СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ ЧАСТИЦ ПРИ БОЛЬШИХ ЭНЕРГИЯХ

В. С. Барашенков

І. ВВЕДЕНИЕ

В последние годы получено большое количество новых дапных о сечениях взаимодействия частиц при больших энергиях. В основном эти данные получены на трех больших ускорителях: космотроне в Брукхэвене, бэватроне в Беркли и синхрофазотроне в Дубне. Максимальная энергия протонов, ускоренных в этих машинах, $E_{\rm max}$ составляет соответственно 3; 6,2 и 10 Бэв, а максимальная энергия π -мезонов, генерпруемых при столкновениях этих протонов с ядрами мишени, — приблизительно 2,5; 5,5 и 9 Бэв. Большие плотности пучков ускоренных частиц позволяют провести прецизионные измерения.

Лишь незначительная часть данных получена в опытах с космическими лучами. Трудности измерений обусловливают в этом случае сравнительно малую точность полученных результатов. Измеренные величины, как правило, усреднены по большим интервалам энергии. Однако эта малая часть данных имеет важнейшее значение, так как дает нам информацию о взаимодействии частиц при гигантских энергиях в сотни и тысячи Бэв. Если синхрофазотроп в Дубне дает возможность пропикнуть в глубь вещества вплоть до расстояний $\lambda \sim 1/L_{\text{max}}^{1/2} \approx 10^{-14}$ см, то опыты с космическими лучами, по-видимому, еще долго будут единственным средством изучения пространстгенных объектов порядка $\lambda \sim 10^{-15} \div 10^{-18}$ см.

Экспериментальные данные о сечениях взаимодействия протонов и нейтронов с протопами при энергиях $E = (0,01 \div 6,2)$ Бэв собраны в обзоре Хесса¹. Однако сейчас имеется много повых данных, особенно в области больших энергий $E \ge 1$ Бэв, позволяющих сделать некоторые важные теоретические заключения. Экспериментальные данные о сечениях взаимодейстия частиц других сортов разбросаны по многим оригинальным статьям, что сильно затрудняет использование этих данных.

Далее будут подробно рассмотрены экспериментальные данные о сечениях взаимодействия частиц различных сортов при энергиях $E \ge 0.8 \ Бзв$ п их теоретическая интерпретация. Мы ограничимся рассмотрением лишь области больших энергий; явления в этой области имеют ряд специфических особенностей, которые, однако, являются общими для взаимодействия частиц различных сортов.

И. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

В оригинальных работах используются различные определения сечений взаимодействия. Поэтому, прежде чем перейти к рассмотрению экспериментальных данных, условимся, что мы будем понимать под различными видами сечений взаимодействия, и введем необходимые обозначения. Полное сечение взаимодействия $\sigma_{полн}$ складывается из сечения упругого рассеяния σ_v и сечения неупругих процессов σ_{hv} :

$$\sigma_{\text{полн}} = \sigma_{y} + \sigma_{y}.$$

В свою очередь,

$$\sigma_{\rm y} = \sigma_{\rm g} + \sigma_{\rm n} + \sigma_{\rm y, \ Hy} + \sigma_{\rm gm}.$$

Здесь $\sigma_{\rm q}$ — сечение дифракционного рассеяния. Эта часть упругого рассеяния целиком определяется неупругими реакциями и обращается в нуль при $\sigma_{\rm Hy} \rightarrow 0$.

 $\sigma_{\rm m}$ — сечение упругого «потенциального рассеяния». Примером такого рассеяния может служить кулоновское рассеяние двух заряженных частиц или рассеяние нуклонов, обменявшихся мезоном. Существенно, что взаимодействующие частицы в каждый момент времени при этом сохраняют свою индивидуальность.

Первичные частицы могут также в процессе взаимодействия на какой-то момент времени потерять свою индивидуальность, образовав единую «компаунд-частицу», которая в частном случае может снова распасться на эти же частицы. Такое упругое рассеяние мы будем характеризовать сечением $\sigma_{y, Hy}$, где индекс «ну» отмечает «неупругое происхождение» этого рассеяния. В некоторых случаях (например, при расчете вероятностей распада компаунд-частицы) оказывается необходимым включить $\sigma_{y, Hy}$ в сечение неупругих реакций σ_{Hy} . Однако в последующем всегда будет ясно, что понимается под сечениями σ_y и σ_{Hy} .

σ_{д. п} – сечение рассеяния, обусловленного интерференцией между дифракционным и когерентной ему частью потенциального рассеяния. Ясно, что упругое рассеяние через компаунд-частицу некогерентно с дифракционным рассеянием.

Сечение неупругого взаимодействия $\sigma_{\rm Hy}$ складывается из сечений всех возможных неупругих каналов реакции:

$$\sigma_{\rm Hy} = \sum_{j} \sigma_{\rm Hy}^{(j)}.$$

Частным случаем неупругого рассеяния является «упругое рассеяние с перезарядкой», характеризуемое сечением σ_{n3} , и «упругое рассеяние с переворотом спинов» с сечением σ_s . Однако в области больших энергий все измеренные до сих пор сечения являются усредненными по спинам взаимодействующих частиц; в этом случае σ_s включается в экспериментальное значение сечения упругого рассеяния σ_y .

Перейдем теперь к рассмотрению экспериментальных данных.

2.1 Взаимодействие нуклонов

В таблицах I — III приведены экспериментальные данные о сечениях взаимодействия нуклонов, взятые из работ ¹⁻³⁰ *).

Непосредственными измерениями взаимодействий нейтронов с протонами получены сечения (*pn*)-взаимодействий лишь при энергиях E = 1,4 и 4,5 Бэв. Все другие значения сечений получены разностным методом из опытов с дейтерием и водородом. При этом учитывалось, что поглощение или рассеяние налетающего протона нуклоном дейтрона

^{*)} Опшбки в полном сечении δσ_{полн}, если они не указаны авторами, считались равными сумме абсолютных опшбок сечений σ_{ну} и σ_у. Аналогично вычислялись опшбки δσ_{ну} и δσ_у (если были известны экспериментальные опшбки двух других сечений). Вычисленные таким образом опшбки отмечены в таблицах звездочкой.

Таблица]

(рр)-взаимодействие

Кинетическая энергия в лабо- раторнои систе- ме координат <i>Е, Бэе</i>	Метод, которым было определено сечение	σ _у , мбарн	σ _{ну} , мбарн	о _{полн} , мбарт
0,8 0,8	счетчики ¹ ,2 счетчики ³	21,5+2,0	25,5+2,8	47 ± 2 $47,5\pm2,2$
0,81 0,83	диффуз. камера ⁴ счетчики ⁵	²⁴ ± ²	24 ± 2	48 ± 2 47,8+1,6
0,85	»		-	47,6+1,7
0,91 0,92	Счетчики ⁶ Счетчики ³			$\begin{array}{c c} -1,2 \\ 46,1+0,5 \\ 47,7+3,0 \end{array}$
0,925 0,93 0,94 0,97 1,0	эмульспя ⁷ пузырьк. камера ⁸ счетчики ⁹ диффуз. камера ¹⁰ счетчики ¹ , ²	$17 \pm 3 \\ 25,9\pm 1,9 \\ 26\pm 3 \\ 25,8\pm 0,9 \\ 19,2\pm 3 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	$\begin{array}{r} 33+3\\ 20,8\pm1,5\\ 23\pm3\\ 20,9\pm1,3\\ 28,8\pm3,2 \end{array}$	$\begin{array}{c c} & -1.1 \\ & 50\pm6*) \\ & 47,7\pm3,4* \\ & 49\pm5 \\ & 46,7\pm0,5* \\ & 48,0+3,5 \end{array}$
1,03	счетчики ³		_	46,5+2,0
1,075	счетчики 5		_	48,3+1,6
1,17	счетчики ³			46,3+3,2
1,275	счетчики ⁵			47,5+1,6
1,295	»		-	49,4+1,6
1,3	счетчики ^з	-	-	45,0+3,0
1,490	счетчики ⁵		-	47,2+2,6
1,5 1,7	диффуз. камера ¹¹ счетчики ³	$\frac{20\pm 2}{-}$	27 <u>±</u> 3	$\begin{array}{c c} -1,2 \\ 47 \pm 5^{*} \\ 45,6+1,9 \\ 0.7 \end{array}$
2,0	счетчики ⁵		-	41,4+3,2
2,17	счетчики ³		_	45,1+0,9
2,24 2,6	счетчики ^{1,12} счетчики ⁵	1;,9+2,5		41,6+4
2,75 2,75	диффуз. камера ¹³ счетчики ³	15 <u>+</u> 2 	26 <u>+</u> 3	$\begin{array}{c c} -1,6 \\ 41\pm5*) \\ 43,3\pm0,6 \end{array}$
3,0 3,17 4,4	эмульсия ¹⁴ счетчики ³ счетчики ¹ , ¹²	$8,9\pm1,0$ $9,0\pm1,4$	35,6	$\begin{array}{ c c c } & -0,5 \\ & 44,5 \\ & 42,4 \pm 0,6 \\ & - \end{array}$
5,3 5,7 6,45 6,2	диффуз. камера 1,15 эмульсия ¹⁶ счетчики 1,12 эмульсия ¹⁷	$5,6\pm 2,3$ 13 ± 6 $6,9\pm 1,0$ $8,8\pm 2$	$26,8\pm5,5$	$32,4\pm 6$
6,2 6,2 8,5	Эмульсия ¹⁸ не указано ¹⁹ Эмульсия ²⁰	8,6+0.8		51,4 <u>+</u> 5,1
9	эмульсия ²¹	10 ±3	21	31+3

уменьшается, если этот нуклон попадает в область тени другого нуклона (эффект экранировки)⁵⁴. В области эпергий $E \approx (1 \div 3)$ Бэв соответствующие поправки увеличивают полное сечение (pn)-взаимодействия $\sigma_{полн}(pn) \equiv \sigma_{полн}(pd) - \sigma_{полн}(pp)$ приблизительно на 20%, однако песколько меняются в зависимости от того или иного конкретного выбора волновой функции дейтона. В таблице II приведены значения $\sigma(pn)$ уже с учетом поправок на экранировку.

гаолица

Кинстическая энергия в ла- бораторной системе коор- динат <i>E</i> , <i>Бло</i>	Метод, которым было определено сечение	σ _{полн} , мбарн				
$\begin{array}{c} 0,8\\ 0,91\\ 0,97\\ 1,1\\ 1,3\\ 1,4\\ 1,5\\ 2,0\\ 2,6\\ 4,5\\ \end{array}$	счетчики ⁵ счетчики ⁶ диффуз. камера ¹⁰ » счетчики ²² счетчики ⁵ » счетчики ²³	$\begin{vmatrix} 32,5\\ 39,2\pm3,1\\ 37,6\pm3,9\\ 34,4\\ 38,8\\ 42,4\pm1,8\\ 40,8\\ 40,9\\ 37,4\\ 33,6\pm1,6 \end{vmatrix}$				
*) Для энергий $E > 0.8$ Бзе известно всего липь одно, измеренное в диффузионной камере, значение $\sigma_y = 15.5 \pm 3$ и $\sigma_{\mu y} = 22 \pm 3$ мбари при E = 0.97 Бзе ¹⁰ .						

(pn)-взаимодействие *)

В таблице III приведены значения $\sigma_{полн}$ и $\sigma_{нy}$, средние для (*pp*)и (*pn*)-взаимодействий, полученные обработкой (в рамках оптической модели ядра) экспериментальных значений средних свободных пробегов протонов в фотоэмульсии и экспериментальных значений сечений взаимодействия протонов с ядрами из работ^{24, 28-30}*) (см. Приложение). Средняя энергия для трех последних интервалов вычислена с учетом энергетического спектра протонов в атмосфере. Как можно видеть, полученные таким образом сечения хорошо согласуются со значениями $\sigma_{полв}$ и $\sigma_{ну}$ из таблиц I и II.

Для наглядности основные экспериментальные данные суммированы на рис. 1. Приведенные на этом рисунке кривые можно использовать для интериоляции экспериментальных данных.

Соображения зарядовой симметрии и инвариантности по отношению к зарядовому сопряжению приводят к равенству сечений **)

$$\sigma(pp) = \sigma(nn) = \sigma(\widetilde{p}\,\widetilde{p}) = \sigma(\widetilde{n}\,\widetilde{n}),$$

$$\sigma(pn) = \sigma(\widetilde{p}\,\widetilde{n})$$

независимо от того, какое это сечение - ополя, ону или оу.

^{*)} Приведенные в таблице III ошибки соответствуют экспериментальным ошнбкам в значениях среднего пробега и сечений взаимодействия протона с ядрами.

^{**)} Понятно, что при этом мы пренебрегаем электромагнитными взаймодействиями, что заведомо несправедливо при крайних периферических столкновениях. приводящих к рассеянию на малые углы. Однако такие столкновения дают очень малый вклад в сечения σ_{полн}, σ_{ну}, σ_y.

Кинетическ в лаборатор коорд	ая энер ноп сис цинат	гия геме	Пробег в	σ		
интервал энергий Ł, Бэс	сре; энер £,	цняя огия Бэв	2 L, см *)	Hý,	- полн,	
	4,5 5,7 6,2	24 16 25	$37,6\pm 5,3$		35 ± 3 29 ± 16 -7 35 ± 13 5	
	6,2	17,26 21 27	$34,7\pm3,4$ >36,4		-6,5 >31	
>9 0,9-34 28-58	$^{-20}_{-20}_{-37}$	21,27 28 29 30		 28 ⊢4	$30\pm 0,3$ 32 ± 10 32 ± 3	
58—121 121—387	77 178	30 30		$ \begin{array}{c c} \overline{21} + 4 \\ 25 + 18 \\ - 7 \end{array} $		
	200	73	42 <u>+</u> 10		$^{22+24}_{-13}$	
 [*]) Как показали сравнительные расчеты, средние сво- бодные пробеги в фотоэмульсиях Н11КФИ-Р и 11ford G-5 ирактически не различеются (см. При дожение) 						

Таблица III (*pN*)-взаимодействие

Из приведенных экспериментальных данных видно, что с ростом энергии сечения (*pµ*)-взаимодействий стремятся к постоянным значениям

С — сечения $\sigma_{\Pi O \Pi H}(pp)$ и $\sigma_{y}(pp)$; $\Delta = \sigma_{HV}(pp)$; $\bullet = \sigma_{\Pi O \Pi H}(pn)$ и $\sigma_{y}(pn)$; *—значения $\sigma_{\Pi O \Pi H}(pN)$, вычисленные по экспериментальным сечениям взаимодействия протонов с ядрами.

 $\sigma_{\text{полн}} \approx 30 \, \text{мбарн}, \, \sigma_{\text{ну}} \approx 22 \, \text{мбарн}, \, \sigma_{\text{у}} \approx 8 \, \text{мбарн}.$ Как показывают измерения, выполненные в космических лучах, в пределах экспериментальных ошибок постоянство сечений взаимодействия нуклонов сохраняется

вплоть до энергий в несколько сотен *Бэв*. Анализ экспериментальных данных по широким атмосферным ливням указывает, что постоянство сечений, по-видимому, сохраняется до энергий $E \sim 10^9$ *Бэв*.

Из таблиц I—III и из рис. 1 видно также, что с ростом энергии становятся равными значения полных сечений (*pp*)- и (*pn*)-взаимодействий. Можно думать, что будут равными при больших энергиях и сечения $\sigma_{\rm Hy}$ и $\sigma_{\rm y}$. Измерения Бренера и Вильямса³⁰ показали, что в интервале энергий от 28 Бэв до 387 Бэв сечения неупругого взаимодействия протонов и нейтронов с ядрами Fe в пределах экспериментальных опибок (~30%) не различаются, что указывает на равенство неупругих сечений (*pp*)- и (*pn*)-взаимодействий при этих энергиях.

2.2. Взаимодействие л-мезонов с нуклонами

Экспериментальные значения сечений (πN)-взаимодействий представлены в таблицах IV — VI. Основные из этих значений суммированы на рис. 2. Значения $\sigma_{полн}$ в таблице VI вычислены по оптической теории из экспериментальных значений среднего свободного пробега π -мезонов в фотоэмульсии (см. Примечание *) на стр. 56).

Из соображений зарядовой симметрии и инвариантности по отношению к зарядовому сопряжению для сечений $\sigma_{полн}$, $\sigma_{нy}$, σ_{y} справедливы равенства:

$$\sigma (\pi^* p) = \sigma (\pi^- n) = \sigma (\pi^- \widetilde{p}) = \sigma (\pi^* \widetilde{n}),$$

$$\sigma (\pi^- p) = \sigma (\pi^* n) = \sigma (\pi^* \widetilde{p}) = \sigma (\pi^- \widetilde{n}),$$

$$\sigma (\pi^0 p) = \sigma (\pi^0 n) = \sigma (\pi^0 \widetilde{p}) = \sigma (\pi^0 \widetilde{n}),$$

$$\sigma (\pi^0 n) = \sigma (\pi^0 p) = \sigma (\pi^0 \widetilde{n}) = \sigma (\pi^0 \widetilde{p});$$

Таблица IV

(п-р)-взаимодействие

Кинетическая энергия в ла- бораторной системе коор- динат <i>E</i> , Бэе	Метод, которым было определено сечение	σ _y , мбарн	т_{п ;}, мбарн	σ _{ну,} мбарн *)	б _{ио ін} , чбарн
0.8	счетчики	16.47	7.3	24.6	41
0.8	пузырьк. камера 34	21+1	10	32.3 ± 1.5	53.3 + 2.4
0,819	счетчики ³¹				47.9 ± 1.9
0,84	»	-		-	54, 6+2, 1
6,86	счетчики 32				$40\pm1,3$
0,868	СЧЕТЧИКИ ³¹	-			$58, 6{+}2, 4$
0,89	» X X		<u> </u>		57,8+2,2
0,9	диффуз. камера 35	18+3	10+3	27,5+3	46,1+3
0,9	CUETUMKN 33			_	44,4-+2,3
0,9	UV2LIDLE FAMODA 84	19.8			40,0+1,0
0.918	пузырых. камера **	15,0			54 5 + 2 4
0.94	Счетчики ³²		_		51 ± 0.9
0,943	счетчики 31				50,4+2,6
0,95	пузырьк. камера ³⁶	19, 1+1, 6		26+2,5	45-3
0,96	диффуз. камера ³⁵	20+3	8+5	26,3+2	46, 3-2, 7
0,97	Счетчики 33	-] —	45,1+2,7
0,97	счетчики 32	-			$49,5\pm0,9$
1.0				. –	44,72,2
1 014	счетчики 31				39.6 ± 2.0
1.03	счетчики ³²				40.5+0.9
1,076	счетчики 31	-	_	_	35,9+2,0
1,08	счетчики ³³	-	<u> </u>		36, 3+2, 6
1,08	СЧЕТЧИКИ ³²	-]	37.5 ± 0.9
1,12	»				35 ± 0.9
1,10	Счетчики эт	_			$33,3\pm 2,0$
1 25	Счетчики 33				$29 2 \pm 3 7$
1.3	пузырьк. камера ³⁷	10+0,8		19	
1,35	счетчики ³³			-	$30,1\pm2,8$
1,37	диффуз. камера ^з	$10,0\pm0,8$	~	20,3 <u>+</u> 3,4**)	$30,3\pm 2,5$
1,38	Счетчики 33		7.1.4		$30,8\pm2,8$
1,4		$\frac{9 \pm 1}{10 + 2}$	$^{\prime\pm1}$	24	
1 47	» »	10 2			31 4+1 8
1.5	» »		_		30.0 ± 2.0
1,67	» »	-		_	$31,4\mp 3,9$
1,85	диффуз. камера 44	$11, 1 \pm 2, 3$		20,3+3	$31,4\pm5,3***$)
1,9	счетчики 33	-	_		$31,3\pm 1,6$
4,3	счетчики 43	-			$28,7\pm 2,6$
4,4		4 5 + 1		24 512 4	90 ± 26
4.7	не указано ⁴⁵	6+1.5	<u> </u>	22	, o
5	диффуз. камера 46	4,7-10		19,7+2 ****)	24,5+2,4****)
5,2	не указано ⁴⁷			= '	$29,1\pm 2,9$
6,8	иузырьк. камера 48	$5,5\pm0,5$			30 ± 5
14	счетчики "			-	33+4
*) Ce	чение о _{пз} включено	Β σ _{ну} .		C 91 (1	

**) σ_{ПОЛН} получено интерполяциеи данных из расо сечения σ_y, σ_{Π3}, σ_{Пу} вычислены по данным работ ³² и ³³.
 ***) Смотри примечание на стр. 54.
 ***) Значение σ_{Π3}=2 мбарн взято из работы ⁴⁴.

Таблица V

(л*р)-взаимодействие

Кинстическая энергия в ла борагорнои системе коор- динат L, Бэя	Мегод, котарым было определено сечения	σ _{полн} , мбарн	Кинстическая энергия в ла- бораторнои системе коор- динат E, Бэе	Метод, которым было определено сечение	б _{пол} , мбарн
$\begin{array}{c} 0,8\\ 0,827\\ 0,847\\ 0,872\\ 0,95\\ 1,0\\ 1,07\\ 1,1\\ 1,15\\ 1,23\\ 1,25\\ 1,28\\ 1,33\\ 1,36\\ 1,38\\ 1,38\\ 1,4\\ 1,46\\ \end{array}$	СЧЕ ГЧИКИ 32 СЧЕТЧИКИ 31 » СЧЕТЧИКИ 32 СЧЕТЧИКИ 33 СЧЕТЧИКИ 33 СЧЕТЧИКИ 33 СЧЕТЧИКИ 33 СЧЕТЧИКИ 49 СЧЕТЧИКИ 33 СЧЕТЧИКИ 45 » « СЧЕТЧИКИ 33 СЧЕТЧИКИ 3 СЧЕТЧИКИ 3 СЧЕТЧИКИ 3	$\begin{array}{c} 17\pm1,3\\ 21,36\pm0.81\\ 22,42\pm0.83\\ 21,85\pm0.86\\ 21,5\pm1.3\\ 23,5\pm1.4\\ 27,3\pm3.7\\ 27,3\pm1.7\\ 30,5\pm1.3\\ 31,3\pm1.7\\ 30,5\pm1.3\\ 38,8\pm2.5\\ 33\pm1.2\\ 34,9\pm1.1\\ 37,2\pm1.4\\ 41,4\pm3.0\\ 39,4\pm0.6\\ 39,1\pm0.8\\ \end{array}$	$\begin{array}{c} 1,46\\ 1,50\\ 1,58\\ 1,60\\ 1,67\\ 1,67\\ 1,67\\ 1,73\\ 1,89\\ 205\\ 2,47\\ 2,76\\ 2,97\\ 3,58\\ 400\\ 4,3\\ 14\\ \end{array}$	Счетчики 49 счетчики 33 счетчики 39 счетчики 3 счетчики 33 счетчики 39 счетчики 3 » » счетчики 50 счетчики 3 » счетчики 3 » счетчики 3 » счетчики 3 » счетчики 3 » счетчики 3 » счетчики 42 счетчики 90	$\begin{array}{c} 38,5\pm 1,4\\ 35,3\pm 2,5\\ 38,2\pm 1,2\\ 35,8\pm 0,9\\ 32,6\pm 1,8\\ 36\pm 0,7\\ -1,1\\ 30,1\pm 0,5\\ 284\pm 0,6\\ 27,8\pm 0,6\\ 29,0\pm 0,6\\ 28\pm 4\\ 29,2\pm 0,5\\ 29,2\pm 0,5\\ 29,2\pm 0,4\\ 29,2\pm 0,4\\ 29,3\pm 0,4\\ 28\pm 4\\ 26\pm 4\end{array}$

кроме того,

$$\sigma_{\Pi_3}(\pi^0 p) = \sigma_{\Pi_3}(\pi^- p) = \sigma_{\Pi_3}(\pi^0 n) = \sigma_{\Pi_3}(\pi^0 \widetilde{p}) = \sigma_{\Pi_3}(\pi^+ n) = \sigma_{\Pi_3}(\pi^+ \widetilde{p}) = \sigma_{\Pi_3}(\pi^- \widetilde{n}) = \sigma_{\Pi_3}(\pi^0 \widetilde{n}).$$

Ісак видно из таблиц IV — VI и из рис. 2, значения сечений для $(\pi^* p)$ - и $(\pi^- p)$ -взаимодействий сравниваются между собой и становятся не зависящими от энергии практически уже при энергиях $E \approx (2 \div 3)$ Бэе. При этом в пределах экспериментальных ошибок предельное значение $\sigma_{полн}$ совпадает с соответствующим значением для (NN)-взаимодействий;

Таблица Vl

	0
11 /10	- 623 04 11 0 10 10 11 16 60 6

Кинстическал в лабораторно координа г	энергия и системе Ј, Бля	Пробег в фотоамульсии L, (м*)	σ _{полн} , мбарн
1,0	51	38 <u>+</u> 3	$29+6_{5}$
1,5	52, 53 16	35 ± 1 $35,5\pm 5$	35 ± 2.5 34 ± 18.5
4,2	74	38,7±3,5	27+8
4,3	75	33,7 <u>+</u> 4,7	39+21
57	75	41 <u>±</u> 6	24+11
6.8	53	≪40	≥ 25
7,5	91	38 ± 2	29 ± 4
50	77	37 ± 6	30+20
Средняя по валу (1÷200	интер-)) <i>Бэв</i>		

предельное значение σ_y , по-видимому, несколько ниже, а предельное значение $\sigma_{\rm Hy}$ — выше, чем для (NN)-взаимодействий. Для окончательных заключений необходимы более точные измерения.

В настоящее время нет прямых экспериментальных данных о взаимодействии л⁰-мезонов с нуклонами при больших энергиях. Однако величину полного сечения взаимодействия можно определить из соображений зарядовой симметрии:

$$\sigma_{\text{полн}}(\pi^{0}p) = \frac{1}{2} \left[\sigma_{\text{полн}}(\pi^{-}p) + \sigma_{\text{полн}}(\pi^{+}p) \right].$$

Из рис. 2 видно, что при больших энергиях это сечение очень близко к сечениям взаимодействия заряженных п-мезонов с нуклонами. На основе теоретических соображений о слабой зависимости взаимодействий при больших энергиях от изотопических спинов (см. далее) следует ожидать, что сечения $\sigma_{\rm Hy}(\pi^0 p)$ и $\sigma_{\rm y}(\pi^0 p)$ также будут близки к соответствующим сечениям для взаимодействия π^{\pm} -мезонов с протонами.

2.3. Взаимодействие нуклонов с антинуклонами

Экспериментальные данные о взаимоденствиях антинуклонов с пуклонами более бедны, чем о (NN)- и (лN)-взаимодействиях, и ограничены областью энергий $E \ll 2$ Бэв. В таблице VII и на рис. З представлены известные в настоящее время значения сечений ($\tilde{p}p$)-взаимодействий по данным работ ⁹ п ⁵⁵. По соображениям зарядовой симметрии, очевидно, $\sigma(p\tilde{p}) = \sigma(n\tilde{n})$.

(*pp*)-взаимоденствие

Табляца МП

Кинетическая энергия в да- богаторнои системе коор- динат L, Би	Метод, которым было определено сечение	σ _χ , noaph	σ _{п.,} . мбари	σ _{ну}), učapie	σ _{по ін} , <i>woap</i> ,	
0,81 0,95 1,0 1,07 1,25 2,0	с четчики ⁹ » по указано ⁵⁵ счетчики ⁹ не указано ⁵⁵ »	$ \begin{array}{c} 37\pm 5\\ 33\pm 3\\ 33\\ 30\pm 3\\ 23 \end{array} $	$ \begin{array}{r} 7\pm2 \\ 8\pm2 \\ 7\pm1 \\ 8 \\ 7 \end{array} $	$\begin{vmatrix} 67\pm7 & * \\ 64\pm5 & * \\ 69 \\ 65\pm4 & * \\ 60 \\ \hline 60 \\ \end{vmatrix}$	$ \begin{array}{r} 10.5\pm 6\\ 96\pm 3\\ 102\pm 3\\ 96\pm 4\\ 90\pm 3\\ 83\pm 3 \end{array} $	
) В сечение σ _{ну} включено σ _{п.} . []) См. примечание на стр. 54.						

Измерения ⁵⁵ показывают, что в областп энергий $E \approx (0,5 \div 1,1)$ Бэв полное сечение взаимодействия автипротонов с дейтонами сстается приблизительно постоянным и равным (170 ÷ 180) мбарн. Отсюда, если пренебречь эффектом экранировки нуклонов в дейтоне, $\sigma_{\text{полн}}(\tilde{p}n) = \sigma_{\text{полн}}(\tilde{p}d)$, $\sigma_{\text{полн}}(\tilde{p}p) \approx (70 \div 80)$ мбарн. Учет поправок на экранировку увеличивает это значение на $(10 \div 20)$ %. Значения сечений $\sigma_{\text{полн}}(\tilde{p}p)$ п $\sigma_{\text{полн}}(\tilde{p}n)$ оказываются при этом близкими по своей величине.

Из приведенных данных видно, что при энергиях в несколько Бэв значения сечений ($\tilde{p}p$)-взаимодействия значительно превосходят сечения (NN)-взаимодействий. Это можно пояснить следующими соображениями.

Так как антинуклон во многих отношениях подобен нуклону, то его, как и нуклон, можно представить состоящим из плотного керпа и сравнительно рыхлой мезонной оболочки. С точки зрения такой модели естественно предположить, что аннигиляция происходит при столкновении керпов нуклона и антинуклона. Такие столкновения будут характеризоваться большим поглощением и, следовательно, большим сечением, чем в случае (NN)-взаимодействий. При столкновении кернов с периферическим мезонным облаком так же, как и в случае (NN)-столкновений, происходит упругое или неупругое рассеяние нуклона и антинуклона,

сопровождающееся рождением новых частиц. В области энергий, не превышающих нескольких сотен Мэв, такой модели $(\tilde{N}N)$ -столкновений соответствует потенциал взаимодействия, который на расстояниях r > 2a $\left(a \approx \frac{h}{Mc} \approx 2 \cdot 10^{-14} \ cm$ — характерный размер керна $\right)$ лишь знаком отличается от известного (NN)-потенциала Гартенхауза — Сигнела — Маршака ⁵⁶, а на малых расстояниях $r \leqslant a$ характеризуется сильным поглощением*). Как показали оценки Коба и Такеда ⁵⁷ и более точные расчеты Болла, Чу и др. ⁵⁸, экспериментальные данные хорошо объясняются такой феноменологической теорией.

При больших энергиях пока еще нет теории, позволяющей вычислить сечения взаимодействия нуклонов и антинуклонов. Однако следует ожидать, что с ростом энергии сечения (NN)- и (NN)-взаимодействий будут сравниваться (ср. 3.2). Одной из причин этого является быстрое увеличение с ростом энергии числа неупругих каналоз, возможных при столкновении двух нуклонов (т. е., другими словами, увеличение «черноты» керна нуклона).

^{*)} Напомним, что л-мезонные заряды нуклона и антинуклона различаются знаком. Поэтому при обмене нечетным числом л-мезонов знаки потенциалов (NN)и $(\widetilde{N}N)$ -взаимодействий также отличаются знаком.

Взаимолействие К-мезонов с нуклонами 24.

В таблицах VIII-X и на рис. 4 приведены экспериментальные значения сечений взаимодействия заряженных К-мезонов с нуклонами по данным работ⁵⁹ и 60.

Величина сечений взаимодействия К⁺-мезонов с нейтронами получена разностным методом из измерений взаимодействия К⁺-мезонов с дейтерием и водородом. Значения сечений в таблице ІХ приведены без учета поправок на экранировку нуклонов в дейтоне. Однако эти поправки невелики. Кривая на рис. 4, аппроксимирующая сечения $\sigma_{\text{полн}}(K^{+}p)$ и $\sigma_{\text{полн}}(K^{-}p)$, взята из доклада Альвареца 60.

Из соображений зарядовой симметрии и инвариантности по отношению к зарядовому сопряжению должны быть равны полные сечения, а также сечения упругих и неупругих взаимолействий:

$$\sigma (K^* p) = \sigma (K^0 n) = \sigma (K^- p) = \sigma (K^0 n),$$

$$\sigma (K^* n) = \sigma (K^0 p) = \sigma (K^- n) = \sigma (\tilde{K}^0 p),$$

$$\sigma (K^- p) = \sigma (\tilde{K}^0 n) = \sigma (K^* p) = \sigma (K^0 n),$$

$$\sigma (K^- n) = \sigma (\tilde{K}^0 p) = \sigma (K^* n) = \sigma (K^0 p).$$

Прп больших энергиях зарядовая симметрия и инвариантность при зарядовом сопряжении для К-мезонов экспериментально еще не проверены, однако представляются весьма вероятными.

Таблица VIII

(К*р)-взаимодействие

Кинетиче- ская энер- гия в лабо- раторной системе координат <i>Е</i> , Бэв	Метод, кото- рым было определено сечение	б _{ПО.1н} , мбарн			
$\begin{array}{c} 0,96\\ 1,1\\ 1,1\\ 1,23\\ 1,28\\ 1,45\\ 1,45\\ 1,45\\ 1,6\\ 1,76\\ 1,95\\ 1,95\\ 2,26\\ 2,42\\ \end{array}$	СЧЕТЧИКИ 59 » СЧЕТЧИКИ 60») СЧЕТЧИКИ 59 СЧЕТЧИКИ 60 СЧЕТЧИКИ 60 СЧЕТЧИКИ 60 СЧЕТЧИКИ 59 СЧЕТЧИКИ с0 » СЧЕТЧИКИ 55 СЧЕТЧИКИ 60 » » »	$\begin{array}{c} 18,8\pm0.8\\ 16,4\pm0.7\\ 17,5\pm1.3\\ 18,3\pm0.8\\ 19,5\pm1.3\\ 15,7\pm0.7\\ 18,75\pm0.6\\ 15,5\pm1.1\\ 16,3\pm0.8\\ 13\pm1\\ 15,4\pm0.6\\ 15\pm1.50\\ 13,1\pm0.8\\ 13,1\pm0.8\\ \end{array}$			
*) Нам неизвестно, существует ли связь между данными, приве- денными в работе ⁵⁹ и обзорном докладе Альвареца ⁶⁰ .					

(К⁻р)-взаимодействие

Из приведенных экспериментальных данных видно, что сечения взаимодействия K^* - и K^0 -мезонов с протонами в области энергий E > 1 Бэв в пределах экспериментальных ошибок не различаются, что говорит

Таблина IX (К^n)-взаимодействие

Тε	ιó	л	п	ц	a	Х
----	----	---	---	---	---	---

Кинетическая энер-гия в лабо-Метод, которым ^бполн, раторной было определено системе координат Е, Бэв сечение мбарн 0,9счетчики ⁶⁰ 52 ± 9 0,94 счетчики ⁵⁹ 36 ± 5 1,17 пузырьк. камера⁶⁰ 48 ± 5 44 ± 5 36 ± 5 44 ± 5 1,23счетчики 59 1,4 счетчики 50 1,7 » 2,8 20 ± 5 »

Кинетиче- скан энер- гия в ла- бораторной системе координат <i>Е</i> , Бэв	Метод, кото- рым было определено сечение	⁰ поли, мбарн
0,9	счетчики ⁵⁹	16,4 <u>+</u> 2
1,2	»	16,8 <u>+</u> 3,7
1.4	»	18,2±4
1,9	»	12,5 <u>+</u> 3,5

о слабой зависимости взаимодействий от изотопического спина. При больших энергиях становятся близкими также сечения взаимодействия K*- и K⁻-мезонов с протонами. Значения сечений при этом почти на одну

Рис. 4. Полные сечения $\sigma_{полн}$ взаимодействия *К*-мезонов с нуклонами. \bigcirc , •, \triangle —соответственно сечения $\sigma_{полн}$ (*К***p*), $\sigma_{полн}$ (*К***n*). $\sigma_{полн}$ (*К***p*).

треть меньше соответствующих сечений (NN)- и (πN) -взаимодействий. Однако неясно, будет ли существенно изменяться величина этих сечений при энергиях E > 2,5 Бэв.

2.5. Взаимодействие п-и К-мезонов с п-мезонами

В настоящее время сведения об этих взаимодействиях можно получить лишь из анализа косвенных экспериментальных данных.

Фазовый анализ (πN)- и (NN)-взаимодействий дает для сечения ($\pi\pi$)-взаимодействия величину, близкую к сечениям (πN)- и (NN)-взаимодействий. К такому же выводу приводит анализ угловой асимметрии частиц, рождающихся при столкновении быстрых π -мезонов с нуклоиами ⁶¹, а также изучение множественного рождения частиц в космических лучах при очень больших энергиях ⁶².

Эти результаты можно проиллюстрировать следующими грубо качественными соображениями. Представим сечения неупругих (NN)- и (лN)-взаимодействий в виде:

$$\sigma(NN) = 4\pi r_N^2,$$

$$\sigma(\pi N) = \pi (r_N + r_\pi)^2.$$

При больших энергиях, когда длина волны взаимодействующих частиц очень мала ($\lambda \ll r_N, r_\pi$), величины r_N и r_π можно рассматривать как эффективные размеры пуклона и мезона. Так как при $E > 1 \, Б$ эв σ (NN) $\approx \sigma$ (πN), то $r_\pi \approx r_N$ и сечение неупругих ($\pi\pi$)-взаимодействий

$$\sigma(\pi\pi) \approx 4\pi r_N^2 \approx \sigma(\pi N)$$

Близкими будут и сечения упругого рассеяния $\sigma_y \approx \sigma_{\pi}$. (Напомним, что дифференциальное рассеяние целиком определяется неупругими процессами.)

Как отмечено в работе ⁷², нижнюю оценку сечения (пл)-взаимодействия $\sigma_{Hv}(\pi\pi) > 5$ мбари межно получить, если рассматривать π -мезоны состоящими из точечных («голых») нуклона и антинуклона. Учет эффективных размеров этих виртуальных частиц увеличивает величину сечения σ_{ну} (ππ) в несколько газ (ср. ⁸⁹).

Недавно Мандельштаму и Чу на основе двойных дисперсионных соотношений удалось сформулировать систему уравнений, определяющих амплитуду упругого ($\pi\pi$)-гассеяния ⁶³ вплоть до энергий $E \sim 0.5 \ Б$ эв. Однако результаты решения этой системы уравнений еще не опубликованы.

Что касается взаимодействий π- и К-мезонов, то информация о них еще более скудная. Само существование взаимодействий такого рода является в настоящее время проблемой.

В работах 64, 65 показано, что учет взаимодействия вида ~

~

$$H_{\rm B3} = \lambda \, (\tilde{K}^{+}K^{+} + \tilde{K}^{0}K^{0}) \, (\pi^{+}\pi^{-} + \pi^{-}\pi^{+} + \pi^{0}\pi^{0}),$$

где π , K, \widetilde{K} – операторы полей соответствующих частиц, а λ – постоянная связи, дает возможность сбъяснить ряд экспериментальных фактов о взаимодействии К-мезонов с нуклонами и ядрами при низких әнергиях.

Если К*- и К⁰-мезоны имеют различную четпость, то, в принципе, возможно тройное взаимодействие вида $H_{\rm B3} = \lambda \widetilde{K} \pi K$.

В области больших энергий можно надеяться получить сведения о взаимодействии К- и л-мезонов из изучения периферических взаимодействий быстрых К-мезонов с нуклонами ⁶⁶, а также из анализа углового распределения частиц, рождающихся пги столкновении очень быстрых π-мезонов с нуклонами 61. Взаимодействие п-и К-мезонов должно приводить в последнем случае к угловой асимметрии рождающихся странных частиц опредсленного вида. Предварительные результаты 67, полученные группой Ван Ган-чана при энергии E = 6,8 Бэв, указывают на наличие такой асимметрии, хотя, конечно, интерпретация этих предварительных результатов еще весьма неоднозначна.

Ш. ТЕОРЕТИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

3.1. Постоянство сечений взаимодействия при больших энергиях

Из приведенных экспериментальных данных видно, что, во всяком случае, для (NN)- и (πN)-взаимодействий сечения $\sigma_{\text{полн}}$, $\sigma_{\text{ну}}$, $\sigma_{\text{у}}$ при больших энергиях становятся постоянными.

Следует подчеркнуть, что этот вывод верен лишь в пределах экспериментальных ошибок, тем более, что как эксперименту, так и теории доступна хотя и все увеличивающаяся, но ограниченная область энергий.

В настоящее время еще нет строгой теории, объясняющей поведение сечений даже при тех больших энергиях, которые доступны современному эксперименту. Более того, постоянство сечений взаимодействия при $E\gg 1~Б$ эв кажется противоречащим современной теории поля, где при вычислении многих физических величин (масс частиц, магнитных моментов и т. д.) приходится делать различные предположения для подавления взаимодействий при больших энергиях. Однако можно привести примеры (см., например, 68), когда даже очень слабые взаимодействия при 5 УФН, т. LXXII, вып. 1

возрастании энергии приводят к большим значениям сечений. Ослабление взаимодействий в этом случае может скомпенсировать возрастание сечений взаимодействия. Возможно, что аналогичное положение имеет место и в общем случае.

Теоретический анализ свойств функций распространения в локальной теории поля при весьма общих предположениях дает для энергетической зависимости сечений взаимодействия *п*-мезонов с нуклонами в лабораторной системе координат граничные оценки ⁶⁹

$$\frac{\operatorname{const}}{E} < \sigma_{\operatorname{nonu}}(E) < E \cdot \operatorname{const},$$

что не противоречит экспериментальным результатам.

3.2. Равенство сечений взаимодействия частиц и античастиц

Предположив, что сечение взаимодействия протонов постоянно при больших энергиях, можно показать равенство полных сечений (pp)- и $(\tilde{p}p)$ -взаимодействий. Аналогичное заключение верно для полных сечений взаимодействия π^- и π^* -мезонов с протонами, полных сечений (K^*p) - и (K^-p) -взаимодействий и т. д. в общем случае для взаимодействий, в которых один раз участвует частица, в другой раз — соответствующая ей античастица⁷⁰.

Чтобы доказать эту теорему, рассмотрим дисперсионное соотношение для амплитуды упругого рассеяния A(E) на угол $\theta = 0$:

$$\operatorname{Re} A(E) = \frac{(E - E_0)^2}{4\pi^2} p \int_0^\infty \frac{dE'}{\lambda'} \left[\frac{\sigma_{\Pi 0 \operatorname{TH}}(E')}{(E' - E)(L' - E_0)^2} + \frac{\widetilde{\sigma}_{\Pi 0 \operatorname{TH}}(E')}{(E' + E)(E' + E_0)^2} \right] + a + bE,$$

где а и b — постоянные коэффициенты ⁷¹, λ — длина волны нуклона; E_0 — произвольно выбранное значение энергии *). Существенно, что в дисперсионный интеграл всегда входят сечения взаимодействия как частиц $\sigma_{полн}$, так и античастиц $\overline{\sigma}_{полн}$.

При $E \rightarrow \infty$ получим, сохраняя лишь наибольшие члены:

Re
$$A(E) \sim E^2 p \int_{\mathscr{C}}^{\infty} \frac{dE'}{E'} \left[\frac{\sigma_{\Pi O \uparrow H}(\infty)}{E' - \nu} + \frac{\widetilde{\sigma}_{\Pi \supset \uparrow H}(\infty)}{E' + \nu} \right],$$

где значение энергии \mathscr{E} выбрано таким образом, что $\mathscr{E} \gg E_0$, и при $E' \gg \mathscr{E}$ $\sigma_{\text{полн}}(E') = \sigma_{\text{полн}}(\infty)$, $\widetilde{\sigma}_{\text{полн}}(E') = \widetilde{\sigma}_{\text{полн}}(\infty)$. После вычисления интеграла

Re
$$A(E) \sim E \ln E \left[\widetilde{\sigma}_{aonH}(\infty) - \sigma_{aonT}(\infty) \right].$$
 (1)

Однако амплитуда упругого рассэяния A(E) не можэт возрастать, как $E \ln E$. Дэйствительно, при больших энергиях, когда $l \gg 1$,

$$|A(E)| = \left|\frac{\hbar}{2}\sum_{l=0}^{\infty} (2l+1) \left(1-e^{2i\eta_{3}}\right)\right| \leq \frac{1}{\hbar} \int_{0}^{\infty} \varrho d\varrho \left(1-e^{2i\eta\left(\frac{\varrho}{\hbar}\right)}\right) \leq E \cdot \text{const}, \quad (2)$$

^{*)} Для простоты мы не будем учитывать спиновую и изотопическую зависимости в амплитуде A(E). В с рассуждения легко повгорить и в общем случее. Мы не будем также рассматривать элекгромагнитные взаимодействия, учет которых вносит лишь малые поправки.

так как (ср. 72)

u

$$\frac{1}{\hat{\lambda}} \sim E$$

$$|(1-e^{2i\eta\left(\frac{v}{\hbar}\right)})| \leq 2.$$

Очевидно, соотношения (1) и (2) непротиворечивы, лишь если

$$\sigma_{\text{полн}}(\infty) = \sigma_{\text{полн}}(\infty). \tag{3}$$

Иногда утверждают, что равенство (3) является следствием только свойств дисперсионных соотношений. Однако из приведенного вывода видно, что равенство (3) получено на основе эквивалентного ему предположения о постоянстве сечений взаимодействия при $E \longrightarrow \infty$. Если равенство (3) рассматривать как основное, то из дисперсионного соотношения получим, что сечения ополн и ополн постоянны при $E \longrightarrow \infty *$).

Если отклонения от постоянных значений сечений, например медленное убывание, будут происходить лишь при экстремально больших энергиях E ≫ (100 ÷ 1000) Бэв, то в обла-

сти меньших энергий это даст лишь в малые поправки к дисперсионным соотношениям и все приведенные выше рассуждения и, в частности, равенство (3) останутся при энергиях $E \leqslant (100 \div$ -:-1000) Бэв приближенио справедливыми.

3.3. Зависимость сечений от изотопических спинов

При энергиях $E \leqslant Бэв$ взаимодействия частиц существенно зависят от их изотопических спинов. Это видно из рис. 5 и 6, где представлена энергетическая зависимость экспериментальных сечений взаимодействия π-мезонов и нуклонов для состояний с определенными значениями изотопического спина.

Однако с ростом энергии быстро возрастает число возможных каналов неупругих реакций, в то время как сечение $\sigma_{Hy} \longrightarrow const$ или, во всяком случае, не возрастает. Сечение каждого из неупругих каналов, в том

Рис. 5. Полные сечения взаимодействия нуклонов в состоянии с изотопическим спином T=0 (сплошная кривая) и в состоянии с изотопическим спином T=1 (пунктир ная кривая).

числе и канала рассеяния с перезарядкой σ_{n_3} , становится при этом все более и более малым: $\frac{\sigma_{n,s}}{\sigma_y} \rightarrow 0^{**}$). Другими словами, вклад взаимодействий, связанных с персориентацией изотопических спинов сталкивающихся частиц, становится пренебрежимо малым. Это приводит к тому, что

 ^{*)} Д. В. Ширков впервые обратил внимание автора на этот вопрос.
 **) При этом, конечно, предполагается, что сечение перезарядки не имеет резонансного характера при больших энергиях. Это согласуется с современными представлениями о механизме взаимодействия частиц при энергиях ⁷², ⁷⁰ E ≥ 1 Бэс.

сечения при больших энергиях становятся не зависящими от изотоцических спинов.

Поясним эти соображения на примере рассеяния л-мезонов и нуклонов на нуклонах ⁷⁸.

Рис. 6. Полпые сечения взаимодействия п-мезонов с нуклонами в состоянии с изотопическим спином $T={}^{3}/{}_{2}$ (сплошная кривая) и в состоянии с изотопическим спином $T={}^{1}/{}_{2}$ (пунктирная кривая). Пунктиром дано сечение $\sigma_{полн} \pi^{\circ} p$).

Если F_1 и F_3 —амплитуды рассеяния л-мезонов на протоне в состояниях с изотопическим спином $T = \frac{1}{2}$ и $T = \frac{3}{2}$, то дифференциальные сечения рассеяния л-мезонов запишутся в виде:

$$\sigma_{1} \equiv \sigma (\pi^{+}p \longrightarrow \pi^{+}p) = |F_{3}|^{2},$$

$$\sigma_{2} \equiv \sigma (\pi^{0}p \longrightarrow \pi^{0}p) = \frac{1}{9} |2F_{3} + F_{1}|^{2},$$

$$\sigma_{3} \equiv \sigma (\pi^{0}p \longrightarrow \pi^{+}n) = \frac{2}{9} |F_{3} - F_{1}|^{2},$$

$$\sigma_{4} \equiv \sigma (\pi^{-}p \longrightarrow \pi^{-}p) = \frac{1}{9} |F_{3} + 2F_{1}|^{2},$$

$$\sigma_{e} \equiv \sigma (\pi^{-}p \longrightarrow \pi^{0}n) = \sigma_{e}.$$

Из условия обращения в нуль сечений перезарядки $\sigma_3 = \sigma_5 \approx 0$ следует, что $F_1 = F_3$, т. е.

$$\sigma_1 \approx \sigma_2 \approx \sigma_4. \tag{4}$$

Как видно из рис. 2 и 6, в пределах экспериментальных ошибок сечения становятся не зависящими от изотопических спинов уже при энергиях $(2 \div 3) \ E_{\partial \theta}$.

Так как при больших энергиях равенство (4) выполняется для любого угла рассеяния θ, то равными оказываются и соответствующие фазы η_у амплитуды рассеяния:

$$A(\theta) = \frac{\lambda}{2i} \sum_{l=0}^{\infty} (2l+1) (1-e^{2i\eta_l}) P_l(\cos\theta)^*).$$

Отсюда, в частности, следует равенство сечений ону и ополн.

В случае рассеяния протонов на нуклонах дифференциальные сечения можно записать в виде:

$$\begin{split} \sigma_{1} &\equiv \sigma \; (pp \longrightarrow pp) = |F_{1}|^{2}, \\ \sigma_{2} &\equiv \sigma \; (pn \longrightarrow pn) = \frac{1}{4} \; |F_{1} + F_{0}|^{2}, \\ \sigma_{3} &\equiv \sigma \; (pn \longrightarrow np) = \frac{1}{4} \; |F_{1} - F_{0}|^{2}, \end{split}$$

где F_1 и F_0 — амплитуды рассеяния в состояниях с изотопическим спином T = 1 и T = 0.

Из условня $\sigma_3 = 0$ следует, что $F_0 \approx F_1$, т. е.

$$\sigma_1 \approx \sigma_2$$
.

Равными становятся также фазы амплитуды упругого рассеяния лу, сечения σ_{ну} и σ_{полн}.

Из рис. 1 и 5 видно, что в пределах точности опытов зависимость сечений взаимодействия от изотонических спинов исчезает при энергиях $E > (5 \div 6)$ Бэв. Эта энергия приблизительно в два раза выше, чем соответствующая энергия для случая (пN)-взаимодействий.

Аналогично можно рассмотреть и взаимодействие частиц других сортов. Для взаимодействия аптинуклонов с нуклонами зависимость от изотопического спина становится несущественной, по-видимому, при несколько бо́льших энергиях, чем для (NN)-взаимодействий. При E = 2 Бэв сечение перезарядки $(p\widetilde{p} \rightarrow n\widetilde{n})$ составляет еще около 30% от сечения упругого рассеяния.

Как видно из рпс. 4, при энергних $E > 1 E_{28}$ нет заметной изотопической зависимости взаимодействий К^{*}-мезонов с пуклонами.

3.4. Зависимость сечений от спинов сталкивающихся частиц

При больших энергиях, когда главную роль играюг орбитальные числа $l \gg 1$, фаза амилитуды упругого рассеяния зависит лишь от энергии и от суммарного спина сталкивающихся частиц S, так как

$$J = |l - S|; \dots; |l + S| \approx l \text{ m } l' = |J - S|; \dots; |J + S| \approx J \approx l;$$

$$\eta_{ll'}(E; J; S) \approx \eta_l(E; S).$$

В области энергий $E \ge 1 \, Б$ ав до настоящего времени неизвестно ни одного опыта с поляризованными частицами. Поэтому у нас нет прямой экспериментальной информации о зависимости взаимодействий быстрых частиц от их спинов. Однако можно ожидать, что спиновая зависимость взаимодействий при энергиях $E \gg 1$ Бэв будет несущественной.

^{*)} В этом легко убедиться, если равенство (4) гереписать для амплитуд рассея) в этом легко убедится, если равенство (4) герзикать для амплатуд рассоя ния, помножить его на полипом Лежандра P_l (cos θ) и проинтегрировать по всем значениям соз θ от -1 до +1. Отметим, что равенство (4) может нарушаться в области очень малых углов $\theta \sim 0$ где дают вклад далские периферические столкновения с малой передачей энергии

Однако с ростом энергии вклад таких столкновений быстро уменьшается.

В случае взаимодействия частиц различных сортов (например, π - или *К*-мезонов с нуклонами) это можно пояснить теми же соображениями, что и для изотопических спинов. Сечение рассеяния с переворотом спина σ_{s} в этом случае будет быстро уменьшаться с ростом энергии.

Подобные рассуждения неприменимы к взаимодействию нуклонов, где нет переходов между синглетным и триплетным состояниями и $\sigma_s \equiv 0^*$). Однако с точки зрения современных представлений о механизме неупругих взаимодействий при больших энергиях (модель компаунд-частицы ⁸⁰, статистическая теория центральных и периферических столкновений ^{72, 79}) следует ожидать, что и в этом случае $\eta_i(E; S) = \eta_i(E)$. (Напомним, что при E > 1 Бэв $\sigma_y \approx \sigma_{\pi}$ и целиком определяется неупругими процессами.)

Понятно, что все рассуждения о спиновой и изотопической зависимости применимы также и для взаимодействия с ядрами (ср. ⁸¹).

IV. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ. ВОПРОСЫ К ЭКСПЕРИМЕНТАТОРАМ

Из приведенных экспериментальных п теоретических данных следует довольно ясная качественная картина поведения сечений взаимодействия нуклонов, антинуклонов, π - и *К*-мезонов с нуклонами в области энергий $E \approx (1 \div 10)$ Бэв. Однако количественные данные во многих случаях еще недостаточны. Особенно это отпосится к взаимодействию антинуклонов и *К*-мезонов с нуклонами. Во всех случаях плохо исследовано взаимодействие частиц с нейтронами, белым пятном является взаимодействие поляризованных частиц. Более точные измерения в этом случае представляют самостоятельный интерес, а также важны для количественной проверки теоретических схем и моделей. Огромный интерес представляет любая информация, касающаяся ($\pi\pi$)-взаимодействия. взаимодействий π и *К*-мезонов, взаимодействия гиперонов.

По-видимому, качественная картина останется той же и в интервале еще нескольких десятков Бэв.

Можно указать, во всяком случае, два вопроса, исследование которых при больших энергиях представляет принципиальный интерес. Это, вонервых, выяснение вопроса, насколько далеко при $E \rightarrow \infty$ остаются постоянными сечения $\sigma_{полп}$, σ_{Hy} , σ_y . Если это постоянство, как подсказывает опыт, сохранится до очень больших энергий, то при столкновении сверхэнергичных частиц могут образоваться ливни, где масса вновь родившихся частиц может достигнуть макроскопической величины. Образно выражаясь, в этом случае могут рождаться звезды не в смысле, как их понимают сейчас в фотоэмульсионной лаборатории, а в том смысле, как их понимают астропомы ⁸³. Наоборот, изменение асимптотического поведения сечений взаимодействия привело бы к очень важным теоретическим заключениям.

Единственным источником информации о взаимодействии сверхэнергичных частиц являются в настоящее время и, по-видимому, останутся в ближайшем будущем опыты с космическими лучами.

Вторым принципиальным вопросом является исследование возможных нарушений равенства сечений взаимодействия частиц и античастиц $\sigma = \tilde{\sigma}$. Такие нарушения указали бы на несправедливость дисперсионных соотношений и положенных в их основу принципов,

^{*)} В случае (*pp*)-взаимодействий (как и вообщэ в случае взаимодействия двух любых тождественных частиц) $\sigma_s \equiv 0$ в силу закона сохранения четности в системе тождественных частиц, в случае (*pn*)-взаимодействий — в силу зарядовой симмет рии (ср. ⁸²).

в первую очередь принципа причинности, в малых областях пространства – времени. Возможно, существенные результаты в этом направлении удастся получить при энергиях, достижимых при работе на ускорителях.

пьиложение

СРЕДНИЙ СВОБОДНЫИ ПРОБЕГ БЫСТРЫХ ЧАСТИЦ В ФОТОЭМУЛЬСИИ

Обычно при анализе следов быстрых частиц в фотоэмульсии не фиксируются случаи упругого рассеяния этих частиц на ядрах. Упругое рассеяние при больших энергиях является почти целиком дифракционным и происходит на очень малые углы, которые тем меньше, чем больше размер ядра. Нужна специальная методика, чтобы фиксировать малое искривление треков при упругом ядерном рассеянии (ср.⁸⁶).

Во всех случаях взаимодействия пуклонов и л-мезонов с фотоэмульсией, для которых в таблицах III и IV приведены значения

Таблица М 4 au 3 M. 40-22)

Состав	эмульсии	(число	ядер	в	1	см ³ ,	$N_i \cdot 10^{-22}$)

Элемент Эмульсия	н	с	N	U	Br	Ag
НИКФП-Р	2,93	1,39	0,37	1,06	1,02	1,02
Ilford G-5	3,37	1,36	0,29	1,02	1,02	1,02

среднего пробега, кроме неупругих взаимодействий учитывалось лишь происходящее на сравнительно большие углы упругое рассеяние на водороде *). Средний свободный пробег в этих случаях равен:

$$L = \frac{1}{\{\sum_{i} N_i \sigma_{Hy}^i + N_H \sigma_{\Pi 0 J H}\}}, \qquad (A)$$

где N_H — число ядер водорода в 1 см³ фотоэмульсии, N_i — число ядер других элементов в 1 см³ фотоэмульсии (см. таблицу XI), ополн – полное сечение взаимодействия первичной частицы с водородом, σ_{Hy}^i - сечения неупругих взаимодействий этой частицы с другими ядрами.

При больших энергиях, когда длина волны частиц, взаимодействующих с фотоэмульсией, много меньше размеров ядер, хорошо применима оптическая модель 27, 72:

$$\sigma_{\rm Hy}^{\iota} = 2\pi \int_{0}^{\infty} r \left[1 - e^{-2k_i \int_{0}^{\infty} \varrho_{\iota} \left(\sqrt{r^2 + s^2} \right) ds} \right] dr.$$
(B)

Здесь Q; (r) -- распределение вещества в ядре *i*-го сорта, определенное в опытах по рассеянию быстрых электронов на ядрах⁸⁷. Коэффициент

^{*)} Конечно, те случаи упругого рассеяния на водороде, когда частицы разлезаются под очень малыми углами, тоже не фиксируются. Однако, как показывают оценки, вклад таких неучтенных взаимодействий не может заметно изменить величины среднего свободного пробега. При энергиях $E > (10 \div 15)$ *Вэв* в (*A*) надо заменить ополн на ону.

поглощения $k_i = d_i \sigma_{\text{полн}}$, где

$$d_{i} = \frac{A_{i}}{\int \varrho_{i}(r) d^{3}x}$$

-средняя плотность нуклонов в ядре с атомным номером A_i.

Рис. 7. Зависимость среднего свободного пробега частиц в фотоэмульсии L от величины полного сечения взаимодействия этих частиц с нуклонами ополн.

Формула (В) верна при энергиях $E \geqslant 1$ Бэв. С ростом энергии применимость этой формулы улучшается.

На рис. 7 приведены вычисленные значения L в зависимости от величины сечения о_{полн}. Как показали расчеты, различие пробегов L (ополн) в фотоэмульсиях типа Ilford G-5 и НИКФИ-Р ничтожно⁸⁸. Кривая L ($\hat{\sigma}_{\text{полн}}$) на рис. 7 применима для обоих типов эмульсии. Значения сечений о_{полн}, приведенные в таблицах III и VI, получены с помощью этой кривой.

ЦПТИРОВАННАЯ ЛИТЕРАТУРА

- W. N. Hess, Rev. Mod. Phys. 30, 368 (1958).
 L. W. Smith, A. W. McReynolds, G. Show, Phys. Rev. 97, 1186 (1955).
 M. I. Longo, I. A. Helland, W. N. Hess, B. I. Mayer, V. Perez-Mendez, Phys. Rev. Lett. 3, 568 (1959).
 T. W. Morris, E. C. Fowler, S. D. Garrison, Phys. Rev. 103, 1472 (1975).
- (1956).
- 5. F. F. Chen, C. P. Leavitt, A. M. Shapiro, Phys. Rev. 103, 211, 1489 (1956).

- (1956).
 6. M. E. Low, G. W. Hutchinson, D. H. White, Nucl. Phys. 9, 600 (1958/59)
 7. P. I. Duce, W. O. Lock, P. V. March, W. M. Gibson, I. G. McEwen, L. S. Hughes, H. Muirhead, Philos. Mag. 2, 204 (1957).
 8. I. Dowell, W. Frisken, G. Martinelli, B. Musgrave, CERN, Symposium, 1958.
 9. T. Elioff, L. Agnew, O. Chamberlain, N. Steiner, C. Wir-gand, T. Ypsilantis, Phys. Rev. Lett. 3, 285 (1959).
 10. A. P. Batson, B. B. Culwick, I. G. Hill, L. Riddiford, Proc Roy. Soc. A251, 218, 233 (1959).
 11. W. B. Fowler, R. P. Shutt, A. M. Thorndike, W. L. Whitte-more, Phys. Rev. 103, 1479 (1956).
 12. B. Cork, W. A. Wentzel, C. W. Causey, Phys. Rev. 107, 859 (1957).
 13. M. Block, E. M. Harth, V. T. Cocconi, E. Hart, W. B. Fowler, R. P. Shutt, A. M. Thorndike, W. L. Whittemore, Phys. Rev. 103, 1484 (1956). 1484 (1956).
- 14. R. Cester, T. F. Hoang, A. Kernan, Phys. Rev. 103, 1443 (1956).
 15. W. Wrigth, G. Saphir, W. M. Powell, G. Maenchen, W. B. Fowler, Phys. Rev. 100, 1802 (1955).

- t6. R. E. Cavananch, D. M. Haskin, M. Schein, Phys. Rev. 100, 1263 (1955); M. Schein, D. M. Haskin, R. G. Glasser, Nuovo cimento 3, 131 (1956). 17. R. Kalbach, I. Lord, T. Tsao, Phys. Rev. 113, 325, 330 (1959).
- 18. R. Daniel, N. Kamesware Rao, P. Mathotza, Y. Tsuzuki, Материалы 9-й ежегодной конференции по физике высоких эпергий, Киев, 1959.
- 19. W. A. Wentzel, CERN, Symposium, 1958.
- 20. П. К. Марков, Э. Н. Цыганов, М. Г. Шафранова, Б. А. Шахбазян, препринт ОИЯИ Д-452 (1960).
- Н. П. Богачев, С. А. Бунятов, И. М. Граменицкий, В. Б. Любимов, Ю. П. Мереков, М. И. Подгорецкий, В. М. Сидоров, Д. Тувдендорж, ЖЭТФ 37, 1225 (1959); В. И. Векслер, Доклад на 9-й ежегодной конференции по физике высоких эпергий, Киев, 1959.
- 22. R. Coor, E. Hill, A. Hornyak, W. Smith, G. Show, Phys. Rev. 98, 1369 (1955).
- V. Perez-Mendez, I. H. Atkinson, W. N. Hess, R. W. Wallace, Bull. Amer. Phys. Soc. 4, 253 (1959).
 I. H. Atkinson, W. N. Hess, V. Perez-Mendez, R. W. Wallace,
- Phys. Rev. Lett. 2, 168 (1959).
- M. V. K. Appa Rao, R. R. Daniel, K. A. Neelakantan, Proc. Indian Acad. Sci. 18, 181 (1956).
 G. Williams, Master's Thesis, University of Washington, 1958 (цитируется
- no 17).
- 27. В.С.Барашенков, Хуан Нянь-нин, ЖЭТФ 36, 1319 (1959); В.С.Барашенков, Труды Всесоюзной межеузовской конференции по квантовой теории поля и теории элемептарных частиц, 1958.

- рии поля и теория элементарных частин, 1938. 28. К. И. Алексеев, Н. А. Григоров, ДАН СССР 117, 593 (1957). 29. Р. Б. Бегжанов, ЖЭТФ 34, 775 (1958). 30. L. E. Brenner, R. W. Williams, Phys. Rev. 106, 1020 (1957). 31. I. C. Brisson, I. Detoef, P. Falk-Vaizant, L. Van Rossum, G. Valladas, Luce C. L. Yuan, Phys. Rev. Lett. 3, 561 (1959). 32. H. C. Burrowes, D. O. Caldwell, D. H. Frisch, D. A. Hill, D. M. Ritson, R. A. Schluter, M. A. Wahling, Phys. Rev. Lett. 9 440 (1050) 2, 119 (1959).
- 33. R. Coùl, Ó. Piccioni, D. Clark, Phys. Rev. 103, 1082 (1956).
- 34. B. McCormic, L. Baggett, CERN, Symposium, 1958. 35. W. D. Walker, F. Hushfar, W. D. Shephard, Phys. Rev. 104, 526 (1956)
- 36. A. R. Erwin, J. K. Kopp, Phys. Rev. 109, 1364 (1958).
- A. R. B. F. W. H., J. R. R. Opp, 1193. Rev. 103, 1039 (1933).
 M. Chretien, I. Leitner, N. Samies, M. Schwarty, I. Steinberger, Phys. Rev. 108, 383 (1957); CERN, Symposium, 1958.
 L. M. Eisberg, W. B. Fowler, P. M. Lea, W. D. Shephard, R. P. Shutt, A. M. Thorndike, W. L. Whittemore, Phys. Rev. 97, Phys. Rev. 97, 1000 (1997). 797 (1955).
- 197 (1955).
 39. R. R. Crettenden, I. H. Scanderett, W. S. Shephard, W. D. Walker, Phys. Rev. Lett. 2, 121 (1959).
 40. R. P. Scutt, CERN, Symposium, 1958.
 41. R. C. Whitten, M. M. Block, Phys. Rev. 111, 1676 (1958).
 42. N. F. Wikner, UCRL-3639, 1957 (цитируется по ⁴⁶).
 43. K. C. Bandtel, K. A. Bostick, B. S. Moyer, R. W. Wallace, N. F. Wikner, Phys. Rev. 99, 673 (1955).
 44. W. D. Walker, Phys. Rev. 108, 872 (1958).

- 44. W. D. Walker, Phys. Rev. 108, 872 (1958).
 45. G. Maenchen et al., CERN, Symposium, 1958.
 46. G. Maenchen, W. B. Fowler, W. M. Powell, R. W. Wright, Phys. Rev. 108, 850 (1957).
- Дин Ты, А.В.Никитин, С.З.Отвиновский, М.И.Соловьев, Р. Сосновский, М. Г. Шафранова, препринт ОИЯИ Р-393 (1959). 49. R. Devlin et al. (цитируется по³).
- 50. М. Лихачев, В. Ставинский, Чжан Най-сянь, Материалы 9-й ежегодной конференции по физике высоких энергий, Киев, 1959.
- 51. W. D. Walker, F. Hushfar, W. D. Shephard, Phys. Rev. 104, 526 (1956).
- 52. I. D. Crew, R. D. Hill, Phys. Rev. 110, 177 (1958).
 53. W. D. Walker, I. Crussard, Phys. Rev. 98, 1416 (1955).
 54. R. I. Glauber, Phys. Rev. 100, 242 (1955).

- 55. Е. S е g г е, Доклад на 9-й ежегодной конференции по физике высоких энергий, Киев, 1959.

- 56. S. Gartenhaus, Phys. Rev. 100, 900 (1955); P. Signell, A. Marschak, Phys. Rev. 109, 1229 (1958).
 57. Z. Koba, G. Takeda, Prog. Theor. Phys. 19, 269 (1958).
 58. I. S. Ball, G. F. Chew, Phys. Rev. 109, 1385 (1958).
 59. H. C. Burrowes, D. O. Caldwell, D. H. Frisch, D. A. Hill, D. M. Ritson, R. A. Schluter, Phys. Rev. Lett. 2, 117 (1959).
 60. W. Alwere, and Market and Ma
- 60. W. Alwarez, Доклад на 9-й ежегодной конференции по физике высоких энергий, Киев, 1959.

- 61. В. С. Барашенков, препринт ОИЯИ Р-368 (1959). 62. Z. Koba, Prog. Theor. Phys 15, 461 (1956). 63. G. F. Chew, S. Mandelstam, препринт (1959).
- 64. Y. Y a m a g u c h i, Доклад на конференции по физике л-мезонов и вновь открытых частиц, Венеция, 1957.
 65. S. B a r s h a y, Phys. Rev. 109, 2160 (1958); 110, 743 (1958).

- 66. Чжоу Гуан-чжао, препринт ОИЯИ Д-462 (1960). 67. Ван Ган-чан и др., Материалы 9-й ежегодной конференции по физике высоких энергий, Киев, 1959.
- 68. Д.И.Блохинцев, УФН 62, 38 (1957); М.А.Марков, Гипероны и К-мезо-

- об. д. н. в лохинцев, уФп 02, 38 (1997); М. А. Марков, Гипероны и К-мезоны, Физматгиз, М., 1958.
 69. К. Symanzik, Nuovo cimento 5, 659 (1957); R. Arnowitt, G. Feldman, Phys. Rev. 108, 144 (1957).
 70. И. Я. Померанчук, ЖЭТФ 34, 725 (1958).
 71. Н. Н. Боголюбов, Д. В. Ширков, Введение в теорию квантованных полей. М., Гостехиздат, 1957.
 72. Ш. Блохинцер, В. С. Баражариски и М. Барбание в ХАМАРСКИ. 2010.
- 72. Д. И. Блохинцев, В. С. Барашенков, Б. М. Барбашов, УФН 68, 72. Д. П. Блохинцев, Б. С. Баран Слад., 2. 2. 2. 4. 4. 417 (1959).
 73. М. W. Teucher, E. Lohmann, Bull. Amer. Phys. Soc., Ser. II, 5, 24 (1960).
 74. I. O. Clarke, S. V. Maior, Philos Mag. 2, 37 (1957).
 75. A. Marques, N. Margem, G. A. Garnier, Nuovo cimento 5, 291 (1957).
 76. D. I. Holthuizer, B. Iongejans, Nuovo cimento 14, Suppl. 2, 429 (1959).
 77. A. Dahazadatti, C. M. Garelli, L. Tallone, M. Vigone, Nuovo

- C. M. Garelli, L. Tallone, M. Vigone, Nuovo 77. A. Debenedetti, cimento 9, 1442 (1956).
- 78. И. Я. Померанчук, ЖЭТФ 30, 423 (1956); Л. Б. Окунь, И. Я. Померанчук, ЖЭТФ 30, 424 (1956); С. З. Беленький, ЖЭТФ 33, 1248 (1957). 79. V. S. Barashenkov, V. M. Maltsev, Е. К. Mihul, Nucl. Phys. 13,
- 583 (1959); В. С. Барашенков, В. М. Мальцев, препринт ОИЯИ Р-433 (1959).
- 80. Д.И.Блохинцев, УФН 61, 137 (1957); V.S.Barashenkov, В.М.Вагbashov, E. I. Bubelev, Nuovo cimento 7, Suppl. 1, 117 (1958).

- вазноч, Е. 1. В цветеч, Миочо сппенко 7, Suppl. 1, 117 (1958).
 81. В. Н. Стрельцов, препринт ОИЯИ Р-378 (1959).
 82. Д. Блатт, В. Вайскопф, Теоретическая ядерная физика. М., ИЛ, 1954.
 83. Д. И. Блохинцев, УФН 69, 3 (1959).
 84. S. Bergia, V. Borelli, V. Lavatelli, T. Manguzzi, B. Rausi, P. Woloshek, V. Zoboli, V. Barutti, Chersovana, Tosi, CEBN Supposing 4059.
- P. Wolosnek, V. Zoboli, V. Darutti, Guersovana, Cost, CERN, Symposium, 1958.
 85. D. Glaser, E. Rollig, CERN, Symposium, 1958.
 86. Б. П. Банник, В. Г. Гришин, М. Я. Даниш, В. Б. Любимов, М. И. Подгорецкий, препринт ОИЯИ Р-377 (1959).
 87. R. Hofstater, Ann. Rev. Nucl. Sci. 7, 321 (1957).
 92. С. Баражари и В. М. Макирар, Э. К. Михин (печатается в жур-
- 88. В.С.Барашенков, В.М.Мальцев, Э.К.Михул (печатается в журнале Nuclear Physics).
- 89. Riazuddin, Phys. Rev. 114, 1184 (1959). 90. Доклад проф. Адэмса (CERN), предварительные данные, Дубна, ОИЯИ, июнь 1960.
- 91. Доклад проф. Ланиуса, Дубна. ОИЯИ, июнь 1960.