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1. INTRODUCTION

.S is known, polymer molecules consisting of
large numbers of repeating monomeric units are
long chains, ordinarily made of carbon atoms (the
chains may also contain atoms of other elements).
Because of the limited free rotation about the sin-
gle bonds of the polymer chains, each polymer mol-
ecule may have an enormous number of different
conformations. Hence the experimental mean val-
ues of various quantities characterizing the mole-
cule must be calculated by averaging over all pos-
sible conformations of the molecule (these quanti-
ties depend on the values of the corresponding quan-
tities for the monomeric units).

Each conformation of the chain is defined by
the set of angles 4>i which characterize the rota-
tions of the various links of the chain (Fig. 1)
about the neighboring links, as measured from a
certain given position. Ordinarily, this position is
taken to be the so-called trans-conformation of the
links in the chain. Here, the links i-2,i-l and i
lie in a plane, and link i is parallel to link i - 2
(Fig. 1) The probability of a given macro^state of
the chain (e.g., that defined by the distance between
the ends of the chain) obviously depends both on the
number of micro-states corresponding to it (the mi-
cro-states being defined by the set of angles 4>i ),
and on the energies of these micro-states. If rota-
tion about the bonds in the chain were completely
free, all possible sets of angles <fo would correspond
to the same energy. Then the probability of the ma-
cro-state would be determined solely by the number
of micro-states corresponding to it, i. e., by an en-
tropy factor alone. If the various sets of ^j's corre-
spond to different energies, then the probability of

FIG. 1. Internal rotation angles
in a polymer chain.

the macro-state of the chain is also determined by
energetic factors.

On the basis of the analogy between the confor-
mations of a polymer chain and the paths traversed
by diffusing particles, we may state that in the gen-
eral case, the distribution function for the vector h
between the ends of the chain has the form

\\

Where
'(h) = ^s \

Z +CO

\

(1)

(2)
ft=l - c o

Here Z is the number of links in the chain, and
is the probability that the &-th link is characterized
in magnitude and direction by a vector 1̂  . In the
simplest case, the directions of the vectors 1̂ . are
distributed at random, i. e., the functions ^(l j)
are spherically symmetrical (as well as being iden-
tical for all links ). The Eqs. (1) and (2) for Z » 1
lead to a Gaussian distribution function for h, in
agreement with the law for random flight:

where
/Г2 = Zb2, (4)

and Ь is the_length of one link. We point out that in
this case, h2~Z. That is, if the chain consists of a
large number of links, the root-mean-square length
is much smaller than the maximum length.

Equations (3) and (4) are valid, in particular,
for a hypothetical chain consisting of freely-jointed
links of fixed length Ь . In real polymer chains, the
links form fixed valence angles (ordinarily approxi-
mately tetrahedral, i. e . , about 109°30'). How-
ever, from the general theory of the probability of
linked events (the theory of Markoff chains) it fol-
lows that, whenever the orientation of each link de-
pends only on a limited number of preceding links
(small compared with the total number of links in
the chain), the distribution function £_(h) is ex-
pressed by (3) as before. Here, now д 2 must be
taken to be the mean-square distance between the
ends of the chain, as calculated with the fixed val-
ence angles taken into account. It is given by 3
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1 — cos a (5)

where N is the number of links in the chain, I is
the length of a link, andU - a) is the valence angle.
In other words, in the case, which we have de-
scribed, the real chain may be replaced by a chain
consisting of freely-jointed statistical elements,
and having a root-mean-square length coinciding
with that of the real chain. This fact was first
pointed out by W. Kuhn2 in his classical paper
which laid the foundations for the statistical physics
of polymers. Equation (3) was obtained by Zimm4

for a chain with fixed valence angles and free rota-
tion by direct derivation.

Equation (3) is valid only under the conditions
that Z » 1 and that h is significantly less than the
maximum chain length Amax = Zb. In particular,
this may be seen from the fact that the equation
leads to a finite probability of values of h greater
than Amax, which is meaningless. A more exact
derivation was carried oat by W. Kuhn and F. Grun
for a freely-jointed chain, taking into account the
fact that, when h approaches Amax, the distribu-
tion of the orientations of the links is not spheri-
cally symmetrical. This derivation gave, in place
of (3),

where
(6)

(7)

is the inverse of the Langevin function, and В is
a normalizing constant. When h« Zb, (6) and (7) go
over into (3), but when h = Zb, they give IF(h) = 0
while for h > Zb, W( h) becomes meaningless, as
must be the case.

Equations (6) and (7) show that, for large values
of h, W( h) depends not only on h2 = Zb2, but sepa-
rately on Z and Ь. In order to apply these e-
quations to real chains, we must point out the meth-
od of calculating the number Z and length Ъ of
the statistical elements of the effective freely-
jointed chain which serves as a model for the real
chain. W. Kuhn2 suggested that Z and Ь should be
calculated from the conditions that the mean-square
and maximum lengths of the real and freely-jointed
chains are equal:

Z62 = A2, 1
Zb = /zmax j (8)

h2 and hma% being referred to the real chain). A
conformation corresponding to that of the fully-ex-
tended chain is ascribed to these same statistical
elements. Equations (8) imply that we have r e -

placed the gradually-decreasing correlation between
the orientations of the links in the real chain by the
following situation: the orientations of several neigh-
boring links within one statistical element are com-
pletely correlated, while correlations between the
orientations of links belonging to different elements
are nil. The application of (6) to real chains is not
at all self-evident, since it was obtained for freely-
jointed chains and, in distinction from (3), may not
be directly generalized to the case of a chain with
correlated orientations of neighboring links. How-
ever, as has been shown in papers by M. V. Vol1-
kenshtein and the author 6 and by T. M. Birshtein 7

based on model calculations Eq. (6) is valid with
good accuracy over the entire range of h for a
chains with correlated orientations of neighboring
links as well.

Up to now, the subject has been that of chains
with fixed valence angles but with free internal r o -
tation; in these chains all sets of internal-rotation
angles <£; compatible with the fixed bond-lengths
and the known values of the valence angles are
equally probable. Obviously, this model co r re -
sponds to neglecting the interactions of all atoms

and groups of atoms which are not directly joined
by valence bonds. Yet, it is well known, that
atoms and groups of atoms interact with each other.
Here, for molecules which have neither free elec-
tr ic charges nor hydrogen-bonding groups (we
shall consider only molecules of this type in this
article), the interactions in question are the ordi-
nary van der Waals interactions, which are appre-
ciable only at very short distances.

In line with what has been said above, the inter-
actions between atoms or groups which are not di-
rectly joined are divided into two classes . To the
first class belong the interactions between atoms or
groups at distances which are small on the average,
and which depend on one or a few internal-rotation
angles ф1 (short-range interactions). These
interactions basically have the character of
repulsions between atoms or groups with overlap-
ping electron clouds, and lead to the appearance of
hindrance of internal rotation (since the values of
the angles ф{ corresponding to greater overlap of
the electron clouds ordinarily correspond to greater
energies). Naturally, short-range interactions are
characteristic not only of macro-molecular com-
pounds but also of substances of small molecular
weight, where they lead to the appearance of a hind-
ering potential for internal rotation and to the well-
known phenomenon of rotational isomerism, which
is highly essential in understanding the thermody-
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namic and spectroscopic properties of molecules.
Detailed accounts of the experimental facts and the-
oretical conceptions concerning hindered internal
rotation and rotational isomerism in substances of
low molecular weight are to be found in the mono-
graphs of Mizushima8 and M. V. Vol'kenshtem.9

To the second class of interactions belong the
interactions between atomic groups which are sepa-
rated on the average by considerable distances, but
which may be chance approach each other in the pro-
cess of random bending of the chain, and which in-
teract at the moment of approach (long-range inter-
action). The most essential part of the long-range
interaction is a result of the fact that no pair of
atoms may occur simultaneously in the same vol-
ume element. Hence, these interactions have been
named in the literature volume effects. Obviously,
it is precisely the long and flexible polymeric
chains for which volume effects are characteristic,
since it is only in this case that atoms which are
distant on the average may by chance approach each
other to distances of the order of their van der
Waals radii.

This article is primarily devoted to the long-
range interactions. The short-range interactions
have been discussed in the above-mentioned mono-
graph of M. V. Vol'kenstein, as well as in some
earlier review articles 10> n ; hence we shall limit
ourselves here to a brief discussion of the latter.

2. SHORT-RANGE INTERACTIONS IN POLYMER
CHAINS

Experiment shows that the short-range inter-
actions that lead to the hindrance of internal rota-
tion show a very strong influence on the properties
of macromolecules in solution. In Table I are
given the experimental data_on the ratios of the root-
mean-square dimensions (h2)1^2 of linear macromol-
ecules in an ideal solvent (under conditions in which
the influence of long-range interactions are elimi-
nated) to the root-mean-square dimensions
(h2 free rot. )^ calculated for the case of free
rotation. (Unless otherwise specified, the valence
angles are considered to be tetrahedral, i. e.,
109°30'-) In the fourth column is given the method
of determination of the dimensions: light-scattering
(LS) or viscocity (V). The methods for determining
the dimensions of macromolecules by light-scat-
tering and intrinsic viscosity will be described
below, in Sees. 5 and 6. The dimensions of mole-
cules determined from intrinsic viscosities differ
somewhat from those commonly given in the
literature, since we have used the theoretical
rather than the empirical value of the Flory coef-
ficient in the equation relating the intrinsic

viscosity to the dimensions of macromolecules
(for the basis of this, see below, Sec. 6). The
table does not include data obtained by extrapola-
tion from non-ideal solvents by the method pro-
posed by Krigbaum.134> 2 2 7 From Table I it
follows that the dimensions of real macromole-
cules in solution are appreciably greater than those
of macromolecules with free rotation. That is, the
internal rotation in the chains is considerably
hindered.

Other characteristics of macromolecules in so-
lution depending on the degree of hindrance of in-
ternal rotation are the root-mean-square dipole mo-
ment and the mean optical anisotropy of the chain,
(the latter is measured by the method of flow bire-
fringence) . 3 8 ' 4 2 In Table II are given the ratios
of the root-mean-square dipole moment of the chain
to that of a freely-jointed chain: MQ= rm2 (n is the
number of polar groups, and m0 is the dipole moment
of a group). For chains of the type (- CH 2 - CR 2~^n > M
for a chain with tetrahedral valence angles and free
internal rotation is equal to ц2

 t

 8 4 while for chains
of the type (- CH.T-CHR-),, with tetrahedral valence

72 «45angles, it is equal to (11/12) «,45 We see that
for almost all of the studied polymers, fi2 < This
is natural, since the polar groups ordinarily repel on
one another strongly (because of their sizes). Be-
cause of this, for most conformations of the chain,
the dipole moments of neighboring polar groups are
directed in opposite directions. Thus they partially
compensate each other. We note that, as has been
shown by Benoit and his associates, 49> 50> 5 3 the
dipole moments of macromolecules in solution are
practically independent of the long-range interac-
tions.

In Table III, taken from reference 55, are
given the ratios of the mean optical anistropy AA of
the chain to that of a chain with fixed valence angles
and free rotation. The latter optical anistropy is
equal to 5 4 ' 5 5

free rot.
I 11 + Я cos a

20 sin2 a
(9)

mi' 4 0 ( 1 - ! - c o s a ) '

*As is shown by experiment, the mean optical anistropies
of a chain which are determined for the rubber-like state by
means of the photoelastic effect are more or less close to the
mean optical anistropies of the same chain in solution. Be-
sides, as has been shown by K. Z. Fattakhov4 3 and by G. P.
Mikhailov and L. L. BurshteirH4, the values of the root-mean-
square dipole moment of a macromolecule measured in the
rubber-like state practically coincide with the values measured
in solution. Hence, in Tables II and III, results are also given
of measurements of root-mean-square dipole moments and mean
optical anistropies in the rubber-like state.
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TABLE L Root-mean-square distances between the ends of
macromolecules in solution.

Polymer

Polyisobutylene

Polystyrene*

Polymethyl-
methacrylate

Polyethyl-
methacrylate

Polybutyl-
methacrylate

Polyhexyl-
methacrylate

Polyoctyl-
methacrylate

Monomer unit of
the chain

GH3

—CH2—C—

CH3

—CH2—CH—
1

/ \

! !
\ /

CH3

-сн г -с-

o=c

0-CH3

CH3

- с н 2 — с —

O=G

0—CH2—GH3

CHS

1
—сн 2 —с—

oJc
O-(GH2)3-CH3

CH8

—CH2—G—

0=G
1
O-(CH a) 5-CH 3

CH3

1

— C H 2 — C —

o=c
O-(CH2),-CH3

(Л2Д2 й е е )Я

rot.

2.3

1.7—1.8

2.2—2.4

2.0—2.2

1.9

2.1

2.4

2.3

Meth-
od

LS,V

LS,V

LS,V

LS

LS

LS

LS

Reference

13-15

12,14-25

26-28

23

30

31

32

•Unless stated otherwise, the data for polymers of the type

( - C H 2 - C H R - ) n are for atactic polymers (see below).

where c^q are the components of the polarizability
tensor ** of the monomeric unit along the principal
axes of the trans-chain (the 2 axis lies along the
chain axis, and the x axis lies in the plane of the
chain), bi the fourth column of JTable m is given
the method of determination of S.A : dynamo-optic
(DO) or photoelastic (PE) effect. We must note that
Table Ш does not pretend to be complete. It does

not include the data for polyisobutylene, for which
the value of AA was determined solely from devia-
tions in the valence angles from tetrahedral and
deviations from the valence-optical scheme.

**In the calculation of the ap~ 's, values of the po-
larizability of bonds proposed by Uebye were used (see,
for example, reference 9).
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TABLE I. (Continued^

Polymer

Polyvinyl-
acetate

Polyvinyl-
bromide

Polyacrylic
acid

Poly-4-vinyl-
pyridine

Polydimethyl-
siloxane**

Natural rubber**
(cispoly-
isoprene)

Gutta-percha***
(trans-poly-

isoprene)

Monomer unit of
the chain

—CH,—CH—

o=c
1

CH3

—CH.,—CH —

Бг

—CH,—CH—
1

O=C—OH

—CH,—CH

/ \

! \ /

N

CH3

1
—Si—0—

1
CH3

—CH, CH,—

CH=C

CH3

- C H 2 CH3

\ 1
CH=C

\
CH,—

rot.

2.3

1.9

1.8

2 t}

1.2

1.5

1.3

Meth-
od

LS

LS, V

V

V

V

V

V

Reference

33

34

26

35

3G

37

37

**In the calculation of h2free r o t , t h e angle at Si was con-
sidered to be tetrahedral, while that at 0 was 150°- 160°.

***In the calculation of A 2 f r e e r o t , the angles between
single bonds were considered to be tetrahedral, while those
between single and double bonds were 120°.

Neither does it include data on a number of poly-
mers (natural rubber, gutta-percha, polymethyl-
methacrylate, etc.) for which calculations of
A A free r o t have not been made. Table III shows
that hindrance of internal rotation significantly
increases the mean optical anisotropy of the
chain. As for the long-range interactions, they
have practically no effect on the optical aniso-
tropy of macromolecules, as was shown experi-
mentally recently in a paper by V. N. Tsvetkov,

V. E. Bychkova, S. M. Sawon, and I. I. Ne-
krasov. 66 It follows from the data in Tables
I—III that the properties of macromolecules in
solution are rather sensitive to the degree of
freedom of internal rotation. That is, they are
sensitive to the flexibility of the chains, and
hence can serve as a method of determining the
latter. In addition, such important technical
properties of polymers as, e. g., the tempera-
ture and heat of crystallization, are determined
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TABLE П. Root-mean-square dipole moments of macro-
molecules in solution and in the rubber-like state.

Polymer

Poly-p-chlorostyrene

Poly-p-bromostyrene

Poly-p-iodostyrene

Poly-o-chlorostyrene

Poly-o-bromostyrene

Polyvinylchloride

Polymethylmetha-
crylate

Monomer unit of
the chain

— C H 2 — G H —

1
/ \

\ /

Cl

— C H 2 — C H —

/ \

\ /

Br

— C H 2 — C H —

1
/ \

\ /
1

— с н 2 — C H —

/
Cl

\ /

\/
— C H 2 — C H —

/
Br

\ /

\ /

— G H 2 — C H

Gl

GH3

— C H 2 — C —

0 — C H 3

^ 4 )*

0.65-0.75

0.71

0.71

1.3

1.1

0.87

0.73—0.81

Reference

43, 45, 46

43

43

43

43

45, «7

44, 48-51

to a significant extent by the flexibility of the
chains. 6 7 " 6 9 Hence, it is of considerable in-
terest to establish a quantitative connection be-
tween the properties of macromolecules in solu-
tion and their flexibilities.

The influence of hindrance of internal rotation
on the dimensions of macromolecules in solution
was first taken into account in the paper of S. E.
Bresler and Ya. I. Frenkel1,70 who proposed that
in real macromolecules rotation about the single
bonds does not take place at all, but rather, only

rotational oscillations about the trans-configura-
tions of neighboring links. An alternative ap-
proach was suggested by M. V. Vol'kenshtemJ1

who proposed the rotational-isomer model of the
polymeric chain. According to this model, in the
rotation about each bond in the chain, only certain
discrete conformations (rotational isomers) are
realized in practice. Recently, the existence of
rotational isomers in polymer chains was proved
experimentally by V. N. Nikitin and B. Z. Vol-

chek, 72-74 who found spectroscopically a transi-
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TABLE П. (Continued)

i Polymer

Polyethylmetha-
crylate

Polypropylmetha-
crylate

Polyisopropylmetha-
crylate

Polybutylmetha-
crylate

Polyphenylmetha-
crylate

Poly-p-chlorophenyl-
methacrylate

Polyoxyethylene

Monomer unit of
the chain

C1I3

- С П , - С —
i

0=0

6 — С И г — C H S

(

—en,—(

0 =

(

:п а

)—(С11,)2—ОН,

(

-СИ,—(.

()=(

(

—СИ,—(

0 =

(

;н3

СН3

J—СИ
\

СП3

:.Пз

:

J — ( С Н „ ) 3 — С Н 3

CH3

_CH,—С—
1

0 = 0

с1)-/" \

(

—СП.,—С

о=с

(

— С П , — С П , — 0 —

(,2 ,1 V

0.77—0.79

0.75 -0.77

0.78—0.8-J

0.74—0.77

0.74

0.59

0.87

Reference

4 4

4 4

4 4

4 4

4 8

4 8

50, 52

tion of certain rotational isomers into others on
stretching a polymer, as had been predicted
previously 6> 7 5 > 7 б by M. V. Vol'kenshtein and
the author (see also reference 77). Recently the
author 7 8 proposed a quantitative theory of the
spectroscopic manifestations of changes in the
rotational-isomeric composition of the chain.

The rotational-isomer model of M. V.
Vol'kenshtem served as the basis of a method of

calculating the influence of short-range inter-
actions on the physical properties of macro-
molecules in solution (the dimensions, the dipole
moments, and the optical anisotropy). Here it
was shown that in quantitative calculations one
must not limit the study to the approximation on
which the first papers in the field 7 9 ' 8 7 were
based; in those papers the rotation about neigh-
boring bonds in the chain were considered to be
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TABLE Ш. Mean optical anisotropies of macromolecules in
solution and in the rubber-like state.

Polymer

Polyethylene

Polyvinyl-
chloride

Atactic
polystyrene

Isotactic
polystyrene

Poly-p-chloro-
styrene

Poly-o-chloro-
styrene

Poly-2,5-dichloro-
styrene

Monomer unit of
the chain

—CH,—CII,—

— C H 2 — C H —

Cl

АЛ free ro t .
Method

4.6—6.J4*)

1.8

- C H , — C H -
I

/ \

- C H 2 — C H —

/ \

- C H 2 — C H -
I

Cl

—CH,—CH—

—CH,—CH—

Poly-3,4-dichloro-
styrene

C,

2—15**)
2.2-17

3.0—22**)

2.6—8.3**)
3.5-11**

1.6—19**)

1.8—46**)
2.9-73**'

3.5—15**)
3.1-13

PE

P E

PE
DO

DO

PE
DO

P E

PE
DO

P E
DO

Refer-
ence

58-63

64-G6.231

•The range.of values results from the variation in the experi-
mental data.

**The range of values is the result of various assumptions as to
the freedom of rotation of the phenyl groups.

independent of one another. This approximation
amounts to neglecting the interactions of .all atoms
and groups except those immediately connected to
the bond about which rotation is taking place. As
was shown by the author and Yu. A. Sharonov88' 8 9

in polymers with heavy side-groups of the type
(-CH2-CR2-)re (e.g., polyisobutylene) or (-CH2

-CHR-)n (e. g., polystyrene), a fundamental role
is played by the interaction between the heavy R-
groups, depending not on one, but rather on two

successive angles of internal rotation. Hence,
the concept of rotational isomerism in polymers
of this type must be referred not to the individual
links, but to the monomeric units, which consist
of two links. 8 9 A theory of the dimensions, di-
pole moments, and optical anisotropy of macro-
molecules divided into independent monomeric
units, rather than independent links, was de-
veloped in references 88, 90, and 91.

In the next approximation, it was found neces-
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sary to take into account also the correlation of
conformations of neighboring monomeric units
brought about by interactions of the nearest non-
neighboring heavy groups, together with other
interactions depending on three or four succes-
sive internal-rotation angles. (Interactions
depending on a larger number of internal-rotation
angles may be considered already to be volume
effects.) The method of calculating the stated
correlation is based on the application of the
matrix method of the Ising model (as applied in
the theory of ferromagnetism); this method was
proposed by Yu. Ya. Gotlib 9 2 and developed
subsequently by Т. М. Birshtein and the
author.9 3"9 5 In distinction from the methods
used in references 79—88, this method is es-
sentially based on the rotational-isomeric ap-
proximation. Hence, it is not applicable in
those cases in which the rotational-isomeric
approximation turns out not to be adequate, due
to a large degree of freedom of rotation within
the limits of a monomeric unit.9 1

The basic problem which must be solved in
order to compare the theory given above with
experiment is the determination of the stablest
conformations of the monomeric units of the
macromolecule in solution, and the energy
differences between them. Unfortunately, the
status of the theory of intramolecular inter-
actions of atoms not joined by valence forces
does not yet permit us to rely upon theoretical
predictions of these quantities for any of the
complex molecules. Nevertheless, in a number
of cases it is possible to decide on the stablest
conformations of the monomeric units on the
basis of the conformations of chains in the cry-
stalline state, as was proposed by the author
and Yu. A. Sharonov. 8 9 Indeed, the conforma-
tions of polymer chains in crystals are as a rule
determined by intramolecular interactions,
rather than by the requirements of intermolecular
packing. (The exceptions are chains with a high
degree of freedom of internal rotation, such as the
polyethers.) This standpoint, on which reference 89
was based, was recently supported by a detailed
argument by Bunn and Holmes,9 6 who analyzed
from this point of view the crystal conformations of
a large number of polymer chains (see also refer-
ence 97). Hence it follows that also in the free
macromolecules in solution, those conformations
which are characteristic of the crystalline state
must be favored.

What has been said, of course, must not be
understood to mean that polymer chains in solu-
tion have planar or helical structures. In order

that the chain in solution should have the form of
a helix, rather than a random coil, the helical
structure must be stabilized by hydrogen bonds,
as takes place, for example, in polypeptides.98

When hydrogen bonds are absent, the thermal
motion of the macromolecules is more than suf-
ficient to convert them into the random-coil
form. However, the structure of short sections
of the chains is similar to their crystalline
structure. One might say that the short-range
one-dimensional order in the free polymer chain
in solution is analogous to the long-range one-
dimensional order in the crystalline chain — a
situation quite equivalent to the relation between
a liquid and a crystal.

In those cases in which the macromolecules
crystallize as helices, rather than as planar
trans-chains,* there are two energetically equiv-
alent conformations, corresponding to right-hand
and left-hand helices. Correspondingly, such
macromolecules in solution may be considered as
consisting of short sections of right-hand and
left-hand helices. A comparison based on this
model between the equation for the dimensions of
molecules of isotactic polystyrene and experi-
ment 9 3 shows that the rigid helical segments con-
tain three monomeric units on the average.

The most essential results of the above-men-
tioned series of papers was the establishment of
the fact that the properties of macromolecules of
the (-CH2-CHR-)ra type in solution depend essen-
tially on their stereochemical structure, i. e., on
the distribution of the R-groups with respect to the
extended chain. Polymers of this type with regu-
lar distributions of the R-groups (stereospecific
polymers) were first obtained by Natta,- 99'W2 they
have a number of exceedingly valuable technical
properties. This has recently attracted much
attention to the methods of estimating the degree
of stereospecificity of macromolecules. Con-
sideration of the influence of short-range inter-
actions on the properties of macromolecules in
solution has led to the possibility of using these
properties as the basis of one of these methods.
This method is applicable, in distinction, e. g.,
to the x-ray method, to molecules with a low
degree of stereospecificity.103 It was shown in
a recent paper by V. N. Tsvetkov and S. Ya.
Magarik 6 5 that the optical anisotropy of isotactic
polystyrene (i. e., polystyrene in which all the
phenyl groups are attached to one side of the
chain) is about 1.5 times as great as the optical

•Referring, in particular, to isotactic polymers of the
type (-CH2 - C H R - X J (see below).
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anisotropy of ordinary polystyrene. Recently,
indirect data 1 0 4 were also obtained, according to
which the molecular dimensions of isotactic poly-
styrene, undisturbed by long-range interactions
(see below), are also somewhat greater than the
molecular dimensions of atactic polystyrene.
Analogous results have apparently been obtained
also for polypropylene.105

Obviously, even when short-range inter-
actions are taken into account, the orientation
of each link in the chain depends only on a limited
number of preceding links. Hence, all that was
stated in the Introduction about macromolecules
with fixed angles and free rotation is applicable
to macromolecules with short-range interactions,
when they consist of a large number of links. In
particular, when h « Лтаж, the Gaussian distri-
bution for h is valid for them, as before.* Here,
A2 is taken to denote the square of the distance
between the ends of the chain, as calculated with
hindered rotation taken into account. In other
words, short-range interactions only increase the
effective length of the chain, just as fixed valence
angles do, but they do not change the relations be-
tween the dimensions of the chain and other phy-
sical properties depending on the dimensions (in
particular, the hydrodynamic properties or the
angular dissymmetry of light-scattering intensity).
As we shall see below, this constitutes a very
important distinction between short-range and
long-range interactions.

In chains with hindered internal rotation, dif-
ferent sets of internal-rotation angles correspond
to different energies. In view of this, the physical
meaning of Eq. (3) for these chains differs:
In W( h) in this case is proportional not to the en-
tropy, but to the free energy of the chain. A
change in h is accompanied by a change in the set
of internal-rotation angles, which involves both a
change in energy and an additional change in the
entropy of the chain. As was shown by M. V.
Vol'kenshtein and the author, 75> 7 6 for small
values of h these changes compensate for one
another, so that the change in the set of internal-
rotation angles has no influence on the free energy
of the chain. Equation (3) thereby retains its sig-
nificance. The change in energy of the chain on
changing h is directly manifested experimentally
by the fact that the elastic force which appears
on stretching a bulk polymer does not have a
pure entropy character, in spite of the generally -

*When h is comparable to Л т а х ' о п е таУ> a s before"' ,
use as an approximation the Langevin distribution (6) and
(7), taking (8) into account.

accepted conception. M. V. Vol'kenshtein and
the author 75> 7 6 have predicted the existence of
an energetic elastic force, which in polymers
with considerable hindrance of rotation should be
comparable in magnitude to the total force (see
also reference 77). This theoretical prediction
was confirmed experimentally in a paper by
Flory, Hoeve, and Ciferri. l o 6 They found, on
stretching irradiation-cross-linked polyethylene
in the rubber-like state, that an energetic force
arises, equal to about half of the total force in
absolute magnitude. Thus, short-range inter-
actions in polymer chains determine not only the
properties of macromolecules in solution and
their crystallizabilities (which was discussed
above), but also have a considerable effect on
the thermomechanical properties of bulk poly-
mers . We must note that in the ordinary
rubbers, built of very flexible chains (polyiso-
prene, polydimethylsiloxane), these effects
must be considerably less than in polyethylene.

3. LONG-RANGE INTERACTIONS IN POLYMER
CHAINS; APPROXIMATE THEORY

We shall now include in our discussion the
long-range interactions between atomic groups
in the polymer chain which approach each other
accidentally. When atoms approach within very
small distances, strong repulsion forces arise
between them and prevent the coincidence of the
two atoms within one and the same volume
element. We may easily convince ourselves
that a large fraction of the possible microcon-
figurations of a non-material filament corre-
sponding to a given macroconfiguration (the
distance between the ends) is forbidden for a
real macromolecule. This is because no pair
of atoms in the chain may occur in one and the
same volume element in these microconfigura-
tions. It is also obvious that the percentage of
forbidden microconfigurations will be especially
large for high coiled macroconfigurations cor-
responding to small distances between the ends
of the chain. In this case, the density of atoms
and the probability of their contacts are rela-
tively large. Hence, volume effects must lead
to deviations from the Gaussian distribution for
the distance between the ends of the chain by
increasing the relative probability of large values
of this distance.

Thus, the repulsive forces between atomic
groups in the chain lead to an expansion of the
macromolecule in the solvent; this decreases the
probability of contacts between atoms and may
therefore be considered as having an entropy
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character. However, this process is opposed by
attractive forces acting between segments of the
chain. These latter forces are greater, as a
rule, than the attractive forces between chain
segments and molecules of the solvent. Hence,
from the energetic standpoint the polymer-
polymer contacts are more favorable than the
polymer-solvent contacts. This leads to a con-
traction of the molecule, with ejection of the
solvent from it. In poor solvents (in which the
energy difference between these types of contacts
is especially large) this contraction may com-
pletely compensate for the entropy expansion of
the macromolecule. Then its dimensions will be
determined exclusively by short-range inter-
actions, i. e., by the flexibility of the chain (the
so-called в -point of Flory; see below). Naturally,
the expansion of the macromolecule is also op-
posed by the ordinary statistical elastic force
associated with the fact that large distances be-
tween the ends correspond to relatively small
numbers of microconfigurations of a non-
material chain.

The approximate theory of long-range inter-
actions, based on the qualitative conceptions
presented above, was proposed in 1949 by
Flory, 1 0 7 and perfected by him later in con-
junction with Fox 1 0 8 and Orofino , 1 0 9* A cal-
culation of the degree of expansion of the macro-
molecule at equilibrium, corresponding to the
free-energy minimum, was carried out by Flory
on the basis of a lattice model of the solution. In
this model, the molecules of the solute and the
solvent are considered to be distributed over the
points of some regular lattice. In itself, the
lattice model does not introduce large errors
into the theory, since we are interested only in
the interactions of nearest neighbors, whereas
short-range order in present in any real solution.
A more serious error is introduced by the fact
that we are compelled to use the very same lat-
tice for the solute, the solvent, and the solution,
ignoring the actually-existing differences in
short-range order. 1 9 Besides, as will be seen
below, the specific parameters of the lattice
model do not enter into the final equations.

Application of the lattice model to polymer
solutions requires that the macromolecule be
divided into segments whose dimensions coincide
with those of the solvent molecules. The distri-
bution of the segments with respect to the center
of gravity of the chain, volume effects being

absent, may be approximated by the Gaussian
function *

(10)

where Sx- is the number of segments in a spherical
shell of radius S.and thickness &Sy,*_is the total
number of segments, and /32 = 3/(2R2 ) . (R2) i s

the mean-square radius of gyration of the chain;
the zero subscript indicates the absence of volume
effects.) The influence of volume effects on the
distribution of the segments with respect to the
center of gravity is described in Flory's theory
by the simple following assumption: All of the
segments which occur in the spherical shell be-
tween radii Sj and S,- + SS.- before the expansion
are transferred upon expansion into the spherical
shell_between radii aS- and a(S- + SS-) , where
a = (/?2//?0

2)^ (the hypothesis of uniform expan-
sion of the coil).

The number of segments bxj allocated to the
spherical shell is the same as the number of con-
figurations of the corresponding fraction of the
solution (if a solvent molecule can occupy only
one cell), and is equal to

- Л ) . (11)
1 = 0

where fi - i/8n0j is the fraction of the cells
which are forbidden to the (i + 1) -th segment by
reason of being occupied by the preceding i seg-
ments; SnQ- is the total number of cells in the j -th
spherical shell, and z is the coordination number
of the lattice. Hence, the entropy of the transition
from a system containing completely ordered poly-
mer plus solvent (this state corresponds to a single
configuration) to the solution is equal to (calculated
for the / -th spherical shell):

- к i 6«, Ini.-б.*.-In—- (12)

where is the number of solvent molecules in
the j -th spherical shell, and vx, = 8nQ/SnQ is

the volume fraction of the solvent. The second
term on the right-hand side of (12) remains even
in the absence of the solvent (gnj- = 0) , and thus
amounts to the entropy of disorientation of the
chain segments. Hence, the entropy of mixing
of the disorientated segments with the solvent
molecules is equal to -kSn^. In ».. .

The heat of mixing of the segments with the

*A more detailed presentation of Flory's theory may
be found in his monograph19 (see also 1 0 ).

*Actually this distribution is more complicated, " '
but the Gaussian is a good approximation.
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solvent molecules in the / -th shell is equal to

(13) where

where Awl2 is the change in energy on forming
each new contact of a chain segment with a
solvent molecule, Xi = zAwl2/kT, and v\2 is the
number of such contacts. The latter is approxi-
mately equal to zvYjSxj= zv2j8nlj

Consequently, the change in free energy upon
mixing for the / -th shell is

(,FMj = kT [Ьпи In (1 - «.,,-) + %Muv-ij}- (14)

The degree of expansion of the molecule at
equilibrium is determined from the condition:
dAF/a = 0,

relation
in which 8F . depends on a by theF .

l — vsj)
(15)

where v2j is the volume fraction of polymer in the
/-th shell, and Vx is the volume of a solvent
molecule. From (14) we obtain (with an accu-
racy up to terms in

(16)

Here, the terms y2 and Xi are characteristic of
the entropy and heat of mixing, respectively.
Since the entropy of mixing, generally speaking,
cannot be reduced to a quantity that can be cal-
culated from the lattice model (in particular,
there may be entropy effects associated with
nearest-neighbor interactions), the term lA
must be replaced by an empirical parameter ф1

On introducing in addition the energy parameter
0= 2^7" (which has the dimensions of a tem-

perature), we obtain in place of (16)

a(6n i ;) - 2 3 . (17)

which is applicable far beyond the limits of vali-
dity of the lattice model.

The change in the elastic free energy AFe l a s

also enters into the expression for the total free
energy of the expanded chain. This is easy to
calculate from the hypothesis of uniform expan-
sion of the coil:

(18)

By using (15), (17), and (18) we obtain from the
condition of minimum AF the following equation
for the degree of expansion a at equilibrium:

27

2 5 / 2 я з / 2 7У
f 3-

\ м

(19)

(20)

Here, v is the specific volume of the polymer,
is the molar volume of the solvent, M is the
molecular weight of the polymer, N4 is
Avogradro's number, and hi is the mean square
of the distance between the ends of the chain in
tile absence of volume effects. (The quantity
Ao

2/W does not depend on the molecular weight,
and serves as a measure of the flexibility of the
chain). We must stress that (19) refers to a
macromolecule in an infinitely dilute solution.
As the concentration increases, a rapidly ap-
proaches unity, since the expansion of the
molecule caused by the interaction between its
segments is compensated by a contraction caused
by the interaction with segments of different
molecules. A theory of the concentration de-
pendence of a has been proposed by Krigbaum.229

Equation (19) relates a to the molecular
weight of the polymer, the temperature, the flex-
ibility of the chain, and the thermodynamic para-
meters ф1 and в, which are characteristic of the
given polymer-solvent pair. These parameters
are empirical; however, not only the interactions
of segments within one molecule depend on them,
but also the interactions between segments be-
longing to different molecules. This permits us
to determine the parameters in an independent
fashion. A measure of the intermolecular inter-
action is furnished by the second virial coefficient
in the series expansion of the osmotic pressure as
a function of the concentration

(21)

If intermolecular interactions are absent, A 2 = 0,
and the solution behaves as an ideal solution, that
is, it obeys the van't Hoff Law. A presentation of
the theory of the second virial coefficient of poly-
mer solutions would be outside the topic of this
review. We shall only indicate that the theory
concerning A2 , which has been developed by
Flory together with Krigbaum and Orofino,19- 109> 1 1 2

and which is completely analogous in its
physical assumptions and model utilized to the
theory of intramolecular interactions presented
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above, gives the result l o s >*

•JLbCi+'-fx), (22)
where

(23)

Hence, at the fl-point, A7 = 0, i .e . , the poly-
mer solution behaves as an ideal solution (in such
cases the polymer is said to be in an ideal solvent).
As is clear from (19), a simultaneously becomes
unity. That is, intramolecular interactions have
no influence on the dimensions of the macromole-
cule. Thus, the influence of the effects associated
with inter- and intramolecular interactions be-
tween segments vanish at one and the same point.
The close connection between intra- and inter-
molecular interactions may be expressed even
more clearly by combining (19), (22), and (23).
This gives 1 0 9

where

(24)

(25)

Equations (24) and (25), containing only a , 4 2 , t h e
molecular weight, and the undisturbed dimensions
of the chain, directly connect the degree of ex-
pansion of the macromolecule in various solvents
with the thermodynamic properties of these
solvents, as characterized by A2 .

Obviously, the higher the characteristic tem-
perature в (often called the Flory temperature),
the poorer the solvent is. This is because the
energy loss Aw is greater on replacing the
polymer-polymer and solvent-solvent contacts
by polymer-solvent contacts (we recall that

In good solvents, в is lower than the freezing
point of the solvent, and thus at all experimental
temperatures, T > в, and hence, A2>0, and
а > 1. As we choose poorer solvents, в ap-

*In reference l o ' f (19) and (22) are somewhat more
complicated, owing to inclusion of the next term in the
series expansion of d(SF^j:)/d{8nlj) as a function of
v2j. However, the role of the correction terms is small,
so that we may neglect them (especially for large mol-
ecular weights). We also note that the existence of
these correction terms does not change the relation be-
tween a and A2, as determined by (24).

**И Ли»12 < О, that is, mixing is energetically favored,
then в < 0, and hence, it loses the physical meaning of
a temperature.

proaches the experimentally-attainable tempera-
ture range, so that A2 and a decrease. At T = в
(ideal solvent), A2 = o, and a = 1, while at T < в,
A2 < 0, and a < 1. Hence the dimensions of
macromolecules in solution are greater in better
solvents.

We must keep in mind the fact that it is im-
possible to carry out an experiment at a tem-
perature considerably lower than the в -point,
since phase separation sets in (the polymer
precipitates). The theory of fractionation (see,
e.g., reference 19) shows that the critical solu-
tion temperature of polymers of high molecular
weight is related to the molecular weight by

(26)

(b is a constant). Hence, fl is the critical solu-
tion temperature for the polymer at infinite
molecular weight. At finite but large values of
M, Tc is only a few degrees below в, so that it
is experimentally impossible to attain values
of A2 much less than zero, or values of a much
less than unity. We might say that in poor
solvents, the macromolecules "prefer" to
combine with other molecules and precipitate,
rather than to contract into tight coils. We note
that both of the characteristics of the tempera-
ture в mentioned above (the point at which A2 = 0,
and the limit of Tc as M -> «> ) are made use of
in determining this temperature experimentally.

Flory's theory leads to three basic qualitative
conclusions:

1. In an "ideal" solvent (g-point), the dimen-
sions of chains are determined by their flexibilities
alone. In order to test this conclusion from the
theory experimentally, it is essential to select
solvents withe-points near each other, since the
flexibility of the chain itself may depend on the
temperature (due to shift in the equilibrium of
rotational isomers). In this regard, great pos-
sibilities arise from mixtures of poor and good
solvents; by varying the composition, one may
shift the (9-point in any necessary direction. In •
Fig. 2 are plotted the quantities К = Ь]\в/у[Ж,
measured for polystyrene in various ideal sol-
vents {[TJ\Q is the intrinsic viscosity at the в -
point. As is shown by the theory of the viscosity
of polymer solutionsjsee below), WQ /\Щ
is proportional to (h^ /M)3^2 • Along the abscissa
is plotted the temperature corresponding to the
6-point. We see that the values measured in dif-
ferent solvents, even with nearby 0-points, differ
by about 20%. Here the greatest values of К cor-
respond to mixed solvents containing benzene or
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FIG. 2. The relation of К = [-q]0 /M for polystyrene
to the temperature в.
Triangles—data obtained in mixtures of toluene with metha-
nol ( k 24> 1 1 3 ) and with n-heptane (A1 9), and in mixtures
of benzene with methanol ( • 1 1 3> 1 1 4 ) ; squares—data ob-
tained in cyclohexane ( D 1 4 ) , methylcyclohexane ( n 1 9 ) .
ethylcyclohexane ( • l 9 ) , and mixtures of cyclohexane with
CC14 ( Ю19); circles—data obtained in mixtures of methyl-
ethylketone with methyl ( « 1 9 ) and isopropyl (O 2 3 > U 3 )
alcohols, and in mixtures of p-dioxan with methyl alcohol
( • I 1 3 ) . The dotted straight line is drawn through the
squares.

toluene, molecules which structurally resemble
the side-groups of the polystyrene chain. On the
other hand, the lowest values of К correspond to
mixtures of methylethylketone and p -dioxan with
alcohol. Especially convincing data are found in
the paper of Bianchi, Magnasco, and Rossi ш

who studied identical fractions of polystyrene in
various mixed solvents (at в = 34° С), and ob-
tained values differing among themselves by
20%. The intermediate position is occupied by
solvents containing cyclohexane or its deriva-
tives. For this group of solvents, it was pos-
sible to vary the в -point over a rather wide
range. This made it possible to show a regular
decrease of К with increasing temperature (the
dotted line in the figure). This decrease ap-
parently is to be explained by an increase in the
fraction of the energetically-less-favorable
twisted conformations of the chain. The ob-
served dependence of the values of К on the
solvent is not necessarily evidence of incomplete
compensation of the influence of long-range
interactions on the dimensions of the chains,
since the flexibility of the chains itself, which
is determined by short-range interactions, may
depend on the solvent within certain limits.

2. The dimensions of macromolecules are
larger in better solvents. This conclusion is
confirmed by a large amount of experimental
material concerning all of the studied systems,
without exception. In good solvents, the dimen-
sions of chains are 1-1/2 to 2 times larger than

1000 ••

XM

FIG. 3. The relation of the dimensions of polystyrene
molecules to the molecular weight in а в- solvent (dotted
curve) and in a good solvent (solid curve).2 2

they are at the в -point. As_an example, in Fig. 3
is shown the relation of U2)1/2 for polystyrene
molecules to U in cyclohexane at 34° С (solvent at
the б-point) and in toluene at 20°С (good solvent).
In addition, a is somewhat less than unity near the
point of precipitation of the polymer ( T < в ), in
agreement with the theory.

3. The root-mean-square dimensions of
chains increase more rapidly with the molecular
weight than y¥(ot T > в). In fact,1 1 5 it follows
from (19) that a2~M( , where <r = (a2 -l)/(5 a

2-3).
(When a->~, t -> 0.20,and (h2)lA^ м^1 + f^2~M°-60.)

This conclusion from the theory is also con-
firmed by numerous experimental studies. In
particular, in reference 22, the value t - 0 was
obtained for polystyrene in a solvent at the 9 -
point (cyclohexane at 34°C). In a series of gradu-
ally better solvents (cyclohexane at 43°С and 57°C,
and toluene at 20 °C), the values obtained were,
respectively f= 0.005, 0.07, and 0.22. In ad-
dition, with flexible molecules and large values of
M , values of с exceeding the theoretical limit of
0.20 by more than the experimental error have
never been observed.

The fact that experiment clearly indicates that
the dependence of T2 on U is stronger than a linear
proportionality has a further significance. This
lies in the fact that the earlier statistical theories
of volume effects 1 1 6 - 1 2 4 led to the incorrect
conclusion that^when volume effects are taken
into account, h2~ M . (A critique of some of
these papers is given in reference 10.) It is in-
teresting_to note that the question of the depend-
ence of h2 on the number of links, volume effects
being taken into account, has also been studied by
another method. Here, the polymer chain was
simulated by non-self-intersecting paths generated
by electronic computers 125-13° . it was shown in
reference 130 that, for a three-dimensional cubic
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lattice, h^>^> ф , where Ь = 1.22 ; here the number
N of steps did not exceed 64. Wall, Hiller, and
Atchison 1 2 6 have developed a method which per-
mits one to estimate the asymptotic behavior of
( h2/N ) as N -»«о . it turned out that the asymp-
totic behavior of A2 is characterized by a con-
siderably weaker power function of N than is found
at small values of Л'. Thus, five three-dimen-
sional lattices of various types were studied in
paper 127. bi these, for small values of N, Ь is
approximately 1.22. Nevertheless, as N-»°» ,
h2/N approaches a finite limit. However, this

approach is exceedingly slow (in one of the lat-
tices studied, h2/TV attains 99% of its limiting
value at N = 107, and in another of the lattices,
at_/V = 1030 ). Thus, the asymptotic behavior of
h2 cannot be found experimentally with real
macromolecules. Besides, as was shown in
reference 128, the asymptotic behavior of
is considerably dependent on the value of the
excluded volume assigned to each step, so that
a small increase in the latter may lead to diver-
gence in h2 /N as N -»°°

What has been stated shows that Flory's
theory reproduces the basic features of the intra-
molecular interactions in macromolecules in a
qualitatively correct manner. Nevertheless, the
degree of quantitative agreement between the
theory and experiment leads us to desire some-
thing better. Above all, it follows from Flory's
theory that the quantity (a5 - a3)/ y[M cannot de-
pend on the molecular weight. Experiment shows
that this is false, as is shown in particular by
Fig. 4 (see reference 131). Here, data for solu-
tions of polystyrene in toluene 2 2 and polyviny-
lacetate in methylethylketone33 are plotted; these
data were obtained by the light-scattering method
of Zimm (see below). We see that actually
( a5 _ a3 )/ y/W increases with M. Data given in
Flory's monograph, based on the less reliable
method of determining from the intrinsic vis-

4+

3-

2-

1 -

w

FIG. 4. The relation of (a 5 - ai)^/Mto M for polystyrene
in toluene 2 2 (triangles) and polyvinylacetate in methylethyl-
ketone 3 3 (circles).

cosity, also indicate that (a$ - a* )/y/M is not
constant.

On the other hand, Flory's equation19 permits
us to calculate a directly if we know the thermo-
dynamic parameters фг and в of the system. As
was stated above, в may be measured by an in-
dependent method, and Xi determined from the
second virial coefficient. Orofino and Flory 1 0 9

showed that the values of Xi determined from a
and from A2 are of the same order of magnitude,
although the discrepancies between them are ap-
preciably greater than the experimental error.
The same result may be obtained by a direct test
of (25), as is done in Fig. 5 (see reference 132).
The dotted curve in the figure corresponds to (25),
while the points are the experimental data. 21> 33>
133-135 in most of_the experimental studies

used here, 1 3 3" 1 3 5 /?2 was determined from the
intrinsic viscosity, while in references 21 and 33
it was determined directly by the light-scattering
method of Zimm.

Figure 5 shows that the relation between A2

and a derived in the papers by Flory and his
associates does not agree quantitatively with
experiment. This is especially noticeable in
the range of a close to unity (poor solvents),
where the Flory-Krigbaum-Orofino theory pre-
dicts too gradual an increase of ^2 with in-
creasing a (i. e., with increasing temperature).
This is shown graphically by Fig. 6 (see refer-
ence 132), in which the temperature dependence
of Л2 (taken from reference 21) is plotted di-
rectly. We must add that at large values of a,
the Flory-Krigbaum-Orofino theory leads to very
large values of Лг , also not in agreement with
experiment. In particular, according to this
theory, for a= 2.4, >P(a) = 0.72, whereas ex-
periment 2 5 gives a value of only 0.35.
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FIG. 5. The relation of ¥(a) ••

1,6 2,0

)
Flory-Krigbaum-Orofino theory [ Eq. (25)]; - —

Casassa-Markowitz theory [ Eq. (57) ]; theory of the
author and Yu. E. Eizner [ Eq. (58) ]. Experimental data:
Д —polystyrene in t o l u e n e , 1 3 3 ' 1 3 5 л —polystyrene in bu-

tanone, 1 3 5 o—polyisobutylene in cyclohexane,1 3 3 g —
polyvinylacetate in methylethylketone 33> v -polystyrene
in cyclohexane.2 *
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It is essential that one should be able in prin-
ciple to determine the quantity <Ai from the value
of Аг near the 0-point independently of any model
theory of 42 • Indeed, (22) can be rewritten in the
form

where

(27)

(28)

We see that F(X) -> 1 and A2 -> (.r2/^ ) фх (1 -1)
as Т-*в, . Thus, the limiting expression for A2

contains no numerical parameters, and as may be
shown, is not connected with any concrete model.
Hence, in the calculation of ф1 for polyisobutylene
in benzene, Stockmayer 1 3 6 made use of data for
A 2 obtained in the immediate neighborhood of the
0-point 133. The value which he obtained ("Ai =
0.30) turned out to be twice as large as the value
of Фх obtained from a by (19). This means that
the numerical coefficient of Сд/ in the series ex-
pansion of a2

(29)

must be reduced by about one-half. In fact, the
experimental data for a which Stockmayer used
were obtained from the intrinsic viscosity 13,
whereas it is just in the vicinity of the в -point that
this method may lead to large errors (see below).
However, Fig. 6 shows that the conclusion drawn
by Stockmayer is also valid in the determination

A-10"

0,2-

310 320 330

FIG. 6. The temperature-dependence of A 2

near the 0-point;
Flory-Krigbaum-Orofino theory, — — Casassa-

Markowitz theory, — — — theory of the author and
Yu. E. Elzner, • —experimental data (polystyrene
in cyclohexane21).

of the dimensions of macromolecules by the light-
scattering method of Zimm.

4. LONG-RANGE INTERACTIONS IN POLYMER
CHAINS; A PRECISE THEORY
We saw above that Flory's theory is not in

quantitative agreement with experiment. This is
quite natural, since a number of coarse assump-
tions were made in deriving it. In fact, a real
polymer chain, which is a sequence of connected
segments, is replaced in this theory by a cloud of
segments distributed about the center according to
a Gaussian law. The fact that the exact distribu-
tion law of the segments with respect to the center
of gravity u o ' ш is replaced by a Gaussian law
apparently in itself has no substantial effect on the
results of the theory, [in any case, the introduc-
tion of the exact distribution law 1 3 7 into the cal-
culation of A 2 gives results *38 which are very
little different from those given by Eq. (22) Г]
However, the replacement of the real chain by a
cloud of segments deprives us of the possibility
of taking into account the correlation between
contacts between different pairs of segments.
This leads to substantial errors.

A rigorous theory of the influence of volume
effects on the dimensions of macromolecules may
be developed for the case in which the volume
effects may be considered as a small correction.
It has been developed in the papers of a number of
authors,139*146' 1 3 1 who started either with the
Fokker-Planck equation or with the calculation of
the partition function of the chain. We shall
present schematically below the derivation of
equations for A2 and R2 ,based on the latter
method (for a more detailed derivation, see ref-
erence 131). We shall examine the "pearl neck-
lace" model, in which the model of the chain is a
system of interacting segments joined by non-
material freely-jointed bonds. This model is
widely used in the physics of polymer solutions;
the centralization of the interactions at separate
points along the chain apparently does not lead to
large errors, provided that the number of these
points is sufficiently large.

The distribution function for the coordinates
of any pair of segments in the chain has the form

(30)
d(p)d(t) '

where (p) is the coordinate set of the p-th seg-
ment, and

RT (31)
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is the complete distribution function for the co-
ordinates of all segments in the chain. (V\k I is
the interaction energy of all the segments.) Con-
sidering, as usual, that

(x is the number of segments in the chain, a is the
effective length of a link joining adjacent seg-
ments) . The distribution function for h has the
form 1 3 1 ' ш

F {*}=?. и (гц) (32)

and that V(rr) decreases rapidly with increasing
distance тц = Inyl between the segments, we
obtain

Т
i

(33)

where the functions ф(г ц ) = 1 - exp [-a(r,y)//?f]
differ from zero only for small values of гц .

If we limit the series to the linear term, i. e.,
if we neglect simultaneous contacts of two or
several pairs of segments (we can do this, pro-
vided that the volume effects are only a small
correction), we obtain

where

ht (*• /) = \ \ /° (P' l>'". /) Ф Ыd (0 d (/)• ( 3 5 )

and /o(p> t, i, j) is the distribution function for
the coordinates of four segments. Making use of
the fact that f°(p,t,i,j) is practically constant in
the narrow interval in which ф(г ••) 4 0, we have

where

and

(36)

(37)

(38)

Equations (34)—(38) permit us in principle to
calculate the distribution function for the distance
between any pair of segments in the chain, and the
mean values of any of the functions of this dis-
tance. In particular, we obtain for the distance
between the ends of the chain

where

2.1 J a?

(39)

(40)

W (h) = Wo (h) Г 1 + Кбя z -=^r ~r Az 1 , (41)

where W0(h) i is a Gaussian function. Study of (41)
shows that the function W{h) has a sharper maxi-
mum than the effective Gaussian function giving
the same value of h2 . On the other hand, if we
calculate the mean squares of the distances be-
tween any pairs of segments in the chain r ^ with
the aid of (35)—(38), we may obtain an equation
for the mean square of the radius of gyration of
the chain:

4
+ юг,

(42)

It follows from (39) and (42) that volume_ ef-
fects have a_somewhat strongerjeffect on h2 than
they do on R2 , such that A2 = 6R2( 1 + 62 /105)
when they_are taken into account. (For Gaussian
chains, h2 = 6R2 •) Hence, the expansion of
macromolecules in good solvents is not com-
pletely isotropic: in this process their degree of
prolongation is increased somewhat. This is
confirmed by study of the equation for r2 , from
which it follows that volume effects have a
stronger influence on the distances between seg-
ments which are widely separated from each
other than they do on the distances between rela-
tively close segments. A certain increase in the
degree of prolongation in better solvents must
have an effect on the optical properties of ma-
cromolecules in solution, but especially on the
form birefringence, which is brought about by
the orientation of nonspherical particles having an
intermediate index of refraction differing from the
index of refraction of the medium. 42> 1 4 8 The
statistical theory I 4 9 shows that the ratio of length
to diameter for Gaussian chains is equal to two;
this is confirmed by the experiments of V. N.
Tsvetkov and E. V. Frisman 15° on the form
effect. An increase in the degree of prolonga-
tion in better solvents must in principle be as-
sociated with a certain increase in the form ef-
fect. In a paper by V. N. Tsvetkov and S. Ya.
Lyubina i 3 2 it was shown that this effect is ex-
tremely slight, so that, to a first approximation,
the expansion of the polymer coil can be con-
sidered to be isotropic.
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We shall now consider the physical meaning
of the parameter vQ which appears in the equation
for z. One may see from (37) that vQ has the
dimensions of volume, and is determined by the
potential of interaction between a pair of seg-
ments in the chain. If the segments were rigid
spheres of diameter d0 (that is,
when тц < d0 , and u(rj ;) = 0 when > d0),

would equal 4m/n/3, that is, the volume forbidden
for the center of one sphere due to the presence of
another sphere there. In the general case of an
arbitrary "(г г , ) , vQ has the meaning of the ef-
fective excluded volume of a segment in the chain.
Obviously, the potential «(r j.-) is positive for
small values of тц (repulsion), and negative for
larger values (attraction). Correspondingly, v0

can be resolved into two components, positive and
negative, which, in general, will show different
temperature dependences. Hence, at a certain

temperature (corresponding to the 0-point of
Flory), they may cancel one another. Here, we
take the value for г- as the zero point for
u{r ij), as is customary. Then, just as in Flory's
theory, since the segments are surrounded by
solvent molecules the essential point is the com-
pensation between the forces of repulsion between
the segments and the attraction forces in excess
of those existing between the segments and the
solvent molecules *.

The relation between v0 and the thermody-
namic parameters of the system may be most
easily established by comparing the expressions
for A2 at values of T close to в , the expressions
being taken from the thermodynamic theory of
Flory, Krigbaum, and Orofino [Eq.(27)] and
from the statistical theory based on taking rigor-
ously into account the interactions of segments
joined in the chain**. The rigorous statistical
theory, first proposed by Zimm 1 5 1 and subse-
quently developed in the papers of Albrecht1 5 2 and
Yamakawa,153> 1 5 4 gives

where

(43)

(44)

*The cancellation takes place, of course, not between
the stated forces per se, but between their influences on
the microconfiguration of the chain.

**As has already been noted, the expression for A j
near the в-point does not depend on the model used.

***One can easily see that F(z) = (а

3/г)Ч'(а).

We note that the approximate Flory -Krigbaum-
Orofino theory [ see Eq. (29)] gives in these
terms: F(z) = 1 - 1.15z + ...

Equating (27) to (43) at T -> в, at which F(X),
Яг)-1, we obtain131- 1 3 6

(45)

( Vc is the volume of a segment in the chain).
Hence,

(46)

When equation (46) is Jtaken_into account, the exact
equation (39) for a2 = h2 /h2 becomes

(47)

In this equation, the numerical coefficient of CM

is close to unity. As was shown at the end of the
preceding paragraph, this is in agreement with
experiment [in Flory's theory, the coefficient of
% was equal to two; see (29)].

On the basis of the above discussion, Flory's
equation (19), can be written in the form

-z, (48)

This expression may be obtained from the exact
Eq. (39), if we assume that the volume effects
cause an a -fold increase increase in the length of
each link. Indeed, the quantity z in the right-hand
side of (39) has the meaning of the number of con-
tacts between segments per unit volume of the un-
disturbed chain. Since z~a-3 then, in order to
extend (39) to the case of large volume effects, it
is sufficient from this viewpoint to replace z by
z/a3 . This gives 1 4 2

a ° _ a 3 = •
3

(49)

which differs from the equation of Flory (48) only
in the numerical coefficient. Also, as follows
from his conclusions, this equation will give a
correct first term in the series expansion of a as
a function of z .

We can show that we can attain about 4/3 of
the value of the constant in an equation of the type
of (48) or (49) within the framework of the Flory
theory (i. e., without taking into account the con-
nection of the segments into a chain), if we take
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into account the non-Gaussian character of the
distribution function for h in an approximate man-
ner. Such a treatment was carried out in 1952 by
M. V. Vol'kenshtein and the author 1 5 5 (see also
reference 10), who, just as Flory did, began with
a Gaussian distribution of the segments with re-
spect to the center of gravity t see Eq. (10)].
However, this distribution was considered for a
chain having a fixed distance h between its ends.
The mean square of the radius of gyration of a
Gaussian chain with a_distance h between its ends
is equal1 5 5 to Щ = h2/i2 + hVvi. On considering
that volume effects increase h2 and R2 in the
same ratio, we obtairu_when_ volume effects are
taken into account: R2 = h2 /12 + Л2/12 = а

2 hJ/12
+ h2/12.

Thus, the distribution of the segments with
respect to the center of gravity, which is deter-
mined by the magnitude of R2, turns out to depend
on the distance between the ends of the chain.
This permits us to take into account the relation
of the free energy of expansion of the chain to k,
and to obtain the distribution function for' h in the
form

(50)

[ W (A) is a Gaussian function ] . The distribution
function (50), just like the exact distribution func-
tion (42), has a sharper maximum than the effec^
tive Gaussian function giving the same value of h2 .
The calculation of h2 with the aid of the distribu-
tion function (50) leads to an integral equation for
a2, which can be approximated well by the equa-
tion 1 3 1

а 5— а 3 = ф (z)z, (51)

where ф(г) increases from 1.15 to 1. 30 as г in-
creases. Obviously, (51) is very close to (49),
which results from the exact theory with the as-
sumption of a uniform expansion of the coil.

The series expansion of (49) as a function of z
gives

(52)

In addition, the exact equation obtained by
Fixman by the method outlined above [ see
(34)—(38) ] , but taking the square terms into
account, has the form

(53)

A comparison of (52) and (53) shows that the
assumption of uniform expansion of the coil is not

adequate. We stated above that volume effects
have a stronger influence on the distances between
distant segments than they do on those between
close segments. Hence the various parameters of
the chain having the dimensions of length will, in
general, depend in differing manners on the vol-
ume effects (as we have already seen above in the
example of h 2 and R2 ) .

ill

The author proposed the following ap-
proximate method for taking the effect of non-
uniform expansion of the coil on the а - г relation
into account. A possible measure of the non-
uniformity of the expansion of the coil is the dif-
ference in the coefficients of z2 in (52) and (53).
In order to obtain the correct coefficient for z2 ,
we must replace the quantity z in equation (39) by

z/a\4 , rather than by z/а3 . Here, a?q = 1 +
/3z - ... On comparing the equation

(54)

with (53), we obtain a2^ = 1 + 1.04z - That
is, ae < a • Replacing z in the last equation by
2/«3

while

we obtain

iz a3

(55)

(56)

Equations (55) and (56), which replace (49),
show that {a^ - a3)/z is not constant, as in
Flory's theory, but increases almost 1-1/2 times
as z increases (when z -> 0, « 3/a 3 - 1, while when
z -> oo, а3/ае

3 -> 1.45). In particular, this means
that the quantity (a

5 - a3 )/\JM must increase with
the molecular weight of the polymer. As we have
seen above (see Fig. 4), this agrees with experi-
ment *. In Fig. 7 is shown the dependence of a2 on
2 as given by (55) and (56) (solid curve), and by
(49) (dotted curve). We see that taking non-
uniform expansion of the coil into account leads
to an increase in a (for a given z).

We note that taking non-uniform expansion of
the coil into account also leads to an essential
change in the form of the theory of the second
virial coefficient, significantly improving the
agreement of this theory with experiment. As
has already been noted above, the Flory-
Krigbaum-Orofino theory does not reproduce
the quantitative relation between a and A2 , es-
pecially in poor solvents (see Fig. 6). Re-

*In a paper by Krigbaum228, another attempt was
made to explain the dependence of (a 5 - a^>)/ \JM on M.
For a critique of this paper, see reference 131.
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FIG. 7. The relation of a 2 to z, taking into account
the non-uniform expansion of the coil by Eqs. (55) and
(56) (solid curve), and with the assumption of uniform ex-
pansion [ Eq. (49), dotted curve ].

cently, this theory was improved by Casassa and
Markovitz, 1 5 6 who replaced the Gaussian dis-
tribution of segments with respect to the center
of gravity by a Gaussian distribution with respect
to an arbitrary intermolecular contact, thus
roughly taking into account the linking of the seg-
ments in the chain. The result obtained by
Casassa and Markovitz may be expressed by
means of Eq. (24), where

5,68-
a a 3

(57)

and z is related to о by (49). The relation be-
tween the Flory-Krigbaum-Orofino equation (25)
and the Casassa-Markovitz equation (57) is in a
certain sense analogous to the relation between
Flory's equations (19) and (48) for and the cor-
rected Flory equation (49), "adjusted" by the
correct coefficient for the linear term in the
series expansion in terms of a. A comparison
of the Casassa-Markovitz theory with experi-
mental data in poor solvents is shown in Fig. 6.
Here one sees that the Casassa-Markovitz theory
agrees with experiment better in this region than
does the Flory-Krigbaum-Orofino theory. How-
ever, in good solvents the Casassa-Markovitz
theory does not give quantitative agreement with
experiment (see Fig. 5).

Equation (57) was obtained, strictly speaking,
for a Gaussian chain, while the influence of vol-
ume effects was roughly taken into account by
replacing z by z/а3 ; this corresponds to the hypo-
thesis of uniform expansion of the coil. The
degree of validity of this hypothesis may be es-
timated from the value of the coefficient of z2 in

the series expansion of F{z) [ see (43) —(44) ] .
This coefficient is the sum of a quantity resulting
from ternary intermolecular contacts (equal to
9.726, see reference 152) and another quantity
resulting from the influence of single intramole-
cular contacts on double intermolecular con-
tacts. A trivial calculation of this influence,
amounting to the replacement of z in the linear
term by г/а3 , gives a contribution of 5. 73 to
the z2 coefficient152 . A precise estimate of
only part of these influences gave 153> a value
of 8. 78, while an approximate calculation of all
the influences132 gave 12.58. This shows that
the quantity * must be replaced by z/a2ff , rather
than by г/а3, in the given case ( ae{{ being less
than-a). Considerations similar to those pre-
sented above in the derivation of equations (55)-
(56) led the author and Yu. E. Eizner ш to re-
place the Casassa-Markovitz equation (57) by the
equation

- P. "ef f (58)

where a2

{f = 1 + 2.93z/a3

q , aeq being ex-
pressed by Eq. (55). Here the relation between г
and a is defined by (55) and (56). Comparison of
(58) with experiment, as shown in Figs. 5 and 6,
indicates that the experimental data relating to
good solvents are in significantly better agree-
ment with the theory which takes» non-uniform
expansion of the coil into account.

Krigbaum
227

proposed_a semi-empirical
This rela-

tion, which was obtained by combining Eqs. (40),
(42), and (43) [for F(z) = 1] , has the form

relation connecting R2

f R2 and A2

(Л2)2 =(Д0

2)2 + 3
Г1Г , о 134 1

105/
А„М"- (59)

Krigbaum's equation was obtained by combination
of equations which are valid only in the immediate
vicinity of the в -point, and extrapolation of its use
into the region of good solvents is theoretically
invalid. Nevertheless, its experimental corro-
boration is not bad. Indeed, according to this
equation (if we neglect for convenience the_in-
significant difference between h2 / Л2 and R2/ R2)

(60)

which is rather close to (58). While this coinci-
dence is undoubtedly simply the result of com-
pensation of various factors omitted in Krig-
baum's equation, it shows that this equation may
be used to estimate R2 when the values of R2, A2
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and M are known230 .

5. LONG-RANGE INTERACTIONS AND LIGHT-
SCATTERING IN POLYMER SOLUTIONS
We saw above that long-range interactions

lead to deviations from the Gaussian distri-
bution function for distances between segments
of the chain. Here, the volume effects have dif-
ferent influences on different pairs of links ("non-
uniform expansion of the coil"). However, the
ordinary theories of the properties of macro-
molecules in solution (light-scattering, hydro-
dynamic properties, etc.) are based on the
assumption that the distribution function for the
distance between any given pair of segments in
the chain is Gaussian. Hence, strictly speaking,
these theories are applicable only to macro-
molecules in ideal solvents. The generalization
of these theories to the properties of macro-
molecules in good solvents is commonly based
on the explicitly or implicitly formulated as-
sumption that the influence of volume effects may
be reduced to an increase in the length of a link
in the chain, the Gaussian statistics being
preserved.

In the precise determination of the dimen-
sions of macromolecules by light-scattering or
hydrodynamic properties, one must generalize
the theory of these phenomena in a way which
takes into account the non-uniform expansion of
the coil due to long-range interactions. The
pertinent results are presented in this and in the
next paragraphs.

As is known, light scattering by molecules of
dimensions comparable with the wavelength of
the light shows a characteristic angular dissym-
metry: the scattering in the forward direction is
greater than that in the backward direction. This
is associated with the fact that there is a phase
difference between the waves scattered by dif-
ferent regions of one given molecule. This dif-
ference is greater in backward than in forward
scattering, so that the waves scattered in the
backward direction interfere with one another to
a large degree. The resulting angular dissym-
metry of the scattered light is the greater, the
greater the ratio of the dimensions of the mole-
cule to the wavelength of the light. Thus, this
dissymmetry may be used to determine the dimen-
sions of the molecule. The addition of the ampli-
tudes of the waves scattered at a given angle •& from
the various atoms in the molecule gives the fol-
lowing expression for the ratio of the light inten-
sity scattered at the angle d to that scattered at a
zero angle (see, e. g., reference 157):

I scat (0)
p, (=1

J' (61)

where N is the number of atoms in the molecule,
ц = (WA') sin (0/2), A' is the wavelength of the
light in the given medium, and r , is the distance
between the p-th and the «-th atoms.

In order to average over all the conforma-
tions of the macro molecule, as is done on the
right-hand side of (61), in general, we must have
a definite assumption of a model of the structure
of the chain. However, the light-scattering at
small angles may be interpreted also inde-
pendently of the model, since at small angles
(i. e., small values of /*), (61) becomes

Here, the result does not depend on the struc-
ture of the chain, but is related directly to the
definition of the mean square radius of gyration.
A method of determining the dimensions of
macromolecules, proposed by Zimm 1 5 8 , is based
on (62). We now make use of the fact that the
experimentally measured relative intensity /(0)
of the scattered light (at unit distance from the
scattering center) is connected to P(&) by the
relation (see, e. g., reference 19)

Kc
2A2 (63)

(c is the concentration of the polymer; К =
(27r

2/A'4/V4 ) n2 {dn/dc)2; and n are, respec-
tively, the indices of refraction of the solution
and the solvent; and Mw is the weight-average
molecular weight of the polymer). We may then
determine ?(# ) by plotting Kc/!(•&) as a function of
sin2 (#/2) + kc, where к is an arbitrary con-
stant. Now, we carry out a double extrapolation
to с = 0 and * = 0. The curve extrapolated to
с = О gives l/Mw. P(&); the extrapolation to &_= 0
permits us, according to (62), to determine /Ц̂
from the intercept on the axis of ordinates, while
R2 is determined from the initial slope of the
curve.

Zimm's method, in principle, permits us to
determine Mw and я 2 independently of model
conceptions of the structure of the chain. How-
ever, in practice it is by no means always pos-
sible to carry out a reliable extrapolation to d = 0,
since the measurements are ordinarily carried
out at * = 30° - 150° (stray light and scattering
by dust interfere with the measurements at lower
angles). For large molecular weights, the quan-
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tity ii2R2 is not small at 0 « 30° so that we must
not limit the series expansion of the equation for
p(ft) to the first two terms. In order to interpret
light-scattering data at finite angles, we must
calculate P (ft> in finite form, and this requires
models for the structure of the chain.

In the simplest model, the distances between
all the scattering centers obey a Gaussian distri-
bution function. In this case

(64)

Considering that
from (61) and (64)

r

pt = \t - p\ we obtain

(65)

where % = ц2 R . Equation (65) was first obtained
by Debye159 , and was the basis of the method
which he proposed for determining R2 from the
ratio of values of P (ft) measured at two different
angles (commonly 45° and 135°). Undoubtedly,
the Gaussian distribution function is not valid for
distances between atoms which are close to each
other in the chain. However, attempts to take
into account the rigidity of short segments of the
chain, as have been made by Peterlin 1 6 0 and
other authors, 161-163 show that this effect has
little influence on the form of the curve for P (ft),
provided that the contour length of the molecule
is sufficiently greater (hundreds of times) than
the length of the rigid region.

Since volume effects cause a greater increase
in the distances between distant segments in the
chain, it follows that they must appreciably dis-
tort the form of theP (ft) curve. Indeed, (61)
shows that the scattering at large angles is deter-
mined principally by nearby pairs of segments,
since the waves scattered by distant pairs of
segments interfere with one another, due to the
large phase difference. [ The corresponding
terms in the double summation on the right-hand
side of (61) are small. ] Hence, volume effects
must have a weaker influence on the light inten-
sity scattered at large angles than on that scat-
tered at_small angles. In other words, for a
given R2, the volume effects decrease the an-
gular dependence of the light-scattering intensity.

The qualitative considerations given above are
confirmed by corresponding calculations carried
out by the author.164 Later, analogous results*

*In reference 166 the theory is generalized to the case of
polydisperse molecules.

were obtained by Benoit1б5> 1 and by Hyde,
Ryan, and Wall167 . These theories 1 6 4 - 1 6 7 are
based on Eq. (64), which is based on a Gaussian
distribution function for r t . The fact that volume
effects cause a greater increase in the distances
between distant segments is taken into account in
these theories by replacing^the equation r2 =
\t - p\ a2 by the equation r

2 = \t - p | * + €'a2

(see also reference 168). In reference 164, «' ,
which must actually be a function of p and t , was
assumed to be_equal to the parameter t defined by
the relation: h2 ** M1 + f . [As was stated above,
according to Flory's theory,155

 f = (a2- D/
(5a2 -3).] In references 165—167, e' was con-
sidered to be an empirical parameter, inde-
pendent of p and t.

The substitution of the equation r2 = \t - p|
1 + 2 into (64) and (61) gives, instead of the
О е Ь У е function (65), the following function

(66)

where к = x(l + 5«/6 + f

2/6)** , and (9, к)'. =
/„* exp (-r) riir are incomplete Г-functions,
tabulated in reference 167. Figure 8, taken from
reference 164, shows that, for identical initial
slopes, the curve for P~l(d) constructed by means
of (66) lies under the curve constructed by means
of (65). This is in agreement with the qualitative
concepts presented above.

It follows from the Debye equation (65) that the
dependence of P~l on /x2 is characterized by an
initial slope «0

 = ^2//^> a n (^ 3Ln asymptote with s x =
R 2/2 so that so/s тс = 2/3 . According to the

theories of reference 164—167, the curve for
P"1 (ft) does not have an asymptote, while the
ratio of the initial to the final slope of this curve
is equal to

where
Л1/2

•О- •1+8

(67)

(68)
5e i_

**The distinction between к and ж is associated with
the fact that, as shown by Peterlin 1 6 8, h2 = 6R2(l + 5<r/6+
f2/6) in the approximation under discussion. (Compare
with the equation h2 = 6/?2(l + 6z/105) obtained above by
the rigorous method.)



INTRAMOLECULAR INTERACTIONS IN POLYMER CHAINS 819

FIG. 8. The relation
of P-l(0) to sin2 (0/2)
for (R 2 ) Я /A.' = 1 and
t = 0.18, according to
the Debye theory (solid
curve) and the theory of
the author (dotted curve).

0 0,2 0/f 0,6 0.8 1.0

169-172

The relations of Ф to (R2) fy\' and to t are
given in reference 164. From these it fol-
lows that Ф increases with (R2)1^A' and with t ,
and in experimentally possible cases may be of the
order of 1.5 to 1.8. Here, S o / S o o > l.that is,p-i(*)
is not curved upward (as in the Debye theory), but
downward (see Fig. 8). The considerable influence
of volume effects on the form of the P(d)curve
leads to the result that the dimensions of chains
measured by scattering at large angles with the use
of the Debye function are smaller than the true di-
mensions. Here, as the diagrams in reference l 6 7

show, the error may be quite significant. It is
even more essential to take volume effects into ac-
count in attempts to estimate the polydispersity and
branching of polymer chains from the form of the
P(&) curve by the methods suggested by Benoit.
(As was shown in these papers, polydis-
persity increases thes /S(x)ratio, while branching
decreases it.) Obviously, it is proper to use these
methods only in poor solvents, in which volume ef-
fects may be neglected.

164
The author has also developed a rigorous

theory of the influence of volume effects on the
function p(d). This theory was also based on Eq.
(64), but used the exact expression for r2 (in the
approximation linear in ). This theory, qualita-
tively confirms the results of the theory presented
above. In particular, it leads to the conclusion
that, when volume effects _are taken into account,
so/sx =- | a2 where a2 = R2 R2 However, this
asymptotic behavior is attained_only at experiment-
ally unrealizable values of д 2 R2, so that in practice,
2/3 -.< s0/soo< - a2 This result was recently con-
firmed in a paper by the author and Yu. E. Eizner
by a rigorous calculation. Here the non-
Gaussian character of the distribution function for
rpt was taken into account. In reference 1 7 3 and the

papers of Yamakawa and Kurata 1 4 5 ' ]46 the influ-
ence of volume effects on light-scattering at small
angles в was also studied. It was shown in refer-
ence 1 7 3 that, given the same initial slope, volume
effects produce a somewhat greater initial curva-
ture of the p-i(d)curve in comparison with the

Debye curve. Thus, at small values of #, the true
p-i( it) curve lies somewhat above the Debye curve,
while at large values of it, it lies appreciably lower
(with the same initial slope).

The experimental testing of the above theory of
light-scattering of polymer solutions in good sol-
vents is given in references 2 5 > l66> l 6 7 ' and

174,176 Here, as was predicted by the theory,
it turned out that, for the same initial slope, the
p-i(tf) curves lay lower in good solvents than in

poor solvents; the solutions studied contained high-
molecular-weight polystyrene (H = 107) in benzene
or toluene (good solvents) or methylethylketone or
cyclohexane (poor solvents). Fig. 9, is a diagram
illustrating this; it is taken from the paper-by V. E.
Eskin, 2 5 who studied this effect especially care-
fully. One may see from the diagram that in a good

FIG. 9. Angular dependence of light-scattering of
polystyrene solutions with M = 20 x 10^, in toluene at
19°C (upper curve), and in a ^-solvent (cyclohexane at
34.4°С lower curve2 5).

solvent (toluene), the P~4 d)curve is appreciably
curved downward at large values of 0; this agrees
qualitatively with the theory presented above. The
theoretical curve which best describes the experi-
mental data corresponds to (h 2) % = 6000 A > from
which a = 2.4 . This is in good agreement with the
results obtained by Eskin_25 from measurements of
the intrinsic viscosity [(A2) '̂  =5800 Л)] and transla-
tional diffusion [ (h 2 ^ = 6000 A ) ] On the other
hand, the determination of (д 2) уг from the upper
curve in Fig. 9 by the ordinary Debye dissymmetry
method gives a value of 5000A; this discrepancy is
significantly outside the limits of error of the ex-
periment. As was shown in reference 2 5 , the
Debye P-1(&) curve corresponding to dimensions of
the macromolecule determined from the intrinsic
viscosity does not agree at all with the experimental
curve. However, the analogous curve, constructed
according to the theory taking into account the non-
uniform expansion of the coil 1 6 4 , is in satisfactory
agreement with experiment.
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6. LONG-RANGE INTERACTIONS AND HYDRO-
DYNAMIC PROPERTIES OF MACRO-
MOLECULES
We shall now consider the influence of non-uni-

form expansion of the coil on the hydrodynamic
properties of macromolecules in solution. Experi-
ment provides us with two types of hydrodynamic
characteristics of macromolecules. By studying
the translational motion of the molecule through the
solution, either in Brownian movement (in the dif-
fusion phemomenon) or under the influence of cen-
trifugal force (sedimentation in the ultracentrifuge),
we can determine the translational frictional coef-
ficient of the macromolecule from the diffusion and
sedimentation constants. The translational fric-
tional coefficient is related to the diffusion con-
stant by the well-known Einstein equation

kT
(69)

and to the sedimentation constant by the equation

(70)
( v is the specific volume of the polymer, and Q is
the density of the liquid). The latter equation may
be easily obtained from the condition of equilibrium
between the centrifugal force and the frictional
force acting on the molecule.

On the other hand, in laminar flow of the liquid,
as characterized by a certain velocity gradient,
different parts of the molecule will be driven for-
ward by the forces of flow having different veloci-
ties . Thus the part of the molecule situated in the
region of fastest flow will tend to overtake the part
situated in the region of relatively slow flow. As a
result, a torque will set on the molecule and cause
it to rotate in the current (at the same time, of
course, the molecule is carried along by the cur-
rent with a velocity equal to the flow velocity at the
site of its center of gravity). An elementary calcu-
lation shows that the angular velocity of rotation of
the molecule is equal to one-half of the velocity
gradient of the flow. When the molecule rotates in
the current, its segments will have definite veloci-
ties with respect to the surrounding medium. (This
can be seen from the fact that the molecule un-
avoidable cuts lines of flow when it rotates.) Hence,
if we go from the pure solvent to the solution, the
frictional energy losses will be greater, due to the
additional dissipation of energy in the friction of the
segments of the molecule with respect to the sol-
vent. This is manifested macroscopically as an
increase in viscosity. The contribution of the indi-
vidual molecule to this increase may be conveni-
ently characterized by the intrinsic viscosity, which

is the relative increment in viscosity per unit con-
centration, extrapolated to infinite dilution:

(71)
c->0 % C

In addition, the study of flow birefringence of
macromolecules makes possible the determination 42

of the rotational diffusion coefficient DT . As is
shown by theory 1 7 7 - 1 1 5 and experiment1 7 8 this
quantity is related to the intrinsic viscosity by a
universal relationship.

A presentation of the theories of the hydro-
dynamic properties of macromolecules in solution
(see reference 1 9 > 1 7 9 > and 1 8 0 ) would extend far
beyond the limits of this article, in which we can
only characterize briefly the basic results of these
theories. A most important element in a theory of
the hydrodynamic behavior of macromolecules in
solution must be the hypothesis concerning the re-
lation of the motion of the medium surrounding the
molecule to the motion of the segments of the mole-
cule. The simplest assumption states that the mo-
tion of the medium does not depend at all on the
motion of the segments. That is, each segment
experiences friction in the surrounding medium,
just as if the remaining segments did not exist
(model of the free-draining molecule).

Obviously, in this case the frictional force act-
ing on the molecule during its translational motion
through the solvent is equal to the sum of the forces
acting on all the segments of the molecule. Since
all the segments move with the same velocity, this
means that the translational frictional coefficient of
the molecule is

F = xl, (72)

where % is the number of segments in the chain,
and С is the translational frictional coefficient of a
segment*. Hence, in this approximation, the
translational frictional coefficient is completely in-
dependent of the dimensions and structure of the
macromolecule, depending only on the molecular
weight. On the other hand, the theory of the in-
trinsic viscosity of free-draining molecules, de-
veloped by Huggins 1 8 1 , Debye 1 8 2 , Hermans,1 8 3

and Kramers 1 8 4 gives the equation

R2 (73)

where TJ0 is the viscosity of the solvent, and Mo is
the molecular weight of a segment. According to

*In studying the hydrodynamic properties of macro-
molecules, just as in the study of volume effects, the
"pearl necklace" model is commonly used, that is, a
set of segments joined by non-material bonds.
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(73), [г/] ~> R 2, i .e . , it depends directly on the di-
mensions of the macromolecule. Here, it follows
from the derivation of (73)that in the approximation
being considered (with free draining), the relation
between [77] and R2 is universal. That is, it is in-
dependent of the structure of the macromolecule.

The opposite limiting case corresponds to a
macromolecule which completely carries with it in
its motion all of the solvent occurring within it.
Thus, it can be treated by the model of a spherical
particle, impermeable to the solvent. In this case,
the translational frictional coefficient and the intrin-
sic viscosity of the macromolecule are expressed,
respectively, by the well-known equations of Stokes

F = 6ixr)A
and Einstein

(74)

(75)

Ve denote the radius and theIn (74) and (75), Rg and
volume of the effective hydrodynamic sphere res-
spectively.

It follows from (72) and (73) that for a free-
draining Gaussian chain, F and [rj] are proportional
toM. On the other hand, for Gaussian chains which
are impermeable to the flow of the solvent (if we
consider the radius of the effective sphere to be
proportional to the radius of gyration of the chain),
we obtain the relation that F and [rj] are propor-
tional toy/M. (This is becauseRe-~yfM, andVe-^Mi/2)
Experimental data obtained for a large number of
polymer-solvent systems (see, e.g., reference 19)
show that, for flexible chains, [т)]~ма , where
0.5-< а „< 0.8; and F~^Mh, where o.5 -< b -< 0.6 This
fact may be explained in two ways, naturally: either
by postulating the partial permeability of the chain,
whereby the values of a and ь are intermediate be-
tween the two limiting cases, or by bringing in the
non-Gaussian character of the chains. The latter
factor leads to a stronger dependence of Rg and Ve of
the impermeable molecules on the molecular weight.
The second explanation was proposed by W. Kuhn 2

as early as 1934. However, in view of the fact that
practically nothing was known about volume effects
at that time, this explanation was immediately
abandoned.

In 1948, Kirkwood and Riseman1 8 5 and Debye
and Bueche1 8 6 developed a theory of the hydrody-
namic properties of macromolecules which are
partially permeable by the solvent. Here, Debye
and Bueche used as the model of the molecule a

*Einstein's equation for the viscosity of a suspen-
sion of spherical particles is commonly written in the
form: (77 - т]0)/т]0 = 2.5 п, where п =c
volume fraction of the particles in the solution.

Ve /Mis the

sphere uniformly filled with segments, while
Kirkwood and Riseman studied the more realistic
model of a Gaussian chain. The results of the
Kirkwood-Roseman theory have the form

F =

and

(77)

where X = х£/(6п})l/* j,0(h 2) \ and F(X) is a func-
tion tabulated in reference 1 8 5 and 1 8 7 . This func-
tion approaches unity _as х£/т) (h2) % approaches
zero, while as *£/?/ (A2)'̂ -»~ , it decreases like

_
For x£/7)0(h

 2УЛ« 1 • (76) and (77) go over,£)0 У ( () g
respectively, into (72) andJ73) for the free-drain-
ing chain, while for xCJ^Ah2) ^ » 1 ,they give the
equations

(78)

where P = {3^~ = 5.11, and P = (3 )̂3/2/2 5/2 = 5 J 1 >

(79)

where ф = (п/в)3/2д^ [XF(.X)]x=eo • Equations (78)
and (79) are nothing but the Stokes and Einstein
equations applied to macromolecules. According to
the Kirkwood-Riseman and Debye-Bueche theories,
the formulas relating F and [JJ] to M are character-
ized by exponents a and Ъ (see above), which de-
crease from 1. 0 to 0.5 as хС/ц U2) ̂  increases.
These authors consider, on this basis, that the ex-
perimental values of a and Ь are determined by the
partial permeability of the chain for the solvent.
However, the values of £ obtained from the experi-
mental values of a and Ь were one or two orders of
magnitude smaller than might have been expected
on the basis of Stokes1 Law applied to the individual
segment.

Flory, Fox, and Mandelkern 1 9 > 1 0 8 > 1 8 8 have
considered the fact that the Kirkwood-Riseman and
Debye-Bueche approach completely ignores the role
of volume effects. Since volume effects have a con-
siderable influence on the relation of h2 to U, the
determination of x^/r)0{h2) 1/>г> from a and Ь is quite
improper. In addition, the application of Stokes'
Law to the individual segments leads to the following
numerical estimate 1 9 of the coefficients in (76):

F =
0.2-1-—^

V x

(80)
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Hence, at the large molecular weights of interest to
us, (78) and (79) must be valid; these pertain to
macromolecules which are impermeable to the sol-
vent. From this viewpoint, deviations from propor-
tionality between [77] and F, one the one hand, and
y/M , on the other, must be explained entirely by
bolume effects, rather than by partial permeability
of the molecule. In fact, if we take into account the
fact that A

2 ~^ 1 + «r, whereo ч< f -.< 0.2(see above),
we obtain for flexible chains, [n]~ до(1 + 30/2 > a n ^
F ~M(1 + ()/2. This gives precisely the interval of
exponents a and b (respectively 0.5 - 0.8 and

0.5- 0.6) which were observed experimentally.

The crucial experiment that confirmed the
validity of the viewpoint of Flory and Fox was
the establishment by Flory and his associates 1 3 >

14,17, 18, 36, 189 o f Ш е f a c t Ш а 1 . i n i d e a l solvents,
when volume effects are absent, \.i)\~yJM (see the
resume of these papers in reference 1 9 ) . A di-
rect test of (79) was carried out by Flory 1 9 on the
basis of published data. 16> 2 6 > 1 8 6 - 1 9 0 This
showed that this equation is verified by experiment.
Here, the empirical value Ф = 2.1 (+0.2) xlO2 1

was obtained. With regard to the theoretical value
of Ф according to the initial paper of Kirkwood and
Riseman,1 8 5 Ф = 3.62 x 1021 [ (A2) ^ being meas-
ured in cm, and [v] in dl/g). However, this value
was obtained by an incorrect solution involved in
the theory of the integral equation191 . A numeri-
cal solution of this equation 1 8 7 gave: ф = з.зе х 1021
but there was no estimate of the error of this re-
sult. In a paper by Auer and Gardner 1 9 2 this
equation was solved by an accurate method which
they developed* in reference 193. This gave
Ф = 2.90 x 1021 (correction of the allowed error of
calculation115 in paper 1 9 2 gives Ф = 2.86 x 1021 •
Finally Zimm 1 9 4 has obtained Ф = 2.84 x 1021 on the
basis of another model of the chain, with a different
method of calculation.

In addition, a number of experimental studies
have confirmed the constancy of the quantity
[17] l/iM1/5

J] /F , which should be equal to Ф^з/р ,
according to (78) and (79). By using the data of
reference 1 8 8 and 195-i98 ; in which ^was deter-
mined by the sedimentation method, Flory 1 9

showed that Фх/3/р = 2.5 (+ o.l) x 106 • Substitut-
ing in the value Ф = 2.1 x 1021, we obtain P = 5.1,
in excellent agreement with theory. The same
value of Фх/3/р was found in the studies of V. N.
Tsvetkov and S.I. KLenin,1"'2 0 1 in which Fwas
determined from the coefficient of translational dif-

*The method of Auer and Gardner consists in expanding
the desired function, the kernel, and the singularities of
the integral equation in a series of Gegengauer polynomials.

fusion, as measured by the method of V.N. Tsvet-
kov 2 0 2 (this method permits one to measure the dif-
fusion coefficient at exceedingly small concentra-
tions, which ensures obtaining especially reliable
values). Finally, Oth and Desreux 2 0 ? and V. N.
Tsvetkov and S.I. Klenin2 0 4 have subjected (78) to
a direct experimental test. (In reference 2°3 was
determined by sedimentation, while in reference

2 0 4 it was determined by translational diffusion.)
They obtained the result that this equation is valid
within the experimental limits of error; in complete
agreement with theory, P was equal to 5.1.

We see that whereas the theoretical value of P
agrees with experiment, the theoretical value of Ф
is greater than the experimental value by an amount
appreciably outside the limits of error of the ex-
periment. This may be explained by the fact that
the theoretical value of Ф (and also that of P) is ob-
tained on the basis of Gaussian statistics, and
hence, strictly speaking, pertains only to #-sol-
vents. In good solvents, the non-uniform expan-
sion of the coil must lead to changes in the values
of Ф and P . A theory of the intrinsic viscosity of
macromolecules, taking into account the non-uni-
form expansion of the coil, has been developed by
the author and Yu. E. Eizner within the framework
of the theories of Zimm 2 0 5 and of Kirkwood and
Riseman.1 1 5 Since both approaches give identical
results, we shall limit ourselves here to a brief
statement of how the non-uniform expansion of the
coil is taken into account in the theory of Kirkwood
and Riseman 1 1 5 .

The fundamental equation of the Kirkwood-
Riseman theory has the form

1 P Л/Т v\ 1 (81)

where, for chains of high molecular weight which
may be considered impermeable to the solvent

+ 1

(82)

whereas <f>{ £ 77) is the solution of the integral
equation

+ 1
7'(е,т)Ф(т, r\)dx.

H e r e , f = 2 P /* - 1 ; v = 2p'/x - 1; т = It/x - 1 (p, p '
and t are numbers of segments),

(83)

(84)

R c pis a vector joining the p-th segment with the
center of gravity of the chain), and

(85)
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are the components of the average tensor of hydro-
dynamic interaction (the tensor of Oseen)

For Gaussian chains,

Ф-Ю

Ms.
and

(86)

(87)

Solving (82) and (83), with (86) and (87) taken into
account, Auer and Gardner 1 9 2 obtained Eq. (79)
with Ф = 2.90 x 1021 • As was shown in reference
115, the influence of the volume effects on [y] by
way of their influence on the function [(£,4) (which
characterizes the distribution of the segments with
respect to the center of gravity) is small, and we
may neglect it. Hence, we must take into account
only the influence of non-uniform expansion of the
coil on the hydrodynamic interactions of the seg-
ments, as characterized by the Oseen tensor. By

considering, as before, that l(l/r t )'= (б/„) ^ (r

 2 )~1/г

but making use of the expression r2

(= \t- p\1 + (

 a

2

(thus approximately taking into account the non-uni-
form expansion of the coil), the authors of reference
115 obtained in place of (79) the equation

лю (88)

where Ф(() is a coefficient whose dependence on
may be approximated by the equation

Ф (s) = 2.86 • 10 21 (1 - 2.63e + 2.86e2). (89)

A practically analogous result was obtained by the
author and Yu. E. Eizner** within the framework
of Zimm's theory 2 0 5 .

We see that the coefficient Ф in (88) is smaller
in better solvents, hi other words, in better sol-
vents [77] increases more slowly than the volume
of the macromolecule, as characterized by the
quantity (R2)3/2 . This is explained by the fact
that [77] is proportional to the product R2 • W

•Since it is not h2 but R2 which we measure directly
in the light-scattering method (see above), it is more
natural to discuss the relation between [77] and R2(rather
than h2 ).

**The small differences (namely, according to Zimm's
theory, Ф = 2.84 x 10 2 1 when с - 0) can be explained
by the distinction that, in Zimm's theory, the coil is con-
sidered to rotate about the center of hydrodynamic resis-
tance, rather than about its center of gravity, as it does
in the Kirkwood-Riseman theory.

1,5

FIG. 10. Relation of the Flory coefficient Ф to
the coefficient of expansion of the molecule a.

theoretical curve obtained by the author and
Yu. E. Eizner; ll"> asymptote of the theoreti-
cal curve; experimental data: x 2 1 (polystyrene with
M = 3.20 x 10^ in cyclohexane at various tempera-
tures), Д 1 6 (polystyrene with M = 0.51 x 106 —
1.76 x 106 in various solvents).

j_see Eq. (81) J . Here, Ц/ depends on the quanti-
ties (l/r ,) , which determine the hydrodynamic
interactions in the chain. Since volume effects
have a stronger influence on distances between
more distant segments of the chain, they have less
effect on. the quantities_ (1Д ) than on the quanti-
ties r2 on which R2 depends 2 0 6. It is obvious
that distant pairs of segments contribute more to
quantities depending on r2 than they do to those
depending on (l/r J . The situation in this case
is completely analogous to that which occurs in the
theory of light scattering (see above), in which the
volume effects also have a relatively weak influence
on the scattering at large angles, since this is de-
termined by scattering between nearby segments in
the chain.

In order to compare the theory presented above
with experiment, we shall express e in terms of a ,
with the aid of the equation: t = Jin a2/d In Л/ =
(a2 - 1)/ (5a - 3)n5 , which follows directly from
the formula a

5 - a3 = const. 2 . The relation of
to Ф , determined as indicated is shown in Fig. 10,
on which are also given the corresponding experi-
mental data. * The agreement between theory and
experiment must be recognized to be exceedingly
good, considering the relatively coarse way of tak-
ing the non-uniform expansion of the coil into ac-

*For the quantitative comparison with the theory, only
studies were used in which: R2 was determined by Zimm's
method, an appreciable dependence of [77] on the velocity
gradient of flow could not be expected, and the polydisper-
sity of the studied polymers (which has a considerable
effect on Ф26> 45) had been estimated. Qualitatively, the
decrease of Ф in better solvents may be obtained from the
analysis of a large number of experimental studies (see,e.g.,
references 12, 33, 207, and 208).
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count and the absence of any arbitrary parameters
in the theory. This pertains especially to the re-
sults of the study of Krigbaum and Carpenter2 1, in
which a special study was made of the dependence
of Ф on the quality of the solvent, and in which a
lack of proportionality between [тЦ and (R2) 3/2
was shown for the first time.

The results of the study given above show that
the discrepancy between the theoretical and empiri-
cal values of Ф (see above) may be explained by the
fact that the theoretical value pertained to а в-sol-
vent, while the empirical value was obtained by
Flory by analysis of experiments, most of which
were carried out in good solvents, in which Ф is
close to 2.1 x 10 2 1 . It also follows from this study
that, in the determination of (h2)1/г from data on
the value of the intrinsic viscosity \JJ\Q in в -sol-
vents, one must use the value Ф = 2.86 x 10 2 1

(rather than 2.1 x 10 2 1 . T h i s will lead to a de-

( h 2 )
crease in the values of (h2) % obtained thus by
about 10%. It is also necessary to take into ac-
count the dependence of Ф on a in the determina-
tion of from the intrinsic viscosity.

The influence of volume effects on the intrinsic
viscosity was also studied recently in a paper by
Yamakawa and Kurata, 2 0 9 > 2 l 0 whose theory was
limited to the region of small values of z . The
study by these authors proceeds from the same
physical assumptions as do references 1 1 5 and 2 O 5

However, the influence of non-uniform expansion
of the coil on the hydrodynamic interaction was
taken into account in a relatively coarse manner,
and an inexact solution of the integral equation of
Kirkwood and Riseman was used. Thus, Yamakawa
and Kurata obtained a much weaker dependence of
Ф on the solvent, incapable of explaining the ex-
perimental data. (For a critique of the paper of
Yamakawa and Kurata, see reference 1 7 3 . ) In ad-
dition, we must emphasize that the theory of the
author and Yu. E. Eizner apparently exaggerates
somewhat the dependence of Ф on a in the region of
a close to unity. Indeed, it follows from (89) that,
in the vicinity of the 9 -point

= 2.86-1021(l-1.75z (90)

whereby [77] = \JJ\Q (l + 0.16z). Since the coef-
ficient of г in the latter equation appears as a small
difference between two large quantities, a small
error in (90) may lead to a considerable change in
this coefficient. In fact, experiment apparently in-
dicates a stronger temperature-dependence of [»?]
near the в -point than would be expected from the
equation [4] = [77],9 (1+ 0.16z). Unfortunately,
the development of a rigorous theory of the depend-
dence of [17] on г encounters enormous difficulties

in calculation, even in the region of small values of
z (the solution of an integral equation with a very
complex core).

Analogously, a theory may be developed about
the influence of volume effects on the translational
frictional constant of a macromolecule. A general
theory of the translational frictional constant was

developed by Kirkwood21 , and is not connected
with any special assumptions about the structure
of the chain. This theory leads, for a macro-
molecule impermeable to the solvent, to the
expression ^ 3 n ^ o

2'Ci) (91)

For linear Gaussian chains, (91) goes over into
(78) with P = 5.11. A consideration of the non-
uniform expansion of the coil in the theory of the
translational friction of a macromolecule was
first made by Peterlin. 2 1 2 ' 2 1 5 He made use of
the distribution function for h which he had ob-
tained 1 4 7 [see above, Eq. (41] , found an ex-
pression for (l/A), and suggested that an expres-
sion for (i/r ) may be obtained from it by re-
placing N by \t - P\ .Peterlin's result, referred
to the case of small values of г, may be given
in the form

= P0(l-0.31z). (92)

Hence, the coefficient P, just like the coeffi-
cient Ф, decreases in better solvents. That is,
volume effects have a weaker influence on the
translational frictional constant F than they do on

Subsequent studies have shown, however, that
Peterlin's theory considerably exaggerates the
influence of volume effects on P. In the paper of
the author and Yu. E. Eizner 1 1 5 , who used the
"Gaussian" relation between (i/r ) and r2 ,
just as in the theory of [v] , but considered that

it was shown that

P- p (93)

That is, the decrease in P is not greater than 5%
(since ( « 0.2) . It follows from (93) that, in
particular, when г « 1, P = PQ (1 - 0.16z). That
is, the influence of volume effects on P is an
order of magnitude smaller than their influence
on Ф [cf. Eq. 90)] , obtained under the same
approximations). Finally, in the papers of
Stockmayer and Albrecht 2 1 6 and of the author
and Yu. E. Eizner 1 7 3 , in which the influence of
volume effects on P in the region of small values
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of z was taken into account by the rigorous
method, it was shown that

P = Po(l-0.03z), (94)

so that, in practice, Flory's equation (78) is
obeyed with a sufficient degree of accuracy.

7. CONCLUSION
The results given above of the modern theories

of short-range and long-range interactions in
polymer chains show that it is absolutely necessary
to take these intersections into account in order to
explain quantitatively the properties of macromole-
cules in solution. This is no less true of the pro-
perties of bulk polymers, which we have not con-
sidered here. Here, the short-range interactions,

which determine the flexibility of the chain, are
above all responsible for the differences in physi-
cal properties of macromolecules of differing
chemical and stereochemical structures, while the
long-range interactions are responsible for the dif-
ferences in behavior of macromolecules in different
solvents.

The theory of short-range interactions, deter-
mining the relation between the structures and
properties of chains, has just begun to be developed.
On the other hand, the theory of long-range inter-
actions, which establishes the correlation between
various properties of chains, is in a relatively bet-
ter status. Studies in recent years, which have
involved taking into account the non-uniform expan-
sion of the coil due to long-range interactions, have
led to the elimination of practically all of the appre-
ciable discrepancies between theory and experiment.
At present, if we know the dimensions of the mole-
cules of a given polymer in a given solvent, as well
as their dimensions in an ideal solvent, and the
molecular weight, we can predict the second virial
coefficient, the form of the curve of angular dis-
symmetry of light-scattering, the intrinsic visco-
sity, and the translational frictional constant with
and accuracy not much poorer than the experimental
accuracy.

We have considered in this paper only linear
macromolecules without free charges or hydrogen-
bonding groups. Branching appreciably decreases
the dimensions of chains, for a given molecular
weight. 2 1 7- 2 1 8 This effect is partially compen-
sated by the role of volume effects, which in-
creases with the degree of branching. 2 1 9 Branch-
ing also affects the form of the light-scattering
curve, 1 7 0 > m the hydrodynamic properties, 2 0 6 '
220, 221, 223 and the second virial coefficient 2 2 0 >

2 2 2 of molecules of given dimensions and given

molecular weight. (In particular, as is shown by
theory 206> 220,221,223 and experiment, 223> 2 2 4

224 Flory's coefficients Ф and P increase with in-
creasing degree of branching.) At present, we
possess a quantitative theory of the influence of
branching on all the fundamental characteristics of
macromolecules in solution.

With regard to theories of the influence of free
charges and intra- and intermolecular hydrogen
bonds on the properties of macromolecules in solu-
tion, at present we are far from a final solution of
this problem, in spite of the large number of
studies devoted to these questions. Yet, it is just
the properties of charge polymers (polyelectrolytes)
and polymers with hydrogen bonds (in particular,
polypeptides) which are of special interest to us.
This is because, on the one hand, the study of poly-
electrolytes and hydrogen-bonded polymers is nec-
essary for the development of a physicochemical
theory of biological phenomena. 2 2 5 On the other
hand, in these polymers many properties are
clearly manifested, which are also characteristic
of ordinary polymers, but which lead only to rela-
tively subtle effects in the latter. Thus, electro-
static long-range interactions in polyelectrolytes
must lead to incomparably larger non-uniformities
in the expansion of the coil than take place in the
case of the volume effects. This fact has many
consequences in the theory of light-scattering, and
hydrodynamic and thermodynamic properties of
polyelectrolyte solutions. Short-range interactions
(intramolecular hydrogen bonds) in polypeptides
stabilizes helical chain conformations, so that the
helix-coil transition in the one-dimensional systems
which are comprised by macromolecules has a co-
operative nature (the so-called "intramolecular
melting"). We cannot spend time in this article on
these interesting phenomena, but refer the reader
to reviews on this subject (see, e . g . , references
9, 98, and 226). The development of a quantitative
theory of the properties of molecules of polyelec-
trolytes and hydrogen-bonded polymers is undoubt-
edly one of the most essential problems of modern
statistical physics of polymers.
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Translated by M. V. King

Translator's Comments - A review such as this is especially
welcome in the field of physics of polymer solutions, which has
far outstripped all available monographs, and is difficult to keep
up with, even with the aid of review papers. The list of papers
cited is extensive, the work both of the Soviet schools, es-
pecially the Institut Vysokomolekulyarnykh Soedinenii (Insti-
tute of High-Molecular-Weight Compounds), and of Western
authors being well represented. However, this large set of refer-
ences is not complete, even for the limited part of the field of
physics of polymer solutions which the author has chosen for his
subject. In particular, the book by Tompal on polymer solutions
is not cited, nor are any of the papers by that author. This over-
sight is understandable, but unfortunate, since certain of the
chapters in Tompa's book cover much of the same subject matter
as this review, and the book contains a similar long bibliography.
Actually, to obtain a treatment as thorough as possible of this
subject, the reader should refer both to the current review and to
Tompa's book.

The author has had to make a choice of emphasis in writing

about such a ramified subject, and has thus given considerably
more emphasis to the studies of long-range interactions (volume
effects) than to short-range interactions. A unifying theme of
much of the treatment is the comparison of the Flory-Krigbaum-
Orofino statistical theory of the volume effects in polymer solu-
tions with various more precise theories which have since been
proposed. A concept much used by the author in comparing the
theories is that of the "non-uniform expansion of the coil",
i. e., a detailed critique is given of the concept that the volume
effects may be accounted for by assuming that the coil molecule
expands uniformly from its ideal configuration to its actual con-
figuration.

Special sections in the review are devoted to discussions of
the predictions of light-scattering and hydrodynamic properties
given by the various theories, with considerable mathematical
treatment and comparison with experiment.

*H. Tompa, Polymer Solutions, Butterworths Scientific Publi-
cations, London (1956).


