations of a rough disc on the speed of rotation. The ex-
perimental points were obtained with a "heavy" disc at Q, = 0.581
sec"1 and a temperature of 1.78°K. The lower curve is calculated
from formula (2.4) for TJ = rjn, p = pn, and v - vn.
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FIG. 6. Dependence of the logarithmic damping decrement of a
rough "heavy" disc on the speed of rotation at different frequencies
of oscillation. The upper curve corresponds to fi = 0.361 sec"1,
the lower to п = 0.581 sec"1. 8S is the decrement for oscillations
in stationary helium (T = 1.78°K).
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FIG. 7. Dependence of the logarithmic damping decrement of a
smooth " h e a v y " disc on the speed of rotation at different frequen-
cies of oscillation. The upper curve is plotted for О = 0.368 sec" 1 ,
the lower for п = 0.551 sec"1 (T = 1.78°K).

due to the v i scous p r o p e r t i e s of the n o r m a l component
of hel ium II, calculated from formula (2.4), and shown
in Fig. 5.

F i g u r e 6 i l l u s t r a t e s the influence of an i n c r e a s e in
the p e r i o d of osci l la t ion on the velocity dependence of
the damping. At low speeds of rotat ion, the damping
i n c r e a s e s much m o r e rapidly, and t h e m a x i m u m shifts
towards s m a l l e r values of WQ in such a way that i ts
posit ion r e m a i n s unchanged if plotted in units of 2o>(/fi.
The s a m e holds for the reg ion w h e r e the secondary in-
c r e a s e in damping begins .

F i g u r e 7 shows the r e s u l t s obtained with smooth
d i s c s . They have the s a m e genera l c h a r a c t e r a s the
data shown in Fig. 6. In p a r t i c u l a r , the posi t ion of the
s ingular points in the g r a p h s along the x axis is p r e -
cisely the s a m e for both rough and smooth s u r f a c e s .
It m u s t be noted, however, that for re la t ive ly shor t
p e r i o d s of osci l lat ion ( lower curve of Fig. 7 ) , the
damping on both s ides of the m a x i m u m in rota t ing
hel ium is equal to the damping in the s ta t ionary liquid,

while the m a x i m u m is much lower than in the c a s e of
a rough sur face . An i n c r e a s e in the per iod of osc i l l a-
tions (upper curve of Fig. 7 br ings the curve obtained
for the smooth disc c l o s e r to the dependence found for
the roughened sur face, both in the r e s p e c t to the qualitativ<
features and quantitat ive c h a r a c t e r i s t i c s .

The posi t ion of the m a x i m u m was found to be a l m o s t
completely independent of the t e m p e r a t u r e , which af-
fects only i t s height. F i g u r e 8 shows how the m a x i m u m
damping i n c r e a s e s with d e c r e a s i n g t e m p e r a t u r e , r e a c h -
ing at 1.4°K a value on the o r d e r of 170% of the d a m p -
ing in s ta t ionary he l ium.
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FIG. 8. Temperature dependence of the damping of the oscil-
lations of a disc for Q = 0.581 s e c " 1 and UJ0 = 0.055 sec" 1 .

2.7. A few qualitative and quantitative remarks must
be made concerning the experimental facts reported in
the preceding section, without resorting to an analysis
of the hydrodynamic equations, which is postponed to
Chapter 4.

A comparison of the experimental curve shown in
Fig. 5 with the curve for a normal liquid, shown in the
same figure, demonstrates that the measured damping
is primarily associated with the interaction between
the disc and the rotating superfluid component of the
helium II. This is also confirmed by the fact (Fig. 8)
that the damping of the oscillations increases with in-
creasing density of the superfluid component p s .

Inasmuch as direct interaction between the solid
surface and the superfluid liquid is lacking, while the
mutual friction does not provide sufficiently strong
coupling (see Sec. 2.6), it is clear that the disc inter-
acts with the superfluid component of the helium II via
the vortices attached to its surface. From this point
of view, the difference in the amount of damping be-
tween rough and smooth discs with similar geometric
parameters becomes fully understandable (see Figs.
6 and 7). It is obvious that slippage of the vortices,
which should weaken the interaction between the disc
and the superfluid component, manifests itself more
strongly in the case of smooth surfaces. Moreover,
if the period of oscillation is relatively short (lower
curve of Fig. 7), virtually complete slippage is ob-
served in the regions on both sides of the maximum;
this slippage becomes partial as the period of the os-
cillations is increased (upper curve of Fig. 7). Indi-
cations of partial slippage of the vortices along the
rough surface become clearly evident upon compari-
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son of the initial portions of the damping curves plotted
for different periods of oscillation (Fig. 6).

Of greatest interest in the treatment of the experi-
mental data on the velocity dependence of the damping
of the disc is, naturally, the question of the physical
nature of the maximum. In this connection, one must
not ignore the fact that the maximum damping is ob-
served at an angular velocity very close to that at
which there should occur a phenomenon which can be
termed collectivization of the vortex oscillations. 2 0 ' 2 3

According to Thomson, the effective radius ROsc
of the oscillations of a single vortex filament is given
by (see references 19 and 25)

D
IlO

(2.6)

where к is the wave number of the wave propagating
along the vortex.

It must be emphasized that the effective radius
RQSQ has nothing in common with the effective radius
b, which appears in formula (1.4) for the static energy
of the vortex, and is on the order of the dimensions of
the vessel or of the distance between vortices.* Unlike
b, R o s c determines the energy of the vortex oscilla-
tion over and above the static energy e given by (1.4).
The vortex oscillation energy e o s c per unit vortex
length is

*' (2.7)

where q is the amplitude of the oscillations (see ref-
erence 25).

Using formula (2.6) for the wave which, as already
noted in Sec. 2.5, plays a particularly important role
in the phenomena that occur in oscillations of discs in
a superfluid liquid, and also using formula (2.2), we
have

' ^ ^ • ( 2 . 8 )

Let us now compare the effective radius Rose w i t n

the distance с between vortices, which, according to
(1.7), is

/ l L . (2.9)

A comparison of (2.8) and (2.9) shows that at suffi-
ciently small speeds of rotation w0, we have Rose « c -
Under these conditions, the oscillations of the vortices
can be considered independent of one another. How-
ever, at some definite speed ш0 the effective radius of
oscillation of the vortex filaments should become equal
to half the distance between vortices, and consequently

*A definite analogy exists here with the hydrodynamics of a
viscous classical liquid, where the steady motion of solid bodies
affects the distribution of velocities in the liquid right out to its
boundaries, while the influence of an oscillating body extends
only over a layer whose magnitude is determined by the penetration
depth of the viscous wave.

for co0 > SQ the oscillations of the vortices must be r e -
garded as collectivized. Proceeding from the defini-
tion of Шо and (2.8) and (2.9), we can readily obtain

714 5-V.' nh s

Substituting into (2.10) the numerical values of m and
fi, as well as the value us = 8.5 x 1O~4 cm 2/sec as
measured by Hall, we obtain 2wo/fi = 0.22, which is
actually very close to the position of the maximum in
the disc damping vs. speed of rotation curve (2co0/
П= 0.21).

From the ideas just expressed, we can imagine the
following development for the phenomena associated
with the damping of a smooth disc, for a relatively
short period of oscillation (lower curve of Fig. 8).
At small u>o, where there are few vortices, there is
almost complete slippage of the vortex filaments along
the smooth surface. An increase in the number of vor-
tices, resulting from an increase in the speed of rota-
tion, causes part of the vortices to become attached
(at least partially) to the surface irregularities which
are always present to some extent. At this point, an
interaction comes into force between the oscillating
disc and the Onsager-Feynman vortex system, which
leads to additional damping of the oscillations, increas-
ing with increasing w^. However, the collectivization
of the vortex oscillations, which occurs when ш0 = w0,
favors an increase in the slippage of the ends of the
vortex filaments along the solid surface. As a result,
the damping again diminishes and virtually complete
slippage is observed again at some distance from the
maximum. Naturally, the same phenomena are also
observed, but to a much lesser degree, in the case of
long periods of oscillations and rough surfaces.

2.8. New data, confirming the hypothesis just ad-
vanced, were obtained in 1960 by Andronikashvili and
Tsakadze2 6 from a comparison of the velocity depend-
ence of the damping and oscillation frequency of a
" l ight" disc. The disc which they employed had a suf-
ficiently low moment of inertia that its frequency was
noticeably affected by the interaction with the rotating
helium II, and possessed a rough surface. The veloc-
ity dependence of its damping, shown in Fig. 9a, is
quite analogous, as expected, to the curves obtained
for "heavy" discs, and is of no interest in itself. How-
ever, in comparing it with the curve for velocity de-
pendence of the oscillation frequency shown in Fig. 9b,
one must take into consideration the following circum-
stances.

At low rotational velocities the oscillation frequency
Я increases with increasing w0. As shown in Sec. 2.2,
this should indeed be the result of the interaction of an
oscillating body with the elastic vortex filaments per-
pendicular to its surface. Furthermore, it stands to
reason that in the case of the oscillations of a single
disc (but not of a stack of closely spaced discs) in
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an unbounded liquid* there can be no resonant effects
to produce periodic changes in the oscillation frequency.
Therefore the only result of an increase in the angular
velocity should have been a monotonic increase in the
oscillation frequency, due to the increasing number of
vortices. As can be readily seen from Fig. 9, how-
ever, the rate of increase in the frequency of oscilla-
tion falls off at approximately the same velocities w0,
at which the maximum damping is observed, and a ten-
dency to saturation soon sets in.

It is obvious that this fact confirms the assumption,
stated in Sec. 2.7, that the slippage of the vortices can
increase as шц approaches ш0. In addition, the results
obtained with a light disc are clear evidence that the
same physical factors govern the velocity dependence
of the damping of the disc's oscillations, on one hand,
and of the frequency of its oscillations, on the other.

2.9. Let us return to the elastic transverse waves
generated by the oscillations of the disc in the Onsager-
Feymnan vortex system, to which we have already r e -
ferred several t imes.

Interesting information converning these waves was
obtained in the experiments of Hall2 7 (see also refer-
ence 14) and of Andronikashvili and Tsakadze2 8 in which
a single rough disc was made to oscillate under the
free surface of rotating helium II; this surface was
made either to rise by inflow through the film or to
drop by evaporation of the liquid. Thus, in these ex-
periments the vortices whose ends were attached to
the oscillating surfaces of the disc were gradually
lengthened or shortened, while the opposite ends of the
vortices terminated in the free surface of the helium II.

It can easily be seen that the vortex filament must
be perpendicular to the free surface at the point of
emergence, since otherwise the tension in the vortex

*The experiments with a light disc, unlike the first experiments
with a heavy disc, were undertaken after a theory had been devel-
oped for oscillating phenomena in helium II (see Chapter 4, partic-
ularly Sec. 4.3). It was therefore well known that the smallness of
the penetration depth ensures the "unboundedness" of the liquid
under the conditions of the experiment under consideration.

would cause it to move until it reached this equilibrium
state.

Under such conditions, the lengthening or shorten-
ing of the vortex filaments along which the wave de-
scribed in Sec. 2.5 propagates whould be accompanied
by resonance effects similar to those observed with a
stack of discs. However, the resonance condition in
this case will be that an odd number of quarter wave-
lengths (for more details see Sec. 4.10) be contained
within the distance H from the disc to the free surface.
Therefore, we obtain instead of the resonance condi-
tion (2.3)

Vll^bo0H = (2n*-i)-%-VVB (гс=1,2, . . . )• (2.11)

These resonance phenomena were indeed observed
in the aforementioned experiments of Hall and of
Andronikashvili and Tsakadze.

In Hall's experiments2 7 the period of oscillation of
the discs was measured as a function of time, the value
of H also varying with time. The oscillatory depend-
ence of the period on the depth of immersion of the
disc observed in these experiments, and illustrated
in Figs. 10 and 11, yields the value us = 9.7 x 10~4

cmVsec.

T.sec
US

6.7

6.6*
Time

FIG. 10. Variation of the period of oscillation of a single disc
with inflow of liquid helium II through the film (<u0 = 0.140 sec~V
T = 1.3°K).

T.sec
&S

6.S г" г"
TimeFIG. 11. Variation of the period of oscillation of a single disc

with inflow of helium II through the film (<u0 = 0.140 sec"1, T

In an analogous experiment, Andronikashvili and
Tsakadze2 8 measured the damping of the oscillations.*
Their results are illustrated in Figs. 12 and 13. The
distance between two resonant points was found to be
0.065 cm. According to these data, the length of the
wave propagating along the vortex at w0 = 0.055 sec" 1

and п = 0.581 sec" 1 is 0.26 cm (see Sec. 4.3). Evalu-

*In this experiment the same disc was used whose damping is
illustrated in Fig. 5. The difference in experimental configurations
consisted of the following: in determining the dependence of the
damping on the velocity, the oscillations were carried out beneath
an "infinitely" remote vessel cover (see footnote on p. 8), while
in the experiment described here the oscillations were performed
under a free surface which approached the disc.
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ation of vs with the aid of formula (2.11) yields vs

= 8 x 10~4 cmVsec.
2.10. It is clear from the foregoing analysis that the

above-described manifestations of the elastic vortex
properties should not appear if the surface oscillating
in the helium II is parallel to the Onsager-Feynman
vortex filaments. However, the characteristic features
of the rotation of a superfluid liquid should be evident
even in this type of experiment, owing to the mutual
friction between the superfluid and the normal compo-
nent of the helium entrained by the oscillating body.

A similar investigation was also carried out in the
cryogenic laboratory of the Tbilisi University, where
Tsakadze and Chkheidze29 investigated the velocity de-
pendence of the damping of torsional-axial oscillations
of a hollow cylinder, the oscillations being superim-
posed upon rotation of the cylinder together with the
liquid.

It must be noted (see Sec. 4.11) that the damping of
the oscillations of a cylinder in a rotating classical
liquid should not depend on the velocity of rotation of
the latter. This assertion was verified and confirmed
in preliminary experiments. Thus, the velocity de-
pendence of the damping of the oscillations of the
cylinder was due in its entirety to mutual friction
between the superfluid and normal components of the
helium II.

From this point of view, the linear increase in
damping with increasing velocity of rotation (see Fig.
14) observed by Tsakadze and Chkheidze is completely
legitimate; it is the natural result of the fact that the
number of vortices increases in proportion to a>o.

FIG. 14. Dependence of
the logarithmic damping de-
crement of a cylinder onthe
velocity of rotation. 8, and
5, — damping decrements at
depths of immersion 12 and
1,, 1 = 1, - 1,. The straight
lines represent the theoret-
ical formula (see SeC. 4.11).
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3. HYDRODYNAMICS OF ROTATING HELIUM П

3.1. The hydrodynamic theory for the phenomena
considered in this survey was developed concurrently
with the experimental investigations described in the
preceding chapter. It was developed to fill the need
for a quantitative interpretation of the phenomena ob-
served in the very first experiments and, in turn,
stimulated the formulation of new experiments.
Through this combination of the efforts of theoreti-
cians and experimenters, a unique hydrodynamic the-
ory has been formulated for a rotating quantum liquid,
which we shall now proceed to describe, after first
explaining why the description of the phenomena oc-
curring in rotating helium II calls for a special hydro-
dynamic theory.

It is quite clear that the well known equations of the
"two-fluid" hydrodynamics of Landau (see, for ex-
ample, reference 4, Part I, Chapter XVI) should de-
scribe rotating helium II as well, just as the Navier-
Stokes equation describes the behavior of a classical
viscous liquid in principle, no matter what the char-
acter of its motion.

However, the characteristics of the rotation of a
superfluid liquid make it more advantageous to de-
scribe the latter using averaged values of the veloci-
ties and the curl of the velocity of the superfluid com-
ponent.* It has already been pointed out, in Sec. 1.4,
that such a description facilitates the separation of

*The averaging is over volume elements containing a suffi-
ciently large number of vortex filaments.
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t h e m a i n f e a t u r e s of t h e i n v e s t i g a t e d p h e n o m e n a f r o m

s e c o n d a r y d e t a i l s . O n t h e o t h e r h a n d , t h e f o r c e s w i t h

w h i c h t h e l i q u i d a c t s o n t h e c o r e s of t h e v o r t e x f i l a -

m e n t s t a k e o n , t h r o u g h t h e a v e r a g i n g p r o c e s s , t h e

c h a r a c t e r of v o l u m e f o r c e s a n d t h e r e f o r e e n t e r i n t o

t h e h y d r o d y n a m i c e q u a t i o n s , i n c r e a s i n g t h e i r c o m -

p l e x i t y . It i s c l e a r , h o w e v e r , t h a t s u c h c o m p l i c a t i o n

i s m u c h l e s s b u r d e n s o m e t h a n t h e n e e d f o r r e g a r d i n g

t h e s e f o r c e s a s s u r f a c e o n e s , i n t r o d u c i n g b o u n d a r y

c o n d i t i o n s o n t h e c o r e s of t h e e n t i r e a g g r e g a t e of v o r -

t e x f i l a m e n t s ; t h i s i s p r e c i s e l y w h a t w o u l d o c c u r if

w e w e r e t o e m p l o y t h e o r d i n a r y h y d r o d y n a m i c e q u a -

t i o n s f o r h e l i u m II, w h i c h d e s c r i b e i t w i t h o u t t h e a i d

of a v e r a g e d q u a n t i t i e s .

3 . 2 . It f o l l o w s f r o m t h e f o r e g o i n g t h a t t h e a d d i t i o n a l

t e r m s b y w h i c h t h e h y d r o d y n a m i c e q u a t i o n s of r o t a t i n g

h e l i u m II d i f f e r f r o m t h e o r d i n a r y e q u a t i o n s of t w o - f l u i d

h y d r o d y n a m i c s m u s t t a k e i n t o a c c o u n t t h e f e a t u r e s of

v o r t i c a l r o t a t i o n of t h e s u p e r f l u i d a l r e a d y d e s c r i b e d i n

C h a p t e r 2 . S p e c i f i c a l l y , t h e y m u s t d e s c r i b e t h e e l a s t i c

p r o p e r t i e s of t h e v o r t e x f i l a m e n t s ( o r t h e e q u i v a l e n t

e n e r g y r e l a t i o n s h i p s ) , o n t h e o n e h a n d , a n d t h e m u t u a l

f r i c t i o n b e t w e e n t h e s u p e r f l u i d a n d n o r m a l c o m p o n e n t s

of t h e h e l i u m , o n t h e o t h e r .

It i s e a s y t o s e e t h a t e a c h u n i t l e n g t h of a v o r t e x

f i l a m e n t w i t h t e n s i o n e , b e i n g c u r v e d , e x p e r i e n c e s a

r e c t i f y i n g f o r c e e q u a l t o e (a- V ) a , w h e r e a i s a u n i t

vector tangent to the vortex filament:* a = ш/ш,
w = curl v s . If we recall also that the density N of
the vortex filaments equals ш/Г [see formula (1.7)],
it is quite natural to use the following form for the
equation of motion of a rotating superfluid obtained by
Hall,19 the derivation of which we shall omit:t

££L + (VS, V)VS = V.((O, V) — + VQ. (3.1)J

Here, the symbol Ф embraces all the terms under the
gradient sign, while us is the parameter already intro-
duced in Chapter 2, equal to

E _ A b_
g 3 r 2m я 0

It is obvious that Eq. (3.1) describes the motion of
the superfluid component in the absence of a normal
component. Strictly speaking, therefore, it is valid
only at absolute zero. Under actual conditions, the
motion of the superfluid and normal components must
be considered simultaneously, since they are coupled
by a mutual friction force. The need for taking this
force into account was also noted by Hall, but in ref-

*The vector (a • V)a is directed along the normal, and its mag-
nitude is equal to the curvature of the line whose tangent unit
vector is a. Later on we shall also use the equation (p-\/)o
= - a x curl a.

tEquation (3.1) differs from the ordinary equation of motion for
an ideal liquid only by the term v s (<u-V) «в/ш. For simplicity we
shall omit throughout the average sign over the symbols v s , v n ,
and <u.

e r e n c e 19 h e s o l v e d o n l y E q . (3.1) ( t o g e t h e r w i t h t h e

c o n t i n u i t y e q u a t i o n f o r t h e s u p e r f l u i d c o m p o n e n t ) .

R e c e n t l y , i n t h e w o r k of H a l l , B e k a r e v i c h a n d

K h a l a t n i k o v , a n d M a m a l a d z e a n d M a t i n y a n , H a l l ' s

e q u a t i o n h a s b e e n i n c o r p o r a t e d , t o g e t h e r w i t h t h e e q u a -

t i o n of m o t i o n of t h e n o r m a l c o m p o n e n t a n d t h e c o n t i -

n u i t y e q u a t i o n s f o r t h e s u p e r f l u i d a n d n o r m a l c o m p o -

n e n t s , i n t o a u n i f i e d s y s t e m . w > 3 0 > 3 1 T h i s l e a d s t o t h e

f o l l o w i n g s e t of e q u a t i o n s f o r t h e h y d r o d y n a m i c s of

r o t a t i n g h e l i u m II :

dt + (v,.

dvn

, rot-^-J = У ф г F j n i (3.2')*

rn — vnAvn = Vy + F n s , (3.2")

d i v v s = d i v v r l = (3.2"')

Here, in Eq. (3.2"), the symbol Ф incorporates the
terms under the gradient sign, F s n is the mutual fric-
tion force acting on unit mass of the superfluid compo-
nent, and F n s is the same force acting on unit mass of
the normal component ( F n s = — Ps^sn/Pn)-

The expression for the force t F s n was given by
Bekarevich and Khalatnikov.31 It has the following
form:

£ . [ « B , V B - V , - V ,

(3.3)

Here aa and /3n are the coefficients of mutual friction,
related to the Hall and Vinen coefficients В and B',
the temperature dependence of which was calculated in
references 5, 14, 25, and 32:

a n = - y - # ' - P n = - y - f i - (3.4)

In addition, expression (3.3) contains as well a third
mutual-friction coefficient yn, which determines the
component of the friction force along the vortex fila-
ments.

Introducing the notation

Qn

r s n rn '> n •*-* i is n i n ' (3.5)

we write for the force F n s an expression analogous to
(3.3):

*(vs = vs-V.

*[a, b] = a x b; rot = curl; Д = V2.
tThe derivation of the expression for the force F s n in Hall 's

paper1 4 contains a computational error. See formula (51) in that
paper, where an incorrect transformation results in the inclusion
of a term with a different direction in the sum of the vectors per-
pendicular to со.
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FniI = — а Г и, v — v — v, rot — I

_ & [ £ , [ . , v . - v . + v . r o t i ] ]

(3.6)

Equations (3.2) follow from the complete system of
hydrodynamic equations for rotating helium II (derived
by Bekarevich and Khalatnikov from conservation
laws31) under the condition of constant temperature.
Consequently, the system (3.2) is quite sufficient for
the analysis of the problems discussed in the present
survey.

We note also that in writing out formulas (3.2'),
(3.3), and (3.6) we have neglected the possible depend-
ence of the parameter vs on w.*

In concluding this section we note that, owing to the
peculiarities of the vortical rotation of helium II, the
curl of the velocity of the superfluid component be-
comes one of the quantities determining the state of
the liquid, a fact also reflected in the thermodynamic
equations. In particular, the energy E per unit vol-
ume of helium П, in the rotating reference frame in
which the superfluid component is, on the average, at
rest, obeys the thermodynamic identity31

n-vs, dp) + r\s (3.7)t

where S and p are the entropy and momentum per
unit volume, ц is the chemical potential per unit mass,
and p is the total density of the helium П.

Since the vortex energy per unit volume is Ne
= ше/Г [see formulas (1.4), (1.7), and (1.9)], we have

BE (3.8)

from which it follows that the parameter vs (which
equals e / p s r ) is determined by the relation

dE (3.9)

It must be noted, finally, that to Eqs. (3.2) there
corresponds the following expression for the momen-
tum flux tensor.

siVsh + nMib - Is (3.10)

The last two terms of this formula are contributed by
the singularities of the vortical motion of the super-
fluid component; p is the pressure.

*As already noted, vs « ("ft/2m) In (b/a0). If, as is customarily
assumed,1' the effective radius b corresponds in order of magni-
tude to the distance between the vortices [see formula (2.9)], then
va depends on d>0. However, in view of the smallness of the ra-
dius a, of the vortex core, which, as established by Feynman,"
is on the order of 4 x lO""* cm, or, from Hall's experimental data,19

3 x 10"' cm, the logarithmic dependence of v s on &)0 is found to
be very weak.

t(v n - vs, dp) = (v n - vs) -dp

3.3. In solving the system (3.2) for the velocity of
the normal component, use is made of the customary
boundary conditions, which coincide under the condi-
tions considered here (T = const) with the boundary
conditions for the hydrodynamics of a classical vis-
cous liquid. However, the problem of the boundary
conditions for the superfluid component velocity r e -
quires special consideration.

The occurrence in the first equation of (3.2) of the
term vsu x curl (ш/ш), containing second-order space
derivatives of v s , requires the imposition of boundary
conditions not only on the component of v s perpendicu-
lar to the surface, but also on the tangential component.
The idea was first advanced by Hall1 9 that by establish-
ing a connection between the velocity v s of the super-
fluid component and the velocity of motion VL of the
vortex filaments, it is possible to obtain the necessary
boundary conditions from the requirement that the vor-
tices be secured to the solid surface. The relation be-
tween v s and у ^ was derived by Hall,1 9 and general-
ized to the case F s n ^ 0 by Mamaladze and Matinyan30

(see also references 14 and 31):

= [ srot £ , «,] + F (3.11)

As regards the conditions for attachment of the vor-
tices to the solid surface, these are determined by a s -
suming that the difference in the tangential components
of the vortex velocity VL and the surface velocity v a

is proportional to the tangential component of the force
eaj/w with which a vortex with tension e acts on the
solid surface:30

l - Y°)t = а
CO Jl (3.12)

(at the solid surface) where a is the slip coefficient.
The value of a = 0 corresponds to complete attach-
ment of the vortices (absolutely rough surface) while
a = « denotes complete slippage (absolutely smooth
surface). Formula (3.12) is equivalent to the analo-
gous formula used earlier by Hall.1 9 On the other hand,
in the case of small deviations from a velocity distri-
bution of the form v s = v n = VL = v f f = u>0 x r, this for-
mula is the consequence of a more general equation
obtained by Bekarevich and Khalatnikov:31

(3.13)

(at the solid surface), where Ng- is the unit vector
normal to the surface.

In the case of a free surface, as already noted in
Sec. 2.9, the vortices must be perpendicular to the
surface

[U>XNO] = 0 (3.14)

(at the free surface).
3.4. Formulas (3.11) and (3.3) can be reconciled

only by assuming that the coefficient y n of the only
term not perpendicular to w vanishes (in which case,
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naturally, y g = 0 as well). On the other hand, Eq.
(3.11) is quite necessary, since only when it is satis-
fied can Eq. (3.2') be cast in the form of a conserva-
tion law for the vortices

: - [ v L , (3.15)

Henceforth, therefore, we shall set y n = y s = 0 when
using formulas (3.3) and (3.6).

It should be noted that the expression (3.15) is a
less convenient relation than (3.11) with which to es-
tablish a connection between v s and VL-

4. THEORY OF SMALL OSCILLATIONS OF BODIES
WITH AXIAL SYMMETRY IN ROTATING HELIUM П

4.1. The system of hydrodynamic equations (3.2) has
served as the basis for developing a quantitative theory
for the phenomena that appear when solid bodies of
various shapes are caused to oscillate in rotating
helium II.

The solution of the corresponding specific problems
is greatly simplified by the fact that the system (3.2)
can be linearized, in view of the smallness of the am-
plitudes of oscillation of the solid bodies (this require-
ment was in fact satisfied in all the experimental in-
vestigations described in Chapter 2) . For this purpose,
all the velocities v s , v n , VL, and v a should be repre-
sented in the form of the sum of the fundamental " r o -
tational" terms v0 = ш0 x r and small "oscillatory
increments" to these terms:

v = [<o0, r] + u exp (iQt), (4.1')

where the quantities v and u can have as subscripts
s, n, L, or a. The functions Ф and Ф are also writ-
ten in analogous form, as sums

ф = ф 0 -f- xs exp (iQt), (4.1")

Y = 1 F 0 + xnexp(iQi). (4.1'")

Here Фо and Фо, like v0, denote the solutions of the
system (3.2) in the absence of oscillations. In substi-
tuting Eqs. (4.1) into the system (3.2) we discard terms
of order higher than first in u, obtaining as a result a
system of linear differential equations in the new vari-
ables u s , u n , Xs> ^ d Xir W e shall not write out this
rather cumbersome system, which can be readily de-
rived following the method just described.

Using the same notation, and in the same approxi-
mation, we can rewrite the conditions (3.12) or (3.13)
for attachment of the vortices in the following form:*

2<On dz
*JhL (4.2)

(at the solid surface). We take into account here the
fact that in all the cases of interest to us the solids
execute torsional-axial oscillations; therefore u ^ . = 0

and ид™ = iucpor, where <p0 is the amplitude of the os-
cillations. We also linearize Eqs. (3.11) and (3.15),
which are needed to obtain the boundary conditions for
the tangential components of the velocity v s from the
boundary conditions for v^. These reduce to the r e -
lations

2coo (4.3)

*Henceforth, we shall use cylindrical coordinates (r, cp, z)
throughout, with the z axis coinciding with the axis of rotation.

4.2. The same general procedure was followed in
solving all of the hydrodynamic problems considered
in this chapter. It is therefore appropriate to describe
the computational procedure in this introductory sec-
tion, to obviate the need for returning to it later.

First of all, the form of the derived solution to the
hydrodynamic equations was selected, as dictated by
the symmetry of the problem given and by its boundary
conditions. In particular, account was taken in every
case of the axial symmetry, as a consequence of which
all the physical parameters become independent of the
cp coordinate (this situation was also assumed in
writing down the equation given in Sec. 4.1). Then,
solving the system (3.2), we found the boundary con-
ditions for the problem under consideration.* The
values thus determined for v s and v n (as well as for
oi = curl v s ) were used to calculate the momentum
flux tensor n^k (formula 3.10), with the aid of which
the force dF acting on the surface element do- of the
oscillating body is found (see reference 4, p. 69):

dFi=Uihdak. (4.4)

It is now easy, by integrating over the surface of
the solid body, to determine the moment M of the
forces acting on the body, which always has the form
M = m<p0 exp (ifit), where <p0 is the amplitude of the
oscillations.

Finally, knowing m, we can determine the frequency
п and the logarithmic damping decrement 6 of the os-
cillations, using for this purpose the following formulas
which result from the moment equation: t

(4.5)

(4.6)

Here Щ and б0 are the vacuum values of the frequency
and the decrement.

4.3. Let us consider first the oscillations of a disc
or a stack of discs in rotating helium II. It is quite
obvious that the general solution of the hydrodynamic
equations is the same in both cases. Mamaladze and
Matinyan have shown3 0 '3 3 that the oscillations of the
disc generate in the rotating helium II a composite
wave, which propagates along the axis of rotation z
and is made up of four simple waves. [More accu-

*Beyond this point Hall's computational procedure" differs
from that described here (see Sec. 4.8).

tHere and below the damping of the oscillations is always
considered to be weak: S « 1.
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rately, the r and cp components of each of the quanti-
ties u s , un , and UL are represented in the form of a
product r w ( z ) , where w ( z ) is the sum of four expo-

nentials.] The wave numbers of these waves are given
by the following formulas* (see reference 33) [all the
Im (k) are positive ]:

1.2

1.2 { ^ / + * £ " + ,«->( 1 _ ^ - * £ ' ) + ,

-)s

W e u s e h e r e t h e f o l l o w i n g n o t a t i o n :

a ± 2(oo

— "I ^ >
• Q ± 2(oo

( 4 . 8 )

( 4 . 9 )

T h u s , t h e q u a n t i t i e s q r e p r e s e n t i n ( 4 . 7 ) t h e i n -

f l u e n c e o f t h e m u t u a l f r i c t i o n o n t h e c h a r a c t e r o f t h e

wave motion propagating under these conditions in ro -
tating helium П. Setting q = 0, we readily see that
the wave numbers k t and k3 are related only to the
properties of the superfluid, while k2 and k4 are a s -
sociated with those of the normal component:

lr —
" - 1 , 8 —

"•2, 4

( f o r ( 4 . 1 0 )

Using the s a m e approximation, q = 0, the velocity
dis t r ibut ion of the superfluid component and the v e l o c -
ity v-^ contain only the two exponentials with wave
n u m b e r s k s y , while the velocity d is t r ibut ion of the
n o r m a l component contains two exponentials with wave
n u m b e r s k£Jp). This is na tu ra l , s ince the k s y a r e
the wave n u m b e r s cha rac t e r i z ing the osci l la t ion of
d i s c s in a rota t ing superfluid liquid in the absence of
the no rma l component,1 9 while the k ^ play an ana lo -
gous r o l e for c l a s s i ca l v i scous l iquids . 2 1

With r e s p e c t to Eqs . (4.10), if the c o r r e c t i o n s for
mutual fr ict ion a r e insignificant (see below), k t and
k3 can be regarded as wave numbers associated fun-
damentally with the motion of the superfluid compo-
nent, even for q * 0, while k2 and к± can be associ-
ated with motion of the normal component of the heli-
um II. The simultaneous presence of all four wave
numbers in the distributions of the velocities v s , VL,
and v n is due only to mutual friction.

The wave numbers k£jj* describe ordinary viscous
waves, characterized by finite wavelengths, penetra-
tion depths, and propagation velocities.* In this r e -
spect, it is well known that the penetration depths for
viscous waves, under the experimental conditions de-
scribed in Chapter 2, are very small as compared with
dimensions on the order of one centimeter.

*We recall that the complex wave к = a + i t ( T > 0) determines
the (phase) velocity of propagation of the wave —fi/ст, the wave-
length L = 2v/\o\, and the penetration depth Л = 1/т.

V s j ,<-) 2 Л „ ( - ) l ' i L I - U - ) / л i v s

2̂ Г0'
спо J " ^ J + 4 9г (V

1 + 2SO

(4.7)

The waves d e s c r i b e d by the wave n u m b e r s k W a r e
quite different in n a t u r e [ s e e (4.8)]. The number k ^
is p u r e imaginary . It t h e r e f o r e d e s c r i b e s a wave with
a finite penet ra t ion depth, c o m p a r a b l e in o r d e r of m a g -
nitude with the penet ra t ion depth of v i scous waves ( the
quantity vs does not differ v e r y great ly from the v i s -
cosi ty of t h e n o r m a l component vn). However, the
propagat ion velocity and wavelength of th i s wave a r e
infinitely large. The number k^' is of similar char-
acter when О < 2a)0 (rapid rotation). In the opposite
case of slow rotation (В > 2w0) the number k ^ is
purely real. Then, with the velocity and wavelength
finite, the penetration depth is infinitely large.

Analysis of Eqs. (4.7), as well as analysis of the
calculations made by Kiknadze and Tkemaladze on the
basis of these formulas using the " U r a l " computer,
shows that allowance for mutual friction (as repre-
sented by the q's) does not significantly alter the
character of the wave numbers.t Formulas (4.10) can
be assumed to hold true, to a more or less rough ap-
proximation, everywhere except in the region co0

RS П/2, where, for example, the quantities k3 and k4

are determined completely by the mutual friction force
(since in this region kg]} » k$ и 0).

However, no matter how small the effect of includ-
ing the q's in the computation of the wave numbers
may be, the influence of the mutual friction is funda-
mental, in that it reduces the infinite quantities LgV
and л . ^ to the finite values L4 and \ 3 . Specifically,
to the first approximation in the mutual coefficient /3n,
the penetration depth \3 is determined by the equation

(Pn<0.2(o0<Q). (4.11)

Under the conditions prevailing in the experiments de-
scribed in Chapter 2, this formula leads to values
which are sufficiently small so that a single disc oscil-
lating in a vessel with dimensions on the order of one

*These formulas are a generalization of expressions previously
obtained by the same authors30 for the case in which F s n contains
terms in curl (ui/a>) (see Sec. 3.2).

tin particular/for О = 0.581 sec"1 and eu, = 0.055 sec"1, the
wavelength L, is very close at various temperatures to the quan-
tity L | j 5 = 2щ/п1/-^п —2й)„ and to the experimental value Lj=0.26
cm, given in Chapter 2.
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centimeter may be regarded as immersed in an " u n -
bounded" liquid. At the same time, however, the value
of Л3 considerably exceeds the penetration depths of
all of the other waves. This is responsible for the
special role, already noted in Chapter 2, which the
wave represented by the wave number k3 ( ss k$)
plays in the explanation of the resonance effects ob-
served in the presence of closely-spaced solid sur-
faces (as in a stack of discs) or in the displacement
of the free surface of the rotating helium II when this
lies a short distance above the disc.

Moreover, the relatively large value of \s implies
that at a certain distance from the oscillating surface
of the disc the waves corresponding to the wave num-
ber k3 begin to predominate not only in th'e motion of
the superfluid and the vortex filaments, but also in the
motion of the normal component.

We thus arrive at the following description of the
wave field generated by a disc oscillating in rotating
helium П. In a thin layer near the wall, the motions
of the superfluid and normal components of the helium
are different. While waves with wave numbers k l j 3 ,
approximately equal to k s^\ propagate in the super-
fluid and along the vortex filaments, waves with wave
number k2 j 4, nearly equal to k ^ \ are observed in the
normal component. However, outside of the layer ad-
jacent to the wall, the superfluid, the vortices, and the
normal component move in a perfectly similar manner,
in accordance with the character of the wave with wave
number k3, which penetrates farthest along the vortex
filaments. As a result, it becomes possible to speak
of the penetration depth \ 3 as being the penetration
depth of the wave in helium II as such, and not in one
or another of its components. Such a description be-
comes all the more reasonable, when, as the number
of vortices increases, the viscous penetration depth
(2vn/u)V2 reaches half the distance between the vor-
tices, 0.5 (тгК/тшо)1/2, for in this case there partici-
pate in the oscillations, even at some distance from
the disc, not only the thin " s l e e v e s " of the normal
component surrounding the vortex filaments, but the
entire normal fluid as a whole (within the confines of
the layer bounded by the penetration depth A.3).

4.4. Postponing consideration of the more accurate
formulas to Sec. 4.6, let us consider the problem of
the oscillations of a single disc in rotating helium П,
neglecting completely both mutual friction and slippage
of the vortices (q = 0, a = 0) . In this approximation
it is much easier to analyze the extremely cumbersome
expression for the moment M of the force acting on
the disc [see formula (4.21)]. On the other hand, the
main features of the phenomena under consideration
are quite clearly evident even in this rough approxi-
mation.

As has already been noted several times, in the ab-
sence of mutual friction the normal and superfluid com-
ponents of helium II move independently of one another.
Accordingly, the expression for the moment of the

force acting on a disc oscillating in rotating helium II
breaks up into two independent parts . As a result, the
changes in the frequency and damping of its oscilla-
tions also appear in the form of a sum of two terms,
due respectively to the action of the normal and super-
fluid components of the helium II on the disc. This is
easily seen upon examination of the following formulas:

(4.12)

(4.13)

which are valid for 2w0 < Я.* The first of these for-
mulas describes the monotonic increase in the fre-
quency of the oscillations with increasing velocity of
rotation a>o (see curve 3 of Fig. 9). The second for-
mula describes the dependence of the damping upon
the velocity of rotation. The presence of the product
w0V Я — 2a>o in this formula insures that this relation
goes through a maximum, in qualitative agreement .
with the experimental data illustrated in Figs. 5, 6, 7,
and 9, with the exception that the experimental maxi-
mum in damping is observed appreciably to the left
(шо/Я « 0.1) of the position expected from formula
(4.13) ( w o / n и 0.3).

In the region 2w0 > Я, formulas (4.12) and (4.13)
assume the form:

(4.12')

(4.13')

Formula (4.12') shows that the monotonic increase of
Я with increasing w0 must also persist for rapid r o -
tation, while the quantity 2w0 — Я appears in the second
term along with 2w0 + Я. In formula (4.13') the second
term, associated with the action of the superfluid com-
ponent, disappears completely, while the first term de-
scribes the increase of б with increasing w0 charac-
teristic of a classical viscous liquid [see formula (2.4)
and Fig. 5 ].

4.5. In expressions (4.8) for the wave numbers £Jj
and particularly in formula (4.13) for the damping, the
quantities vs and TJS appear as the kinematic and dy-
namic "viscosities of the superfluid component" (which
explains the notation used). If we recall that TJS is the
ratio of the tension in the vortex to its circulation, this
result may seem somewhat unexpected. We must there-
fore consider the mechanism of interaction between the
oscillating disc and the rotating helium II.

•The first terms of formulas (4.12) and (4.13) are identical with
(3.8), (3.9), and (3.10), derived in reference 21 for classical liq-
uids [see also formula (2.4) of the present article].
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We note first of all that in accordance with formulas
(3.10) and (4.4), the additional terms in the momentum
flux tensor due to the rotation of the superfluid compo-
nent give r ise to the following contribution to the <p-
component of the force F with which the liquid acts
on the surface of the disc:

^ Ф = Т ] 8 И Ф Й 0 . ( 4 . 1 4 )

( I t i s r e c o g n i z e d h e r e t h a t N o z = - 1 a n d t h a t , i n a n

a p p r o x i m a t i o n l i n e a r i n t h e a m p l i t u d e o f t h e o s c i l l a -

t i o n , w z / w » 1 . ) A s i n d i c a t e d i n r e f e r e n c e 3 0 , t h i s

f o r c e c a n b e i n t e r p r e t e d a s r e s u l t i n g f r o m t h e a c t i o n

o n t h e d i s c o f t h e v o r t e x f i l a m e n t s a t t a c h e d t o i t s s u r -

f a c e . A c t u a l l y , t a k i n g E q . ( 1 . 7 ) i n t o c o n s i d e r a t i o n a n d

b e a r i n g i n m i n d t h a t t h e t e n s i o n v e c t o r o f t h e v o r t e x

filament is ew/oi, we have* dF<y, = (ш/Т) (ешф /ш) da

Thus, in full agreement with the qualitative consid-
erations developed in Chapter 2, the interaction be-
tween the oscillating disc and the rotating superfluid
liquid is produced by means of vortex filaments at-
tached to the solid surface. However, even from this
point of view it is not quite clear how the generation
of elastic waves propagating along the vortex filaments
leads to dissipation of the energy of the disc. To clar-
ify this problem, Mamaladze34 undertook the following
investigation into the mechanism of interaction be-
tween the vortex and the oscillating surface.

Solution of the system (3.2), subject to the appro-
priate boundary conditions and in the approximation
q = 0, a = 0, shows that there propagate along the vor-
tex filaments two waves with opposite circular polari-
zations :

= wLr ± o e x P ( .15)

(The disc surface corresponds to z = 0).
Di this connection, the projection of the vortex ten-

sion force F = eaj/w on the surface of the disc (we
shall denote this projection by F r < p) can be repre-
sented in the form of a sum of two vectors, Fj,+A and
FjjrA, rotating in opposite directions. This can be
readily verified by recalling that ш = curl v s , and by
using the relation t

This yields

(4.16)

where

*We note that the validity of this result is not confined to the
approximation q = 0, a = 0 used in the present section.

tWe use here Eqs. (4.3) taking account of the fact that

^ = 0, uST = rwsr (z) and ищ = rws4, (z)

correspond to the boundary conditions for the problem now under
consideration.

A ' = <4 'cosQi, , „
/ф = — ai0 'sinQZ,

/ Ф = - t i 0 ' c o s Q t ,

^ (4.17)

ш (4.17) a change has been made from complex to
real notation. The quantities affi and T S ^ are the
real and imaginary parts of the complex wave numbers
r,(±).
K s o •

0 ( - > =

Tso = 0,

/ £ 2 - 2 ( 0 , ,

2co0

o~' = 0 .
_) i / 2 c o o — Q
о -•• у v *

' Q + 2co0

2 c o o >

( 4 .

>Q,

1 8 )

I t i s o b v i o u s t h a t t h e r o t a t i o n o f t h e v e c t o r s f < + )

a n d f ( - ) i s d u e t o t h e w £ ' a n d w £ ' w a v e s , r e s p e c t i v e l y .

L e t u s n o w c o m p a r e t h e s e q u e n c e o f d i r e c t i o n s o f

t h e v e c t o r s F ^ | ( i n t i m e ) w i t h t h e s e q u e n c e o f d i r e c -

t i o n s o f t h e d i s c ' s o s c i l l a t i o n s , w h i c h ( a l s o i n r e a l n o -

t a t i o n ) i s g i v e n b y t h e f o r m u l a

— c o 0 = — Q < p 0 s i n Q t
( 4 . 1 9 )

[ t h e m o t i o n o f t h e d i s c o b e y s t h e l a w c p = w o t

+ <рц exp (ifit)].
Examining Eqs. (4.17) and (4.19) we can readily see

that each of the vectors F^A, for 2w0 > п, and F ^ i ,
through each quarter-cycle, alternately accelerates
the motion of the disc (as the latter approaches the
equlibrium position) and retards it (as the disc moves
away from this position). Thus, the action of these
components of the tension force causes the vortices to
behave as a sort of addition to the elastic suspension
of the disc. This gives rise to the increase in the os-
cillation frequency represented by the second terms
in formulas (4.12) and (4.12'). It is clear that an in-
teraction of this kind cannot lead to damping of the
oscillations.

A different behavior is exhibited by the vector Fp'A
when 2a>o < Я. As shown in Fig. 15c, this vector now
constantly retards the motion of the disc, and conse-
quently gives rise to the excess damping described by
the second term in (4.13). Thus, the dissipation of the
oscillation energy of the rotating superfluid liquid is
explained by the transfer of the disc's energy to infi-
nity via the vortex filaments along which the wi"'
wave propagates (when 2w0 < fl).

It is quite clear that were the mutual friction ac-
tually to vanish completely, the damping mechanism
just described would be possible only in an unbounded
liquid. Otherwise the w^' wave, which has an infinite
penetration depth, would be reflected from the bound-
ary surface, however remote, and the returning wave
of the same amplitude would completely suppress the
retarding effect, returning the energy carried away by
the traveling wave. However, as already noted in Sec.
4.3, the presence of mutual friction makes the penetra-
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tions of the disc, provided the nearest solid surface
does not come much closer to the disc than the pene-
tration depth X3.

Thus, it is the tension of the elastically-deformed
vortex filaments, rather than the change in the effec-
tive density of the superfluid component (see Sec. 2.5
and also p. 20 which is the true cause of the damping
and change in frequency of the oscillations of discs in
a rotating superfluid liquid. This is particularly clear
in the case of a single disc oscillating in an "infinite"
liquid, for which (see p. 16 formulas (4.3) assume
the form

FIG. IS. Schematic representation of the sequence of directions
of the components of the vortex tension projected onto the surface
of the disc, F ^ and F£^ and the direction of oscillation of the
disc, a) During the first quarter cycle the disc approaches the
equilibrium position, and the force Fty accelerates its motion; in
the second quarter cycle the disc, after passing through equilib-
rium position, moves away from it, and the force Fffi begins to
retard its motion; in the third and fourth quarter cycles the force
Frm again accelerates the disc towards the equilibrium position
and retards the departure from equilibrium, b) The behavior of the
force Ffĉ  is similar, in the case of fast rotation of the liquid
(2U)0 > 0). c) In the case of slow rotation of the liquid (0 > 2<u0)
the force Ffcp constantly retards the motion of the disc.

tion depth \ 3 finite [see formula (4.11)]. This means,
in turn, that under real conditions the energy of the
disc, which is elastically transferred to the vortices,
is subsequently dissipated by the mutual friction,
which causes attenuation of the w(£' wave. Rotation
of the superfluid component of the helium II; therefore,
will always cause appreciable damping of the oscilla-

2ш и
( 4 . 2 0 )

m =
фо

Ч« - ^ yz=a + Л» dz A = 0 j - 2

where

= - Q [ {k\

and

-> = - Q [ (AJ -f k3k, + AJ) ( 1 -

I t f o l l o w s f r o m t h e s e f o r m u l a s t h a t w h e n t h e v o r t i c e s

are fully attached to the disc surface ( w ^ = Шсрц,
w L r = 0), the superfluid component near the surface
moves only radially* ( w s ^ = 0, w s r = 2шо<ро), i.e.,
perpendicular to the direction of motion of the disc,
and not in or out of phase with the disc. It should
also be noted that even if there were a direct inter-
action between the disc and the superfluid liquid, it
could not lead under these conditions to a change in
the frequency and damping of the disc.

4.6. Mamaladze and Matinyan33 have considered the
problem of the oscillations of a disc in an unbounded
liquid without imposing the limitations q = 0 and a = 0,
introduced in Sec. 4.4 and 4.5. They have shown that
the moment M of the force acting on the oscillating
disc has the formt M = m<p0 exp (ifit), where

2ю0 /с3Л'4 (

a

a

2 Wo У '

2(0„ У + "30

4 l

2 , (-) П +- i% •

i o > s + ? i " I - ; - ? I Q

(4.21)

) + aksk4 (A, + A4) ( 1 -

Examining this formula, we readily see that, as be-
fore (cf. Sec. 4.4), it consists of two parts, describing
respectively the action on the disc by the superfluid
(terms containing rj s) and normal (terms containing
7}n ) components of the helium II. The mutual friction,
however, gives r ise to the inclusion in each of these
parts of quantities associated with the effects of the
Other component.

It must also be noted that in the case of full slippage

of the vortex filaments, when a = °°, the terms propor-
tional to ?7S vanish. This is in full accordance with the
mechanism described in Sec. 4.5 for the interaction
between the vortices and the oscillating disc. In this

*The radial motion of the superfluid for axial displacements of
& е v o r t i c e s i s a c o n s e q u e n c e o f t h e M a g n u s e f f e c t

t T h i s f o r m u l a w a s o b t a i n e d b y t h e a u t h o r s o f reference 30 for
the case in which terms in curl (<a/<u) are introduced into F s n

(see Sec. 3.2).
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case as well, however, the superfluid exerts an appre-
ciable influence on the oscillations of the disc, because
of the presence of mutual friction (see Sec. 4.7).

4.7. Formula (4.21) is too cumbersome to be use-
able without the aid of computer techniques. Figure 16
shows the preliminary results of a calculation of the
velocity dependence of the damping of the disc, cur-
rently being carried out by Kiknadze and Tkemaladze
with the " U r a l " computer, using formulas (4.5), (4.6),

1.80 30 40 60 80 100 120 HO ISO ISO 200 220 240 260

FIG. 16. Velocity dependence of the damping of the disc oscil-
lations (Л = S-fio по/п, Й = 0.581 sec"1)- 1 - Smoothed curve
drawn through the experimental data of Fig. 5; 2 — theoretical
curve based on formulas (4.6) and (4.21) for a = 0 (absolutely
rough disc), v s = 8.5 x 10~* cmVsec, and for values of the mutual
friction coefficients corresponding to T = 1.78°K (see reference
32); 3 — theoretical curve for a = ~ (absolutely smooth disk).

and (4.21) for va lues of the p a r a m e t e r s corresponding
to the exper imenta l conditions i l l u s t r a t e d in Fig. 5.
The sl ight r i s e of the e x p e r i m e n t a l d a t a above the
t h e o r e t i c a l curve, 2 ( a = 0 ) , observed for w0 = 0.04
— 0.06 s e c " 1 , apparent ly m e a n s that the value vs

= 8.5 x 10~4 c m 2 / s e c , used in the calculat ions was not
sufficiently l a r g e .

It i s c h a r a c t e r i s t i c that the curve 3 (a = °°) differs
r a t h e r substantial ly from the lower curve of Fig. 5.
This i l l u s t r a t e s the effect of the p r e s e n c e of the
O n s a g e r - F e y n m a n vor tex f i laments on the o s c i l l a -
t ions of the disc, even in the complete absence of any
d i r e c t connection between the disc and the v o r t i c e s
sl ipping along i t s s u r f a c e .

It can a l so be seen that curve 2 does not differ
great ly from the corresponding curve obtained in ref-
e r e n c e 30. This m e a n s that the t e r m s containing
curl (ш/ш) in the expression for F s n exert a much
smaller influence on the form of the velocity depend-
ence of the damping of the disc than on the expression
for the penetration depth X3 given in Sec. 4.3 (where
these terms played the decisive role at small values
of w 0).

Outside the interval w0 = 0.04 — 0.06 sec" 1 , the ex-
perimental data lie between the two theoretical curves
corresponding to rigid attachment and to complete
slippage of the vortices. A set of values was there-
fore selected for the slip coefficient (again using the

" U r a l " computer), to provide complete agreement
between theory and experiment. The results of these
calculations, presented in Fig. 17, are evidently in
full agreement with the ideas advanced in Sec. 2.7.
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FIG. 17. Velocity dependence of the slippage coefficient. The

dependence was chosen such as to make formulas (4.6) and (4.21)
result in curve 1 of Fig. 16.

In the region 2w0 £ Я (not shown in Figs. 16 and
17), calculation indicates an increase in damping
with increasing w0 for all values of a. However, the
picture in this region is not quite clear as yet, espe-
cially when it comes to the behavior of the slip coef-
ficient at 2OJ0 RJ fi.

4.8. In Chapter 2, particularly in Section 2.5, we
compared the concept of the effective density of the
superfluid component with the concept of the rotating
superfluid liquid as a medium whose behavior is de-
termined by the elastic-plastic properties of the array
of Onsager-Feynman vortices permeating it.

In Sec. 4.5 the second concept was corroborated by
using the example of a single disc, in which case not
only the frequency variation, but also the excess
damping was found to be associated with the generation
of elastic waves in the vortex filaments.

The critical analysis of the concept of effective
density leads to even more characteristic results if
the oscillations of a stack of discs are used as an
example. (The arguments that follow have been ad-
vanced by Mamaladze.)

We note first that the problem of the oscillations
of a stack of discs in a rotating superfluid liquid can
be solved by the method described in Sec. 4.2. If we
use again the approximation q = 0, a = 0, then the
excess damping of the stack vanishes, and the fre-
quency of the disks is given by*

*We write here for the difference Q2-O; the sum (fi2-^) +
(02,-QJ), where the second term represents the effect of the nor-
mal component of the helium II on the oscillating body, and the
first represents the action of the superfluid component (in the ap-
proximation q = 0 these effects can be separated from each other).
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Q » - Q £ = - - ^ Q M ( a > 0 , Q, /). (4.22)

In (4.22), ftn s tands for the frequency which would
be expected were the s tack to in te rac t only with the
normal component of the helium II, I s i s the moment
of ine r t i a of the superfluid t rapped in the s tack, I the
moment of ine r t i a of the s tack itself, and the function
A (wo> Й, I) i s given by

n Q A - aZ"

where a = 2w o/fi, Z = tan (kjo Z ) / k s 0 I, and I i s
half the d i s tance between neighboring d i s c s . It m u s t
be emphas ized that (4.22) is der ived from perfect ly
g e n e r a l equat ions, and while t h e s e can be i n t e r p r e t e d
in t e r m s of the e la s t ic p r o p e r t i e s of the v o r t i c e s , they
a r e not a s soc ia ted with any specific preconceived n o -
tion of the m e c h a n i s m for the phenomena under con-
s idera t ion.

We shal l now introduce t h e concept of an effective
density for the superfluid component par t ic ipat ing in
the osc i l la t ions of the s tack. We shal l s t a r t with the
fami l ia r formula for the frequency of osci l lat ion in
t e r m s of the torque of the suspension f and the m o -
m e n t of i n e r t i a of the osci l lat ing body I:

Q» = i - . (4.24)

In a c c o r d a n c e with the n a t u r e of the effect of the v o r -
tex tens ion on the osci l la t ing body, a s es tab l i shed in
the preceding sect ion, one might d e s c r i b e the change
in the osci l lat ion frequency as due to an effective
change in the torque f a s well as the moment of in-
e r t i a I. However, in o r d e r to display the c o n t r a d i c -
tion inherent in the effective dens i ty concept, we shal l ,
following Hall, take into cons iderat ion only changes in
I. We can then w r i t e down the following s e t of equa-
t ions :

f
I

(4.25)

w h e r e Д1по is the m o m e n t of i n e r t i a of the n o r m a l
component entra ined by the osci l la t ions of the s tack
in s t a t i o n a r y hel ium II, Д1п i s the s a m e quantity in
the rota t ing c a s e , A I S i s the m o m e n t of i n e r t i a of the
superfluid component, a l so entra ined by the o s c i l l a -
t ions of the s tack a s the liquid r o t a t e s ; the symbols
J20, fin, and п have a l r e a d y been defined, while fln0

i s the osci l la t ion frequency in s ta t ionary hel ium II.
The r e l a t i v e effective density of the osci l lat ing

superfluid component is natura l ly defined by the
expres s ion

(4.26)

[ the symbol I s has been defined in connection with
formula (4.22)]. F r o m (4.25) it follows d i r e c t l y that

(4.27)

However, if we r e w r i t e Hal l ' s formula (2.1) using
the notation of the p r e s e n t sect ion, it will be seen that
Hall m e a s u r e d a somewhat different quantity [ which
we shal l denote by ( p ' / p s ) 2 ] :

(4.28)

At the s a m e t i m e , unQ *• Q.n, s ince the osci l lat ion
frequency depends on the velocity of rotat ion of the
liquid even in the c a s e of c la s s ica l l iquids .*

Thus, the de terminat ion of the effective density
(4.28) cannot b e cons idered c o r r e c t even from Hal l ' s
point of view [ the quantity (p'/ps)i r e p r e s e n t s the
r a t i o ( Д 1 8 + Д 1 п - Д 1 п 0 ) / 1 д , which has no physical
meaning ].

Of m o r e fundamental significance, however, is the
d i s c r e p a n c y between (4.28) and the r e s u l t s of Hal l ' s
t h e o r e t i c a l ca lculat ions, which lead, in the approx i-
mat ion q = 0 and a = 0, to the formula

(4.29)

On the o t h e r hand, with the aid of (4.27) and (4.22) it
can eas i ly be shown that the c o r r e c t l y defined effec-
tive density ( p ' / p s ) i is equal to

(4.30)

As r e g a r d s the Hall effective densi ty (p'/pa)z, we
readi ly obtain, by compar ing (4.27), (4.28), and (4.30)

-^2-Л (со Q Л (4.31)

Thus, al l t h r e e quanti t ies (p'/ps)i,2,3 a r e different,
and it b e c o m e s c l e a r ( a fact which m u s t be especia l ly
e m p h a s i z e d ) that the r e s u l t s of Hal l ' s m e a s u r e m e n t s
of ( p ' / p s b w e r e c o m p a r e d by him with the t h e o r e t i c a l
var ia t ion of the ent i re ly different quantity ( p ' / p s ) 3 .

Natural ly, at low t e m p e r a t u r e s (Hall c a r r i e d out
his e x p e r i m e n t s at T = 1.27° К ) we have iln и fln0

RJ По, and consequently Hal l ' s e r r o r was not n u m e r i c -
ally l a r g e . It is nonetheless important to inquire into
the r e a s o n s for the fundamental d i s c o r d a n c e just d e m -
o n s t r a t e d between the quanti t ies ( p ' / p s ) i and ( p ' / p s ) 3 .

•For example, in the case of a single disc fin is defined, ac-
cording to reference 21, by the formulas

and

^ ~

for

2eo 0-/2u) 0-Q) for

while fino is the value of О„ when <u0 = 0.
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The point is, that in the theoretical part of his paper 1 9

Hall followed a procedure which differs from that which
we have described in Section 4.2. Solving Eq. (3.1), he
determined, not the moment of the force (which would
permit direct calculation of the oscillation frequency),
but rather the angular momentum of the superfluid os-
cillating between two neighboring discs. This angular

i
momentum is equal to 27rR2ps J Vscp dz. He then de-

o
fined the quantity ( p ' / p s b as the ratio of this angular
momentum to the angular momentum of the liquid cor-
responding to its complete entrainment by the oscillat-
ing surface (i.e., to the value 2ir~B?psva(pl):

(4.32)

It might appear that this equality is in full agree-
ment with our definition of p'/ps as equal to A I S / I S .
One must not forget, however, that the superfluid does
not by any means take part in the oscillations as a
solid body. Consequently, the effective moments of
inertia, as determined by various means, need not
necessarily agree. This is why the effective density
( p ' / p s ) i . determined from the frequency of the oscil-
lations, does not agree with the effective density
( p ' / p s b . determined from the angular momentum.
In other words, the inconsistency in Hall's concept
results from the excessively literal use of the ex-
pression "entrainment of the superfluid liquid by the
oscillations of the stack of d i scs . "*

4.9. As has already been noted, one can at low tem-

and

peratures, assume, approximately, that

— ) .
Ps/3

[ ^- \ » ( — ]
\ P s / l \Ps/2

Under these same temperature conditions

(T = 1.27°К), if they are actually realized, one can
also regard the approximation q = 0 as satisfactory
at rotational velocities WQ well away from Я/2. There-
fore the agreement noted by Hall between the theory he
developed and his own experimental data (see Figs. 2
and 3) is not fortuitous. To obtain complete quantita-
tive agreement between theory and experiment it would
only be necessary to forego the approximation a = 0.
Generalizing formula (4.23) to the case of partial slip-
page of the vortex filaments along the surfaces of the
discs, Hall obtained for the function A(a>0, Я, I) the
following limiting expressions

1 tg (_V)_ 1 th (ktl) "I
M

for 2co0 < Q (4.33)t

*In the case of oscillations of a single disc in an unbounded
liquid (p'/ps)j = 0> i-e-> "entrainment" of the superfluid compo-
nent does not occur [see also formula (4.20) in Section 4.5 and the
subsequent discussion]. However, even in this case the effective
density of the superfluid, as determined from the oscillation fre-
quency, differs from zero.

t'tg = tan; th = tanh.

th
ktl

for 2ш0 > Q. (4.34)

Here k t = {Sl/vs)V2, k2 = (2wo/us)
i/2, yx = ak t /B and

y2 = ak2/fl. (Inasmuch as the inequality 2w0 « Я was
not particularly rigorously satisfied under the condi-
tions prevailing in his experiments, Hall replaced the
quantity k t in (4.33) by the wave number kgj
= [(П — 2шо)/рд]^2- Hall estimated the empirical
values of the coefficients y± and y2 to be 7i = y2 = 0.5,
which corresponds in order of magnitude to the values
of a given in Fig. 17 (a/V"fi~~ 10"2 cm-sec"^ 2 ) .

Despite his experimental confirmation of formula
(4.33) and (4.34) it must be pointed out that Hall per-
formed the limiting transitions to the extreme cases
2w0 « Я and 2а>о » Я with sufficient precision. With-
out stopping to consider the er ror introduced in the
former case,* which did not lead to disagreement with
the experimental data, let us consider the case 2w0

» Я. Inasmuch as slippage of the vortices does not
play an important role at high angular velocities (see
reference 19), one may again use the approximation
q = 0, a = 0. In this approximation Hall obtained

A (o)0, Q, 0 = 1 - J M for 2(oo > Q. (4.35)

However, as follows directly from (4.23), it would be
more correct to use the following expression, derived
by Mamaladze:

Л(со0, Q, l) =
j

(

th(/c.
kj.
1

2(O0 \
2 1

а )
th (k%l)

k,l

for 2co0 » Q. (4.35)

It i s c l e a r f r o m t h i s equat ion that the quant i ty

A (ш0, Я, I) cannot in any sense be considered a func-
tion of the product wj'21 alone (see Fig. 2). As WQ
—• °° this function tends to unity, as was noted by Hall;
for Z — oo, however, its limiting value is not unity, but
zero. Therefore, upon increasing the spacing of the
stack for large but fixed velocity of rotation, one
should find that the curve shown in Fig. 2 passes
through a maximum and tends asymptotically to the
x axis.

4.10. We shall now consider the oscillations of a
single disc near the free surface of a rotating super-
fluid liquid. This phenomenon has already been de-
scribed qualitatively in Sec. 2.9, where it was shown
to lead to the appearance of resonance effects.

Let us again use the approximation q = 0, a = 0.
We already know that this approximation does not
provide a complete description of the phenomena con-
sidered here. In particular, it leads to zero damping

*It is connected with the fact that the quantities a Z H in for-
mula (4.23) are not negligibly small when t t « l , but ^
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(from q = 0) and to infinite peaks in the velocity de-
pendence of the oscillation frequency (from a = 0).
It is fully adequate, however, for the treatment of the
experimental data obtained in the present case, which
were used only to determine the wavelength.

In order to provide a theoretical background for
the results of these experiments, it is therefore suf-
ficient to determine the resonance conditions.

Using the method described in Sec. 4.2, Mamaladze
obtained for the moment M s of the force with which
the superfluid component acts on the surface of the
oscillating disc an expression of the form

Ms = т8ц>0 ехр (iQt),

o' tg (k'sV 'fo' tg (ktf (4.36)

Here H is the distance from the surface of the disc to
the free surface, and is assumed to be much greater
than the depth of the meniscus or the amplitude of the
oscillations of the free surface. It follows from (4.36)
that the resonance condition will be kgj)' H = (2n — 1) тг/2
for which H is an integral multiple of one-quarter of
the wavelength L^' = 2ir[vs/(u-2шо)]^г [see formula
(2.11)].

It is quite clear that when the distance H is a mul-
tiple of one-quarter of the wavelength L3, conditions
for resonance are established even for q ^ 0 (it is
understood that H is much greater than the penetra-
tion depths A.j, Л2>

 a n c ^ -̂4> but * s commensurate with
\ 3; see Sec. 4.3). Therefore, in order to replace con-
dition (2.11) by a more exact equation, it is sufficient
to replace L^' by the wavelength L3 = 27r/Re (k 3 ) :

( n = l , 2,...). (4.37)

This formula is a generalization of (2.11) for the case
in which mutual friction is taken into account.

4.11. Mamaladze and Matinyan35 have also solved
the problem of the torsional oscillations of a cylinder
in rotating helium II. They have shown that the oscil-
lating surface generates in the normal component of
the helium П a cylindrical wave, the wave number of
which is determined by the following equation
( u n ( k ) > 0):

1-г",-2<в„ • ) ] • (4.38)

Owing to t h e mutual fr ict ion, s i m i l a r waves a r e
a l so propagated in the superfluid component of the
helium II, and a l so in the O n s a g e r - F e y n m a n vor tex
s y s t e m . These waves, unlike those in the c a s e of an
osci l lat ing disk, a r e not coupled d i r e c t l y to the o s c i l -
lat ing sur face .

The penetration depth Л. of this wave (which prop-
agates radially) is close to the penetration depth of
ordinary viscous waves:

For the velocity dependence of the damping of the
oscillations of a hollow, thin-walled ( R ^ » Rod)>
"heavy" ( О « й 0 ) cylinder, the following formula
was obtained:

( 4 - 4 0 )h-W

where 62 and 6 t are the logarithmic damping decre-
ments for immersion of the cylinder to depths l2 and
lt respectively.* (Subtraction of 6j from 62 auto-
matically excludes the edge effects).

Formula (4.40) shows that the linear increase in
damping with increasing velocity of rotation is due
entirely to the presence of mutual friction. It follows
from this, in particular, that for classical liquids the
damping of the torsional oscillations of the cylinder
should not depend on the velocity of rotation of the
liquid.

The conclusions of this section have all been fully
corroborated by the experimental data reported by
Tsakadze and Chkheidze.29

* * *

Concluding our review of the experimental and
theoretical efforts devoted to the investigation of the
oscillations of solids in rotating helium II, we can
state with assurance that the whole range of observed
phenomena (and their physical interpretation) is ac-
commodated by the Onsager-Feynman scheme. It can
be regarded as established that the sharp distinction
between the laws governing the oscillations of solids
in rotating helium II and the corresponding laws for
classical liquids is due entirely to the quantization
and localization of the circulation characteristic of
the rotation of a superfluid liquid.

It must be noted that the investigation of the vor-
tical motion of a superfluid liquid cannot be regarded
as complete. This pertains in particular to such
problems as the exact quantum-mechanical description
of the structure of the vortex filament, the mechanism
of vortex formation, the behavior of the vortex near a
solid surface, etc. A solution of these problems may
modify somewhat the results presented in Chapters 3
and 4.

Nevertheless, it does not appear that the general
results obtained in the investigations described here
will change significantly. We can consider it as estab-
lished that rotating helium П is a medium whose unique
characteristics are a consequence of the elastic-plastic
properties of a system of Onsager-Feynman vortex fila-
ments lying parallel to the axis of rotation. In particu-
lar, the presence of such a system explains the unique
spatial anisotropy in the viscous properties of rotating
helium, which manifests itself in the differing nature

(4.39)

*Formula (4.40) is written out in an approximate form which is
linear in the products of 2&)0/fi with the mutual friction coeffi-
cients and in the ratio \,/R.
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of the velocity dependences found for the damping of
the oscillations of bodies whose surfaces are, respec-
tively, perpendicular and parallel to the vortex fila-
ments .

Another characteristic feature of rotating helium is
the existence of a penetration depth in helium II, but
not in its normal component. This makes it possible
to introduce the concept of an effective viscosity for
helium П which describes this liquid in the case of
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