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IΝ the theory of the luminescence and absorption of

complex molecules, the study of the vibrational energy

of the molecule and the exchange of this energy with

the surrounding medium plays a most important role.1

However, it is as yet not clear to what degree and

under what conditions the vibrational motion in a mole-

cule may be considered independent of the electronic

motion, their interaction being neglected. B. S. Nepo-

rent has even suggested (see, e.g., reference 2) that

for a considerable fraction of the molecules, namely

the molecules of the second class, the interaction of

the electronic and vibrational motions is so great that

the vibrational motion cannot in general be separated

from the electronic motion. (For molecules of the

second class, the law of mirror symmetry of the ab-

sorption and emission spectra is violated.) On the

basis of this assumption, Neporent has divided the

continuous spectra of complex molecules into "modu-

lation spectra" and "decay spectra."

The problem of the interactions of electronic and

vibrational motions in a complex molecule may be

solved in principle by quantum-mechanical methods,

but this is very difficult. Hence, it is essential to

plan a program for the solution of a given problem,

make correct estimates of the orders of magnitude

of the corresponding interactions, and elucidate their

role in various processes.

The quantum-mechanical problem of separating the

energy of a polyatomic molecule into electronic, vi-

brational, and rotational energy was discussed in the

classical paper of Born and Oppenheimer3 on the

basis of the expansion of the energy operator in a

power series in a small parameter β, which takes

into account the difference in mass of the nuclei and

electrons. This parameter was taken to be the fourth

root of the ratio of the electronic mass m to the aver-

age nuclear mass Μ in the molecule:

(1)

Born and Oppenheimer showed that, by expressing the

energy operator in the form

Hi-\- . . . \Λ)

and analogously expanding the wave functions in a

power series in

we may derive the energy of the molecule in the form

of the series

(4)

where the zero-order term Eo = Eej gives the elec-

tronic energy of the molecule, i.e., its energy when the

nuclei are stationary. The second-order term |32E2

= Evib is the vibrational energy of the molecule, while

the fourth-order term j34E4 contains the rotational

energy Erot (together with terms depending on the

vibrations ). An essential point is that there are no

odd terms containing β, β3,..., in the series in Eq.

(4),* with the result that a series for the energy in

terms of the parameter β2 = Vm/M is obtained. The

order of magnitude of the ratio E vik/E ei is equal to

jS2 = Vm/M , while the order of magnitude of the ratio
E r o t / E e l i s equal to jS4 = m/M. This agrees with

experiment, when we compare the differences ΔΕβ^,

AEyib, and AE r ot between the electronic, vibrational,

and rotational energy levels.

The order of magnitude of the ratios Ε

and E r o t /E e j may be obtained also from elementary

considerations.

In fact, in order of magnitude

hv vib

el / •

vib .
Μ "

(5)

where kviij and kej are the quasi-elastic constants

for the oscillation of the nuclei with the frequency vvH)

and for the oscillation of the electrons (classically con-

sidered ) with the frequency ue±. The constants k v ^

and k ei are of the same order of magnitude, since

they are determined by the very same forces of inter-

action of the nuclei and electrons. Then, assuming

kyjjj s kei, we obtain

ffvib
•Eel : (6)

On taking into account the fact that the total elec-

tronic energy is of the same order of magnitude as the

kinetic energy T ei of the revolution of the electrons

about the nuclei, we find for the ratio E r o t / E e i

Erot _ hv rot

Eel hvel

. 7" rot

' Tel
. M'rot . Mel

" 2 / r o t 2 1 el'
(7)

where M2rot and M|l are the squares of the rotational
and electronic angular momenta, while Ινοχ = MR2 (R
denotes the dimensions of the molecules) and I e j = mr 2

(where r denotes the distance of the electrons from
the nuclei) are the corresponding moments of inertia.

•When the operator of Eq. (2) is averaged over the functions of
Eq. (3), thus leading to Eq. (4), these terms vanish.
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If we assume that M 2 ^ s M e i (they are of the order
of magnitude of R2 = 1ι2/4ττ2) and that R = r, we obtain

-Erot
Eel (8)

The possibility of performing the expansion in Eq.
(4), based physically on the slowness of the motion of
the nuclei in comparison with that of the electrons, is
the basis of the ordinary approximate quantum-
mechanical treatment of molecules (see, e.g., refer-
ence 4), in which the wave function of the molecule is
written in the form (neglecting rotation)

Ψ^ΨβίΟ*· Q)*vib(0)· (9)

where φβγ(χ, p) and Ψγ^Ιρ) are the wave functions
describing the electronic and vibrational motions, χ
denotes the set of electronic coordinates, and ρ the
relative coordinates of the nuclei (changes in these
coordinates represent the vibrational coordinates).

φβ\(χ, ρ) is the solution of the wave equation for
electronic motion with the nuclei taken to be stationary,
i.e., in the so-called adiabatic approximation:

where

Η el (x, Q) Ψβΐ (*. Q) = E e l (ρ) Ψ el (x.

Helix. Q) =

(10)

(ID

is the operator for the electronic energy, equal to the
sum of the kinetic energy operator for the electrons
T e j and the energy of interaction of the electrons and
nuclei (the latter being stationary) V(x, p ) e e j ( p ) is
the electronic energy as a function of the relative co-
ordinates of the nuclei; for stable molecules, this has
a minimum at certain values ρ = p e .

^vib(p) i s t n e solution of the wave equation for vi-
brational motion. It may be obtained from the wave
function

where Ε is an eigenvalue of the energy operator
H el(x, p) + T v ib(p), which includes the operator for
the kinetic energy of the vibrations T v ib(p)· The
solution is found by substituting in the form of Φ in
Eq. (9), and averaging over the electronic motion.
Then, in fact, we have

J>el(*. Q)[#el (x, e) + ?\ib (ρ)1Ψβ1 (x. Θ) t.vib (Q) dx

= E\ **el (χ, ρ) ψ el (*· Q) *vib (8) dx = £i|>.vib (ρ). (13)

Taking Eq. (10) into account, and neglecting the
effect of the operator T v jb(p) o n the electronic wave
function φβ\(χ, p) [which varies slowly as a function
of . p in comparison with the vibrational function
^vib(p)]' w e obtain the equation

which, if we assume that Ε = e e j ( p e ) + E v i b , may be
written in the form

(15)

This equation is an approximate wave equation for the
vibrational motion, in which the electronic energy with
stationary nuclei €e\(p) - e e j (p e ) = Uvib(p) [as cal-
culated from the electronic level e e i ( p e ) = EelJ plays
the role of the potential energy of vibration, while the
value of the vibration energy Eyjb is obtained as an
eigenvalue of the vibrational energy operator Hvib

A separation of the electronic and vibrational mo-
tions takes place in the approximation under study.
The interaction of the electronic and vibrational mo-
tions is determined by the non-adiabatic terms which
were dropped in going from Eq. (12) to Eq. (14). These
terms take into account the influence of the operator
Tvib(p) on the electronic wave-functions ^ e i(x, p) .
The order of magnitude of the non-adiabatic terms
determines the order of magnitude of the energy of
interaction of the electronic and vibrational motions;
these terms contain the derivatives of ψ&ι(χ, ρ) with
respect to p, and require a more detailed study.

The operator T v jb(p) is the sum of quadratic
terms of the type

(16)

where pj is the momentum operator corresponding
to the i-th vibrational coordinate, and the coefficient
Mi is of the order of magnitude of the mass of the
nuclei.*

We note that the mean value of the operators
(p2/2Mj) in Eq. (15), which give the mean kinetic
energy of the vibrations (for one degree of freedom)
will be of the order of jS2 = V"m/M_ in comparison with
the electronic energy. That is, (p 2) 1/ 2 will be of the
order of /3M1/2 = ( m / M ^ M 1 / 2 = (mM) 1 / 4 . The ma-
trix elements of the type J φ ^ (p) p t ii>vib (p) dp will
be of the same order of magnitude. The order of mag-
nitude of the electronic energy will be determined by
that of the mean kinetic energy (p?v/2m) of the indi-
vidual electrons, where ρλ is the momentum operator
for an electron.t When ( p 2

v / 2 r n ) s l , (p{)i/2 is of
1/2

p v ) , (p{)
the order of magnitude of m1/2, and the same order
of magnitude is found for the matrix elements of the
type J ^ ( x , ρ ) ρ λ ^ ( χ , p)dx.

The application of the operator of Eq. (16) to the
wave function of Eq. (9) gives

•With a suitable choice of the coordinates p, the operator
Tvib (p) will not contain terms of the type (piPj/2Mij)
= (hV2Mij)(<9/ap1)(a/apj)(i ί j). In the general case, there are
also mixed terms with i ft j . The same treatment may be applied
to these terms as to the purely quadratic terms of the type in
Eq. (16).

tOur treatment deals with the outer electrons, the binding
energy of which determines the order of magnitude of the electronic
energy of the molecule in which we are interested.
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3JT Q) tvib (Q) = t e l (

lfo. Q)Pi'l'vib(Q)

Q) ̂  Ψ vib (Q)

. ρ) (17)

While the first term (averaged over the electronic
and vibrational motions) is of the order of β2, the
second and third terms, which take into account the
interactions of electronic and vibrational motion due
to failure of the adiabatic approximation, lead to inter-
action energies of a higher order of magnitude. On

multiplying by Φ' = ΨΘ1(Χ,
a n d integrating,

Θ

the second term gives the matrix element

r ψ, vih_(e)j dx

2M i

which may be represented in the form

(18)

y2M.

The derivative expression Pi^ej(x, p) = (K/i)(9/8pj)
x ipel(x< p) will be of the same order of magnitude as
Ρλψ8ΐ(χ, ρ) = (K/i)(9/9x\)^el(x> Ρ)· since the elec-
tronic wave function depends on the relative coordi-
nates of the electrons and the nuclei. Hence, the ma-
trix element J^ e*(x, p) [pji/iei(x, p)/(2M i)

1/2]dx is
of the same order of magnitude as the matrix element
(2MJ)"1/2 / ^ β ϊ ( χ . Ρ)ΡλΨβΐ(χ> Ρ)*1*, which is of the
order of m1'2/M1/'2 = β2. Since the order of magnitude
of the matrix element / [ ^ i b (ρ) P i ^ v i b (ρ)/ (2ΜΑ)ι'2 ] dp
will be (mM)1/4/M1/2 = (m/U)l/i = β, the order of mag-
nitude of expression (18) is β3. Analogously, the follow-
ing matrix element corresponds to the third term in
Eq. (17):

(*, Q) *v (β) *< *e

= f (19)

This is of the order of m/M = /34 (if we take into ac-
count the fact that pfi/>ei(x, p) is of the order of
magnitude of Ρ;γΨΘΐ(χ· Ρ)» and that Jip'ei(x, p)
χ p^ e i (x , ρ) dx is of the order of m).

For a given electronic state, averaging over the
electronic wave function of the term in Eq. (17) con-
taining Pii/iei(x, p)Pi^vib(p) gives the value zero:

whereas the corresponding averaging of the term in
Eq. (17) containing p|^ e l(x, p) gives a contribution
of the order of j34 to eei(p) in Eq. (14) [see Eq.
(19)]. This results only in a certain change in ^Vib(p)
and Evib· However, the non-adiabatic terms result in
the non-vanishing of matrix elements of the type

(20)

taken with regard to differing electronic states. The
largest terms in such matrix elements, derived from
the terms in Eq. (17) containing pj0ei(x, p)Pi^vib(p).
will be of the order of β3. Now, if the distances between
the electronic levels are of the order of unity, these
terms will lead only to a small interaction of these
levels. That is, they give rise to a slight mixing of
the corresponding wave functions, which will not have
an appreciable influence on the separation of the elec-
tronic and vibrational motions. The role of the terms
in Eq. (17) containing p2^ej(x, p) will be even smaller;
these terms will make a contribution of the order of /34

to the matrix elements of (20). Thus, the non-adiabatic
terms will not interfere with the separation of the elec-
tronic and vibrational motions. This conclusion is
valid both for diatomic and polyatomic molecules. For
the latter, the essential factor will be not the total
amount of vibrational energy, but rather, the mean
amount per degree of freedom, which will be determined
fundamentally by the order of magnitude of the ratio of
velocities of motion of the nuclei to the electrons. Be-
cause of the smallness of the magnitudes of /33 and /34,
even a considerable increase in the number of non-
adiabatic terms occuring with an increase in the num-
ber of degrees of freedom will not affect the possibility
of separating the vibrational and electronic motions.
Here we must take into account the fact that some of
the terms may be very small, and that even a partial
compensation of different terms may also take place.
Hence, there are no grounds for expecting that an
appreciable fraction of the complex molecules will
show very large interactions of the electronic and vi-
brational motions, or that "modulation spectra" might
be observed. The classification of complex molecules
into molecules obeying the law of mirror symmetry
(molecules of the first class) and those not obeying
this law (molecules of the second class) must be re-
lated to the degree of difference of the vibrational
structures of the electronic states combining in the
spectrum.

The possibility of separating the vibrational motion
from the electronic motion for complex molecules does
not imply that the problem of the adiabatic approxima-
tion does not play a role in the theory of complex mole-
cules and might be completely neglected. Even a rela-
tively small mixing of electronic states due to the non-
adiabatic terms may lead to the possibility of radiation-
less transitions. Such transitions will be determined
by the non-vanishing of the matrix elements of types
(17) and (18) upon approach of the electronic-vibra-
tional levels of two different electronic states [when
E' - E" = ( E ^ + E^ i b) - ( E ^ + E£ i b ) is small]. The
corresponding matrix elements will be rather large
when the potential-energy surfaces for the electronic
states in question intersect. This is analogous to the
situation which occurs when the potential energy
curves for a diatomic molecule intersect (cf., e.g.,
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references 5 and 6 on the theory of predissociation).
For complex molecules, the number of such inter-
sections will increase with the number of vibrational
degrees of freedom. Hence, radiationless transitions
may become highly probable. When the probability of
such transitions is of the order of 109 —1010 sec" 1,
the excited molecules will not luminesce.

The conceptions presented above are qualitative;
a more detailed analysis is needed of the question of
the interaction of electronic and vibrational motions
in polyatomic molecules. This analysis must be based
on the taking into account of the terms determining the
deviation from the adiabatic approximation. For this
purpose, it should be expedient to make quantum-
mechanical calculations with an estimation of the order
of magnitude of the various interactions for the sim-
plest models of molecules. The models must reflect
the peculiarities of complex molecules, and must take
into account the possibility of vibrations of various
types, in particular, the deformation vibrations. Of
great significance will be the study of radiationless
transitions associated with the existence of non-

adiabatic terms. The caryying out of systematic
studies of the interactions of electronic and vibrational
motion in complex molecules is very important in the
further development of the theory of the luminescence
and absorption of these molecules.
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