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I. BASIC EQUATIONS OF THE THEORY

1. Basic Equations of the Theory

IN traversing matter, high-energy*** electrons

*The present article is an abbreviation of an article by
the late S. Z. Belen'kii and I. P. Ivanenko written in 1956.
New results have been added.

••Deceased.

***High energy particles are those for which the processes
of bremsstrahlung radiation and pair production are substantial
when the particles traverse matter.

lose their energy by collision, that is, by ionizing
and exciting the atoms of the medium. In addition,
an electron slowing down in the Coulomb field of
the atomic nuclei of the medium, can emit, with a
certain probability, a photon. Most of the elec-
tron energy spent in collision is lost in small bits,
whereas the energy lost in radiation is evenly
distributed among photons of all energies from
zero to EL --the initial energy of the primary
electron. Radiation losses increase quickly with
the energy (in proportion to E for large energies);
ionization losses are practically independent of
EQ . Therefore, for EQ somewhat exceeding the
critical energy characteristic for a given sub-
stance,1 /8/>/ 1600mgC

 2Z (c is the speed of light,
me the electron mass, and Z the atomic number of

the substance), bremsstrahlung processes of radi-
ation play the most important role in the energy
loss. In slowing down in the field of the atomic
nucleus, the electron can emit a photon of energy
near to EQ . A photon of such energy can produce,
with a definite probability, an electron-positron
pair or can undergo Compton scattering. The
newly produced charged particles emit in turn
high-energy photons as they slow down. Thus, at
a certain depth in the substance we have instead of
one primary electron of energy Eo several elec-
trons and photons whose total energy is close to

The process of multiplication and the simul-
taneous splintering of the energy continues until
the energy of the majority of the particles is near
the critical energy. Then the charged particles
begin to lose a large part of their energy by ioni-
zation and the cascade begins gradually to die out.
The probabilities of these processes taking place
with electron-photon radiation in a substance are
given by quantum electrodynamics. The theory of
showers must determine the probability that in the
element of solid angle (u)t co + da>) and in the
energy interval (E, E + dE) there will appear, at a
certain depth, Nl electrons and N2 photons (a
beam of electrons or photons with given angular
and energy distributions is incident on the bound-
ary of a layer of a certain substance at г = 0)
which pass through a plane perpendicular to the
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shower axis* at the distance (r, r, + dr). Mathemat-
ically this problem is very complicated and to
obtain the more important characteristics of the
cascade shower it is sufficient to know only the
average number of electrons and photons at a
given depth. We therefore examine the average
characteristics of the shower.

In all elementary processes at high energies,
the angles at which secondary electrons and
photons are emitted are extremely small, of the
order of mec

 2/E , where E is the energy of the
primary particle. Rutherford scattering of the
charged particles of a shower is also small, at
least in substances with small Z; therefore a
shower develops basically in the direction of
motion of the primary particle. This allows us to
examine the development of the shower with its
depth and in its angular and space distribution as
two different problems. At first we determine the
function that describes the development of the
shower with depth (without considering the in-
crease in the path of the particles because of
scattering), and then we use that function to
determine the angular and spatial distributions of
the particles in the shower.

We begin with the basic equations of the one-
dimensional cascade theory which include the
processes of pair production by photons, brems-
strahlung, and ionization losses of electrons:

ЭР (l, Е)

di
= 2 ^ T(t, E')WV(E', E)dE'

t, E')W,.(E', E'-E)dE'-

-\P(t, E

dv{t EK \ P(t, E')\\\{E\ E)dE'

(l.la)

-\ T(t, E)W,,(E, E')dE'.
(1.1b)

A detailed derivation of these equations can be
found in the monographs of S. Z. Belen'kii2 and
B. Rossi.3 Here Pit, E) and T(t, £)are, respec-
tively, functions giving the average number of
electrons and photons in the energy interval (E, E + dE)
at a depth t in a layer of the substance under

*The axis of the shower is straight, continuing in the direc-
tion of motion of the primary particle.

examination; W(E',E) is the differential proba-
bility that a photon of energy E ' will produce in
unit path an electron-positron pair with a positron
energy E and an electron energyE'-E; We(E, E') is
the differential probability per unit path for the
radiation by an electron of energy £ of a photon of
energy E'\ /3 is the average ionization loss of
charged particles per unit path of the substance.2

Equations (1. la) and (1. lb) form a system of
two linear homogeneous integro-differential equa-
tions. They are similar to equations obtained in
the theory of diffusion and are therefore often
called diffusion equations. They relate the
number of electrons and photons at depth t with
the number of electrons and photons at depth t + dt.
The linear integro-differential operators in the
right side of (1.1) act only on the variable E, the
particle energy at depth t; the energy of the pri-
mary particle or the boundary energy of the spec-
trum of primary particles EQ enters into the
equation as a parameter. For a given primary
energy Eo it is possible to compute the quantities
P(E0,t,E) and F{E0,t,E) only when the functions
P and r(E0,t,E) are known for energy £' larger
than E , since particles with energy E' at depth *
are produced by higher energy particles. This
physically obvious circumstance corresponds to
the fact that the integro-differential operator in
the right side of (1.1) acts only on an energy
larger than or equal to E.

Sometimes it is more convenient to use the
equations with the variable EQ ; the variable E in
this case enters into the equations as a param-
eter. 4> 5 We can then compute for a certain
secondary energy E the functions P(E0, t, E) and
Г(£о, t, E) from the primary energy EQ if the
functions P and Г {Eo, t, E) are known for all ener-
gies E'o between EQ and E, since a particle of
energy Eo can form secondary particles with
energy E either directly or through intermediate
particles with energy Eo' lying between EQ and E.
The corresponding integro-differential operator
acts on a variable £J , which is less than or
equal to EQ all the way up to EQ = E.

Equations (1.1) with boundary conditions that
give the number and energy spectrum of electrons
or photons at the boundary layer t = Oof a sub-
stance are the basic equations in the uniform
theory of showers. The case of one primary
electron of energy E corresponds to the boundary
conditions:

P (£„, 0, E) = б (E - £„); Г (£„, о, Е) = 0.

The case of one primary photon of energy E n cor-
responds to the boundary conditions:

„, 0,Л') = 0; (1.2)
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where S is the Dirac delta function. Generally
speaking, (1.1) can be employed with arbitrary
initial conditions:

P (JE0, 0, E) = «pp (£„, £); Г (£,„ 0, E) = Ф г (£d, £),

where 0 r are certain arbitrary functions.

2. The Probabilities of the Basic Processes

According to Bethe and Heitler 2 the probability
that an electron with energy E will radiate a
photon with energy E' when going through a layer
of substance 1 cm thick is:

thick is given by Bethe and Heitler in the following

expression:

W,, (E, E') dE' = 'inalJ-rl ̂  [ { 1 + (i - -J-)" } Ф,

(1.3)

Here Z is the charge of the nucleus, a = e 2/tc is
the fine-structure constant, rQ = e 2/mc2 is the
classical radius of the electron, and n is the
number of atoms per cm3 of the substance. For-
mula (1. 3) was derived assuming E »mc2. The
functions Ф1 and Ф2 include screening of the
nuclear field by the fields of atomic electrons.
Formula (1. 3) was obtained in Born approximation
and therefore it was not considered applicable to
heavy elements. A correction for the inaccuracy
of the Born approximation was investigated by
Bethe and his co-workers, 6 who found that for the
process of bremsstrahlung the correction was
small enough to be disregarded and that (1. 3) can
be used for any Z. L. Landau and Yu. Rumer 7

showed that the radiation in the atomic electron
field can be approximately accounted for in the
expression for the probability of radiation by re-
placing the multiplier Z2 by Z(Z + 1). The theo-
retical calculation of bremsstrahlung in the field
of atomic electrons, not including screening, was
done in references 8 to 11; screening was included
in the calculations of reference 12. It was found
that with an increase in energy the radiation in the
electron field approaches radiation in the field of
a nucleus with unit charge, but even with E = me2

the radiation is 15% less than the latter. On the
other hand, reference 12 shows that screening has
less influence on radiation in the electron field
than in the nuclear field. Thus the exchange of Z2

for z{Z + 1) takes into consideration the radiation
in the electron field with sufficient accuracy.

The probability that a photon of energy £ ' will
form a pair in the nuclear field (that is, a posi-
tron with energy E and an electron with energy
E'- E) upon traversing a layer of a substance 1 cm

и' ', E) dh
dE E V

)

Formula (1.4) was derived assuming E'»mc2.

Functions Ф3 and Ф4 include screening of the

nuclear field by the atomic electron fields. A

detailed account and discussion of the we and W

cross sections can be found in reference 13.

As in the case of radiation, pair production in

the atomic electron field can be accounted for with

sufficient accuracy by changing the multiplier Z2

to Z(Z + 1) in Wp(E', E). The theory of this phe-

nomenon is similar to the theory of bremsstrah-

lung in the atomic electron field. The theory

without screening was developed in references 8,

9, 10, 11, and 14; screening was included in the

calculations of reference 12.

The expressions (1.4) were obtained in Born

approximation. Deviations from the cross sec-

tions in Born approximation were studied in ref-

erences 15 and 16 at low energies and heavy

elements; the authors used exact Dirac wave

functions and found out that in lead the exact cross

section is 25 percent more at 5 me2 quantum

energy and 100 percent more at 3mc2 energy than

the cross section in Born approximation. At

these energies they obtained the following depend-

ence for correction on atomic number:

aZ2 + bZ4.

Bethe and Maximon17 accurately calculated the
differential cross section for pair production at
very high energies without including screening.
Bethe and Davies 1 8 obtained the complete cross
section. The correction is 11. 8% of the cross
section in lead at 88 Mev and 10. 0% at 280 Mev.
If we include screening, the correction to the
cross section can be written approximately as
0.11 (Z/82)2.

For high energies, when the screening can be
considered complete, the probabilities for the
processes of bremsstrahlung and pair production
for one unit of radiation length or unit cascade
length are written thus:

E. B')dE' =l

(1.5)
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•I-2b-
(1.6)

The quantity b = 1/18 In, (191Z 1 / 3) is small in com-
parison with unity and changes little with a change
in Z ; therefore Ь is taken equal to the average
value, 6 = 0. 0135, with good accuracy.

If we consider radiation and pair production in

the atomic electron field and also the correction

for the inaccuracy of the Born approximation in

heavy elements, we obtain the following expres-

sion for a unit "radiation" length:

1 = 4naZ (Z + 1) rlLrd [ 1 + a ( - | )* ] . . 7 )

The coefficient "a" for the process of pair pro-

duction is 0.11. In the case of primary particles

at high energies, where the role of electrons and

photons in the development of the shower is almost

the same, we obtain a good approximation with

a =0.06. The expression lJ?d accounts for the

effect of complete screening. According to A.

Kirpichov and I. Pomeranchuk19 the values of

jj-ad a r e a D O U t io% greater than tne magnitudes

obtained from the Thomas-Fermi model.

Table I.

«-unit in
g/cm2

| Hydrogen . . . .
Carbon
Nitrogen
Oxygen
Aluminum . . . .
Argon
Iron
Lead
Air Composition

1 by weight
I 76.4%

8
13
18
26
29
82

Water 0

[ Composition |
by weight

11.1%
88.9%

112
40
35.4

22.7
18
12.fi
11.0
5.55

• 'A.2

Table I shows the values of shower units in

different substances, calculated according to (1.7).

The coefficient a was assumed to be 0. 06.

At lower energies the ionization and excita-

tion of the atoms of the medium play an essential

role in electron energy losses. We shall use the

magnitudes of ionization losses averaged accord-

ing to the "equilibrium" energy spectrum of the

electrons. 2 The magnitude of the ionization loss

of a relativistic electron in a unit cascade length /3

is called the "critical energy. "

In the lower energy region the process of pair

production for photons is replaced by the Compton

effect, i. e., by the elastic scattering of a photon

on free electrons. The differential cross section

for the Compton effect was calculated by I. E.

Tamm 2 0 and by Klein and Nishina.21 Assuming

E '/me2» l, the probability of a photon of energy

E' in the path of one radiation unit hitting an

electron and retaining an energy E " is found to be

where g = 55 T1niZi/ZinlZl (Zt + l)Lfad Mev.

The quantity g for different substances can be

found in reference 2. Integrating (1. 8) over E"

from E' to the minimum value of E" we obtain the

effective cross section for photon absorption as a

result of the Compton effect:

C o m P rrad
(1.9)

the "Compton logarithm" is LComP= In (2 E7mc2)+ 1/2 ,

We shall use the completely screened forms of

the cross sections of basic processes in the light

elements, (1. 5) and (1. 6). Using asymptotic

values of the coefficient of bremsstrahlung radia-

tion should not cause large errors for two

reasons: first, because in light substances the

exact magnitude Wg{E,E') , all the way up to

energies of the order of one tenth of the critical

energy, does not differ from its asymptotic value

by more than 20%. In addition, low-energy

electrons (of the order of the critical energy and

less) expend most of their energy on ionization;

losses by radiation play a small role in the cor-

rection. Therefore even a rough calculation of

electron radiation losses does not cause a large

error. Formula (1. 6) for Wp (E',E)' is a poorer

approximation to the accurate cross section of

pair production by photons. However, the Compton

effect was not included in the basic equations and

its influence is considerable at low energies.

There is a well known similarity between the

process of pair production and the Compton effect

as regards the formation of secondary electrons.

The energy distribution of secondary Compton

electrons up to E~mc2 is very similar to the dis-

tribution of electrons in pair production. The

Compton effect has noticeable probability in the

energy region where the basic process for elec-

trons is ionization loss, while radiation losses

are small. Therefore it no longer matters

whether the photon will spend its energy on the

production of electron-positron pairs or on

several low-energy Compton electrons. And for

the substances with low atomic numbers the total

absorption coefficient for photons remains nearly



916 S. Z. BELENKII AND I . P . IVANENKO
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constant to the very low energies л/5 x 10 ev.
Therefore if we are not interested in the fate of
low-energy electrons and if we accept that the
process of pair production follows the cross
section (1. 6) all the way down to the very small
energies, then we have thereby approximately
included the Compton effect. In the region near
the critical energy the deviation of actual energy
losses from those calculated according to (1. 5)
and (1. 6) does not exceed in air 8% for the slowing
down of electrons of 18% for photon absorption.22

The formulas given here for the cross sections
for bremsstrahlung and pair production are appli-
cable up to arbitrary high energies if we are
observing the processes on one isolated atom.z

However, the picture changes considerably if we
observe high-energy radiation and pair production
in matter. The effect of multiple scattering of
electrons by the atoms of a medium on brems-
strahlung radiation and pair production have been
dealt with in detail by E. L. Feinberg in Usp.
Fiz. Nauk 58, 193 (1956).

II. SOLUTION OF THE BASIC EQUATIONS OF
THE THEORY. THE METHOD OF
FUNCTIONAL TRANSFORMATIONS.

3. Solution by the Double Functional Transfor-
mation Method
Asymptotic expressions for cross sections for

bremsstrahlung radiation by electrons (1.5) and
pair production by photons (1.6) are homogeneous
functions of the energy of the primary and second-
ary particles. The basic equations of the cascade
theory (1. la) and (1.1b) are linear in the func-
tions P and Г and, with the cross sections of the
basic processes as given by (1.5) and (1. 6) they
are homogeneous in the variables E and E'. As a
result, the set (1.1) is comparatively easily
solved by the method of functional transforma-
tions. Using the Laplace-Mellin transformations
for energy, L. D. Landau and Yu. B. Rumer7 in
1938 solved (1.1) without accounting for ioniza-
tion losses. In reference 24 Snyder solved (1.1)
by using the method of functional transforma-
tions and including ionization losses. However,
in references 2 and 25, Snyder's method of solu-
tion was the subject of criticism. It was shown
that his solution did not accurately satisfy the
boundary conditions: it described a shower
started by a primary electron of energy EQ and
an additional distribution of electrons and photons
possessing a noticeable intensity near the critical
energy/3. Therefore Snyder's solution was ac-
curate only for Eo /p » 1 and « » 1, where it did

not noticeably differ from a shower started by
one primary electron of energy E . In addition,
Snyder's solution involved a certain function
determined only for integral values of the argu-
ment; for non-integral values of the argument the
function was defined by graphic interpolation. We
note that Snyder found only the depth dependence
of the total number of particles with energy
greater than zero; he did not solve the problem
of the energy spectrum of particles at an arbi-
trary depth. In 1939 I. E. Tamm and S. Z.
Belen'kil, having solved the equations inte-
grated over depth with account of the ionization
losses, found the "equilibrium" energy spectrum
averaged along the entire cascade curve. In 1941,
S. Z. Belen'kil,27 by applying the Laplace-Mellin
transformation in the variable E and the Laplace
transformation in the variable t, reduced the
basic equations of the theory to equations in finite
differences, which he succeeded in solving. A
certain function included in the equation was re-
placed by an expression which approximated the
function well in the region essential for the prob-
lem—in the region of the change of variables.
After this it was possible to carry out all the cal-
culations and obtain analytical expressions for the
dependence of the number of particles in the
shower on depth and energy. Investigations
showed that the approximation introduced did
not involve a significant error in describing the
one-dimensional stage of the shower develop-
ment. Reference 2 gives the most detailed ac-
count of this theory.

In 1942, Bhabha and Chakrabarty 2 5 devel-
oped the theory including ionization losses and
arrived at expressions for the total number of
particles different from those obtained by
Snyder and by Belen'kiL It was shown in ref-
erence 2 that the solutions obtained by Bhabha
and Chakrabarty significantly underestimated
the number of low-energy particles. Therefore
their expressions for the total number of par-
ticles are inaccurate and the expressions for
energy spectra of particles become correct at
particle energies E > /8.

In 1949,28 having improved the method of
solution in reference 24, Snyder obtained an
accurate solution to the equation in the form of
a series strictly satisfying the boundary con-
dition. However, in spite of considerable im-
provement in the mathematical methods, Snyder
did not succeed in finding a complete solution to
the problem. He found the dependence of the total
number of particles on depth, and the energy
spectrum in the region E/p « l . In 1948 Bhabha
and Chakrabarty,29 having improved their method
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of solution,25 also obtained an accurate solution
to the equations in the form of a series which
strictly satisfied the boundary conditions. How-
ever, they did not succeed in obtaining physically
new results. As earlier, their solution was sig-
nificantly different from the Belen'kii and Snyder
results.

In 1952 Nishimura and Kamata,30 starting
from the solutions in references 25 and 29 and
replacing the series in it by an integral, which
was equal to the series in the region of its con-
vergence and was the analytical continuation out-
side the region of convergence ,* obtained a solu-
tion to the equations including ionization losses.
Their method of solution was somewhat simpler
than that used in references 28 and 29; their
solution coincides with Snyder's solution of ref-
erence 28.

In 1956, Chakrabarty and Gupta,31 using a
method of solution analogous to the one proposed
in reference 30, obtained an accurate solution to
the basic equations in the form of a series. Their
series, in contrast to the series in reference 25,
converges rapidly and the first term in the series
is an accurate solution for the condition £0 / /3»l,
as in reference 2 and 28. By applying the double
saddle point method in calculating the integrals
they succeeded in obtaining an accurate solution of
the entire one-dimensional problem, i. e., in
finding an analytic expression for the dependence
of the number of particles in the shower on depth
and on energy. Their results coincide accurately
with the results S. Z. Belen'kii obtained from 1941
to 1946.

The Laplace-Mellin transformation in the
energy E, applied in the solution of the basic
equations (1.1) to the functions Pit, E) and r(t, E),
is:

5-f-ico

~ \ E~iiri) P(t,s) ds,

t,s)= \E-P(t,E)dE

and the Laplace transformation in the variable t
is:

(the function Fit, E) is transformed analogously).
The variables s and A are complex quantities, the
contour of integration along s is a straight line
parallel of the imaginary axis, with Re s> 0.
Transformations (2.1) and (2.2) allow us to go
from the variables E and t to the variables s and
Л and vice versa. We multiply (1.1) by Ese~^1

and integrate over E and t from zero to infinity:

A (s) P (X, s) + В (s) Г (X, s) - fisP (X, s - 1),

XV (X, s) - cp r(s) = C(s)P (X, s) - <т0Г {X, s),

(2.3)

where 0p(s) and <£,(s) are correspondingly the
transformed boundary conditions. The functions
A(s), B(s), C(s) and <r0 can be found in reference
2. The term /8sP(A, s-1) accounts for ionization
losses; its presence considerably complicates the
equations, converting them from algebraic equa-
tions to equations in finite differences. We elimi-
nate the function Г(Х, s) from (2. 3)

P (X, s) \p (X, s) 4- Pi'P (X, s— 1) = ф (s,X), )

, X + A(s)-B(s)C(s) =[X-Xt (s)][X-X,(s)] (2-4)
X-\-a0 Я+^о ' I

where the functions xlis) and A2U) are the roots
of the equation x(A,s) =0. The function ф{\, s)
is defined by the equality

<p(X, s) =

when |s| -» к» the function y(A, s)« C lln s, where
Cj is a certain constant. The function Г(А, s) is
defined by the equality

r (s)

Let niX, s) be the solution of (2.4) without the
right-hand side. We look for a solution of (2.4)
with the right-hand side in the form

d+i-o

/:>••'P(X, s)dX, P(X, S) = (D(A,, s)n(X, s). (2.5)

P(X, 6-)= ^ в-^Л(/, s)rf« (2- 2)

•We note that S. Z. Belen'kii was the first to use a similar
device for calculating the energy spectrum of particles with
allowance for ionization losses (see reference 2, for example).

Substituting (2. 5) in (2.4) we obtain the following
equation for the function Ф (A, s):
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It is not difficult to verify that the last equation
has the following solution : 3 2

Thus:
n=0

* < * . * ) = 4 - 2 (s + n + 1) я (X: s+n) •

From (2.4) without the right-hand side we can find
that

я (X, s) __ ( — 1 ) " I | ) ( ? , , S + 1 ) ^ ( A , s-f-2) . . . Ч? (Л., s-j-")

It is then easy to obtain a final expression for the
function P(X, s)i:

n=0

( - 1 ) "
P« (« + •]) (s + 2) ... (s + n)

( 2 . 6 )

Equation (2.6) gives a formal solution of the
problem. The expression for the function
P(k, s) admits of a corresponding Mellin trans-
formation for s, and the series (2. 6) can be inte-
grated term by term. But as a function of A the
n-th term of the series behaves like kn , and an
inverse Laplace transformation cannot be directly
applied to it (it is necessary that the transformed
function vanish like A"1 as ReA -* ~). Consequently
we must sum the series (2.6) or obtain some
other representation for it.

4. S. Z. Belenkii's Method

S. Z. Belen'kn has shown2 that another rep-
resentation of the series (2.6) can be obtained in
the following manner.

It is not difficult to show that the most essen-
tial role in the theory is played by the variation
of the variables s from 0 to 2 and of A from 2 to
-0.6. In this region the function (̂A, s) has two
essential singularities:

1. It has a simple pole at s = 0 [ C(s) -> ~)].
2. It vanishes at values of A and s deter-

mined by the relation A = At(s) or s = sj (A). Con-
sequently in this region of variation, the function
ф(\, s) can be approximated with good accuracy
by the following expression

(2.7)

This approximation is analogous to but does not
coincide with the approximation first used in ref-
erence 26. It was shown that approximation (2. 7)

leads to a function P(E, t\ that coincides practic-
ally with the accurate function at high energies
when ionization can be ignored. Approximation
(2. 7) influences those terms of the equation,
which account for pair production and brems-
strahlung. Inasmuch as ionization losses are
accurately accounted for in (1.1), we can hope
that in the present case the application of ap-
proximation (2. 7) will give good results. Sub-
stituting (2.7) in (2.6) we obtain, for boundary
condition (1.2):

r,

R о у,
n™0

L P J

^J r(s+n +

Hence, using (2.1) and (2.2) and integrating over
E we obtain the following expression for the func-
tion N(E, t) integrated over E:

Л'(£,«)= — Л E-"e>J±- (2.9)
c, c,

Series (2.8) is an expansion of the solution in
powers of Eg/p. Using the relationship

we present (2.8) in the form

, * ) = •

(2.10)

where

1 ' n=o i ! T ( s + n + 2 )

and

Here the contour of integration was chosen so that
the poles of the function Пу+s + l-Sj) lie to the left
of the path of integration, and the poles of func-
tion r(-y) to the right of it. Closing the contour
of integration С with a semicircle of infinite
radius and taking the residues of the integrand at
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the points y = n, it is not difficult to verify the cor-
rectness of (2.10). In addition the contour inte-
gral (2.10) serves as an analytic continuation of
the series ¥x in the region /3/E0< 1. Closing the
contour of integration on the left by the semicircle
of infinite radius and taking the residues of the
integrand at the points y= sx-s-n-\ , we obtain the
expansion Fy in inverse powers of Z. Limiting
ourselves to the first term of the expansion we
obtain:

We ignore the integral over the closing contour,
which, as can be shown, is of the order of
ежр(-£0//3). Thus, substituting the expression
for P{\, s) in (2. 9) and integrating over s and A
(making the substitution Л = Aj(s) after the inte-
gration over s) we obtain:

.V (£',,, E,t)

\ (2.11)

where

<J(s, z) = e'- f <гх( \ -±

M_ °[o±M£L- n ,-,л -
X[ (s)Г skj (»

We carry out the integration in (2.11) by the
saddle point method. As a result we obtain:

IN (E E i)]» Д - М Д ^ М ^ " " , 2 1 2\
( 2 Л 2 )

We note that expression (2.12) is correct un-
der the following conditions: a) the magnitude of
у must be more than unity; b) the energy E is of
the order of the critical energy p and less. The
depth t must be more than unity, because in com-
puting N(E, t) we have ignored the term propor-
tional to exp A2 (s)t and in the saddle point method
we have expanded the function in powers of \/t
and ignored the terms of order 1/t and higher.

By analogous calculations we obtain the fol-
lowing results for different special cases:

a) Primary electron energy EQi

1. With allowance for ionization losses
i Np (EQ, t, E) I p was determined in (2.12)

{P (Eu, t, Е)Г

_ Я, js) D (s) (G, (s, e) - EG (s, e)) exp (ys + ?M (s) t)

sEV2nX[ (s) t

К (*) = - - 1 (s, e) = -*)dx.

If we make use 3 of the approximated expression
for the function C(s) = 1/4, which differs from the
accurate expression by only several percent, then
we can obtain the following expressions for the
photon distribution functions:

H[ (.v) D (s) G2 (s, 8) exp (ys+ Xt (s)) t
{Лг(£,, / , £ ) } ' s\'"2M[(s)t

Here

G2 {s, г) = i" \ e ' (x — e) s~] x * dx,

//,'(

where s is determined from the equation
t = - y / A ' j t s ) , a n d

„ _ £ / ( ? . , Is)) , , . , , / F /я\

Function C(s, f) describes the energy spectrum
of electrons at different depths. For the value
s = 1 corresponding to the maximum of the
shower, G(s, t) coincides with the expression
for the "equilibrium" spectrum of particles pro-
vided f o »f . 2 6 The function G(s, e) is listed in
table II for different values of the variables s and e.

We can write the following relationships between
functions:

E)f =

Here throughout у = In (Eo/E)
2. Without accounting for the ionization

losses:
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TABLE П.

\ . 8

e N ^

0.05
0.1
0.2
0.5
0.8
1.2
1.6
2.0
3.0
4.0

^ \ s

e ^ \ ^

0.05
0.1
0.2
0,5
0.8
1.2
1.6
2.0
3.0
4.0

0 . 2

0.967
0.947
0.918
0.860
0.823
0.786
0.758
0.736
0.694
0.662

0 . 2

0.990
0.983
0.968
0.935
0.908
0.880
0.855
0.837
0.800
0.767

0.4

0.937
0.901
0.846
0.751
0.692
0.634
0.592
0.559
0.499
0.459

0.4

0.982
0.960
0.939
0.876
0.829
0.779
0.740
0.708
0.625
0.596

0 . 6

0.913
0.863
0.792
0.667
0.'591
0.522
0.472
0.434
0.367
0.321

0 . 6

0.973
0.940
0.911
0.823
0.759
0.694
0,644
0.599
0.514
0.480

Function G(s,

0 . 8

0.891
0.830
0.744
0.597
0.511
0.436
0.384
0.345
0.273
0.232

1 .0

0.870
0.798
0.701
0.538
0.447
0.369
0.316
0.277
0.214
0.175

Function Gi(

0 . 8

0.965
0.930
0.885
0.775
0.700
0.621
0.566
0.519
0.433
0.399

1.0

0.956
0.920
0.860
0.731
0.642
0.557
0.494
0.445
0.357
0.301

e)

1.2

0.850
0.770
0.663
0.489
0.396
0.315
0.263
0.227
0.173
0.135

s, <0

1,2

0.948
0.906
0.836
0.692
0.604
0.515
0.436
0.388
0.288
0.244

1.4

0.832
0.744
0.629
0.446
0.355
0.275
0.221
0.186
0.134
0.102

1.4

0.938
0.892
0.815
0.665
0.554
0.468
0.387
0.336
0.259
0.202

1.6

0.815
0.720
0.598
0.408
0.313
0.238
0.186
0.153
0.112
0.080

1.6

0.929
0.879
0.794
0.620
0,516
0.422
0.343
0.297
0.226
0.162

1.8

0.799
0.698
0.569
0.376
0.280
0.207
0.160
0.129
0.095
0.062

1.8

0.920
0.865
0.773
0.588
0.479
0.382
0.306
0.262
0.196
0.133

2 . 0

0.784
0.677
0.543
0.346
0.252
0.180
0.138
0.109
0.071
0.048

2 . 0

0.917
0.852
0.751
0.558
0.441
0.341
0.274
0.226
0.152
0 . Ш

Function Gjis, ()

E ч

0.05
0.01
0.2
0 . 5
0.8
1.2
1.6
2.0
3.0
4.0

Note:

0 . 2

7.16
6.51
5.86
5.04
4.65
4.32
4.10
3.93
3.64
3.45

0.4

4.48
3.84
3.23
2.50
2.16
1.89
1.71
1.58
1.37
1.23

The function

metric function

where
h

G

G

G

t = 0

С = Уг ~

For values e >

WX)ll(e)

s,e) = <

(s, 8) =

(s, e) =

for
s
4 it is

0 . 6

3.50
2.88
2.30
1.63
1.37
1.11
0.966
0.865
0.702
0.604

Gj can

Г(|Ц

G(s, e)

0 . 8

2.95
2.35
1.82
1.19
0.930
0.738
0.620
0.547
0.412
0.337

1 .0

2.59
2.01
1.49
0.923
0.691
0.525
0.427
0.361
0.262
0.205

1.2

2.30
1.73
1.22
0.745
0.525
0.398
0.304
0.255
0.181
0.132

эе expressed in terms

+ 2"~~

к =•- ^

)r * + T e

(" + T

» + -2 )

for G[s,

easy to calculate G from the

1.4

2.11
1.57
1.08
0.607
0.427
0.310
0.230
0.185
0.118
0.091

1.6

1.96
1.43
0.968
0.515
0.351
0.247
0.177
0.141
0.091
0.069

1.8

1.83
1.31
0.871
0.447
0.292
0.199
0.140
0.108
0.066
0.048

2 . 0

1.72
1.22
0.792
0.384
0.244
0.157
0.112
0.084
0.048
0.032

of the confluent hypergeo-

e

) ~

к *

= Уг

- - s
forG2

asymptotic formulas

is, e)

for

I P _ Я . I

2n\\ (s)t

(Г (Е I FY!' - fl3U)exp(ys~lrX1(s)'t)
" ' E V2nr; (s) t

It is possible to write the following relationships
between functions:

{P(E0, t,

Here
Here throughout у = In (£Q /E)

b) Primary photon of energy Eo:
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1. With allowance for ionization losses. If
we use 3 the approximate expression for the func-
tion B(s) = 2aQ/{s + I)3, , which differs from the
accurate expression by only a few percent, then
we can obtain the following expression for the
distribution functions:

{NV(EO, t,
, _ Я, (.s) D, (s) G (s, e) exr.

t (s) t)

The following relationships between functions can
be written:

„. _50i , \Np}PB(s)

2. Without accounting for ionization losses

{Г(£о, г, Е)у =

Here

DJs) = -

- e _

{Г (Eo, t, E)Y =

{JVr (_•„,*,

Here

E V 2яХ1 (s) t

—: С —

The following relationships between functions can
be written:

2 4 в 8 10 12 14 Id 18 20 22 2^ 26 28 30

FIG. 1. The dependence on depth of the number of electrons
with an energy greater than zero 1/V (_Q, t, 0) ! " in a shower
caused by a primary electron of energy _ „ . The numbers near
each curve indicate the energy of the primary electron in ev.
Ionization losses calculated to order 1/t2 are included.
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FIG. 2. Same as in FIG. 1, but in a shower from a primary photon.

501(,Я)}.- = — £ — ,

{Г(£о, t, E)Y' =

{Л-г(£„, t,

EB (s)

о (s)

Figures 1 and 2 show the cascade curves
\Np{E0,t,0)f and {/Vo(£o,i,o)}r for dif-

ferent values of the variables EQ,t,, and E in-
cluding ionization losses. These data together
with those in Table II which also gives the quan-
tities Gl(s, c) and G2(s, f) can be useful for
various calculations. Thus, the method of
double functional transformations and the further
approximation (2. 7) make it possible to obtain a
complete description of the one-dimensional
development of a cascade shower in light
substances.

5. The Scott, Snyder. Bhabha and Chakrabartv
Method
We recall that expression P(X, s) admits of

an inverse transformation in s and that the
series (2.6) can be integrated term by term.
But the n-th term of the series behaves like X",
and the inverse Laplace transformation cannot be
applied to it.

Thus we must sum the series (2.6) or write
down its general term in a form in which the in-
teger n can be replaced by the complex variable
a, and then present the series in the form of a
contour integral (see, for instance, reference 2).
The denominator of the n-th term of (2.6) con-
tains n factors (s + 1). . . .(s + n + 1); we write
them as a ratio of two gamma functions. The

numerator of the n-th term of (2.6) contains (n —1)
factors ф(Х, s + 1) ф{Х, s + n). W. T .
Scott3 5 also introduces in the numerator the ratio
of two new functions, defined in terms of infinite
products, thus getting rid the variable number of
factors in the n-th term of the series. We intro-
duce the new functions

, s + 2) . . . 4, (I, s + n) = -L

where the function
relation

L(\, s) must satisfy recurrence

= L(k,s+i) or L{K, s) = y(X, s-i)L(k, s-i). (2.13)

It can be shown 3 4 that equation (2.13) has a
solution

L(s, if(s, X+n)
z+n) V s, X+n) ) J

(2.14)

provided the infinite product in (2.14) converges
and l im № {s, X + N)/y (s, N)] = 1.

JV-w)

Using the asymptotic expression for A(s), it
is easy to show that these two conditions are ful-
filled. The function L(s, X) satisfies the boundary
condition Us, 0) = 1. The equality (2.14) is valid
for any Z; for Z = 1 we have L(s, X + 1) = i/r(s, X)
Us, X) which coincides with (2.13) Л is changed to
Л + 1. Us, X) is an analytic function. From the
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expressions (2.4) for the function \fAs, A) and the

quantities A(s), B(s) and C(s) it is obvious that the

function (Д(л, s) has finite non-vanishing values

for all finite X, excluding zero at the points X =

-s -n, n = 1, 2,. . . Consequently L(s, X)i is a

nonvanishing analytic function for all finite Л ex-

cluding the isolated poles at the points X = -s -n.

The infinite product in (2.14) converges slowly; it

is inconvenient for numerical calculations. There-

fore in doing numerical calculations the following

convenient approximation of this function was

used:

L (s, X + z) = L (s, X) l im [•ф (s, X + N + 1))° ( Z ) [xp (s, X'+ Л')] ; ) ( Z )

X ft (s, X + N +
{s> X + ,V (s. X + п)/ n+Z), (2.15)

where

a(Z)- Z(Z-\\)(Z-i)(Z-2) . /yy Z(Z-j-l)(Z + 2)(3Z-7)
(J>> 2 4 У \ J > 2 4

The polynomials a, /3, y, S are chosen such

that (2.15) coincides with (2.14) for all N with

Z = 0, + 1, ± 2 . The condition a(Z) + /3(Z) + y(Z) + 8(Z) = Z

guarantees that (2.15) converges at the same

values of X, as in expression (2.14). At the same

time for a given number of terms N in the product,

the expression (2.15) is more accurate for small

Z than (2.14). A useful asymptotic expression for

the function L(X, s) can be obtained by writing for

large s In * (b, s) = In L (s+ 1. A.) - In L (*> *,) ^

37In L (X, s) and using the relation ф(\, s) = cxln s.

After integration we obtain:

L{X, s)si(cxIns)s, when |s |->co.

The series (2.6) for the function P(\, s) can now

be rewritten:

on 2

24

It is easy to verify that the latter expression can

be written in the form of a contour integral:

i, a, X)
(2.16)

where the contour of integration is a straight line

parallel to the imaginary axis with -1 < Re у < 0.

The function L(s + 1, a, X) behaves like \ a ; for

large values of |X| ; consequently the integral

(2.16) over all о must behave like X , where -1

< у < 0. Therefore we can now apply the inverse

Laplace and Mellin transformations to the ex-

pression P(X, s)

+ U

(2.17)

c\,s,o are straight lines parallel to the imag-
inary axis in the planes X, s , and a to the right
of all poles of the integrand. Thus we find a solu-
tion to (1.1) in the form of triple complex inte-
grals. The calculation of these integrals is no
simple matter. Different authors have calculated
them in different ways; often an unsuccessful
method of computing integrals has greatly reduced

the accuracy of the numerical results or led to
serious errors.

We can derive the Snyder results from
(2.17), which has been obtained by the method of
double functional transformations. We examine
the shower caused by a primary electron with the
energy Eo. After changing the order of integra-
tion we will compute first the integral over Л.
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After taking the residues of the integrand (2.14) at
the points A = Xj U + n + a + 1) and X = A2 (s + n + a + 1)
making all the necessary simplifications and

changing variables o+n + l=-y, s + <j + n + 1 =s(on
the right we have Snyder's "s") we obtain equa-
tions (26) and (27) of reference 28:

t) — V { dA dv Г

ч=0 Ъ С

Bn (s +n) [X 0 O ] AT,

and analogously for the function Г(Е, t).
following notation was introduced here:

The

-i, -y,

The quantities An and Bn (s + y) are determined
from the conditions

X Av-ft(* + д г-k)-[X 2(s + N-k) -kz(s + N)]K4(s + Л" - к , к) Вх_к :<

X(s + N -к)} /r(k+i)T (s + N -k+ ^[^(s + N -k)-X,_(s + N -к)],

= k S ( - l)"*1 Г (s + N (s +7V - A) - \2 (s + Л ' ) ] ^ (s + Л' - A, ft)

If a primary photon of energy Eo falls on the
boundary of a substance, then:

if a primary particle is an electron, then

( s )

-(M«)+q.)
~ Lc(s)

bi the case of a primary-photon spectrum of the
form l/E with maximum energy EQ,

4 . , •. =
— (X2(s

sC °
_ — (X!(8)+q0)

The expressions (2.18) make it possible to ex-
press successively the value of AN{s + N) and
BN{s + N) in terms of the rational functions
s-Aj(s + yv), A2(s + /V) and the quantities AQ(S)
and B0(s)..

T o p r e S e n t the solution in the most con-
venient form for numerical work we investigate
& е b e h a v i o r o f t h e Unctions AN(S) and % ( . ) .
The functions A/s) and A2(s) have branch points
in the half-plane Re s « 0. In going around
the branchpoints, the functions A,(s) and A2(s)
alternate. The same characteristics are pos-

s e g s e d b y Ш е f u n c t i o n s ^ (e> y ) ^ ^ (e> y ) .
Investigation of (2.18) shows that An(s)

 2and
s

n ( 5 ) a r e analytic functions in the region Re s>0
and that they have branch points only where the
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functions Aj(s) and A2(s) do. In going around
the branch points, the functions An(s) and Bn(s)
alternate. The analyticity of the functions An (s)
and Bn (s) with Re s>0 makes it possible for us to

move the contour of integration for n units to the
left in the л-th term of (2.17). As a result we
obtain:

n = 0

Eo v

T
(,s-) [X,! (s) + a0] • K4 (s, y) ex'(s)' - Bn (s) [X2 (s) + a0] Кф, у) е^(s)'}. (2.19)

An analogous expression can be written for func-
tion Г(Е, t). The first term of the expansion of
the solution in powers of ft/EQ was used in the
earlier works of Snyder24 and Serber.35 The
integrand expressions of (2.19) do not have branch
points as functions of s and y.

We recall that the functions K^ (s, y), K^ (s, y)
and C(s + y) have poles at у = - s -n.1 When 2 E « p
this makes it possible to compute the integral over
s in (2.19) by residues. We compute the function
N(E, t),, the number of particles with an energy
higher than E at given depth t;

n = 0

where

An(s) [X, (S) + <T0] K^ (s, -s) (s, -s)

(2.20)

The functions f(y) and g (y) included in (2.20)
are given in reference 28. The first term in
(2.20) defines N(O, t), the total number of par-
t ides with an energy greater than zero at given
depth (. For t>'A, the term with Aj(s) is much

larger than the term with A2(s) (see also refer-
ences 25 and 36). The integral that depends on
Aj(s) can be calculated approximately by the

saddle point method

Here
t = (ys - a (,v))/( - sX[ (s)); b (s) = s% (.v)

(2.1) ' 2 1?., (s) — X, (s)]
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The functions /(s) and a. /3(s)) contained here were
determined earlier. The quantities AjU), a(s),
b(s), H(s), Mis), A(s), and so forth are given in
table 1 of reference 28 for different values of s.

nalogously, the following relation is obtained for
ПЕ, t)

N <

Differentiating (2.21) we obtain

P(E,t) = -
2а„Л'(0,£) | l n - |

that is, as £ tends to zero, the differential spec-
trum of the electrons diverges as In E and the dif-
ferential spectrum of the photons diverges as l/E.
We note that the saddle point method can be used
only in calculating NQ(t), N+(t), N*(t), and N*(t).
The saddle point method cannot be used to com-
pute the remaining quantities lNnU), N^U), and so
forth, since the functions An(s) vanish for * =
1,2,3 n. It is possible to compute the
integral (2.20) over s from the residues of the
poles in the left half-plane. As a result we ob-
tain a power series in t, which can be used in
numerical computations only at very small
depths (see also reference 25). The author
calculated N(E, t) = NQ(E, t) for a primary
electron or photon and for a spectrum of pho-
tons at energies y = 2, 3, 4, 5, 6, 7, 8. Using
tables 1 and 2 of reference 28 we can compute
the ratio \/NQ for the case of the primary
electron as a function of depth at certain values
of r . Table Ш shows the results of calcula-
tions for у = 2 and 3. From the table it can be
seen, for instance, that for у - 2 at a depth of 4
t-units, where N/N

maf
 1/3> m e accuracy of

Snyder's curve is of the order of 10 to 20% and
the error increases with increasing depth. The
area under the curve for у >2 does not differ by
more than 3 to 5% from £0//3,

Table III.

s

t
t

-<Vo

1

1
2
0

.05

.91

.14

.3

1.

4.
6.
0.

55

49
75
7

2 .

9
14

1

15

.4

.1

.3

2 .

17

1

65

.3

.9

evaluation of the integrals. However, at small
у the first, second, and greater moments of the
Snyder curves differ considerable from the ac-
curate ones, i. e., the curves are deformed.
They give somewhat more particles up to the
maximum and somewhat fewer particles at the
greater depths.

The author considers this as a criterion of ap-
plicability of the saddle point method for the

FIG. 3. Dependence on depth of the total number of
electrons \N (EQ, t, 0 ) | r in a shower caused by a pri-
mary electron of energy eQ = 17. 1 - from reference 28,
2 —by moments, reference 37, 3—from reference 29.

Figure 3 shows the Snyder curve 1 for у = 2 and
curve 2 computed by moments.3 7 From a com-
parison of the curves it is obvious that the first
moments in t of Snyder's curves are less than the
accurate values. Thus, t = f^Ntdt / f*N dt (*),
computed from_curve 1, are 9% less than the ac-
curate value, t2 = fjj Nt4t / f*Ndt(*) is 13%
less than the accurate value. From Fig. 3 it is
obvious that the difference between the moments
tn = f^Ntn dt/ /0°°iV<u dt according to Snyder and the
accurate ones will be more than for the t(*> mo-
ments. Thus, the curves in reference 28 are
accurate enough, starting with y»4 or 5.

Using the data in tables 1 and 2 of reference
28 which give the values of the functions H, M,
{ we can show that for E/p = 0. 01 the
term O(E/p) 2ln 3(Д/£) in (2. 21) is about 3% of the
first two, for E//8 = 0. 05 it is already about 20%;
that is to say, (2. 21) cannot be used to calculate
the energy particle spectrum at E/p > 0. 05.
Snyder's method makes it possible to do a detailed
calculation of the integral energy spectrum for
E/f3 from 0 to 0. 05. But a detailed calculation of
the spectrum in this energy region, under the
initial suppositions, does not make physical sense.
Thus Snyder's method allows us to find the total
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number of particles as a function of the depth at
primary-particle energies у » 4 or 5, but actually
it does not make it possible to compute the energy
spectrum. Since we are ignoring the term eM*)'
in the calculation of the integrals in (2. 20), the
expressions we obtain are sufficiently accurate
only starting with a depth t > 1. It is shown in
reference 38 that the saddle point method can be
applied with reasonable accuracy ( 10%) to the
calculation of N{E, t) down to t = 0, if we present
the expression for N(E, t) in the form

2Я1 ,)

To obtain the results of Bhabha and
Chakrabarty 2 9 we put s + о + 2 = s', ds = ds'
(5' on the right is identical with s in reference 29)
in (2.17) and, fixing the contour of integration
over X, we move the contour of integration cs to
the right, and the contour ca to the left. First we
calculate the integral over a from the residues at
the poles o = -m-\, m = 0, 1, 2, The
series obtained diverges, but if we take only the
final number of poles, ignoring the remainder,
and apply to each term of the series the inverse
Laplace transformation, then the resulting series
will converge. We write the result of integration
over a in the form:

Integrating (2. 25), we obtain

4 Is t\-

(2. 25)

(2. 25')

an expression which coincides with formula (8) of
reference 29. It is not difficult to verify that by
using (2. 23) and (2. 25) we can rewrite (2. 24) in
the form

t - t ' ) 1j3n_1 {S,t')df

or ) (2.24')

»(*. 0 =

J

which coincides with (11) and (13) of reference 29..
It is not difficult to show that by using (2.25) and
(2.24), we can rewrite (2.22) in the form.

P(E,t) =

1'

2nEoi

' И 2ni

(2. 22)

which coincides with (14) of reference 29.
reference 36 it was shown that

In

By using the recurrence relation (2.13) and the
boundary condition for function Ш, s) repeatedly,
we obtain

L(s + n, - n - 1 , A)= \[ (2. 23)

Therefore the series (2. 22') converges uniformly
and absolutely when E > fit; thus we can inter-
change in (2. 22') the order of summation and
integration. (2. 22') is an accurate solution of the
basic equations of the theory, under the conditions
E> /3t .

The function

*» {S' l ) = Ш S e " L (* + «. - и - 1, Я) dX (2. 24)
с

Let us introduce the new functions

G(s ^ = *L!LJ) И /

(2. 26)

can be found from the expression
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We rewrite the integrand of (2. 22') by replacing latter expression in powers of pG/(E + /8G). As a
£ s + nby {(£ + /3C(s, «))-j8G(s, t)!s + n and expand the result we obtain:

$„ (s, t)
(s)

m—о

Г(п+« + т)
г (nt + 1) Г (n+s) '

The double series converges absolutely, accord-
ing to (2. 26), and therefore its terms can be
changed in position. As a result we obtain the
following expression for the function P{E, t)-.

P{E,t)

2nil-0

E У

J n = 0
J г (s) ' " ^ '

(2.27)

From the condition of analyticity and continuity of
(2. 27), it follows that it is an accurate solution of
(1.1) for all E » 0. For N(E, t) we obtain

JV {E, t) = fl Nn (E, t), where Nn (E, t)
n=0

J r ( s ) /n (s,

(2.28)

We introduce the function (see also reference 39)

Ф„ (s, k)

4n (*, t) dt, then fn (s, t) = gL ^ еифп (s, X) dl,

?-i=° (2.29)

where is a large real number such that all poles
Ф„ lie to the left of the path of integration. The
integral (2. 28) can now be computed by the double
saddle point method. As a resul t we obtain

\ эх» *? г ^ ах„э«п J ]

The saddle point is determined from the equations

(2. 31)

+ -^ {In Г (s + n) ~ In Г (s)} + 4 S 1" Ф„ (*, X) = 0.

The quantities essential for numerical calcu-
lations are given in reference 29. When E » /3,
the second term in the square brackets of (2. 31)
is so small compared with the first that it can be
ignored. Therefore the variation of G(s, t) with
s practically does not change the saddle point.
Consequently, for the high-energy part of the
spectrum the inclusion of ionization losses leads
only to a lowering of the energy of the particles
by &G{sn, t). For low energies, E/p < 1, it is
impossible to ignore the second term in the
square brackets. However the saddle point
changes very slowly with E , so that it can be
defined with good accuracy at E = 0. At low E we
then obtain the following expression for the
function Nn(E, t)-.

-30')

We note, however, that (2. 30') should be used
only when £„//8 » 1; when £Q /y8 1 the more
accurate expression (2. 30) should be used. From
(2. 30) it is easy to obtain an expression for the
differential electron energy spectrum

P(E, 0

Pn(E,t)

1 »n+n

Using the double saddle point method we can cal-
culate in practice only the first two terms of the
series. Thus for P(E, t) we obtain the expres-
sion:

P(E, 0 s const {fo.- O, t)
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From (2. 32) it can be seen that the contribution of
the second term becomes larger than that of the
first term, beginning at an energy less than

Thus, at у = 10 and i = 20, N2 makes a large
contribution to the electron spectrum at an energy
less than 0.1 /3 . The differential electron spec-
trum, according to (2. 32), remains finite for
E = 0, while in accordance with results of ref-
erences 2, 3, 28, and others it diverges as In E.
With E = 0 the first two terms of the series give
a value of N{t, 0) 30 to 40% too low the maximum
of the curve. We note, that according to refer-
ence 29 / TVA = V 8 w h i l e С W i ( 0 ' t] + N2(0' t))dt

= 0.7EQ//3 . This difference is caused by the fact
that expression (2. 32) underestimates the elec-
trons of low energy, E < fi. It is known that the
relative number of soft electrons increases with
depth; therefore the inaccuracy of the curves in
reference 29 increases rapidly as the shower
develops. Figure 3 shows the following: curve 3

for у = 2 according to reference 29 and curve 1
according to reference 28. The difference be-
tween the curves at the maximum is 25% and at 4
t -units it is already 60%. Obviously the series
(2. 28) and (2. 32) converge more rapidly the
greater the value of E. The Bhabha and
Chakrabarty solution,is therefore convenient for
computing the electron spectrum for energies of
the order of the critical energy and higher.

In this way the authors of the references cited
above have developed new improved mathematical
methods in recent years. However, they did not
succeed in obtaining new physical results. New
physical results were obtained in reference 31,
the principal results of which will now be dis-
cussed.

6. The Chakrabarty and Gupta Method

We start from the expression for the function
P(E, i) given by (2. 22') or (2. 27). Further, as in
reference 33, the Laplace transformation with
respect to t in Eq. (2. 25) yields

(2. 33)

where

Фп (S, k) = <DH_X (*. Я.) Фо (s + n, к); Фо (s, к) = ( Х _ М

а„+Х

Following reference 31, it is easy to write down
the solution of the difference equation in the form

(2. 33) for£ > (3 t and is its analytical continuation
in the region E > /3 t. We have

,Х)'

where p is an arbitrary number. The series in
(2. 33) converges if E > /3 t. Our problem is to find
a solution suitable for all E . As in reference 34,
we represent the series (2. 33) in the form of a
contour integral* which coincides with series

*We note that S. Z. Belen'kif was the first to use a similar
device in calculating the energy spectrum of particles, with
allowance for ionization losses. In reference 30, this method
of solution, applicable for any E, was used inconsistently.

V—ioo

where -1 < у < 0. By closing the contour of inte-
gration on the right with a semicircle of infinite
radius, and taking the residues of the integrand at
points p = n, we readily verify the correctness of
the equation. Substituting the previous equation
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into (2. 33) and integrating over Л we obtain, after
certain simplifications, Expression (2. 34) differs
considerablyfrom(2.27). We recall that Re AjU)
increases with an

P(E,t)=- ). wherePm(E, t) =

<3-\-ico Y+ico

\ dp
Г (s + p) Г (-/.)

and
s,p) expЯ2

i = 0

i = 0

increasing Re s. Consequently the contribution of
the term with exp Ax (s + l)t is much smaller than
the contribution of the term containing exp Ax(s)t
and so forth. The term Pm (E, t), is proportional
to exp \1(s + m)t, while in expression (2. 27) it is
proportional to exp Ax(s)t. Thus, series (2. 34)
converges much more quickly than (2. 27). With
70 > 1 in (2. 34), the contribution of the first term
is much larger than the contribution of all the
others for the energies E » 0. It is easy to see
that (2. 34) with a change of notation coincides with
Snyder's expression (2.19). From (2. 34) it is
easy to obtain the expression for N(E, t). More-
over, the integrals in the expressions for P(E, t)
and N{E, t). were calculated by the double saddle
point method. In the limiting case (s + p) •* 0,
which corresponds to E -»0, the expressions ob-
tained coincide with the corresponding formulas of
Snyder. When-p -> 0, which corresponds to E •*«,,
the expressions obtained coincide with the solution
of the basic equations of the theory without allow-
ance for ionization losses. The values of P(E, t)
and N(E, t) are easy to obtain for intermediate
values of E from tables 1 and 2 of reference 31.
The attempts made by the authors of reference 31

. 29to justify the use of the Bhabha and Chakrabarty
solution in heavy elements ( Pb and others) for
E = 0, on the grounds that it is close to the value

of N(El, t) obtained in reference 31 for y= In El/
/3= -2(in lead this value is E1 ~ 2mgc

2), seem to us
unsatisfactory for the following reasons. From
the basic equations of the theory it is easy to ob-
tain the "law of conservation of energy" of cascade
theory, /°° N(0, i)dt = E0/j3. This relation is
satisfied by the solution N(0, t) = 2 Nm(0, t)

cf. (2. 28) obtained by Bhabha and Chakrabarty,
and is not satisfied by its first two terms, which
underestimate the overwhelming number of elec-
trons at low energies. We cannot therefore con-
sider that their solution for E = 0 describes the
cascade process in heavy elements with #x >

 2n*ec
2

(because of the inaccuracy of the basic physical
premises in the energy region E = (0 to 2) mgc

2),
because their solution does not allow for the
energy variation of the total coefficient of photon
absorption and Rutherford scattering of the
charged particles, which play a definite pole in the
development of showers in heavy substances.
Thus the method of Chakrabarty and Gupta allows
us to compute the cascade curves and the energy
spectra of particles at various depths, including
ionization losses, in light substances with у > 1.
That is to say, it allows us to obtain an accurate
complete solution of the one-dimensional problem
of cascade theory. It is interesting to compare
these results with the results of S. Z. Belen'kii
and other authors. As already mentioned, the
solution obtained by Bhabha and Chakrabarty,
which does not allow for ionization losses, agrees
with the results of other authors. The dependence
of the total number of particles on depth, obtained

to
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FIG. 4. Tamm-Belen'kii energy equilibrium spectrum i o

(solid curve). Crosses—electron spectrum in the maximum
of the cascade after Chakrabarty and Gupta.



CASCADE THEORY OF SHOWERS 931

со,-

so

30

20

to

0
2 4 6 8 10 12 H IS 'и '

FIG. 5. The dependence on depth of the total number
of electrons \N (EQ, t, 0)\P in a shower from a primary
electron of energy yQ = 6. The solid curve was drawn
according to data in reference 2. The crosses indicate
values taken from reference 31.

in reference 31, coincides with the results of
Snyder and of Belen'kii Figure 4 shows (1) the
equilibrium energy spectrum and (2) the spectrum
at the maximum of the shower, drawn according
to data of reference 31. Curves 1 and 2 are
sufficiently close to each other, except for the
energy region £~0.1/3 where the difference is 20%.
In this energy region, however, the basic physical
premises of the theory are not accurate. Figure 5
shows the dependence of the number of particles
of energy greater than E on the depth in a shower
caused by a primary electron of energy y0 = 6,
according to data of reference 31 (curve 1) and the
data of reference 2 (curve 2). From the figure it
can be seen that curves 1 and 2 are in good agree-
ment. This comparison shows that the approxi-
mated complete solution of the one-dimensional

у
problem obtained by S. Z. Belen'kii (see refer-
ence 2, for instance) agrees very well with the
exact one.

дР(Е, t) _
Ft ' £ + W>.

(1.1')

дТ(Е, t)= Lt[P,

Here L2 and L are linear integral operators that
take into account bremsstrahlung and pair produc-
tion; in low-energy regions the operators approxi-
mately account for the Compton effect. It is
interesting to examine the equations in (1.1') by
choosing a source function in the form:

a)S.(E,t)=0,

and
for E>Eh,

for E<Eh.

After performing the necessary transformations,
analogous to those of Sec. 4, we obtain the first
term of the expansion of P(\, s) in powers of /3/£0,
in the form

P0; *

Going from the variables X and s to the variables t
and E, we obtain the following expressions for the
function N At, E):

5+1Л

(s, e) exp (Л, (.s) /

7. Solution of Generalized Equations of the
Theory

We shall examine the generalized basic equa-
tions of the cascade theory, which account for the
generation of electrons and photons continuously
along the entire path of development by some kind
of penetrating radiation. Let S (E, t)dEdt be the
number of electrons and SJ.E, t)dEdt the number
of photons of energy (E, E+ dE) produced by the
external radiation in a layer dt. Then the basic
equations of the cascade theory can be written

where D2 = 2aQ[f(\l(s))]s/(\1(s) + <70)rU + 2),
and the function G{s, 2) is defined by (2.11).

( » 1, then G(s, () = r(s + l)/es and
If

Я, (s) Dj(s)exp{ijs+Xl (.s) t-

a, i (2. 35)
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where D2'U) ) + a0)) and у = l n£ 0 / £ ;
expression (2. 35) coincides with the solution of
(1.11) without allowance for ionization losses; if
у » 1 (here у = ln£0//3) and E is of the order of
the critical energy /3 and less, we obtain the fol-
lowing expression for N it, E) •.

The parameter s is determined from (2. 37). With
E> Efc, allowing for the pole s ̂ y, we obtain

JV (E 1 E)

For the second term we obtain

. exiW'.

(2.38 a)

г (s) D1, ( {s)t~\n (Xt

(2.36)

where f = Ef(\, (s))//S. The parameter s in
(2. 35) and (2. 36) is determined from the equation

Ил 0 ! (») t - i n

H e r e

А, (г)

2)
0 n—0

1 I '/
J

(2. 38b)

в(1-т)-|п (-1)»-|п (-1)»

(2.37)

_2o0p-Ve-Y+1 Г , у, | e ( l - t ) ] » ( - i ) »Ve- Y + 1 Г , у, | e ( l - t

-i-2) i T
 2J [ — ^

0 n=0

From (2. 37) it can be seen that as t approaches
infinity, s does not increase without limit (as in the
equations without a source), but approaches Xj(s)
= -/i. Thus, beginning at a certain depth, equilib-
rium begins to be established between the elec-
tron-photon component and its generating radia-
tion, which is absorbed exponentially with an
absorption coefficient 1/д • Equilibrium between
the generating and shower components will be
attained at large depths near the maximum range
of the electron-photon shower. Equilibrium was
examined in references 3 and 40. The results
obtained can be generalized to a generating func-
tion of the power-law type. In analogy with (2. 36),
we obtain for N (£„, t, E) an expression in the
form of a sum of two terms N

pfE0, t, E) and
NpJ.E0,t,E). For Npl(EQ, t, E) we obtain for
E < E/c the following expression:

NpAE0,t,E)

t '(j) t —In

( ] I M )
M4')ll"»

Г (2.38a)

where

/.A, (.si — -j\ ; у = In Яь/р ; He

s is determined from the equation

< = :

Thus formulas (2. 38) determine Np(EQ, t, E) in
the case of a power-law generating function. We
note that the term /v Jt, E) i s considerably less
than Npl(t, E).

So far, all the methods of solving the basic
equations of the theory have been based on the use
of functional transformations. We recall that the
success of the functional transformation method is
due to the use of asymptotic expressions for the
bremsstrahlung and pair-production cross sec-
tions which are homogeneous functions of the
energies of the primary and secondary particles.
Were we to use the more exact cross sections,
which are not homogeneous, the formalism of
functional transformations becomes cumbersome
and unmanageable. Even for light elements the
use of asymtotic expressions for cross sections
instead of the exact ones involves some error in
determining the function N(E^, t, E)4.1 In ref-
erence 41 the basic equations of the theory were
solved by the perturbation method. The Snyder
solution, 2 8 obtained in the Born approximation,
was the first solution. The correction to it was
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calculated by using the more accurate approxima-
tion of the Bethe-Heitler cross section

До (E, Е')
R{E,H') = -

\+k

which differed from the exact cross section by not
more than 2%. Here К - %£• Щ , and Ro

3 15.6 — ^ l n Z

is the cross section in case of complete screening.
The results obtained by accurate numerical calcu-
lations are correct only for light elements at high
primary-particle energies, ln£0//3 > 1. In com-
parison with the Snyder curves, the formally
more exact curves have a maximum somewhat
lower and at a greater depth. The number of par-
ticles in the first few t -units of the absorber is
some 10 to 15% less and the number of particles
at greater depths increases correspondingly. The
numerical results are given in such a way that it
is possible to compute the correction to the solu-
tion in the case of complete screening in any light
substance. Reference 41 does not allow for the
Compton effect. We recall that in light substances
the total coefficient of photons absorption due to
pair production and the Compton effect remains
constant, with good accuracy, up to lo6 ev.
Therefore the results of the theory with asymptotic
cross sections are more accurate in light sub-
stances. We can expect that they differ from the
exact results by not more than 10%.

8. Other Methods of Solution

Bhabha and Heitler 4 2 developed another
method of solving the basic equations of the theory.
It consists of the following. Let an electron of
energy EQ fall on the boundary of a layer at t - 0.
First one calculates the probability fo(

E
o> E, t)

that this electron will reach a depth t with an
energy greater than E. Then one determines the
number of photons of energy greater than E
emitted by the electron at different points in its
path, and one calculates the number of electrons
of the first generation f^EQ, E, i) formed by
photons and attaining depth t with an energy more
than E. Analogously one calculates the number of
electrons of the following generations reaching
depth t with an energy greater than E. The total
number of electrons is determined in the form of
the sum of electrons of the various generations

N(E0, E, t) = ft(Et, E, t) + U(Ea, E, t) + js(Et,E,t)+..

The series converges rather quickly if E is of the
order of the energy of the primary particle EQ,
and if t is not larger than several cascade units.
In all the calculations by the method of consecutive
collisions, simplified cross sections are used for

bremsstrahlung and pair production, and complete
screening is assumed. Ionization losses and the
Compton effect are ignored. The Bethe-Heitler
formula 13 is used for the straggling in the energy
loss during radiation. The formula does not
account for electron loss to ionization. Refer-
ences 42 and 43 calculated the quantities

{NSEQ, E, t)\P. Reference 44 included calcula-
tions of the quantities \Np(E0, E, t)\" ,
Гр (EQ, E, t), and Г (EQ, E, t) . The distribution

functions of N, P and for a spectrum of primary
photons of the type 1/E for E < EQ and 0 for E> EQ

were determined in reference 45 with an elec-
tronic computer by the method of consecutive
collisions. The distribution functions were com-
puted in references 42 to 44 for the depth intervals
/ = t/ln 2 from 0. 2 to 5 and for ln£0/£ from 2 to
10 and in reference 45 for intervals of t from
0.125 to 20. 0 and for EQ/E from 0. 9 to 0. 00675.
The integral spectra of electrons and photons in a
shower from a primary electron of photon in the
energy range logEQ/E from 1 to 10 and depths t
from 0.1 to 5.0 were determined in reference 46
with an electronic computer, without ionization
loss and with exact cross sections in the com-
pletely screened form. As usual, the solution
was obtained in the form of an integral in the
complex plane which was evaluated with the elec-
tronic computer. The values obtained for the
same quantities in earlier references (42 to 44)
were found to be in error by 10%. This inaccu-
racy can be attributed to two causes: the use of
simplified cross sections and the approximateness
of the numerical methods used. * Reference 47
contains equations for the distribution function of
the number of particles produced in a layer of
substance between t and t + dt with energies be-
tween E and E + dE at the place or production.
The evaluations are solved for the average
number of particles ciP(EQ, E, t)\ produced in
layer dt with energy in the interval dE at the place
of production, not including ionization losses. A
solution of the equations with ionization losses,
integrated over t, was obtained in the form of an
absolutely converging series. This last solution,
it is true, was barely investigated and was not
solved numerically. We note that the quantity

c\P(EQ, E, t)\ is more convenient for comparison
with experiments with photoplates and diffusion
chambers. A solution for these equations, in-
cluding ionization losses, is given in reference

*We used the saddle point method to calculate the same
functions at approximately the same energy intervals and depths.
We found the saddle point method to cause an error of not more
than 10%.
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48. In addition, reference 48 shows that without
including ionization losses the number of particles
({P{E, t)\, produced in the layer from tt to t2 with
energy E (or more than E) at the place of produc-
tion, is equal to the area under the corresponding
cascade curve from tt to t2* When ionization
losses are included, the first quantity is always
bigger than the second. In the limiting case with
£-»0, *j = 0 a n d ' t ^ o , we have f iNp(£0, 0, t)!-»~
while the second quantity remains bounded. An
analytical expression for the average energy of
one charged particle arriving M, a given depth of
the shower was obtained. Detailed tables of the
quantities ({Np(E, t)] inclading ionization losses
are shown.

9. The Caseade Theory for Heavy Substances

The cascade theory encounters some special
difficulties in heavy substances, where the shower
production is particularly intense. The first of
the difficulties is that in heavy substances the total
absorption coefficient for photons is strongly de-
pendent on the energy. Up to now we have con-
sidered this coefficient as a constant, which fol-
lows from the asymptotic expression for the
probability of pair production. The second dif-
ficulty is that the scattering of cascade particles
in heavy substances is very great. For instance,
the critical energy in lead is /3 = 6.4 Mev. It is
known that in the region of the maximum of the
cascade more than two-thirds of the particles
have an energy less than critical; their mean-
squared angle multiple- scattering angle is •Э 2 =
(Ek/E)2 » 1, where Ek = 21 Mev. Therefore in
heavy substances it is necessary to examine the
equations with allowance for scattering, which
become in the multiple-scattering approximation
(the approximation of L. D. Landau49)

dp

In a number of articles attempts were made to
overcome the foregoing difficulties in the theory
for heavy substances and to solve (1.1) for vari-
able CT(£) or to solve (2. 39) with scattering for
variable a(E). The cascade curves in lead were
calculated in reference 50. The energy depend-
ence of u(£) was roughly approximated by straight
lines in different energy regions. With £ t so
large than one can consider a = <TO(£J was taken
as equal to 3 x 10 ev), the function N{Ep t) was
taken from reference 3 and introduced as a source
into the equations for the function N{E, t) cor-
responding to E < Ex. The equations obtained for
N(E, t) were solved by very complicated semi-
numerical methods. The authors obtained a qual-
itatively correct conclusion on the high penetra-
tion of a shower in heavy substances because of
the high penetration of the photons, whose energy
was near to the critical energy in the given sub-
stance. However the calculations of these authors
are inherently contradictory, since the curves
do not satisfy the law of "conservation of energy"
of cascade theory, Г0°°М°. t) it = Eo//3 . The areas
under th/?_r curves, for primary electrons of
energies 10 and 10 l 0 ev, are equal to about
0.7£0//3 . In addition, the electron spectra in the
maximum of the cascade in air and in lead,
according to reference 50, differ considerably
from one another and from the "equilibrium"
spectrum which is almost the same in the maxi-
mum of the cascade, for any energy dependence
of the photon absorption coefficient. 26 The
cascade curves obtained in reference 50 under-
estimate the considerable number of low energy
electrons. They are more correct at lesser
depths. An increase in depth entails a marked
increase in the relative number of soft electrons
and consequently an inaccuracy in the curves.
Figure 6 shows curves for primary 10 and 101

= U[P(i, E, *)Г(/, E. *)]+ gp

(2. 39)

cos * ^ = L2 [P (г, £, •&), Г (г, Я, *)].

Here Aa = - i - (sin в_£_)/sind is the Laplacian

-2./177137" =operator, £4 = Es(Lres/2Ltlid)
/2 , Es = me

21 Mev. If an electron or photon of energy Eo

falls vertically on a layer of matter at t = 0, then
the boundary conditions are written in the form:

Plfi, , Г(0, К

0 6 Ю

or

E, E, fl

FIG. 6. Cascade curves in lead from primary electrons
of energies £Q= 109 and 1010ev drawn according to mo-
ments 51(2) and according to data from reference 50 (1).
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ev electrons, obtained from reference 50 and
obtained on the basis of moments from reference
51. The cascade curves differ from one another
by more than 40%. We note that actually the dif-
ference is even greater, since different values for
the critical energy for lead were used in refer-
ences 50 and 51. Considering all this, these cas-
cade curves are not quantitatively satisfactory.

In reference 52 a method analogous to that
used in reference 53 was used to serive an
approximate formula for N(E, t) It is affirmed
there that this formula can be applied with any Z,
provided Eo//3» 1. The Bethe-Heitler approxi-

mation cross-section proposed in reference 41
was used in the derivation. Ionization losses
were calculated approximately:

(2.40)
Л' (Eo, E, I) = - , - — , - охр ( - / + 2} (t -t- A\) (y +

where Kn= [Kn0 + (3Knl(Z)/2.3]/(E + l3);

У = In !£„/(£• + /3/2.3)S ; /3 = 700/(Z + 1.2)
is the critical energy. The quantities KnQ and Knl

are given in Table IV. Figures 7 and 8 show
curves of N(E0, E, t) in air and in lead, drawn
according to (2.40) with EQ /p = 100.

TABLE IV.

- 1 . 2 2 0.02 o.i3 in (|-;-1)

К 20

—0.9

К 21

°-"4iT>+1)

E-0

FIG. 7. Dependence on depth of the number of electrons
with an energy greater than £ in a shower caused by an
electron of energy EQ//3 = 100, from reference 52. Curve
(1) is \N {Eo, t, 0)| P is based on reference 28.

O f 2 3 4 5 6 7 8 9 Ю

FIG. 8. Same as FIG. 7, but in lead.

At «= 0 N(E, t) in air changes with increasing E
from 2. 29 to 2. 35; in lead N(E, t) | J = 0 changes
with increasing E from 1.15 to 1. 33. </N(0, t)/
dt\t=Q is 4. 8 in lead and 2. 5 for air, while the
exact value of dN/dt\ ( = 0 is o. Curve 1 for air is
drawn in the same figure according to Snyder's
formulas. It differs from curves of reference 52

at the maximum by 25 to 35% and more. In addi-
tion, cascade curves in lead for primary electrons
at high energies of the order of 101 0 to 101 1 ev,
drawn according to (2.40), differ considerably at
greater depths from the curves drawn according
to the method of moments.

Figure 9 shows (1) the electron equilibrium
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0,2

FIG. 9. 1—equilibrium spectrum of electrons, 2<> curve 2 and
the crosses near it are the spectra in the maximum of a cascade
in air and lead respectively,52 3 and 4—spectra of electrons at
depth 8 i-units, according to references 2 and 52 respectively.

spectrum and (2) spectra at the maximum of the
cascade in air and lead, according to reference
52. The spectra at the maximum for air and lead
coincide with one another but differ from the
equilibrium spectrum by 30% and more. Refer-
ence 3 shows that the equilibrium spectrum ob-
tained by I. E. Tamm and S. Z. Belen'kii for
E » 107 ev differs from the exact spectrum by not
more than 4%, while the spectrum obtained in
reference 52 for E = 107 ev differs from the
equilibrium spectrum by 28%. In addition, the
authors of reference 52 do not allow for scattering,
which is great in heavy substances. Figure 9 also
shows (curves 3 and 4) the energy spectra of elec-
trons according to references 2 and 52 respec-
tively, at a depth of 8 t-units (cascade parameter
s = 1.4) in air; these spectra differ considerably
from each other, for example, by 22% at E = 107

ev.

Reference 52 develops the iteration method of
solving the basic equations of the theory. Com-
plicated numerical methods were used to calcu-
late the first correction to the solutions
N(EQ, 0, t) obtained by using asymptotic cross
sections. In calculating the corrections, Bethe-
Heitler approximation of the cross sections, pro-
posed in reference 41 was used. The author cal-
culated only two curves for ln£0//3 = 3. 69 and 5,
for a primary electron in lead. Scattering was not
included. The method is applicable if In Eo //3 > 1,
while it is evidently impossible to obtain the
energy spectra of particles because the method is
so complicated. Cascade curves in lead in the

energy region of 10 9 to 1011 ev were obtained in
reference 54, as in reference 52, by numerical
methods. However, scattering was incorrectly
accounted for, and this resulted in noticeable
errors, especially at greater depths.

By solving the basic equations of the theory
with the help of the foregoing methods, most of
which are based on the method of functional trans-
formations, we have thus succeeded in obtaining a
rather complete description of the average one-
dimensional picture of a shower in a light sub-
stance. This problem was most completely
solved in reference 2 and 31, under the conditions
In Eo //3 > 1 and t > 1. However these methods do
not make it possible to obtain a solution in the
energy region of E0//3^-l in light substances, or
a satisfactory solution with a more accurate
accounting for scattering in heavy substances at
any Eo, especially in the energy region E0/p^^ •
Another approach can be used in solving the
problem, namely, the function can be defined
according to its moments. The next chapter is
devoted to the application of the method of
moments to cascade theory.

Ш. SOLUTION OF BASIC EQUATIONS OF THE
THEORY. THE METHOD OF MOMENTS.

10. Calculating the Moments of Distribution Func-
tions of Cascade Particles.

We recall again that the calculation of the
cascade curve and the energy spectra of particles
meets with considerable difficulties when asymp-
totic expressions are used illegitimately for the
pair production and bremsstrahlung cross sec-
tions, when it is necessary to include scattering
of cascade particles, and also when the energy of
the primary particle" is commensurate with the
critical energy. All these cases are of con-
siderable practical interest. The calculation of
moments is a very promising method of solving
the problem.

We define the moments of a distribution func-
tion by the following relation:

l» (E0,E) = ^
Д о , t, E) tn (It

j (Eo, I, E) dt

(3.1)



S. Z. Belen'kii obtained recurrence formulas with
which to compute consecutively all the moments of
the cascade curve 55

CASCADE THEORY OF SHOWERS

_ Eo _

{/£(£„, 0)}p = ̂ - ^ {PPj0,n(E0, E){tf

tv (Eo,

о, Е) {гр (E,

(3.2)

and the analogous formula for f t™(E0, 0)! . Here
f tp(EQ, 0)lP'r are the n-th moments of the dis-
tribution functions of electrons with an energy more
than zero in a shower started by a primary elec-
tron or photon. p

p(
Eo> E"> and 1̂  (EQ, E) are the

equilibrium spectra of electrons and photons in a
shower started by a primary electron of energy EQ.
The functions p and Г enter into the recurrence
formula as zero moments. In reference 5 this
formula was generalized to include the case of an
arbitrary spectrum of primary particles. The
scattering of cascade particles is great in heavy
substances, where shower production is especially
intense. The effect of scattering on the moments
and on the form of the curve in heavy substances
was investigated in reference 56. A recurrence
formula was derived there to calculate consecu-
tively all the moments of the function, with allow-
ance for the dependence of a(E) on the energy, the
scattering, and the ionization losses in the case of
a S -like spectrum of primary particles:

+ TP,o,n (£0, E) {tnil (E, 0)}г) Е dE,

I (£„, 0)}r - £• \ {Pr, o, n (£„, £) {tfl (E, 0)}p +

+ Гг, 0,n (^o. £ ) {'У* (£. °))Г) £ ^ .

937

(3.3)

where Pp,o,n(Ea, E)= ^ ^ Pp(t,Ej,E,ft)cosnftda>dt.

Analogous formulas were obtained for the moments
! «"(£„, 0)}P'r . We note that (3. 3) determines the
moments of the distribution functions by depth,
with allowance for scattering for the total number
of particles included in the solid angle ф = 4л-;
therefore the conclusions of the theory must be
compared with experiments in which the measuring
device is located in lead (see reference 58, for
example) to exclude boundary effects not allowed
for in (3.3). In addition, the derivation of (3. 3)
ignored the reverse current of particles through the
boundary layer of the substance at t = 0. It is
shown in reference 58 that the number of electrons
returning through the boundary layer of the sub-
stance at t = 0 is less than 5% of the incident beam
and therefore the reverse current can be ignored.
The formulas given for the moments can be gen-
eralized. It is possible to obtain recurrence
formulas for the moments of the distribution func-
tions of the number of particles with an energy
more than the given E° , and not only the total
number of particles with an energy more than
zero : 5 9

Eo

EO

(%(ЕЛ

E»))v I PP(EO, E)dE-Pv(E0, £") +
EO

E'

I'1 (£", £")}r J P r (i'o, £) di'-Гр (Eo, E')] dE'
EO

£", E°))v

PP(EO, E) dE

Pr(ti0, E)dE-Yv(E0, E')]dE'

Pr(li0, E)dE

(3.4)

Analogous formulas were deduced for the moments {«£(£„, £°)}Ф =
' «r™ (EQ, £'0)lP'r. As in reference 56, we gener-

alize formulas (3.4) to include the case of an
arbitrary spectrum of primary particles. Thus,
for boundary conditions of the type P(E, 0) = 0,

Ш , 0) = Фу (£п, Е) (where EQ is the upper
boundary of the spectrum), which do not differ
essentially from an arbitrary spectrum, we obtain

0> E){tl(E,
E

У РГ(Е,
ко

E')dE'dE

] Р{Е„, E)dJi
EO

Eo E

_ I <DY (£0, E) {$ (E, E«]f J Г,, (/?, E') dE' dE
t? (Eo, E»)f = ^ ^ ^ ,

T(E0, E)dli

(3.5)
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where

E\ E)dE', Г (£„, E)

In the same way we can generalize the recurrence
formulas with scattering: 59

E'

EO
E0, E')]dE'

etc.
o

J ^p,o.u(£u. E)dE
Eo

Consequently, starting from the known function for
the equilibrium spectrum, which is the zero
moment, our recurrence formulas allow us to
calculate all the following moments of distribution
functions of the shower particles. The moments
land t2 were first approximately computed for
lead in reference 60. An attempt was made there
to relate the magnitudes of the first moments with
the position and number of particles in the maxi-
mum of the shower. Following reference 60, we
write the cascade curve in the form

Suppose the number of particles in the shower has
a sharp maximum at a certain point «max. Expand-
ing the function ф near the maximum and limiting
ourselves to only the first two terms, we compute
the integrals /0°°М£0, t, O)tndt (« = 0,1,2) which
relate the first moments with the position and
number of particles at the maximum. However,
this approach to calculating the integrals is
equivalent to the saddle point method usually used
in the theory of showers. Therefore the formulas
obtained are correct only if In £0/j3 » 1 . After
some simple calculations we obtain

— f '• " max "
/ 2 - I')

The results of calculating the dependence of tmax

Nm on EQ for lead can be found in references

of recurrence formulas, the task of calculating the
distribution functions of electrons and photons in
the shower or of their more important character-
istics involves, in principle, finding an equilibrium
spectrum integrated over depth, which enters in all
recursion formulas as a zero moment. One must
also consider that a small error in the expression
for the zero moments will later on increase in the
calculation of the higher moments. It is very
important, therefore, to estimate the accuracy of
the equilibrium spectrum when applying the method
of moments to the solution of basic equations of the
cascade theory.

11. The Electron and Photon Equilibrium
Spectrum

Let us integrate the equations of (1.1), which
do not include scattering, with respect to t from 0
to ~, with allowance for boundary conditions (one
primary electron of energy £0). Eliminating the
function г (£0, E) from the second equation, we
obtain

дРр (Ea, Е)
OE (3.6)

where L[Pp (EQ, E)] is the integral operator,
acting on the variable E and connected with brems-
strahlung and pair production. A solution of (3. 6)
for the equilibrium spectrum was obtained by I. E.
Tamm and S. Z. Belen'kii,26 who replaced the
operator L by the following approximate operator:

where N(E0, E) = f~P(E0, E)dE, q =2.29. It was
shown that when E/p » 1 and the last term in (3. 6)
can be ignored the solution of (3. 6) is practically
the same as the solution of (3. 6) with Lx (P)
instead of L (P). However, the replacement of Lx

by L only influences bremsstrahlung and pair pro-
duction. So long as the equation accurately
accounts for the ionization losses, one can hope
that the solution of (3. 6) with Ll and the inclusion
of ionization losses will also lead to good results.
It is not difficult to find a solution for the approx-
imate equation (3. 6):

TV (Eo, E)

= j (I - "'£ (E i ( - ea) - Ei ( - = ) ) - ± (3. 7)

Nmax Q

2 and 3. However, the relations are approximate
and become correct only at very high 51> 74 ener-

here 6= qE/j3, /3 is the critical energy and Ei(-C)
= - fxx~1e~x dx is the exponential integral. As

gies, £0~10n ev. We note that, in the presence follows from reference 61, the approximation
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(3. 61) is equivalent to assuming the following
quantity to be independent of the energy;

) = (, = [,Vp(£0, Е)Г \д-^Щ^1 (JL W ,

where the function /(*) depends weakly on the
argument *••

/(*) = - 1.36 + 0.327*+ 1.2b2 + 0.68* 3-1.36 ln?~*

-1.17*2 l n * -1.76* In *.

Numerical calculations show that a change of E
from E/p » 1 to E//3 ~ 0.1,causes g(E) to change by
only 2. 5%. In reference 3 Eq. (3. 6) was solved by
the method of adjunct equations. The approximate
solution obtained coincided with (3. 7). This is
evidently due to the fact that the two different solu-
tion methods are based on one premise, namely
that N(E)~1/E in the very high-energy regions,

The mathematical approximations made in the
solution of (3. 6) were estimated by the method of
consecutive approximations developed in reference
3. It was shown there that with f. = 1 the correc-
tion to the Tamm-Belen'kii solution does not ex-
ceed 4. 5%, while with an increase in eQ the correc-
tion is even less. Consequently, within the frame-
work of the initial assumptions, the approximate
equilibrium spectrum of Tamm and Belen'kii
differs from the accurate solution of (3. 6) by less
than 4. 5%.

The error in the Tamm and Belen'kii spectrum
can be evaluated only by comparison with the re-
sults of calculations that are free of the following
simplifying suppositions: (1) the use of asymptotic
expressions for the bremsstrahlung radiation and
pair production cross sections, which are strictly
accurate only for very high energies; (2) the
Compton effect is approximated; (3) high-energy
recoil electrons resulting from collision between
shower electrons and electrons of the medium are
ignored. Integrating (3. 3) numerically, Rossi and
Clapman evaluated N(E0, E), for a fixed value of
E , from the primary energy EQ. The calculations
were done for air (t = 43 g/cm2, /3 = 98 Mev) at
E = 107 ev. In the calculation they accounted for
all the radiative processes occuring in the sub-
stance. Exact formulas were taken for the cross
sections of elementary processes. Not included
was pair production and radiation in the field of
atomic electrons, and the influence of the density
effect on ionization losses. The Tamm-Belen'kii
spectrum differs by not more than 4% from the
spectrum calculated by Rossi and Clapman. Thus

we can consider that beginning with E » 107 ev in
light substances the approximate equilibrium
spectrum differs from the exact one by not more
than 4%. We note that mathematically the exact
solution of (3. 6) differs from the spectrum calcu-
lated by Rossi and Clapman by 8. 5%. Consequently
the approximate equilibrium spectrum is closer to
the real cascade than the formally more accurate
solution of the equations.

Richards and Nordheirfl worked out another
numerical method for determining the electron
equilibrium spectrum. Their method can be
applied under the conditions EQ //3 » l and E « EQ

and gives values of NiE0, E) for a given value of
Eo as a function of the energy of the secondary
particles. They used accurate expressions for the
probabilities of all the processes taking place in the
substance with radiation. From the good agree-
ment of the equilibrium spectrum with the numer-
ical calculations one can draw the conclusion that
the Compton effect is sufficiently well accounted
for by the approximate equations (3. 3), and the
processes of collision with production of high-
energy electrons have little effect on the develop-
ment of the shower.

An expression for the photon equilibrium
spectrum was obtained in reference 2. The author
started from the fact that expression (3. 7) repre-
sents the electron equilibrium spectrum sufficiently
accurately. An equation was then written for the
photon distribution function Г(£о, Е) with allowance
for the Compton effect, bremsstrahlung and pair
production. The cross section for Compton scat-
tering was determined from the following approx-
imate expression

Wk{E', E)dK=£?±,

where g is a certain constant, equal in the case of
air to 1. 32 Mev. The equation for Г(£о, Е) is
easily solved. As a result, the following expres-
sion was obtained for the photon equilibrium
spectrum:

£)Г (17 /Л ^(f,,, £) p ,,
(3. 8 )

where Ц{Е0, Е) is a complicated correction term.
Analysis of the expression showed that up to ener-
gies of 0.07 /3 in air the correction introduced in the
differential spectrum by the second term does not
exceed 18%. Inclusion of the second term changes
the value of the integrated spectrum only several
percent. In reference 63 the equilibrium spectrum
of photons in air was calculated with a more accu-
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rate expression for the Compton-effect cross
section

These calculations show that the basic conclusions
obtained in reference 2 remain valid. The photon
equilibrium spectra for carbon, aluminum, iron,
copper, and lead were calculated in reference 64.
The correction to expression (3. 8), obtained by
including an accurate account of the Compton effect
can be considered small for energies'»' o.l /3 up to
Z = 30. However, for lead the correction to the
differential spectrum at E = 0.5/3 reaches 70%, but
here it is already impossible to speak of the suit-
ability of the method of calculation used in ref-
erence 64, where the correction is considered
small. Even in lead at E > 2 Mev, the expression
for the integrated spectrum obtained from (3. 8')
differs insignificantly from the exact one. Thus,
the validity of replacing the coefficient of photon
absorption due to pair production by the total
absorption coefficient is also confirmed by the fact
that the expression

Ea{E)
(3. 8')

describes the equilibrium spectrum of photons in
light substances sufficiently accurately.

For heavy substances it is necessary to take
into account the energy dependence of the total
photon absorption coefficient and Rutherford scat-
tering of shower electrons. Equations with a
variable photon absorption coefficient were solved
only for the case of equilibrium. After integrating
(2. 39) over t from 0 to ~, with allowance for
boundary conditions (one primary electron of
energy Eo), and eliminating гр(£р, E, fl ) from the
second equation we obtain:

- cos О • б (Eo -E)6 (0)

Where an = Vi ek л/пЫ+D/q , Ek=2l Mev, and Pn

(cos *) are the Legendre polynomials. In reference
57 an approximate solution of (3. 9) was found,
which includes scattering and ionization losses:

:V (Eo, E, 0) = ^ /n (e) Pn (cos 0),
n=0

where

(3.10')

Using the adjunct-equation method 5 an accurate
solution was obtained for (3. 9) in the form of
series of Legendre polynomials:

Pn (Eo, E, 0) = 5 Ф п (Eo, E) Pn (cos d).
n=0

Substituting in (3. 9), we obtain the following
equation for the function ф (Е , E):

where L is a certain operator connected with
bremsstrahlung and pair production and acting on
the variable -E We define an operator L* such that

со со

\ na (E, Ex) 1дрп (Eo, E)dE=\ Ф п (Eo, E) L*un (E, Ex) dE,

where un (E, Ej) is an arbitrary function satis-
fying the condition

un{E, £j) = 0 for E<EV

From the equation for the function фп (EQ, E) it is
possible to obtain the following relation:

п (Eo, E) [ L* - p ± ] в„ (£, EJ dE

(*)

= L [Pp (Eo, E, £'2
I ' (3-9)

where L [ ?p (£0, E, ft) 1 is the integral operator
associated with pair production and bremsstrahlung.
A solution of (3. 9) was approximated in reference
65 by dropping the last term (as in the solution of
(3.6), the operator L was changed to Lx):

Np (Eo, E, fl) = X /n (e0.
 e) pn (cos *),

J
/»(e0,

 e) = ^ 4"7 V'ti+'AVF+b for
e o .

0 8 > e0,

If function un(E, £j) is given, then the foregoing
relation can be considered as an integral equation
for фп(Е0, Е). The arbitrariness of the choice of
un can be used to make equation (*) easier to solve

than the original equation for фп. Suppose then
u (E, E ) satisfies the equation

The last equation is said to adjunct to the equation
for the function фп. The operators in this equation
act on the variable Eo (in the notation of the
original equation for фп) and not on E. From
equation (*) it follows that %(EQ, EJ = Фп(Е0, £j).
The solution of the adjunct equation and consequent-
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ly the equation for Фп(Е0, Е) can be found in the form

2в+1 е0 I/^ТГГ
•• — ; е е ' ' +ап

4я q

With an = 0, (3.10') coincides with the expression
for the equilibrium spectrum without scattering.
We note that the solution (3.10') is still an approx-
imation, since the initial equations were approxi-
mations. However, an expression for the equilib-
rium spectrum was obtained in reference 26 from
these equations, except without the scattering,
which did not differ from the exact one by more
than 4%. Multiple scattering in (3. 9) is allowed for
accurately so that (3.10) evidently also differs from
the exact expression by not more than 4%. This
error, due to the approximate nature of the initial
equations of Tamm and Belen'ki", has been evalu-
ated several t imes. 2 ' 3 On the other hand, the
agreement between the values of the function
Np(E, i$ ) given by (3.10) and (3.10') is quite satis-
factory, as they coincide within 6%. For e « an,
(3.10') becomes

/»(£„, £) = ^ ^ ( 7 - i 7 r (« = 1,2,3,...),

(3.101)

whereas for /o^o> E) we obtain the following
asymptotic expansion:

From the expressions for /o
p and fn

p at low ener-
gies it follows that any device that detects particles
moving forward within a solid angle ф < 4,п will
detect less particles in an energy regionE < 2 to 3
Mev than by the equilibrium spectrum. In refer-
ence 66 an experimental spectrum of charged
particles in the maximum of the cascade was ob-
tained and compared with the equilibrium spectrum.
About up to 3 Mev the spectra coincided. The
difference between the theoretical and experimental
spectra can be explained by the fact that the authors
have underestimated the considerable quantity of
slow electrons going backwards. The reverse cur-
rent in the maximum of the cascade in lead was
about 0.41. Plates up to 1.5 t-units of lead were
placed in the cloud chamber. About half of the
low-energy particles making angles more than 30°
from the axis of the shower could be detected by
the authors. In reference 67 the electron energy
spectrum was investigated in the region of the
maximum of the cascade produced in lead by a
spectrum of type \/E of primary photons. The
authors note good agreement with the equilibrium
spectrum in the energy region from 3 to 180 Mev.

They explain the divergence in the 0 to 3 Mev
region by the large back scattering.

Thus, this discussion permits us to conclude
that the equilibrium spectrum of the particles is
correct, with good accuracy up to about 4%, for
light and heavy substances beginning with a par-
ticle energy of about 2 or 3 Mev. This makes it
possible to calculate with the necessary accuracy
the first several moments of the distribution func-
tion of cascade particles.

12. The Standard Method of Plotting Cascade
Curves by Moments.

We recall that for high-energy showers {EQ/p » 1)
knowledge of only the first two moments of the
cascade curves makes it possible to estimate the
position and number of particles in the maximum of
the shower. For a low-energy shower, when E0/fi
is of the order of unity, similar relations cannot be
obtained since the method used in the derivation of
the relations «majt and /Vmax~ f(E0/p, t, t2) is
equivalent to the saddle point method usually used
in the cascade theory. One can pose the problem
of calculation of the cascade curve from its known
moments. Knowing all the moments tn it is
possible, in principle, to find also the distribution
function itself (the Stieltjes moment problem6 8). If
the function N(t) decreases at very high t faster
than e-*V*, where к is a positive number, then the
following relation is correct: 6 8

YN
A.

(Кг) = - I im [ ( 1 - 4 ^ <P (•?) cos (sY) ds,
Л J_>3O Д K У

where

n = 0
6(2-0!

These relations make it possible to calculate the
function N(t) by its moments. For example, let us
examine several extreme cases. 5 5 Let the energy
of the primary particle be (o>>l> with ^ so great
that In <r0» 1. In this case it is easy to obtain the
following expressions for the first moments:

and for the n-th moment:
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Thus, in this approximation, tn = tn.
6{s) is then equal to

The function

= -g2- cos (

This value of ©U) corresponds to the following
distribution function ,\'(d.

Thus in the extreme case of very high energies the
distribution function approaches a 8 -function. We
note that in reference 60 the distribution function
was approximated by the Gaussian function

0,3

V
Ч-ЗТ2-ГТ71-

It is not difficult to see that as ln EQ/fi approaches
infinity the foregoing expression becomes the 8 -
function. Let the energy of the primary particle be

<o«l. Suppose that at such low energies photon
absorption is negligible. Then it is easy to obtain
the following expression for the л-th moment. tn =
(EQ//3)n (n + 1) . . In this case the function 6(s) is
equal to

(n+l)n\

and the distribution function N(t) is equal to

1, if '<4f-

o, i f

This distribution corresponds to the primary
charged particle losing energy only by ionization in
passing through a substance. Suppose that fO£, 1,
but that photon absorption plays an important role.
This case corresponds to the passage of electrons
of energy of the order of the critical energy through
heavy substances. It can be shown that in this case,
for n »,

- I S ° V , ' - [•" е - *
1 =— \ 0 , . , e ) ~ " e ' w h e r e " * »• t ; — t e ^ ~^ra£-

и =

This signifies that for t > T the distribution function
looks like

'">
N ( ' ) = -jr \ e-=<s)<Xl(g £)a(e)c/e.

However, in all practically important cases it
is possible to calculate only the first several
moments. In practice, therefore, it is more
expedient to approximate the function N (t) by some
other function whose first several moments coin-
cide with the accurate moments of the function N(t).
This means that one must select such approxima-
tion formulas which make it possible to describe
sufficiently accurately the desired distribution
functions by means of two or three first moments.
In reference 2 the cascade curves for primary par -
ticles of very high energies are approximated by an
expression of the type

i

exp { + a(2 —yt}.

The coefficients a and у were chosen to make this
approximation give the correct value for the area
under the cascade curve (conservation of energy)
and under the first moment. The cascade curves
for primary particles of lower energies a re approx-
imated by an expression of the type

ехр{аг2 -Y'}

the coefficients a, y, and у were selected to obtain
the correct values for the areas of the first two
moments of the cascade curves. In reference 69
there were obtained cascade curves in lead, includ-
ing the dependence of o (E) on energy and with an
approximate allowance for scattering. The curves
for primary electrons were approximated by an
expression of the type (l + /3) exp {at

 1/г -yt \ - p exp
(~2yt), analogous to the one proposed in reference 2.
However, this approximation unsatisfactorily
describes the cascade process at primary-particle
energies £ < lo8 ev and at depths t < «max of the
cascade. At great depths this expression behaves
like e-kt^ where the coefficient 4 about doubles
with a change in £ from Ю8 to до11 ev, while the
exact curves behave at greater depths like <T CTmin l,
where amia is the minimum value of the total photon
absorption coefficient. In order to determine the
coefficients entering into the approximation formula
it is necessary to solve a system of three tran-
scendental equations. This complicates the calcu-
lation considerably. We also note that to plot a
curve from three moments it is necessary to select
another type of approximation relation, which can-
not be determined without a detailed investigation.
To determine the coefficients in this case it is
necessary to solve a system of four transcendental
equations, which in itself is a complex computa-
tional problem.

It is possible to propose the standard method of
drawing cascade curves, using a set of polynomials
orthogonal in the interval (0, x)

7.0 It is known that
in light and heavy substances the range for photon
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absorption remains of the order of one cascade unit
up to energies on the order of 106 ev. The range
of electrons at energy E less than the critical
energy is equal in order of magnitude to E//3.
Therefore it is natural to consider that the cascade
curve for large values of t will behave like e~

amiat,
where °min is the minimum value of the total photon
absorption coefficient. In addition, we know the
values of cascade curves with t = 0, given by the
boundary conditions; we know from the basic equa-
tions (1.1) the values of the derivatives of the
cascade curves with respect to the depth at t = 0;

and we know the numerical values of the first
several moments of the cascade curves. Using this
information on the behavior of cascade curves we
construct a weighting function w (x) [ with which the
set of polynomials is orthogonal in the interval
(0, oo) ] representing approximately the basic char-

acteristics of the sought cascade curves. With the
chosen weighting function we construct by the usual
methods of the theory or orthogonal polynomials the
necessary set of orthogonal polynomials.

We approximate the function ф (х) with the aid of
the sum of polynomials:

Ф (x) = A0 + AXL\ (x) + A2L\ (x) + A3L\ {x)+ ...

The polynomials L (x) are orthogonal in the inter-
val (о, с») with weight w(x). The approximation will
be better the smaller the mean-squared error

M = ^w (x) (Ao + А.Ц (*) + AM, (x) J- . . . - Ф (X)Y dx.
о

The coefficients A , determined from the condition
of minimum mean-squared error _ 0, are

here

Л "=ЛГ ^ w{x)^(x)L)l\x)(L-,
6

;Vn= \w{x)Li(x)dx.

In the expansion of ф (x) we replace the variable x by
yt (where у is any positive number) and multiply
both sides of the equation by w (yt). Introducting the
notation w(yt) ф (yt, Eo, E) = N(E0, E, i) we write

-V(£o, E, t) = ^ AH(E0, E)Dn(yt). (3.11)
71=0

The coefficients An are equal in our case* to

n (Е„, E) = ^ 7 i ] Л' ( t ' u , E, t) L)t (у/) dl *). ( 3 . 1 2 )

*The coefficients An can be determined from the condition of
orthogonality of the polynomials Ll

n (x) . Multiplying (3.11) by
Z,£ (x) and integrating over x from 0 to » we find for A (Eo, E)
expressions that coincide with (3.12).

Let w (x) » 0 and let the moments of the function w (x)
of any order exist:

a, = \ xnw (x) dx,a0 = 1.

Then, following the usual methods of the theory of
orthogonal polynomials, 71 we determine the poly-
nomials Ll

n (x) as follows:

а, я, here
aa

a i

a..

. . . aa

• • • au*l

1 • • • a 2 n

(3.13)

We write the condition of orthogonality of the poly-
nomials in the form

0 0 f 0 , n Ф k,
\ Цг («) U (X) W (X) dx = I _D2L_ n = k (3.
0 [ D '

14)

Expression (3.11), with the function w (yt) suitably
defined, gives a convenient approximation of cas-
cade curves, and the coefficients An(EQ, E) are
simply connected with the moments of the sought
distribution functions.

13. Cascade Curves and Energy Spectra in
Light Substances

To compute the cascade curves and energy
spectra of particles in light substances from (3.11)
and (3.12), it is necessary to calculate the first
several moments of the function N(E0, E, t) • In
reference 37 explicit analytical expressions were
obtained for the first two moments of the cascade
curves.

Table V

Eo

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

_ p

p

0.096
0.188
0.273
0.353
0.429
0.500
0.568
0.633
0.694
0.752
1.006
1.213
1.386
1.536
1.666
1.782
1,886
1.979

! ' ! ' '1 VI

1.357
1.421
1.480
1-536
1.590
1.641
1.691
1.740
1.785
1.829
2.027
2.195
2.340
2.468
2.582
2.685
2.778
2.862

i pi

0.148
0.301
0.459
0.619
0.780
0.943
1.107
1.271
1.434
1.599
2.392
3.132
3.845
4.503
5.192
5.691
6.233
7.140

J/2j r

1 pi

3.694
3.899
4.119
4.375
4.609
4.850
5.083
5.313
5.540
5.762
6.803
7.746
8,625
9.429

10,26
10.87
11.53
12.53

i p)

2.240

6.364
9.817

13.37
16.84
20.29
29,53
32,73
42.83
48.16

((SI1'
[ pi

19.79

26.51
32.78
38.79
44.52
50.02
61.29
65.86
77.59
86.07
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Table V lists the values of the first three moments
of the electron cascade for values of the primary
energy e0 from 0.2 to 10. The third moment was
calculated with the help of recurrence formulas by
numerical integration. For E0/p » 1, the formu-
las for t and i1 can be rewritten accurate up to
terms of order l/eQ as follows:

{Z,(£n. ())}»= hi ^4-0,41; {/*(£„, 0)}'

-{?Р(Е0, 0)}р= 1.76 In -^ -0,21,

0, O ) j ' = l n £„, О)]''

- !'p 0)}r = 1.76 In ^ 4- 2,32.

Table VI gives the values of these moments for e0

from 15 to 2290 and also the values of the moments
calculated by formulas from reference 3.
It is clear from the table that the first and second
moments differ by no more than 1% over a wide
range of energies. Thus the expressions for
moments obtained in reference 37 in the high-
energy region differ insignificantly from the
moments obtained starting from the solution to the
basic equations of the theory by the Snyder method.
We recall that the approximations we made in cal-
culating the moments relate to the processes that
play a major role precisely at high energies.

The values of the moments obtained were used
to plot the cascade curves. We approximate cas-

15
20
25
30
40

63.6
229

2290

Accord-
ing to
refer-
ence 3

r<ip

1 Pi

2.290
2.577
2.800
2.983
3.270
3.734
5.015
7.318

Accord-
ing to
refer-
ence 2

r,f
\ vl

2.298
2.598
2.814
2.999
3.289
3.757
5.051
7.377

Accord-
ing to
refer-
ence 3

fJ > '
1 i>\

3.080
3.367
3.590
3.773
4.060
4.524
5.805
8.108

Table
Accord-
ing to
refer-
ence 2

l < '"'1 PI

3.098
3.389
3.614
3.799
4.089
4.557
5.851
8.177

VI

Accord-
ing to
refer-
ence 3

1 P\

8.343
10.24
11.84
13.22
15.52
19.58
33.04
65.5

Accord-
ing to
refer-
ence 2

list"
1 v\

8.108
9.992

11.56
12.94
15.22
19.27
32.73
65.34

Accord-
ing to
refer-
ence 3

I ft

13.40
15.74
17.66
19.32
22.06
26.84
42.64
78.78

Accord-
ing to
refer-
ence 2

1 Pi

13.52
15.87
17.81
19.47
22.22
27.02
42,55
78.78

cade curves for primary photons by a sum of
Laguerre polynomials Ll

n(x) •.

{Np (Eo, t, 0)Y = yte-У ^ К (Eo, 0) U (yt). (3.15)

(3.17)

n = 0

The coefficients An яге simply connected with the
moments of the sought distribution function

0) = 3fL • 4 l (Eo, 0) =

etc.
(3.16)

We assume the coefficient y to be equal to the
minimum value of the total photon absorption
coefficient. The cascade curves for primary
photons were approximated also by sums of
Laguerre polynomials L%(x)

{Np(E0,

We define the constant с by requiring that the value
of NAE0, t, 0) in the approximate curves (3.17) be
ecjual to its exact value t = 0 in references 2 and 37
it is shown that the approximation (3.17) of the cas-
cade curves is completely equivalent to approxi-
mation (3.16). Since we wish to obtain cascade
curves for primary particles of energy of the order
of the critical energy, where the number of par-
ticles in the maximum of the cascade is of the
order of unity and the maximum lies at the depth of
the order of one cascade unit, it is very important
that the approximation curve accurately satisfy
boundary conditions, that is, that the approximation
curve be as accurate as possible for the first t-
units of the absorber. Cascade curves for a pri-
mary electron were approximated with the help of
sum (3.17). It was shown that in the energy region
EQ /ф » 1 the approximate cascade curves do not

differ from the exact curves by more than 5%. The
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FIG. 10. Dependence on depth of the total number of
electrons \N (EQ, t, 0)!1' in a shower caused by a primary
photon of energy <rn from 0.2 to 10.

FIG. 11. Same as FIG. 10, but in a shower from a
primary electron.

\ /

FIG. 12. 1 — experimental cascade curve in carbon
from the bremsstrahlung spectrum of primary photons
with a maximum energy 330 Mev;58 2--obtained by
averaging over the spectrum of primary photons the cas-
cade curves calculated by moments.57 Curves (1) and
(2) were normalized to t = 0.1.

cascade curves calculated according to (3.17),
using the first two moments, differ by not more
than 10—15% from the curves obtained by using the
first three moments, while they differ considerably
from the curves plotted from only the first moment.
This indicates that series (3.17) converges rapidly.
In addition, the accuracy of the curves obtained at
very low values of the primary-particle energy was
especially investigated. Considering all this it is
possible to confirm that only the first three terms
of the series (the first two moments are used)
approximate the accurate solution with an error of
the order of 10%. Figure 10 shows the distribution
functions ! Np(E0, t. 0) | ' of electrons with energy
greater than zero in showers caused by a primary
photons of energies (0 from 0. 2 to 10. Figure 11
shows the distribution functions \Np(E0, t, 0)jr of
electrons with energy greater than zero in a
shower caused by primary electrons with energies
f0 from 1 to 10. We note that cascade curves for a
primary electrons or photons of energies e0 » 1 do
not differ greatly from one another, while at f0 « l
the difference between the curves is great. This is
not difficult to understand: high-energy electrons
and photons expend a greater part of their energy
on the production of secondary particles capable of
continuing the shower. Low-energy electrons
expend most of their energy irreversibly on ioniza-
tion.

An experimental cascade curve in carbon was
obtained in reference 58 from a type VE spectrum
of primary photons with E < Emax. By averaging
curves (3.17) over the l/E spectrum it is possible
to compute the corresponding theoretical curve.
The results of the calculations are shown in Fig.
12. The curves coincide within 5% and a certain
difference in the tail can be explained by the fact
that in the calculation the photon absorption coeffi-
cient was considered to be equal to the asymptotic
coefficient, while in the energy region under
examination it is 15% less, which leads to a higher
penetrating ability for the cascade.

By the foregoing method it is possible to obtain
not only the dependence of the total number of
particles on the depth, but also the depth depend-
ence of the number of particles with energy more
than a certain E, that is, to obtain energy spectra
of particles at any depth. In reference 72 recur-
rence formulas were obtained for the moments

! H? (Eo, £x) ]P and | ~^ j 1 of the distribution
function of photons ol energy greater than £ in a
shower caused by a primary electron or photon of
energy Eo . The results of calculating t and Г5" for
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Table VII.

so ^ \

0.6
1
5

11
20
30
Г.0

0.11

1.386
1.480
2.207
2.806
3.323
3.692
4.171

=0 \

0.6
1

5
11
20
30
50

0. 11

3.95
4.22
7.63

11.66
15.74
19.05
23.63

0 . 2

1 .361
1.445
2.092
2.705
3.212
3.576
4.050

o.c

1.294
1.410
1.942
2.467
2.939
3.287
3.753

1

1.294
1.847
2.318
2.774
3.109
3.557

Ц ( E 0 , K ) [ i '

0 . 2

3.82
4.05
7.03

10.92
14.96
17.92
22.48

0 . 6

3.35
3.67
6.03
9.24

12.70
15.51
19.66

1

3.35
5.41
8.23

11.38
14.02
17.89

0 . 1 1

1.451
1.664
2.816
3.496
4.047
4.432
4.927

0 . 2

1.358
1.514
2,624
3.347
3.905
4.293
4.791

0.11

4.22
5.36

12.18
17.40
22.40
26.29
31.74

0.6

1.294
1.312
2.216
2.958
3.536
3.933
4,444

1

1,294
1.946
2.694
3.293
3.698
4.210

(f. №o, E ) | r

0 . 2

3.70
4.54

10.99
16.24
21.11
24.91
30.28

0.6

3.35
3.44
8.44

13.37
18.01
21.58
26.35

1

3.35
6.79

11.53
16.01
19,46
24.35

values of «0 from 0. 6 to 50 and tx from 0.1 to 1.0
are given in Table VII:

The functions {Nr(Ev t) !' and {Nr(Ev t) \p

were approximated by sums of the polynomials
I l(x) and L°(X) . The results of calculations for

air are shown in Figs. 13 to 19. The values of the
computed curves coincide within 10% with the

values calculated by the accurate formulas of the
theory, with e0 » 1. The energy spectrum in the
maximum of the approximated curves coincide
within 10% with the equilibrium spectrum. In ref-
erence 73 the same method was used as in refer-
ence 72 to calculate the energy spectra of electrons
in showers caused by a primary electron or photon.

{Nr(Ea.tM
P

04
a)

.

1 • — - — .

• ,

• — • — _

— — — _

Se'H6

.

b)

\ x^\

f

,3

£B'O,S

^ ^

7

1-0.05
2-0,11
3-OJ
4-0,6

1
a s =

S

FIG. 13. Dependence on depth of the number of photons with
energy greater than ( (from 0.05 to 1) | Nr(EQ, t, E)\P>r in a
shower caused by a primary electron (a) or photon (b) with energy
tn from 9.6 to 50.72
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a)

0.05

0.2 |

0,6

- - - -

h"

1 —_
" 1

/л

t

0.4

rtto.l.

4
I—i-.

—__

b)

.'-0,05 '

20,11 • j_ , . i.
3 0,2 \ ;

4-

~-—_

5=5

0,6 и 1
.._ - | - -

FIG. 14. Same as FIG. 13.

2 ~~ 3 4 S" 6

FIG. 15. Same as FIG. 13.
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iK(lo,tE)f

FIG. 16. Same as FIG. 13.
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FIG. 18. Same as FIG. 13.
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III
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FIG. 20. Dependence on depth of the num-
ber of electrons with energy greater than f (from
0.03 to 2) \N {Eo, t, E)\T in a shower caused by
a primary photon (a) or electron (b) with energy
<r0 from 9.6 to 15. 7 3

ег л тщ

FIG. 21. Same as FIG. 20.
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FIG. 23. Same as FIG. 20.
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Table VIII

IГ (K o , К)

0.03 0.03

0.6
1.4
3.0
5.0
8 0
10
15

0.189 0.160 0.147
0.493 0.435
0.934 0,886 0.838 0
1.299 1.259
1.706 1.654
1.90 1.85
2.27 2.22

1.208
1.60
1.80
2.17

0.098
.311
746
130
54
73

0.043
0.237
0.620
0.978
1.37
1.56
1.94

316 0
0.126
O.i
0.
1.03
1.23
1.63

660 0
.061
.230

0.63
0.82
1.19

1.393
1.62
1.96
2.25
2.61
2.78
3.13

1.387
1.57
1.92
2.22
2.56
2.74
3.08

1.38;
1.56
1.88
2.17
2.51
2.69
3.03

1.335
1.50
1.80
2.10
2.46
2.62
2.93

1,321
1.44
1.70
1.97
2,29
2.46
2.80

1.38
1.42
1.68
1.98
2.15
2.48

1.07!
1.26|
1.631
1.79'
2.07!

X
0,6
1.4
3.0
5.0
8.0
10
15

0

0.
0
2
3.
5.
6.
8.

. 0,4

335
873
09
о а
16
65
47

О . о С

0.197

0 . 1

0.145
0.7530.615
1.90
3.35
j.00
6.05
8.27

1.73
3.11
4.81
5.15
7.90

0
0
|

2
4
О

7

*>)*

0 . 2

, 065
.415
.41
.72
.33
.28
.30

0
0
0
2
3
4
6

0-4

0084
202
997
10

63
52
45

0
0
I

2

4

0 . 8

.082

2 Л

.479 0.030

.28

.52

.74

.98

0.31
1.12
1.72
3.05

0 . 0 3

3.83
4.74
6.40
8.13

10.4
11.9
14.2

0 . 0 6

3.69
4 53
5.04
7.90

10.0
11.4
14.0

.

0

3
4
5

9
11
13

. 1

.55
,38
.85
.fi.i
.77
.0

, , j

Е е * )

0 . 2

3.49
4.17
5.52
7.15
9.19

10.3
12,7

С
и 4

3.42
3.84
4
6
8
9

11

94
оо

22
15
6

0

3
3
;>
6
7.
9

.8

I"i7

94
05
61
56
7

2-

2 ,

3.
4.
• ) .

' •

0

68
42
76
5.-1
1

The results of the calculation of the first two
moments are given in Table VIII. Cascade curves
\N (£j, t)\p'v obtained by moments are shown in
Figs. 20 to 26. The accuracy of these curves is of
the order of 10%.

Thus, using the method of moments based on
the equilibrium spectrum of Tamm and Belen'kii,
it is possible to calculate cascade curves and
energy spectra of particles in light substances in
showers caused by primary electrons or photons in
the range of energy e0 from 0. 2 to~100.

14. Cascade Curves and Energy Spectra in
Heavy Substances

We restate briefly the basic difficulties of the
cascade theory of showers in heavy substances:
(1) the total photon absorption coefficient depends
strongly on energy; (2) scattering of shower par-
ticles in heavy substances is very great. There-
fore in the theory it is not possible to obtain
expressions for N(E0, E, t), since the method of
functional transformations is not applicable,
because its usefulness is connected with the appli-
cation of asymptotic expressions for the cross
sections of the basic processes.

In references 26, 55 and 57 a method was
developed for solving the basic equations integrated
over the depth, with variable a and including
scattering. This made it possible to obtain
expressions for the equilibrium spectra of electrons
and photons. Using the equilibrium spectrum, it is
possible in principle to calculate all the moments of
distribution functions of shower particles. We can

estimate the accuracy of the cascade theory for
heavy substances by comparing the calculated
moments with experiment. In reference 56 a
recurrence formula was derived to calculate con-
secutively all the moments of distribution functions
from an arbitrary spectrum of primary particles.
The first two moments of the distribution function
of electrons was also calculated in lead for a
spectrum of primary photons of the type l/E. The
moments obtained were compared with experiment.
Since this work did not account for scattering, it
calls for a revision.

In reference 37 there was derived a recurrence
formula for consecutive calculation of all the
moments of distribution functions, with allowance
for scattering. The first two moments of the
distribution functions of electrons in lead were
calculated for a type l/E spectrum of primary
photons. The results of the calculations are shown
in Table IX.

Table IX.

'theoret.

5.89+0.12

'exper. j theoret.

5.9+0.2 ! 53.4+2

'exper.

5o—4

The average experimental and theoretical values of
the first moment differ by 1%, and of the second
moment by 4%. However, the difference is the
limits of error of experiment and calculation.
Without taking scattering into account, the magni-
tude of the first moment for a = a0 is less than the
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experimental value by about 30%, and for a-o(E)
it is larger by about 10%. Consequently the first
two moments of the distribution function, calcu-
lated with the most accurate accounting of scatter-
ing and ionization losses possible, is in very good
agreement with experiment.

We note that in light substances the method ofc
moments is essential for calculating the cascade
curves and energy spectra at primary particle
energy e0 ~, 1. The method of functional transfor-
mations works well for eo»l. The situation is
different in the theory for heavy substances, where
it is necessary to calculate cascade curves and
energy spectra in the widest range of primary-
particle energies possible. Therefore in choosing
a weighting function it is necessary to use more
information on the behavior of the cascade curve.
Earlier we selected a weighting function, with
allowance for the behavior of curves at large t and
for the boundary conditions at t = 0. Now we shall
also use the magnitude of the first moment to con-
struct the weighting function. Reference 51 gives
calculations of the first two moments of the dis-
tribution function of electrons in lead in a shower
caused by a primary electron of photon of energy
E . The results are given in Table X. Cascade

curves for a primary photon were approximated
with the help of a sum of polynomials orthogonal
in the interval (0, ~) with the weight 74

Here у is the minimum value of the total photon
absorption coefficient, and i is determined from
the condition that the first moment of the weighting
function be equal to the first moment of the sought
distribution function

i = ylv(E0,0)-l.

We note that for*,. */ lwe obtain i < 1. In this case
•jl | ( = 0= oo, therefore it is more convenient to
consider i equal to 1 and to define у from the cor-
responding condition. Thus, with (Q/~ l, the
method of approximation used here automatically
turns into the method used earlier to calculate
cascade curves in light substances. Cascade
curves for primary electrons were approximated
with the help of polynomials orthogonal in the
interval (0, ~)' with the weight

Here the quantities £ and a are determined from the
condition that the first moment of the weighting
function be equal to the value T(Eff 0) of the sought
for distribution function, and from the boundary

0 < i < 1 .To avoid an infinite derivative at t - 0, we
consider that for the first several curves i is equal
to the nearest integer and from this we determine
the quantity a. We note that, with slight complica-
tion, we can calculate in this way cascade curves
that are more accurate for small values of t. For
this it is sufficient to introduce into the weighting
function, in a suitable manner, one more parameter
whose value can be determined from the boundary
condition for the derivation of the cascade curve
with respect to t. The electron cascade curves in
lead calculated this way for a primary photon and

IHplEjMf
s

i г з 4

FIG. 27. Cascade curves
{NAE0, t, 0 ) P injeadfrom
primary photons of energy e
from l t o 118.1. 5 1

/ 2 3 5

FIG. 28. Same as FIG. 27
but for a primary electron.

electron are shown in Figs. 27 and 28 and also in
Table XI, which gives INp(EQ, t, 0)]p for Eo = 109

and 1010 ev. The coefficient was assumed to be
condition I Np((0, 0, 0)! p =1. For ( ~ 1 we obtain equal to 0. 24. The moments for EQ = 109 ev were
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Table XI.

953

ev

10s

1Q10

ev

10°

I

o"

/

o

о

4
p.

<

0 . 5

5.77

16.3

6 . 0

13.8

125.8

1 .o

9.35

33.3

8.0

10.64

119.3

2.0

13.7G

65.4

10.0

7.66

101.4

3.0

15.6

91.8

( 2 . 0

5.26

79.9

3 . 5

15.9

102.2

14.0

3.48

59.5

4 . 0

15.8

110.6

16.и

2.23

42.3

5.0

15.1

—

5.5

14.5

125.2

2 0 . 0

0.84

18.9

taken from reference 57 and those for En = Ю10 ev
from reference 69. We note that in all the cascade
curves obtained the absorption coefficient in the tail
was near to the experimental value 0. 24 of refer-
ence 9. The accuracy of the curves obtained as in
the case of light substances is

о 7 ? j 4 ? i 7 i i~~bl

FIG. 29. 1-experimental
cascade curve in lead from
the bremsstrahlung spectrum
of primary photons with maxi-
mum energy 330 Mev. 2—ob-
tained by averaging over the
spectrum of photons of cas-
cade curves calculated by
moments.3? The curves nor-
malized to l - 0.5.

Figure 29 shows the experimental cascade
curve in lead (1), obtained in reference 58 from a
\/E spectrum of primary photons. Curve 2 is the
result of averaging the cascade curves shown in
Figs. 27 and 28 over the same photon spectrum.
The calculated and experimental curves are within
5% of each other.

Thus the curves shown describe satisfactorily
the cascade process in lead.

Cascade curves in lead were obtained in refer-
ence 75 by the Monte Carlo method, for selected
individual cases, with a special machine. However,
electrons from photons of energy less than 10 Mev
and Rutherford scattering of charged particles
were approximately taken into account in reference
75. The authors obtained the number of electrons

at a given depth t in the form of the sum of two
n2, where nx is the number ofterms, n =

electrons from photons of energy greater than 10
Mev, obtained by the Monte-Carlo method and n2 is
the number of electrons from photons of an energy
less than 10 Mev. For determining n2 the author
used the following formula:

where w(t') is the average energy lost by photons of
energy less than 10 Mev on radiation in one event,
CTmis the average photon absorption coefficient in

the energy region 1 to 10 Mev, and £} is the critical
energy in lead. Such a choice of n2 is based on the
assumption, known to be inaccurate, that electrons
obtained from photons of energy less than 10 Mev
lose much less of their energy by ionization along a
path that is much shorter than the photon mean free
path; (see Fig. 28). We note that in the majority of
cases of Compton scattering the secondary elec-
trons carry off a significant part (more than half) of
the energy of the incident photon. The calculation
for scattering is done the following way: All the
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points of the cascade curves obtained without
accounting for scattering are moved to the left by a
distance

Д< = '•( !-«- ' ) . (3.18)

This way of accounting for scattering involves a
practically constant shifting of the entire curve by
At = г fort > 2, which is known to be inaccurate. In
addition, such a calculation of scattering does not
change the height of the maximum of the curve*

zs s zs
FIG. 30. Cascade curves for copper for

a primary photon. The numbers near the
curves indicate the energy of the primary
photon in units fi/q.

whereas according to reference 57 even with
Eo = 10 ev the calculation of scattering involves an
increase in the height of the maximum by 2. 5%.
Figure 30 shows cascade curves for a primary
electron of energy E = 108 ev calculated by the
method of moments; curve 1 includes scattering,
curve 2 does not. From the figure it can be seen
that a calculation of scattering involves a more
complex deformation of the entire curve and in
addition involves an increase in the height of the
maximum by about 10%. Therefore the cascade
curves obtained in reference 75 are satisfactory if
EQ/j3 » 1. In this energy region they coincide,
within 10 to 15%, with the curves shown in Figs.
27 and 28.

The electron cascade curves for copper, for a
primary electron and photon in the energy interval
Ю7 < E ^ 1012 ev, were calculated by the method
of moments in reference 74. The calculations
included the energy dependence of the total photon
absorption coefficient and the Rutherford scattering
of the charged particles. The coefficient у was
taken equal to 0. 38. The calculated first two
moments are given in Table XII. Cascade curves
are shown in Figs. 31 to 33. The accuracy of the
curves obtained in«**10%.

Table XII.

•)

i;

III
14
35
56
77
98

1.4-101

P.

0.96
2.02
2,64
:s,06
4.13
4.66
5.01
5.27
5.66

.пр.

2.99
8,22

12.1
15.1
24.9
30.6
34.6
37.9
42.9

-

p.

3.13
3.61
3.94
4.24
5,16
5.65
5.97
6,22
6.58

-

17.8
21.2
23,8
26.2
36.3
42.3
46,7
50.1
55.3

-0

3.5 I02

5.6 • 102

7,7.102

9.8-102

1.4-JO3

7.4-103

l.4-l(i*
7,4-10»
1.4. Ю5

s.

о

о

J i

6.62
7.10
7,42
7.66
8.01
9.68

10.3
12.0
12.6

P.

О

О

56.4
64.0
69.2
73.3
79.5

112
126
166
183

7.48
7.92
8.22
8.47
8.83

10.5
11.1
12.8
13.4

11?

69.7
77.1
82.7
87.2
94.1

129
144
187
205

Thus, using the method of moments, it is
possible to calculate the function N(E0, t, 0) , over
a wide range of energies and depths in heavy sub-
stances. The first two moments of the distribution
function of electrons IN (EQ, t, E°) Г for an ener-
gy more than E° in lead were calculated in refer-
ence 59. The results of the calculation of moments
are given in Table XIII. The function IN l rwas

*We note that after applying transformation (3.18) to the cas-
cade curve the author then renormalizes its area to EQ/ /3 which
can change the height of the maximum somewhat.

approximated by a sum of polynomials [} (x) . The
results of the calculations of f N ! r for various
values EQ and E are shown in Figs. 34 to 36.
Figure 37 (1) shows the equilibrium spectrum and
the energy spectrum in the region of the maximum
of the cascade. From the figure it can be seen that
the spectra in the region of the maximum of the
cascade with *0 = 50, 90, and 118.1 agree with one
another within 2% and agree within 10% with the
equilibrium spectrum whose accuracy has been
evaluated a number of times. The average energy
of one charged particle arriving at a given depth,
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determined from the calculated spectra, agrees
with the exact values within 20%. In addition, it
was shown that beyond the maximum the cascade
dies out more slowly in heavy substances than in
light ones. All this allows us to state that the
energy spectra in heavy substances, as calculated
in reference 59, are accurate to about 10%.

This review of works on the one-dimensional
cascade theory of showers shows that the method
of functional transformations, together with the
method of moments, makes it possible to obtain
practically a complete description of the average
one-dimensional behavior of electron-photon cas-
cades in light and heavy substances.

TABLE XIII

0
0.183
(1.738
1.292
2-402
3.511
5.175
6.839

S,, = OU

6.30
(i.12
."..59
:>. 18
4. Ш)
4.30
3.90
.'i.fil

58.5 : 0
54.9 (1.183
45.4 0.932
40.2 1.680
31.3 2.428
26.7 4.674
22.0 6.919
18.6

f 7 II
1 <I> 1

7.08
6.89
6.22
5.74
5.40
4.79
4.33

i ' , . i

70.;;
66.6
53.6
45.4
38.9
31.6
27.5

0

o. 18:;
0.85S
! .49:5
•' 47li
4.114
6.734

1
1

(

(
с

1

n — I 1 8 . t

'v i

.4:; i 74. G

.25

.57

. 12

70.9
59.5
5П.8

.67 43.9

.19 36.3

.54 29. I

log ff/p(eo,0,tf

FIG. 31. Same as FIG. 30.

0 S 10

FIG. 32. Same as FIG. 30 but for a primary electron.

loe/f/,(e..0.t))"

1——^^^

tn я

\
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30

!•: "~ ;o ' is 20

FIG. 33. Same as in FIG. 32.

FIG. 34. Dependence on depth of the number of electrons of

energy greater than f (from 0 to ' - ' 7) in lead in a shower caused

by a primary photon of energy cQ = 50, 90, and 118.1.
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The applicability of the method of functional
transformations is limited by the requirement that
the functions for the probabilities of all processes
be homogeneous with respect to the energies of the
primary and secondary particle. To obtain a solu-

2 4 6 8 Ш 12 14 № 18 20

FIG. 35. Same as FIG. 34.

2 4 S 8 10 12 /4 16 /8 20'

FIG. 36. Same as FIG. 34.

FIG. 37. 1— equilibrium spectrum, curve 2 and the triangles
and squares near it are the spectra in the maximum of a cascade
of a primary electron of energy fQ = 50, 90, and 118.1.

tion to the equations by the method of functional
transformations it is necessary in practice to fulfill
one more condition, In E0/fi > 1. In addition it is
very difficult in practice to obtain a solution that
includes scattering by this method.

The method of moments yields a solution for the
light substances in the energy region e0 ~ 1 and
also a solution for heavy substances with allowance
for the energy dependence of the total photon
absorption coefficient and for Rutherford scattering
of the charged particles in the cascade. The
method of moments makes it possible to obtain with
good accuracy a solution for a rather wide range of
depths and energies of the primary particles. How-
ever, it is an approximate method. The tables and
graphs in this review can be useful in a variety of
numerical calculations in the cascade theory.
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