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1. INTRODUCTION

Ai the concepts of the electron theory of
metals and all its successes are closely related to
ideas of quantum mechanics. Fundamental to the
theory was the concept of free electrons — the
carriers of the conduction in metals. Even the
most primitive pictures of free electrons in a metal,
forming an ideal, highly degenerate Fermi gas,
proved to be very fruitful in explaining (at least
qualitatively) a variety of experimentally observed
regularities (the linear variation of the electronic
specific heat, the temperature behavior of electric
and thermal conductivity, etc.)

It was possible to go much further with the
theory after the fundamental work of Bloch and
Peierls, in which the concept of free electrons was
developed significantly. In Bloch's theory the
interaction of the conduction electron with the
crystalline medium was described by introducing an
effective electric field with a periodic potential, to
take account of the symmetry of the lattice. The
study of the motion of particles in a periodic field
led to the explanation of the following facts. The
energy spectrum of the electron has a zone struc-
ture, i. e., it consists of a series of bands (zones),
separated by forbidden energy regions. These
bands may overlap partially, but their individuality
is nevertheless preserved and manifests itself
primarily in a different dependence of the particle

energy с on its quasimomentum p, i. e., in a dif-
ferent dispersion law for the electrons. This more
complicated dispersion law replaces the formula
t = p2/2m, which holds for free electrons.

One of the most important consequences of the
band theory was the conclusion that it was possible
to divide all crystals into metals and dielectrics,
using as criterion the filling of the zones in the
ground state (i. e., the state of lowest energy): in
accordance with the Pauli principle, the electrons
can be accelerated only when the neighboring
energy levels are unoccupied, i. e., a material is
a metal if there is a zone which is only partially
filled with electrons.

The Bloch model is not entirely satisfactory
because it is formulated as a one-electron problem;
it is not clear whether or not a consistent inclusion
of electron interactions will cause fundamental
changes in the concepts of the band theory. For
this reason many attempts were made to use other
models, in which one or another aspect of the
interaction between electrons was taken into account,
and in which the problem was formulated as a
many-electron problem. However most of these
formulations are extremely artificial and uncon-
vincing, and most importantly, cannot be carried
through to reach specific results.

A new approach to the problem of the electron
theory of metals is associated with the attempt to
avoid the difficulties which arise in choosing
models for determining the electron spectrum in a
metal. This approach is based on general notions
of possible types of energy spectra of quantized
systems, and on the idea of quasiparticles which
have this spectrum.

The concept of quasiparticles is related to the
treatment of the low levels of excitation of macro-
scopic bodies: the energy levels of such bodies are
described as the sum of the energies of individual
elementary excitations, each of which has its own
momentum (or quasimomentum, in a crystal). The
simplest examples of such elementary excitations
or quasiparticles are the phonons in crystals, spin
waves in ferromagnets, excitons in semiconductors
and dielectrics, etc. Depending on the statistics of
the particles which produce the energy spectrum of
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the system, we say that the spectrum is a Bose or
a Fermi spectrum.

A macroscopic system can have an energy
spectrum with several branches, some of which are
Fermi and others Bose. We shall start from the
hypothesis that the spectrum of the carriers of the
conduction in a metal is a Fermi spectrum. This
means that the transfer of charge is accomplished
by quasiparticles obeying Fermi statistics. Thus
the set of valence electrons interacting with one
another and with the crystalline field can, so far as
their kinetic and statistical-thermodynamic prop-
erties are concerned, be replaced by an ideal gas
of charged Fermi quasiparticles. From now on we
shall call these quasiparticles conduction electrons
or, simply, electrons. The assumption of the
Fermi character of the energy spectrum of the
carriers of the conductivity clearly does not exclude
the possibility that there are other branches of the
spectrum which are associated with excitations of
Bose type. If we consider the metal as a whole,
such excitations surely exist. However, on the
basis of the whole body of experimental data now
available, it is extremely improbable that in the
nonsuperconducting state there is a Bose branch of
the spectrum which is associated with the transfer
of charge.

As for the energy spectrum of the individual
quasiparticle (i. e., its dispersion law e = e (p)),
because of the crystal symmetry t (p) must be a
periodic function of the quasimomentum with the
period of the reciprocal lattice (multiplied by
Planck's constant 2nh). in the general case this
function is multivalued, corresponding to the dif-
ferent energy zones for the electron. Thus this
aspect of the band theory is not related to the one-
electron model of Bloch, and has a much more
general character.

The assumption that the gas of quasiparticles is
ideal is, of course, a first approximation appro-
priate to low excitations (low temperatures). In
kinetic problems it is necessary to take account of
interactions both within a branch and between
branches of excitation (for example, between elec-
trons and phonons). In the simplest case, this
interaction corresponds to a collision of the quasi-
particles. However, it is possible that such a
treatment of the interaction is not good enough and
that it is necessary to consider the change in the
dispersion law for an individual particle as a func-
tion of the number of excitations, in a way similar
to that used in the quantum theory of the Fermi
liquid which was developed by L. D. Landau.

For a semiphenomenological approach to the
development of an electron theory of metals, one
must make a careful and deep study of all those

properties of the electrons which do not depend on
the genesis of the electron energy spectrum, and
are determined solely by the dispersion law < =
((p). Usually in developing the electron theory of
metals emphasis is put on the similarity of an
electron in a metal and a free electron, and there
is no careful description of the peculiarities in the
behavior of the electron, which are related to the
complicated nature of its dispersion law. As
investigations carried out in recent years have
shown, many important properties of metals can be
explained only by starting from the assumption that
the electron energy spectrum of metals is compli-
cated and is essentially different from the energy
spectrum of free electrons. For this reason the
development of the electron theory of metals should
start from the study of the mechanics (classical and
quantum) of an electron with a complicated disper-
sion law. It then becomes clear that the mechanics
of a conduction electron has several important
special features, which manifest themselves in a
large variety of macroscopic properties of the
metal.

The above describes the essential idea, which
is to study the consequences of the assumption that
the energy spectrum of the conduction electrons in
a metal is of Fermi type, disregarding the question
of the genesis of such a spectrum and not giving any
specific model which leads to such quasiparticles.
It turns out that most of the kinetic and statistical-
thermodynamic properties of a metal (including its
magnetic properties) can be expressed in terms of
the parameters characterizing the quasiparticles
(their number, dispersion law, etc.). We can
therefore also formulate and solve the inverse
problem — to determine the energy spectrum of the
quasiparticles (electrons) from the experimental
data concerning various macroscopic characteris-
tics of the metal. The most sensitive tools for such
a determination of the energy spectrum are the
various properties of a metal in a magnetic field,
when the radius of curvature of the electron tra-
jectory is much smaller than its mean free path and
where the electron can, between collisions, make
its dynamical properties apparent (e. g., the low-
temperature oscillations of the susceptibility,
galvanomagnetic phenomena in strong fields, high-
frequency properties of metals, and resonance
effects).

As a consequence of the Fermi statistics, in the
ground state (i. e. , at absolute zero) all the energy
levels of the electrons up to the limiting value c0

are filled. Therefore for temperatures T «c 0 /k,
in all effects, only those particles play an essential
part which have energies close to e0 (*• e - . which
lie in a band of width Sc ~kT). In most cases the
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degeneration temperature T o = f0 A is extremely
high (To ~-10 4 degrees), and the inequality holds
practically always. This means that mainly only
those aspects of the dispersion law for electrons
manifest themselves which are related to the
behavior of the function e (p) near the constant
energy surface i (p) = f0 in momentum space. This
surface is called the Fermi surface, and its char-
acteristics determine the properties of the elec-
trons. In addition to the shape of the Fermi sur-
face, a second quantity characteristic for the
energy spectrum is v =де/др, which has the signifi-
cance of a velocity of the electrons. Thus in the
sequel, when we talk of determining the energy
spectrum, we shall mean only the determination of
these two most important characteristics of it.

This summary is divided into three closely
related parts. The first part contains the mech-
anics (classical and quantum) of the conduction
electron. In the second part we develop the statis-
tical thermodynamics of the electron gas, i. e., we
explain the thermal and magnetic properties of
metals under equilibrium conditions. Finally, the
third part is devoted to the investigation of kinetic
phenomena, in particular the study of galvano-
magnetic and resonance effects.

A large part of the results presented are based
on the work of the Khar'kov theoretical group.
Some of the results are published here for the first
time. It was not the purpose of the authors to
cover all the papers on the theory of metals which
have appeared in recent years, so that the litera-
ture cited is not a bibliography of the subject.
Attention was mainly given to those effects which
can serve as a clue to the electronic energy
spectra of metals.

2. GEOMETRY OF CONSTANT-ENERGY SUR-

FACES FOR ELECTRONS.

As we have already said, the dispersion law for
a conduction electron is essentially different from
that for a free electron.

In particular, the periodicity of the crystal
lattice leads to a periodic dependence of the energy
on the quasimomentum, with the period of the
reciprocal lattice multiplied by 2 nt (2 rffi - h is
Planck's constant). In general the symmetry
elements of the crystal impose conditions on the
symmetry of the function e = e (p). In addition,
because of the invariance of the equations of quan-
tum mechanics under time reversal, we always
have e (-p) = ((p).

Since several values of the energy t correspond
to a single value of the quasimomentum, t (p) is a

multiple valued function. It would therefore be
more accurate to write e = f g (p), where s denotes
a set of discrete quantum numbers which determine
the "number" of the energy band (zone). These
energy bands (or zones) may overlap partially
(i. e., min cs< max f g< max ( , ), but,
naturally, their individuality is preserved since
each zone has its own dispersion law. In all cases
where it would not lead to a misunderstanding, we
shall omit the index s.

Within each zone, for definite values of the
quasimomentum, the energy attains its minimum
and maximum values.

In the neighborhood of the points of minimum
(or maximum) energy, we can expand in powers of
the deviation from the momentum value for which
the energy takes on its minimum (maximum) value.
If we disregard cases of degeneracy, the expansion
has the following form*:

) ' (2-1)

-—-— ) —is a symmetric tensor of rank two; if
dpi орь. /p=po

p 0 corresponds to an energy minimum, the
principal values of the tensor are positive, where-
as they are negative for a maximum. The com-
ponents of the tensor have the dimensions of
reciprocal mass (gm"1). For this reason the
tensor is called the reciprocal effective mass
tensor, and is denoted by m "Д .

Thus

e (P) = e (p0) + у mii (рг - pu) (pk - pk0). (2. la)

In the neighborhood of the extremal points, the
constant energy surfaces in quasimomentum space
are closed, and as we see from the expansions
(2.1) or (2. la) they are ellipsoids in the immediate
neighborhood of these points.

It should be remembered that any closed energy
surface near a minimum point encloses a region in
momentum space in which the energy is less than

•Degeneracy near a zone boundary, i.e. near a mini-
mum or maximum, is not a rare occurrence. It is frequently
a consequence of the crystal symmetry. We then still have
a quadratic dependence on the modulus of the momentum
in the neighborhood of the minimum (or maximum), but the
angular dependence is more complicated. Thus the energy
spectrum of "holes" in Ge and Sj crystals has the form1

\

where А, В, С are constants, and p Q = 0.
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FIG. 1. Lines of equal energy. Dis-
persion law:

a) = A2 ; the lines at 45° are the
j 2

"open surfaces"; b) Ax = Аг; between
the ellipses is a layer of "open sur-
faces".

its value on the surface, while near a maximum
point any closed surface encloses a region in which
the energy is greater than its value on the surface.
This means that in the first case (near a minimum)

the vector v = -̂ - is directed along the external

normal to the surface of constant energy, while in
the second case (near a maximum) it points toward
the interior.

Since € (p) is a periodic function, the surfaces
described above are repeated periodically over the
whole reciprocal lattice. Despite this periodic
repetition, we shall say that they are closed.

It is obvious that between these surfaces which
are topologically simple there must be more com-
plicated surfaces — self-intersecting and open
surfaces (i. e., surfaces which extend throughout
the whole reciprocal lattice), for otherwise it
would be impossible to have a continuous transition
from the surfaces which surround minimum points
to those which surround maximum points.

As an example we show in Fig. 1 the constant
energy "surfaces" (curves) in the two-dimensional
case

e = Аг cos Px- x- + Аг cos •
Pvau

It is clear that if Ax = A2 there is one open
"surface" (the system of straight lines shown in
Fig. la); but if Аг ф А2 , there is a whole layer of
such surfaces (cf. Fig. lb).

We note that in the three-dimensional case open
surfaces must occur very frequently. For example,
such a "simple" dispersion law as

leads to layers of open surfaces which fill approx-
imately 1/3 of the volume of the entire reciprocal
lattice (cf. Fig. 2).

The dispersion law (2. 2) can be regarded as
representing the first terms in the Fourier expan-
sion of the dispersion law e =«(p). InBloch's
theory this law corresponds to the inclusion of
interaction of the electrons with the neighboring
atoms in a simple cubic lattice.

As was shown in references 2 and 3, the inclu-
sion of further terms in the expansion (which would
correspond in the Bloch theory to taking account of
the interaction of the electrons not only with near-
est-neighbor atoms but also with more distant
atoms) makes the constant energy surfaces con-
siderably more complicated. In particular, there
are frequent cases where the connectivity of the
energy surfaces is complicated (Fig. 3).

- 7Г COS -- -j- cos -
P\iau

(2.2)

FIG. 2. Typical open surface of constant energy
(space grid). The dependence of energy on quasimomen-
tum is given by Eq. (2.2).
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®/
a b с

FIG. 3. Energy surfaces for the dispersion law
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for various values of the parameters A- and the energy
f. FIG. 3c shows a case where one part of the surface
of constant energy is contained in another part. A por-
tion of the outer surface has been cut away.

The open surfaces can be of all types — simply
connected or multiply connected (some examples of
open surfaces are shown in Figs. 2 and 4).

The topology of the constant energy surfaces
and, in some cases, the nature of the curves of
intersection of these surfaces with a plane deter-
mine the dynamics of the electron in electric and
magnetic fields. It is therefore convenient to
classify the surfaces as follows:

I. Closed surfaces. These naturally do not
contain any open plane curves.

II. Open surfaces:
a) Open curves occur only for fixed directions

of the normal to the intersecting plane, or not at
all (an example is Fig. 4b).

b) There is a one-dimensional manifold
(dihedral angle) of directions of the normal to the
intersecting plane which give open curves (exam-
ples are Fig. 4a — the "crimped" cylinder; the
dihedral angle is equal to 2»),

c) There is a two-dimensional manifold (solid
angle) of normal directions giving open curves
(examples are Fig. 4d — the "embossed" plane,
with solid angle equal to 4 л-, and Fig. 2 — the
"space grid" with solid angle less than An).

In the case of complicated energy surfaces, the
directions of the normals to planes which give open
sections are conveniently shown in stereographic
projection (Fig. 5).

Since the energy f is a periodic function of the
quasimomentum p, the whole p-space can be
divided, according to the symmetry class of the

particular crystal, into regions in which the energy
takes on the same set of values. Such regions
were introduced by Brillouin in studying the energy
spectrum of electrons in a weak periodic field, and
are called Brillouin zones.

The location of the zone boundaries, i. e., the
planes which separate one Brillouin zone from
another, is very important for the explanation of
the symmetry of the surfaces of constant energy.
Often, however, by using the periodicity of the
energy e (p), all the zones are "contracted" into one
(the first) zone, so that the quasimomentum p is
treated as a quantity defined within the first Bril-
louin zone, thus emphasizing the distinction
between the quasimomentum and the true momen-
tum. However it is then very difficult to treat the
motion of the electron in electric and magnetic
fields, in which case the quasimomentum is not
conserved. In fact one is immediately faced with
the question of what happens to an electron when it
reaches the boundary of a Brillouin zone.

It is more convenient to assume that the quasi-
momentum of the electron is defined over the whole
reciprocal lattice space, and that its energy and
velocity are periodic functions of p.

3. CLASSICAL MECHANICS OF A PARTICLE
WITH AN ARBITRARY DISPERSION LAW.

An electron in a metal is unquestionably a
quantum mechanical object, i. e. , its laws of
motion can be found only on the basis of a quantum
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FIG. 4. Possible types of surfaces of con-
stant energy.

mechanical treatment. In particular, only quantum
mechanics could explain the "freedom" of the elec-
tron in a metal — its ability to move through an
ideal lattice without resistance. Only quantum
mechanics allows us to formulate such concepts as
quasiparticle, dispersion law, etc. However,
since these concepts are already formulated and we
can now regard the electron in a metal as a particle
with a complicated dispersion law, it becomes pos-
sible to treat a variety of problems purely classi-
cally. For such a treatment it is necessary that
the following conditions be fulfilled:

FIG. 5. Stereographic projection of directions of nor-
mals to the intersecting plane for which there are open
sections, for the energy surface shown in FIG. 2. The
directions are those in the shaded regions and the lines
a and h.

a) The de-Broglie wavelength of the electron
must be much less than the characteristic length
associated with the electron trajectory; this is the
usual requirement for a classical motion, which in
general allows us to speak of a definite trajectory
of the particle.

b) The length characterizing the trajectory of
the particle must be much greater than the lattice
constant a, in order that the state of the electron
can be described by using the quasimomentum.

c) The distance between quantum energy levels
must be much less than the energy of the electron.

The most important cases of quantization of the
energy of an electron are the motion of an electron
in a constant magnetic field and the motion in a
potential field (thin film).

First let us estimate the limits which the con-
ditions given above impose on the magnetic field.
We shall later examine the motion of an electron
with a complicated dispersion law in a magnetic
field. Here (for an estimate) we shall assume that
we have a quadratic, isotropic dispersion law.
Then the radius of the electron orbit (a helix) is
r = cp/eH, where H is the magnetic field strength,
and conditions a), b), and c) can be expressed as
the inequalities

a)
eH eH

а: с) ell
(3.1)

We know that the most interesting case is that
of electrons with energy close to the Fermi energy
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«o = P2 /2m, p 0 = 2 wt (Зп/8^)1/3 , where n is the
electron density. Since usually n ^ l / a 3 , р~*/а.
Making use of this it is easy to see that all three
inequalities (3.1) coincide, and that they impose
only a very weak restriction on the value of the
magnetic field:

— ' Ю9 oersted. (3.2)

As we see, the effective mass does not appear
in this inequality. Later we shall see that this
result is more generally valid (for electrons with
an arbitrary dispersion law).

In similar fashion it is easy to show that the
motion of an electron in a film can be treated
classically if the film thickness is much greater
than the interatomic distance (d » a). *

In this section we shall assume that condition
(3.1) is satisfied, so that we can use a classical
treatment for an electron with an arbitrary dis-
persion law. It is then natural not to distinguish
between quasimomentum and momentum. This is
justified if we do not include the specifically quan-
tum-mechanical effect of transitions between
energy zones.

If a metal is put into an electric or magnetic
field, the state of the electron with a definite
momentum is not stationary — its momentum
changes with time. Our problem is to find the
equations which describe this change. It is most
convenient to start from a Hamiltonian formalism.
If the electric and magnetic fields are described by
a vector and a scalar potential, A andjf, the
Hamiltonian of the electron can be written as fol-
lows:

--- A (3.3)

Here P = p + —A is the generalized momentum
of the electron (where p is its kinematic momen-
tum). The equations of motion have the usual form:

an (3.4)

*We should make one remark. Quantum-mechanical
effects associated with the discreteness of the energy
levels may occur not only in the motion of a single elec-
tron but also in the behavior of a gas or an aggregate of
electrons. If we are interested in the macroscopic prop-
erties of such a gas, the conditions for classical be-
havior are much stricter than those given above. In
order to neglect quantum effects it is necessary in this
case that the separations of energy levels be much less
than kT, i.e., it is necessary that the magnetic field be
much less than кТ/ц /чЛО* oersted (for T = 1° К and
/i equal to a Bohr magneton), and that the film thickness
be much less than a(eo/kT).

Since r is the electron velocity v, and since only
the potentials depend on the coordinates, we find
from (3.4), using

E = — L ^ - ' H = curl A

the equation

(It (3.5)

which is a generalization of the Lorentz equation.
It differs from the ordinary Lorentz equation
because the electron velocity v is here a compli-
cated periodic function of the kinematic momentum
p. As we shall see later, this causes the motion of
electrons in a metal to have many peculiarities.

Let us first consider the motion in a constant,
uniform electric field.

Since the magnetic field is zero,

If the electric field strength E is independent of the
coordinates, the electron will move with a constant
"velocity"

p = p0 + eEt.
in momentum space. It is interesting to note that
the motion of a conduction electron in a constant and
uniform electric field is finite along the direction of
the field. In fact, it follows from the conservation
of energy that

E — eEr = const.
Since € is a bounded function of p, it is then

clear that the electron will carry out a finite motion
(r-ro)E = e(P(,H-eE0-e(Rl).

along the direction of the field. If the field is along
one of the crystallographic directions, the electron
carries out oscillations with a frequency wF — - ^ - ,
where Ap̂  is the period of the function e (p) along
the direction of the electric field. Since \PE >—'
2nt/a (where a is the lattice parameter), <
The oscillation amplitude is then Af/eE where Af is
the width of the energy band. In the general case,
when the field direction is not along one of the
crystallographic directions, the motion of the elec-
tron is close to periodic. For reasonable values of
the field, the amplitude of oscillation of the elec-
tron in an electric field is extremely large, mil-
lions of times greater than the mean free path
( Af/eE-~106 cm for E 10"8 cgs units*; while
At "lO"12 ergs). Therefore in computing the

resistance of a metal and in other analogous cases,
we can disregard the periodic character of the

•*E = 10 8 cgs units corresponds to a current density
in the metal of / = 102 amp /cm2 for a specific resistivity
of 8 = 10~8 ohm-cm.
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electron motion. Over short sections of its path
the electron moves uniformly.

One can pose the question: how is the limiting
transition made from the electron in a metal (for
simplicity, let us say in the periodic field V(r) of a
crystal lattice) to the free electron, as the periodic
potential tends toward zero? How does the motion
change from a finite periodic motion to an infinite
motion? To answer this question we must remem-
ber that under the influence of the electric field
transitions can occur from one zone to another4,
while for V -* 0 the gaps between zones tend to
zero and the transition probability tends toward
unity.

We note, finally, that the anisotropic nature of
the dispersion law leads to the result that, in the
plane perpendicular to the applied field, the elec-
tron does not move freely, its velocity in this
plane changes when the projection of its momentum
on the field direction changes. This is one of the
elementary reasons for the anisotropy of resist-
ance, thermal conductivity and other kinetic
coefficients.

Now let us study the motion in a constant,
uniform magnetic field (E = О, Н ф 0).

In this case the Lorentz equation has the
following form:

do e „
-/ = — V X H
dl с

(3.6)

Taking the scalar product first with v, then with H,
we conclude that, as for the case of a free electron,
when the conduction electron moves in a magnetic
field the electron energy e is conserved (d с = v- dp)
and the component of the momentum p along the
field direction is conserved. If we take the z axis
along the magnetic field, we find

= const, p = const. (3.7)

Equations (3. 7) describe the electron trajectory in
momentum space. Depending on the topology of the
energy surfaces, the trajectory may be closed
(i. e., it may break up into closed curves, each of
which is within a single cell of the reciprocal
lattice*), or it may be open (i. e., extending con-
tinuously through the whole reciprocal lattice).
The classification of the various curves was given
in Section 2.

In this paragraph we shall not include quantum
transitions, which accompany any abrupt change of

*We may mention that in those cases where the (x, y)
plane does not coincide with one of the crystallographic
planes, the curves located in different cells of the recip-
rocal lattice are not identical. This obviously does not
contradict the periodicity of the function t = t (p).

quasimomentum. We may therefore assume that
the electron moves along one of the closed curves
described by (3. 7). If the curve (3. 7) does not
break up into closed curves, but extends continu-
ously throughout the whole reciprocal lattice, the
electron will of course carry out an infinite motion
in the reciprocal lattice.

The location of the electron on the trajectory
(3. 7) in momentum space is conveniently defined by
giving the time of arrival computed from any point
on the trajectory.

Projecting (3.6) on the (x, y) plane, we find
d l — _ e2L .
dl С

(3.8)

Here dl is the element of arc of the curve (3. 7),
while vj_ = / v^ + v2 . We recall that the z axis
is along the magnetic field. The minus appears
because the electron charge is taken to be negative:
-e > 0.

Integration of (3. 8) gives

/ = —- 1L
v±

(3.9)

If the curve (3. 7) is closed, the electron in the
magnetic field will obviously carry out a periodic
motion with period

dl.
(3.10)

This expression can be transformed by using the
fact that vj_(the vector with components v̂ . and vy)
is normal to the plane of the curve (3. 7). We
denote by SU, pz) the area bounded by one of the
curves (3. 7) (i. e., by one of the closed, noninter-
secting curves).

Since

as (3.11)

and we find5> 6

1 ri S

It is natural to call the quantity^ ~j£ = m* the
effective mass of the electron in the magnetic field;
m* is a function of the quantities t and р г , which
are conserved in the magnetic field. This makes
its use more convenient than the usual reciprocal
effective mass tensor (cf. Sec. 1), which in gen-
eral depends on all the components of the vector p.

The period and frequency of rotation have the
same form as for a free electron:

eH
Mu = i- (3.12')
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From this it is clear that for a free electron
m* = m. In fact, if e = p2/2m, the curve (3. 7) is
a circle; it bounds a circular area equal to S = ^

Since the effective mass m* depends on с and
p z , it naturally differs for different electrons in the
metal. Therefore, unlike a gas of free electrons,
the conduction electrons do not rotate in the mag-
netic field with a common frequency for all elec-
trons. Different electrons carry out different
periodic motions. Those electrons which move
along open trajectories in the planes perpendicular
to the magnetic field (in momentum space) carry
out an infinite motion.

So far we have not considered the direction of
motion of the electron, which obviously is deter-
mined by the relative orientation of the vectors vj_
and p i From Eq. (3. 6) it is easy to show that the
direction of motion is related to the sign of the
effective mass: if m* > 0, the electron moves
along a left helix (like a free electron), but if m*<
0 it moves along a right helix like a positively
charged particle. The effective mass has the sign
of the derivative | - , which obviously depends on
whether the energy in the interior of the surface
f (p) = ( is less than or greater than с. In the first
case, the derivative — > 0, which means that the
effective mass m* is also positive, while in the
second case it is negative. *

It should still be emphasized that one cannot
introduce in a natural way the concept of an effect-
ive mass in the magnetic field (which is related to
the period of revolution in the orbit) for open
trajectories. We can however establish a rule for
determining the direction of motion of the electron,
which is valid both for closed and open trajectories:
the electron moves so that at every point of the
trajectory, if we look to the right of the direction
of motion of the electron, we see a region of lower
energy.

So far we have talked of the motion of the elec-
tron in momentum space. From the Lorentz
equation it is clear that the electron trajectory in
momentum space is closely related to the projec-
tion of the electron trajectory in ordinary space
onto a plane perpendicular to the magnetic field.
In face, we see from Eq. (3.6) that the velocity of
the electron in the magnetic field is perpendicular
to its "velocity" in momentum space:

d! ill
x H

FIG. 6. Trajectory of an electron in a magnetic field
near a saddle point on the energy surface. Point A is the
saddle point.

But this means that the actual trajectory of the
electron is obtained from its trajectory in momen-
tum space by a rotation through angle n/2 and a
change of scale (multiplication by c/eH). In par-
ticular this means that the period and frequency of
motion of the electron in ordinary space are equal
to T// and ь>н .

The motion of a conduction electron in a mag-
netic field has all sorts of interesting features if
the energy surface is open. So for example, its
trajectory in momentum space may be open, but
this means that in ordinary space the electron, in
the plane perpendicular to the magnetic field goes
through an infinite motion, and goes off to infinity.
One can also have the case where, at the same
time, the electron carries out a finite motion along
the magnetic field direction (or where the electron
is at rest).

Open trajectories (or open sections) are of
course possible only for electrons which are on
open energy surfaces. In these cases, however, as
we have already stated, the sections may be either
open or closed, depending on the direction of the
field and the magnitude of p z .

We now explain how the period of motion of the
electron along its trajectory becomes infinite as the
parameters of the motion are changed (i. e., as we
change the direction of the field or the value of p z ) .
In doing this we must remember that the period
becomes infinite in two different cases. The first
case occurs when a change of one of the parameters
({, p z , magnetic field direction) brings the elec-
tron trajectory toward a saddle point (point A in
Fig. 6). The other case occurs when the electron
is on an energy surface like the "crimped" cylin-
der, and the transition to an infinite motion occurs
because the angle between the axis of the "cylinder"
and the field direction approaches 90° (Fig. 8). *
We begin with the first case.

*As we shall see later, the dependence of the direc-
tion of rotation of the conduction electron on the dis-
persion law gives a natural explanation of the anomalous
sign of the Hall effect in many metals and semiconductors.

*The energy surface may, of course, be much more
complicated; the crimped cylinder is intended to repre-
sent a part of the surface.
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At the saddle point (point A in Fig. 6), the elec-
tron velocity v = дс/др is zero. So as the electron
moves along a trajectory which passes through the
saddle point, it approaches it asymptotically. An
electron which is at the saddle point does not move
at all. From this it is clear that electrons which
move along trajectories which pass close to the
saddle point (Figs. 6, 7) spend a large part of the
time near the saddle point. This means that their
period is determined mainly by the nature of the
electron motion near the singularity. For a suit-
able choice of axes, the equation of the electron
trajectory (in momentum space) in a magnetic field,
near the saddle point has the form

e - eo (P.) '-- T pi p\ (3.13)

Here f0 (p2) is the value of the energy at the saddle
point; the directions of the axes 1 and 2 are shown
in Fig. 7 and the z axis, as usual, is along the
magnetic field; l/nij and l / m 2 are the values of
the respective second derivatives of e with respect
to p at the saddle point (mx, m 2 > 0). According
to (3.10) the period of the electron motion is

T -
dt

Since over most of the trajectory the motion pro-
ceeds with finite velocity, whereas it is infini-
tesimal near A,

l>0

Т ~ с С
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FIG. 7. Electron trajectory near a saddle point. At
the saddle point A the velocity is zero.

r ^ _ Л

FIG. 8. Change in the character of the electron
trajectory as a function of the angle between the mag-
netic field and the axis of the crimped cylinder. The
points A are the saddle points.

(p0 is a value of p z for which the trajectory has
essentially gotten away from the saddle point,
Figs. 6 and 7). From (3.13)

From this and (3.14) we have

2c
| е | Я In- (3.15)

Thus as the trajectory approaches a saddle
point the period increases logarithmically. From
the derivation of formula (3.15) it is clear that the
approach to the singularity can occur both because
of a change of the energy (the case considered
here) or because of a change of p z or of the field
direction.

Now let us consider the case of the "crimped"
cylinder. For a right cylinder ("uncrimped"), as
the angle Ф - n/2 - в (where в is the angle between
the cylinder axis and the magnetic field) is de-
creased, the period would increase inversely as
sinФ~Ф. However, the crimping makes an
essential change. It is easy to see that as the angle
в between the axis of the cylinder and the magnetic
field approaches 90°, the trajectory must pass
through saddle points (Fig. 8). As we approach the
saddle point, the period becomes logarithmically
infinite. Because of this, the angular dependence
of the period becomes very complicated: the log-
arithmic dependence is superposed on the 1/ф
dependence, as shown in Fig. 9. The points at
which the period becomes infinite correspond to
those angles for which the trajectory passes
through saddle points.

Now we consider the motion of the conduction
electron in crossed electric and magnetic fields,
which for simplicity we assume to be perpendicular
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FIG. 9. Dependence of period of revolution of elec-
tron on angle between cylinder axis and magnetic field
(compare with FIG. 8). The dashed line gives the de-
pendence for an uncrimped cylinder.

to one another. We know that a free electron,
placed in crossed fields, drifts in a direction which
is perpendicular to the electric and magnetic fields.
The drift velocity, i. e., the average velocity of
the electron, is *

m (3.16)

Let us see what the situation is for an electron with
an arbitrary dispersion law. Using (3.16), Eq.
(3.5) can be written as follows:

£ = i[v-o]*H. (3.17)

Taking the time average of this equation, we see
that in those cases where the trajectory in momen-
tum space is closed, S-? = 0 and the average veloc-

dt
ity in the plane perpendicular to the magnetic field
is identical with v0, as for a free electron, i. e.,

v v ' v v - H(V">

However, in those cases where the trajectory is

open, ^? ф- 0 and vj_H v 0. We should emphasize
that we are not talking about trajectories in a mag-
netic field, but rather of trajectories in crossed
fields.

We see from Eq. (3.17) that the motion in
crossed fields of a particle with the dispersion law
с = ((p) can be regarded as the motion in a mag-
netic field alone of a particle with the dispersion
law

e* (p) = e (p) - v,oP- (3.18)

•The momentum of the electron (and its velocity)
along the magnetic field direction is conserved. There-
fore the true average velocity is directed at an angle to
the magnetic field.

In this case the equations of the trajectory in
momentum space have the form

E (P) - voP = const, p. = const. (3.19)

It is easy to see that, even when the trajectory in a
magnetic field is closed, the trajectory (3.19) in
crossed fields may be open. * Knowing the tra-
jectory in momentum space, we can easily con-
struct the trajectory of the conduction electron in
coordinate space, by noting that it follows from the
law of conservation of energy,

dz dp

that the velocity v is always perpendicular to the
vector

= p-eEi.-~- , where

In those cases where the electron trajectory in
momentum space is a closed curve, it is easy to
determine the period TEfj of rotation of the elec-
tron. From (3.17) it is clear that, just as in the
absence of an electric field,

r с dS*
E" ~~ eH de* '

where S* is the area bounded by the curve defined
by Eq. (3.19). -5-* depends in general on the elec-
tric field. It is interesting to note that this
dependence disappears for a quadratic dispersion
law. The electric field is practically always small
compared with the magnetic field (E/H « 1). Using
this fact, we can determine the explicit dependence
of the rotation period on the electric field:

Г, Tn 1 - -

Here R is the radius of curvature of the trajectory
in the magnetic field; the integral is taken along
the trajectory in the magnetic field.

In concluding this paragraph we mention that in
computing the electrical conductivity of a metal in
a magnetic field, we can treat the electric field as
perturbation. The properties of a metal in crossed
fields are therefore determined by the dynamics of
the electron in the magnetic field alone.

4. COLLISION OF QUASIPARTICLES. SCATTER-
ING.

In the preceding paragraph we treated the clas-
sical motion of a conduction electron in electric

*It is only the presence of open trajectories that
enables us to explain the fact that the total current of
a completely filled energy band is equal to zero in
crossed fields.
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FIG. 10a. Determination of the momentum of an elec-
tron scattered in the direction П. The point P j i s the
point where a plane perpendicular to n is tangent to the
energy surface e - Л p) .

and magnetic fields. The fields were assumed to
be such that the characteristic dimensions of the
trajectories of the quasiparticles were much
greater than atomic dimensions: this permitted us
to speak of a definite trajectory of the conduction
electron. But such motions do not exhaust all the
possible changes which the conduction electron
undergoes. Because of its interaction with some
sort of inhomogeneity of the crystal, having dimen-
sions of the order of the cell length a, the electron
changes its state suddenly (over distances of order
a): both its momentum and its energy change. In
such cases we say that the electron suffers a col-
lision with a local disturbance in the periodicity of
the crystal.

Some important conclusions concerning the
scattering of the electron can be drawn using only
the conservation laws, though the problem of the
scattering cross section cannot be solved in the
general case: the cross section depends essen-
tially on the structure of the local inhomogeneity,
i. e., on the shape of the potential energy of the
electron in the neighborhood of the inhomogeneity.

We may mention that, even in the mechanics of
a classical particle, the scattering cross section
can be calculated completely only in the simplest
case of central symmetry. In our case the aniso-
tropy of the crystal makes this problem much more
complicated. *

As a rule the local inhomogeneities in a crystal
consist of impurity atoms (in particular, isotropic
impurities), or defects like vacancies or disloca-
tions. Their mobility is much less than the mobil-
ity of the electrons, since they are heavy. There-
fore the scattering by such inhomogeneities should
be treated as the scattering by a force center.

FIG. 10b. Determination of the momentum of
electrons scattered in the directions nand n^.
We see that a complicated geometry of the energy
surfaces causes the appearance, for certain direc-
tions, of several values of p corresponding to a
given direction of scattering.

Then if the collision is elastic (and we shall treat
only such collisions), the quasimomentum of the
electron changes, but its energy is conserved. The
complicated dispersion law has a peculiar effect:
the scattering angle is determined by the direction
of the electron velocity (and not by the momentum
direction) after collision. Then if the energy sur-
face in momentum space is convex, there is a
single value of the momentum (its location is ap-
parent from Fig. 10a) which corresponds to each
value of the velocity. But if the geometry of the
energy surface is more complicated, there neces-
sarily exist directions for which the scattering
differs from the usual scattering of free particles
by the fact that there are several values of the
momentum of the scattered particle for the same
angle of scattering (cf. Fig. 10b). Within the
limits of classical theory, nothing can be stated as
to the momentum of the scattered electron. In a
quantum mechanical treatment we can calculate the
probability of scattering into a given direction with
a given value of the quasimomentum (Sec. 7).

In addition to collisions with local inhomoge-
neities, the conduction electrons in a metal can
also "collide" with other quasiparticles (with other
electrons, with phonons, with spin waves, etc.).
In such collisions we must of course satisfy the
laws of conservation of quasimomentum and energy:

P, = 2лЛЬ, е ; =

•The quantum mechanical problem of the scattering
of particles with an arbitrary dispersion law is treated
in Sec. 7.

where b is a vector of the reciprocal lattice, p.
and p e are the sums of the quasimomenta of the
particles before and after the collision; for exam-
ple, in the collision of two electrons, p; = p t i +
p 2 i , . . . and £itie are the energies of the par-
ticles before and after the collision.
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It should be remembered that the number of
bosons before and after "collision" can be different:
creation and annihilation of phonons, spin waves
and other quasiparticles can occur. The number of
electrons is conserved in such interactions if there
are no fermions of the opposite sign (holes*) in the
metal, which act as antiparticles for the electrons.

If holes are present or can be produced in the
metal, the electrons and holes can be annihilated
or created in pairs, so that the difference between
the numbers of electrons and holes remains con-
stant.

5. QUASICLASSICAL ENERGY LEVELS.

The quantum mechanics of the conduction elec-
tron will be developed in later sections. Here we
shall limit ourselves to the calculation of the
quasiclassical energy levels in several fundamental
cases.

It is obvious that quantization of the energy will
occur whenever the electron carries out a finite
motion in any one of its degrees of freedom.

The most important case of finite motion is
undoubtedly the motion in a magnetic field.

In connection with the study of the diamagnetism
of the electron gas and of the de Haas — van Alphen
effect, a large number of papers were written on
the theoretical treatment of the behavior of elec-
trons in a magnetic field, culminating in the work
of L. D. Landau in 1930. In this paper it was
shown that the energy levels of a free electron in a
magnetic field H which is directed along the z axis
have the form

Here

со я =
eJI n=.0, 1, 2,

(5.1)

(5.2)

The appearance of discrete energy levels for a
fixed value of pz is obviously related to the fact that
the electron carries out a finite periodic motion in
the (x, y) plane perpendicular to the magnetic field.
But as we made clear in Sec. 3, this property is
retained for an electron with a complicated dis-
persion law, if its trajectory in momentum space is
a closed curve.

To compute the quasiclassical energy levels, we
may use the Bohr quantum conditions

\dQi~ihh, (5.3)

*The concept of "holes" will be introduced rigor-
rously in the second part of this survey.

where Qj and Pj are conjugate coordinates and
momenta of the electron, and the n t are integers.
At this point, as before, we shall make no distinc-
tion between quasimomentum and momentum. The
limits of validity of our results will be stated later.

Let us then determine the energy levels of an
electron with the dispersion law e = e (p) in a mag-
netic field H parallel to the z axis. If we choose
the vector potential in the form

Ax=~Hy, Av = At-=0,

the projection Px of the momentum is conserved,
while condition (5. 3) can be written as follows for
the motion along the у axis:

ydy = nh. (5.4)

The integral is taken along the classical trajectory
of the particle, i. e., the dependence of P y on у
should be calculated for definite values of the
momentum projection p z and the particle energy t .

If we treat (5.4) as an equation in which the
energy is unknown, and solve it, we can determine
the energy levels of the electron in the magnetic
field. However it is convenient to transform Eq.
(5.4) somewhat, by writing it in a more symmetric
form. To do this we transform from integration
over у to an integration over the kinetic momentum

(5.5)

and P r = p y , we have fromSince dy = —ц dp
(5.4),

where the integral is taken along the electron
trajectory in momentum space. The integral in
the last equation determines the area S(f, pr) of the
section of the energy surface by a plane perpendic-
ular to the magnetic field, so that the condition for
determination of the quasiclassical energy levels of
a conduction electron can be written as follows:7' 8 ' 9

S(e, p i= — / ; . (5.6)

Naturally, the energy levels en>p do not depend
on the form chosen for the vector potential A. This
is clear from the invariant form of (5.6) in which
the x and у axes are not distinguished.

If

then S(e, p.) = я (2т*г — />?).
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and we arrive at formula (5.1) (aside from a factor
1/2 in the first term*:

Formula (5.7) remains valid if the dispersion
law is quadratic but anisotropic. But then the
effective mass should be taken as a quantity
depending on the angles between the magnetic field
and the axes of the effective mass tensor:

(5.8)

(т.- are the principal values of the effective mass
tensor, and a are the direction cosines of the

magnetic field ( S»/ = 1).
/=!

Using (5.6) for determining the level energies,
we calculate the spacing At between energy levels.
Since only levels of high energy can be treated
quasiclassically, n » l , and so A ( « f . We there-
fore have from (5.6):

Де =
2л|e | f t f f

/ dS
с I -3—

Using the definition of the effective mass

1 dS

we get
Де =

\e\%H
m*c

(5.9)

(5.10)

(5.11)

where шн is the frequency of revolution of the elec-
tron in the magnetic field (3.12'). The last
equality is entirely reasonable — it is a special
case of the general correspondence principle: in
the quasiclassical approximation the spacing of
energy levels is identical with the classical fre-
quency of the periodic motion. We note that,
unlike the energy levels of a free electron, the
energy levels of a conduction electron in a mag-
netic field are not equidistant: the effective mass
m*, and consequently the frequency <"//, depends on
the energy e and on p z . The difference between a
free electron and a conduction electron is made
particularly clear by the existence of open surfaces
and open sections — the motion is not quantized for

•The quasiclassical energy levels coincide with the
true levels for large n (re » 1). We can get more exact
energy values if we use instead of formula (5.3) the more
exact quantization conditions

= ("+Y)fc. (5.31)

where 0 < у < 1. However the value of у can be found
only by choosing a specific dispersion law and studying
the character of the electron motion near the turning
point. For a quadratic dispersion law, у = У2, and we can,
starting from (5.3'), obtain the exact energy levels in this
special case.

all electrons in the metal, but only for those which

have— ± ~.

The occurrence or absence of discrete energy
levels is determined not only by the energy surface
on which the electron is located, but also by the
direction of the magnetic field and, for fixed field,
by the value of p z . The transition from closed to
open trajectories was treated in detail in Sec. 3.

The formulas found here for the energy of an
electron in a magnetic field show that the infinite
degeneracy which occurs for the free electron case
— the fact that the energy is independent of the
conserved momentum component ~PX — is also true
in the quasiclassical approximation for the case of
an electron with an arbitrary dispersion law. How-
ever, as we shall see later, this degeneracy is
lifted when we take account of the difference
between momentum and quasimomentum. In other
words, there is a slight smearing out of the energy
levels (5.6) because of the dependence of e on T?x .
Physically this dependence is related to the fact
that P x determines the location of the electron
trajectory in space (in the case of a free electron,
cPx /efl is the center of the orbit in the (x, y) plane
in which the electron xevolves). Whereas in free
space (for a free electron) all the points of the
space are equivalent (since the magnetic field is
taken to be homogeneous), in a periodic structure,
such as a crystal, this homogeneity does not exist.22

In those cases where the electron trajectory in
momentum space in a magnetic field is open, the
quasiclassical treatment does not lead to a quanti-
zation of the energy. However, as will be clear
from the sequel, a more rigorous treatment shows
that, because of the periodicity of the dependence
of energy on quasimomentum, characteristic
breaks occur in the continuous spectrum of the
electron.

It may be possible, by using different expres-
sions for the dispersion law, to determine the
explicit dependence of the electron energy on the
magnetic field and the quantum numbers p z and n.
But this is unnecessary, since all the macroscopic
characteristics of the metal can be expressed in
terms of S and — . Besides, we may mention that

dt

a knowledge of the quasiclassical energy levels is
sufficient for determining many of the macroscopic
properties of the metal.

It was shown in Sec. 3 that the motion in
crossed electric and magnetic fields can be
regarded as the motion of a particle with the dis-
persion law

e*(p) = e(p)-vop (5.12)
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in a magnetic field alone. Furthermore, if the
trajectory in momentum space is closed, the par-
ticle carries out a finite motion along the у axis
(the z axis was taken along the magnetic field, the
x axis along the electric field). This enables us to
take over our previous results to the case of
motion of a particle in crossed fields. In fact,
proceeding exactly as before, we get the quantiza-
tion conditions in the form

/0 =
\e\HI,

n, (5.13)

where S* is the area of the section of the surface
e* (p) = const by the plane p 2 = const. It is immed-
iately evident that the spacing Af of the energy
levels is equal to the frequency ш „ multiplied by
Planck's constant, i. e.,

Ae = /?(0дд =
2л i eI Ml

dS* \

We recall that the frequency ы^ц for the case of an
arbitrary dispersion law depends on the value of
the applied electric field, and that this dependence
disappears for a quadratic dispersion law. Con-
sequently the spacing between the discrete energy
levels of an electron in crossed fields also must
depend on the value of the electric field.

If we do not take account of transitions between
bands, the conduction electron in a uniform elec-
tric field carries out a finite motion (Sec. 3). To
this finite motion there should correspond a quan-
tization of the energy levels, whose spacing is
easily found by using the correspondence principle,

At = fta)g.

It appears to be impossible to observe effects
which might occur as a result of this quantization.
Even if we assume that transitions between zones
are extremely improbable, the electron cannot
carry out a full oscillation because of collisions
with irregularities of the lattice.

The crystalline lattice in which the electron
moves is always limited by the dimensions of the
sample. However the dimensions are usually so
large that they can be assumed to be infinite. All
the same, cases may occur where it is necessary
to take account of the finite dimensions of the
metal (for example, in treating the properties of
thin films). The surface of the metal is always
somewhat deformed, i. e., in the neighborhood of
the surface there are necessarily defects in the
periodicity of the structure. The study of the
behavior of an electron near the surface is a com-
plicated problem, which is often not even formu-
lated clearly. On the other hand, if the electron
spends most of its time in the bulk of the metal,

the irregularity of the structure over distances of
the order of the lattice dimensions need not be
taken into account, and we can assume that the
boundary of the metal is a potential barrier, or in
other words we can treat the electron in a metal as
a particle in a potential well. If the electron ener-
gy is much less than the height of the barrier, we
can assume the barrier to be infinite. Then the
momentum components can, of course, take on
only discrete values, which are easy to determine
if we assume that the sample is a rectangular
paralle lepiped:

dj are the lengths of the edges of the parallele-
piped, along which we put the coordinates, and the
n: are integers. The quantization of the momentum

(5.14) i e a ds to a quantization of the energy:

С anxh (5.15)

Relatively simple and compact formulas can
also be obtained for the case where the electron is
in a constant magnetic field H (Hx = Hy = 0; Hz = H)
and a potential field U(y). If we again choose the
vector potential in the form A = Ax = - Ну, it is
easy to see that the x coordinate is a cyclic vari-
able, i. e., the component P% of the momentum is
conserved. This means that, proceeding as before,
we can find: 10

Pz' Px)=-
\е\ Н

П. (5.16)

Here S{e,pz,Px) is the area bounded by the elec-
tron trajectory (a plane curve) in the space of
kinetic momenta. The equation of the trajectory is
determined by the integrals of the motion:

e ipx, Py, Pz) -r U \-£r(px -Px)~\ = const

Pz = Рг

 = const, Px = const (5.17)

Equations (5.16) and (5.17) determine the depend-
ence of the level energy on the quantum number n,
the momentum components Pz = pz and Px , and on
the value of the magnetic field:

Px, n). (5.18)

We call attention to the fact that in this case
there is no degeneracy in P : because of the
presence of the field U, different trajectories
corresponding to the same energy e and pz are not
equivalent.

The formulas obtained here can be used to
explain the dependence of the energy levels of an
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electron in a magnetic field on the dimensions of
the film. Let us therefore take U(y) to be an
infinitely deep potential well

U (у) =
( 0 , \y\-:d.

{ со , \ X 1 > d. (5.19)

where d is the halfwidth of the film (the potential
well).

For this case the region (5.17) is given by the
conditions

,r P~J = £ ; ; px-
 p

x \ < —

K — const : / ) , = P. = const . (5. 20)

We denote by R^t,pz) and R2((,PZ) the left and
right limits of the px coordinates of the closed curve

V = e; p. = const.

if
Яг/

R.2(s, p:)<Ps-
I <•• j H d

(5. 21)

(5.22)

(cf. Fig. 11), the curve (5.21) is located between
the lines Px = px ± [e|Hd/c, i. e., the electron
trajectory (in coordinate space) is entirely within
the film and does not "feel" it at all. The energy
levels of electrons with values of e, Vx and pz

which satisfy the conditions (5.22) coincide with
those found earlier in (5.16). If the electron
trajectory is not all within the film, the area which
enters into Eq. (5.16) is the area within the curve
(5.21) which is bounded by one or both of the
straight lines Px = px ± \e |Hd/c.

For electrons moving along closed trajectories
in momentum space, in a sufficiently large mag-
netic field most of the trajectories will lie entirely
within the film, i. e., these electrons will not be
"aware" at all of the boundary of the film. The
situation is different for electrons which move
along open trajectories: no matter how large the
field, they will carry out an infinite motion in the
plane perpendicular to the field and will therefore
collide with the wall.

The experimental study of the de Haas — van
Alphen effect requires the use of a pulse technique
for obtaining high magnetic fields. But then,
because of the skin effect, the electrons are in an
inhomogeneous magnetic field. Let us consider the
case1 1 where the magnetic field, which is along the
z axis, is inhomogeneous in the у direction: Нг =
H(y). Again the x component of the generalized
momentum is conserved, so that we can, in the
Bohr quantum condition

FIG. 11. Trajectory of electron in a film. The shaded
area enters in the quantum condition (5.16).

carry out an integration over the kinetic momentum

= - н Л .

The integral is taken along the trajectory in
momentum space

(5. 23)

8(Px- Py< P2) = const; pz = Pz = const, (5.24)

where у is the root of the equation

My)=-j(Px-l>*); 7'x = const. (5.25)

All the cases of quantization considered here
are special cases of a very general method of
quasiclassical quantization which consists in find-
ing action variables I; corresponding to a finite
motion, and equating them to n:h (where the n; are
integers). Then the energy levels (the energy can
be expressed in terms of the action variables) is
given by:12

This expression is valid if the motion is finite for
all three degrees of freedom. If the motion is
infinite for one or two of the degrees of freedom,
the energy depends only on the two or one corre-
sponding discrete quantum numbers.

The quantization of the electron energy leads to
interesting features of the behavior of an electron
gas. Very detailed studies have been made exper-
imentally and theoretically, of the properties of an
electron gas (i. e., of a metal) at low temperature
(de Haas — van Alphen effect, Shubnikov — de
Haas effect, cyclotron resonance, etc.). All of
these effects can be divided into oscillatory effects,
i. e., phenomena in which one observes a nonmono-
tonic dependence of a physical characteristic of the
metal on the magnetic field, and resonance effects,
i. e., phenomena in which one observes transitions
of the electrons from one stationary state to
another, where these transitions are accompanied
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by the absorption of energy quanta from an external
field. The detailed theory of these phenomena,
starting from the description of electrons as quasi-
particles with a complex dispersion law, will be
presented in the second and third parts of the
present summary.

However, some important features of the
phenomena can be explained using just the formulas
for quantization. Thus, for example, the oscil-
latory dependence on the magnetic field of a large
number of physical characteristics of a metal
(magnetic susceptibility, resistance, etc.) is
related to the fact that the number of occupied
levels (with a fixed value of P z ), i. e., of levels
with energy less than the limiting Fermi energy
f0, changes by unity when the reciprocal of the
magnetic field strength changes by an amount Д1/Я

equal to ! « ! h
fo. Pi)

(cf. 5.6). The dependence of
the period on pz smears out somewhat the sharp
dependence on the magnetic field. Therefore those
electrons are most important for the oscillatory
effects which have values of pz for which S(<ro,pz) )
is an extremal (Fig. 12), since the period has a
relatively weak dependence on p2 near these values.
Thus the period of oscillation in the phenomena of
de Haas - van Alphen, Shubnikov - de Haas etc. is
determined by the extremal cross sections of the
Fermi surface: 14

Д ,7 = TV^ (7~\ • (5. 26)

According to reference 15, the dependence of the
period of oscillation on the direction of the mag-
netic field makes it possible to establish the shape
of the Fermi surface for those groups of electrons
which are responsible for the oscillatory effects. *

The Fermi surfaces for aluminum16 , zinc, and
lead17 were determined in this way.

While the oscillatory effects give a convenient
means for studying the extremal areas of sections
of the Fermi surface, these effects are extremely
unsuited for the determination of the effective mass

1 r?S

of the electrons, m* = — —-, which is related to
In at

the velocity distribution on the Fermi surface.
(The effective mass enters in a factor depending on
the temperature, which is very sensitive to the
state of the sample and in particular to its purity.)
For the experimental determination of effective
masses it is natural to use the resonance effects.

*The point is that the most important oscillations
occur in those cases where the metal contains small
electron groups. Thus, for example, in zinc the funda-
mental harmonic (the one with the longest period) in
the oscillations of the magnetic moment corresponds
to an electron group having <^J 10"6 electrons per atom.

FIG. 12. Example of extremal cross sections
of the Fermi surface. The direction of the mag-
netic field is indicated by the arrow.

It can be shown that, because of the dependence of
the Larmor frequency ы, for an electron with a
complex dispersion law on energy <r and on p z ,
there is no resonance absorption in metals. How-
ever a rigorous treatment shows that, although the
smearing out of the resonance frequencies some-
what reduces the sharpness of the resonance, in
many cases it does not destroy it completely.
Then, naturally the true resonance frequencies are
those corresponding to extremal values of the
effective mass: 1 8

/ ч eH
« г е . - ^ « . % m % x / ( 5 . 2 7 )

The observation of resonance effects in a
metal is complicated by the skin effect, and can
therefore only be done when the constant magnetic
field is strictly parallel to the surface of the
sample (cyclotron resonance).

It seems that there should be an interesting
peculiarity of diamagnetic resonance for those
semiconductors in which the dependence of the
energy of the current carriers on quasimomentum
is markedly different from quadratic (for example,
hole-type germanium). We have already remarked
on the fact that for such "electrons" the frequency
of the finite motion in crossed fields depends on the
strength of the electric current. But this means
that, in principle, we should observe a dependence
of the resonance frequency of diamagnetic resonance
on the current passing through the sample. The
observation of such a phenomenon in metals is in
all probability impossible, since, because of the
large electrical conductivity, we cannot produce
any significant electric field inside the metal.

In describing the oscillatory and resonance
effects we have used the quasiclassical formulas
(5. 6), (5. 9) and (5.14). This is entirely justified,
since the most important electrons for such effects
(especially at low temperatures) are those having
energies near to the limiting Fermi energy fQ , and
we practically always have e0 » Тю^ . Thus we
are dealing with large values of the quantum num-
ber n.
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6. QUANTUM MECHANICS OF AN ELECTRON
WITH AN ARBITRARY DISPERSION LAW.

It is usually convenient to write the Schrodinger
equation in the coordinate representation. The
reason for this is that the kinetic energy operator
is easily expressed as a differentiation operator.
Because of this the Schrodinger equation is a linear
partial differential equation. The theory of such
equations has been developed in detail.

For an electron in a metal it is more natural to
use the quasimomentum representation, in which
the state of the electron is completely specified by
giving the quasimomentum and the band number s.
The kinetic energy es (p) is assumed to be a known
function of its arguments s and p. In this repre-
sentation (the s,p representation), the coordinate
operator has the form

«sp (r + a) = usp (r). (6.4)

г.. = I (6.1)

The second term Qsg, occurs because the coor-
dinate is a quantity which is canonically conjugate
to the quasimomentum and satisfies the commuta-
tion relation

In addition, the functions usp (r) are assumed to be
orthonormal, i. e.,

и*р (r) «s-p (r) dv = 6S. (6.5)

The integration extends over a single cell of the
crystal.

The whole wave function ф8р (г), as a function
of the quasimomentum p, is periodic with the
period of the reciprocal lattice, multiplied by Ink

(Г) = T|3sp (Г), (6.6)

since states with quasimomenta differing by Int b
are equivalent. ф$р (г) is the wave function of the
conduction electron in the coordinate representa-
tion. The coefficients in the expansion of the wave
function Ф(т) an arbitrary state in terms of the
wave functions фар (г) gives the wave function in the
(s,p) representation. Thus the wave function in the
(s, p) representation for an electron having a
definite quasimomentum p = p 0 , and a definite zone
numbers = s 0 , is

{Pi.^}=Y6ih. (6.2)

and does not commute with the zone number opera-
tor s, i. e., with the operator whose eigenvalues
are the quantum numbers which determine the zone
number.

Knowing the coordinate operator (6.1) enables
us to construct the Hamiltonian for the conduction
electron moving in external fields and thus, in
principle, to solve any problem of the quantum
mechanics of an electron with a complex disper-
sion law. Naturally, when we do this, the results
will be expressed in terms of various character-
istics of the electron which are related to its dis-
persion law, and also in terms of the matrix
elements of the operator 0. However the more
usual situation is one where we do not know the
operator fl, but do know the wave functions "AsP(r) of
the conduction electron, since, from considera-
tions of crystal symmetry*, they have the follow-
ing form:

ipr

i|)sp (r) = e " H s p(r), (6.3)

where u s p (r), as a function of the radius vector,
is periodic with the period of the direct lattice,

*The functions фзр (Г) are chosen so that they
transform according to an irreducible representation of
the symmetry group of the crystal.

Ss(p) = ^ 8 S O 6 ( p - P o ) ; (6.7)

where A is a normalization factor.
Using the form of the wave functions фзр (г), one

can show that

Qss, (p) = ih [ «s*p (r) ̂  MS-P (r) dv,
(6> 8 )

where the integration extends over a unit cell.
Because of the periodic dependence of the

functions <Asp (r) on quasimomentum, and of the
functions u s p (r) on the coordinates, it follows that

i (pt- 2пЧЪ, г)

e h
(6.9)

where b is an arbitrary vector in the reciprocal
lattice. * From the expansion (6.9) and formula

*The representation of the function ф8 (Г) in the
form (6.9) follows from the following chain of equations:

i (pf2-4>'fi)r

Hpj-2-кПЪ') г

Then

or s, о
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(6. 3) it follows that we have from (6.1)

(6.10)

vn is the volume of the unit cell.

Thus, in order to give the wave functions for
the conduction electron, it is sufficient to assign
the quantities As (p), i. e., the average values of
the modulating functions u s p ( r ) for all values of p.

The matrix elements of the operator fl can be
expressed in terms of the quantities As (p). In fact,
from (6.8), (6. 3) and (6.9) we have

s- = ihv0
S (p + 2я/,Ь) ^ A. (6.11)

In estimating the magnitude of the matrix elements
uss ' it is convenient to use a model. If we use

the model of tightly bound electrons (Bloch20 ), we
find in the one-dimensional case (which we choose
for simplicity),

oo

Q s s . = i V cps (,x) axjv (x) dx

CO

\ ф5 (x — la) x(fS' (x)dx.

2-n.ilpa со

Here the <f>s (x) are atomic functions. From this
formula it is evident that the matrix elements of
the operator Q are of the order of the lattice con-
stant a. We note that in the limit of infinitely tight
binding, i. e., for cases where the overlap of the
wave functions of neighboring atoms can be
neglected, uss, И 0, since transitions to an
excited state can occur without a transition to a
neighboring cell of the lattice. At the same time
the effective mass of the electron tends to infinity
while the mobility approaches zero.

For the case where the periodic field V(r) is
treated as a perturbation (Brillouin21), the uss>
are proportional to the Fourier components of the
periodic function V(x) for \s - s'\ Ф 1; for \s - s'\
= 1, they are inversely proportional. Again (for
simplicity) we have used the one-dimensional case.
When V(x) tends to zero, the matrix elements Q,ss>
\s - s'\ =1) tend toward 8 functions:

Now we calculate the electron velocity opera-
tor. Since

v " dp " r M - (6.12)

The matrix elements of Q, are related to the
matrix elements of Й by the relation

From this formula we see that uss' = 0 for s = s',
i. e.. Q has no diagonal elements.

The (quantum mechanical) average value of the
velocity is equal to the diagonal matrix element of
the operator (6.12). From what we have said, it is
simply

(6.13)

Thus the average velocity is obtained by differen-
tiating the energy with respect to the quasimomen-
tum — in complete analogy to the classical relation
between energy, momentum and velocity. We have
used expression (6.13) repeatedly in the earlier
paragraphs.

Let us assume that the metal is put in a uniform
electric field E, in which a force eE acts on the
electron. Then the quasimomentum of the electron
and the zone number will not be conserved. We
now determine their time derivatives. The homo-
geneous field adds a term -eE-r to the Hamiltonian,
i. e.,

—eEr. (6.14)

Commuting p and s with the Hamiltonian, we find,
using (6.1), that

p = eE, (s)ss- = |(s-s')(EQK-). (6.15)

The operator for the time derivative of the quasi-
momentum is equal to the force exerted on the
electron by the uniform field, precisely as is the
case for the true momentum of a free electron.

The operator for the derivative of the zone
number is naturally related to the operator Q. The
operator j has no diagonal elements.

The situation is more complicated when the con-
duction electron moves in a magnetic field.

The components of the kinetic momentum opera-
tor p = P - e A do not commute with one another,
and also do not commute with the zone number
operator s, since the vector potential A depends on
r, and P and r are connected by the commutation
relations (6. 2). * From (6.1) and (6.2) we can

*In expression (6.1) we must now replacep by P, the
generalized quasimomentum of the electron.
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easily establish the usual commutation relations
between the components of the kinetic momentum
operator:

{piPhi = ~eiiJl

i (6.16)

( (щ is the unit antisymmetric tensor of the third
rank), as well as the commutation relation between
the zone number operator and the kinetic momen-
tum operator

V = - ^ (s - (6.17)

The last relation is easily derived, using a vector
potential taken in the form A= KHxr,

Because of the periodicity of the dispersion law
in P-space, we can expand es (p) in a Fourier
series

iap

MP) = 2 4 V ' , (6.18)
a

where the summation extends over all the periods a
of the crystal lattice.

The transition from the classical expression
(6.18) for the energy to the Hamiltonian is made by
replacing the quantities p and s by operators with
the commutation rules (6.16) and (6.17).

Since the components of the kinetic momentum
do not commute with one another or with the zone
number operator, the expression (6.18) requires
further definition — we must state what we mean by
the function ts (p) of the noncommuting variables s,
px,Py,pz • It seems that this question cannot be

solved in general; it is related to the genesis of the
Fermi branch of the energy spectrum. However if
we neglect transitions between zones, i. e., if we
treat the operator s as a c-number, we can deter-
mine the proper symmetrization of the function
fs (p) from quite general considerations. Suppose
the magnetic field is along the z axis. Then pz

commutes with px and p , while px and py do not
commute with one another:

{Ac- £„} = •£•*''• (6.19)

When we go over to a Hamiltonian operator, i. e.,
when we replace the components of the kinetic
momentum by operators with the commutation
rules (6.19), it is natural to start from the expan-
sion (6.18) in which each term is treated as an
exponential function of a single operator a- p. In
other words, if we neglect transitions between
zones,

tap

S (v) = 2 Ale h . (6. 20)

This conclusion is based on the fact that, in the
plane perpendicular to the magnetic field, the x and
у axes are not fixed, so that we can choose as
canonically conjugate variables* any linear combin-
ation of the quantities Px and P . The expression
(6. 20) corresponds to a "complete symmetrization"
of the Hamiltonian in the components of the kinetic
momentum.

This conclusion that complete symmetrization
of the Hamiltonian is necessary is confirmed by an
investigation of G. E. Zil'berman22, based on the
model of an electron in a periodic field.

We now calculate the time derivative of the
kinetic momentum. (Again we neglect transitions
between zones.)

Commuting p with the Hamiltonian H = e (p),
using (6.19), we find

H, (6. 21)

where the derivative of the Hamiltonian operator is
to be understood as follows:

i a p

(6. 22)

gp is obviously the operator for the electron veloc-
ity -jr = v = -55 If electric and magnetic fields act
on the conduction electron,

-j=e{E+— V xH}. (6.23)

According to (6.23), the average value of the time
derivative of the quasimomentum operator is equal
to the generalized Lorentz force:

лЪ 1 ^
Jf = e\E+-^- v xHi.

In quantum mechanics, problems can be formu-
lated in two different ways: we can consider the
change of the state (wave function) with time, or we
can look for stationary solutions, i. e., determine
the energy levels of the particles. Let us consider
two very simple examples.

We start with a problem of the first type. Let
us find the time dependence of the wave function of
an electron when it is acted on by a constant homo-
geneous force eE (where E is the electric field
intensity). In the spirit of the preceding treatment,
we shall solve the problem in the quasimomentum
representation. In accordance with (6.4) and (6.1),

*To within a constant factor, the components of the
kinetic momentum are canonically conjugate to one an-
other.
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in this representation the Schrodinger equation for
the wave function gs (p, t) has the form

at (6-24)

the particle initially has a definite value of its
quasimomentum, then at any time t it will have a
definite quasimomentum which can be determined
from the classical equation of motion

In many cases this equation can be solved by the
method of successive approximations, treating the
last term on the right as a small perturbation.
This is justified to a certain extent by the fact that
the applied field is small, while the dimensionless
small parameter is the quantity eaB/ Us - fs). (We
remind the reader that the matrix elements of the
operator Q are of the order of the lattice constant
a.) Before we use the method of successive approx-
imations, we first transform (6. 24) somewhat, by
introducing in place of the time t a new variable

7г = рж - eEt (the x axis is along the electric field,
and we shall write px simply as p from now on):

4^
ell

Now we find the first approximation for the
function ф8 (р, t). From Eq. (6. 26) we have

Since ф W = о at the initial time,

(6. 31)

<?„-(/>-я) = $ qss,(p)dP.

eE I -^~ (6. 25)

If at the initial time the electron had a definite
value of s, equal to s0, then according to formulas
(6. 30) and (6. 31), at any time t, the function <f>s has
the form

p and p enter as parameters in the last equation.
We now introduce a new function <j>s (p, ) equal

to e • ~^e gs (p, я). . The equation for Ф8 is particu-
larly simple:

to within terms linear in fls
Going over from

the functions Ф5 to electron wave functions gs (p, t),
it is easy to show that the probabilities Wss for
transition of the electron from one zone to another

\_~dp~ J-n= 2 J 9SS'fS' (P> n)> (6. 26) are given by the squares of the matrix elements Q

where

q = (6. 27)

We now use successive approximations. In the
zeroth approximation, which corresponds to
neglecting transitions between zones,

i . e . ,

(6. 28)

(6.29)

Wsso{t) = A\Qsso\-, (6.32)

where A is a normalization factor.

We shall use the example of an electron in a
magnetic field to show how one determines the
quantum energy levels for an electron with a com-
plex dispersion law.

The Schrodinger equation in this case obviously
has the following form:

(6. 33)

where
Now we satisfy the initial conditions. If at t = 0,
gs(p, 0) = gs(p), then according to (6.29)

;i-n I (6.30)

The quantity | gs (p) | 2 gives the probability that an
electron in the s'th zone has a momentum in the
interval (p, p + dp). The last equation shows that
in the zero'th approximation (when we 'neglect
transitions between zones) the probability distribu-
tion moves as a whole in momentum space with the
constant "velocity" Sj£.= eE. In particular this
applies to a 5 -function probability distribution: if

where the Hamiltonian has been completely sym-
metrized (cf. above). The components ?x and Pz

enter as parameters in (6. 33).

It is of course impossible to solve (6. 33) in
general form. However, from (6. 34)'we see that
Planck's constant t appears in the equation in
combination with the magnetic field H, and the
appropriate dimensionless constant can be seen
from (6. 34) and (6. 20) to be the quantity a2eH/-h ,
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where a is the lattice constant. In other words,
Eq. (6. 33) can be written as follows:

(6-35)

where

aP

is the dimensionless momentum, and

6 = 'he
(6. 37)

The parameter s has a simple physical significance.
As we see from (4.6), a2eH/t с is the ratio of the
area of a unit cell of the lattice to the minimum
area which the electron traces out in the magnetic
field H. We recall that the trajectory of the elec-
tron in coordinate space is obtained from its
trajectory in momentum space by rotating through
angle n/1 and changing the scale (multiplying by
c/eH), i .e . , the area in coordinate space is equal
to the area in momentum space multiplied by
c2/e2H2 . For all actual fields, S « 1 (cf. Eq.
1.2). Therefore we can look for a solution of (6.35)
in the form of an expansion in powers of S. Such a
method corresponds to the quasiclassical approxi-
mation. It may seem that it is the "reverse" of the
usual quasiclassical approximation, since Planck's
constant appears in the denominator of (6. 36).
Actually, of course, this is the "usual" quasiclas-
sical approximation. The apparent difference is
related to the fact that Eqs. (6.33) — (6. 35) are
written in the momentum representation. The
expression for the parameter S can be rewritten as

6 = (6. 38)

(where p = t/a is the period in quasimomentum
space). It is then perfectly clear that we are
expanding with respect to Planck's constant. With-
out going through the derivations, we now present
the results of the quasiclassical treatment (G. E.
Zil'berman22' 2 3 ).

In the second approximation, the quasiclassical
solution of Eq. (6. 35) has the form

/\P~
,±lefiH S

Vxl'-,Py,Pz)dP (6. 39)

where fit = & (c,PyjPz) is the equation of the
trajectory in momentum space, i. e., an actual
solution of the equation

In the region between closed trajectories, the wave
function is exponentially damped:

gs (P) = e
I dP,J

/

(6.40)

The energy levels es{pz,n) of the electron are given
(6. 36) by the Bohr quantum conditions (cf. § 4):

S=kpxdp = — — И + Y, (6.41)

у = 1/2 if the component ^ approaches zero
at the turning point py = p y

( 0 ) .
As we have already stated, degeneracy of the

energy levels of an electron in a magnetic field
occurs approximately also for an electron with an
arbitrary dispersion law. The investigation of Eq.
(6. 35) shows that the degeneracy is lifted if we
retain terms of order S2 . This means that (for
fixed p2), to each value of the quantum number n
there corresponds not a single level but rather a
zone whose width is of order ft<u82, if the neighbor-
ing electron trajectories are far from one another.
If the neighboring trajectories are close to one
another, there is an additional broadening associ-
ated with the transition of the electron from one
trajectory to another through the "potential bar-
rier. " The width of the smeared out region is then

of order й«>не ' ' ' ' x°, where xQ is the halfwidth
of the "barrier, " R is the radius of curvature at the
point of closest approach of the trajectories, and
the quantities x 0 and R are in dimensionless units
(cf. Fig. 13). Usually the broadening because of
transitions of the electron from trajectory to

trajectory is unimportant. It begins to be signifi-
cant only for anomalously small separations
between trajectories ixo~8 , since for small x0,
R ~ x 0 ) . However when we go over from closed to
open sections, the effect of broadening because of
transitions is extremely important. Because of
this, the region of smearing broadens more and
more and the spectrum goes over from a discrete
to a continuous spectrum. It is true that, because
of the periodic nature of the electron trajectory,

FIG. 13.
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FIG. 14.

the continuous spectrum has breaks, whose posi-
tions are given by the equations:

c 2nheH
1 = — с — ll'

tering particle is infinitely heavy (impurity atom,
vacancy, etc.), the perturbed electron wave func-
tion can be written as follows:24> 25> 2 8

PA ipr
m» \ V~l ( s о

8

The quantities C2j> describe the nature of the
scattering center, which is assumed to be at the
point r = 0. If the inhomogeneity of the crystal is
characterized by a perturbation operator Л, then in
all cases where the perturbation has the character
of as-function 26> 2 7

where Sx is the portion of the area traversed by the
electron which lies in a unit cell. The width of the

-* ]/"E
gap region is of order ьи>це e *° " x° (where x is
the half-width of the "isthmus, " and R is the radius
of curvature at the "isthmus, " cf. Fig. 14).

So far we have not included the possibility of
transitions between zones. The analysis shows
that, in those cases where the trajectories corre-
sponding to the quantum numbers n and p in the
zones s and s' intersect, the transition probability
is proportional to 83, whereas when they do not the
probability is exponentially small.

This section serves as the basis for classical
and quasiclassical treatments. On the other hand,
the relatively fine features pointed out here (such
as the broadening of levels, gaps in the continuous
spectrum, etc.) enable us to explain various
features of the de Haas — van Alphen and other
oscillatory effects.

7. QUANTUM THEORY OF SCATTERING OF AN
ELECTRON WITH AN ARBITRARY DISPER-
SION LAW.

The development of a theory of scattering
involves the computation of cross sections for
various processes and the study of the shape of the
wave surface of the scattered particle at large dis-
tances from the scattering center. While the first
part of the problem (the computation of cross
sections) cannot be solved without knowing the
structure of the inhomogeneity, the second problem
— the study of the shape of the wave surface at
large distances — can be formulated and solved
under very general assumptions concerning the
nature of the inhomogeneity, while the asymptotic
behavior of the electron wave function turns out to
be determined by the shape of the energy surface.

Let us consider the scattering of an electron
which is in the state (so, p o), i. e., which has the

ippr

wave function iJC0(r) = e ' ! HSoPo(r), by a
local inhomogeneity. If we assume that the scat-

A s p
7%Po~ (r)

E S ( P ) — e 8 o (Po)

Here the quantities Л "̂ are the matrix elements
of the operator Л .

Whenever we can use perturbation theory,

_ » S P / s
po — »>sopoMsp \4-

We use the notation

( 7-2 )

The particular form of the integrals I s (r) enables
us to investigate the scattered wave at large dis-
tances from the scattering obstacle.

The integration in (7. 2) can be carried out by
integrating over the energy and over the surfaces of
constant energy, so that

E')ds'

where i p r

( P ) !
-,dS..,

(7.3)

(7.4)

dSf - is the element of area on the energy surface
(s (P) = ( ' t while the integral in (7. 3) is taken

between the limiting energy values permitted for
the s'th zone (from <s min to es ̂  ).

In calculating the asymptotic value of the inte-
grals (7.4) for large r, it is convenient to introduce
coordinates on the energy surface es (p) = <r' which
are related to the lines of intersection of the sur-
face with the planes n-p = const (where n = £.). We
introduce the variable u = p- n, and integrate first
over the strip on the surface between u and u + du,
and then integrate with respect to the variable u
(cf. Fig. 15). This gives

/s(r, e')= ^ / Л " ) ^ du,

E 3 ( p ) = t ' ; и -I \m <C и A

r du.

(7.5)
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From this expression it is clear that terms of
order 1/r, which correspond to diverging (scat-
tered) waves, arise from the integration near the
jumps in the function ( (u). As is easily shown,
the only points of discontinuity of the function fs (u)
are points where the surface es (p) = t' is tangent
to a plane perpendicular to the direction of propa-
gation n (cf. Figs 10 and 15). Denoting the points
of tangency by p , we get

2яс,: (7.6)

V'\ К:
where Kv is the Gauss curvature of the surface
(s (P) = e a t th e point P = Pv-

The points of tangency p v are obviously deter-
mined by the equations

FIG. 16. Section of the wave surface of
the scattered electron (solid lines). The
dashed line shows the section of the energy
surface.

ipvr

.« s i^tm ( 7 - 9 )

s(Pv)
[nxv,(pv)] =

(7.7)

By substituting the expressions (7. 6) in formula
(7. 3), we can verify that for r ->°° the integrals
over energy remain finite only if e = f

s (pQ) lie
within the range of energy values admissible in the
s'th zone. In this case the integrals (7. 3) should
be regarded as the limiting values of the integrals

5 = С ' ' , < ' • * ' , > * '
\ e — e-{-iv

(7.8)

for infinitely small damping ( y-> +0).

The main part of the integrals (7.3) or (7.8)
comes from integration near the pole ( f '= f ) .

Using this result, we get the asymptotic
expression for the perturbed wave function:

FIG. IS. Section of the surface сs (P ) = € by the
plane П -p = const. P v , - р„ (i, = 1, 2, 3) are the
points of tangency to the supporting plane of the prop-
agation direction П.

where the values of p v are given by Eqs. (7. 7), if
we replace t' by f = f

s (p0).
The results obtained here are in agreement

with the conclusions of Sec. 4, which were based on
the classical (corpuscular) treatment. In fact the
procedure for determining p Eqs. (7. 7) consists
in finding those points on the energy surface where
the electron velocity (vs = V«s (p)) coincides in
direction with the scattering direction n.

The expression found for the perturbed wave
function permits us to draw various conclusions
concerning the nature of the scattered waves.

In the majority of cases the wave function of an
electron scattered by a single inhomogeneity is a
superposition of several waves, the number of
waves being equal to the number of possible solu-

tions of (7. 7) for (p0)- Each of these waves
has its own shape and velocity of propagation (cf.
Fig. 16). Even in those cases where the energy of
the scattered electron lies within a single zone,
the number of scattered waves, as a rule, will be
greater than one, because usually the energy sur-
faces are not convex, but have a complicated shape.
The amplitude of each of the scattered waves is
determined not only by the dispersion law but also
by the characteristics of the scattering center (via
the quantities C«QP0 . which can be related to the
perturbation produced by the scattering center).
The phase of the wave, i. e., the shape of the wave
surface, is determined only by the dispersion law;
the wave surface for each of the waves is a surface
polar to the energy surface es (p) = с of the elec-
tron.

Knowledge of the wave function for the scattered
electron enables us to calculate the cross section
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for scattering into solid angle dO in the direction n:

16л4
Sp.,

dO, (7.10)

where the quantities B^ are simply related to
the coefficients C/P

p

v .
Each term in formula (7.10) determines the

cross section for the process in which the scattered
electron has a definite value of quasimomentum
and belongs to a definite zone.
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