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1. INTRODUCTION

J.HE methods of modern quantum field theory have re-
cently more and more penetrated into statistical phys-
ics. This is connected with the fact that the basic prob-
lems in both fields are very much the same. The prob-
lem of a particle interacting with a quantized field, or
that of a system of interacting fields, is formulated in
terms of second-quantized Hamiltonians (or Lagrangi-
ans) just as the basic problem of statistical mechan-
ics, that of a system of interacting particles. The pe-
culiar nature of statistical mechanics consists in that
we are dealing there with "large" systems with a very
large number of particles, and are interested only in
the asymptotic properties of such systems for which
the number of particles Ν tends to infinity (while V/N
= const, where V is the volume of the system ). This
introduces peculiar difficulties when one wants to ap-
ply perturbation theory in statistical mechanics, as the
perturbation operators are not small and can lead to
terms proportional to powers of the volume V which
must, of course, cancel one another in the final result.
These difficulties have comparatively recently been
solved by the creation of a regularized perturbation
theory for large systems, by means of expansions in
connected diagrams. Such a theory has been developed
both for the zero temperature case (Van Hove1, Gold-
stone2, and Hugenholtz3), and for the non-vanishing
temperature case (Dyson4, Bloch, and De Dominicis5).

It is characteristic of the systems studied in statis-
tical mechanics that their energy levels are very
dense so that the distance between them tends to zero
as V —* °°. The spectrum is thus practically continu-
ous and the perturbation energy is always larger than
the distance between the levels. One must in that case,
strictly speaking, use perturbation theory for the con-

tinuous spectrum. It is therefore particularly impor-
tant here to work out methods which are not directly
based upon perturbation theory.

One of the important concepts of quantum field
theory is that of the Green functions, which are conven-
ient for the study of the properties of interacting quan-
tized fields.6 The use of these concepts turns out to be
useful also in 'statistical mechanics. The application
of Green functions makes it possible, for instance, to
obtain for the energy regularized expansions which do
not contain higher powers of the volume; (cf. Klein and
Prange7) and in this way there is no difficulty in apply-
ing perturbation theory to large systems. The applica-
tion of Green functions turns out to be useful in those
cases where one can sum some type of perturbation-
theory diagrams. Tasks of this kind are performed
more simply with Green functions.

The application of Green functions is particularly
fruitful in the quantum theory of fields when combined
with spectral representations of the kind of the Leh-
mann-Ka.lle'n relations.8 Spectral representations for
the time-correlation functions and for retarded Green
functions were first established and used in statistical
mechanics in the theory of fluctuations and in the sta-
tistical mechanics of irreversible processes, begin-
ning with a paper by Callen and Welton9 (see Kubo's
paper10).

The spectral theorems for the causal time-depend-
ent Green functions were considered in reference 11
for zero temperature and in reference 12 for non-van-
ishing temperatures, and were used for different prob-
lems of statistical mechanics in references lla-18,
51-52, 7, and 61.

In the present paper we shall not discuss all papers
on the application of Green functions in statistical
physics, and we refer the reader to the references
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given (see also references 50, 53, 54, and 66-69). We
shall, however, discuss at greater length one aspect
which seems to us to be very promising, namely, the
application of double-time temperature-dependent (re-
tarded and advanced) Green functions. We shall give
a brief account of the basic properties of the tempera-
ture-dependent double-time Green functions (Sees. 2
and 3) and their simplest applications to the theory of
irreversible processes (Sec. 4), to the theory of super-
conductivity (Sec. 6), to ferromagnetism (Sec. 7), and
to a system of electrons interacting with the lattice in
normal metals and semiconductors (Sec. 8). In the ap-
plications we shall follow Bogolyubov and Tyablikov19

and use not the causal Green functions, as is usually
done, but the double-time retarded and advanced Green
functions. We shall show that they are very convenient
for applications in statistics as they can be analytically
continued in the complex plane. Sometimes one uses
also in statistical mechanics Matsubara's temperature-
dependent Green functions,20 which are independent of
the time, but they are apparently less convenient than
the temperature- and time-dependent Green functions.

2. DOUBLE-TIME TEMPERATURE-DEPENDENT
GREEN FUNCTIONS

2.1 Causal, Retarded, and Advanced Green Functions

The Green functions in statistical mechanics are the
appropriate generalization of the concept of correlation
functions. They are just as intimately connected with
the evaluation of observed quantities and they have
well-known advantages when equations are formulated
and solved.

We can consider in statistical mechanics, as in the
quantum theory of fields, different kinds of Green func-
tions, for instance: the double-time causal Green func-
tion Gc(t,t '), defined in terms of the average value of
the Τ product of operators, or the retarded and ad-
vanced Green functions G r (t,t ' ) and Ga(t.t')

Gc(t, ί ' ) = « Λ ( ί ) ; fi(O»c= -i<TA(t)B(f)>, (2.1a)

Gr[l, ί ' ) = « Λ ( ί ) ; 5 ( O » r = - ζ θ ( / - « ' ) < [A (t), B(t')]>,
(2.1b)

Ga(t, f)=«.A{t); B(t')>a=iB(t'-t)<[A(t), B(t')]>,
(2.1c)

where < . . . > indicates that one should average over
a grand canonical ensemble, and where <C A(t)B(t')
^ c , r , a are abbreviated notations for the correspond-
ing Green functions.

35?

&e
= Sp(e

(2.2)

(2.3)

V, Θ, and μ ). The operator 3C includes a term with
the chemical potential μ

? = H-uN. (2.4)

Η is the time-independent Hamiltonian operator and
Ν the operator of the total number of particles; A( t ) ,
and B(t) are the Heisenberg representations of the
operators A and B, expressed in terms of a product
of quantized field functions (or of particle creation
and annihilation operators)*

A (i\ Oio?6t Ap~l&€t (n r\

(a system of units in which Κ = 1 is used throughout).
The symbol Τ indicates the time-ordered or Τ

product of operators, which is defined in the usual way

TA(t) B(t') = e(t - t') A(t) B(t')-\-^{t' - t) Β (f) A it), (2.6)

where
1 t>0
0 t < 0, η = ± 1

Finally, [ A, B] indicates the commutator or anti-
commutator

[A, B] = AB-i)BA, η = (2.7)

The sign of η in (2.6) and (2.7) is chosen positive or
negative by considering what is most convenient for
the problem. One usually chooses the positive sign, if
A and Β are Bose operators, and the negative sign
if they are Fermi operators, but the other choice of
the sign of η is also possible. Generally speaking, A
and Β are neither Bose nor Fermi operators, for
products of operators can satisfy more complicated
commutation relations. The sign of η for multiple-
time Green functions is usually determined uniquely,
depending on whether an odd or even permutation of
the Fermi operators in these functions is involved in
going over to the chronological order [see (2.13)].

We use (2.6) and (2.7) to write (2.1a, b, and c) in
the form

Gc(t, t') = - ίθ(t-t ')<A(t)B(t ')>

-ir]e(t'-t)<B(t')A(t)>,

Gr(t, <')= -iHt-t'){

Ga(t, t') = iB(t'-t){<A(t)B(t')>

-r\<B{t'U(t)>},{r\=±l).

(2.8a)

(2.8b)

(2.8c)

We note that when the time arguments are the same,
t = t', the Green functions (2.8) are not defined because
of the discontinuous factor 0(t-t')· This indeterminacy
is well known from the quantum theory of fields.

From the definition (2.1) or (2.8) we see that the
Green functions applied in statistics differ from the

(Q is the partition function for the grand ensemble,
and Ω the thermodynamic potential of the variables

•Green functions constructed from operators in the Heisenberg
representation with !<S5? = Η - jtN were applied in references 51,
18, and 19.
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field-theoretical Green functions only in the way the
averages are taken. Instead of averaging over the
lowest (vacuum) state of the system, one averages
over the grand canonical ensemble (2.2). The Green
functions in statistics depend therefore not only on the
time, but also on the temperature. It is clear that
when the temperature tends to zero the Green functions
(2.1) go over into the usual field-theoretical Green
functions.

The application of the grand ensemble is not acci-
dental. It is very convenient, for when it is used no
additional limitation on the constancy of the total num-
ber of particles need be taken into account, as one must
do, for instance, in the canonical ensemble, and the oc-
cupation numbers of the different states are independent.

We note that in the case of statistical equilibrium
the Green functions Gc(t,t'), G r(t,t'), and Ga(t,t')
depend on t and t' only through (t-f). Let us consider
Gc(t,t'), for instance, and write it in explicit form,
using the commutability of the operators under the
Sp sign
Gc(t, t')= - iB(t - t^Q-^Sp {eWlHt-n-NAe-i&iHt-nfy

(2.9)

Gc(t,t') depends thus, indeed, only on t-t ' . We can

likewise verify that Gr(t.t') and Ga(t.t') depend only

on t-t'

Gc(t, t') = Gc(t-t')< Gr(t, t')

= G r(t-i '). Ga(t, i') = G.( i-n- (2-10)

For the time being we introduced the Green func-
tions (2.1) purely formally, by analogy with the quan-
tum theory of fields. We shall satisfy ourselves now
by concrete examples that they are very conveniently
applied in quantum statistics to problems concerning
a system of a large number of interacting particles.
One can choose for the operators A and Β operators
of different kinds: for instance, Fermi or Bose oper-
ators and their products (Sees. 6 and 8), Pauli opera-
tors and their products (Sec. 7), density operators, or
current operators (Sees. 4 and 8). The choice of the
operators A and Β is determined by the conditions of
the problem.

The Green functions (2.1) are double-time Green
functions, in contradistinction to the causal multiple-
time Green functions

(2.11)

where ψ(χ,ί) and ψ+(χ,ί) are second quantized field
functions in the Heisenberg representation

•ψ (χ, 0 = Σ α ; (0 φ , W.

af, af are the annihilation and creation operators
(Fermi or Bose operators), <pf(x) is a complete or-
thogonal set of one-particle functions, normalized in
some volume V, for instance, <pf(x) =V~2ei(fx) for
spinless particles, where f is the momentum; for par-
ticles with spin f = (f, σ) indicates both the momentum
and the spin. The time-ordered or Τ product of η op-
erators Ajixj),..., An(xn) is defined as usual as their
product in chronological order, multiplied by η = (-1) -Ρ
where Ρ is the parity of the permutation of the Fermi
operators when we change from the order 1,2,..., η
to the chronological order

Τ (A (x \ \ (χ \\ — wA ' (χ • ^ A' (x • ^

U >lj >...>tj . (2.13)

XJ = (Xj.tj) is a point in space-time.
Multiple-time causal Green functions of the kind

(2.11) are well known in the quantum theory of fields,
where the averaging is over the "vacuum."

We note that the coordinates and the time occur
symmetrically in the multiple-time Green functions.
This is not essential for statistical mechanics. Here
the application of the double-time Green functions
(2.1) is the most convenient, since we can use for them
spectral expansions which greatly facilitate the solu-
tion of the equations for the Green functions. On the
other hand, the double-time Green functions contain
sufficiently complete information about the properties
of a many-particle system so that one can handle most
problems in statistical mechanics by applying double-
time Green functions. The most convenient double-
time Green functions in statistical mechanics are the
retarded and advanced Green functions Gr and Ga·19

It follows from the definition (2.8b,c) that G r(t-t')
vanishes for t <t', and Ga(t-t') for t >t\ We shall
see in the following that the advantage of the functions
G r and Ga lies in the fact that they can be continued
analytically in the complex plane (Sec. 3).

2.2 Equations for Green Functions

We shall obtain a set of equations for the Green
functions (2.1). The operators A(t) and B(t) satisfy
equations of motion of the form

id-£=AH-HA. (2.14)

The right hand side of (2.14) can be written in more
detail using the explicit form of the Hamiltonian and
the commutation relations for the operators. Differ-
entiating the Green functions (2.1a, b, and c) with re-
spect to t we get the equation

dt dt
, Β (I')])

; Β (ι')», (2.15)

(2.12) which is the same for all three Green functions Gc,
G r, and Ga, since d0(— t)/dt =-d0(t)/dt; we shall
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therefore simply write G and <C . . .^> without indices.

Taking furthermore into account the relation between

the discontinuous function 9(t) and the δ function

of t

θ(ί)= ^ b(t)dt (2.16)

and the equations of motion (2.14) for the operator

A(t), we can write the equation for the Green function

G in the form

_. dG S / J j / \ Ι Γ Λ / ±\

-H{t)A(t)}; Β (Ο». (2.17)

The double-time Green functions on the right hand

side of (2.17) are, generally speaking, of higher order

than the initial one. We can construct for them also

equations of the kind (2.17) and we can obtain a chain

of coupled equations for the Green functions. In Sees. 6

to 8 we shall consider actual examples of such chains.

The chains (2.17) are simply the equations of mo-

tion for Green functions. They must be supplemented

by boundary conditions; this will be done in the follow-

ing by means of spectral theorems.

We note that we can also obtain other chains for

Green functions, for instance, of the Schwinger type,6

for which multiple-time Green functions must be used.

These chains contain quantities in the nature of vertex

parts, which depend on three time arguments and for

which there are as yet no spectral theorems. In the

present survey we shall only use chains of equations

similar to (2.17), in which we do not go beyond the

limit of the double-time Green functions, and for which

there are spectral theorems that facilitate the formu-

lation of boundary conditions.

Equations (2.17) are exact and the solution of this

chain of equations is thus extremely complicated in

the general statement of the problem. One can some-

times by some approximate method uncouple the chain

of Eqs. (2.17), i.e., reduce it to a finite set of equa-

tions, which can then be solved. At the present time

there are no general prescriptions for such an uncou-

pling. Only in some limiting cases of model Hamilton-

ians has it turned out to be possible to perform on the

chain of equations an "uncoupling" which is asympto-

tically exact as V —* °° (see Sec. 6).

2.3 Time Correlation Functions

The average over the statistical ensemble of the prod-
uct of operators in the Heisenberg representation, of
the kind

•FnAit, t') = {B(t')A(t)); <FAB(t, t') = (A(t)B(t')) (2.18)

[ the averaging is over the grand canonical ensemble
(2.2)], are of importance in statistical mechanics; we
shall call these time correlation functions. Indeed,
when the times are different (t * t') these averages

yield the time correlation functions which are essential

for transport processes (see Sec. 4). In the case of

statistical equilibrium the functions .^BA a n d ^AB

depend, as do the Green functions, only on t - 1 ' [ see

(2.9)]

,t') = .FBA(t-t')\ .FAB(t, t') = ,<FAB(t-t'). (2.19)

In contradistinction to the Green functions (2.8), the

time correlation functions do not contain the discon-

tinuous factor 0(t - t'). and are defined also when the

times are the same, t = t'. They give then the average

values of products of operators

(2.20)
) = (B(t)A{t)) = {B(0)A(0)),

•FAB (0) = (A{t)B (*)•> = {A (0) Β (0)),

i. e., the usual correlation functions or the distribution

functions of statistical mechanics, which enable us to

evaluate the average values of dynamical quantities.

For a system of interacting fermions (or bosons)

the Hamiltonian has, for instance, in the case of two-

body forces, the form

H = Σ i^ avat> + 4v Σ r

where ap and ap are fermion (or boson) operators,

p2/2m is the kinetic energy of the particles, and

^(PlP2 '· P2P1) a r e the matrix elements of the interaction

energy. We find the average value of the energy by

averaging (2.21) over the statistical ensemble (2.2)

= Σ w
(2-22)

The average energy is in this way expressed in terms

of -^pp and •Fpjp,; p^Pl* the one-particle and two-par-

ticle distribution functions

ρ ™, = u* 1+a ,a ,\ < 2 · 2 3 )

which are well known in statistical physics (see, for

instance, references 21 and 22). The function ^-no

gives the true momentum distribution of the particles,

and ^pjp 2 ; pjp'j describes the correlation between two

particles. Knowledge of the one-particle distribution

function enables us to evaluate in general the average

values of additive dynamic quantities, the pair distri-

bution function those of binary character, and so on.

The time correlation functions (2.18) satisfy the

equations

. d
lW

. d

dt

^{B(t'){A(t)H(t)-H(t)A(t)}),

t = {{A(t)H(t)~H(t)A(t)}B(t')),

(2.24)

which are obtained by differentiating (2.18) with re-

spect to t with allowance for the equations of motion

for the operators. We note that since (2.18) is not dis-
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continuous at t = t', Eqs. (2.24) do not have the singu-
lar term o( t- t ' ) which occurs in Eqs. (2.17) for the
Green functions. The other terms in (2.17) and (2.24)
are constructed in the same way, but with the statistical
averaging process < . . .> replaced by the <C.. - ^ c r . a
processes [see (2.1)].

The correlation functions can be evaluated either by
the direct integration of Eqs. (2.24), to which must be
added still the boundary conditions, or indirectly by
evaluating first from Eqs. (2.17) the Green functions
<C . . .^>r,a (or <C.. . ^ c )· The second method which
we shall use is considerably simpler, since it makes
it easier to satisfy the boundary conditions using spec-
tral theorems (see Sec. 3).

3. SPECTRAL REPRESENTATIONS

To solve the equations for the Green functions it is
important to have spectral representations that supple-
ment the set of equations with the necessary boundary
conditions. In the present section we obtain these rela-
tions for the Green functions (2.1a, b, and c) and for
the corresponding correlation functions (2.18).

3.1 Spectral Representations for the Time
Correlation Functions10

We obtain first the spectral representations for the
time correlation functions

. (3.1)

Let Cv and E v be the eigenfunctions and eigen-
values of the Hamiltonian 3C(3C = Η - μΝ)

i-/L· C/ V — (3.2)

We write out explicitly the statistical averaging opera-
tion in the definition of the time correlation functions
(3.1)

(B(t')A(t)) = Q->-2.(ClB(t')A(t)Cv)e ». (3.3)
ν

We use the usual procedure of dispersion relation
theory, which is based upon the completeness of the
set of functions Cv, and we write Eq. (3.3) in the form

(3.4)

(3.5)

since

On the other hand

t') = {B («') A(t)) = ^ / (ω) e-

Ev

Interchanging in the last equation the summation in-
dices μ and ν and comparing (3.4) and (3.6) we note
that we can write them in the form10

(3.7a)

(3.7b)

where we have introduced the notation

J (ω) - ρ-χ2 (C; A (0) CV) (C\ Β (0) CV )e e δ (Εμ - Ev - ω).
(3.8)

Equations (3.7) are the required spectral represen-
tations for the time correlation functions, where J (ω)
is the spectral intensity of the function &j±jt^(t).

Equations (3.7) can be obtained without using the
eigenfunctions of the operator 5C. It is sufficient to
note that F( t — t') depends solely on the difference
t - t ' , since the operators under the Sp sign commute;
(3.8) is thus simply the definition of the Fourier com-
ponent. Equation (3.7b) can be obtained from (3.7a) by
the substitution t - t ' — t - t ' + i/θ, since

(3.9)(B (0) A ( t +1)) = {A (t) Β (0)),

as is easily checked by direct examination.

3.2 Spectral Representations for Retarded and
Advanced Green Functione10'19

We consider now the spectral representations for
the retarded and advanced Green functions Gr( t) and
G a(t) (2.1b and c). We can obtain them easily by means
of the spectral representations (3.7a and b) for the time
correlation functions. Indeed, let Gr( Ε) be the Fourier
component of the Green function G r ( t - t ' )

Gr (l-t')=

~
~ \ Gr(t)eiE'dt.

(3.10a)

(3.10b)

(We use the same notation for the Fourier components
of the Green functions as for the Green functions them-
selves. ) Substituting into (3.10b) expression (2.8b) for
G r(t) we get

(3.11)

Under the integral sign we have here the time correla-
tion functions (3.1). Using for them the spectral repre-
sentation (3.7a, b), we have

(β β -η)^- . \ Αβ*<Ε-ω>'θ(ί),

(η=±1). (3.12)

(3.6) We can write the discontinuous function 0(t) in the
form

θ(ί) (ε>0) (3.13)

or, since
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in integral form

= 4z \ e-^dx,

— dx.
z-j-ϊε

(3.14)

(3.15)

-ι ε fco — o o

t>0

FIG. 1

Using (3.15) and (3.14) we get

(3.16)

The Fourier component G r(E) of the Green function
G r(t) is thus equal to

Repeating the same calculation for the Fourier compo-
nent G a(E) of the Green function G a(t) we get

t — ω — is (3.18)

Equations (3.17) and (3.18) can be written as one equa-
tion

GT
JL t __ η ) / ( ω ) Έ - (3.19)

—oo

(the index r corresponds to the + sign and the index
a to the — sign).

Up to now we have considered Ε to be a real quan-
tity. The function (3.19) can be continued analytically
in the complex Ε plane. Indeed, assuming Ε to be
complex, we have19

_L Γ(βϊ-η)/(β) ^
Ga(E) ( 3 . 2 0 )

The function Gr> a can thus be considered to be one
analytical function in the complex plane with a singu-
larity on the real axis. In the following we shall omit

the indices r and a and simply write G(E), assuming
Ε to be complex.

The analyticity of G( Ε) follows from a theorem
proved by N. N. Bogolyubov and O. S. Parasyuk in the
theory of dispersion relations.23 We consider first the
analytical properties of the function G r(E ); from
(3.10b) we have

One verifies easily that the function defined in this way
has, indeed, the properties of the discontinuous θ func-
tion. We shall consider χ as a complex variable and
assume that the integral (3.15) is taken over the contour
depicted in Fig. 1. The integrand has a pole in the
lower half-plane at χ = — ie. When t > 0 the contour
must be closed in the lower half-plane and the integral
(3.15) is equal to unity. When t < 0 the contour must
be closed in the upper half-plane and the integral
(3.15) vanishes.

i

where

Gr (t) = 0 when t < 0.

(3.21)

(3.22)

Let us show that the function Gr( Ε ) can be analytically
continued into the region of complex E. Let Ε have a
non-vanishing imaginary part

0.

We then have

Gr (a + iy) = \ Gr (<) eiat e~V dt, y > 0. (3.23)

Exp ( - yt) plays the role of a cut-off factor which
makes the integral (3.21) and its derivatives with re-
spect to Ε convergent under sufficiently general as-
sumptions about the function G r(t).* The function
Gr( Ε ) can thus be analytically continued in the upper
half-plane. One can similarly prove that the function
Ga( Ε ) can be analytically continued into the lower
half-plane

E = a+iy, v<0.

If a cut is made along the real axis, the function

V '
Gr(E)

Ga(E) I m £ < 0

can be considered to be one analytical function consist-
ing of two branches, one defined in the upper, and the
other in the lower half-plane of complex values of E.

If we know the function G(E), we can find also the
spectral intensity J(w) of (3.7a) from the relation

G (ω + ie) — G (ω - ie) = - i (e* — η) / (ω) (3.25)

(ω real). Indeed, taking the difference of the two ex-
pressions (3.20)

G (ω + is) - G (ω - ie)

and using the δ-function representation

ληι \χ—ιε χ+ιε )

we arrive at (3.25).

(3.26)

(3.27)

*In order that the Bogolyubov-Parasyuk theorem be valid it is
necessary that Gr(t) be a generalized function in the Sobolev-
Schwartz sense.2 3
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Were we to decouple in some way the chain of equa-
tions (2.17) for the Green functions and to find the
Green function G(E ), we could construct from G(E )
the spectral intensity <Γ(ω) of (3.7a) and find expres-
sions for the time correlation functions (3.7a and b).

For instance,

,FBA{t-t') = {B(t')A{t))

= ξ to „_,,, d
/ο Ο Q\

(3.32)

(Ε real). Using (2.8a), (3.7a and b), and (3.15) and

integrating, we can write Eq. (3.32) in the form

or, applying the symbolic identity (3.29) in the form,12

In the following we shall show by actual examples how
one can sometimes succeed in accomplishing this pro-
gram.

We give a few other simple relations for Green
functions. Using in Eqs. (3.17) and (3.18) the symboli-
cal identity

Ε—ω ± ίε __ ρ
Ε—ω

ίπδ(Ε-ω), (3.29)

where e —- 0, e > 0, and P denotes the principal

value of the integral. We consider here Ε - ω as a

real quantity. We find then*

±
(3.30)

whence follows a connection between the real and

imaginary parts of the Green functions

(3.31)

Equations (3.31) have the form of dispersion relations.
For similar relations for Gc see the following subsec-
tion.

3.3 Spectral Representations for Causal Green
Functions12

The properties of the retarded and advanced Green
functions established in the preceding subsection are
sufficient for the applications which we shall discuss
in the second part of this survey. For the sake of
completeness we consider in the present subsection
spectral representations for causal Green functions.12

We consider the Fourier component GC(E ) of the
causal Green function

*Equation (3.30) expresses the well-known properties of the
limiting values of a Cauchy type integral which was first estab-
lished by Yu. V. Sokhotskii in 1873 and later by K. Plemel in
1908 [see M. A. Lavrent'ev and B. V. Shabat, MeTOAW TeopHH
φγΗΚΐ|Ηϋ ΚΟΜΠΛΘΚΟΗΟΓΟ nepeMeHHoro,'(Methods of the theory of
functions of a complex variable), Gostekhizdat, Moscow, 1958].

Gc(E)=4z \ (β·-η)/(ω)

β " - η

(3.34)

Separating the real and imaginary parts of (3.34) we
get

da>

—CO

lmGc(E)=-±(e~*+r])J(E),

(3.35)

whence follows a relation between the real and imagi-

nary parts of the Green function GC(E ), first obtained

for the single-particle Green function by L. D. Landau12

e e — η ImCc(<u)

ω — Ε
(3.36)

Γ + η

[ Equation (3.36) was applied to the theory of supercon-

ductivity in reference 16.] Ε is real in Eqs. (3.32) to

(3.36). We shall not use the causal Green functions for

they cannot be analytically continued into the complex

Ε plane, and are thus inconvenient to apply.

4. GREEN FUNCTIONS IN THE THEORY OF
IRREVERSIBLE PROCESSES10

Green functions are not only applied to the case of
statistical equilibrium. They are a convenient means
of studying processes where the deviation from the
state of statistical equilibrium is small. It then turns
out to be possible to evaluate the transport coefficients
of these processes in terms of Green functions evalu-
ated for the unperturbed equilibrium state without ex-
plicitly having recourse to setting up a transport
equation.

4.1 The Reaction of a System to an External
Perturbation

We consider the reaction of a quantum-mechanical
system with a time-independent Hamiltonian Η when
an external perturbation H| is switched on. The total
Hamiltonian is equal to
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H-\-H), (4-1) From this we find after integration
t

Δρ(ί) = 4- \ eiH^-^[H\, Q]e-*H^-')dx. (4.10)
— CO

Substituting (4.6) and (4.10) into (4.4) we get

where we assume that there is no external perturba-
tion at t = — oo

In the case of an adiabatic switching on of a periodic
perturbation we have, for instance,

0)

or in the case of an instantaneous switching on of a
perturbation

0, t < t0,

Σ ρ-ίαιγ t^t (4-3)

Ω

where VQ is an operator which does not explicitly de-
pend on the time. Let A be a dynamical variable which
does not explicitly depend on the time either. We con-
sider the influence of the switching on of the perturba-
tion (4.2) or (4.3) on the average value of the operator
A.

The average value of A is

A(t) = Sp{Q(t)A}, (4.4)

where p(t) is a statistical operator which satisfies
the equation of motion

,· dQ (0
dt h ft (01

and the initial condition

= S p e β),

(4.5)

(4.5')

which means that the system was at t = - °° in a state
of statistical equilibrium.

We look for a solution of Eq. (4.5) of the form

ρ(Ο = ρ + Δρ. (4.6)

Neglecting terms Η* Δρ, since we have assumed that
the system is only little removed from a state of sta-
tistical equilibrium, we get then

± l Q], (4.7)

where

Processes for which we can restrict ourselves in

Eq. (4.4) to terms linear in the perturbation are called

linear dissipative processes. (For a discussion of

higher-order terms see reference 10.)

To solve Eq. (4.7) we introduce the operator

Δρ χ = eiHtA(>e~iHt (4.8)

and, taking into account that ρ and Η commute, we

find

(4.2) where

), H\(x)])dx, (4.11)

= eiHt'Ae~iH!, H\ (t) = eim H\ e~iHt (4.12)

is the Heisenberg representation for the operators A
and Ht-

Taking (4.2) into account we can write (4.11) in the
form*

A (t) = {A} + ^ T \ {[A (i), VQ (τ)]) β - « τ +
( 4 . 1 3 )

Introducing under the integral sign the function 0(t - τ)

and extending the limit of integration to τ = °° we use

the definitions (2.1b) and (3.10b) to rewrite (4.13) in

the form

W) = (A) + Σ e-ial+u 2π {(Α | Va)) £*0, (4.14)
a

where <C A Ι ν Ω -^Ε^Ω i s t h e F o u r i e r component
(for Ε=Ω ) of the retarded Green function <C A(t);
ν Ω ( τ ) » Γ . (η = - 1).

The change in the average value of an operator when
a periodic perturbation is switched on adiabatically can
thus be expressed in terms of the Fourier components
of the retarded Green functions which connect the per-
turbation operator and the observed quantity.

In the case of an instantaneous switching on of the
interaction we substitute (4.3) into (4.11) and get

(4.15)
Ω to

i.e., the reaction of the system can also be expressed

in terms of the retarded Green functions. Equations

(4.13) and (4.14) are well known in the statistical me-

chanics of irreversible processes, where the retarded

Green functions are usually called the after-effect

functions.

The particular case where the external perturbation

is periodic in time and contains only one harmonic

frequency ω is of interest. Putting in that case

Ω = ± ω in (4.2), since

//,' = — JF0 cos coZeetB, (4.16)

where .-?§, the amplitude of the periodic force, is a c

number and where Β is the operator part of the per-

Δρι(-οο) = (4.9)

*Here and henceforth in this section, unlike in (2.1), the aver-
aging is over a canonical ensemble, and the operators are in the
Heisenberg representation with the Hamiltonian Η and not with
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turbation, we get from Eq. (4.14)

A(t) = (A)- .Foe-«+*fJt {{A

,ιωτ+ετ

'it ((A | fl»£L.

(4.17)

or, taking into account that A( t) is a real quantity

: A(t) = (4) -f Re [χ (ω) jFoe-i®'+% (4.18)

( 4 - 2 5 )

where Re indicates the real part of the expression
and χ (ω) is the complex admittance, equal to

is the electrical conductivity tensor, and η the number
of electrons per unit volume. The first term in (4.25)
corresponds to the electrical conductivity of a system
of free charges and is not connected with the interpar-
ticle interaction. As ω —~ « the second term decreases

more strongly than the first one lim
2

)=-2«{{A\B))KL-
w

Im ωσα β(ω)
ll(4.19) = - e no a o/m), and the system behaves as a collection

Equations (4.18) and (4.19) elucidate the physical
meaning of the Fourier components of the Green func-
tion <C A(t)B(T)^> r e t as being the complex admit-
tance that describes the influence of the periodic per-
turbation (4.16) on the average value of the quantity A.

4.2 The Electrical Conductivity Tensor

As an example we consider the connection between
the electrical conductivity tensor and Green functions10.
Let there be switched on adiabatically an electrical
field E(t), uniform in space and changing periodically
in time with a frequency ω

The corresponding perturbation operator is equal to

H)= - Σ «j (Ex/) c s ωίβε/ (4.20)

(where ei is the charge of the j-th particle, and where
the summation is over all particle coordinates Xj).
Under the influence of the perturbation (4.20) there
arises in the system an electrical current

7o(0=- 5 «/«Ο; H\(x)))dx, (4.21)

= Ηι {τ)

where

/o (0 = Σ esXai (t),

]a is the current density operator, if the volume of
the system is taken to be unity. Integrating by parts,
we write Eq. (4.21) in the form

/n(t)=-Re{ ^

(4.23)

Noting that

Λ1 (τ) - - (Ej (τ)), [*„·„ χβ

we get from this equation

/„ (i) = Re (σ

= 1),

(4.24)

of free charges.
One can use (3.7) and integrate over τ to rewrite

Eq. (4.25) in a different, equivalent form

\ «·«Λ. (4.26)

This is Nyquist's well-known theorem,24 generalized by
Callen and Welton9 for the quantum mechanical case;
it connects the electrical conductivity with the fluctu-
ating currents. It is usually written in a somewhat dif-
ferent form10

= -^6a» + ^th^f \ . (4-27)

where

{{A (t) Β (*'))> = i {{A (t) B{t') + B(t')A (/))>

are the symmetrized time correlation functions. Using
Eq. (4.27) one can evaluate the electrical conductivity
without constructing a transport equation.25

Equations (4.25) to (4.27) are noteworthy as they
connect a characteristic of a non-equilibrium state,
the electrical conductivity, with the correlation func-
tion of the currents in the state of statistical equili-
brium. Kirkwood26 was the first to obtain such a rela-
tion for the coefficient of internal friction. They also
occur for other transport coefficients, for instance,
diffusion and thermal-diffusion coefficients, the mag-
netic-susceptibility tensor, and so on. We shall not
dwell on these problems, but refer the reader to the
literature.1 0 '1 8 '2 7"2 9

For applications of Green functions to the theory of
irreversible processes, see especially references 10
and 18 where the fluctuation dissipation theorem and
dispersion relations for transport coefficients are con-
sidered in more detail.

5. PERFECT QUANTUM GASES

As a simple illustration of the method, we consider
the Green functions for perfect quantum gases. The
Hamiltonian of a perfect gas of fermions (or bosons)
is of the form

'3ν = Στ,α/α

ί, (5-1)

where f = (k, σ), σ is the spin index, k the momentum
(for a boson gas σ = 0), Tf = k2/2m - μ, μ the chemical
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potential, while af and aj are operators satisfying the

Fermi-Dirac and Bose-Einstein statistics commuta-

tion relations,

afar — = 6f/,,

afcij, — eaf>af = a^ap — ea^aj = 0
(5.2)

Gl(a>+ie) — Gf((u—ie)= —i(e6 — η ) / / ( ω )

and the δ -function representation (3.27), and we have

J.(io)=6{a~Tf). (5.11)

(for Fermi-Dirac statistics e = — 1, and for Bose-

Einstein statistics e = + 1). The quantum mechanical

equations of motion (2.14) for the operators are very

simple

(5.3)
• dai -,, • dal π *ι—f- = 7,a,; ι—j-=—T,af.at 11 at I >

We introduce the Green function (η = e)

Gf(t-t') = ({af(t); a*f(t'))), (5.4)

corresponding to the following choice inEqs. (2.1b and c)

(5.5)

and construct with it the equation of motion (2.15)

dt
(5.6)

One can easily solve Eq. (5.6).

Going over to the Fourier components of the Green

functions

Gt(t-t')=

and using the δ -function representation

6 (*-'') = 4
we get

The Green function Gf (Ε ) is thus equal to

(5.7)

(5.8)

(5.9)

One could still add to the solution (5.9) a singular

part of the form δ (E-Tf) with an arbitrary coefficient.

The function obtained in that way would, however, not

satisfy the analytical properties of the retarded (or

advanced) Green function (see Sec. 3.2), so that we

must set the coefficient of the δ function equal to zero;

(5.9) gives thus the required solution. For the causal

Green functions we must take into account the singular

addition to the solution (5.9) in order that the Green

functions possess the necessary analytical properties

(see Sec. 3.3). It is thus clear from (5.9) that the Green

functions have a pole at Ε = Tf; the energy of the ele-

mentary excitations Ε (f) = Tf corresponds thus to the

pole of the Green function. We find the spectral inten-

sity J( ω ) of the corresponding correlation function

e' - η

We see that for perfect gases the spectral intensity

J(w) has a δ -function shape. We get for J^f(t —t')

(5.12)

e β — η

Putting t = t ' in (5.12) we find the average occupation

n u m b e r

τ.
-η) Κ (5.13)

We determine the chemical potential μ from the con-

dition

1'
Υ {e8 -r^-^N. (5.14)

We note that we need not evaluate the partition function

in order to calculate rTf. Instead we solve the equations

for the Green function and use the spectral theorem

(3.25).

The example given here has a purely illustrative

character; one need not apply Green function tech-

niques to consider perfect gases. We only gave this

example to show for a very simple case the general

pattern of consideration, which is the same for other,

no longer trivial examples. One can also evaluate the

Green functions of a perfect gas directly, using the

definitions (2.1) to (2.5), the commutation relations

(5.2) for the operators, and the fact that for a perfect

gas

a* (t) = e^'a} e-*»' = eiTf'a}.

We then find for the Green functions

(5.15)

= -iB(t- f) e-iTl(l-'"> (1 + η«,) - ίηθ (f - t) e~T 1(l~v ^ v

G] (t - t') = «a, (1) aj (t')))T =-iB(t- V) e-iTi{t-v\ j

G? (t - t') = {{a, (t) α; (ί')»β = id (f - t) β-
ίτΐ«-ν) J

(5.16)

and, using (3.15), we get for the corresponding Fourier

(5.17)

components

Ga, (E)

2 π

2π

1

2 π

Γ 1+ηϊΓ,

1

ji Τΐ4-ΐ'ε

1
Ε — Τ,-ίε

ηη, ^

ε Δ'-Γ,-ieJ '

by using Eq. (3.25)

(5.10) We note that the retarded and advanced Green functions

for a perfect gas are temperature-independent.

In the remainder of the present paper we shall only
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deal with retarded and advanced Green functions (2.1b
and c) without specifically mentioning this.

6. APPLICATION TO THE THEORY OF
SUPERCONDUCTIVITY

It has been shown in references 30 to 32 that one
can develop a theory of superconductivity starting from
the Bardeen-Cooper-Schrieffer model Hamiltonian, in
which the electron-phonon interaction is replaced by a
direct electron-electron interaction, and in which one
takes into account only the interactions of pairs of
electrons with opposite momenta and spins. It was
shown that this interaction was the basic one responsi-
ble for the phenomenon of superconductivity. In ref-
erence 31, where the theory of superconductivity was
developed starting from Frohlich's exact Hamiltonian
in which the emission and absorption of lattice phonons
is taken into account explicitly, the possibility of re-
placing the Hamiltonian by a model Hamiltonian was
in particular put on a firm basis and the choice of its
parameters was made more precise. In the present
section we consider the application of retarded and ad-
vanced Green functions to the theory of superconduc-
tivity, based upon a model Hamiltonian of such a type.
(Causal Green functions were applied to the theory of
superconductivity in references 16, 34, and 35.)

The consideration of the model Hamiltonian is of

interest as one can get a solution which is asympto-
tically exact as V — °° (V/N = const.) (see refer-
ences 32, 63, and 65). One need therefore not make
any approximations to decouple the chains of equations
for the Green functions, for the decoupling turns out to
be asymptotically exact. The solution of a model ex-
ample can, among other things, serve to indicate pos-
sible approximations when solving other examples, no
longer of the model type.

6.1. The Model Hamiltonian

We shall start from a model Hamiltonian of the
form

= *•„ + #int = Σ Τ l a t a i
f

-w 2 J (/./')«/•«->-/'«/-. (6.1)

where f = (k, σ), - f = ( -k, - σ), σ is the spin index
which takes on the two values +V2 and - %, k is the
momentum, Tj = k2/2m — μ, μ is the chemical poten-
tial, a f and af are operators satisfying the Fermi-
Dirac statistics commutation relations (5.2), and
J( f, f) is a real function with the properties

In the case of Bardeen's model one must put

(6.2)

(/(*,*') = / ( - * , -k')) (6.3)

or

J (/, /') = -ί {/ (k, k') 6σ_σ- - / (k, - k') ba+a>}. (6.4)

When (6.3) holds, the Hamiltonian (6.1) is of the form

ft, σ

~2 ~h'. - 5 ' 2

(6.5)

We note an interesting property of the model Hamil-
tonian (6.1). If we choose as the zeroth-order Hamil-
tonian the Hamiltonian №« of non-interacting particles,
as is done in the usual perturbation theory, the opera-
tor Hjnt w iH gi y e a n asymptotically small contribution
to the energy of the system and to the other thermody-
namic functions as V — » in all orders of the statis-
tical perturbation theory. In first order we get, for
instance,

which is finite as V —- °°. One sees easily that this
property is conserved also in higher orders. Since,
however, the ratio of < H > to V must tend to a finite

limit when the limit V —- °° is taken, the operator H m t

gives an asymptotically small contribution in all orders
of the usual perturbation theory. It is, on the other
hand, well known30'32 that the model interaction turns
out to be important and gives a finite contribution to
the thermodynamic functions. The Hamiltonian (6.1) is
therefore an example of such an interaction which gives
zero (as V — °°) in each term of perturbation theory
and leads to a finite effect for the whole series. This
is apparently connected with the fact that the effect of
the terms in the perturbation theory series begins to
show up starting with large η ~ n0, where n0 —- °° to-
gether with N(N is the number of particles). In the
usual considerations these terms are assumed to be in-
finitesimally small and are not taken into account. A
similar situation occurs in the usual condensation
theory where it is necessary to take into account groups
of large numbers of molecules.33

6.2. The Application of Green Functions

We consider now the application of retarded and
advanced Green functions to the Hamiltonian (6.1). We
construct first the quantum mechanical equations of
motion (2.15) for the operators af and af
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ν

We introduce the Green function

(6.6)

(6.7)

and write down for it the equation of motion (2.17)

dG,

( α : , α_,., α,,; α,* (6.8)

(for the sake of brevity we have omitted the argument
t of the operators). The equation for Gf contains also
the double-time Green function Fff

(t - f) = « α ϊ , (t) a_r (t) af, (t); a] (<')». (6.9)

We construct for this function, too, an equation of mo-
tion

{2

t')n-1 (δ,-,. - «/+,<) t- (27> - T,) Ttl.

(U g) {(α;α1βα_ /,αΓα/'; α? (ί')>>

τ

(6-10)

The Green function (6.9) corresponds to the following
choice in (2.1b and c)

A = d—fd—ydj'^ t> = CLf . (0.11)

We note that the quantity Fff> occurs in Eq. (6.8)
for Gf in the sum over f with a factor V"1. We can
thus neglect with asymptotical exactness in Eq. (6.10)
for Fff the terms with 6f+f/ and of.f. For the same
reason the average of the product of the operators
nf/ and

in the second sum in Eq. (6.10) can be replaced, also
asymptotically exactly, by the product of the averages,
taking into consideration that the average values of
these operators are macroscopic quantities which are
finite as V —* °°. We can thus put*

•The fact that the solution corresponding to such a decoupling
is the same as the Bardeen-Cooper-Schrieffer solution30 (see next
subsection) shows that this decoupling is, indeed, asymptotically
exact as V -» °», since the asymptotic exactness of the latter was
proved in reference 32 by perturbation theory and in references 63
and 65 without perturbation theory. In references 63 and 65 it was
also shown that one can satisfy the complete chain of equations for
the Green functions which are constructed on the basis of the model
Hamiltonian.

<((1 - «_/' - n,,) alia^gag: aj («')»

= (1 - n_r-H,,)({al,a^ag; aj (/')».

Repeating these considerations also for the first sum
in Eq. (6.10) we can write Eqs. (6.8) and (6.10) in the
form

dG Λ

dv,,.

,) Gf -
(6.12)

—^'(/'•sH1-»-/--:

Changing to the Fourier components (3.10) of the Green
functions

Gf(t-t')=

(6.13)

(we use the same notation for the Green functions and
for their Fourier components) we can write the set of
equations for Gf(Ε ) and Fff( Ε ) in a form which does
no longer contain time derivatives

E^lt' = (27V — Tf) Tfj — ̂  J (/. g) {"•aa-aa-i'af) Gf
s

-}2/«'«)(1-"-/-«f)rfs· (6.14)

We obtain thus a set of integral equations for the func-
tions Gf(E) and Fff(E). One notes easily that the
solution of Eq. (6.14) can be found in the form

Indeed, we get for Gf and Ff the equations (compare
reference 34)

(6.16)

(6.17)

where we put, moreover,

27V + —

and introduce the notation

Solving the set (6.16) we get

(6.18)

r·· < 6 · 1 9 )
The poles of the Green functions (6.19) give for the
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spectrum of elementary excitations the expression3 0

(6.20)

Using (6.20) one can conveniently write the Green func-
tions in the form

) = ^ A / , L f [ - l . ^

One can easily evaluate the spectral intensities of the
time correlation functions If ( ω )

(6.22){af(t')at(t)}= ^ If (ω) e-*> ('-'') d<o.

We can find the function If (ω) by using Eq. (3.25)
whi'ch in our case (η = — 1) is of the form

ω

Gf (co + is) - Gf (co - ie) = - i (ί* + 1) If (ω),

and using the δ -function representation (3.27); the re-
sult is

K ^ ^ K ^ ) ^
 (6·23)

l + e l + e

We get from Eq. (6.22), putting t = t' in it, for the
average occupation number n"f

(6.24)

Taking (6.15), (3.7a), (3.25), and (3.27) into account we
get for the time correlation function the spectral ex-
pansion
<«/ («') alf (I) a_r (t) a,, (t)> = Α,.Α, (t - f)

CO

= .4/- [ 7f (co) e~ia " - ' ' ) de>, (6.25)
— CO

where the spectral intensity If (ω ) is equal to

•0(ω-ω/)_8(ω+ω/)\ ( 6 2 6 )

Putting t = t' into Eq. (6.25) we find the quantity Af

(6.27)

One checks easily that Eqs. (6.27) and (6.24) satisfy
also Eq. (6.17) and the assumptions made turn thus out
to be valid. We get from (6.27) and (6.18) for the quan-
tity Lf which plays the role of the gap in the spectrum
of elementary excitations the equation

(6.28)

Equation (6.28) has a non-trivial solution Lf * 0 at
sufficiently low temperatures θ for a positive definite
kernel J ( k , k ' ) [ see (6.3)] which corresponds to the
prevailing of the attraction between electrons with
opposite momenta and spins, which a r i se s from the
exchange of phonons, over the Coulomb repulsion.
(For a study of the influence of the Coulomb interac-
tion see reference 37.)

See reference 30 for the solution of Eq. (6.28) for
the case where the kernel of the integral equation fac-
torizes and reference 36 for more general assump-
tions about the kernel (see Sec. 6.4).

We can use (6.15) to get for the average energy

<6-29>

(6 21) o r > u s i n § (6-27) and (6.24)

(6.30)

Summing over f in the second term of Eq. (6.30) and
taking (6.28) into account we get finally

)-±2gtanh|f. (6.31)

At zero temperature, the state with Lf * 0 corresponds
to a lower value of the energy, i.e., it is energetically
more advantageous than the state with Lf = 0 [ the
trivial solution of Eq. (6.31)]. We shall verify in the
following (Sec. 6.5) that the trivial solution is impossi-
ble at temperatures below critical.

Using Eqs. (6.26) and (6.27), we find for the time
correlation functions the expressions

1 — e

ω, J

aL,(t)a-r{t)a,,{t))

= A,Ay cos ω, (t- t')

l + e «

(6.32)

(6.33)

The correlation function (6.33) vanishes for a perfect
gas. Correlations of this kind which are typical for
superconductivity are connected with the interaction.
The time correlation functions (6.32) and (6.33) oscil-
late as t - 1 ' —• » as in the case of the perfect gas.
If one takes into account, however, the dropped asymp-
totically small terms, there appears in higher orders
in the correlation functions an asymptotically small
damping which tends to zero as V —• •» (V/N = const).

6.3. The Canonical Transformation Method

It is of some interest to compare for this model ex-
ample the Green function method given here and Ν. Ν.
Bogoluyubov's method of the canonical u,v transforma-
tion, which was applied to problem under discussion in
a paper by Ν. Ν. Bogolyubov, Yu. A. Tserkovnikov, and
the present author.

Following the method of that paper, we introduce
some ordinary functions Af and write the Hamiltonian
(6.1) in the form

(6.34)

where
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J (/· (6.34a)

r/ajaf + y Ct (a}aLf + a^a^ | (6.34b)

~ (6.34c)

(6.34d)

and where we have introduced the notation

(6.35)

The operator Ho is quadratic in the operators af and
a|, and it can therefore be diagonalized by a canonical
transformation

af = U)af + vta_l, (6.36)

u) + υ) = 1, us = «_,., vf = - tL, (6.37)

(uf and vf real).
We have then

Tiuiv1 + -*- (u] - v]) = 0, (6.38)

whence we get, using (6.37),

where

and

//„ = 2 {Τ,υ

(6-40)

(6.41)

We note that the operators Hf, Bf, and Bf commute
with one another for different f.

We choose Af from the condition

(Bf) = 0, (6.42)

where the averaging is over a grand canonical ensem-
ble with Hamiltonian Ho. (We retain for such an aver-
age the earlier notation < . . . > . )

We have then

A, =
[ - 2 v / ) = - ^ t a n h | ,

(6.43)

and the contribution from the operator Hj becomes
negligibly small as V —* °° in comparison with the
contributions from U + Ho (see reference 32 for de-
tails).

Using (6.35), (6.43), and (6.42) we get for Cf the
equation

ί'/ = ΐ Ι1 'Ί ' 1 ' ' ' 1 ω ' 1 Ί~· (6.44)
/' ; '

Comparing (6.20), (6.27), and (6.28) with (6.40), (6.43),
and (6.44) we satisfy ourselves that

Cf=Lf, Af = Ar ε/ = ω/. (6.45)

There is thus complete agreement between the method
of the preceding subsection and that of the canonical
transformation, and they lead to the same solutions.
We get for the thermodynamic potential

U+Ho
Ο = —

-2Θ 2 l n { l + e '}, (6.46)
k

where we have replaced f by k since here all quanti-
ties are spin-independent, and using (6.37) we have

One notices easily that the thermodynamic potential
(6.46) is a minimum in the variables uf and vf, as
should be the case for the exact solution. In calculat-
ing the entropy we need therefore only take into account
the explicit dependence of Ω on the temperature Θ, as
terms that correspond to the temperature-dependence
of uf and vf automatically drop out. We get thus an
expression for the entropy, which is formally the same
as the entropy of a perfect gas of elementary excita-
tions

^ - ^ ^ Σ ^ ^ + ^ - ^ Μ Ι - η ) } · (6-47)
k

Such a simple formula occurs only for the distribution
function of the elementary excitations v^, but not for
the real momentum distribution function (6.24).

The method of the canonical u, ν transformation
allowed us thus to evaluate asymptotically exactly the
thermodynamic potential and the entropy of the sys-
tem. The Green function method gives the average
energy from which one can afterwards reduce also the
other thermodynamic functions.

We note one interesting fact. It follows from Eq.
(6.43) that

<«_,. «,) (6.48)

is a finite quantity. On the other hand, if we averaged
over an ensemble, not with Ho but with the total Ham-
iltonian 3C, the analogous quantity would be equal to
zero. Indeed, the operator of the total number of par-
ticles

commutes with 3C, i.e., it is an integral of motion. Its
eigenvalues Ν = 0, 1, 2, . . . are thus quantum numbers
which number the eigenvalues of 3C. Writing (6.48) in
explicit form

(a_faf) = ι
ct, JV

α,Λί
(6.49)

where E a ) J«J and Ca> JJ are the eigenvalues and eigen-
functions of the Hamiltonian 3C corresponding to a
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fixed Ν, we verify that this quantity is, indeed, equal

to zero, since the operator a.faf has no diagonal ele-

ments in the representation with fixed N,

Cl, Na-,a,CaN = 0.

To prove this it is essential that Ν be an exact integral

of motion. For the operator Ho [see (6.34b)] the par-

ticle number operator Ν is no longer an exact integral

of motion and the quantity (6.48) does therefore not

vanish.

6.4. The Solution of the Equations

We shall follow reference 36 and give the solution

of the integral equation (6.44). We rewrite Eq. (6.44)

in integral form

(6.50)

where

We choose the constant J > 0 such that I (0, 0) = 1, k0

is the Fermi momentum, and ω is a characteristic

energy (of the order of magnitude of the energy corre-

sponding to the Debye limit of the phonon energies) for

which the kernel J ( | , £') is essentially different from

zero. We assume that ω is appreciably less than the

Fermi energy and we remove from under the integral

sign the slowly changing function k ( |) = V 2ΐη(μ + ξ)

at the point ξ = 0 [k(0) = k 0 ].

We introduce a new unknown function

(x= ξ/ω)

(x) = C<f(x). q>(0) = l, C = C(0)

and write Eq. (6.50) in the form

(x')

20
ε (χ) = V χ* -γ P V (χ), α = ω , β = -

(6.51)

(6.52)

When solving the non-linear integral equation (6.52) we

use the fact that it has a logarithmic singularity as

x' —- 0, a—- 0, and β —- 0, and these parameters can

be assumed to be very small (a « 1, β « 1). For

χ = 0 we get from (6.52) a transcendental equation for

a and β

(6.53)

To solve it we must still know the function φ(χ). To

find an approximate equation for <p(x) with a « 1 and

β « 1, we subtract from Eq. (6.52) Eq. (6.53) multi-

plied by I(x, 0), and since the resultant equation

should no longer have a singularity, we can let a and

β tend to zero. We then obtain for φ(χ) the inhomo-
geneous Fredholm integral equation

φ (*) = 0) + ρ *£\ {I(x, x')-I(x, 0)7(0, χ')} φ (χ') *£ ,

"° (6.54)

which no longer contains a singularity and is independ-

ent of the parameters a and β. One easily obtains a

solution of Eq. (6.53) as a power series in p by itera-

tion. One can thus consider φ (χ) to be a known func-

tion. If the kernel factorizes

I(x, x') = I(x, 0)I(x', 0) (6.55)

we get as the exact solution of Eq. (6.54)

ψ(χ) = Ι(χ, 0). (6.56)

In the particular case of the Bardeen-Cooper-Schrieffer

model interaction30 we have

0 outside this interval.
(6.57)

We can simplify (6.53) by using the fact that a and

β are small and that there is a logarithmic singularity.

To do this we integrate by parts and put a = β = 0 in

the terms which do not contain a singularity (when tak-

ing the limit we assume β/α = a = const). We get

then36

— — = lna tanh { In (x + }/x2 — a2) cosh~2xdx

(6.58)

Equation (6.58) determines β as a function of a,

i.e., the temperature dependence of the energy gap C.

At zero temperature a = 0 and we get Ν. Ν. Bogolyu-

bov's solution31

where

χ, (6.59)

(6.60)

ω = %ω ι k , q0 is the maximum Debye momentum,

and g is a coupling constant [see (8.2) below]. At a

temperature equal to the critical temperature, θ = θ0,

the gap in the spectrum of elementary excitations tends

to zero (β = 0 or a = 0) and we find from Eq. (6.58)

the following expression for θ0

3 6

CO

ao — ~^- — e x P { —7 — \ In χ cosh ~2 χ ddx

(6.61)

The ratio of the critical temperature to the magnitude
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of the gap at zero temperature and also the relative

jump in the heat capacity are independent of the func-

tion φ and are the same as the expressions obtained

in reference 30 with the simplified interaction (6.55).

These properties are thus not connected with the de-

tailed form of the interaction, but only with the singu-

larity of the integral equations.

6.5. Instability of the Trivial Solution

The non-trivial solution Af * 0 and Cf * 0 corre-

sponds for θ < θο to a lower value of the thermody-

namic potential (6.46), i.e., is thermodynamically more

stable than the trivial solution Af = 0. This, however,

is not the whole story. We shall show that below the

critical temperature the trivial solution Af = 0 is im-

possible.* Indeed, assuming that

(cig a*ga_faf) = 0 or Af = 0,

we get, retaining in the second of Eqs. (6.14) also the

inhomogeneous term,

Σ J (/'· S) Γ , β - 4 Σ J (/'- S) Γ, Β
(6.62)

We find the pole of the Green function Tff from the

condition that the homogeneous part of Eq. (6.62) should

tend to zero, i.e.,

(E -2Tr+ Tf) Γ,,, + Χ-^~ Σ J (/'. S) Γ,β = 0, (6.63)

where we have dropped asymptotically small terms.

The index f in Eq. (6.63) can be chosen freely, and if

we choose it so that Tf = 0 and introduce the notation

(6-64)

we get for <&f the equation

(£-2Γ,)Φ,= --^ !-2/(/ ,/ ' )< !>, . . (6.65)
ν

If we use the method used in reference 36, we can solve

the integral Eq. (6.65).

Introducing the notation

•^/=-ρ-Σ/(/·ΠΦ/'. (6-66)

we can write Eq. (6.65) in the form

(£ - 271,) Φ, = (1 - 2«,) JF,. (6.67)

Substituting into Eq. (6.66) Φί from Eq. (6.67) we get

tanh 3V
2Θ

(6.68)

where we have changed f = (k, σ) to k.

•Considerations of the impossibility of two solutions (a trivial
one and a non-trivial one) at θ < θ0 were given by G. Wentzel,70

who showed that the thermodynamic potential must by definition be
a single-valued function.

Changing the sum to an integral and introducing

dimensionless variables χ = ξ/ω and a new function

f(x)

1), (6.69)

(6.70)

we get for it the equation

χ) = ρ \ I (x,
ο

where γ = Ε/2ω is a dimensionless parameter which

is assumed to be small (γ « 1); the rest of the nota-

tion is the same as in (6.50) to (6.52).

Equation (6.70) is a homogeneous Fredholm integral

equation with singularities of a logarithmic character

as a —* 0 and γ —*· 0.

One can write the equation for f (χ) in the form of

an inhomogeneous Fredholm integral equation by sep-

arating from it the terms with singularities and, using

the fact that a and γ are small, going to the limit

a —* 0, γ —* 0 in the terms which do not contain singu-

larities, [we used the same procedure earlier on with

Eq. (6.52). ] We get in this way
oo

f(x) = I(x,0) + Q \ {I(x, x')-I(x,O)I(0, x')}j(x')% .
ο Χ (6.71)

Comparing (6.71) with (6.54) we see that

f(x) = ff(x). (6.72)

We find the parameter y2 as a function of a from the

transcendental equation

1 = ( 3, x) tanh -
α χ 2 — γ 2 φ (x)dx. (6.73)

For instance, for a = 0, we integrate (6.70) by parts

and get

2 = _ In ( - γ») - J In (x* - γ2) -jL { φ (x) / (0, x)} dx. (6.74)
U

Taking in the second integral the limit γ —·* 0 we get

{φ(*

4ω2 (6.75)

The denominator of the Green function tends to zero in

the points Ε = ± iC(0).

Starting from the equation Af = 0, i.e., from the

existence of the trivial solution, we have thus found

that the Green function has a singularity in the com-

plex plane outside the real axis; since, however, it

must be analytic everywhere outside the real axis,

such solutions cannot occur, and hence Af *• 0. At the

critical temperature the complex root vanishes and we

have the solution Ε = 0. Indeed, putting γ = 0 in Eq.

(6.73) we get Eq. (6.53) for β = 0, which defines the

critical temperature.

The application of Green functions thus enabled us,

without any other considerations, to choose from the

two solutions the only one which is physically acceptable.
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7. APPLICATION TO THE THEORY OF
FERROMAGNETISM

Ν. Ν. Bogolyubov and S. V. Tyablikov,19 and also
S. V. Tyablikov,38 have applied advanced and retarded
Green functions to the thermodynamics of ferromag-
netics. We shall follow their papers.

According to the Heisenberg model, a ferromagne-
tic crystal can be described by a Hamiltonian expressed
in terms of spin operators

'70 ~— ( • " Β " / \ * J / — "7j" / 1 J \J | — / 2 / / 1 / 2 ' V ' * /

/ / l / 2 O

where Sj* is the α component of the spin of an elec-
tron situated at the lattice site f, J (fj — f2) is the ex-
change integral which we shall assume to be positive,
Η is the external magnetic field which is parallel to
the z-axis, and μ β is the Bohr magneton. The summa-
tion is over lattice sites with different f, so that we
can put J(0) = 0. We shall assume, moreover, that
there is one electron on each lattice site.

Changing in the Hamiltonian (7.1) from spin opera-
tors to Pauli operators

The operators bg and ng satisfy the equations of
motion

(7.2)

which satisfy the commutation relations

if
(7.3)

which are easily checked by direct substitution. The
commutation relations for the Pauli operators are of
the Fermi type for the same lattice sites and of the
Bose type for different sites. The Hamiltonian (7.1)
assumes upon transformation the form

ge = _ Ν (μΒΗ + Ζψ-) + {2μΒΗ + 2 J (0)) 2 b*,bt

t

- Σ 2J (Λ - /*) bK\ - Σ 2 J & - h) %»/.,. (7-4)
hh /1/2

where J (0) = 2 f J ( f ) , and Ν the number of lattice
sites. The operator nf,

«, = 6/6, (7.5)

is the number of electrons with "left hand" spins at
the site f. The average number of "left hand" spins
at any lattice site

n = (nf) (7.6)

is independent of f because of the translational sym-
metry and the equivalence of all lattice sites. More-
over, it follows from the equations of motion for nf
that

dba

Hi Σ 2 / (* - Ρ) Κ

We introduce the Green functions (η = 1)

<?„,('-Ο = «*„(«); &;(*')».

GSlH, / ( ί - « ' ) = « Β Λ ( 0 bU2 (t); 6; (ί')>).

Using (7.8) we get for G g ; f the equation

dG,,, t

i -±i = (1 - 2n) 6 (i - f) + [2μΒΗ + 2 J (0)] GBi/

(7.8)

(7.9)

(7.10)

In the following we shall restrict ourselves to the first-
order approximation and we shall decouple the chain
of equations for the Green functions, taking

); bf(t')))

In that case Eq. (7.10) is of the form

i d~- - [2μΒΗ + (1 - In) 2 J (0)] Ga< f

(7.11)

(7.12)

and it no longer contains higher Green functions.
The method of decoupling (7.11) corresponds to the

method of approximate second quantization39, improved
thermodynamically for the higher temperature region.
Indeed, in the method of reference 39 the Pauli opera-
tors were assumed to be approximately Bose-operators
and the last term in the Hamiltonian (7.4) was neglected,
which corresponds to the low temperature region, well
below the Curie temperature. In that approximation
one must put in Eq. (7.12) n = 0. When the tempera-
ture rises, the role of the terms containing a factor
n increases and one must by then take them into ac-
count.

We change now to the Fourier components of the
Green functions

(7.13)

and write Eq. (7.12) in the form

- 2«) 2J (0)] G
s, f

-%(l-$i)2J{g-p)GPit. (7.14)

\dt / " dt (7.7)
One can solve Eq. (7.14) by the usual method applied
in the theory of ferromagnetism and based upon the
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translational symmetry of the lattice. Taking into ac-
count that then Gg(f depends only on the difference of
the lattice vectors g-f and is a periodic function we
change to the Fourier components in these variables

Ge, /(Ε) = ~'Σ} ei(B~f-9)Gq(E) (g — wave vector). (7.15)

The Kronecker symbol 6g)f can also be written in the
form '

(7-16)

Substituting (7.15) and (7.16) into Eq. (7.14) we get

where

- 2n)2(J(0) -

(7.17)

(7.18)

(7.19)

Using (3.25) and (3.27) for the spectral intensity we
find

— 1

= iy

(7.20)

We have thus from (3.7a)

< ' ) b e ( t ) ) =

= — y
— 1

Putting here t' = t, f = g, and changing from a sum

over q to an integral, we get for η the transcendental
equation1 9

where V = V/N is the volume of the elementary cell.
Equation (7.21) determines the relative magnetiza-

tion σ

Introducing the dimensionless variables

h =

2 2 )

(7.23)

(h is the dimensionless magnetic field, τ the dimen-
sionless temperature, and i(q) the dimensionless ex-
change integral) we can write (7.21) in the form

In the first approximation considered here, the
Green function has a pole on the real axis for Ε = Eq;
hence, E« is the energy of the elementary excitation
of the spin wave, which depends through σ on the tem-
perature, in contradistinction to the usual spin wave
theory. In higher orders the pole disappears and there
is damping. We shall consider the role of damping in
Sec. 8 for the example of electrons interacting with the
lattice.

Equation (7.24) is very interesting because it gives
an interpolation formula for the magnetization σ for a
wide range of temperatures for the case under consid-
eration of a positive exchange integral. For negative
values of the exchange integral the solution is unstable
in sufficiently weak fields [the right hand side of (7.21)
becomes negative, whereas 5 > 0].

Solving Eq. (7.24)38 we get for the relative magneti-
zation σ the formula

1 - Σ
3>3

where TC = 0c/<7(°) = 1/c is the dimensionless Curie
temperature. For a simple cubic lattice c = 1.516,
ν is the number of nearest neighbors in the lattice;
Af a function of h/τ.

2v

(0) Σ/"'(Λ; z p = 2

(7.26)

1, t>t c l

(7.25a)

(7.25b)

(7.25c)

It follows from the transcendental Eq. (7.24) and Eqs.
(7.25a, b, and c) that at temperatures below the Curie
temperature e c = J(0)/c there occurs spontaneous
magnetization, i.e., σ * 0 for Η = 0, and the system
is in a ferromagnetic state. At the Curie temperature,
the spontaneous magnetization vanishes. For θ > θ0

the system goes over into a paramagnetic state. Equa-
tion (7.24) and Eqs. (7.25a, b, and c) describe this
transition completely. We get as limiting cases all
well-known results from the quantum theory of ferro-
magnetism.
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Indeed, for θ ^ 9C we get from (7.25a) Bloch's spin

wave theory; near the Curie temperature θ ;£, 6C we get

from (7.25b) the results of the molecular field theory,

and for θ > #c from (7.25c) a theory of paramagnetism

which is nearly the same as Opechowski's results, ob-

tained by means of the thermodynamic perturbation

theory (a difference occurs in the third term ).

The authors of references 19 and 38 thus were able

to improve substantially the quantum theory of ferro-

magnetism and to construct an equation for the magneti-

zation, (7.24), which is suitable for all temperature

ranges. (See references 41 and 42 for the first attempts

in this direction.) Naturally, this equation has partly an

interpolation character, but the agreement of the main

terms at temperatures appreciably below the Curie

temperature, in the neighborhood of the Curie temper-

ature, and at temperatures appreciably higher than the

Curie temperature with the well-known results of the

spin-wave theory, the molecular-field theory, and the

regularized perturbation theory shows that this inter-

polation is sufficiently flexible. In the very interesting

paper by Dyson43 on the theory of ferromagnetism he

obtained A4 = A6 = 0 which is different from (7.26).

This shows apparently that one must take higher order

Green functions into account to make the results more

exact.

One can obtain the results of references 19 and 38

by establishing a chain of equations for Green functions

which are built up directly from the spin operators.44

The method of references 19 and 38 can also be applied

to improve the quantum theory of antiferromagnetism44

and the theory of magnetic anisotropy.45

8. ELECTRON-LATTICE INTERACTION

8.1. Electron-Lattice Interaction in a Metal

In the present section we shall consider a system of

electrons interacting with the lattice phonons. We shall

consider metals in the normal state, and following ref-

erence 19 restrict ourselves to the simplest approxi-

mation, which is insufficient to take effects such as

superconductivity into account. This example, however,

which has a methodological character, enables us to

elucidate a number of important properties of a sys-

tem of interacting particles, which will occur also in

other systems, namely: the occurrence of damping and

its influence on the distribution functions. A system of

electrons interacting with phonons for the non-super-

conducting state at zero temperatures was considered

by a Green function method in references 46 and 47,

while in the last paper the role of damping was studied.

(See references 31 and 64 for a theory of superconduc-

tivity based upon the Frohlich Hamiltonian.) In the

present section we shall follow reference 19, amplify-

ing it by considering the phonon Green functions.

The system of electrons in a lattice is described by

the Frohlich Hamiltonian

Μ = Σ Thaixaha + Σ %b*bq + Σ AqaZiaah2a(bq + btq),
(ft,-fts=g) (8.1)

where T^ = k2/2m - μ , μ is the chemical potential,

tiiq the energy of a phonon, aj^., a ^ , bq, and b q the

creation and annihilation operators of the electrons

and phonons, respectively, and the function Aq de-

scribes the coupling of the electrons to the phonon

field

The operators

tions of motion

(8.2)

, bq, and bq satisfy the equa-

1 ^ΙΓ " Γ*α*« + Σ

= T"a>^ + Σ Vi+ί b-o)'

,dbq

• (8.3)

*, σ

if~i~df"= ω Α + Σ Aqak+1."
h.a

We introduce the single-particle Green functions of

a fermion and a phonon type, Gfc and Gp ( in refer-

ence 19 only the fermion Green functions G^ were

considered)

(8.4)

and we construct their equations of motion

dGa

+ Σ
h, a

(8.5)

We see from Eqs. (8.5) that it is convenient to intro-

duce mixed type Green functions, containing both

Fermi-Dirac and Bose-Einstein operators,

Γ*-,. „ k (t - Π = ((α*-3, a (<) bq (0; οία («')» ^ = - 1). |

Gk-q,k.q{t-n = №-<,.o(t)"ko(t);bt-(n)) (η = 1)· I
(8.6)

We get the following set of exact equations for the

Green functions (8.4) and (8.6)

_,,,,„), (8.7a)

(8.7b)

dGq

~dT

. tlFh-q, q, k
1 di :

Λ+2-
h, a

, q, k

-t.a^a^, «Λσ (<'))) (8.7c)
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dT
-fi. q, k

dl = (T k-q k-~Q, q, h

(8.7d)

Uh-q, k, ,, = (Ί\ —• Tk

— ZlAgl

(,(ak'q+q1.o(bqi + blqi)aha; b* («'))). (8.7e)

«I

(The last three equations do not contain an inhomoge-
neous part, as q * 0.)

Apart from the introduced Green functions (8.4) and
(8.6), Eqs. (8.7) contain also higher order Green func-
tions, for which we should in turn construct equations
of motion and continue the process further. We note

that the energy can be expressed in the Green functions
(8.4) and (8.6) only. If we decouple the chain of equa-
tions for the Green functions, (8.7), making some kind
of approximation for the higher order Green functions,
the inaccuracy introduced then will be the smaller the
higher the order of the Green functions for which the
decoupling is performed. It is, for instance, well known
that in classical statistics a rather simple approxima-
tion for the tertiary correlation function describes ap-
proximately some properties of the liquid state.4 8'4 9

For a system with a direct interaction the simplest way
to decouple the chain, where the second correlation
function is expressed in terms of the first one, leads
to the Hartree-Fock method, and the corresponding ap-
proximation for the triple Green function leads to the
generalized Fock method.18

We carry out the simplest interpolation decoupling
of the higher Green functions occurring in Eqs. (8.7)
by pairing off, where possible, operators referring to
the same time

*- 9 - 9 l . σ (b9l + blQi) bq. aic ( £ ' ) » = t>g+qvqGk (t - t'),

« a * - , , o f l i j - Q j , O j O V , ; °*<r ( Ο » = δ ^ - * δ σ _ Ο | ( 1 - nh_q) Gh (t — t'),

*!,•; αί!α (< ' )» = 6,.,.^ (1 + v,) Gh (t - / ' ) ,

- ϊ , . σ (bQl + * - ? l ) ; Κ («')>> = bq^qnh_qGq (t - t'),

q = {b*bq), nh = (aiaaka).

(8.8)

The approximation (8.8) is fairly coarse, and, in
particular, it is insufficient to take into account the
correlation between electrons which leads to the super-
conducting state3 0 '3 1 and which is important at low
temperatures.*

One might, without decoupling the Green functions
(8.8), construct for them equations of motion and make
an approximate decoupling for the higher order Green
functions occurring in these equations. We shall not do
that and we shall restrict ourselves to the simplest
approximation (8.8) as it is sufficiently simple and re-
fleets a number of interesting properties of a system
of interacting particles. Using (8.8) we get an approxi-
mate set of equations for the Green functions

We note, however, that the first two equations of
this set are exact. The set (8.9) is a broken-off chain
of equations for the Green functions. Changing over to
the Fourier components of the Green functions in these
equations,

= \ G e dE>

j ^ * (0 = ^ r k h {E) e~iEt dE,

Tk-q, q, h (t) = J Γ 1 , , ^ Q k (E) e~im dE,

(8.10)

k,a

+ ωβ
K + l -»*_,)Gh,

)= J GGk_qiki

(8.9)
we find from the last three equations of the set (8.9)

(8.11)

•Using the same method one can obtain the results of the theory
of superconductivity if we consider also, when decoupling the Green
functions (8.8), functions of the kind « a ^ t ) ; a-^-crCt'):» (see
reference 64), i.e., take into account the correlation between elec-
trons with opposite momenta and spins.

Gk-k-q, ft, q (E) =

The equations for Gjj (Ε ) and Gq (Ε ) are then of

the form
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We introduce the functions Mk( Ε ) and Pq( Ε) which
by analogy with the quantum theory of fields can be
called the mass and polarization operators

\ _ "V A2

q | -E_Tk_q_

ρ (β\ _ V tf. "ft-9"

ft, σ *

we have then

'k-q

_

2π E-Th-Mk(E)

G1 ^ = ~2Ϊ E-<oq-Pq(E) •

(8.13)

(8.14)

The fermion and boson single-particle Green functions
can thus be expressed in terms of the mass and the
polarization operator, respectively.

Using the Green functions we can also find the cor-
relation functions

ia (f) aka («)) =

(8.15)
CO

= \

where J^ and J q are in accordance with (3.25) defined
by the relations

Ĝ  (ω + ie) - Gk (ω - ie) = - iJh (ω) (ed· -h 1),

GQ (ω + ie) - Gq (ω - ie) = - iJq (ω) (eP« - 1).

The fermion and boson distribution functions can be
found by putting t = t' in Eqs. (8.15)

(8.16)

(8.17)

Using (8.14) and (8.13) to write Eqs. (8.16) down in de-
tail, and using the symbolical identity (3.29) we get

Mk (ω ± ie) = Mh (ω) ψ iyh (ω); Pq (ω ± ie) = PQ (ω) Τ iyq (ω)
(8.19)

(ω is real) where we have introduced the real functions

ft, σ

(ω) = π

δ (ω - 7Vf; - ω,)

- %) δ (ω - Γ, + 7\_,)

(Ρ indicates that the principal value of the corre-
sponding integral must be taken).

ft, σ

(8.12)

The functions y k (ω) and y q (ω) which are also
temperature dependent play the role of damping. As
q — 0, the damping yq — 0.

It is clear from Eqs. (8.19) that the limiting values
of the mass and polarization operators Mk( Ε ) and
Pq( Ε) when the complex argument Ε tends to the
real axis from above and from below (± ie—• 0) are
not the same, as γ^( ω) and yq(o;) are finite quanti-
ties. The functions M k (E) and Pq(E) have thus
singularities on the real axis.

We get for the spectral intensities Jk(oj) and

(8.21)

(The expressions for M ,̂ γ^, and Jĵ  were obtained
in reference 19.) As y k and yq—- 0 the spectral in-
tensities (8.21) tend to a δ -shape distribution.

Fcr the electron and phonon distribution functions
we get the equations

- du>,

C O
(8.22)

άω.

Equations (8.20) and (8.22) are a complete set of equa-
tions for the six functions Mk, P q , yk, γ , nk, and vq.

We are thus led to a self-consistent set of nonlinear
equations, which is very characteristic for approxima-
tions of the kind of interpolation decoupling methods for
the chains of equations for Green functions.

In the limiting case when the damping may be con-
sidered to be very small, the functions (8.21) have a
steep maximum at some value ω = e^ and ω = S q .
Expanding the functions Mk( ω) and Pq( ω) in power
series in ω near these values and taking into account

'k<w> d V " > fre slo^ly varying
e ) ( ω ) ^ ( ) ] w e g e t

yq (ω)

r /αίΡ,Λ Τ-·

(ω—"o . !

where
(8.23)
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plays the role of damping and where e^ and ω~
determined from the transcendental equations

are

(8.24)

Replacing expressions (8.23) for very small values
of the damping γ^ and y q by δ functions, we shall
have for them

-Γ^-Λ _ "Γ1 β (ω-V da A>=efeJ
 v

[see (3.27)] and we get from Eqs. (8.22), dropping
small terms, for the electron and phonon distribution
functions

= χ ) · ( 8 ' 2 5 )Ι)"

ejj and ω~ play thus the role of the elementary elec-
tron and phonon excitations.

It is clear from Eqs. (8.24) that the temperature
dependent spectrum of the elementary excitations is
determined by the real part of the mass operator for
the electrons and of the polarization operator for the
phonons.*

We can use (8.20) to write the equations for the
elementary excitations (8.24) in the form

— 1 k-a — <·>„ F-fe " Tk-q + tt>g
(8.26)

(Ρ indicates that one should take the principal value
of the integral).

Equations (8.22) for n^ and v» are Fermi-Dirac
and Bose-Einstein distributions which are "smeared
out" because of the interaction. The width of the
smearing-out region is of the order of magnitude of
the damping γ^ and γ . The damping is according to
(8.19) determined by the imaginary part of the mass
operator for the electrons or the polarization operator
for the phonons.

In the example considered here we see thus that the
concept of elementary excitations has an approximate
meaning when one neglects damping.

The singularities of the Green functions (8.14) on
the real axis of the energy [their existence follows
from (8.16), since the spectral intensities (8.21) are
not identically equal to zero] are not poles. This is
clear from Eqs. (8.14) and (8.19) since γ^ and yq are
not identically equal to zero, i.e., there is damping.
The Green functions have thus a cut along the real
axis. Only the approximate Green functions for which
damping is neglected have poles on the real axis and
they correspond to the energy (8.26) of the elementary
excitations.

•Similar relations for the Frohlich Hamiltonian in the case of
zero temperature were obtained in reference 47. See reference 18
for the case of a Hamiltonian with a direct interaction and non-
vanishing temperature.

In the given approximation, which is based upon the
decoupling of the functions (8.8), the higher-order
Green functions T^-q, q , k ( E ) ' rk-q, q, k ( E ) ' a n d

Gk-q, k, q<E ) l i a v e P°l e s when Ε equals T^-q + ω~,
T]j_q — o>q, and T^_ — T^, respectively. If we de-
couple not the Green functions (8.8), but Green func-
tions of still higher order, the Fourier components of
the Green functions (8.6) will no longer have poles and
damping will occur for them as it does for the single-
particle Green functions.

8.2. Electron-Lattice Interaction in Semiconductors

The usual methods of evaluating the electrical con-
ductivity, starting from Bloch's transport equation,
are valid only when one can speak about electron colli-
sions, i.e., when the time of mean free path of the
electrons τ is appreciably larger than the uncertainty
of the collisions time,58'55 i.e., τ » h/kT. For semi-
conductors this criterion is satisfied very badly,58 and
the transport equation gives thus only a very rough
estimate.

The quantum theory of the electrical conductivity
without using Bloch's transport equation was recently
considered by Kohn and Luttinger,60 who solved the
equations of motion of the complete density matrix,
using perturbation theory and taking damping into ac-
count. Van Hove81 was the first to consider equations
for the density matrix, taking damping into account.

We shall give here briefly the method of evaluating
the electrical conductivity of semiconductors using
Green functions. For semiconductors one can, when
the electron density is small, start from the picture
of a single electron interacting with the phonon field.
In that case one can also use the Hamiltonian (8.1),
imposing the additional condition that the number of
electrons Ν is equal to unity

= 1. (8.27)

One must then take into account that for any opera-
tor the expressions

= 0, (8.28)

vanish when s > 1 or r > 1, and this greatly simplifies
the problem.

Since we consider only one electron, we cannot use
a grand ensemble with a variable number of particles,
but must use a canonical ensemble in which the num-
ber of particles is constant. In the present subsection
we denote therefore by < . . . > an average over a
canonical ensemble.

We consider the interaction of the electron with the
phonon field for the weak coupling case.

We introduce Green functions in which the operators
A and Β commute with the total number of particles
(η = 1)
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Gp1p2;o2g1(t-t')= < aVi(t)aPa (t)\ aijt')agi(t') >,

GplQPi: , Λ ( « - < ' ) = < «ί, (0 *, W «Pa (0; «ί, (Ο β», (Ο »-

Gp lWV , Λ (ί - Ο =» « αΡ ι (0 61, (ί) αΡΐ (ί); α5; («') α9 ] (ι')»

(8.29)

(we have dropped the spin indices) and we construct
for them the chain of equations

- I .
Ρί-Ρ,=ϊ

(8.30a)

X (8.30b)

"ι-ρι=«ι

ρ,-",^! (8.30c)

In the case of a low electron density one can neglect
the reaction of the electrons on the lattice and assume
that the average occupation number of the lattice pho-
n o n s

is the same as if there were no electrons. We decouple
then the Green functions by pairing off the operators
bq referring to the same time

<aib

q(b<!l + b-<,1)
ap2'

 α ί 2 (* ')%(<')> = (1 + \)Gp i i>2; V l 6 Q + Q i

(8.31)

Equations (8.30b) and (8.30c) are then of the form

{(1 + v,) G P i p 2 + Q ; S 2 S I (E) - v 5 G P i _,, P a : „,„,

(8.32)

where we have changed to Fourier components. We can
easily evaluate the average values of products of three

operators such as < a p b q a g > , if we take into consid-
eration that

dT <αί Ο 6« W β» (0> = 0,

and write this relation down explicitly using the equa-
tions of motion (8-3) in the same approximation as
used for (8.31), and using (8.28). We get then

(8.33)

These expressions contain besides Aq, which is sup-
posed to be small, also a factor n p . In our case of low
electron density these terms will thus be small, so that
we can to a first approximation neglect in Eqs. (8.32)
the first two terms. Changing in Eq. (8.30a) to Fourier
components and substituting into it Eqs. (8.32), after
neglecting these terms, we get an integral equation for
the function

Λ (E)

q-T - ω ,

f ^Pi'Pr s2ti~ E+Tp _ r - ω ,

,!„ "I F.

Q ) 1 ' 2 ' 2 1

= " 2 ^ ( Λ Ρ ι - η Ρ 2

) δ * >

2 - ' Ά ι - < ν (8.34)

One can also easily take into account the terms (8.33)
which lead in the right hand side of Eq. (8.34) to an
additional term with an inhomogeneity of higher order
than the term written down.

Equation (8.34) has the form of a transport equa-
tion* as Ε —- ± ie — 0, as one can easily verify by
using (3.29) to transform the integrand; terms corre-
sponding to principal-value integrals cancel one an-
other then, and there remain terms with δ functions,
expressing the fact that energy is conserved during
collisions.

Assuming that a solution of equations of the kind of
(8.34) is known one can evaluate from (4.26) the elec-
trical conductivity tensor. It is important to note that
we have here not used a transport equation which might
in the present case not be applicable.

9. CONCLUSIONS

1. Double-time Green functions (retarded and ad-
vanced) are a convenient means to study systems of

•The connection between the equation for the pair distribution
function and the transport equation is also true for an imperfect
Fermi-gas."
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large numbers of interacting particles; this is con-
nected with the fact that one can continue them analyt-
ically in the complex plane. The Green functions are
analytical in the whole of the complex energy plane,
but they have, generally speaking, a cut on the real
axis (Sec. 3).

2. The Green functions satisfy a set of coupled equa-
tions in which only double-time functions occur (Sec. 2).
Spectral theorems (Sec. 3) enable us to formulate
boundary conditions for these equations. If one decou-
ples these equations by some kind of approximation
(see, for instance, Sees. 6 to 8) one is able to obtain a
complete set of equations for the Green functions, and
solving these one can evaluate the thermodynamic
functions of the system.

3. Green functions are also convenient in studying
the kinetics of weakly-non-equilibrium processes. The
transport coefficients can be expressed in terms of the
Fourier components of the retarded Green functions
evaluated for the state of statistical equilibrium (Sec. 4).

4. The examples considered here can be divided
into three groups: perfect systems (Sec. 5), model
systems with interactions (Sec. 6), and real systems
with interactions (Sees. 7 and 8).

For perfect systems (the perfect Fermi-Dirac or
Bose-Einstein gas) the Green functions have poles on
the real axis. The spectrum of the elementary excita-
tions is the same as the poles of the single-particle
Green function, there is no damping, and the time cor-
relation functions oscillate as 11' - t |—* =°. If one as-
sumes that there is an infinitesimal interaction in the
perfect gas (which is necessary in order that statisti-
cal equilibrium can be established in it) we can as-
sume that the perfect gas possesses infinitesimally
small damping.

For model systems with interaction (Sec. 6) the
Green functions have poles on the real axis. The
(temperature dependent) elementary excitation spec-
trum is the same as the poles of the single-particle
Green function. There is no damping (more exact: it
is asymptotically small as V —*<*>, V/N = const.).
The time correlation functions oscillate as 11' — 11 —- °°
with an asymptotically small damping.

For real systems with interaction the Green func-
tions have a cut along the real axis and have poles only
in first approximation. The damping is finite. If one
neglects damping, the approximate Green functions
have poles which can be identified with the (tempera-
ture dependent) energy of the elementary excitations.
The energy of the elementary excitations has therefore
a well-defined meaning only when damping is neglected.
The time correlation functions oscillate as 11' -11 —* °°
with a finite damping. The properties enumerated here
are given in the table.

One must, expect that the properties of Green func-
tions illustrated by us with examples will also occur
for other systems which are studied in statistical
mechanics.

Properties of Statistical Systems

Singularities

of the Green

functions

Elementary
excitation
spectrum

Damping

Behavior of the
time correla-
tion functions
as|t'-(!|-»oc

Perfect systems

Analytical in

Poles on the
real energy axis

The same as
the poles of the
single-particle
Green function

No damping

Oscillate

Model systems Real Systems

the upper and lower energy half plane

Poles on the
real energy axis

The same as
the poles of the
single-particle
Green function;
generally speak-
ing temperature-
dependent

No damping
(more exactly:
asymptotically
small damping)

Oscillate with
asymptotically
small damping

A cut along the real
energy axis

To a first approximation,
the same as the poles
of the Green function.
In higher orders there
are no poles; the spec-
trum is defined in as
far as damping can be
neglected.

Finite damping

Oscillate with finite
damping
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Translator's Comments:

This paper should be compared with the series of papers by
Martin and Schwinger, of which only the first part has appeared so
far.1 Zubarev does not go into as detailed a discussion of the
mathematical properties of Green functions, concentrating rather
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on applications. It is surprising that neither Zubarev nor Martin and
Schwinger refer to the early papers by Husimi2 and Koppe,3 who
noted the connection between the density matrix and Green functions,
or to Salam's paper4 where, probably for the first time, Green func-
tion techniques were applied to solid-state many-body problems (in
this case, superconductivity). Zubarev's paper discusses double-
time generalized Green functions which are the averages of the time-
ordered products of any two operators rather than the normally used
multiple-time many-particle Green functions of field theory which
are the averages of the time-ordered products of any number of
second-quantized wave-functions. It must be mentioned, however,
that Martin and Schwinger in fact used the double-time Green func-
tions in all applications, and that in most applications Zubarev's
Green functions are, indeed, the many-particle ones, although Zu-
barev makes it clear that the generalized Green functions can often
be used to advantage, for instance in the theory of ferromagnetism.

Zubarev stresses the advantage of the advanced and retarded
Green functions rather than the causal ones normally used, for in-

stance by Martin and Schwinger. The advantage lies in the fact that
the advanced and retarded Green functions, or rather their Fourier
transforms, can be analytically continued in the complex energy
plane.

The literature quoted by Zubarev is much more comprehensive
than that quoted by Martin and Schwinger and covers both Russian
and non-Russian references. Recent developments, especially in
solid state theory, have largely occurred in the Soviet Union, apart
from those on linked cluster expansions of the grand partition func-
tion. These expansions — where the Green functions occur as propa-
gators — are discussed neither by Zubarev nor by Martin and Schwinger.

'P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
2K. Husimi, Proc. Phys.-Math. Soc. Japan 22, 264 (1940).
3H. Koppe, Ann. Physik 9, 423 (1951).
4A. Salam, Progr. Theoret. Phys. (Kyoto) 9, 550 (1953).
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