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INTRODUCTION

FUNDAMENTALLY new effects arise when a radi-
ator moves in a medium, or close to a medium,
with a velocity which exceeds the phase velocity of
light in this medium ("superlight" or super-
luminal motion). Thus, Cerenkov radiation is
produced, the nature of the Doppler effect is
modified in a fundamental way and, in certain
cases, oscillations of the radiating particle can
be excited, causing instability in a beam of such
particles.

The theory of the Cerenkov effect for a charge
that moves in an infinite isotropic medium is now
well known (cf. reference 1 and the reviews in
references 2 and 3). However, the same cannot
be said for a number of other problems: for
example, Cerenkov radiation of dipole moments
in an infinite medium and in slits or channels,
Cerenkov absorption, the radiation reaction in
superlight motion, and instabilities of superlight

particle beams. Some of these problems have
been investigated only recently and are as yet not
always clearly understood.

Below we consider the theory of radiation due
to motion at superlight velocities, emphasizing
the physical ideas and the general approaches
being used in this field. Our presentation will,
to an appreciable degree, be rather incomplete.
We shall omit many of the details of the cal-
culations and make only brief mention of certain
problems which are either discussed in the
literature 2 " 3 a or require detailed analyses
(collective effects, instabilities of particle beams,
generation of radio waves 4 etc.).

1. CHARACTERISTIC FEATURES OF
RADIATION DUE TO SUPERFLIGHT
MOTION (CLASSICAL THEORY ) *

In most cases superlight radiation can be con-
sidered within the framework of classical theory.
The radiation condition for the Cerenkov effect is
given by l" 3 :

cos 0. = n (со) v (1)

where 60 is the angle formed by the particle velo-
city v and the Cerenkov wave vector к and n(<o)
is the index of refraction at the frequency being
considered ш ; the medium is assumed to be
isotropic.

The condition given in (1) is a kinematic
(interference) relation, and, for this reason, is
always valid, regardless of the nature of the
radiator (charge, dipole, etc.); this condition
applies in an anisotropic medium,5 but n Ы must
be replaced by n • (ы,к /k), the refractive index
for the characteristic wave denoted by у = 1, 2
which is propagated in the к direction in the case
of motion along the axis of a uniaxial crystal or
along a magnetic field in a plasma, n . = n(o>, в0) )
and the condition given in (1) is then a relation for
determining o0 (&>) ].

*§§ 1— 3 of the present review are based on the text of a
paper<*agiven at the Ministry of Higher Education of the III
All-union Conference on Radio Electronics (Kiev, January
1959).
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The energy radiated per unit time by virtue of
the Cerenkov effect for a point charge which moves
uniformly in an isotropic medium is given by 1 - з

dW
~df

e v f
= —Г" \ со «со.

If a radiator that moves in the medium radi-
ates at a frequency a>i in its own coordinate sys-
tem then, because of the Doppler effect, the fre-
quency of the radiation in the reference system
fixed in the medium is given by dff) •

(3)
I 1 — ( J « ( U ) ) C O S . 0 | w с •

When fin < I, i .e . , at "sublight" velocities, Eq.
(3) is the familiar expression for the Doppler
effect in a medium. However, if fin > 1 (super-
light velocity) the radiation must be considered
separately inside and outside the Cerenkov cone.6

Inside the cone (<9 < 0O), cf. Fig. 1) the Doppler
effect is "anomalous" (superlight) and the fre-
quency a) increases as the angle в increases; if
n = const, a -» °° as в •* <90. Outside the cone
(0 > 0Q) the Doppler effect may be called "normal"
since the frequency ы diminishes as в increases.

Equation (3) reflects a general characteristic
feature of radiation in a medium — the role of
the quantity /3 = v/c for vacuum is played by the
quantity fin in a medium; thus, whereas the ex-
treme relativistic case in vacuum is indicated by
the condition fi -> 1, in a medium, as far as the
nature of the radiation is concerned, the extreme
relativistic case corresponds to j8n -» 1. Further-
more, whereas in a vacuum at ,8 -» lthe radiation
is highly directive in the direction of the velo-
city, in a medium the preferred direction is given
by the Cerenkov cone. For a medium character-
ized by n < 1 (isotropic plasma), however, the
radiation at any velocity does not exhibit the fea-
tures characteristic of radiation in the extreme
relativistic case in vacuum. Under certain con-
ditions this last feature can become extremely
important. Thus, in radio astronomy the
"magnetic bremsstrahlung" (synchrotron) radi-

*For anisotropic media (including gyrotropic media) n(&j) is
replaced in Eq. (3) by n- (со, к /к). In the text, for simplicity,
it is assumed that the medium is isotropic. When dispersion
[п = п(ь))] is taken into account, Eq. (3) may yield several val-
ues of со for a given value of в ("complex" Doppler effect, cf.
reference 6); when dispersion must be considered, the Cerenkov
angle в0 depends on ы and thus, for a given value of в < n/2,
it is possible in general to have radiation at both the normal and
anomalous Doppler frequencies [ these are distinguished by the
sign of the quantity 1 - fin (o)) cos в]. In the present review
dispersion is not considered.

Cerenkov
cone

cos вп =•

Region of
normal

particle
velocity

FIG. 1.

ation of relativistic electrons that move in weak
magnetic fields is of extreme importance. The
nature of this radiation is modified in an impor-
tant way at low frequencies if account is taken
of the effect of the medium, i .e . , the interstel-
lar or stellar plasma, whose refractive index is

given by „ = i/ i._ 1 ^ (usually the effect of the
V mo)2

magnetic field on n can be disregarded).
The deviation of n from unity can be neglected

for fi - 1 if

- p - c i. (4)

In the case given by (4), |(1 - fin) - (1 - 0)\ =
/3 11 - n | « (1 - /3)and the factor n in Eq. (3) is not
important. To a certain extent this remark also
applies to other expressions for radiation inten-
sity, which contain the same factor (1 - fin cos в)
in the denominator (cf. Sec. 3). In the case of an
isotropic plasma, when 1 - n « 1 the condition in
(4) assumes the form 2ne2N/(ma,2) « (mc2/E)2

[ here, as in (4), E is the total energy] . A dis-
cussion of this criterion as it applies to cosmic
radio waves is given in reference 7.

Although a radiator that moves through a dense
medium suffers high losses, it is important to
note that the Doppler effect in a medium can still
be of importance for the following two reasons.
Firstly, the characteristic features of the super-
light Doppler effect are maintained for motion in

8 -- I 1

narrow slits or channels in a medium, or
for motion near a medium or an artificial slow-
wave system. Secondly, the effect is of interest
in connection with motion in a magnetoactive
plasma, in which case the losses are
small. These remarks apply also to the Cerenkov
effect, although the latter can be observed even in
the case of motion through a dense continuous
medium.
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2. QUANTUM THEORY OF RADIATION AND
ABSORPTION DUE TO SUPERLIGHT MOTION

Elementary quantum-mechanical ideas are
found to be very fruitful in the analysis of
various problems dealing with radiation, ab-
sorption, and amplification of electromagnetic
waves associated with the motion of charges or
"systems" (atoms, particle bunches, antennas)
in a medium. It is interesting to note that this
is the case in spite of the fact that the analysis
of the problem is essentially classical and that
to this accuracy, the final formulas are in-
dependent of the quantum constant ft .

The point of departure in the quantum-
mechanical analysis is the notion of photons in
the medium; the energy of these photons is
to, and the momentum is А к = ^ " ^ i 5 ) where
к = i s is the wave vector and n is the refractive
index for a given characteristic wave that pro-
pagates in the medium being considered (in the
general case the medium can be anisotropic and
gyrotropic). The quantization procedure has
been carried out for the case of an isotropic
medium in reference 15 and the generalization
of the results to an arbitrary medium can be
made immediately by the use of the plane-wave
expansion.1 6"1 7 a Obviously this approach is
valid only when a phenomenological theory can
be used. It should also be kept in mind that the
momentum of the photon in the medium is the
total momentum; this includes the momentum of
the field as well as the momentum communicated
to the medium in the radiation of the wave (cf.
references 18—19 and below).

From the quantum-mechanical point of view,
the radiation kinematics, i .e . , the constraints
imposed on the frequency and direction of the
radiation, are determined by conservation of
energy and momentum (the same constraints
obviously also apply in absorption). For ex-
ample, if a "system" (electron, atom, antenna)
has an energy EQ before radiating, and Er after
radiating (with corresponding momenta Po and
pl), these quantities are governed by the con-
servation laws:

hu>n к tuan

(5)

(6)

For a system that moves uniformly in a
vacuum (i .e . , for n = 1), radiation without a
change of the internal state of the system is
impossible (for example, an electron that moves
uniformly in a vacuum cannot radiate). This
well-known result also follows from Eqs. (5) and

(6) because with n = 1, for a particle without
internal degrees of freedom, the only solutions
for these equations is = 0 . However, if n = 1,
substituting

and (6), where P0.i =

C 2 p 2 t in Eqs. (5)

the

radiation condition for the case in which there is
no change in the internal state is given by :

cos 6 =n(co)o0

bus (n2 — 1)

B 0 C O S Q

When tco/mc2 « 1 this condition becomes the
classical radiation condition (1), as is to be ex-
pected (if tco/{mc 2) « 1, the recoil associated
with the radiation of the photon can be neglected.*
It follows from Eq. (7) that radiation is possible
(i .e. , cos в < 1 and a> >0) only for superlight
motion, that is, only when the inequality Vo n/c =
/8B > 1 is satisfied.

When the results do not contain t , the quantum-
mechanical analysis is of methodological value
only. Essentially, we are then using the con-
servation laws, which are broad in scope, and
which can be applied without introducing quantum-
mechanical ideas. Specifically, we assume from
the classical theory of the electromagnetic field
in a medium that the relation between the energy
% and the total radiation momentum of the
medium? is given by P =%ns/c .** Furthermore,
in the free motion ot a charge, if the changes in
energy and momentum are small we have A E -
v-Ap since !f- = -£(KmV + c V ) = ^ = v.
Thus, using the conservation laws (5) and (6) and
replacing fau by % we obtain A£ = g = v • A)p =
%n s-v /c cos eQ = c/nv , the condition given in

*It is clear from Eq. (7) that for very large values of n the
condition which must be satisfied in order for the classical
analysis t'o apply is somewhat different, namely:

Ло>Л«
L—£«l-

**As has been shown in reference 18, the momentum of
the field is Pr =%/nc while the momentum communicated
to the dielectric (because of radiation) is

Hence the total momentum is given by the expression
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However, the introduction of a photon of
energy -ha makes the analysis simpler * so that
this procedure is fruitful in both the classical and
quantum-mechanical cases. This is the technique
which will be used here.

If we are not concerned with the motion of a
particle, but the motion of a system whose in-
ternal energy can change, then £0 =

mQ ) 2 c4+ c2p2
,.Q , к. т ч. f/0 and Ex = \/(m + m,) с + с p j

where U + mo)c2= mc2+ f0 is the total energy in
the lower state and (m + m^c2^ me 2+ ex is the
total energy in the upper state. Obviously,
f! - f0 = A<u,- > о о is the energy difference be-

tween the two states of the system (atom, etc.).
Now, applying the conservation laws (5) and

(6) with W U c 2 ) « 1 we obtain the Doppler con-
dition (3).20 In this approach, however, we
throw light on a situation which is completely
obscured in the classical derivation of Eq. (3).6

In particular, for the normal Doppler effect, i .e . ,
when

pw(co)cos6>l, (8)

radiation corresponds to a transition of the sys-
tem from the upper state characterized by an
energy tj , to the lower state, characterized by
an energy e0 (the direction of the transition is
uniquely determined by the fact that the energy
of the radiated photon must be positive, i. e.,
the formal requirement <u > 0). However, if the
photon is radiated inside the Cerenkov cone, that
is to say, if the Doppler effect is anomalous

P« (со) cos 6 < 1, (9)

the radiation of the photon means a transition of

the system from the lower state f0 to the upper

state f j . The energy of the photon and the

energy which goes into excitation of the radiating

system is, in this case, derived from the kinetic

energy of the forward motion of the system.

It is apparent from this example that in the

quantum-mechanical analysis, as contrasted with

•Suffice it to say that the problem of the classical expression
for the field momentum Pe and the total momentum P is an ex-
tremely complicated one which has been discussed for several
decades and was finally resolved only recently.18'19 At the
same time the relation p = hcon/c =-%n/с, used in quantization,
can be obtained immediately.15 Actually, it follows from the
fundamental concepts of quantum mechanics that the total mo-
mentum of the radiation is Sk where к is the wave vector
which appears in the Fourier expansion of the field or the vec-
tor potential ( E = S const • exp (jk- Г) etc ). On the other
hand, it follows from the field equations that k2= o2n2/c2.
Whence, p = ftk = % E s.

the classical analysis, the radiation conditions
themselves determine the direction of the process
(transition in the upward or downward direction).
It is because of this feature, and the relative sim-
plicity of the induced emission calculation (cf.
below), that the quantum-theoretical calculations
are valuable in obtaining the radiation conditions,
conditions for amplification (instability) of waves
in beams, and so on.

If the system has only two discrete states, 0
and 1, when /3n < 1 (sublight motion) under
stationary-state conditions the radiator is in the
lower state, 0, (it is assumed that the system
moves, say, in a channel in a medium and that
there are no external sources). In other words,
if state 1 is excited, after a certain time the
system radiates, making a transition to state 0.
However, if /Зл > 1 (superlight motion) under
stationary-state conditions there is a finite
probability for finding the system in state 1 and
it continues to emit both normal and anomalous
Doppler radiation. The populations of states 1
and 2 and the intensity of the normal and anomal-
ous radiation are determined by the ratio of the
total emission probabilities for the normal and
anomalous radiation. In a many-level system 2 1

the emission of anomalous Doppler radiation,
with an upward transition of the system, implies
the excitation of "transverse" oscillations and,
for example, ionization of an atom. To be more
precise, two cases must be considered.22 In the
first case, the mean energy associated with the
transverse oscillations of the system is reduced
in the course of the motion. This means that if
one considers a wave packet made up of wave
functions characterized by slightly different
energies (for example, energies of the transverse
oscillatory motion of an electron which moves

in the direction of a magnetic field) the center of
gravity of the packet (on the energy scale) is
lowered. In this case the difference between the
sublight and superlight motions lies in the dif-
ferent rates of change of the mean energy and in
the nature of the spreading of the packet. Thus,
for sublight velocities it is reasonable to expect
no occupation of states with energies higher
than those corresponding to the initial spectrum
of the packet. For superlight velocities, how-
ever, in spite of the reduction in mean energy,
there is a finite probability for finding the system
in some higher state, consistent with (9) (here
we are obviously considering an ensemble of
systems).

In the second case the system is unstable even
"in the mean," i. e., its mean energy (the oscil-
lation energy) increases with time, regardless of
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24

the way in which the packet spreads.

In order to determine which one of these cases
applies one must calculate the actual transition
probabilities, bi this respect, the quantum-
mechanical calculation has no advantage over the
classical calculation and generally classical radi-
ation theory is used. This question will be con-
sidered further below (cf. Sec. 3).

At this point we may note that quantum-
mechanical considerations such as those used
above are also useful in the analysis of the prob-
lems involving the attenuation and growth of
waves in particle beams (streams). In general
the instability of a beam is due to growing waves.
Using our approach it is easy to obtain the
stability criteria for a beam of particles which
move in an isotropic plasma (cf. reference 23 and
Sec. 4 below). It is also clear that in general, in
superlight motion of streams of systems char-
acterized by two or more states, we will not have
absorption (reabsorption), but amplification
(negative absorption) of the anomalous radiation/
This result follows from the fact that in the ab-
sorption of a photon in the anomalous Doppler
region ( i .e . , a photon emitted at an angle в < в0

with respect to the velocity of the system) the
system does not make a transition from a lower
state to a higher state (as in the normal effect)
but from the higher state to a lower state.* Now,
however, an upward transition of the system
corresponds to induced emission which, for the
normal Doppler effect, corresponds to a downward
transition of the system. Hence, if all the sys-
tems (atoms, electrons in a magnetic field) in a
superlight beam are in the lower state, the nor-
mal Doppler radiation emitted by one of the
systems is absorbed by the beam while the
anomalous radiation is amplified, i .e . , in pro-
pagating it causes other systems to make upward
transitions, accompanied by induced emission;
the net result is the emission of an additional
anomalous Doppler photon.

If both the lower and upper states, 0 and 1,
are occupied the absorption coefficient of the
beam for normal Doppler radiation is (cf.
references 23 and 24):

(10)

where A \ (в) refers to the probability for a spon-
taneous transition l«- ->o with the radiation of a

photon at an angle в with respect to the velocity
(per unit solid angle). Nl and NQ are the con-
centrations of particles in the beam for states 1
and 0 correspondingly, n is the refractive index
of the medium at the frequency « for propagation
at an angle в (for simplicity we assume that for
all particles the dipole moment for the 1 •--> 0
transition is parallel to the velocity). In order
for the normal Doppler waves to be amplified the

number of particles in the upper state 1 must
exceed the number in the lower state 0 (in this
case No /Nx < 1 and д < 0). A state distribution
of this kind is not characteristic of thermal
equilibrium and in general, the production of
such a distribution involves definite difficulties.
However the situation is changed in anomalous
Doppler radiation, in which case the emission of
a photon is characterized by the transition 0 -> l
while absorption is associated with the transition
1 -> 0. For the anomalous effect

_ Л0
— / 1 ,

(11)

*Since absorption is the inverse process to emission, this
statement follows immediately from the calculations carried out
for emission. The terms "higher" and "lower" are used here
in terms of energy.

and ii < 0-when Nx /No< 1. It also follows that for
the anomalous Doppler effect (i.e. ,/3n > l) a beam
in which all particles are in the lower state 0 is
characterized by negative absorption, and the
waves radiated by the individual particles are
amplified. This situation would appear to be very
favorable from the point of view of using beams
of particles moving in a dielectric slit or a slow-
wave system for the generation and amplification
of microwaves.25

As has been indicated, the anomalous Doppler
radiation system can be electrons which oscillate
under the influence of an applied field or which
move along helical paths in a magnetic field par-
allel to the axis of the beam. At small amplitudes,
if we neglect Cerenkov radiation, these electrons
radiate in the same way as oscillators moving
with a velocity v, given by the projection of the
electron velocity vi i in the direction of the beam
axis.

In an electron beam the distribution of trans-
verse velocities t>[_ is usually such that the dis-
tribution function / (vj_) is a decreasing function of
u|_ (for example/(«]_) = const • exp |-m«i2/(2 KT)\.
In this case the normal Doppler waves are
attenuated because of reabsorption in the
beam; the anomalous Doppler waves, on the other
hand, are amplified. Amplification of the waves
in an electron beam implies that the amplitude
of the oscillations increases and the beam loses
stability. Under these conditions the electrons
generally become bunched and coherent radiation
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is produced. The quantum-mechanical criterion
for beam instability (/Зм пЫ > 1 ; /Зп= VM/С )
coincides with the criterion obtained by solving
the classical problem of stability of a beam of
electrons in a magnetic field.24 This insta-
bility of electron streams, which is character-
istic of a magnetoactive plasma, is of interest
as a possible explanation of sporadic radio radi-
ation from the sun.2

As we have indicated, the radiation condition
in (1) is an interference expression and is uni-
versal for waves of all kinds (obviously the phase
velocity of light c/n(a>) must be replaced by vp,
the phase velocity of the particular wave being
considered, for example, acoustic waves, capil-
lary waves, etc.). The same remark applies to
the results which have been obtained on the basis
of the conservation of energy and momentum,
both classically and quantum mechanically. The
second approach (the introduction of photons) is
much simpler not only for optical waves, but also
for plasma waves (cf. reference 23 and § 4) and
sound waves. In the latter case the energy of the
acoustic photon (phonon) is t = Ъы and its mo-
mentum is p = hk (<r/u)s , where u is the acoustic
velocity (acoustic dispersion is usually negligible
and there may be no difference between the phase
velocity and the group velocity). By analogy with
the electrodynamic case, we may assume that in
"supersound" motion an acoustic system which
emits anomalous Doppler radiation will make
transitions in the upward direction (i. e., will be
excited) and will thus become "unstable" to some
degree. 2 6 a

In concluding this section we indicate another
interesting point, which stems from the fact that
the directions of the phase velocity and group
velocity of a wave do not coincide, for instance,
in an anisotropic medium, or when spatial dis-
persion is taken into account.

If the projection of the group velocity j^/rfk in
the direction perpendicular to the velocity of the
particle ( i .e., the quantity <W&r where fer is the
projection of к perpendicular to V) is negative, it
would appear that energy is not emitted by the
radiator, but is absorbed. In this case, however,
we must use the advanced potentials rather than
the delayed potentials. 2 7 > 2 9 If к is always taken
parallel to the phase velocity, when da/dkr < 0
for Cerenkov and Doppler radiation H - 2 9 points
toward the particle trajectory, while the energy

necessarily is propagated away from the trajec-
tory. The difference between the cases <W<*r > 0
and dcsi/dkr < 0, for Cerenkov radiation is
shown in Fig. 2. When da/dkr < 0, as before
the angle 60 is determined by (1) as is clear for
the direction of к chosen from interference con-
siderations and from the conservation laws (5)
and (6). The latter remark follows from the fact
that we use plane waves ei(a>t -k• r) and the mo-
mentum of the corresponding photons in the
medium is {icon/с) (к /к); when plane waves are
used the direction of к is the same in Figs. 2a
and 2b because (in terms of plane waves) the
positions of the wave fronts are the same in both
cases (all are wave fronts with к parallel to the
Cerenkov cone). Equation (3) remains valid
when dco/dkr < 0. The physical difference be-
tween these two cases is quite significant, how-
ever, and stems from the difference in the direc-
tion of the group velocity. In an isotropic medium
(Fig. 2a) the group velocity is usually parallel to
k. In the case shown in Fig. 2b, however, the
group velocity vector d^/dk is antiparallel to к
and forms an obtuse angle {e1=ir- в0) with the
particle velocity vector v. In this case, if а к
particle passes through a slab of finite thickness,
the Cerenkov radiation is emitted from the rear
surface of the slab and is also refracted in an
unusual way at this surface (the latter point fol-
lows from the results of reference 27).

*Cf. reference 27 and reference 28 (in Figs. 2 and 3 of refer-
ence 28 the functions n (̂<u) are introduced; in certain regions
these functions are characterized by -A- (ha>) < 0 so that the
phase velocity and group velocity are different in sign.

FIG. 2
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3. RADIATION REACTION FORCE FOR MOTION
OF A CHARGE IN A MEDIUM

In considering electrons that move with super-
light velocities in a plasma or slow-wave system
in the presence of a magnetic field, or in con-
sidering related cases of oscillatory electron
motion, one is usually interested only in the clas-
sical region, that is to say, the case in which the
quantum numbers corresponding to the transverse
motion are large. Under these conditions prob-
lems involving radiation of waves and attenuation
or amplification of transverse oscillations of
electrons can (and in practice, must) be solved
by classical calculations, bi essence, these
calculations lead to the computation of the radi-
ation reaction force due to the motion of the
charge in a medium.

We shall consider this problem in somewhat
broader terms.

Inasmuch as the presence of a medium can
cause a radical modification of the electromag-
netic radiation produced by a moving particle, it
is clear that the radiation reaction force in a
medium also undergoes important changes. As
an example, an oscillator characterized by a
frequency &> in an isotropic plasma with a re-
fractive index n = v 1 - 4 г г е у will not radiate,

mco

in general, when о>^= 4ne2N/m > <u2 , in which

case n2 < 0; in a magnetoactive plasma, in the
nonrelativistic approximation no radiation is
produced by an electron which rotates in a mag-
netic field HQ at a frequency to#= еЩ/тс (here
we are considering radiation propagated at an
angle to the field, cf. reference 30). In both of
these cases there is obviously no radiation re-
action; on the other hand, in vacuum the radi-
ation reaction is

f =

 2e2 J-1 (12)

In the case of uniform motion in a medium, if the
condition v > c/n(a) is satisfied at some fre-
quency, there is a Cerenkov radiation force f c ,
which performs work given by fc • v = - dW/dt.
Hence, from Eq. (2) it is clear that

e%v

(13)

In light of those remarks it would appear that
the problem of calculating the radiation reaction
force for arbitrary motion of a charge in an arbi-
trary medium is of great interest. Nevertheless,
to the best of our knowledge, this problem has not
been treated at the present time.

This lack of attention would seem to be ex-
plained by the fact that for motion in a medium the
radiation force is usually appreciably smaller
than the braking force due to ionization losses.
Thus, the loss due to Cerenkov radiation, which
may be regarded as a radiation force, is only a
small fraction of the total loss even in a trans-
parent (dense) medium. In general this is also
the case for nonuniform motion of a charge.

As has been noted, however, there are inter-
esting cases of practical interest in which the
radiation forces for motion in a medium become
quite important (motion in channels and slits,
motion close to a medium and in a magnetoactive
plasma).

An expression for the radiation reaction force
in a medium has been obtained in reference 22.
Here we shall give only a brief sketch of the
calculation.

For a point charge, with a density given by
p = e S(r- R), / S dr = 1, the field equations and the
equations of motion are:

(14)

curl H

div

curlE

= ^ L e v 6 ( r _ R )

D = 4ne6(r-R),

1 ЭН ,.
с at '

+ i

^H =

3D >

o,

d

~~dt 4-

{E(r)+4vxH(r)j6(r-R)rfr.

Here R(t) is the radius vector for the position of
the charge (v = d~B/dt) ; E

 ( o ) and H (°)are the ex-
ternal fields and E and H are the fields produced
by the charge itself (for simplicity the medium is
assumed nonmagnetic).

For the case of an arbitrary medium the only
effective method for solving the problem is ex-
pansion of the fields into plane waves.
This procedure yields

Щ* = ea? (со) £to)

E= L ^ L _
(a, p = 1,2,3),

H = curl A,

A = /4л с
X. 3 = 1 ,

9 A a

*3 dx.
с. с. = 0,

(16)

(17)

where toe condition in (17) is chosen for con-
venience, repeated indices indicate summation,
and the index <u indicates that we take the Fourier
components while the real fields are given by
D — D t-D* = D+ с. с. ,Е = Ё +- с. с and so on.
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In Eqs. (16) and (17) nXj is the refractive
index and a^j is the complex polarization vector
for the j-th plane wave. The equations for the
potentials which are obtained from Eqs. (14),
(16), and (17) are

ДА -graddiv Д - - ! г - е а 3 ^ - е , - — еа8 ^~ex

+ c.c.= —- = - -^-ev6(r- R).

s'-i IT, — с. с. = - 4л<?6 (г—R).
! 18)

where e a is the unit vector associated with the a
axis and j = evs( r- R) is the current density cor-
responding to the particle being considered.

Substitution of the expansion in (16) in Eq. (18)
yields a system of oscillator equations for the
field amplitudes g\j (cf. references 13, 16, 17
and Sec. 4). The solution of this system is ele-
mentary. The fields determined in this way are
then substituted in the equation of motion (15).
As a result we obtain (cf. reference 22):*

d_
dt

[iV x к x

2л» 2. J \
1.20

~— sino>y (t-1'

- C O S CO, (t — С') —

(19)

c . c . = F<°> 4-frad.

where
v'=v{£')

The method of computing the radiation reac-
tion force used here is convenient for a number of
cases including isotropic media or vacuum). For
instance, the radiation damping force which acts
on a particle moving with nonrelativistic velocity
in vacuum can be obtained by using Eq. (19) to
obtain Eq. (12) (cf. references 31 and 32). On
the other hand, in the case of a particle which
moves uniformly in an isotropic medium char-
acterized by a refractive index n > c/v, using Eq.
(19), we can obtain Eq. (13) for the braking forces
due to Cerenkov radiation.

An analysis of superlight motion of an oscil-
lator has been given in reference 22. For an
oscillator which oscillates parallel to the forward
velocity v0 in an isotropic medium, we have

R = {0, 0, vj + R, sin Qt}, v = {0. 0, vn + v^ cos Ql\.

v^ = R0Q, a1 = {l, 0, 0}, a 2 = ; 0 , cos 9, - s i n 8;.

K = {0, A-sin О, А-, cosO}. (20)

For simplicity we consider only the case in which

(21)

Under these conditions, we obtain from Eq. (19)
the following expression for the work performed
by the radiation field on the particle in a time T:

T T T

A = \ vfradrfi = ;•, \ / r a d , . dt + и„ \ cos Q«/rad, z dt = An 4- А„.
и ,7 « ( 2 2 )

A -

) c o s 8 > 1

— &ore(co) cos 0 | (24)

If the d i s p e r s i o n function i s a s tep function, i . e . ,
if

n (ш) = n = const for ш < ш,.,

n (ш) = 1 for u> > to,.

Eq. (23) can be written in the form:

. _ _ *"-п*В$п.Т '• sin» 6 rfS

~~ A,:* ) > 1 — p o n ens 6 |

(25)

(26)

*It should be noted that in the calculations account must be
taken of the fact that the charge is not a point charge, but has a
definite radius rQ. However, instead of introducing a form ex-
plicitly in the integration over k , it is sufficient to introduce an
upper limit ^m a i~2n-/r0. Since the radiation force which is of
interest to us is independent of r. (in contrast to the electromag-
netic mass), no complications arise and the results of the calcu-
lation are unique.

where, for the anomalous Doppler effect we have

Q ^ Q x<arc COS —1— (1 + -^-) while for the

normal Doppler effect

areeos 1 — — ) < т< л.



882 V. L. GINZBURG

The quantity W = - 'A( > 0) is the energy radiated by the radiation field in amplifying or attenuating
by the particle (cf. reference 6). The work done the particle oscillations is obtained from Eq. (22):

8o"(">)cose >i

For the case given by (25),

Г Г

Thus, the radiation outside the Cerenkov cone,
corresponding to the second integral in Eqs. (27)
and (28), causes damping of the oscillations; the
radiation inside this cone (anomalous Doppler
effect), corresponding to the first integral in
Eqs. (27) and (28), causes amplification of the
oscillations.* This result is in complete agree-
ment with the quantum mechanical results (cf.
Sec. 2). It will be apparent that the second
integral in Eqs. (27) and (28) is larger than the
first; 'Аж < 0, as is the total work A [cf. Eqs.
(23) and (26)] . Thus, in an isotropic medium the
oscillations are always damped and 'Ax -» 0 only if
Роп(й)) -> °o in the actual range of integration.

In reference 22, an analysis is also made of
the case in which the oscillator oscillates per-
pendicularly to its forward velocity Vo . As in the
preceding case, in an isotropic medium the os-
cillations are always damped.

To understand certain features of superlight
motion of charges in anisotropic media it is con-
venient to consider the motion of an oscillator

i= — V e i \

-\

(27)

sin'GrfO

The regions of integration, L t and
mined by the Doppler relations:

are deter-

(l-p0n.ros(i)«

f sin3 8 rfO
Л (1 —Buncos (28)

along the optical axis of a uniaxial nongyrotropic
crystal; the electron is assumed to be oscillating
in the same direction.

In this case

R = {0, 0, oot + i?0sinQ<), k = {0, A-sinft, A cos 6},

a3 = {l, 0, 0}, a1 = {0, cos Й + А! sine, — sin 6 -\-K1cos 6}r

_ K - e x ) c o s 8 i^ ^ sin2O cos2 8
A i - ~ ej_smu ' п* ~ Ё | |

 + ~ i7~ ' k H « < 1 '

where n' is the refractive index for the extra-
ordinary wave, which is the only one in the pres-
ent case. The quantity K' is the ratio of the com-
ponents of the electric field in the extraordinary
wave which are parallel and perpendicular to the
vector к; the electric vector is parallel to the
polarization vector ax, whose length satisfies
the condition

(8 „ ah + e^ali } -1- = 1 (cf.ref. 5).

We can now obtain expressions that correspond to
Eqs. (23) and (27):

(29)(<o)sin2e + En (со) cos2 C]2

e3_(co) sin2 Orfco

cot 8 £nj
n, 38

cot 6 дпл

(со) sin2 8 da

'.-, (со) cos 2 Q]2 1—'cot I
(30)

(31)

for the n o r m a l Doppler radiat ion (L x ) , and

Pow(co, 6)cos6—1 = .
CO (32)

•The positive work in A ^
citation of oscillations since
tide by the radiation force.

, or part of it, corresponds to ex-
A is the work done on the par-

DO r

for the anomalous Doppler radiation (L2). It is
apparent that both integrals in Eq. (30) are always
positive. Thus the normal Doppler radiation
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[first integral in Eq. (30) ] corresponds to damp-
ing of the oscillations while the anomalous Dop-
pler radiation corresponds to amplification of the
oscillations.

This division, however, is only provisional,
since the physically meaningful quantity is the
work given by the difference of the two integrals.

In contrast with the case of an isotropic me-
dium, in an anisotropic medium there may not
only be a reduction in the attenuation, but even
amplification (if one considers the sign of the
total work Aoc rather than its components). Sup-
pose, for example, that fM and ej_ are inde-
pendent of frequency with (11 < 0 and ej_ > 0. In
this case п^в^) -» ~ at an angle e^ which is
determined by the following condition (cf. the ex-
pression for n\ given above):

s. sm- -i- e . cos 2 (to = 0. (33)

In a medium of this kind the extraordinary

e\ oj ; at
i\ < 0 and wave

is

waves can propagate at an angle
angles п/2 > в > 6X >. however,
propagation is impossible. Furthermore,
a minimum and equal to c\ when в = 0. Now, if
/30f|_ > 1 , it is always possible to choose c ц in
such a way that the Cerenkov angle e0 is larger
than 0,» (here /30n cos#0 = l).). Under these
conditions, in general there is no Cerenkov radi-
ation (the angle в0 corresponds to values n? < 0) );
in the forward direction (for в < n/2 , actually
в < О only the anomalous Doppler radiation is
produced. In the backward direction .(п- - в < 6^)
there is normal Doppler radiation but here
(1 - роП1 cos 6") = (1 + /30 nl I cos в I) and the total
work A^ is positive. One is easily convinced of
this by using Eqs. (31) and (32) in Eq. (30) to
transform to integration over в ; this procedure
yields

tan - I

V
л„ = { \

«y (0) s i n 3 Q rfO

n] (0') s in !

^шг\ (34)

where в' = п-й. Here, A > 0 since the first
integral in Eq. (34) is larger than the second and
the oscillations are amplified in this case.

The motion of charges in a magnetoactive
plasma has been considered in reference 33. In
this work it has been shown that under certain
conditions the oscillations grow; more precisely,
there is an "uncurling" of the helical line along
which the particle moves in the magnetic field.

Thus, amplification can take place if

a>l/a>% = p o С 1 (coH = еИытс. u)J = 4ne'2N/m),

where H is the uniform magnetic field applied to
the plasma and N is the electron concentration
of the plasma. Amplification obtains for the
following values of the parameters (results ob-
tained by numerical integration):

Pu = 0.01, ОЙ = 1С) anrf po = 0.99, <'Шй=10.

However, if £ = 0.99 and ^\/(^\ = 0.01, for
example, the transverse motion of the particle is
damped. If the oscillations build up, there is a
transfer of energy from the forward motion (in the
present case, motion along the field) into the
energy of the transverse motion. As a result the
forward velocity vQ is reduced and the amplifica-
tion ceases when the velocity vQ falls to the criti-
cal velocity c/nmax (the smallest value of the
propagation velocity in the medium).

The difference in the sign of the force which
act on the oscillatory motion of a particle in nor-
mal and anomalous Doppler radiation is in com-
plete agreement with the results obtained in Sec.
2. In the isotropic case there is a weakening of
the "friction" (in some cases it can disappear
completely), but the oscillations can never grow
(the quantum "build-up" of oscillations due to the
spreading of the packet in "energy space" for
superlight radiation obviously does not occur in an
isotropic medium; cf. Sec. 2). In the anisotropic
case, however, particularly in the case of a
magnetoactive plasma, growing oscillations are
possible.

It will be apparent that the instability of
superlight particle beams which is found in the
classical approximation even in an isotropic
medium, is closely related to the radiation r e -
action on a single particle.

4. CERENKOV RADIATION AND ABSORPTION
OF WAVES IN AN ISOTROPIC
MAGNETOACTIVE PLASMA

Because of the great interest being shown in
plasma physics at the present time, we shall
consider briefly certain aspects of this field
which are related to the theory of radiation at
superlight velocities.

In an isotropic plasma, i .e . , in the absence
of an external magnetic field Ho , the index of
refraction for the transverse waves is

n\2 = l - in- e
2
 N...2— < 1 (the phase velocity
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of the wave is v = (c/n) > с and Cerenkov radi-
ation can not be excited. However, because of
the thermal motion in an isotropic plasma, longi-
tudinal plasma waves * can be propagated; the
refractive index for these waves is: 3 4 "" 3 8

1 —2 C4
«: = —r- = -

Y.T

(35)

Here e and m are the charge and mass of the
electron, N is the electron concentration, к is
the Boltzmann constant, and T is the absolute
temperature. Eq. (35) is equivalent to the dis-
persion equation U)2 = oj2 + ^«X Л:2, which
yields the following expressions for the phase
and group velocities:

p n if n

3 —

l _ i? i (36)
та Г mf o> 2 '

The plasma waves are one of three equally impor-
tant groups of characteristic waves in a plasma.
The phase velocity of the plasma waves can be
smaller than с, the velocity of light in vacuum,
so that a Cerenkov effect is possible for these
waves. This form of the Cerenkov effect arises
when the motion of charged particles in the
plasma is such that the energy lost by the par-
ticles as a result of "remote" collisions goes
into Cerenkov radiation of plasma waves. By
virtue of this radiation, a particle with charge
el and velocity v (appreciably greater than the

thermal velocity vt ~у/кТ/т) loses the following
energy per unit time 39

dt 2v

The excitation of plasma waves by a moving
particle is not usually called the Cerenkov
effect. Obviously the question of terminology is
not very important, being more or less a mat-
ter of taste. Nevertheless, it would appear that
in the case of plasma waves (in contrast, say, to
acoustic waves) it is more meaningful to call the
phenomenon in question the Cerenkov effect. In
the first place, as has been indicated, in a
plasma the high-frequency longitudinal (plasma)
waves are of equal importance with the electro-
magnetic (transverse) waves. In the second
place, and this is perhaps more important, in a
magnetoactive plasma (i .e . , in the presence of

•The ion motion is neglected so that we can neglect the
quasi-acoustic (low frequency) longitudinal waves (cf. for ex-
ample, references 37 and 38). Absorption due to collisions is
also neglected so we may set the collision frequency vett = 0.

an external magnetic field HQ) in the general
case there are three characteristic waves and
these are neither longitudinal nor transverse.
The classification of plasma waves under these
conditions is necessarily rather arbitrary. 3 7 ' 3 8

According to the conventional procedure one
considers the waves produced by motion of a
charge in a magnetoactive plasma as Cerenkov
waves, electromagnetic waves, and plasma
waves. However, as the external field Ho be-
comes vanishingly small (transition to isotropy)
so-called Cerenkov waves 12> 26 do not vanish but
are converted, in continuous fashion, into the
plasma waves indicated above.26

These remarks apply not only to a gas plasma,
but also to other media in which plasma waves
can be propagated. For instance, a medium
which is analagous to a magnetoactive plasma is
an optically anisotropic medium (crystal). 2 8 ' 3 8

In solids and liquids the plasma frequency
/bne2N/m is always high (ultraviolet region of

the spectrum). Quantization is important and
one introduces the notion of photons associated
with the plasma waves — plasmons,40 with energy
to" 7SGJ0 (the medium is assumed to be iso-
tropic). The difference between plasmons and
photons associated with the electromagnetic field
in the medium used in Sec. 2 corresponds to the
difference between transverse and longitudinal
waves (cf. above). In an anisotropic medium, in
general there is no such difference and the so-
called discrete energy losses which arise in the
passage of electrons through thin layers 4 0 can,
with complete justification, be regarded as the
result of the Cerenkov effect.28 In investigations
of these discrete losses it is important to take
account of the momentum of the photons or
plasmons.4 0

In a gas (rarified) plasma the frequency <ц0 is
relatively low (hu « — and haQ « кТ , where

U is the mass and v the velocity of the radiating
particle, and T is the plasma temperature) and it
is not necessary to use a quantum-mechanical
approach. However, in these cases, just as in
the case of electromagnetic waves (cf. § 2), the
application of the quantum theory of radiation and
absorption to plasma waves (plasmons) can be
both convenient and effective. As an example we
can point to the calculation of reabsorption of
plasma waves and the determination of the sta-
bility criteria for a beam of particles moving in
a plasma given in reference 23.

A beam instability arises if there is a growth
of the perturbations which arise in the beam
(waves). From the quantum-mechanical point
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of view, the absorption coefficient for waves in
the beam must be negative (ц < О ;cf. Sec. 2).
This situation obtains if the particles in the beam
can radiate or if the velocity distribution of the
particles in the beam is such that the induced
emission exceeds the absorption. A particle of

sufficiently high velocity (v » \JKT_ ") moving in

an isotropic plasma can, as we have indicated,
radiate Cerenkov plasma waves. The absorption
coefficient ц is negative (there is more emission
than absorption) if there are more particles in
the beam in the upper states than in the lower
states [cf. Eqs. (10)—(11)]. If the particles do
not possess internal degrees of freedom (i. e.,
free electrons, protons, etc.) or if the change in
the internal state is neglected, the upper state
corresponds to a higher velocity. Whence it
follows immediately that a stream will be un-
stable if there are more fast particles than slow
particles for a given velocity range, i .e . , if the
velocity distribution fs Ы has a positive deriva-
tive.* The same instability criterion, dfjdv > 0,
can be obtained classically,36> 3 6 b but a special
analysis is needed. In many ways (depending on
the complexity of the problem) the quantum method
is more effective for obtaining the stability cri-
terion in the case already mentioned in Sec. 2,

•For simplicity we consider radiation in the direction of
motion of a one-dimensional stream,y(in the general case /s(t>)
is the function fsb>fc), where v^ = v cos в is the projection
of the flow velocity in the direction of the radiated waves к ;
cf. reference 23). When fs{v,)is given by /s(f^) = const • exp

I - -T^JT (vk - vQ cos в)2 ! , (Fig.

'&• It'
dvk

z > 0 in region II, where

> 0. Because of the Cerenkov condition (1) v cos в =

Region I Region II

FIG. 3.

t)£= c/nJa>) the radiation emitted by particles with different
VL (in particular, radiated by particles from regions I and II in
Fig. 3), is at different frequencies; thus there is no interference
between these waves and stability obtains even if ц < 0 for
only a small range of values of v^. We may note that for any
isotropic three-dimensional electron velocity distribution func-
tion / = f(v 2), f(yk ) = / f{v 2)dV\_ (Vj_ is the projection of
the velocity perpendicular to к ) cannot have a positive deriv-
ative and, in accordance with reference 36a, the distribution is
stable.

i .e. motion of a beam of charged particles in a
magnetoactive plasma (here we must take account
of the change in the component of the particle
velocity perpendicular to the magnetic field or, in
quantum-mechanical language, the transitions
between the energy levels associated with motion
perpendicular to the field, which is quantized24).

The possibility of emission of Cerenkov radi-
ation implies the possibility of absorption of this
radiation by particles, regardless of its origin.
It follows that in a plasma, in addition to absorp-
tion due to collisions * * there must be absorption
due to a Cerenkov mechanism. In an isotropic
plasma there is no such absorption mechanism for
transverse waves because there is no Cerenkov
radiation***

But plasma waves are absorbed, even in the ab-
sence of collisions. The mechanism responsible
for absorption was analyzed a long time ago by a
completely different approach. In this approach
we consider the linearized kinetic equation for the
plasma electrons (cf. for example, references
34, 35 and 38):

Eh,
dt

- vVr/, + ±- EVV/O = 0, / = /0 + h, » (37)

(Here we have neglected collisions and f0 (v) is the
zeroth approximation to the distribution function,
i .e . , at equilibrium, the Maxwellian distribution).
Then, Fourier analysis i .e. substitution of
/jCv.r, i) = g (v) el^at ~ r^ yields the expression

(38)

If &j t к • v division by ы- к • v yields an expression
for f x ; substituting f in the field equation,

curl curl E
O\i А - < $ ^ ,

we then obtain a dispersion equation that relates
o) and к . This equation can be written in the

**Bremsstrahlung is produced in collision between particles;
hence the inverse process is the absorption which arises as a
result of collisions.
***If the usual Maxwelliam velocity distribution is used,

formally it is found that there is (although extremely small) a
non-vanishing absorption of transverse waves even in the ab-
sence of collisions (cf. for example reference 37). This result
is erroneous however and is due to the fact that a nonrelativ-
istic Maxwelliam distribution does not necessarily preclude
the presence of particles with velocities v > с. If the problem
is treated relativistically, or if particles with velocities v > с
are disregarded, the non-collisional absorption of transverse
waves in an isotropic plasma is found to be identically zero
(this result also follows from the absence of Cerenkov radiation
in this case). R. Z. Sagdeev has called the attention of the au-
thor to the error concerning this point in reference 37.
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form £_— = n\ 2 , where "1,2,3 is the re-
a>2

tractive index for a given wave: transverse
((ra17)> or longitudinal U,). However, if &> = k- v
Eq. (38) cannot be divided by <u - k- v and it can
be shown 3 5 that the longitudinal wave which pro-
pagates in the plasma is attenuated. But the
condition

1

- к.у =
Г:

cosO (la)

is precisely the Cerenkov condition (1). In an
isotropic plasma this condition can be satisfied
only for plasma waves whose absorption actually
represents the inverse Cerenkov effect (the wave
is attenuated and the plasma electrons which
satisfy the Cerenkov condition gain energy) .*

If there is an external magnetic field, radi-
ation is produced in the magnetoactive plasma as
a result of collisions (bremsstrahlung), by virtue
of the Cerenkov effect, and as a consequence of
acceleration of particles in the magnetic field
("magnetic bremsstrahlung" or synchrotron radi-
ation). Correspondingly, there are three absorp-
tion mechanisms. It should be noted, however,
that the classification of radiation and absorption
in terms of Cerenkov and magnetic bremsstrah-
lung effects is somewhat arbitrary for the fol-
lowing reason. A particle (electron) in a mag-
netic field moves along a helical line, rotating

with a f requency a>u= a> H - ^ - = -^-0 ^ — (E i s
H H E me E

the total energy). In vacuum, motion of this kind
leads to radiation at frequencies saj, U =1,
2 ; the Doppler of the frequency shift
is neglected).** In a plasma, however, the nature
of the radiation (intensity, direction, and polari-
zation) is changed and, in addition to the fre-
quencies s<o*jj, there is a continuous radiation
spectrum; this radiation is the Cerenkov radiation
(if the particles move strictly along the field
lines, in general there is no magnetic brems-
strahlung radiation). On the other hand, if the
particles move in a circle in the plane perpendi-
cular to the field Ho, only discrete frequencies

are radiated s^ , i .e., in the terminology used
here, only magnetic bremsstrahlung is radiated.
Physically, however, it is apparent that if the
radius of curvature is sufficiently large and if
E/mc2» 1 the radiation spectrum becomes es-
sentially continuous; thus in the corresponding
frequency region it is similar to Cerenkov radi-
ation. It follows from these considerations that
in the general case it is only logical to use a
unified analysis of the magnetic bremsstrahlung
and Cerenkov radiation13 and absorption.

We now consider in somewhat greater detail
the frequency of the radiation which is emitted
(and absorbed) in a magnetoactive plasma. For
this purpose we write the equation for the field
amplitudes used in Sec. 3 Qcf. Eq. (16)] :

— ( v

(39)

where R(t) and v = dR/dt are re-
Ay

dspectively the radius vector and the velocity of the
radiating particle.

Equation (39) is obtained by a substitution of
the expansion in (16) into the equation for the
vector potential (18), multiplication by ajj-e"1"»-1'
and integration over space. If we neglect con-
stant factors, the form of the "force" term f(t) in
Eq. (39) is clear immediately because when j e =
eVS(r-R)

[cf. Eq. (18)].
Equation (39) has solutions for q ĵ which in-

crease in time, corresponding to radiation, only
at frequencies <o\j contained in the spectrum of
the force term f(t). For example, if the electron
moves uniformly R = vt and the force spectrum
contains the single frequency a = к • v. Hence the
radiation condition assumes the form оду = a = k-v
i.e. the Cerenkov condition (la). (This method of
deriving the radiation condition 4 3 is no less
graphic than the use of the interference analysis
or the conservation laws.)15

For the case of an electron in a magnetic
field R, which is parallel to the z axis:

R = {/?0COS (ujjl, Ro Sin fflfj<, V.t}, V = { — Pj_sin(Ofl/, 3j_ COS <O*/£, V.
VI — Лош*-г, / (t) = const ( — a*vj_ sin ш%1 + a*oj_ cos cojVf + atvz)

X exp { — г [kR0 sin 0 sin ufat + kv, cos Ot]}, (40)

where, for simplicity we have taken kx * 0 and в
is the angle between к and HQ (z axis). Expanding
the plane wave in terms of Bessel function

exp { — ili\R0 sin 9 sin lojjt] =
«•";-;<

•The physical interpretation of the non-collisional attenua-
tion of plasma waves was essentially given in reference 36 but
no explicit references were made to Cerenkov radiation. We
would not care to say when such references first appeared but,
as is well known, this matter has been discussed, for example,
in references 41 and 42.
**This effect is considered below.
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we obtain the resonance condition [cf. Eqs. (39)
and (40)] :

со = A'CO*J -|- kvz c o s 0; 6 = 0 , = 1 , + 2 , — 3 , . . . ( 4 1 )

For s = 0 this condition is identical with the
Cerenkov condition (1) — (la) with # * vz; at the
same time, all the s Ф 0 terms in Eq. (39) vanish
only when the motion is strictly along the field, in
which case RQ = о. When s ^ 0, in place of Eq.
(41) we can write

> 0: co = -
1 n cos 0

0: w =
- - n cos fj - 1

• (42)

where the frequency, as before, is positive.
If v\ « vz , the electron in the magnetic field

radiates in the same way as two appropriately
chosen dipoles moving along the field with velocity
vz = v, this case corresponds to values s = ± 1
(more precisely, the intensity of the higher har-
monics is small if к Rosin в = (co/c)nv\ шц sing « 1
Equation (42) with s = ±1 is in complete agreement
with Eq. (3) for the Doppler effect in a medium
(obviously for motion in a magnetic field

is the fre-1 - B2 = sinceE ~u E
quency in the system in which the center of gravity
of the radiator is at rest).

Turning from radiation to absorption, we see
that in a magnetoactive plasma there must be ab-
sorption of waves with frequencies given by Eq.
(41), corresponding to magnetic bremsstrahlung
and Cerenkov radiation (taking account of the
Doppler effect). We may note that this same re-
sult can be obtained44 by analyzing (for motion of
an electron in a magnetic field) the frequency
spectrum of the force which acts on this electron
in the field associated with the wave (the frequency
of the force term is not equal to the frequency of
the field E since the electron is displaced and is
in a field of different intensity at different mo-
ments of time).

Above we have discussed only the radiation
and absorption conditions. The actual calculation
of the radiation intensity and absorption coeffi-
cient is a separate problem, which can be ex-
tremely complicated. This problem has been
solved by the kinetic-equation method 45> 4 6 and
by other methods 4 1 > 4 7 and a summary of the
pertinent results for a nonrelativistic plasma is
given in reference 38. It may not be out of place
here to note that the non-collisional absorption
of waves in a magnetoactive plasma is of great
importance, not only at ultra-high temperatures

(in thermonuclear systems), but also, for ex-
ample, in the solar corona (temperature T — 106

degrees; cf. references 26, 38, 47, and 48).

5. CERENKOV RADIATION OF DIPOLE
MOMENTS Ш A CONTINUOUS MEDIUM
AND IN CHANNELS AND SLITS

Usually, only the Cerenkov radiation due to
point charges or charge bunches is considered.
At the same time it is clear that Cerenkov radi-
ation must be emitted by any radiator which
moves with a velocity v which is greater than
the phase velocity of light in a medium c/n. In
other words, the radiation condition (1) also
applies for any multipole; in particular, for
electric and magnetic dipoles, 6> 10> 15> 4 9 " " 5 7

The dipole radiation is modified fundamentally
(we neglect the higher multipoles) and is usually
appreciably smaller than the radiation of a
single charge. Thus, in order-of-magnitude
terms, when v ~ с and n ~ 1 the radiation in-
tensity of an electric dipole p = ed is smaller than
that of a charge e by a factor p2co21e 2c 2s~{d/\)2 ;
in the case of a magnetic dipole m this ratio is of
order m^w2/e2c2 (the appearance of the factor
U/A)2 is easily understood if we consider a di-
pole as two charges -e and +e separated by a dis-
tance d; cf. reference 49).

The magnetic dipole Cerenkov radiation of
elementary particles (electron, neutron, etc.) or
nuclei is extremely weak and is not of interest.
The situation is changed when we consider particle
bunches which, under certain conditions, can
radiate as point charges, with charge and multi-
pole moment corresponding to the total bunch. It
is precisely this case which may arise when par-
ticle bunches or current loops move in a magneto-
active plasma or when such objects move along
the axis of a channel or slit or close to a slow-
wave system etc. The calculation of the Cerenkov
radiation of dipole moments is also of interest for
methodological reasons; in particular, using this
technique it is possible to obtain information con-
cerning the magnetic moment of particles with
various spin values.15> 5 1 > 52> 5 7 Furthermore,
for a long time there have been certain unresolved
questions (cf. references 6, 10, 15, 49, 50, 53,
54) in the problem of the Cerenkov radiation of a
magnetic moment. Finally, it was only recently
that a definitive answer was given to the problem
of how the Cerenkov radiation of a dipole moment
is affected when the dipole moves in a channel or
slit.10' n For these reasons we shall consider
the Cerenkov radiation of dipole moments in some
detail.
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Consider a particle with charge e, electric
dipole moment p , and magnetic moment m, which
moves with velocity v . The current density as-
sociated with the particle is (p e is the charge
density,M is the magnetization, p is the
polarization):

j = Q,v + c curl M+^- = ev6 (r — vt) -iccurU m s(«" —

(43)

We assume for simplicity that the medium is iso-
tropic and nonmagnetic (the magnetic perme-
ability д = 1). Then, assuming that the vector
potential A satisfies the condition div A = 0, we
obtain the following equation (cf. for example,
Eq. (18) for«aft= fSajg or reference 58):

а Л с2 df
= _ 4 я . u±d_
~ с ' '• с dt

«Aw). Aw = c у ^j aw e x P {ikxT)'

fiij. k»,aw" = 0, / = 1, 2,

\ T T ^ dT = 2

= - 1 ^ , H = c u r l A ,

Дф = s (44)

(45)

Here, ^ is the scalar potential, ей? is the energy of
the transverse field and a\/ is the polarization
vector. Substituting the current (43) in Eq. (44)
and integrating with respect to dv, we have after
multiplication by A%. :

+ i (а̂ -p) (k̂ v)} exp {- ik-kvt} (46)

Integrating Eq. (46), for example with the initial
conditions ?x/ ^ = Px/ (°) = °. w e c a n * ш й *Ье
energyt%?. This energy contains a part which in-
creases with time and is due to a resonance when
the Cerenkov condition a\ <= k- v (cf. Sec. 4) is
satisfied. The part of Jfvtbich increases in time,
to be discussed below, does not depend on the
initial conditions and can be easily computed by

introducing the density of states dZ{ (со) =
е Т (й2 da dQ

—(2яс)»— a n ( i integrating over the angle в
(between к and v) where <Ш = sm в йвв.ф . It is
clear from Eq. (46) that the radiation of the
charge e and the radiation of the moments p and
m are shifted in phase by n/z so that there is no
interference between the radiation from the
charge and the moments. In other words, the
energy radiated per unit time is equal to the sum
of the radiation due to the charge [Eq. (2)] and
the energy due to the Cerenkov radiation of the
moments

2л

dt
3 = 1 . 2

(47)

where п2(л>) = <гЫ is the dielectric permittivity
of the medium, cos в = cos t

в and ф are the polar and azimuthal angles in the
coordinate system in which the z axis is parallel
to the velocity v . The integration over frequency
in Eq. (47) is carried out over the region for
which c/n (<u) v « 1. At first glance it niight appear
that dispersion, i .e . , the frequency dependence
of n, has not been considered in this calculation.
It can easily be shown, however, that dispersion
is taken into account in Eq. (47) (cf., for ex-
ample, reference 16).

For the case in which the magnetic moment m
is parallel to the velocity, we have from Eq.
(47) : 1 5

dt (48)

For an electric dipole, using Eq. (47), we can
also immediately obtain the familiar expres-
sions. ' The question indicated in the intro-
duction of this section concerns the case in
which the magnetic moment is perpendicular to
the velocity. If this moment is mQ and p 0 = 0 in
the system in which the particle is at rest, then,
as is well known, in the laboratory system

mn andp = (l/c) v x m In this case (forvj_m)

dW
dt

0)
(49)

This expression agrees with that obtained in ref-
erence 6 but differs from the results obtained by
other authors. 4 9 ' 5 3 > 5 4 For instance, in refer-
ence 49 the following expression was obtained
instead of Eq. (49):
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The origin of this discrepancy is the following: in
references 49, 53, and 54 a "true" magnetic di-
pole is used (dipole formed from magnetic poles).
However, a moving "true" magnetic dipole is
equivalent to a current moment only in vacuum.
If one introduces magnetic poles with a density
given by p m (r) , the field equations have the form
(we set s> = 0, j = о, В = M H ; cf. for example
reference 59):

CurlH = — ~ , diveE = 0,

CurlE= _ l ^ - 5 _ ^ n v

whence

curl curlH + ~--~i-=-- - — 8
д (em

Curl CUrl E J- ^ ^ = - ~ CUrl (Qm V).
(51)

However, when there are electric charges and
currents (for pm = о)

curl curl H + -^ -j^- = ̂  curl (e v),

curlcurlE+^^=~-w^.

(52)

The magnetic-pole equations are obtained from
the charge equations by making the substitutions

>s. (53)E->H, H-.--E, — e m ,

Thus, the actual current moment for /i = 1 is
equivalent to a "true" magnetic moment only in
vacuum, in which case с = 1. In a medium,
however, where t 4 1, the moving "true" mag-
netic moment m has an electric moment given
by (e/c) (v xm) and not (l/c) (v xm). This sub-
stitution is equivalent to taking account of the
electrical polarization of the medium which is
carried along by the dipole itself.50 In other
words, the "true" magnetic dipole is equivalent
to a current moment "made" from a material with
permittivity e, which is therefore polarizable. It
is interesting that this case can be realized for
bunches; in this case (at the frequency considered)
e, the dielectric permittivity in the bunch itself,
must be equal to the permittivity of the surround-
ing medium (for example, a plasma in a magnetic
field).

Using a quantum-mechanical calcu-
lation, 15> 51> 53,55 -- 57 which starts with the
Pauli or Dirac equations (or equations for par-
ticles with spin 1, 3/2 and 2), we obtain an ex-
pression such as Eq. (48) or (49). If the spin is
parallel or anti-parallel to the velocity v an ex-
pression such as (49) is obtained only for transi-
tions in which there is a spin flip, since it is only
in this case that there are components of the spin

operator perpendicular to v . In essence, how-
ever, the Cerenkov radiation of a magnetic mo-
ment has no quantum-mechanical specification.

In contrast with Eqs. (2) and (48), a char-
acteristic feature of Eq. (49) is the fact that the
integrand does not vanish at threshold ( cos в =
c/nv = 1) :

dW

re2 J '(.'-i)1

(we may note that in reference 57 precisely this
expression was obtained by a quantum-mechanical
calculation for a particle with magnetic moment.
However, this result need not be considered para-
doxical since the energy dW/dt does vanish at
threshold and increase smoothly above the
threshold. Actually, if dispersion is taken into
account, as the velocity increases radiation ap-
pears only at frequencies corresponding to the
maximum value of n(со). Furthermore, if recoil
is considered, automatically, in the quantum-
mechanical calculation (cf. Sec. 2) Eq. (7) is
obtained; in this equation the mass m is the mass
of the entire bunch. By virtue of Eq. (7), even
with n = const, as the velocity v increases radi-
ation appears at only one frequency, in this case
the frequency ы - 0; thus, the region of integra-
tion and the quantity in Eq. (49) increase gradu-
ally with increasing v.

We may note that in the quantum-mechanical
calculation it is also possible to obtain an ex-
pression such as Eq. (50); in this case, to the
Dirac equation for the charged particle it is
necessary to add an appropriate term, propor-
tional to Yj Yk % (for a particle with non-
kinematic magnetic moment we must replace

Yi Yk Fife Ь У Yi Yk Hik ) 5 h e r e Fik = ! H , i E !,

Hik = I H . . - D I ^d qk =Flh ~Hih and
the Yi are the Dirac matrices. However, there
is no basis for making these changes for an in-
dividual particle and the use of such a quantum-
mechanical calculation would be meaningless in
the case of a bunch.

In conclusion, we consider the Cerenkov
radiation of dipole moments which move in voids —
channels and slits (for simplicity we assume that
in the void f = 1 and ц = 1). In the case of a
charge, it is well known8""10 that as the radius
of the channel or the width of the slit approaches
zero the Cerenkov radiation becomes that which
obtains for motion in a continuous medium (when
cos в—l this is the case when а/к « 1, where
a is the radius of the channel or the width of the
slit and Л = X0/n is the wavelength in the me-
dium) . At first glance it might appear that this
result would apply for dipoles and other multi-
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poles; in general, however, such is not the case.
In order to compute the effect of thin chan-

nels (slits) on Cerenkov radiation it is convenient
to use the reciprocity theorem

(2)

where j a is the Fourier component of the
density of the "transverse" current in regions 1
and 2; the fieldE^^is produced by the current 2
in region 1 and the field E ^ ' b y current 1 in re-
gion 2 (cf. for example references 38 and 59*).
Writing the current in the form j = Qev + -̂ p-
+ с curl M, we have

if the dipole p = pd) is parallel to the axis of
the channel or if it lies in the plane of the slit,
when a/\ « l the radiation field again is the same
as for a continuous medium. For a dipole which
is perpendicular to the plane of the slit, because
of the fact that the component normal to the boun-
dary is continuous D = f E :

pE'2> (0, 0, z) = e (w) pEf (0, 0,
(57)

where E 0 ^ is the field produced by dipole 2 in
the continuous medium (Fig. 4). If the Cerenkov
radiation field of dipole 1 (with moment pd) = p)
in the continuous medium is denoted by Eo , using
the reciprocity theorem we have

[(е„ у),',1' ЕЯ1 + ш (РЙ1 E<? - ц MJ." HL2

= J [(Q. v)if ЕЙ' + ш (PJ?> ЕЙ' - |

dr =

(2)
( 5 4 )

where p is the magnetic permeability of the m e -
dium at points 1 and 2. In the case of Cerenkov
radiation of a point charge which moves along the
z axis

2л

—i —

v e v б (х) б (у)

and, placing an electric dipol p ^ = /pJ 2 W at a
point removed from the trajectory, 2, we have

vE<2) (0, 0, z) e~l v dz = ш р<2)Е (2), (55)

where E(2) = E^J'(2) is the radiation field at 2,
which is of interest to us (the subscript ш is
omitted). If the charge moves in a thin channel
or narrow slit (i.e. if а/к « 1) the quantity
v E ^2^(o, 0, r) remains the same as for a con-
tinuous medium since the tangential components
of the field E ^ are continuous. Hence, as is
clear from Eq. (55), the radiation field E is the
same as for a continuous medium.

For a radiating electric dipole,
p 8(z - vt) sW S(y), . we have

О, z)e ° dz = p'2)E (2). (56)

^j ^ pE;*V~£ » dz = P
caiE.,(2).

If there is a slit, using Eq. (57) and the r ec i -
procity theorem, we have

(58)

(59)

It is apparent from Eqs. (58) and (59) that the
Cerenkov radiation field is E = ( E 0 , that is to
say f times larger than for a dipole which moves
in a continuous medium. For a dipole which is
perpendicular to the axis of a narrow cylindrical
channel (circular) we find E = ^ j E 0 . . Since the
magnetic field in the wave zone is proportional to
the electric field, the radiated energy in these
cases (slit and channel) is larger by factors of «2

and [2e/(e + 1)] 2 respectively.** A dipole which

Slit or ( l}
channel ' ' t P*P'

FIG. 4.

*In the form given here, the reciprocity theorem applies for
any fixed linear medium, but only in the absence of an external
magnetic field. In the presence of a magnetic field, in which
case the tensors e ^ and д ^ are not symmetric, the general-
ized reciprocity theorem must be used (cf. reference 38, Sec.
29).

**To compute the radiated energy by means of Eq. (47),
when there is a channel or slit, it is necessary to replace p
by the appropriate expression obtained from Eq. (56); for ex-
ample, for a dipole perpendicular to the axis of a circular
channel we use 2f p / (e + 1) p in place of p .
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is oriented in an arbitrary direction may be re-
garded as made up of dipoles parallel and per-
pendicular to the axis of the channel (slit) and,
using the superposition theorem, the problem can
be reduced to a combination of the preceding
problems. It is clear from Eq. (54) that when
/ i = l the existence of a narrow channel has no

effect on the radiation of a magnetic dipole m. If
there are both electric and magnetic dipoles the
radiated fields can be combined (obviously not the
energy), i .e . , the problem can again be solved
easily.

A moving current moment and a "true" mag-
netic moment placed in a hollow void must ob-
viously give the same radiation. This conclusion
has been verified by direct calculation of the
radiation of different kinds of dipoles moving in
a circular channel;11 in the particular case of a
thin channel, it is found, as is to be expected,
that the preceding result applies—the field of the
electric dipole is increased by a factor 2f/(f + i).

Because the Cerenkov radiation of a moving
electric dipole (when ^ Ф 1 also a magnetic dipole)
depends on the shape of a void which may be made
as narrow as desired, one might question the
validity of Eqs. (47) or (48—19) for motion of di-
poles in a continuous medium. From the re-
ciprocity theorem it is clear that here we are
concerned with whether the actual field which acts
on the dipole, Ee/y , is the average macroscopic
field E. For dipoles fixed in a medium this ap-
proximation does not hold in general (i.e.
E err _ E ). However, when a charge or dipole
moment moves along some trajectory, the average
field acting on a "physically infinitesimal" por-
tion of the path is precisely the macroscopic
field. This conclusion concerning the validity of
the original expressions (44) — (46) for motion of
a particle in a continuous medium can be verified
by obtaining this expression (or the equivalent
wave equation) by averaging the equations of mi-
croscopic electrodynamics. Thus, in our opinion
there is no question as to the validity of Eqs.
(47) — (49) for Cerenkov radiation of point dipoles
in a continuous medium.

We have indicated the effectiveness of a tech-
nique based on the reciprocity theorem for cal-
culating Cerenkov radiation in narrow channels.
This technique has also been used in analyzing
transition radiation;60 it should also be useful for
analyzing a number of other problems in the
theory of Cerenkov radiation and transition radi-
ation in the presence of boundaries.61

In this review we have considered only certain
aspects of the theory of superlight radiation — the

radiation produced by superlight motion of par-
ticles in a medium. Nonetheless, the results
indicate that there are a number of new and inter-
esting points in this field which will be valuable
in the development of concepts and methods for
the investigation of plasmas and the motion of
particle beams in plasmas and close to arbitrary
media, etc. 2> 3.6i, 62 Thus, the theory of radi-
ation for superlight motion in a medium, which
arises basically in connection with Cerenkov
radiation in isotropic bodies, has rather wide
application and is a subject of continuing
development.
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