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1. INTRODUCTION

is well known, the application of the rigorous
methods of statistical physics to classical con-
densed systems encounters very great difficulties
in connection with the necessity of calculating or
asymptotically estimating (for N, V -> ~ ) the
configuration integral

<?N = (1)
" 0 " )

where U^(T V . . . , Гд, ) is the interaction energy of
the particles of the system, which is assumed to be
known, and /V is very large. In the type of theory
based on the study of integral equations for the cor-
relation functions of groups of particles* an equi-
valent difficulty arises, in the form of the neces-
sity of solving a system of N integro-differential
equations for N unknown functions, for /V -»~. In
present theories of liquids and dense gases these
difficulties are overcome either by an approximate
evaluation of Q^by the method of the free volume,2

or else by breaking off the chain of equations for
the correlation functions by means of the "super-
position approximation." *•3 In both cases the
theories obtained are of a very approximate char-
acter. Although notable successes have been
achieved in such ways, the problem of developing
more complete theories remains a very important
one.

Kirkwood 4 and Mayer 5>6 have proposed new
types of theories based on the method of integral
equations for the correlation functions. Although
in this case it is in principle possible by solving
finite systems of integral equations to get better
results than those of the theory based on the

"superposition approximation, " still the extra-
ordinary complexity and cumbersomeness of these
theories evidently makes them of little practical
use. So far there have been no concrete results
obtained in this direction.

Essentially new ideas and new results have made
their appearance in the last few years in connection
with the introduction of methods based on machine
calculation, the most important of these being the
"Monte Carlo method. " The idea of the method as
applied to problems of statistical physics was first
suggested by J. Mayer (cf. reference 7), and was
first applied in references 7 and 8 to highly simpli-
fied models of systems of particles; later, after
the method had been much improved, it was
applied 9 ' 1 0 ' n to more complex and interesting
systems.

Generally speaking, the "Monte Carlo method"
means a method of numerical calculation in which
specifically probabilistic elements are introduced,
in contrast to the classical technique of calculation,
which consists of successive steps developing com-
pletely determined algebraic operations. In recent
times different varieties of such methods have al-
ready been applied to many problems of physics,
technology, and so on. In our case the main point
is the calculation of multiple integrals of the type
(1) by numerical integration over a random selec-
tion of points (subject to certain special rules as to
the selection of these points), instead of the usual
integration over a regular set of points. A more
detailed explanation of the nature of the new method
will be given later in this paper.

Although the results obtained so far by the new
method are very interesting for statistical physics,
they are still rather modest. It must be remem-
bered, however, that the first papers that have
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been published have mainly pursued the purpose of
checking the usefulness of the method and making
improvements in it, and not of obtaining new results.
At present it must be granted that the method has
fully justified itself, and that after further im-
provement it can be very promising not only for
problems of the theory of liquids, but also for many
other problems of statistical physics. In view of
the rapid development of the technical means and
methods of computational mathematics, these hopes
are all the more important and justified. We be-
lieve that it is just in this direction that the great-
est advances of statistical physics are to be ex-
pected in the immediate future, at least in the do-
main of classical theory. Furthermore, many of
the ideas that have arisen in this method ( for ex-
ample, the idea of introducing periodic boundary
conditions for a disordered system, to be discussed
later) can be useful in statistical physics apart
from the method itself.

As developed so far the new method applies
only to classical systems, since it makes explicit
use of the numerical values of the energy of the
system in its various states. In quantum systems
the determination of the eigenvalues is itself the
main difficulty.

In the present survey we shall give a brief ac-
count of the main ideas of the Monte Carlo method
and of the results obtained up to the present by ap-
plying it to the theory of crystals, liquids, and
dense gases. Questions of the foundation of the
method are still in need of more careful analysis,
and we shall deal with them only in a very cursory
way. The last section of the survey is not con-
cerned with the actual Monte Carlo method, but its
content is also entirely based on the use of con-
temporary machine mathematics, and has many
points of contact with the contents of the rest of the
survey.

2. THE IDEA OF THE METHOD

The basic idea of the new method is that one
replaces direct multiple integration in the expres-
sion (1), or in analogous integral expressions de-
fining average values of functions of the coordinates,

(V) (2)
x exp {— UN (гх, . . ., rN)/kT) drx . . . drN, _

by averaging over a set of random events (configura-
tions) that form a Markov chain with constant trans-
sition probabilities.

Let us consider the 3N-dimensional configura-
tion space of the system in question, and divide it
in some discrete way into an arbitrarily large num-
ber s of cells that are equal in volume. Let all the

cells be numbered in some definite order. We
shall say that the system is in the ith state if its
representative point is in the £th cell. In each
state we can assign to the system a definite numer-
ical value F; of any function F (r lf ..., Гд, )of the
coordinates of the system, say by taking the values
of r j , . . . , Гу at the center of the cell. In parti-
cular, the interaction energy of the particles of the
system is now represented by the set of its possi-
ble values £/;, i = 1, 2 , . . . , s. It is clear that
if £ is sufficiently large the replacement of the con-
tinuous configuration space by the discrete space
has practically no effect on the calculation of the
average values of functions of the coordinates. Then
instead of Eqs. (1) and (2) we have

' Qi, = 2 exp { - Ui/kT),
i=i

(3)

(4)

Let us now turn to the following formal scheme.
We shall regard the manifold of all the s possible
states of the system as a set of random events At,
which form a Markov chain with constant transition
probabilities for Ai -. A- ; these probabilities are
nonnegative, P£/- ̂  о , and satisfy the normalization
condition

2 Pii=l, f=l , 2,
3=1

(5)

In what follows we shall need some simple re-
sults from the theory of homogeneous Markov
chains (cf. e. g., reference 12). Let us denote by
Pt"' the probability of the realization of the trans-
ii n o

ifition At., A- after n steps (so that Vif = Pij ) .
If all of the A,-, / = 1, 2, . . . , s , form a single
ergodic class, i. e., if all the states At are non-
periodic, and if from any state At any state Aj i s

attainable by some finite number n of transitions,
then there exist limiting probabilities

lim \
П-»ОО

/ = 1 , 2,

for all i, and here

Uj > 0 , 2 и ; = 1, (7)

so that the „. give a certain probability distribu-
tion for the A •. Moreover, it is proved in the
theory of Markov chains that the quantities в •, as
normalized by Eq. (7), are uniquely determined by
the values of pi;- through the system of linear equa-
tions

' = 2 uiPiv / = 1 , 2, . . . , s (8)
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and that the distribution defined by the numbers uy
is a stationary probability distribution of the events
A-, that is, a distribution such that if it were taken
as the initial distribution it would not change in the
course of the Markov process in question. Equa-
tions (6) express the approach of the system to a
stationary condition, independently of the choice of
the initial condition.

Therefore if we consider a chain with an un-
limited number of steps, the average value of any
function Fi of the state, taken along the chain, will
in the limit be given by

i l

If we choose

(9)

(10)

then the limiting value of the average of Ft- along an
unlimited Markov chain is equal to the canonical
average value of the function F as given by Eq. (4).

The remaining task is to choose the transition
probabilities Pij to fit the conditions. It is obvious
that this can be done in many ways, since for pre-
scribed UJ the s2 quantities Pij are not determined
uniquely by the 2s equations (5) and (8). Therefore
in the space of our events there exist many Markov
chains possessing the required limiting property
given by Eqs. (6) and (10). We note that the rela-
tions

Pu cxp { - UjkT) = Pji exp { - U,/kT}. (U>

which obviously express the principle of micro-
scopic reversibility in the system, convert the
equations (8) into identities. Therefore in the prac-
tical construction of a concrete type of Markov
chain with the limiting property we need we can
start with the conditions (5) and (11) instead of (5)
and (8). Together with Eq. (10) this gives us con-
ditions for the P.-; of the form

(12)

Thus a Markov chain in which all the states
form a single ergodic class and in which the trans-
ition probabilities satisfy the conditions (5) and (12)
converges to the Gibbs canonical ensemble in the
sense that when the length of the chain is great
enough the various states tend to appear with fre-
quencies proportional to the Boltzmann factors exp
[-Ui/kT] • The convergence does not depend on
the choice of the initial state, and averages along
the chain of functions of state approach the averages
over the canonical ensemble.

Let us now turn to concrete physical systems
and examine for them the question as to whether the
ergodic requirements are satisfied. For simpli-
city suppose that the total interaction energy of the
particles of the system can be represented as a
sum of interactions by pairs,

ф (13)

where Ф(г) is the mutual potential of two particles,
and т^ is the distance between the ith and kth parti-
cles. If the potential Ф(г) does not go to +~ any-
where, then the quantity exp {-1]{/кТ\ in Eq. (10)
does not go to zero anywhere, so that all the u,- in
Eq. (6) are also different from zero. Therefore for
any transition /4,- -» Aj between states in the discrete
configuration space there is a nonvanishing probabil-
ity pij1 of its realization for some finite number
n of steps. Thus all of the states are attainable
from each other, and the entire set of states forms
a single ergodic class. In such a case any Markov
chain with transition probabilities determined by Eqs.
(5) and (12) converges to the canonical ensemble in
the sense indicated above.

In applications of statistical physics use is often
made of model intermolecular potentials Ф(г) that
goto +°° at r=0. For example, the power-law
potential

А, В > 0, m> n, (14)

which is widely used in the theory of real gases and
liquids, is of this type. In this case exp {-£/; ДЯ=
0 for configurations in which the positions of two
particles exactly coincide. Then for these confi-
gurations «j« 0. If we exclude the finite number of
all these singular states, the Markov chain formed
by the transitions between all the other states of the
system in the discrete configuration space will again
possess the ergodic property, (in the continuous con-
figuration space the set of points where £//y»+«> has
zero measure, and is therefore unimportant.

A difficulty with the ergodic property can arise
only if Ф(г) goes to +°° in a finite region. For
example, in the model of 'Ъахч! spheres" of diame-
ter о we have

Ф (r) = + со for r < a,
Ф (r) = 0 for. r>a, (15)

and the same thing will happen in any model of
particles with a "hard" core: for r< a one has the
first of the relations (15). At very high densities,
close to the maximum density possible for hard
particles of the given diameter, interchanges of the
particles can become impossible, and then we can
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expect the appearance of configurations of the sys-
tem between which there are no transitions (for ex-
ample, two configurations that exactly or approxi-
mately correspond to the hexagonal and face-cen-
tered cubic closest packings of spheres). If this
happens, the manifold of all possible states of the
system breaks up into isolated ergodic classes
without transitions between them, and then the li-
miting behavior of some definite Markov chain, such
as has been described, will depend on which of the
ergodic classes contains the initial state of the
chain. In such a case the equivalence of the limiting
behavior of a Markov chain and the Gibbs canonical
ensemble is lost. It must be noted, however, that
this possible difficulty is due not to the introduction
of the Markov chain into the treatment, but to the
properties of the system itself, and is connected
with fundamental questions of the foundations of
classical statistical physics. In fact, if we go over
from the description of states in the configuration
space to the dynamic description of the behavior of
the system in the complete phase space, the same
difficulty is still encountered. The multiple con-
nectivity that has appeared in the configuration
space will correspond to a definite multiple con-
nectivity in the phase space also, and a new analy-
sis of the legitimacy of the canonical distribution for
and ensemble of such systems is required.

Thus we encounter here the fundamental question
of the accessibility of states in statistical physics.
These problems call for futher study, and we shall
not concern ourselves further with them here. In
any case it is clear that difficulties with the ergodic
property of the Markov chains of interest to us can
arise only for very special forms of the intermole-
cular potential ф(г) , and furthermore only for very
large densities, corresponding to a highly com-
pressed crystalline state of the system.

We remark in conclusion that the assumption of
the two-particle character of the intermolecular
forces in Eq. (13) is not a necessary one. The
Monte Carlo method as it has been explained here
is valid for any law of interaction that depends only
on the configuration of the particles, provided that
the ergodic requirement is satisfied.

It must also be remarked that if we exclude
doubtful cases in which the ergodic condition may
possibly be violated, the equivalence of the limiting
behavior of the Markov chains studied here to the
Gibbs canonical ensemble is an exact one. There-
fore the concrete physical results that can be ob-
tained on this basis (with a sufficiently precise
practical realization of the method) will contain no
lack of exactness except the usual statistical er-
rors. In this the new method explained here differs
in principle from, for example, the methods of the

free-volume theory or of a theory based on the
superposition approximation. Both these theories
are essentially approximate, and moreover in such
a way that it is even impossible to estimate the
degree of approximation in advance.

3. THE REALIZATION OF THE METHOD

The ideas that have been set forth about the re-
duction of canonical averaging to averaging along a
certain Markov chain subject to certain supplemen-
tary limitations can be actually realized by the gen-
eration of the Markov chains in question with fast
computing machines. In papers that have been
mentioned 7> 8 ' 9 > 10> u such a program has been
actually realized for certain simple models of sys-
tems.

The first and principal difficulty that arises in
this connection is the practical impossibility of
making the calculation for a system with a number
of particles of the order of Avogadro's number, as
would be desirable. If one allows a reasonable
amount of machine operation time and requires that
the machine generate a chain of sufficient length
for the statistical errors to be also within reason-
able limits, then the actual possibilities at present
do not exceed at the most the treatment of a system
with several hundred particles. In a typical case
one must confine oneself to still smaller numbers
of particles. This can lead to appreciable distor-
tions of the expected results, not only because of
inadequacies of the statistics itself, but also be-
cause of the large part played by surface effects,
especially in condensed states of the system.

The remedy for this was indicated in the very
first of these papers,7 and consists of the imposi-
tion of periodic boundary conditions at the bound-
aries of the small volume that can be treated, with
its small number of particles. The entire three-
dimensional space is divided into equal cells of
volume V with /V particles in each cell. We stipu-
late that one of them is the basic cell, and that the
relative configurations and motions of the particles
in it are repeated in all the other cells, so that a
displacement of the entire system by the length of
a side of the basic cell and along this side changes
nothing in the total configuration of the system.
With this arrangement, if one of the particles of
the basic cell is carried out of this cell by its mo-
tion through a particular face, then at the same time
it in effect enters this same cell through the oppo-
site face (and the same is true for all the cells).
Thus although we are considering an unbounded
system the computing machine has only to deal
with the motion of the /V molecules in the basic
cell, since along with this motion the motion of the



APPLICATIONS OF THE MONTE CARLO METHOD 787

entire system is then given. Furthermore it is
stipulated that the calculation of the energy of any
configuration is made by summing the interactions
of all the particles of the whole system, and not
only the interactions of the particles in the basic
cell. In the calculations made up to the present
the basic cell has been taken to be a cube contain-
ing 32, 108, or 256 particles.

It is clear that the method of periodic boundary
conditions takes into account for the system as a
whole only a small fraction of all the possible confi-
gurations of the particles. Roughly speaking, we
can divide all the omitted configurations of the sys-
tem as a whole into two groups, according to
whether the number of particles and the configura-
tion of the particles in each cell are close to or far
from the number and configuration in the basic cell.
In the former case the statistical weights of the omit-
ted configurations are close to those of the configura-
tions that are used, and thus this group of configura-
tions is actually taken into account approximately.
In the second case we have to do with "large-scale"
density fluctuations in volumes comparable with or
larger than the volume V of the elementary cell, and
with amplitudes comparable with or larger than the
average density N/V. If the dimensions of the
basic cell and the number Л' of particles in it are
not too small, such fluctuations are relatively im-
probable events (for the system as a whole), and
their contribution to the statistical integral and to
the estimates of average equilibrium values of
physical quantities is negligible. As for the
"small-scale" fluctuations, for not too small
values of N and v they are taken into account in
this method. Therefore it may be supposed that
the method of periodic boundary conditions, ap-
plied for not very small basic cells and not very
small numbers of particles per cell, must lead to
sufficiently reliable results. This very interest-
ing question calls for further study.

Preliminary data on this point have been ob-
tained in a paper on a study of the effect of perio-
dic boundary conditions on the properties of a gas-
eous system. For the second and third virial coef-
ficients the following relations were obtained:

BN^Bm(\-\/N), (16)

CN = C^ (1 + 1/5N - 6/5iY2), (17)

where the indices °° and N refer respectively to the
ordinary unbounded system and to the same system
with periodic boundary conditions and N particles
in the basic cell. The question has not been studied
for a condensed system.

The necessity of working with a small volume V
of the elementary cell and with a small number /V of
particles in the cell also gives rise to the difficulty
that in the case of "hard" particles the possible
troubles with the ergodic property that have been dis-
cussed earlier can appear at smaller mean densities
than in a system of very large dimensions. For ex-
ample, at a large density of rigid spheres in a small
volume shiftings of the spheres past each other may
be impossible, although in a large volume with the
same average density they would be facilitated be-
cause of density fluctuations. If, however, /V is not
very small, say of the order of a few hundred, even
here this difficulty relates only to extremely con-
centrated crystalline states of the system.

A more serious point is evidently that which is
given the name of the "quasiergodic" problem by
the authors of reference 9. This is the question of
the possibility that in some cases the configuration
space of our system may contain two or more re-
gions which make comparable contributions to the
complete configuration integral but are such that,
although formally they belong to the same ergodic
class of states, the probability of transitions be-
tween them is very small (at least for a fixed length
of the chain). Since any practically realizable
Markov chain must be finite, in cases in which this
situation exists the Monte Carlo method as we have
stated it can lead to false results. If this difficult у
indeed exists, it is clear that it also must apply to
extremely condensed states of a system, and, most
likely, to the case of "hard" particles. Practical
measures to remove this possible difficulty are
either lengthening the Markov chain, so far as this
is possible, or variation of the initial state of the
chain within certain limits (by generating a series
of chains instead of a single one).

Let us now examine the problem of the con-
crete construction of the Markov chains in which we
are interested. In work done so far the single-step
transition probabilities have been chosen in the fol-
lowing way. Let *r

QW , where

a = 1,2,3; r = l , 2, . . ., Л'; /=1, 2, . . . , s,

denote the ath Cartesian coordinate of the rth
particle in the i th state (configuration) of the sys-
tem. The coordinate axes are chosen along the
sides of the basic cell. A single step in the Markov
chain consists in the displacement of just one
particle through a certain distance, so that

(18)

if the configurations i and j differ in the positions of
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two or more particles. Furthermore one introduces
some arbitrary (but fixed) length 8 , much smaller
than the side of the basic cell, which limits the
magnitude of the possible displacement of the one
particle in a single step. Equation (18) holds again
if the length of the displacement of the particle for
the change of the configuration in a given transition
is such that | * r

a ^ -xr

aW |>5.
If, however,

r!li)-r.%O)=0, ( 1 9 )

w i t h
a , p = l , 2 , 3 ; / - = 1 , 2 . . . , Л ' ;

s = 1, 2 , ...,r- 1, /--i- 1, •• -,-V.
then the probability of the single-step transition is
taken to be

a = С for Uj < L7i,

for

if j t i , a n d

^i = i - .2

(20)

(21).

for /= i . It is easy to see that the fundamental
equations (5) and (12) for P^ are then satisfied
identically for any choice of the constant С that does
not make рц < 0. Actually the choice of С is taken
so that if we were to drop the exponential weight
factor in Eq. (20) the expression p,-- = С, accepted
for all i and j , including the case j = i would give
with correct normalization equal probabilities for
all transitions of any particle within the limits of a
cube of volume (2S)3 (see further discussion).

This is accomplished practically in the follow-
ing way. 7> 9 Let the ith state of the system be
fixed. A special device in the computer makes an
arbitrary choice of three independent random quan-
tities fa, a = 1, 2, 3. whose values can vary
over the range -1<£ а<1, and an arbitrary
choice of the number r, which can take the values
r= 1, 2 , . . . , N. Corresponding to the result of
these random events there is a possible displace-
ment of the rth particle to a new position:

xr
(22)

The energy Uj in this possible position is computed.
If f/;4< t/j , the new coordinates given by the right
member of Eq. (22) are assigned to the th parti-
cle, and the system is regarded as having gone into
the new state j . If, on the other hand, Uj> ty ,
then the machine makes an additional arbitrary
choice of another random quantity f4, which varies
over the range 0^^ 4^l, and the result of this
choice is compared with the quantity expi-W/-U^/kT].

If £4< exp {-(Uj-U-i/kTS, then the

transition of the system into the new state Aj is
made, but if it turns out that £4> exp \-<JJj-U$/kT\,
the r th particle remains in its old place, and
there is no transition to the state 4/,

In the latter case, however, it is recorded that
there has been a step At -* Лг- in the Markov
chain, with the probability P» . After this the en-
tire procedure starts again, beginning from the new
state Aj if the transition to it has occurred.

The set of possible values of the parameters
fa(a = 1, 2, 3) is discrete, and the density of
these values determines the number s of the divi-
sions of the entire configuration space of the system
into discrete cells, which was described in the first
section. As for the choice of the constant parameter
S , it is arbitrary, since the transition probabilities
(18)—(21) satisfy the fundamental equations (5) and
(12), independently of the concrete value of 8 . A
practically successful choice of S is very important,
however, since too small a value of 8 leads to very
small steps and the necessity of generating very
long chains, and for large values of 8 and a pre-
scribes set of possible values of the fa many states
of the system may be left out.

4. RESULTS OF CALCULATIONS FOR A SYSTEM
WITH A LENNARD-JONES POTENTIAL

A study by the Monte Carlo method of a real
system for which one chooses the potential of the
intermolecular forces in the Lennard-Jones form

(23)

is of great interest because of its "realistic" char-
acter, and was made for the two-dimensional case
in one of the early papers.7 The more interesting
three-dimensional case has been studied in refer-
ences 9 and 11. To make possible a comparison of
the results of the calculations with experimental
data the constants £ and a in Eq. (23) were taken to
have the values

e = 1.653-lO"14 erg a = 3.822-10- (24)

which are found from studies of the second virial
coefficient for argon.14 Comparisons with the data
for the other noble gases can be made by the prin-
ciple of corresponding states. We remark that the
length a in Eq. (23) is obviously the distance to the
minimum of Ф(г), and not the "diameter" of the
molecule.

In references 9 and 11 the Markov chains were
studied for systems with 32 and 108 molecules in
the fundamental cell. All of the calculations were
made for just one isotherm, T = 328° K, which
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corresponds approximately to twice the critical
temperature of argon, and in the range of reduced
volumes from v/v*~ 0.75 to v/v*=* 7.5. Here v
is the volume per particle in the system and
v* = 2^o3 represents the volume per particle in a
close-packed system of spheres of diameter a. In
all 31 Markov chains were generated for 13 values
of the reduced volume. The chain lengths for the
various cases ranged from about thirty thousand to
almost half a million transitions. In thirteen cases
the length of the chain exceeded a hundred thousand
transitions. Seven chains corresponded to 108 parti-
cles in the basic cell, and the others to 32 particles
in the cell.

The greatest difficulty, and one which is also of
importance in principle, was found in the calcula-
tion of the total interaction energy by Eqs. (13) and
(23). If one calculates the Interaction energy of one
molecule with all the others, beginning with the
nearest neighbors and then going on to the more
distant particles, because of the presence of the
term in r~6 in Eq. (23) the sum will converge very
slowly. The finite speed of the computing machine
and the necessity of making the whole calculation
of the chain in not too excessive a time seri-
ously limits the accuracy of the calculation of
these sums, which have to be calculated all over
again for each transition in the chain. In practice
these sums were broken off at a small number of
terms, including the interactions of a few layers of
nearest neighbors of each particle (in the various
cases this meant the computation of from 12 to 54
interactions for one particle), and then various sorts
of corrections were introduced to improve the re-
sult. More detailed information about this is given
in the original paper.9 We remark only that the
summation of the interactions was extended not only
to the particles of the basic cell, but included the
neighbors of each particle that were in adjacent
cells.

A knowledge of the interaction energy of the
particles in each configuration makes it possible
to determine all of the thermodynamic character-
istics of the system. The mean molar internal en-
ergy of the system is obtained directly from Eq.(13)
in the form

AAT + J ^ S a> (, i f c )j, (25)

where Na is Avogadro's number, N is the number
of particles in the basic cell, and the bar denotes
averaging along the chain. The first term in Eq.
(25) is due to the kinetic energy of the particles.
The molar specific heat cv can be determined from
the well known fluctuation formula

where Ъ-к is the average along the chain of the
square of the interaction energy (13) of the parti-
cles in a calculation for N^ particles, and R is the
gas constant, R = NAk. The pressure in the system
can be calculated from the equation

pv = kT —
i

a/v" r\h
> (rih) (27)

which follows from the virial theorem. In practice,
as we have already said, the infinite sums in Eqs.
(25), (26) and (27) were computed approximately, by
the use of a small number of terms and the intro-
duction of supplementary corrections.

For each configuration of the system a compu-
tation was also made of the total number NAr) of
particles contained in a sphere of prescribed radius
' around each particle i, and the average integral
distribution of particle numbers

N

j\; (,.) = Л ^ Л\ (г). (28)

was constructed. These calculations were made
for a dense set of values of r from zero to several
times a. The ordinary radial distribution function
g{r) for the particles is obtained from this by dif-

ferentiation:
, . _ v dN (r)

g C) ~" 4яг2 ^77~ • (29)

In the case of a gas or liquid the functions /VW and
g(r) give a complete knowledge of the molecular
structure of the system.

Knowledge of the functions Ф(г) and g(r) en-
ables us to determine the energy E and pressure p
in the system in an independent way from equations
well known from the theory of liquids.1' 3 A com-
parison of the results of the two methods of calcula-
tion makes it possible to introduce additional cor-
rections in the course of the calculations, in particu-
lar in the computation of the sum of the interaction
energies of the particles.

The results of the calculations are presented in
references 9 and 11 in the form of tables and curves.
As an illustration we show in Fig. 1, taken from
reference 11, three theoretical radial distribution
functions for the value v/v* - 2.5 of the reduced
volume. Experimental radial distribution functions
for argon in this region of temperatures (T = 328°K)
and densities db not exist. One of the three curves
shown was found by Kirkwood and his coworkers 1 5

on the basis of the superposition approximation for
a system with the modified Lennard-Jones potential:

<!>*(,-)= + o o for /• < 2 " 1 / 6 f l , I

Ф * (/•) = I for r I «rt .
(30)
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FIG. 1. Theoretical radial distribution functions. 1 —Monte
Carlo method, potential (23); 2-Monte Carlo method, potential
(30); 3 — superposition approximation, *' potential (30).

The other two curves were obtained by the
Monte Carlo method for this same modified poten-
tial and for the potential (23). It can be seen from
the diagram that the introduction of a hard "core"
of the molecule considerably changes the behavior
of the radial distribution function. For the same
intermolecular potential the results of the theory
constructed on the superposition approximation de-
viate somewhat from those of the theory we are
discussing, which must be regarded as more rig-
orous. The data of Fig. 1 are for a system with
comparatively small density. From the other
curves in reference 9 it can be seen that with in-
crease of the density this difference between the
results of the two theories gets larger and larger.

To make possible a comparison of theory with
experiment a special Monte Carlo calculation was
made1 1 with 32 particles in the basic cell to obtain
the radial distribution function for a system with the
potential (23)~(24) at T= 126.7° К and v/v* =
1.528. Figure 2 shows a comparison of the results
of these calculations with the experimental radial
distribution function for liquid argon at the same
values of the thermodynamic parpmeters, as ob-
tained in reference 16. As can be seen from the
diagram, there is quite satisfactory qualitative
agreement of these results. The authors of refer-
ence 11 explain the deviations in the details of the
two curves mainly in terms of the crudeness of the
practical Fourier transformation of the experimental
curve of the angular intensity distribution of the
scattering of x-rays by the liquid, by which one gets
the radial distribution function of the particles. The
remaining, evidently smaller, part of the difference
between the curves of Fig. 2 is due to the inaccur-
acy of the Lennard-Jones potential and the statisti-
cal errors of the monte Carlo method.

Among the thermodynamic results, let us give
our attention to the equation of state of the system

in question. Figure 3, taken from reference 9,
shows the results of calculations of the equation of
state at T = 328° К according to the method we
are discussing, according to the free-volume
theory, and according to the theory based on the
superposition approximation. It also shows experi-
mental results for argon taken from references 14
and 7. At the same time the diagram illustrates
the size of the statistical errors of the Monte Carlo
method. These errors were very different in dif-
ferent cases on account of the differences in the
lengths of the Markov chains. For sufficiently long
chains these errors are very small. As can be
seen from the diagram, in the range of volumes
larger than 1.5u* the agreement of the results of
the Monte Carlo method with the experimental data
from reference 14 is very good. For smaller vol-
umes the agreement with the experimental data
from reference 17 is not so good. It is possible that
the results of this older paper 17 need reexamina-
tion. Comparison of the three theoretical results
with each other shows the inadequacy of the theory
of the free volume at intermediate and large speci-
fic volumes of the system, and of the superposition
approximation for small volumes.

The most interesting peculiarity of the results
of the Monte Carlo method shown in Fig. 3 is the
appearance of a break in the pressure isotherm in
the region between v/v* = 0.90 and 0.95. There
is a similar peculiarity also in the isotherm of the
internal energy of the system.9 This must be
interpreted as an indication of a phase transition
from a dense-gas to a crystalline state. Although
unfortunately a closer study of the behavior of the
pressure isotherm in the neighborhood of the
transition region has not been made, it is impos-
sible to doubt the existence of a phase transition.
This is further confirmed by a comparison of the
radial distribution functions for states on the two
sides of the transition region. In one case these
functions have the typical "crystalline" form, with
sharp peaks separated by deep minima, and in the

9

2.0 -
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FIG. 2. Radial distribution function for argon, as found ex-
perimentally (points) and theoretically by the Monte Carlo me-
thod (solid line).
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FIG. 3. The equation of state of argon. 1--experimental
data from reference 14; 2 ~ experimental data from reference
17; 3 ~ free-volume theory. The horizontal cross marks give
the results of the Monte Carlo method (the short marks for
108 and the long ones for 32 particles in the cell). The ver-
tical cross marks show the probable errors of the Monte Carlo
method.

other case they have the typical "liquid" form, with
diffuse and poorly separated peaks (cf. reference 9).
Besides this, a special analysis of the configura-
tions of the particles of the system along the Markov
chains on both sides of the transition region showed
that to the right of the break in the isotherm of Fig.
3 there is well developed self diffusion of the parti-
cles, whereas to the left of the break there is prac-
tically no self diffusion.

Thus for a model of a real system the Monte
Carlo method has given for the first time, and quite
clearly, a demonstration of a liquid-to-crystal
transition contained in Gibbsian statistical physics,
and a simultaneous description of both phases.

Figure 4 shows the isotherm of the "potential"
part of the specific heat of the system, as calculated
by the use of the second term of the right member
of Eq. (26). It can be seen that there is good agree-
ment of the calculated values with the experimental

FIG. 4. "Potential" part of the specific heat of argon. 1 -
experimental data from reference 14; 2—free-volume theory; the
crosses are calculated by the Monte Carlo method, as in Fig. 3.

data where the latter exist, and that there is a large
spread of the values of the specific heat in the trans-
ition region.

We shall not discuss here the other thermo-
dynamic results obtained by the application of the
Monte Carlo method to this system; they are con-
tained in references 9 and 11. We note only the in-
teresting and rather unexpected fact that there is
almost no difference between the results obtained
with 32 and with 108 molecules in the basic cell.

5. RESULTS OF CALCULATIONS FOR A SYSTEM
OF HARD SPHERES

A large place in the theory of liquids and gases
is occupied by studies of the simplest possible
model of a system—the system of hard noninter-
acting spheres, described by the intermolecular
potential (15). Therefore also in the Monte Carlo
method it was natural to turn to the study of such a
system. This was done already in the first paper 7

for the two-dimensional case, and in later
papers 8-10- n for the more interesting three-
dimensional case. In reference 8 a study was made
of a system with N = 256 spheres in the basic cell.
With such a comparatively large N one could have
expected that results of very high accuracy would
be obtained. It is easy to see, however, that to get
reliable results a resort to large N must be ac-
companied by a great increase of the length of the
Markov chain. This was not done in reference 8,
and because of the insufficient length of the Markov
chains that were constructed the results where not
altogether accurate. In particular, no phase
transition between ordered and disordered phases
was found. The other papers, 1 0 > u on which we
shall rely for the most part, used a basic cell con-
taining only 32 particles, but the greater care used
in the calculations led to more reliable and more
interesting results. We note, by the way, that the
problem of hard noninteracting spheres by its very
nature permits the obtaining of more accurate re-
sults by the Monte Carlo method, since in it one
does not have the complicated problem of getting a
reliable summation over the interactions in the
system.

Since now in Eq. (20) we have exp |-({Л_ Щ)/кТ\
equal to either 0 or 1 for all £/,- and £/•, all the
transitions given by Eqs. (19) and (22) are equally
probable, provided only they do not lead to an over-
lapping of the spherical particles, and otherwise are
forbidden. Therefore the construction of the Markov
chains is decidedly simplified: for any choice of the
random quantities r and £a, a- 1, 2, 3 that does not
lead to overlapping of particles the transition (22) is
made, and in the opposite case the rth particle is
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returned to its old place (see Sec. 3). With the
same machines and the same computing time as for
the preceding problem this allows the construction
of much longer Markov chains. In references 10 and
11 many of the chains reached lengths of a million
or even several million transitions.

In all of the papers mentioned the radial distri-
bution functions were first calculated as described
in Sec. 4, and then the pressure was found from the
well known equation 1,3

-
кТ

(31)

where ro = a

3 /2^ is the volume per particle in a
close-packed array of spheres of diameter a and
g(a) = g(a+ o) is the limiting value of the radial
distribution function as the distance approaches the
diameter of a particle through larger distances. In
all of the papers all of the Markov chains had as
their initial states an ordered face-centered cubic
distribution of the particles, or a state that arises
from this by a slight disturbance (in the case of
control chains).

Figure 5, taken from references 10 and 11,
shows equations of state of a system of hard spheres
according to various theories and according to the
Monte Carlo method. The crosses show the results
of the dynamical calculation described in the next
section, and the two heavier curves in the diagram
are also from this work. It is clear that the results
of the free-volume theory and the theory based on
the superposition approximation differ decidedly
from the more accurate results of the Monte Carlo
method as used in references 10 and 11. At large
volumes the five-term virial equation of state found
in reference 8 is more accurate than the superposi-
tion approximation and the free-volume theory. The
excellent accuracy at very small volumes that the
five-term virial equation of state seems from the
drawing to possess is illusory, as we shall see in
what follows.

The most remarkable feature of Fig. 5 is the
appearance of two branches of the isotherm with a
break between them, which undoubtedly indicates a
phase transition of the system. Just as in the case
of particles with a Lennard-Jones potential, an ex-
amination of the form of the radial distribution
functions and the self diffusion of the particles on
the two sides of the transition region gives evidence
of a transition from a dense gas to a crystal. As
can be seen from the diagram, the free-volume
theory and the five-term virial equation of state do
not give even a hint of a phase transition, and this
is their main shortcoming. It is also clear from
this that the good results of the five-term virial
equation of state are purely accidental, since the

meaning of this equation lies only in its use for a
gas, and the close agreement of the values of the
pressure is in the crystalline region. In contrast
to this, although it also gives too low values of
the pressure, the superposition approximation in
the theory of liquids correctly predicts the exist-
ence of a limit of the stability of the liquid or gase-
ous phase. According to this theory the limit of
the stability of a homogeneous phase in a hard-
sphere system occurs at a volume per particle that
is twice the actual volume of a particle.3> 1 8 In the
notation used in Fig. 5 this corresponds to the value
v/v0 = 1.48, which agrees fairly well with the
results of the Monte Carlo method, although it is
somewhat too small. According to reference 11 the
transition region between the phases in the system
of noninteracting spheres lies on both sides of the
value f/tfo = 1.55.

It is interesting to emphasize that Fig. 5 leaves
no doubt that the transition between the ordered and
disordered phases in the system of hard noninter-
acting spheres is an ordinary phase transition of the
first kind. "Superheated" and "undercooled" states
are clearly visible in the diagram. There have
been suggestions in the literature that this transi-
tion may be only a transition of the second kind,
since because there is no interaction between the
particles there must also be no latent heat of the

FIG. 5. Equation of state of a system of hard spheres. 1
and 2--results of molecular-dynamics computations 1'> 2 0 for 108
particles in a cell; crosses —the same for 32 particles in cell;
3 — five-term virial equation of state; 4 — free-volume theory;
5— superposition approximation ™ A — Monte Carlo method,
reference 8;» —Monte Carlo method, references 10, 11.
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transition.18 The erroneousness of such a conclu-
sion has already been explained in an earlier paper,
where the possibility was pointed out that a latent
heat of a transition can be a purely entropic effect,
and not an energetic effect. Then well known
thermodynamic arguments necessarily lead to the
appearance also of a discontinuity of the density (the
specific volume) in the transition. Figure 5 con-
firms this.

In the rigorous theory we would have to expect
that there would be a horizontal section of the pres-
sure isotherm in the region of the phase transition.
This was not obtained in references 10, 11. The
reason for this is the very slow convergence of the
Markov chains near the transition region. An idea
of this is given by Fig. 6, which we have taken
from reference 11, and which shows the average
number N1 of molecules in a thin spherical layer
immediately surrounding some arbitrarily chosen
molecule, in the various configurations of the sys-
tem, for two Markov chains with «/fo= 1.55.
Qualitatively speaking, according to Eq. (31) we
have an approximate correspondence between the
quantity /VL and the pressure in the system, since
N1 is proportional to g(a) . It can be seen that all
the values of N1 group themselves near two levels,
which correspond to the two branches of the iso-
therm in Fig. 5. In the case of the shorter chain
with one and one-half million transitions, the values
of /Vj that occur oscillate rather stably around the
lower level of values, except for one jump up to the
upper level, which was observed during about 10
transitions of the chain. In the second, longer,
chain with more than three million transitions,
values of Nt near the upper and lower levels (pre-
dominantly near the upper level) were observed by
turns, with three jumps between the levels. It is
clear that averaging over the shorter chain leads
rather accurately to a value of the pressure at
v/v0 = 1.55 that is in the crystalline phase of the
system, but averaging over the longer chain leads
to a result that will differ very strongly both from
the pressures in each of the two metastable phases
for v/vQ= 1.55 and from the value of the pressure
in the quilibrium two-phase system. The chain is
too long to give one of the former results, and too
short to give the latter. A calculation of the pres-
sure in the equilibrium two-phase system, for
which averaging over the two groups of levels is
needed, would require the generation of a chain at
least ten times as long as the longer of the chains
shown in the diagram. At present, however, this
is quite impractical, if we note that the longer
chain in Fig. 6 was generated by about 40 hour op-
eration of a very modern machine.
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The data shown in Fig. 5 for the pressure in the
neighborhood of v/vo= 1.55 were found by the au-
thors of references 10 and 11 by averaging over
only single groups of levels of /Vj , which made it
possible to distinguish each of the metastable phases
in pure form, and to continue them right up to the
point v/vo<* 1.55. With this method of calculation
the section inside the transition region, where each
of the phases separately is absolutely unstable, did
not appear. (It is possible that the hard-sphere
system is an exception to the usual thermodynamic
rules, and that here such a section actually should
not appear.)

6. MOLECULAR-DYNAMICS COMPUTATIONS
FOR THE HARD-SPHERE SYSTEM
In this section we shall examine briefly the re-

sults of two very interesting papers,1 9 > 2 0 in which
fast computers were used to integrate the classical
equations of motion for a system of many particles
treated as hard noninteracting spheres. The Monte
Carlo method was not used here, but we decided to
include this material in this survey because of its
exceptional interest for statistical physics, and also
because of the close connection of the results thus
obtained with those of the Monte Carlo method. Be-
sides this, both methods owe their existence to the
use of modern fast computers and the use of the
idea of the introduction of periodic boundary condi-
tions in many-body problems. The close relation
between the two types of work is also emphasized
in references 10 and 11.

As in the Monte Carlo method, one considers
systems of N spherical particles contained in a
cubical volume with periodic boundary conditions at
its faces, so that actually unbounded systems are
dealt with. At small mean densities the cases
N «= 32 and 100 were studied, and at large densities,
the cases with /V= 32, 108, 256, and 500 particles
in the basic cell, i .e . , the cases /V = 4n3 which
allow face-centered cubic closest packing of the
spheres in the cube. In addition, in some cases at
large densities there were studies of a system with
96 particles in a basic cell which had the shape of a
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rectangular parallelopiped with a ratio of sides
permitting hexagonal close packing of spheres. The
results in these latter cases do not differ from the
others. Just as in the Monte Carlo method, the re -
quirements of a reasonable machine operating time
and the securing of a sufficient statistics by the end
of such a time at present leads to a preference for
systems with small values of N in the basic cell.
The most reliable results were obtained in the cases
N = 32, 100, and 108; furthermore control comput-
tations showed that the results relating to the statis-
tical characteristics of the system as a whole ob-
tained in the case N = 32 do not differ very appre-
ciably from the results in the case N = 108.

At the initial instant for each system all the
particles of the basic cell were placed at the sites
of a face-centered cubic lattice (or hexagonal close
pack in the case of N = 96) that extended uniformly
over the entire volume of the cell, and they all had
velocities equal in magnitude but in various direc-
tions . The distribution in direction of the initial
velocities of the particles was a random one. The
integration of the equations of motion for later
times was accomplished by letting the particles
move uniformly in straight lines in the direction of
their initial velocities up to the occurrence of the
first collision of a pair of particles of the system.
Then the laws of elastic collision of rigid spheres
were used to calculate the velocities of this pair of
particles after the collision, and all of the parti-
cles were again moved uniformly in straight lines
with their new velocities until the next collision
of some pair of particles, and so on. Calculations
of the motion were made in this way for a large
number of systems, with 24 values of the mean
density of the particles, and for many of them the
results were computed repeatedly with different
values of N. In all cases the motion was studied
for a long time, and in many cases the number of
collisions in the basic cell was half a million or
more.

For each system the values of the coordinates
and velocities of the particles of the basic cell were
stored in the memory of the machine throughout the
entire motion (i .e . , for all the collisions), and
then the statistical characteristics of the system
were calculated from these data. Thus a large
number of both the kinetic and the equilibrium-sta-
tistical properties of the system of spheres were
studied.

We shall give only brief attention here to the
kinetic properties of the system. First of all, al-
though the initial distribution of the velocities was
far from the equilibrium distribution, the equili-
brium Maxwell distribution was reached very

quickly and then remained unchanged. The corre-
sponding relaxation time was very short—of the
order of the average time for a given particle to
have from two to four collisions, depending on the
mean density of the system in question. The same
result is obtained from a study of the time varia-
tion of the Boltzman H function. In all cases the
H function decreased monotonically, and after two
to four collisions per particle reached a constant
value, around which it made only very weak oscil-
lations, owing to the smallness of the number of
particles in the system. For the same reason the
Maxwell distribution of the velocities was attained
only in the region of small and intermediate speeds.
During the short operating time of the machine and
with the small number of particles in the basic cell
the "tail" of the Maxwell distribution for very large
speeds could naturally not be observed.

Calculations were also made of the autocorrela-
tion function for the speeds:

(32)

where u is the mean speed. For small densities
p(r) has the exponential form well known from the

theory of gases,

(33)

where 1/yS is the relaxation time for the speeds.
At large densities, however, there are marked de-
viations of the autocorrelation function from the
simple exponential form, owing to the existence of
an appreciable correlation between the present and
past states of a particle, which is brought about
through the neighboring particles.

Finally, the self-diffusion coefficient in the sys-
tem of hard spheres was calculated at the various
densities. The calculation was made simultaneously
by several different methods, and a critical com-
parison was made between the results of the differ-
ent procedures, and also between these results and
those of the theory of real gases.

In reference 20 all the results that have been
mentioned on the nonequilibrium properties of the
system of spheres are presented in the form of ta-
bles and curves. The reader must refer to that
paper for further details. We shall now go on to the
results obtained in references 19 and 20 that relate
to the equilibrium properties of the systems in ques-
tion.

For all these systems the pressure was calcu-
lated by two methods: by means of the radial distri-
bution function, in accordance with Eq. (31), and by
the virial theorem, with a "virial" in which the
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forces acting between the particles are replaced by
the changes of momentum of the colliding particles.
To the accuracy that could be attained in the calcu-
lations the results of the two methods agreed in all
cases. The equation of state so obtained for a sys-
tem of hard noninteracting spheres is shown in Fig.
5 as the two heavy curves, for the case of the sys-
tem with 108 particles in the basic cell, and by the
crosses for the system with 32 particles in the
basic cell. As can be seen from the diagram, there
is good agreement between these results and the
results of the Monte Carlo method for the same
system of particles. The existence of a phase
transition of the first kind, of the type of crystal-
lization and melting, is fully confirmed also in the
method we are now discussing. The identification
of the type of the transition is quite unambigous if
we bring in the data on the values of the self-diffu-
sion coefficient on the two sides of the transition
region.

According to references 19 and 2& the transi-
tion region between the phases extends from
v/v0 = 1.525 to about v/v0 = 1.7. The very fact
of the existence of two phases and a transition re-
gion between them manifested itself in this dynami-
cal method in just about the same way as in the
Monte Carlo method: at the densities in question
the system alternated in the course of time between
two conditions. Changes from one condition to the
other occurred rather rarely, and when the evolu-
tion of the system was followed for finite times,
averaging over the whole times did not lead to any
definite and reasonable values of the pressure.
Just as in the Monte Carlo method, one had in every
case to separate the two types of condition from
each other and carry out the averaging for each
condition separately. The data for the transition
region that are shown in Fig. 5 were obtained in
this way.

Thus because of the very small number of part-
icles in the basic cell {N = 32 or 108) the phase
transition between dense gas and crystal was ob-
served not in the form of the simultaneous exist-
ence of two phases, but in the form of fluctuations
back and forth between these phases. The authors
of reference 20 believe, however, that already at
N = 500 it would be possible to realize in each cell

the two phases existing simultaneously, with a
transition layer between them.

To get a graphic illustration of the motion of the
particles in the system, a many-beam oscilloscope
was connected to the computing machine, and the x
and у coordinates of 16 of the particles were simul-
taneously projected on the screen. Figures 7 and 8
give an idea of the results so obtained. Both pic-
tures are for a system with 32 particles in the basic

FIG. 7. Plane projection of the motion2 0 of 16 particles in
a system with 32 particles in the cell, for v/v0 - 1.525. The
motion shown corresponds to 1000 collisions per cell, during
which time the system "melted."

cell, at v/vo= 1.525. Figure 7 shows the projec-
tion of the tracks of the particles during 1000 col-
lisions (in the whole cell). During this time the
system "melted, " i .e . , passed from the ordered to
the disordered phase. Figure 8 shows the projec-
tion of the tracks of the particles during the next
3000 collisions, when the system was in the "liquid"
state. Reference 20 contains many other photo-
graphs of this kind, some of which relate to the
pure "crystalline" phase, in which the track of
each particle forms a small tangle sharply sepa-
rated from the similar tangles of the tracks of the
other particles.

Figure 8 is in many respects very interesting
for the theory of liquids. First of all, the kinetics
of the molecular motion in a liquid can be clearly
seen in this picture. In full agreement with ideas
about the thermal motion of molecules in a liquid,
the picture clearly shows the irregular vibrations
that the particles execute with great frequency
within the limits of their "free volumes, " and the
rarer jumps of the particles from some quasi-
equilibrium positions to others. It is quite obvi-
ous that in this example of hard noninteracting
particles the activation energy corresponding to
these jumps is entirely of an antropic and not an
energetic origin.

Figure 8 also gives a good illustration of pre-
sent views on the nature of the short-range order
in a liquid. If we abstract from the traces of long-
range order that are present here, owing to the
high mean density and the small number in a small
volume, it can be seen clearly that we must dis-
tinguish between an instantaneous and an average
short-range order. The relative positions of the



796 I. Z . FISHER

fruitful and effective these methods are. It may be
hoped that their further development will lead to
great results.

FIG. 8. The same as in Fig. 7, but during the next 3000
collisions in the cell. The system is in the "liquid" state.

average volumes of the vibrations of the particles
are comparatively highly ordered. This is pre-
cisely the average short-range order in a liquid
that is evidenced by the experimentally obtained
radial distribution functions g (r). It can also be
clearly seen, however, that the average amplitudes
of the irregular vibrations of the particles around
their quasi-equilibrium positions are of approxi-
mately the same length as the distances between
the particles, so that there is no ordering of the in-
stantaneous positions of the particles, even in the
smallest group of particles. Moreover it must be
noted that Fig. 8 applies directly to the melting
point, where, according to the ideas of short-range
order in a liquid, we should expect the most de-
cidedly "quasi-crystalline" behavior. If we go be-
yond the melting point, the absence of order in the
instantaneous positions of the particles becomes
even more marked, although the order in the rela-
tive positions of the nearest volumes of vibration is
to some extent preserved.

The question of the difference between the in-
stantaneous and average order of the particles in a
liquid is of importance in principle for the theory of
the electrical properties of electronic conductors
and semiconductors. For example, in virtue of the
well known adiabatic conditions associated with the
slowness of the motions of the atoms, the important
thing for the motion of an electron in a liquid is the
instantaneous distribution of the particles, not the
average distribution.
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