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1. INTRODUCTION

J.HE production of oriented nuclei is of considerable
interest. It is enough to note that the most important
phenomenon discovered during the last few years,
namely parity nonconservation in β decay, was ob-
served by measuring the angular asymmetry of the β
radiation of Co6 0 nuclei polarized by the Gorter-Rose
method. Although almost complete information has
been obtained in the last three years on the Hamilton-
ian of the β interaction, the production of oriented nu-
clei has not lost its significance. Actually, for exam-
ple, we can determine the numerical values of nuclear
matrix elements from Wu-Ambler experiments per-
formed with other nuclei, by comparing the theoretical
results with the experimental data. This is important
for the verification of nuclear models. It is further-
more interesting to produce nuclear reactions with
polarized incident nucleons and polarized targets.
Measurement of the angular distribution of the a radi-
ation of oriented nuclei makes possible an investigation
of the nonsphericity of nuclei. Of considerable interest
are experiments on the production, scattering, and ab-
sorption of strange particles on polarized protons.

Finally, experiments with polarized nuclei are inter-
esting also from the point of view of investigation of
the properties of solids.

The methods first proposed for the production of
oriented nuclei (polarization by means of an external
field, the methods of Gorter-Rose, Pound, or Bleaney;
see, for example, the reviews in references 1, 2, and 3)
are based on the creation of conditions under which dif-
ferent nuclear-spin directions correspond to energies
that differ by amounts greater than or of the order of
kT. However, in view of the smallness of the nuclear
magnetic and quadrupole moments, extremely low tem-
peratures, (on the order of several hundredths of a
degree ) are necessary to obtain a considerable degree
of orientation by these methods.

In 1953 Overhauser proposed4 a very original and
clever method of obtaining polarized nuclei, realizable
at helium temperatures rather than at extremely low
ones. Overhauser stated that his method was applic-
able only to metals. It was found later, however, that
the Overhauser method can be used to polarize nuclei
in many nonmetals, too.

We shall assume the reader to be familiar with the
phenomenon of paramagnetic resonance (see surveys,
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references 5-9). We shall nevertheless discuss briefly
resonance saturation and its hyperfine structure, since
the Overhauser effect is based on these phenomena.
We shall also touch upon the so-called contact interac-
tion between the electron and nuclear spins.

2. CONTACT INTERACTION BETWEEN ELECTRON
AND NUCLEAR SPINS

We denote by S and Ϊ the spin operators of the elec-
tron and nucleus, respectively, and by β and /3n the
operators of their magnetic moments. We have

= 7 ΐ (2.1)

(β is the Bohr magneton while βη and I are the maxi-
mum projections of the magnetic moment and of the
nuclear spin).

For the matrix element of the energy of interaction
between the magnetic moments of the electron and the
nucleus (electron transition i—·• f) we can write

•ifidt, (2.2)

where j is the current density due to the magnetic mo-
ment of the electron and A is the vector potential of
the field produced by the nuclear magnetic moment.

Furthermore

(2.3)

(r is the radius vector of the electron relative to the
nucleus), and thus

:τ. (2.4)

We denote by ψι and ^j the initial and final wave
functions of the electron. For jfj we have10

(2.5)

Thus,

V,,= -2ββ η ax.

This expression can be converted to the following
form (see reference 10, p. 548):

(2.6)

so that we can obtain an expression for the operator V

V = _ to ( p p j 6 ( f ) _ 3 (βΓ) (P»r) - r> (»„) ( 2 ? )

It is customary to call the first term of the last ex-
pression the contact or hyperfine-structure term,
while the second is known as the dipole-dipole term.

We shall henceforth be interested in cases when the
initial and final wave functions of the electron ψ i and
φρ are almost identical with regards to the spatial
state. In this case the contact term is proportional to
| ip (0 ) | 2 . It is known that ψ (0 ) differs from zero in

the s state and vanishes in the p, d, . . . , states. On
the other hand, the dipole-dipole term vanishes in the
s state, in view of the spherical symmetry of the wave
function.

The operator of the energy of interaction of the
magnetic moments of the electron and the nucleus re-
duces thus to the contact term in the case of the s
state, and to the dipole-dipole term in the case of the
p, d, . . . states. A very important circumstance in
this case is that in the s state | ψ (0) | 2 is usually suf-
ficiently large, and therefore the energy of interaction
of magnetic moments of the electron and the nucleus is
usually much greater in the s state than in the p, d,
. . . states.

It happens frequently that the electron wave function
does not have a definite azimuthal quantum number. In
this case we expand ψ in wave functions with definite
azimuthal quantum numbers:

Ψ = «A + "•„% + α Λ + •··

It follows from the foregoing that if as is not anom-
alously small, in other words, if | φ (0) | 2 is sufficiently
large, then the contact term is much greater than the
dipole-dipole term and the latter can be neglected. In
this case

(2.8)

Let us analyze a few examples, which will be found
useful later on.

a) Atom of Hydrogen or of an Alkali Metal

In the ground state of an atom of hydrogen or of an
alkali metal, the valence electron is in the s state.
Therefore the dipole-dipole term will be exactly equal
to zero and only the contact term remains.

b) Metals of the First Group

We are interested in the magnetic interaction be-
tween the nucleus and an electron located in the con-
duction band and of energy close to the Fermi bound-
ary. It is known from the theory of metals that in the
case of metals of the first group the conduction band
is a hybrid s + ρ band. Therefore the fraction of the
s state in the wave function of the electron will not be
small, | ψ (0) | 2 will be large (as confirmed by experi-
ments on the so-called Knight shift11), and the dipole-
dipole term will be negligibly small.

c) Silicon or Germanium with Pentavalent Donor or
Trivalent Acceptor Impurity

The model which explains the properties of german-
ium or silicon with a pentavalent or a trivalent impur-
ity is well known. To be specific, we shall discuss only
arsenic or aluminum doped silicon.

The arsenic atom replaces a silicon atom; in this
case the four valence electrons of the arsenic are suf-
ficient to saturate the covalent bonds with the four
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nearest atoms of the silicon. At sufficiently low tem-
peratures the fifth electron is localized near the ar-
senic ion; at high temperatures it is not localized and
causes the electronic conduction. Thus, at low tem-
peratures we have the system As+ + electron, and we
speak of a magnetic interaction between the electron
and the nucleus of the arsenic. This system is analo-
gous to the hydrogen atom, the only difference being
that, firstly, account must be taken of the dielectric
constant of the medium, and secondly, the effective
mass of the electron is used instead of the true mass.
Both circumstances lead to an increase in the orbit
dimensions, i.e., to a reduction in | ip ( 0 ) |2, but
| 0(0 ) |2 remains still sufficiently large to be able to
neglect the dipole-dipole term in the magnetic inter-
action in the spins of the electron and the nucleus.

At high temperatures, one speaks of magnetic inter-
action between the spins of the nucleus and the non-
localized electron, a situation similar to that in a
metal. In this case, too, the contact term is expected
to predominate.

The situation is analogous for aluminum doped sili-
con, except that the positive arsenic ion and the "ex-
cess" electron are replaced by a negative ion of alum-
inum with an "excess" hole.

According to experiment, the ionization energy of
the trivalent or pentavelent impurity is on the order of
0.05 ev in the case of silicon and 0.01 ev in the case of
germanium. At helium temperatures, therefore, almost
all the "excess" electrons or holes in the silicon are
localized near the impurity ions, whereas in the case
of germanium a considerable part of the impurity
atoms is ionized. On the other hand, at hydrogen tem-
peratures the greater part of the impurity atoms is
ionized in the case of silicon, too.

d) F center in Alkali-Halide Crystals

To be specific, we shall discuss the KC1 crystal.
It has been well established that the F center is a

chlorine-ion vacancy that has captured an electron.
According to the LCAO (linear combination of atomic
orbits ) model the ψ function of the electron of the F
center has approximately the following form:12

c
Ψ(Γ) = —-1-- Ύ, φ(τ -ι·;), (2.9)

where r is the radius vector of the electron relative
to the center of the vacancy, and r̂  is the radius vec-
tor of the i-th of the potassium ions surrounding the
vacancy. The summation is over the six potassium
ions located on the first coordination sphere. In other
words, it is assumed that the electron is localized with
equal probabilities on the six potassium ions nearest
the vacancy. The function φ in (2.9) is the wave func-
tion of the electron in the field of the potassium ion
(whose shell is deformed by the vacancy field).

If I 4> (*i) I2 is sufficiently large [ in other words, if
| ψ (0 ) | 2 is sufficiently large], we can neglect in the

magnetic interaction between the spins of the electron
and of the i-th potassium nucleus the dipole-dipole
term compared with the contact term. The validity of
this neglect is confirmed by experiment;12 experiment
yields a value of approximately 0.5 — 0.6 for the frac-
tion of the s state in the wave function φ.

e) Free Radical

By way of an example, let us consider the free rad-
ical of diphenyl pycril hydrazil (abbreviated DPPH ).
The structural formula of this radical is of the form

(C6H5)2-N-N-C6H2(NO3)2.

The dot signifies that one of the covalent bonds of the
nitrogen is not saturated, i.e., it is produced by only
one electron. One can expect the magnetic interaction
of this uncompensated electron with the two neighbor-
ing nitrogen nuclei to be essentially a contact interac-
tion, while the interaction with the hydrogen nuclei is
dipole-dipole [ since | ψ (0 ) | is large in the former
case and small in the latter] .

f) Paramagnetic Ion Containing a Spinning Nucleus

Let us consider a hydrated paramagnetic salt. In
this case the magnetic interaction of the nearest para-
magnetic ions is relatively small, and can be further
reduced by diluting the salt.

Let us ponder on the magnetic interaction between
the nucleus and electrons of the partially filled shells.
It would appear at first glance that there should be no
contact term in this case. Actually, the paramagnetic
ion has a partially filled 3d (ions of the iron group ) or
4f (ions of the rare-earth group) shell,and ψ(0) = 0
for the d and f electrons. A weak magnetic interac-
tion is therefore expected.

The magnetic interaction between the nucleus and
the electrons appears in the hyperfine structure of the
paramagnetic-resonance spectrum (see Sec. IV). Ex-
periment shows that in many cases the hyperfine struc-
ture is considerably greater than expected for 3d or
for 4f electrons. The only explanation for this fact
was the hypothesis, advanced by Abragam,14 that a
noticeable role is played by the shell states with un-
paired electrons. According to this hypothesis, for ex-
ample in the case of elements of the iron group, the
ground state of the paramagnetic ion, contains, in addi-
tion to the 3s2 3d11 state, the state 3s 3d114s, with small
weight. In spite of the smallness of the weight, the
second term will play a predominant role in the mag-
netic interaction. This mixing is called configuration
mixing.

It must be noted that it is still unknown whether
configuration mixing exists in all cases, and it is there-
fore unclear whether it is permissible in all cases to
retain for paramagnetic salts the contact term in the
magnetic interaction between the nucleus and the elec-
tron shell of the paramagnetic ion.
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We shall confine ourselves henceforth to an exami-
nation of paramagnetic salts for which the effective
spin of the shell of the paramagnetic ion is 1/2. This
means that in the absence of an external magnetic field
we have one doubly degenerate level (disregarding the
degeneracy connected with the nuclear spin); the re-
maining levels have energies considerably greater
than kT and are therefore not populated. The case of
effective spin equal to 1/2 is quite frequent. For ex-
ample, this occurs for salts of cobalt, copper, titanium,
praseodymium, neodymium, etc.

We have seen earlier that the contact term in the
energy of magnetic interaction of an electron with a
nucleus is proportional to Si. On the other hand, it is
easily seen that SI commutes with the expression
S + i.* The operators 3 (Sr) (Ir) - r2SI and S + I do
not commute, however. Thus, the contact term com-
mutes with the total spin, while the dipole-dipole term
does not.

Denoting by Μ and m the eigenvalues of the oper-
ators Sz and I z, we have the following selection rules
for transitions due to the contact interaction:

AM = — Am= ± 1.

Transitions with such selection rules are called
flip-flop transitions. The dipole-dipole term, causes
in addition to flip-flop transitions also the following
transitions:

AM = Am =±1
AM = ± 1 , Am = 0
AM = 0, Am = ± 1

flip-flip transitions
vertical transitions
horizontal transitions

(the reason for the terms "vertical" and "horizontal"
will be explained later).

Finally, in the case of nuclear spin greater than l/2,
an important role can also be played by quadrupole
transitions

AM = 0, Am=±2,

due to the interaction between the nuclear quadrupole
moment and the electric field of the surrounding
charges. (We note that there will be also quadrupole
transitions with the same selection rules as the hori-
zontal transitions.)

3. SATURATION OF PARAMAGNETIC RESONANCE

Let us consider the case S = V2 ( s i s either the
spin of the electron or the effective spin of the shell of
the paramagnetic ion) and no hyperfine structure.
When an external magnetic field Η is applied, we ob-
tain two Zeeman levels corresponding to projections
+ V2 and - V2 of S on the field (Fig. 1). The energy dif-
ference between these levels is g/3H, where g, gener-
ally speaking, depends on the orientation of the exter-
nal field relative to the crystallographic axes.

*It is easy to see that S2 + Iz commutes also with the expres-

FIG. 1

We denote the level populations by Ν (a) and η (a'),
the total number of spins in the sample by N, and the
excess of spins in the lower state by D. We have

N(a)-N{a') = D.
(3.1)

(3.2)

The probabilities of relaxation transitions (i.e.,
transitions caused by the spin-lattice interaction)
a —·• a' and a' —* a per unit time will be denoted by
W(aa') and W(a'a). In the case of Boltzmann statis-
tics, we can assume that*

^(a'a) _ „.

W(aa')

where

" ikT •

We introduce the quantity

W = [W (aa')W {a'a)]"K

(3-3)

(3.4)

(3-5)

Generally speaking, W will be a function of the temper-
ature and of the external field. We have

Wiaa^^We-6, W(a'a) = We\ (3.6)

We readily obtain for the equilibrium excess

D0 = iVtanh6. (3.7)

We furthermore have
D = - 2/V (a) W {aa') + 27V (a') W (a'a)

or

where

τ !
2Wcosh6 W (aa1) + W (a'a)

The solution of (3.8) is of the form

(3.8)

(3.9)

T t is therefore called the spin-lattice relaxation time.
Assume that, in addition to the constant field, an

alternating field is applied to the sample, of frequency
ω close to gj3H/h and of amplitude much less than that
of the constant field. We denote by W(a) the proba-

sion

«Actually, in equilibrium №(a)W(aa') = №(a')W(a'a) (the super-
script 0 denotes the equilibrium value). On the other hand,
№(a)/N°(a')=e2S. Therefore W(a'a)/W(aa') = e2 S. But since the
transition probabilities are independent of whether equilibrium
exists, the last equation holds also in the absence of equilibrium.
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bility per unit time of the transition a *—- a', due to
the alternating field (the alternating field produces
transitions a —• a' and a'—» a with equal probability*).
In the stationary case we have

Ν (a) [W (a) + We-6] = Ν (a') [W (a) + We6],

which yields
η Aw (e e ) D^ .„ -tr\\

ZWi^+Wie^+e-6)" i + 2W(a)T, • ^ 1 U '

We introduce the parameter of saturation of a mag-
netic resonance, s, by means of the following formula

, . _ < D , Λ»-Λ>')

We can readily obtain
2W (a)

TV0 (a)— №(a') "

2W (α) Ί\
2W{a

(3.11)

(3.12)

For the power absorbed by the sample (from the
source that produces the alternating field) we can
write

Ρ = W (a) Dg$H,

which can be readily transformed to

(3.13)

Let us analyze the physical meaning of the above
results. Equation (3.12) shows that s « 1 when
W ( a ) T j « l a n d s = l when W ( a ) T t » 1.
This can be readily understood, considering that
W (a ) T t is the probability of reorientation of the spin
under the influence of the alternating field during a
time T t . Actually, two factors influence the spin sys-
tem. On the one hand, the interaction between the spins
and the lattice tends to establish a Boltzmann distribu-
tion of the spins over their Zeeman levels. On the
other hand, the interaction between the spins and the
alternating field tends to establish equality of Ν (a)
and Ν (a '), i. e., to make s equal to unity. Which of
these factors predominates depends on W ( a ) T t .

We say that there is no saturation when s « 1, the
resonance saturation is complete when s = 1, and the
saturation is partial when s & 1.

The physical meaning of Eq. (3.13) for the absorbed
power is also quite clear. Actually, when s = 1, i.e.,
for complete saturation, the alternating field should
flip D o/2 spins within a time T t from the lower level
to the upper one, corresponding to an absorbed power
equal to Dog/3H/2Ti.

We can derive the following expression for W ( a ) : 1 S

W(a)=W(<o)=^(yHiy<f(u>), (3.14)

where γ is the gyromagnetic ratio of the spin, 2Ht

the amplitude of the alternating field (it is assumed
applied perpendicular to the main field), and φ (ω ) a

*In the radio and microwave regions we can neglect the spon-
taneous transitions.

function that defines the shape of the absorption line
and is normalized by the condition

\ φ (ω) du> — 1.

Substitution of (3.14) in (3.12) yields

where
1

(3.15)

(3.16)

(3.17)
1 γ V ηΓ,φ (ω)

Let, in particular, exact resonance take place

ω = ω0 = yH.

We consider that1 5

πφ (ω0) = r2, (3.18)

where 1/T2 is the width of the absorption line based
on the true frequency (the width being taken to be the
width of a rectangle, whose height is equal to half the
height of the maximum, and whose area is unity). We
obtain

s = s (co0) = -

where

y V

(3.19)

(3.20)

(3.21)

When H t « H° we have s Ζ 0, whereas when H t

» H^ we have s = 1. For this reason H^ is called
the critical field, or more accurately, the critical half-
amplitude of the alternating field.

The physical meaning of (3.21) is clear; this for-
mula indicates that Hf increases with decreasing T t

and T2. Actually, the stronger the relaxation and the
broader this line, the more difficult it is to saturate
the absorption line.

Let us discuss briefly the nonstationary case. It is
easy to set up an equation for D

dD
It'' ±

whose solution yields

where τ is given by

(3.22)

(3.23)

(3.24)

τ is the time of approach to the stationary state. It is
less than Tj. In the limiting cases we have

τ=7\

' 2W(a)

for

~tfis for Η^Ηχ.
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Thus, at sufficiently large Ht, the stationary state
is reached quite rapidly.

The foregoing theory of saturation of magnetic res-
onance is not quite exact. It needs a generalization for
excessive values of Hj (see reference 16) and also for
the case of the so-called inhomogeneous broadening
(see reference 17). We shall not discuss these ques-
tions, however.

Let us touch briefly on a question which will be very
important in what follows, of the so-called "adiabatic-
ally fast" passage through resonance. Assume that we
pass through resonance between two levels by changing
the external main magnetic field (the frequency of the
alternating field is fixed). If the passage through res-
onance is sufficiently rapid, the relaxation effects will
be insignificant during the time of passage. The ques-
tion of rapid passage through resonance was considered
theoretically by Bloch,18 who showed that in rapid pas-
sage an exchange takes place between the populations
of two levels, or, as is customarily said, an inversion
of two levels takes place. In order for the passage to
be rapid, the following condition must be satisfied

dH

IF (3.25)

We obtain from this, in particular, that Hj must be
considerably greater than ΐ/γΤ2, i.e., than the width
of the absorption line. Furthermore, if we take the
time of passage through resonance to mean the expres-

1 dH ~l

sion Ht I -jj£ , it follows from (3.25) that this time
should be considerably smaller than T2.

The distribution obtained as a result of a rapid pas-
sage will naturally not be in equilibrium, and a relaxa-
tion to the equilibrium state will take place, with a re-
laxation time T t.

4. HYPERFINE STRUCTURE OF PARAMAGNETIC
RESONANCE

Let us consider first the case of a paramagnetic
salt. If the nucleus of the paramagnetic ion has a spin,
the paramagnetic resonance will have a hyperfine
structure.

Let us analyze the case when the external field is
sufficiently large, namely much larger than the field
with which the nucleus acts on the shell spin (the Back-
Goudsmit case) . For this it is usually sufficient that
the external field be greater than 2 or 3 kilooersteds.

In a strong field, the projections Μ and m of the
spins of the electron and of the nucleus on the field
a r e good quantum numbers. The selection rules for
paramagnetic resonance are of the form ΔΜ = ± 1 and
Am = 0. But the projection of the nuclear spin m has
2 1 + 1 possible values. Therefore the total field acting
on the spin of the shell will have 21 + 1 possible values,
and for this reason the paramagnetic resonance will
have 21 + 1 hfs components. In the case of a strong
field these components will be equidistant and of equal
intensity.

For details concerning the hyperfine structure of
paramagnetic resonance in paramagnetic salts we re-
fer the reader to the survey by Bleaney and Stevens.5

We note merely that to resolve the hyperfine structure
the experiments must be carried out with dilute salts.

The situation is quite analogous at low temperatures
in the case of silicon or germanium with pentavalent
donor or trivalent acceptor impurity, if the nucleus of
the impurity has a spin. Let us consider, for example,
silicon with an arsenic impurity. Among the isotopes
of arsenic, only As75, with spin %, is stable. There-
fore the total field acting on the "fifth excess" elec-
tron of the arsenic will have four possible values, and
consequently the hyperfine structure will have four
components.

Analogously, in the case of phosphorus doped silicon
we obtain a hyperfine structure with two components
(P 3 1 has spin V2)·

Both in the case of a paramagnetic salt and in the
case of silicon or germanium with pentavalent or tri-
valent impurities (at low temperatures), the problem
reduces to the analysis of a system consisting of an
electron shell of a paramagnetic ion with effective spin
S (we confine ourselves to S = V2 )>

 o r a n electron, or
a hole and a nucleus with spin I, placed in an external
magnetic field H. Abragam and Pryce19 have shown
that such a system can be described by a so-called
spin Hamiltonian, which in the case of axial symmetery
of the intracrystalline field has the form

•m = β [guffA + g± {HXSX + HySy)}+ [ASZL + Β (Sjx + Sjj]

(4.1)

where ζ is the symmetry axis of the intercrystalline
electric field, g||, g^, A, B, and Ρ are constants de-
termined by comparison with experimental data, and
gj/J = βη/1 (β is the nuclear magnetic moment).

In the case of silicon or germanium with pentavalent
or trivalent impurities, the symmetry is spherical
(more accurately, cubic) and therefore A = Β and
gH = g^. In the case of paramagnetic salts, generally
speaking, A ^ Β and g|| * g^.

In the case of a strong field (g/3H » A, B ), the
energy levels of the spin Hamiltonian have the form20

EMm =

where

m + Ο (4.2)

(4.3)

(4.4)Kg = Υ A'gfi cos2 d + B2g\ sin2 &

(i? is the angle between the directions of Η and z*).
For the transition energies of the paramagnetic

resonance we obtain

*A detailed investigation shows2 0 that if the external magnetic
field is not directed along one of the principal directions of the
tensor g^, then the quantization axes of I and S do not coincide
with the direction of the external field.
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i.e., as indicated above, we have 2 1 + 1 equidistant
components.

All the foregoing pertains to the ordinary (or
allowed) paramagnetic resonance. In addition to ordi-
nary paramagnetic resonance, so-called forbidden par-
amagnetic resonance is possible, in which the projec-
tion of the nuclear spin m also changes by ±1. These
transitions are due to mixing of states with different
m, resulting from the term proportional to Β in the
spin Hamiltonian (4.1). The theory of forbidden para-
magnetic resonance is considered in references 21 and
22.

If the spin Hamiltonian has an axial symmetry, and
the external field is directed along the symmetry axis
of the intracrystalline electric field, we obtain the fol-
lowing selection rules for the transitions of the for-
bidden paramagnetic resonance (we denote the levels
by their quantum numbers in a strong field)

AM = —Δ/η= ± 1 .

It is easily seen that in order for such transitions
to take place, the resonating field must have a non-
zero component along the main field. It is also easy to
see that the forbidden paramagnetic resonance will
have a hyperfine structure consisting of 21 components
with transition energies approximately equal to

A simple estimate shows that the probability of a
forbidden transition is, in order of magnitude,
(gH/3H/A)2 times smaller than the probability of the
allowed transition.

We note finally that if the external field is not di-
rected along the symmetry axis of the intracrystalline
field, or else if the spin Hamiltonian does not have
axial symmetry, forbidden transition with selection
rules ΔΜ = Am = ± 1 will also be possible.

Let us turn now to the question of the hyperfine
structure in the case of other systems, confining our-
selves to the case of ordinary (allowed) paramagnetic
resonance.

We consider the hyperfine structure in the case of
resonance on F centers. 1 2 Specifically, we shall again
discuss the KC1 crystal. The electron of the F center
experiences magnetic interactions with the nuclei of
the six potassium ions surrounding the vacancy, and
also with more remote nuclei. In first approximation
we can confine ourselves to a calculation of the inter-
action with the six nearest potassium nuclei. Because
of the large number of possibilities of distribution of
spin directions of these nuclei, we usually obtain an
unresolved hyperfine structure. In other words, the
individual components of the hyperfine structure over-
lap, and considerable broadening of the absorption line
takes place. For example, in the case of KC1, the

width of the absorption line is approximately 100 oer-
steds. In individual cases, in particular in the case of
LiF, a resolved hyperfine structure is obtained.

A hyperfine structure is obtained also in the case of
paramagnetic resonance on a free radical, provided a
nucleus with spin is located near the uncompensated
bond. For example, owing to the two nitrogen nuclei,
paramagnetic resonance on highly dilute DPPH pro-
duces a hyperfine structure with five components.1 3

In the case of paramagnetic resonance on a metal,
i.e., on the conduction electrons, no hyperfine struc-
ture is observed. The reason for the absence of a hy-
perfine structure in this case is that the conduction
electrons are not localized, but wander over the entire
crystal, and the field produced by the nucleus and act-
ing on the conduction electron is therefore averaged.

There is likewise no hyperfine structure in reso-
nance on doped silicon or germanium at high tempera-
tures. The point is that at high temperatures the "ex-
c e s s " electrons and holes, as we have seen above, are
not localized near the impurity atoms.

Nor is there any hyperfine structure in the case of
resonance in a liquid containing paramagnetic ions,
provided the nuclei of the paramagnetic atoms have no
spin. The reason for the absence of hyperfine struc-
ture is the same as in the case of metals.

5. OVERHAUSER EFFECT WITH COMPLETE
SATURATION OF ALL THE COMPONENTS

Let us consider a system consisting of an electron
or an electron shell with effective spin S = V2 and a
nucleus with spin I, placed in an external magnetic
field H. We assume the external field to be sufficiently
strong. The energy levels of the system are given by
(4.2). When calculating the Boltzmann populations, we
neglect the spin-spin interaction energy. Then the
level picture assumes the form shown in Fig. 2, i.e.,
we obtain 2 1 + 1 pairs of levels, and the difference in
the energies of the components of each pair is g/3H.
For the sake of brevity, the state Μ = — 1/2l m will be
denoted by m, and the Μ = ι/2, m will be denoted by
m'.

In the case of statistical equilibrium, the respective
populations of each lower and upper level are

№ (m) = —
Ν

№ (m1) = —Ν (5.1)
2/ + 1 e

fi + e

and the approximate nuclear polarization is zero.
If all the components of the hyperfine structure are

completely saturated, we obtain

N(m) = N{m') for all m.

Μ

= 1 /-/ μ+1 μ μ-Ι

FIG. 2

-(1-1) -I

fiH
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If it is assumed that the nuclear spin interacts only
with the electron spin, and that this interaction is of
the contact type, equilibrium will exist in the station-
ary case for all the flip-flop transitions, and we obtain

Ν (/) :7V(/- l'j = Ν (Ϊ- 1): Ν (/- 2')

where δ is given by (3.4).
Using these conditions we readily obtain

N(m) + N(m') = const· e2m6, (5.2)

where the constant is independent of m.
We thus find that the states with different nuclear-

spin projections have a Boltzmann distribution, but
with a Boltzmann factor exp (g^H/kT) = exp (KyeH/kT),
instead of the exp(KynH/kT), obtained in statistical
equilibrium in the absence of saturation; γ η denotes
the paramagnetic ratio of the nucleus; ye denotes the
absolute value of the gyromagnetic ratio of the elec-
tron, or, in the case of a paramagnetic salt, the gyro-
magnetic ratio of the spin of the shell. This shows that,
with total saturation of all the hfs components of para-
magnetic resonance, the effective gyromagnetic ratio
of the nucleus is equal to the gyromagnetic ratio of the
electron (or of the shell of the paramagnetic ion):

Yeff=Y.· (5-3)

This is the Overhauser effect. More generally, the
Overhauser effect is the increase of nuclear polariza-
tion upon saturation of the electron paramagnetic res-
onance.

If the quantization of the nuclear spin has an axial
symmetry, the degree of orientation of the nuclei can
be characterized quantitatively by 21 quantities ί̂ ( k
= 1, 2, . . . , 21 ).23 The most important of these are

/i-4< m >· <5·4>

(5.5)
/(2/-1) '

(the symbol < > denotes averaging over nuclei of a
given type in the sample).

It is easy to write all the values of f̂  for total sat-
uration of all the hfs components of paramagnetic res-
onance. For this purpose we must replace γ η with y e

in the expressions for f̂  in the case of polarization
with an external field.23 In particular we obtain

/(2/-1) L ά

/,=**. (2/6),

/ . = coth6Sf(2/6),

(5.6)

(5.7)
2/—1 21-

where Bj(y) is the so-called Brillouin function.
It appears at first glance that the above deduction

holds only when the sample contains individual sys-
tems, each of which consists of a nucleus with spin I
and an electron (or a hole, or an electron shell with
S = %). This is the case at sufficiently low tempera-

tures, for example, for silicon or germanium with pen-
tavalent donor or trivalent acceptor impurities. We
have a similar situation in the case of a paramagnetic
salt in which the nuclei of the paramagnetic atoms have
spins. We note that in these cases the paramagnetic
resonance has a hyperfine structure.

There exist other cases, however. For example, in
the case of a metal, in view of the non-localization of
the conduction electrons, the electrons will change in
the vicinity of a given nucleus. The same situation will
prevail in the case of silicon or germanium with donor
or acceptor impurity at high temperatures, when the
excess electrons or excess holes are not localized.
The situation is also analogous in the case of a solu-
tion containing paramagnetic atoms, if one speaks of
polarization of the solvent nuclei. We note that in all
these cases the paramagnetic resonance does not have
a hyperfine structure.

It is easily seen, however, that with total saturation
of paramagnetic resonance the aforementioned result
will remain in force in these cases, too, for as soon as
the resonance of all the electrons is saturated, their
exchange near a given nucleus will not play any role.
The result remains true also in the case of a metal,
since the foregoing proof remains valid also in the
case of Fermi statistics.*

Thus, if the paramagnetic resonance is completely
saturated (all the components are saturated in the
presence of a hyperfine structure), and if we can neg-
lect the non-contact terms in the nuclear spin inter-
actions, then yeff = ye iQ aU cases. This takes place
independently of the sign of γ η , and thus, a positive
polarization of the nuclei is obtained in this case
(fj > 0), i.e., the average spin is directed along the
external field.

In the sections that follow we shall analyze in detail
systems of different types. We shall see that if the
saturation is incomplete or if the non-contact terms
in the relaxation of the nuclear spin cannot be neglected,
the results will be different for different substances.
In further calculations we shall also take into account
the Zeeman energy of the nucleus.

Before we proceed to a detailed analysis of the
Overhauser effect in the case of specific substances, it
will be useful to clarify the physical nature of this ef-
fect. Let us turn again to Fig. 2. When all the para-
magnetic resonance components are saturated, we
artificially increase the population of the upper levels.
If the nuclear spin experiences only flip-flop relaxa-
tion, then we obtain after saturation the transitions
μ' —* μ + 1 (μ = Ι, Ι — 1, 1-2, . . . , — I), as a re-
sult of which the states with large m will be more
strongly populated, i.e., we obtain nuclear polarization;

•This is connected with the fact that g F / ( l - g F ) = g B , where
g F and g B are the Fermi and Boltzmann distribution functions,
respectively.
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the foregoing calculation shows that with complete sat-

uration y e f f = γ β · *

If, on the other hand, the nuclear spin experiences

only flip-flip relaxation, then the transitions μ' —- μ — 1

(μ = I, I — 1, . . . . — I + 1) take place, and we obtain

Veff = ~ Ye.

If the relaxation of the nuclear spins is not con-

nected with the interaction with electrons (for example,

if the relaxation is quadrupole) or, more generally, if

relaxation processes in which the projection of the

electron spin does not change strongly predominate,

then the nuclear polarization will correspond to the

true gyromagnetic ratio of the nucleus, i.e., the Over-

hauser effect will not take place in this case. Nor will

there be any Overhauser effect when the probabilities

of the flip-flop and flip-flip transitions are equal.

Thus, in order for the Overhauser effect to take

place it is necessary that either the flip-flop or the

flip-flip transitions play a noticeable role in the nuclear

magnetic relaxation, and their probabilities must not

be equal.

In order for the Overhauser effect to take place,

still another condition must be satisfied. There must

be a possibility of transferring to the lattice the energy

connected with the flip-flop or flip-flip transitions of

the nucleus and the electron.

The importance of the Overhauser effect lies in the

fact that upon saturation of the paramagnetic resonance

the effective gyromagnetic ratio of the nucleus increases

by three orders of magnitude. Therefore, whereas ex-

ceedingly low temperatures must be used to obtain

considerable polarizations of nuclei by an external

field, in the Overhauser method it is enough to employ

liquid-helium temperatures.

For example, in the case of a proton (I = %, βη

= 2.79 nuclear magnetons) at Η = 104 oersteds,

Τ = 2* Κ, and complete saturation of the electron res-

onance, fi = tanh δ = 0.33, whereas for the same J

and T, but in the absence of saturation, f t

= tanh(K r nH/kT) = 5 x 10~4.

6. THE OVERHAUSER EFFECT IN METALS

a) Relaxation of the Conduction Electrons

In analyzing the Overhauser effect in metals we

shall follow Overhauser's papers.4'24 This method

makes it possible to obtain not only the magnitude of

the effect, but also the value of the relaxation time.

We shall use the simplest model of a metal, that of

an electron gas. According to this model, the state of

the conduction electron is determined by the wave

vector k and by the spin direction. The kinetic energy

of the electron is expressed as follows:

•ft·*·

When an external magnetic field is applied, the total

energy of the electron Ε will equal the sum of the

kinetic and magnetic energies:

Ε = ε ± (6.2)

where the upper sign takes place for an electron with

a spin parallel to the field, and the lower for an elec-

tron with a spin antiparallel to the field.

We can represent the aggregate of the conduction

electrons of a metal as an aggregate of two gases,

namely gases of electrons with spins parallel and anti-

parallel to the field, respectively. Each of these groups

of electrons will have its own Fermi distribution. The

chemical potentials of these two gases will be denoted

by μ+ and μ_, while the chemical potential in the ab-

sence of an external magnetic field will be denoted by

μο·
The introduction of two different Fermi distributions

is advantageous, because the equilibrium within each

individual gas is reached much more rapidly than equi-

librium between the gases. This is connected with the

fact that no electron spin flip is necessary to obtain

equilibrium in an individual gas. Therefore the relaxa-

tion time T R for reaching equilibrium in an individual

gas is equal to the relaxation time encountered in the

theory of resistance of metals. At room temperature

this time is on the order of 10~14 — 10~13 second in the

case of alkali metals. On the other hand, establishment

of equilibrium between two electron gases entails elec-

tron spin flips and is therefore much slower.

We denote the total number of electrons with spins

parallel and antiparallel to the field (all quantities are

per unit volume of metal) by N+ and N_, the total

number of electrons by N, and the excess of electrons

with antiparallel spins by D. We denote by g ( e, μ ) the

Fermi distribution function. We then have for the two

groups of electrons

Furthermore

(6.3)

(6.4)

where G( e )de is the number of quantum states of the

electron in the kinetic energy enterval (e, de). It is

known that

G (ε) = •
'AN

(6.5)

The calculation of the integral entails no difficulty (we

assume /3H « μ0 and kT « μ0). We obtain

Ν ,'όΝ ,

Since

2m (6.1)

*The Overhauser effect can take place also if one or several
hfs components are saturated, but its value will be less (see Sec. 8).

we obtain from (6.6)

(6.6)

(6.7)

(6.8)
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Furthermore, we have for the excess D

(6.9)

In the case of complete equilibrium, the chemical
potentials of the two electron gases are the same

and we obtain for the equilibrium excess

(6.10)

If there is no equilibrium, i.e., if μ+ * μ_, the inter-
actions between the electron spins and the lattice give
rise to processes that restore the equilibrium. This
raises the question of calculating the corresponding re-
laxation time.

Overhauser calculated24 the relaxation time of the
conduction-electron spins for six processes. The most
effective of these six mechanisms was found to be the
interaction between the conduction-electron spin and
the current due to the translational motion of the other
electrons. Calculation shows, for example, that this
mechanism leads to a relaxation time of approximately
8 x 10"T sec for lithium at room temperature. This,
however, is two orders of magnitude greater than the
experimental value (see below).

Elliott calculated25 still another mechanism, which
was found to be more effective. It is known that the
orbital momentum of the electron is strongly coupled
to the lattice. On the other hand, the electron spin is
coupled to its orbital momentum, and consequently the
electron spin will ultimately interact with the lattice.
Elliott obtained an expression for the relaxation time
Tj of the electron spins. This time includes τ-̂  and
Ag, where Ag is the deviation of the conduction-elec-
tron g-factor from the value of the g factor of the free
electron (2.023). The fact that T t contains Ag is
readily understood, since the value of Ag is connected
with the value of the spin-orbit interaction.

According to the Elliott theory, T t is inversely pro-
portional to the temperature at high temperatures,
whereas at low temperatures T t is inversely propor-
tional to the cube of the temperature.

The question of magnetic relaxation of the conduc-
tion electron by the Elliott mechanism was considered
theoretically by Andreev and Gerasimenko by solving
the quantum kinetic equation.26 It was shown, firstly,
that T t = T2. It was further shown that at all temper-
atures T t should be approximately inversely propor-
tional to the temperature.

Experiments on paramagnetic resonance on the con-
duction electrons of a metal are made difficult by the
skin effect. It is well known that the thickness of the
skin layer δ is given by

6=-• JL— , (6.11)

where σ is the specific electric conductivity of the
metal.

For frequencies used in paramagnetic resonance,
δ is on the order of several microns at room tempera-
ture (for alkali metals), and diminishes with decreas-
ing temperature. The experiments are therefore car-
ried out with minute particles of metal, dispersed in
paraffin or in transformer oil (minute particles with
dimensions 5 — 10 microns are obtained by using ultra-
sound and centrifuges), or with thin films of metal.

Feher and Kip27 investigated paramagnetic reso-
nance in lithium, sodium, potassium, and beryllium in
the temperature interval from 4 to 300°Κ (no reso-
nance was observed in other metals, particularly alu-
minum, magnesium, palladium, and tungsten). Experi-
ment has yielded, first, the fact that the absorption line
has a Lorentz form, with T t = T2- According to the
experiment, the relaxation time in the case of sodium
is 9 x 10~9 sec at room temperature, which agrees in
order of magnitude with the theoretical results of
Andreev and Gerasimenko. In the case of sodium, ex-
periment shows Tj to be approximately inversely pro-
portional to the temperature, also in agreement with
theory. In the case of lithium and beryllium, on the
other hand, the experimentally measured relaxation
times Tj were almost independent of the temperature.
This is attributed by the authors to effects due to im-
purities.

b) Polarization of Nuclei in Metals

One of the mechanisms considered by Overhauser24

is the relaxation due to the hyperfine interaction of the
electron spin with the nuclear spin. There are much
faster relaxation processes for the electron spin, and
therefore hyperfine relaxation for electrons is of no
importance. For nuclear spins, however, this relaxa-
tion is fundamental.

Let the degree of saturation of paramagnetic reso-
nance of the conduction electrons be s. We then have
for the excess of electrons in the lower state

D = D0(l—s). (6.12)

Using (6.9), (6.10), and (6.12) we readily obtain

μ+-μ_ = 2β#ϊ. (6.13)

Thus, the saturation of resonance causes an in-
crease in μ+ and a decrease in μ_. In particular, in
total resonance saturation is μ+ —μ. = 2/3Η, and we
obtain two Fermi distributions, shifted by 2/3H relative
to each other.

In order not to complicate unnecessarily the theo-
retical analysis, we shall carry out the calculations
for the case of nuclear spin V2. We denote by n+ and
n_ the number of nuclei with spins parallel and anti-
parallel respectively to the external field, by η the
total number of nuclei, and by A the excess

Δ = η,-ι»_. (6.14)

Denoting furthermore by W (+ — — ) and W ( - —- +)
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the probabilities of relaxation nuclear-spin transitions
+ —» - and — —- + per unit time, respectively. We
then obtain

Introducing

Λ -n
W{ *_)·

η = i

we obtain

Δ =
Δ, — Δ

(6.15)

(6.16)

(6.17)

It is clear therefore that Δ 8 is the stationary value
of Δ and T n is relaxation time of the approach of Δ
to Δβ.

It is logical to assume that in a metal the nuclei re-
lax exclusively through interaction with the conduction
electrons. On the other hand, as we have seen above,
in the case of a metal the magnetic interaction between
the nucleus and the conduction electron reduces prac-
tically to the contact term only. Therefore the nuclear
spin will experience only flip-flop relaxation transi-
tions and we obtain

T I T I t —ι—\ T I ? /—I— I V

(6.18)

(6.19)

W (± ±) ·

where W (± —- ψ ) is the probability of a simultaneous
+ — - transition electron and - — + nuclear transi-
tion, averaged over the electron energy. W(τ — ±) is
analogously defined.

It remains to calculate these probabilities. The
energy of the perturbation causing the transitions is
the energy of the hfs interaction between the electron
and nuclear spins

^ (6.20)

For the matrix element of V we obtain

where ip^ and ψς are the spatial parts of the initial and
final states of the conduction electron. However, in
view of the smallness of the Zeeman energy of the elec-
tron, the initial and final states of the electron are al-
most the same (with the exception of the spin direc-
tion). Therefore

^/ί = 1-|ΙββηΐΨ(0)|2. (6.21)

We denote by W (k ±, k' φ ) the probability of the
(per unit time) ± —* τ transition, in which the wave
vector of the conduction electron experiences a change
k — k'. We have

_ / -ι- \ ^ ^ ΙΤ7 I·»

where pf is the density of the final states per unit
energy interval

_k'*dk'dQ' _mk' dQ'
6 / ~ (2JT)3 de.' ~ (2π)' h* ·

Since k' = k, we can replace here k' by k. We then
obtain

or, integrating over the angles and using the relation
between e and k

(6.22)

where e and e' are connected by the energy conserva-
tion law

(6.23)

We obtain analogously

TJ7 / -ι- ι \ m 3

(6.24)

where e and c* are connected by the same relation.
Calculation of the integrals yield

1—exp ( —WHS- ' < 6 · 2 5 )

kT

, (6.26)

where

β' = β^.= βη + *β· (6.27)

Using (6.18), (6.19), (6.25), and (6.26) we obtain

Δ. = η tanK £ £ , (6.28)

(6.29)

(6.28) shows that 0eff is the effective magnetic moment
of the nucleus. From this we find for the effective
gyromagnetic ratio

(6.30)

Overhauser4 has shown that for an arbitrary nuclear
spin I, expression (6.30) remains valid for the effec-
tive gyromagnetic ratio while the formula for T n be-
comes

(6.31)

where
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(6.32)

In extreme cases, T n assumes the following form

(see reference 28)

, if f>'H<£kT, (6.33)

Τ =
ft'/2

2' m? ( Ι Ψ (0) I4 if (6.34)

Substituting in (6.31) the numerical values of the

constants, we obtain

/2 t a n h Tr~
Τ = 19·10~2 2 - — (6.35)

n βημο|Ψ(0)Ι4 β'# '

where βη is in nuclear magnetons.

Let us estimate the order of T n in case of lithium

and sodium. For lithium we put I = 3/2 (isotope Li7),

βη = 3.25 nuclear magnetons, μ0 = 4.70 ev = 0.75

x 10"uerg and | ψ ( 0 ) | 2 = 28.* In particular, at room

temperature we obtain T n = 0.17 sec. At 2°K, 10,000

oersteds, and complete saturation, Tn = 20 sec. For

sodium i = 3/2, βη = 2.21 nuclear magnetons, μ0

= 3.1 ev = 5x 10"12erg, and | ψ ( 0 ) | 2 = 160. At room

temperature we obtain T n = 0.02 sec. At 2° Κ and a

field of 10,000 oersteds, we obtain for complete satura-

tion T n = 2 sec.

Equation (6.31) shows that Tn first increases with

decreasing T, but then, when β'Η > kT, it tends to a

constant limit. Since all other mechanisms of relaxa-

tion of the nuclear spin lead to an increase in T n with

decreasing Τ over the entire temperature interval, the

hfs relaxation will predominate (if s * 0 ) at low tem-

peratures, even though other mechanisms do predomi-

nate at high temperatures.

It is shown in Overhauser's paper that if the nuclear

relaxation which is not connected with the interaction

with the conduction electrons is substantial, the equa-

tion for the effective gyromagnetic ratio becomes

τ
Yeff (6.36)

where T n is the total time of nuclear relaxation and

Tn is the relaxation time due to the hfs interaction with

the conduction electrons, i.e., the time given by (6.31).

If other mechanisms are essential, then T n < T n and

a decrease takes place in the effective gyromagnetic

ratio.

We note that the Overhauser effect in a metal is

possible because the change in energy due to the reor-

ientation of the spins of the electron and nucleus can be

offset by the kinetic energy of the electron. An impor-

tant circumstance in this case is the fact that the con-

duction electrons have a continuous spectrum.

In the case γ η < 0 a unique situation obtains. In the

absence of saturation of the electron resonance, the

nuclei will have very small negative polarization. If

resonance occurs, the nuclear polarization first de-

creases in absolute magnitude, passes through zero,

and then increases to a large positive value.

c) Resonance Shift

It is easy to see that the frequency of the electron

resonance should shift upon saturation. Actually, the

magnetic energy of the conduction electron has the

form

The expression in the square brackets can be con-

sidered as an overall magnetic field acting on the con-

duction electron. We thus obtain* for the overall mag-

netic field, with which the nuclei act on the electron,

This expression can be rewritten

(6.37)

where f j is the degree of polarization of nuclei and

(ΔΗ)0 is given by

^ β η . (6.38)

We note that in the case of lithium (ΔΗ )0 = 180

oersteds.

If γ η > 0, ΔΗ is parallel to H, and therefore the

resonance frequency of the electron shifts towards the

larger frequencies if the external field is constant. If,

however, we fix the frequency, then the resonant value

of the external field shifts towards the smaller fields.
*

When γ η < 0, the direction of the shift will be opposite.

It is known that a so-called Knight shift of the fre-

quency of nuclear resonance is observed in nuclear

magnetic resonance in metals.11 This shift is produced

by the magnetic field with which the conduction elec-

trons act on the nucleus. The Knight shift, like the

Overhauser shift, is also proportional to | ψ (0) | 2 .

Let us note the following interesting circumstance.

In the absence of saturation of the electric paramag-

netic resonance, the Knight shift has a maximum,

whereas the Overhauser shift is equal to zero. With

increasing degree of saturation, the Knight shift dim-

inishes (since the saturation causes depolarization of

the spins of the conduction electrons ), while the Over-

hauser shift increases (since the nuclear polarization

increases).
d) Comparison with Experiment

An experimental investigation of the Overhauser

effect in metals has been carried out by Carver and

Slichter.30 Let us describe these experiments briefly.

The authors have not set out to obtain considerable

nuclear polarization. Their purpose was more modest,

namely to observe the increase in nuclear resonance

*We take from reference 29 a value of 0.8 for the parameter ξ.

"The ψ function of the conduction electron is normalized to
unit volume. The summation is therefore carried out over the
nuclei per unit volume of the metal.
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brought about by saturation of the electron resonance.
For this reason the experiments were carried out at
room temperature, and relatively low frequencies were
used.

The experiments were performed with lithium. The
samples were minute metal particles (measuring ap-
proximately 5 — 10μ ), dispersed in transformer oil.
The alternating field, with which the nuclear resonance
was investigated had a frequency of 50kcs. This fre-
quency determines the value of the main field, while
the latter determines the frequency of the alternating
field, with which the electron resonance was saturated.
The absorbed power was approximately 60 watts, caus-
ing a rise in the sample temperature to 70° C.

Special experiments have shown that the width of
the nuclear-resonance line does not change upon satu-
ration of the electron resonance. Therefore the inten-
sification of the nuclear signal gives directly the in-
crease in the nuclear polarization.

Let us introduce the quantity A (s ), equal to the
ratio of the nuclear-resonance signal when the elec-
tron-resonance saturation parameter has a value s,
and when there is no saturation. It is obvious that
A ( s ) should equal the ratio of the degree of polariza-
tion of the nuclei at a saturation parameter s to the
degree of polarization in the absence of saturation. In
the case when 0effH « kT, the nuclear polarization is
proportional to the gyromagnetic ratio. If we neglect
in (6.30) the quantity γ η , we obtain

A (s) = • = s l £ (6.39)

On the other hand, when the resonance condition is
exactly satisfied [see (3.20) and (3.21)] we have

and thus
A IF \ - Y eYe ('SeH1YT1Ti

In particular, we obtain

(6.40)

(6.41)

(6.42)

In other words, a plot of I/A vs 1/H2 should be a
straight line, and, in the case of metals, as indicated
above, Tj = T2. Therefore, by measuring in the exper-
iment the width of the electron-resonance line, we ob-
tain the dependence of s on Hj from (6.40).

In the experiments with lithium, the external field
Η was 30.3 oersteds and the frequency saturating the
electron resonance was 84Mcs (the electron resonant
frequency corresponding to a field of 30.3 oersted). In
the absence of saturation resonance, it was impossible
to measure the nuclear signal, since it was so small
that it was lost in the background. It was possible,
nevertheless, to measure the dependence of A on H1(

by comparison with the resonance of protons in gly-

cerine. The maximum value of Hj in these experi-
ments was 3.3 oersteds, which according to (6.40)
yields s = 0.7. Considering that y e /y(Li 7 ) = 1690,
one might expect A m a x = 1200, whereas experiment
yielded A m a x s 110. The authors' attempted to ex-
plain the discrepancy between theory and experiment
by introducing not too convincing considerations of
other possibilities of relaxation.

In the experiments with sodium the external field
Η was 44.2 oersteds, corresponding to a resonant fre-
quency of 124 Mcs. The nuclear resonance was ob-
served in the absence of saturation of the electron res-
onance, and thus the function A (Hj) was measured
directly. The electron-resonance line was much
broader in the case of sodium than in the case of lithium,
its width being 12 oersteds. The maximum value of Ht

in experiments with sodium was 2 oersteds. The cor-
responding value of s is 0.01. Since γΘ/γ (Na23) = 2400,
one expects A m a x = 24, while experiment yields A m a x

=* 10.
We see therefore that there is a considerable discrep-

ancy between theory and experiment. This discrepancy is
on the order of a factor of ten in the case of lithium and
two in the case of sodium. The discrepancy could be
ascribed to nuclear relaxation mechanisms not con-
nected with electrons. However, considering that there
are many conduction electrons in a metal and that
| ψ ( 0 ) | 2 is large in the case of alkali metals, such an
explanation is little likely (particularly since the quad-
rupole moment of the nucleus Li7 is small).

Worthy of mention among the other experiments are
those of Bekeshko and Kondorskii31 who measured the
temperature dependence of the Overhauser effect in
lithium in the temperature range 0 — 100° C.

Let us also note the theoretical paper by Azbel',
Gerasimenko, and Lifshitz,32 in which it is shown that
if the condition

is satisfied (6e^ is the depth to which the electron
penetrates by diffusion in a time T2, and Ζ is the sur-
face impedance ), then the nuclei should be polarized
not in a layer of thickness of the order of the skin layer,
but in a much thicker layer, on the order of 6eff; in
other words, the Overhauser effect should be consid-
erably intensified. It is also shown that in resonance
saturation the metal film should exhibit selective
transparency.

In a later paper33 the same authors presented a gen-
eral theory of magnetic resonance and of the Over-
hauser effect in metals.

Let us note, finally, the paper by Kastler,34 in
which it is proposed to saturate a pair of electron lev-
els with the aid of ultrasound. The advantage of this
method is that the skin effect will not play any role and
it becomes possible to polarize nuclei in a considerable
volume of metal.
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7. OVERHAUSER EFFECT IN LIQUID AND SOLID
DIAMAGNETS WITH PARAMAGNETIC IMPURITIES

a) General Considerations

Consider a diamagnetic medium containing para-

magnetic impurities. We shall discuss now the Over-

huaser effect on the nuclei of the diamagnetic atoms.

This analysis is due to Abragam.35

In order not to complicate the problem, we confine

ourselves to the case of nuclear spin I = V2> particu-

larly since our experiments have been performed with

protons.*

The nucleus of the diamagnetic atom and the elec-

tron with uncompensated spin belong to different atoms,

and on the average these atoms are sufficiently far

from each other. Therefore, if the external field is not

too weak, the energy of the magnetic interaction of the

electron with the nucleus will be considerably less

than the Zeeman energy of the nucleus. For this it is

necessary that the external field be considerably

greater than the average field in which the electron

acts on the nucleus (the Paschen-Back case). If the

foregoing condition is satisfied, we have individual

Zeeman levels for the nucleus and the electron, and

the spin-spin interaction energy can be neglected in the

energy levels.

The Zeeman levels of the nucleus and the electron,

together with their populations, are shown in Fig. 3.

N,'

-n.

-n.

FIG. 3

The figure pertains to the case γ η > 0. As before, the

populations of the electron levels will be denoted by

N+ and N_, those of the nuclear levels by n+ and n_,

and their excesses in the lower states by D and Δ.

We introduce the symbols

_
2kT

hyeH
kT

kT

(7.1)

(7.2)

In order for the Overhauser effect to take place, it

is necessary that a noticeable fraction of the nuclear

relaxation be due to processes connected with the in-

teraction between the nuclei and the electrons of the

paramagnetic impurities. In the calculations that fol-

low we shall first assume that the nuclei interact not

directly with the lattice, but through electrons of the

paramagnetic impurities.

In order for the Overhauser effect to take place, it

•In addition, we assume the effective spin of the ion of the
paramagnetic impurity to be 1/2, and for the sake of brevity we
refer to an electron instead of an ion of the paramagnetic impurity.

is necessary, in addition, that it be possible to com-

pensate for the change in the energy due to the change

in the orientation of the electron and nuclear spins.

Let H e(t) represent the magnetic field with which the

electron acts on the nucleus. This field will be a fluc-

tuating function of time. We introduce the correlation

function

φ (τ) = -τ)) (7.3)

(averaging over t). According to reference 15, the

aforementioned second condition necessitates that the

spectral intensity j (ω), corresponding to φ (τ), be

different from zero at a frequency ω equal to the nu-

clear Larmor frequency ωη.

We note that two cases are possible:

I. The change in H e is due to motion, i.e., to the

change in the distance between the electron and the

nucleus as they move.

II. The change of H e is due to re-orientation of the

electron spin. Each such re-orientation is effected on

the average, within a time T e, equal to the electron

spin relaxation time.

The nuclear spin relaxations due to these causes

were called by Abragam relaxations of the first and

second kind respectively. We note that relaxation of

type I predominates in liquids of low viscosity, owing

to the fast Brownian motion, whereas relaxation of

type II usually predominates in solids.*

We note furthermore that in the present section,

unlike the preceding one, we use Boltzmann statistics

for the electrons.

b) General Analysis

Let us assume that the magnetic interaction of the

spins of the electron and nucleus is dipole-dipole. The

operator of dipole-dipole interaction between a nucleus

and an electron can be written in the following form:36

V= - (7.4)

where r is the radius vector of the electron relative

to the nucleus, and the operators A, B, C, D, E, and

F are of the form

=.?,/. (1 - 3 cos* 0), AM = Am = 0,

Β = - -^(S,/_ + SJ.) ( 1 - 3 cos2 θ), ΔΛ/ = - Δι» = ± 1,

C = — y ^ / ^ + i t / , ) sin fl· cos de-·', Δ (Λ/ + m) = + 1,

-D = - | - (<S./_ + 5_/J sin θ cos #β'<Ρ, Δ (Λί + m) = - 1,

Ε— — -£-Stf+ sin2 Oe-2i"P, ΔΜ=Δ^=4-1,

F = —^-S_I_ sin2 de2if, AM = Am = — 1.

(7.5)

•When the nuclear spin is greater than 1/2, the quadrupole re-
laxation of the nuclear spin, which is not due to interactions with
electrons, predominates in diamagnetic solids. In this case there
will be no Overhauser effect.
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In these formulas & and ψ are the polar angle and
the azimuth of the vector r relative to the external
field. Furthermore, in these formulas there are intro-
duced the operators

1± = IX±UV S±=Sx±iSy,

whose non-vanishing matrix elements are

(7.6)

(7.7)

and analogously for S±.
The right side of (7.5) indicates the selection rules

for the non-vanishing matrix elements of the operators
A, B, C, D, E, and F.

We shall denote by (+, - ) the state Μ = + V2,
m = — V2 of the electron-plus-nucleus system. We de-
note the remaining states analogously. Let us set up
the kinetic equation for n+:

transition (+, - ) — (-, +) per unit time, and pe-^-Sn
is the probability of the inverse process. We take it
into account here that the probabilities of the direct
and inverse relaxation transitions are related by the
Boltzmann equation. Furthermore, it is clear that ρ
is connected with the operator B, q with the operator
C and D, and r with the operators Ε and F.

In the stationary case we obtain

If the degree of saturation of the electron resonance
is s, we have

ΛΓ

and we obtain
tanh S

dt l — s) (pe~6—re") tanh δ

(7.10)

(7.11)

+ q (N. + AL) n_e6n — q (N. + N_) n^e

(7.8)

The degree of polarization of the nuclei, by definition,
is

p, q, r are functions of the temperature and of the ex-
ternal field; pe6+<5n gives the probability of relaxation

η+ — η_

w h i c h y i e l d s

n—nsinhl(fl —6n) —(1 —s) tanh'6 [.pcosh (6 + 6n) — r cosh (δ δη)]
—δ,,) — ( l - (δ —δη)] '

(7.12)

(7.13)

If the condition
p+2q+r • (7-18)

is satisfied, we can neglect in (7.13) the small quantity
We then obtain

1 (p+ncoshb V 1

If, in particular, s = 1 and q = 0, we get

Λ = f ^ tanh δ.

(7.14)

(7.15)

According to (7.14), the polarization is positive if
ρ > r, in other words, if the flip-flop transitions are
more probable than the flip-flip transition; it is nega-
tive in the opposite case. It is easy to understand the
physical cause of this fact. In the saturation of the
electron resonance we increase N+ and decrease N_.
Therefore, if the flip-flop transitions predominate, the
processes (+, - ) —*• ( —, +) will predominate over the
inverse processes, leading to an increase in n+ and
to a decrease in n_.

Let us analyze in greater detail the case δ « 1,
which is the most interesting from the point of view of
the experiments performed to date. In this case (7.11)
and (7.13) yield

ρ depends on the relative fractions of the flip-flop,
flip-flip transitions and the horizontal relaxation of the
nuclear spin.

We can readily transform (7.17) to the following
form

< A > - / O = - Q ( W - J O ) , (7.19)

where io and So are the equilibrium values of < i z >
and < Sz > in the absence of saturation (we note that
So and <Sz> are negative, while the sign of IQ coin-
cides with the sign of γ η ) .

c) Case of Hyperfine Interaction

The results obtained in the preceding section are
valid also when the magnetic interaction of the nucleus
and of the electron reduces to a contact term; in this
case q = r = 0 and, for example, (7.13) yields

f _ (2-»):Sinh δη+s sinh(26+6n) ι
' 1 — ( 2 - s

^ = 1 + 2όη - 2SQ6, (7.16)

(7.17)

where we introduce

(7.20)

In the case of hyperfine interaction we have ρ = — 1.
It is easy to see, furthermore, that the equation

(6.30) obtained in the case of a metal for the effective
gyromagnetic ratio of the nucleus holds in this case,
too, since we have either s = 1 or δ « 1. In general,
the result of the Overhauser effect cannot be described
in terms of the effective gyromagnetic ratio.
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Let us note, however, that usually in a liquid or
solid diamagnet with magnetic impurities, it is not the
hfs term which predominates, but the dipole-dipole
term. This is due to the fact that the distance between
the nucleus and the electron is on the average suffi-
ciently large, and consequently ψ (0 ) is small.

d) Diamagnetic Liquid with Paramagnetic Impurities

Let us consider a low-viscosity diamagnetic liquid,
containing paramagnetic impurities. It is sensible to
assume that the magnetic interaction between the nu-
cleus and the electron is dipole-dipole and that the re-
laxation of the nuclear spins is a relaxation of the first
kind.

We can, following reference 15, write down the
spectral intensities corresponding to the expressions
A, B, C, D, E, and F. In view of the rapid Brownian
motion of the molecules of the liquid, we can assume
that these intensities are independent of the frequency.
If, furthermore, we assume that the isotropy of the
liquid allows us to average the intensities over the
angles, we obtain35

p: q :r = 2 : 3 : 12.

Substitution in (7.18) yields ρ = V2. We find there-
fore that if the small quantity δη is neglected, the
Overhauser effect has the opposite sign and its abso-
lute value is one half as large as in the case of the hfs
interaction.

e) Solid Diamagnet with Paramagnetic Impurities

Abragam35 has shown that in case of a solid diamag-
net the result differs substantially from the result ob-
tained above for a liquid diamagnet. The magnetic in-
teraction of the nucleus with the electron can again be
considered dipole-dipole. The difference, however,
lies in the fact that in the case of a solid diamagnet the
relaxation of the nuclear spin will at least in the main,
be of the second type.36

The electron-plus-nucleus system has four spin
states: (+, +), (-, - ) , (+, - ) , and (-, +). However,
mixing of the states results in dipole-dipole interaction,
which has non-vanishing matrix elements over these
states. Here, according to perturbation theory, the
states mixed will in the main be those with nearly
equal energies, i.e., with equal Μ and different m.
The mixing will, however, be weak since the energy of
the dipole-dipole interaction is small compared with
the nuclear Zeeman energy. The operator causing the
mixture has the form [see (7.4) and (7.5)]:

V = — 4ββ,

where

D' = — -1-iS1/_ sin ft cos Oei(",

= 0, Am=+l,

(7.21)

(7.22)

of the state obtained from the zeroth-approximation
state (—, +) has the form

a = (- j ) ( ~ ' - l y l ~ ' +> ( _ )

Analogously, we can make up the other perturbed
states and obtain

6 = ( - . — ) — a * ( - , + ) , &'=( + , _ ) + a * ( + , + ) .
(7.23)

where
_ 3 P s i n d c o s # e i l p _ 3 yeyn1isin ^ cos de i<p .„ o > .

These four states are shown in Fig. 4. We indicate
on the left the approximate quantum numbers of these
states.

(*>-)·

(-·*)-

hyei

We note that

FIG. 4

Hlo

Η (7.25)

According to perturbation theory, the wave function

where Η i o c represents the magnetic field produced by
the electron on the nucleus. As indicated above, we are
considering the case Η » H i o c , i.e., \a\ « 1.

In subsection a) of the present section we indicated
that in relaxation of type II the fluctuating magnetic
field, causing the relaxation of the nuclear spin, is it-
self caused by periodic reorientation of the electron
spin. The reorientation of the electron spin is caused
in turn by its interaction with the lattice. The operator
which causes these reorientations can be represented
in the form 2/3H'S, where H' is so to speak the fluc-
tuating effective magnetic field caused by the lattice
fluctuations. H' has components both parallel and per-
pendicular to the ζ axis. It is easily seen that the
parallel component causes no transitions, while the
perpendicular component causes transitions with selec-
tion rules

ΔΜ = ± 1, Aw = 0.

We see thus that H' causes, first, the transitions
(strong)

which cause relaxation of the electron spin. Further-
more, it also causes the transitions (weak)

a*—>6', a' -—>6,



THE OVERHAUSER EFFECT AND RELATED PHENOMENA 301

which cause the relaxation of the nuclear spin.
Using (7.22) we readily find that the ratio of the

probability of the transition a —- b' or b -* a' to the
probability of the transition a — a' or b —- b' is equal
to 4 | α | 2. For this reason we obtain (compare with
results obtained in reference 36)

i-=: iM 2 (7.26)
η 1 e

where T e and T n are the relaxation times of the elec-
tron and nuclear spins.

The transitions a —* b' and b —- a' have equal
probabilities, since the matrix elements of the opera-
tor 2/3H'S are the same for these transitions (in ab-
solute value ). In other words, in this case the proba-
bilities of flip-flop and flip-flip transitions are the
same, and therefore the Overhauser effect will not take
place. The coefficient ρ in (7.19) will in this case be
equal to zero.

We note, however, that if the relaxation of type I
makes a certain contribution to the relaxation of the
nuclear spin, an Overhauser effect of smaller absolute
value will take place.

We mention also the paper by Tomita,37 in which a
general analysis is given of a system consisting of two
types of spins. Let one of the spin systems become
saturated, while the second is investigated by magnetic
resonance without saturation. It is shown that if the
fluctuating part of the magnetic interaction of the two
unlike spins predominates over the static part, the
Overhauser effect will take place. In the opposite lim-
iting case, on the other hand, there will be no Over-
hauser effect, but a narrowing of the resonance of the
second system (the so-called narrowing by saturation).

f) Generalization of the Results Obtained

Equation (7.19) is valid if the relaxation of the nu-
clear spin is due in its entirety to its interaction with
the electron spin. If the nucleus has also other means
of relaxation, the magnitude of the Overhauser effect
will be reduced. If, in particular, the other mechan-
isms of relaxation (for example, quadrupole relaxa-
tion ) greatly predominate, the Overhauser effect will
not take place.

All this can be described by adding to (7.19) an ad-
ditional factor, called by Abragam the leakage coeffi-
cient

We thus obtain

(7.28)

j * η A J η
I rpl —"A m* ) (7.27)

where T n is the total time of relaxation of the nuclear
spin, TJJ is the,relaxation time due to its interaction
with the electrons, and T{{ is the relaxation time due
to other causes.* The value of f is unity if the other
mechanisms of nuclear relaxation are negligibly small
( T n & T'n), and is equal to zero if they strongly pre-
dominate.

where the formula is valid only if δ « 1.
Reference 38 contains a generalization of this for-

mula to include the case of arbitrary I and S in the
form

]SZ)-SO). (7.29)

*We note that 1/Tn = 1/Tn + l/TJf

g) Comparison with Experiment

Abragam, Combrisson, and Solomon carried out ex-
periments39 (see also references 40 and 41) at 7 7° Κ
with a sample of phosphorus doped silicon. At this
temperature the "excess" electrons are not localized
around the impurities, but wander over the crystal. In
other words, in analogy with a metal, we have here a
gas of free electrons. The difference is that in view
of their small concentration, they obey the Boltzmann
statistics. In addition, the skin effect will play a small
role.

In natural silicon, containing approximately 4.7% of
the isotope Si29 with spin Ϊ = l/2 and with magnetic
moment βη = — 0.55 nuclear magnetons. It is to be
expected that the magnetic interaction between the
electron and Si29 will be essentially hyperfine. There-
fore we put ρ = — 1 in (7.28). Assuming f = 1 and
neglecting the small quantity IQ we obtain at full sat-
uration of electron resonance

i ^ = - A ^ _3300,

i.e., the nuclear resonance should increase by 3300
times and reverse its sign. In other words, after the
stationary state is established, we should have not
resonant absorption but resonant emission.

The experiment was carried out with a silicon sam-
ple containing 5 x 1010 atoms of phosphorus per cubic
centimeter. An external field of 3000 oersteds was
applied. The half-width of paramagnetic resonance was
found to be 4 oersteds. The relaxation time of Si29 was
found to be large, 5 minutes, owing to the small con-
centration of the electrons. So large a relaxation time
facilitates the experiment. Actually, one can separate
in space and in time the polarization of the nuclei by
saturation of electron resonance and the measurements
of this polarization by nuclear resonance. The authors
could not fully saturate the electron resonance, and
consequently the amplification of the nuclear resonance
was found to be on the order of one hundred.

Beljers et al.42 investigated the Overhauser effect
on protons of the free radical of diphenyl pycril hydra-
zil. Bennett and Torrey43 investigated the Overhauser
effect on protons in a solution of sodium and naphtha-
lene in 1, 2 dimetozyethane. Paramagnetic resonance
in this solution is attributed to the formation of the
free ion radical through the transfer of the valence
electron from sodium to the naphthalene molecule. An
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external field of 17.8 oersteds was applied, corre-
sponding to an electron frequency of 50 Mcs and a nu-
clear frequency of 76.8kcs. The authors measured the
dependence of the intensification of the nuclear reso-
nance on Ht. The results of the experiments agree with
the formula [compare with (6.41)]

i.e., exact agreement was obtained with theory in the
case of dipole-dipole interaction and type I relaxation.
Here, according to theory, application of the saturating
alternating field caused the nuclear spin to decrease,
pass through zero, and then to increase in absolute
value until the aforementioned stationary state was
reached.

Let us note also the work of Abragam, Combrisson,
and Solomon*4 (see also references 40 and 41) in which
the Overhauser effect was investigated on protons in
an aqueous solution of the free radical of nitrodisul-
phonate of potassium [ (SO3)2NOK2]. None of the nitro-
gen bonds are saturated in the radical. For this reason,
the paramagnetic resonance has a hyperfine structure
consisting of two components which are 13 oersteds
apart.

Let us determine first the leakage coefficient f.
According to measurements, the relaxation time of
protons in the absence of free radicals Tn' = 2 sec,
and in their presence T n = 0.4 sec. From (7.27) we
obtain f = 0.8.

The authors saturated one of the hfs components ·
It is easy to see that when it is completely saturated
< S Z > = (2/3)S0. Using (7.28) and assuming ρ = %,
we obtain •

-Hi! = _ 90.
io

Such an intensification of proton resonance was ob-
served at all three values of the external field corre-
sponding to the three peaks of the paramagnetic reso-
nance absorption curve.

Owing to the presence of the hyperfine structure,
spin splitting will take place also in the absence of an
external field. In this case we obtain two levels (corre-
sponding to values of V2 and 3/2 for F, the total spin of
the radical). The authors have observed an Overhauser
effect upon saturation of the transition between these
two levels, and the amplification of the proton signal
was very large. For details we refer the reader to
reference 44.

Codrington and Bloembergen investigated the Over-
hauser effect on protons in an aqueous solution of
MnCl2 in weak fields.38 The experimental data agree
with the theory if the interaction of the proton spin with
the spin of the Mn++ ion is assumed hyperfine.

In those cases when the nuclear polarization re-
verses sign upon saturation of the eiectron resonance,
the Overhauser effect can be used to produce a crystal
amplifier.44'45

Finally, we mention the paper by Solomon,46 in
which the relaxation processes and the Overhauser ef-
fect are considered theoretically for a system of two
spins coupled by dipole-dipole interaction, and the
Overhauser effect is experimentally investigated in
HF.

h) Induced Dynamic Polarization of Nuclei

Let us consider now a phenomenon which was observed
by Erb, Motchane, and Uebersfeld47'48 and explained
by Abragam and Proctor.39 In this phenomenon, the
Overhauser effect does not take place in certain sub-
stances, but an amplification of the nuclear resonance
signal is observed when an alternating field of fre-
quency equal to the sum or difference of the electron
and nuclear resonant frequencies is applied.

In subsection e) of the present section we have
shown that the Overhauser effect should not take place
in a solid diamagnet with paramagnetic impurities. In
the same subsection we calculated the wave functions
of four stationary states [see (7.23) and Fig. 4]. The
mixing is due to the dipole-dipole interaction. Because
of this mixing, application of an alternating field of
suitable frequency perpendicular to the main field
makes possible the obtained "forbidden" transitions

a*--»b' and 6<—*a'.

In the notation for the quantum numbers of the main
components, these transitions are written in the fol-
lowing form

or

AM = — Am = + 1 and AM = Am = + 1

( + , -)*-->(-, + ) and ( + , + ) — · ( - , - ) .

The probabilities of such transitions are of the same
order as the probabilities of the main resonant transi-
tion, multiplied by a small quantity | a |2. It is easy to
see that these two types of transition have identical
probabilities under identical conditions. For resonant
frequencies corresponding to these transitions we ob-
tain

Ω = ωβ + ωη and Ω = ωβ — ωη, (7.30)

where ω c and ω η are the electronic and nuclear res-
onant frequencies, respectively.

As is well known, however, it is more convenient to
fix the frequency and to vary the main field. Let us ob-
tain the values of the main field corresponding to these
two forbidden resonances. We have

ωβ ± ωη = (γ0 ± γη) Η = ω,

where ω is a frequency fixed in the experiment. From
this we obtain for the resonant values of the field

AH, (7.31)
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where Η = ω/γΘ is the resonant value of the field cor-

responding to the allowed transition, and ΔΗ is given

by the formula

AH = ^-H. (7.32)
Ye V '

In particular, in the case of the proton

Aff—*L
660"

We have three parameters of the dimension of time:

T e — the time of relaxation of the electron spin, T n

— the time of relaxation of the nuclear spin, and Tf

— the time to produce the transition due to the alter-

nating field. As we have seen in subsection e) of the

present section, the flip-flop and flip-flip transitions

cancel each other out in nuclear relaxation. We can

therefore assume that the nuclear relaxation is due to

the "horizontal" transitions ΔΜ = 0 , m = ± 1.

Since the electron relaxation is considerably faster

than the nuclear relaxation, we have

Let us consider first the case Tf « Tn. Then there

is no nuclear relaxation in practice. In the stationary

case we have

Ν,η_ = Ν_η. πρπ H = H-AH,

Λ'+ nt = iV_«_ for fl = tf + AH,
(7.33)

which corresponds to total saturation of the forbidden

transition. Since the numbers of the direct and inverse

transitions are equal, these transitions, produced by

the alternating field, will not influence the relaxation

of the electron spin (independent of the relationship

between T e and Tf), and consequently

N-. •

Solution of (7.33) and (7.34) yields

2± = β-2β f o r H = H-AH,

^ = e M for H = H~+AH.

(7.34)

(7.35)

In other words, the effective gyromagnetic ratio of

the nucleus will be in these two cases — ye and +ye.

We therefore obtain a nuclear emission signal when

Η = Η — ΔΗ and a nuclear absorption signal when

Η = Η + ΔΗ. The absolute values of the signals will be

tanh δ/ tanhon times stronger than in the absence of

saturation (ye/yn times stronger if δ « 1). The de-

gree of the polarization of the nuclei will be

f1 = =F tanh 6. (7.36)

The physical cause of the present effect is as fol-

lows: when Η = Η - ΔΗ the alternating field causes

at first more ( - , + ) — ( + , - ) transitions than the

reverse transitions, since at first N_n+ > N+n_. On

the other hand, because of the electron relaxation, the

electron spins will return from the state " + " to the

state " — . " As a result, the nuclei will jump over

from the state " + " to the state " - . " The result

will be the opposite for Η = Η + ΔΗ.

If T f ~ T n or Tf > Tn, (7.33) will no longer hold,

i.e., the saturation of the forbidden transition will be

incomplete. But, since in this case T e « Tf, the elec-

tronic relaxation will be considerably faster than the

transitions due to the alternating field, and consequently

(7.34) will remain in force.

In the stationary case we have

Wne
6"n_ - Wne-^nt + Wf {Ntn_ - Nji.) = 0,

where Wne^n and Wne~^n are the probabilities of the

nuclear relaxation transitions — — + and + —* —;

WfN+n_ and WfN_n+ are the respective numbers of

(+, - ) — ( - , +) (~> +)""*(+» - ) transitions under

the influence of the alternating field of frequency

ω = ω β + ω η (all these quantities are per unit time).

Since (7.34) is satisfied, we have

and we obtain in the stationary case

NW fZSe°+e-6
fin

(7.37)
NW, ,-βη

For nuclear polarization we have

— NW, tanh b-\-2Wn sinben

' 1 = AW, + 2Wncoshen • < 7 - 3 8 )

In the case of ( +, + ) - * ( - » - ) transition we ob-

tain an analogous expression, except that the plus sign

is in front of the first term of the numerator.

Setting δη, equal to zero, in view of its smallness,

we have
tanh δ

NW,

or, introducing the times

ι

T.=
NW,

we obtain

, _ tanh δ
h-+ ψΓ •

(7.39)

(7.40)

(7.41)

(7.42)

It remains to determine the expression Wf. Using

(7.23), we readily find that the ratio of the squares of

the absolute values of the matrix elements of the for-

bidden and allowed transitions is 4 | a | 2 , where a is

given by (7.24). Taking (3.19) into account we obtain

NWfee2\ar(y.ff1)'Tv (7.43)

where T2 is the reciprocal of the width of the forbidden
transition.

We finally have for the magnitude of the amplifica-
tion of the signal of the nuclear resonance

tanh 6: H\
δη H\+<-

(7.44)
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where

2 _ ,p Tf

2 | α |
(7.45)

The first experiments were performed by Erb, Mot-
chane, and Uebersfeld.47'48 The sample was carbon with
an adsorbed liquid (benzene or toluene) or gas (am-
monia or hydrogen sulfide). Paramagnetic resonance
was obtained in the carbon, because the carbon contains
paramagnetic centers.

The experiments were carried out first at room
temperature. The specimen was then cooled by placing
it in liquid nitrogen, causing solidification of the ad-
sorbed substance. The measurements were repeated
for this case, too.

The experiments performed by these authors can be
divided into two groups. In one group of experiments
samples of coal were used, giving a paramagnetic ab-
sorption line with a width ranging from 4 to 10 oersteds.
The authors observed the amplification of the proton
resonance signal upon application of an alternating field
of frequency approximately 9000 Mcs (with variation
of the main field). It was found that when ω = ωβ more
amplification effect is produced, but at ω = ωβ ± ω η

the aforementioned effects take place, and the amplifi-
cation of the proton resonance is approximately 15 or
20. The effect takes place both at room and at nitrogen
temperatures. The effect occurs also if the carbon is
replaced by an organic substance (Plexiglas, glycohol)
bombarded by γ quanta.

In the second group of experiments, the coal samples
gave paramagnetic absorption lines less than 2
oersteds wide. In these specimens there was no dyna-
mic induced polarization, but the ordinary Overhauser
effect took place instead. This problem was investi-
gated in greater detail by Abragam, Landesman, and
Winter,50 in whose opinion the strong exchange inter-
action between the electron spins contributes to the
Overhauser effect (it is known that the exchange in-
teraction narrows down the resonance absorption line).

Borghini and Abragam51 investigated the induced
dynamic polarization of protons in samples of poly-
styrene containing diphenyl pycril hydrazil. Different
samples contained different concentrations of DPPH,
the optimum concentration being 10% (corresponding
to one electron with uncompensated spin for every 300
protons ). The experiments were carried out at 4.2° K.
The external field was approximately 12,000 oersteds,
the nuclear resonant frequency was near 50 Mcs, and
the width of the electron resonance was near 20 Mcs.
The maximum amplification of proton resonance was
approximately 50, corresponding to an approximate
degree of polarization of 1.5%.

Analogous ©cperiments were made by Lomkatsi52

with DPPH at 4° K. The amplification of the proton
signal at Η = Η ± ΔΗ was approximately 15 — 20.

It was noted in several interesting papers5 3 '5 4 that
if the width of the (allowed) electron resonance ex-

ceeds the nuclear Larmor frequency, the theoretical
analysis above must be modified. This is due to the
fact that the transitions of the two types considered
above overlap, causing a reduction in the values of the
signals. In addition, the distance between the maxima
will increase and will become of the order of the width
of the electron resonance.

The same papers report a few experiments. In par-
ticular, Abraham, McCousland, and Robinson53 investi-
gated the effect of induced dynamic polarization of
nuclei in a LiF crystal containing F centers (accord-
ing to the authors' statement, they obtained approxi-
mately 10% polarization of F19) and in nitrate of cer-
ium. The investigations by Combrisson and Solomon54

were on silicon with donor impurities.
We note, finally, that Abragam and Proctor39 ob-

served induced dynamic polarization in the case of a
system of two nuclear spins coupled by dipole-dipole
interaction. The sample was a LiF crystal. The ap-
plication of an alternating field of frequency ω ( F1 8)
± ω ( Li6) has made it possible to intensify the reso-
nance signal of Li6.

8. OVERHAUSER EFFECT IN PARAMAGNETIC
SALTS AND SEMICONDUCTORS

a) General Considerations

Let us proceed to the case when the sample can be
considered as consisting of individual systems, each
comprising a nucleus with spin I and an electron, or
hole, or more generally an electron shell with effective
spin of V2. In Sec. 2 we indicated that such a situation
is obtained, for example, in the following cases:

1) Silicon or germanium with pentavalent donor im-
purity at low temperature. The elementary system in
this case is the impurity nucleus together with the
"excess" electron localized near it.

2) Silicon or germanium with trivalent acceptor
impurity at low temperature. The elementary system
is the impurity nucleus together with an "excess" hole
localized near it.

3) Free radical. The elementary system comprises
a nucleus, whose atom has a non-saturated bond, and
an electron with uncompensated spin [ for example, the
electron and the nitrogen nucleus in the case of free
radical (SO3)2NOK2].

4) Paramagnetic salt with the paramagnetic ion
shell of spin V2 when the nucleus of the paramagnetic
ion also has a spin. The elementary system will con-
sist of the spins of the shell and the nucleus of the
paramagnetic ion.

Unlike the cases discussed in Sees. 6 and 7, in the
present case the energy of the magnetic interaction of
nuclear and electron spins exceeds the nuclear Zeeman
energy. It becomes meaningless therefore to speak of
individual Zeeman levels of the spins of the nucleus
and of the shell, and compatible levels of a system
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consisting of two spins S and I must be introduced.
This was the procedure in Sec. 5. We shall employ the
same notation in the present section.

In Sec. 5 we discussed the case of total saturation
of all the paramagnetic-resonance hfs components. It
was assumed there that only vertical and flip-flop re-
laxation take place. In the present section we consider
first the case of equal partial saturation of all the com-
ponents, and the case of the saturation of one of the
components of the hyperfine structure.

The first question to arise is whether one can neg-
lect all the nuclear relaxations with the exception of
the flip-flop relaxation. We have seen in Sec. 2 that
the hyperfine interaction with non-diagonal matrix
elements for only the flip-flop transition exceeds con-
siderably the dipole-dipole interaction, if the wave
function of the electron (or the hole, or shell with
S = %) on the nucleus is not anomalously small. In
the same section we have indicated that this condition
is satisfied in the case of silicon or germanium with a
pentavalent or trivalent impurity, and also in the case
of a free radical. Because of the configuration mixing,
this condition is satisfied for many paramagnetic salts.

We must note, however, the following. Owing to the
motion of the particles, and also owing to the reorien-
tation of the electron spin, both the hyperfine and the
dipole-dipole interactions will be functions of the time.
The energy of each of these interactions can be repre-
sented as a sum of constant and fluctuating (in time)
terms, with the relaxation due to the fluctuating term.
If [ ψ (0 ) | is sufficiently large, then the total energy of
the contact interaction exceeds considerably the total
energy of the dipole-dipole interaction. However, cases
are quite possible when the fluctuating parts of the con-
tact in dipole-dipole interaction are of the same order,
and then the role of the flip-flip and horizontal relaxa-
tion becomes comparable with the role of the flip-flop
relaxation. For example, in the paper by Abragam35

(see also reference 55) it is shown that in paramagnetic
salts the horizontal relaxation can frequently make a
substantial contribution.

Next, in nuclear spin greater than V2, a sizeable
fraction of the nuclear relaxation can be due to quad-
rupole processes.

In order not to complicate the analysis excessively,
however, we assume in most of this section that only
the vertical and flip-flop relaxation take place. Later,
for the case I = %, we shall discuss effects due to re-
laxations of other types.

The results of the present section for the case
I = V2, s = 1, and δ « 1 were obtained by Abragam35

and, for the general case, by the author of the present
article.5 6 '5 7·5 8

b) Equal Partial Saturation of All Components

Let us generalize the results of Sec. 5 to include
the case when equal partial saturation of all the hfs

components of the paramagnetic resonance takes place
(see Fig. 2).

In the stationary case we have

N(m)__ W ^ + We6

N(m')
/g j

where W (m ) is the probability of transition (per unit
time ) between two states with nuclear-spin projections
equal to m, caused by the interaction with an alternat-
ing field of suitable frequency; We"5 and We-^ are the
probabilities of vertical relaxation transitions m' —* m
and m — m'. Considering that, by definition, all the
resonances are equally saturated, we obtain readily

N(m) N(m')
— — • v ' ητ- = const,

where the constant is independent of m. Next, since
the hyperfine interaction establishes the equilibrium
between the levels m + 1 and m', we obtain

(8.2)
TV(m') W (m.)-\-We^

for m = I — 1, I - 2, . . . , — L From this we get

W (m) = qe2m6, (8.3)

where q is independent of m.

We introduce the saturation parameter s, defined

as the same for all resonances, s is defined by

Ν (m) - Ν {τη') = (1 - s) [№ (m) - № (m')] = (1 - s) —^— tanh δ.
27+1 (8.4)

It is easy to obtain the following relation between

q and s:

s sinh (27 + 1)6

Next, we readily obtain expressions for f̂ , which

characterize the degree of orientation of the nuclei.

We find

(s = l), (8.6)

where the quantities ffc( s = 1) were calculated in
Sec. 5 [see (5.6) and (5.7)].

Let us note the following interesting circumstance.
If we neglect the quantity γ η and assume that only hy-
perfine relaxation of nuclear spin takes place, then
when s = 1 the result is found to be the same for all
substances, namely: we find that the effective gyro-
magnetic ratio of the nucleus is y e. However, if
s < 1, the dependence of f̂  on s is different [see
(6.30), (7.20), and (8.6)].*

To conclude this subsection, we must note, however,
that the case of equal partial saturation of all the com-
ponents of the hyperfine structure is somewhat arti-
ficial, in view of the need of satisfying condition (8.3).
Great interest therefore attaches to the saturation of
one of the hfs components.

*However, if δ « 1, the result will again be the same, namely:
Yell - sye.
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c) Saturation of One of the Hfs Components

Assume that the resonance corresponding to the
transition between states with nuclear spin projections
equal to μ is completely saturated. We then obtain in
the stationary case for the populations of the states
shown in Fig. 2

Le™ Le2" ... Le™

= I 7 — 1

L

L

Le-2« +L
L —L

μ+1 μ μ-1 . . . - 7 +1 - /
where L is determined by the normalization condition.
It is easy to calculate the quantities

4-ί-2 6)

If the resonance saturation is incomplete, we have

and the saturation parameter is given by

s (μ) =
[2+(i-

From the foregoing results it follows that when δ
is large it is most convenient to saturate the transition
corresponding to μ = I - 1; in this case ft = f2 = 1 for
δ » 1 and complete saturation. The physical reason
for this is readily understood. Actually, in this case,
owing to the singularities of the hyperfine transitions,
only the level m = I, M = - % will be populated.

d) Role of Non-Contact Terms

Let us consider, for the case of a nuclear spin equal
to V2, the effect due to the participation of the flip-flip
and horizontal transitions in the nuclear magnetic re-
laxation. The level scheme is as shown in Fig. 5. For
the probabilities of the relaxation transitions we can
write38

W (aa1) = W (bV) = » r » , W{a'a)=W(b'b)=Wc*,
W(b'a) = XWe*,

(8.11)

W (ab) = W (ba) = W (a'b') = W (b'a') = λ2Μ",

where λ, Xj, λ2» and W are certain functions of the
temperature and of the external field.

Μ

a' h'

FIG. 5

With complete saturation of both resonances, we
readily obtain [compare with (7.17)]

(8.12)

(8.7)

(8.8)

(8.9)

(8.10)

u =
(λ — (8.13)

e) Determination of f ^

Let us consider the possible experimental determi-
nation of the quantities fĵ · It is desirable to employ
here methods which are not connected with the results
obtained above.

Consider the case I = % (Fig· 6). We readily obtain

= ^(3[Ν (α)- Ν a')- N

+ 3[N{c')-N(d')\),

U = -JT "'> - N (b')]~\ - : V

) - Ν (c)\

(8.14)

(8.15)

b' c'

d

-3/2

•*1k

FIG. 6

If we measure experimentally, for example, the sig-
nal of nuclear resonance a ··—*• b, we can determine
its magnitude N(a) — N(b). Thus, the values of ffc
can be determined by measuring the signals of all the
nuclear resonances.

We note that some of the differences Ν (a) - Ν (b),
N(a') - N(b'). · · · should increase strongly if at
least one of the hfs components of the paramagnetic
resonance is saturated, even in the case of small δ.
Thus, measurement of nuclear resonance, even at not
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very low temperatures, can afford a verification of the

foregoing theoretical results.

Actually, the situation is much more complicated.

According to (4.2) the energies of all the nuclear reso-

nance transitions (ΔΜ = 0, Am = ± 1) coincide accu-

rate to terms proportional to A and B, and have a

value K/2. In the next approximation there will be a

difference in terms of order B2/g/3H, P, and gj/3H. On

the other hand, in the case of paramagnetic salts, the

width of the individual component of nuclear resonance

will be sufficiently large.59'60 Therefore, in order for

the individual components of nuclear resonance not to

overlap, experiments must be carried out at a relative

weak external field, which, on the other hand, reduces

the obtained polarization. This difficulty disappears

in the case of doped silicon, for in this case the width

of the nuclear resonance will not be so large.

Next, according to references 59 and 60, experiments

on nuclear resonance in paramagnetic salts will appar-

ently be successful only at helium temperatures, and

not for all paramagnetic salts at that. The difficulty of

observing nuclear resonance is due to its great width.

It is seen from (8.14) and (8.15) that when one of

the paramagnetic resonance components is saturated,

we cannot determine f̂  directly by measuring the res-

onance signals of the remaining components. However,

such measurements can be made to determine the con-

tributions of different mechanisms to the nuclear re-

laxation. For example, it is easy to verify that in the

case I = 3/2

 a n d complete saturation of the resonance

b — b'

Ν (α) - Ν (α') =

if the nuclear relaxation is completely due to contact

interaction, whereas in the absence of saturation we

have

№ (a) — iV» (a') = ~ tanh 6.

Thus, provided only δ is of order of unity or

greater, the signal of the resonance a — a' should

increase substantially in the case of total saturation

of the resonance b ·"—* b'. In particular, if δ » 1, the

resonance a •·—* a' should increase by a factor of four.

Any deviation from this result should be due to the

contributions made by other mechanisms of nuclear

spin relaxation.

In the case of polarization of radioactive nuclei, the

values of fĵ  can be determined from the angular dis-

tribution of the β radiation. The values of fk with

even k can be determined more simply, from the ang-

ular distribution of the y radiation.

There are also other methods with which to deter-

mine fk and estimate the contributions made by differ-

ent relaxations. We shall discuss these in the next sub-

section of this section and in Section 11.

f) Comparison with Experiment

Experiments on the Overhauser effect with para-

magnetic salts have not yet been performed. The rea-

son is that too high a microwave power is necessary

to saturate the paramagnetic resonance, in view of the

small relaxation time of the electron spin. We deal not

merely with difficulties in obtaining high microwave

power, but with the difficulty of dissipating the consid-

erable heat liberated at low temperatures.

On the other hand, in silicon or germanium with

pentavalent or trivalent impurities, the electron-spin

relaxation times are considerably greater, because the

orbital fraction in the magnetic moment of the electron

(or hole) is exceedingly small, and therefore the elec-

tron spin is very weakly coupled to the lattice. At large

relaxation times, on the other hand, relatively small

microwave power is necessary to saturate the reso-

nance. The experiments are easier to carry out in this

case in silicon, in view of the higher ionization energy

of the impurity (see Sec. 2).

In 1957 — 1959 several groups of physicists experi-

mented on the Overhauser effect in silicon doped with

phosphorus, arsenic, or antimony. Most of these in-

vestigations were devoted to the nonstationary Over-

hauser effect, and will be described in Sec. 11. Pipkin

and Culvahouse, on the other hand, investigated the

stationary Overhauser effect along with the nonstation-

ary effects.

Let us discuss first the relaxation in silicon con-

taining a pentavalent or trivalent impurity. These re-

laxation times have been investigated experimentally

in work on the nonstationary Overhauser effect (see

Sec. 11). The problem was analyzed theoretically in

the paper by Pines, Bardeen, and Slichter.61 The au-

thors of this paper calculate the time of vertical and

flip-flop relaxation. The numerical values of the re-

laxation time and also comparison with theory will be

given in Sec. 11. We note here merely that these times

are sufficiently long at helium temperatures (several

minutes and more).

Experiments carried out by Pipkin and Culva-

house62'63 consisted of the following. The authors took

a sample of silicon doped with arsenic or antimony,

some impurity atoms being radioactive. One of the

Ms components of paramagnetic resonance, connected

with the radioactive nuclei, was saturated. The degree

of orientation of the nuclei was measured from the

angular anisotropy of the γ radiation. These experi-

ments were carried out in a field of 8500 oersteds at

1.3° K. In the case of As76, no effect was observed, a

fact attributed by the authors to the excessive time of

nuclear magnetic relaxation. In the case of Sb122 the

effect was observed. The Sb122 nucleus has a spin of
2/3. The level picture is shown in Fig. 7 (neglecting

the spin-spin interaction energy). The anisotropy of

γ radiation upon saturation of the resonance was ob-
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served and measured. The authors then simultaneously
saturated the two transitions c -—- c' and b -*—- c and
measured the time dependence of the anisotropy of the
γ radiation. The anisotropy of γ radiation first in-
creased with time, owing to the polarization of the nu-
clei upon saturation of the c •"—*· c' transition, and
then diminished because of the partial depolarization
upon saturation of the b ·*—·• c transition. The time
variation of the anisotropy makes it possible to deter-
mine the relaxation times. These experiments also
made it possible to determine the magnetic moment of
the Sb122 nucleus and its Ms constant.

g) Overhauser Effect in Weak Magnetic Field

Kittel64 and Abragam35 considered the Overhauser
effect in the absence of an external magnetic field. One
can speak of an Overhauser effect on the splitting of
the fine structure (which takes place if the effective
spin of the electron shell of the paramagnetic ion is
more than V2) or on the splitting due to anisotropic
hyperfine structure.

According to Abragam,35 when resonance is satu-
rated in the absence of an external magnetic field, we
obtain only aligned nuclei (i.e., ft = 0 and f2 * 0).
Actually, if no external magnetic field is applied, there
will be no preferred direction for the mean value of
the nuclear spin vector.

In other words, in the absence of an external mag-
netic field the two transitions, which are obtainable
from each other by interchanging the signs of Μ and m
(the role of the quantization axis in the absence of a
magnetic field is assumed by the symmetry axis of the
intercrystalline electric field), have the same fre-
quency. Therefore these two transitions are simul-
taneously saturated, indeed causing the lack of polari-
zation.

If we apply a weak external field (weak in compar-
ison with the fine or hfs splitting) but sufficient to
separate these two transitions from each other, then
saturation of one of these gives rise to a considerable
nuclear polarization.

More details on the Overhauser effect in weak field
are found in reference 65.

9. OVERHAUSER EFFECT IN ALKALJ-HALIDE
CRYSTALS AND ALKALI-AMMONIA SOLUTIONS

It was indicated in Sec. 2 that according to modern
concepts the F center is a vacancy of the chlorine ion
(to be specific, we again consider the KC1 case),
which has captured an electron. The wave function of

the electron of the F center has a maximum on the
potassium nuclei closest to the vacancy. The electron
of the F center experiences both contact and dipole-
dipole interaction with each nucleus of the lattice (both
with the potassium nuclei and with the chlorine nuclei).
The contact interaction diminishes exponentially with
increasing distance from the center of the vacancy,
whereas the dipole-dipole interaction diminishes much
more slowly, namely, as the cube of the distance. On
the other hand, we have seen in Sec. 7 that whereas
the contact interaction leads in the case of saturation
of the electron resonance to a positive nuclear polari-
zation, the dipole-dipole interaction does not lead to
their polarization in the case of a diamagnetic solid
with paramagnetic impurities.

In the KC1 crystal we have many F centers, whose
concentration is, however, much less than the concen-
tration of the regular atoms. It can be assumed that
each F center acts on the nuclear spins contained
within a sphere centered about this F center of volume
equal to the volume of the crystal, divided by the num-
ber of F centers in the crystal. The foregoing argu-
ments show that with full saturation of the resonance
of the F center in the central part of the sphere, the
nuclear polarization will be positive and equal to
Bj(2I6 ). With increasing distance from the F center,
the nuclear polarization will diminish and tend to zero,
since the relative contribution of the dipole-dipole in-
teraction to the relaxation of the nuclear spin will in-
crease, as will the contribution of the interactions not
connected with the spin of the F-center electron. It
follows therefore that the average equilibrium polari-
zation of the nuclei should increase with increasing
F-center concentration.

In a rigorous analysis of this phenomenon, account
must be taken of the role that can be played by the
diffusion of nuclear spin.36

The question of the Overhauser effect in alkali-hal-
ide crystals with F centers was considered in greater
detail by Korringa.66 Instead of the spin of the individ-
ual nucleus, the author introduces the total spin of the
nuclei of a given coordination sphere. The Overhauser
effect is considered as an orientation of this overall
spin due to its interaction with the spin of the F elec-
tron.

Experiments on the Overhauser effect with alkali-
halide crystals have not yet been performed.

The alkali-ammonia solutions have certain similar-
ity to alkali-halide crystals containing F centers. A
theory of alkali-ammonia solutions was developed by
Kaplan and Kittel,67 who proposed a model that agrees
with all the experiments. According to this model, the
alkali-ammonia solutions contain vacancies, and the
volume of each vacancy fluctuates between two and
four times the volume of each ammonia molecule.
These vacancies capture the valence electrons of the
alkali metal. The electron captured by such a vacancy
experiences a magnetic interaction with the protons of
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the ammonia molecules surrounding the vacancy.
Therefore, an Overhauser effect should take place on
these protons.

Experiments have been set up by Carver and Slich-
ter on a solution of sodium in ammonium anhydride.30

The electron resonance line was found to be quite nar-
row (approximately 20 millioersteds wide) and can
therefore be readily saturated. The external field was
taken to be 11.7 oersteds. The corresponding reso-
nances of the electron and nuclear frequencies are
37.7 Mcs and 50 kcs respectively. The experiments
were carried out at room temperature.

The authors measured the dependence of the ampli-
fication of the nuclear-resonance signal on the ampli-
tude of the field that saturates the electron resonance.
The measurements were carried out with three sam-
ples with sodium concentrations 0.01 N, 0.37 N, and
0.9 N, respectively. The I/A vs 1/H| plot was found
to be a straight line in all three cases [see (6.42)].
Furthermore, as expected, it was found that in the
case of sufficient saturation the effect increases with
increasing sodium concentration. For a sample with a
sodium concentration of 0.9 Ν at Hj = 0.1 oersted, the
amplification of the nuclear resistance was 500, very
close to the maximum possible amplification in contact
interaction.

10. OVERHAUSER EFFECT FROM THE POINT OF
VIEW OF GENERAL PRINCIPLES OF STATISTICAL
PHYSICS AND THERMODYNAMICS

Kittel has shown64 that the Overhauser effect can be
explained from the point of view of general principles of
statistical physics.

It is well known that the canonical distribution gives
the distribution of probabilities of the quantum states
of the subsystem A, which comprises a small part of
a large closed system A + B, as a function of the en-
ergy of the reservoir B.

We shall take A to mean a system of nuclear and
electron spins, and Β the aggregate of the remaining
degrees of freedom of the specimen. For example,
Β is the lattice in the case of a paramagnetic salt, and
the lattice and the translational degrees of freedom of
the conduction electron in case of a metal; in the case
of a diamagnetic liquid with paramagnetic impurities
Β comprises the degrees of freedom connected with
the Brownian motion of the molecules of the liquid.
We confine ourselves to the case of nuclear spin V2.

We analyze the case when the relaxation of the nu-
clei is due only to flip-flop transitions. Assume that
no saturating alternating field is applied to the system.
In the transition ( +, —)—"•(—, +) the energy of the
system A changes by — 2 (β + βη) Η. In view of the
conservation of energy, the change in the energy of the
system Β will at this state be 2 (β +j3n)H. We know
that the relaxation of the electron spin is much faster
than that of the nuclear spin. Therefore the first stage

will be followed by a second one, namely the electron
spin transition - —- +, caused by its interaction with
the lattice. At this stage the change in the energy of
the system A will be 2/3H, and the change in the en-
ergy of the system Β will be — 2/3H. As a result we
obtain the transition ( +, - ) — ( + , +). An examination
of the second stage is necessary, because we are in-
terested in the distribution of the nuclei over the spin
states, and we must therefore consider a process in
which only the direction of the nuclear spin changes.
The overall change in the energy of the system Β is
2/3nH. The change in the energy of the reservoir causes
a change in the volume of the phase space accessible
to it, and we obtain for the distribution of nuclei over
the two spin states

kT

Assume that an alternating field producing total
saturation of the electron resonance is now applied.
The first stage will be the same as in the case con-
sidered above. As to the second stage, it is produced
in this case not by relaxation but by the alternating
field, and therefore the energy of the reservoir does
not change. Thus, the overall change in the energy of
the system Β will be 2 (β + βη) H, and we obtain

L kT (10.1)

i.e., the effective magnetic moment of the nucleus will
be β +βη.

A very interesting question is that of the tempera-
ture in the Overhauser effect. We introduce three
temperatures, namely: the lattice temperature Τ (in
the case of the metal it is equal to the temperature
connected with the translational motion of the degrees
of freedom of the conduction electrons ), the Zeeman
temperature of the electrons T e, and the Zeeman tem-
perature of the nuclei Tn. By Zeeman temperature is
meant the temperature describing the distribution over
the levels corresponding to the different spin direc-
tions.

In the case of complete statistical equilibrium, these
three temperatures are the same. T e increases with
saturation of electron resonance. If, in particular, the
saturation is complete, T e becomes infinite.

On the other hand, the Overhauser effect takes place
if a noticeable fraction of the nuclear relaxation is due
to the magnetic interaction between the nuclei and the
electrons. If the strongest interaction experienced by
the nuclear spins is their interaction with the electron
spins, one would expect at first glance the Zeeman
temperature of the nuclei to vary with the Zeeman
temperature of the electrons. According to the Over-
hauser effect, however, the result is just the opposite:
the temperature T n decreases (in some cases it even
becomes negative).

Various points of view have been expressed on this
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topic. Van Vleck68 considered the Overhauser effect

for the case when the nuclear spin has only hyperfine

relaxation and obtained for the stationary case the re-

sult

- - 1 J . (10.2)

In the case of complete saturation of the electron

resonance T e = °° and we obtain

Yn
T, (10.3)

which corresponds to an effective nuclear gyromagnetic

ratio y e + γ η .

Deslay and Barker69 believe that only one tempera-

ture, namely the lattice temperature, should be intro-

duced, and that different chemical potentials must in-

stead be assigned to the electrons, as well as to nuclei

with different spin directions.

It is stated in the paper by Slichter70 that in the

presence of a rotating saturating field one cannot in-

troduce the Zeeman electron temperature in the lab-

oratory system. Changing, however, to a system which

rotates with Larmor frequency about the ζ axis of the

laboratory system, makes it possible to introduce into

this system the electron Zeeman temperature, which

equals the lattice temperature (the change to the ro-

tating system gives rise to an additional effective field,

which cancels out the main field, and thus the Hamil-

tonian will not contain the Zeeman energy of the elec-

tron in the rotating system of coordinates). However,

as shown by Slichter, in the rotating system of coordi-

nates the nucleus will have an effective gyromagnetic

ratio ye + γ η .

Let us note, finally, the paper by Abragam and

Proctor,71 devoted to a detailed analysis of the con-

cept of spin temperature. We shall not discuss this

work, however, since it is not directly connected with

the Overhauser effect.

It is more or less accepted at present that one can-

not introduce the Zeeman electron temperature in the

presence of a saturating field. Brovetto and Cini72 de-

rived the Overhauser effect with the aid of the law of

effective masses. Let us repeat this derivation for the

case of nuclear spin of V2, and in the presence of only

the hyperfine nuclear spin relaxation. We consider

the direct and inverse transitions

In the stationary state, according to the law of ef-

fective masses, we obtain

where the equilibrium constant Κ is determined by the

Vant' Hoff equation

rfln Κ _ AU
~dT

(10.5)

Η =—h(yri + ye)H. (10.6)

Integration of (10.5) yields (we assume that Κ = 1

when Τ = °° )

In y _
kT

and thus we obtain

With total saturation, in particular, N+ = N_ and

we obtain the well known result that the effective gyro-

magnetic ratio of the nucleus is γ η + γΘ. A generali-

zation to the presence of other spin nuclear-spin re-

laxation mechanisms is given in references 73 and 74.

Brovetto and Ferroni75 derived the Overhauser ef-

fect by calculating the so-called grand distribution

function.

We call attention also to references 74, 76, and 77,

in which the Overhauser effect is considered from the

point of view of the principle of minimum entropy for-

mation.

11. NONSTATIONARY METHODS

a) Saturation of the Forbidden Resonance
(Jeffries Method)

Let the sample be a paramagnetic salt or silicon

with pentavalent or trivalent impurities. In Sec. 4 we

considered both the ordinary paramagnetic resonance

and the forbidden paramagnetic resonance. The method

now considered78 is based on the saturation of the for-

bidden transition when the time of the vertical relaxa-

tion is much shorter than the times of all other relaxa-

tions. This condition is always satisfied in the case of

paramagnetic salts. It is also satisfied for certain

impurities in silicon, for example, P31, As76, or Sb122.

Let us turn to Fig. 2. Assume that one of the transi-

tions ΔΜ = — Am = ± 1 is completely saturated, in

particular, the transition μ •·—- μ - 1' (see Sec. 5 for

notation), where μ can assume the values I, I - 1,

. . . . - i + 1. Figure 8 shows three pairs of levels

from Fig. 2, corresponding to nuclear-spin projections

μ +1, μ, and μ - 1.

u-ι'Μ

Ρ

HG. 8

ι-ι

AU represents the change in the energy of the system
in the transition (+, —)—·• (-, +)

We denote by W (μ ) the probability of the transition

μ —* μ - 1' per unit time under the influence of the

alternating field. In the present problem we have three

parameters with dimensions of time, namely T r

= l/W^), the time of vertical relaxation T e = 1/2W

χ cosh δ, and the time of nuclear relaxation Tn- Let us

consider the case

Τ <f Τ // Τ
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In this case the alternating field equalizes, with a

relaxation time of order T r , the populations of the

levels μ and μ - Γ , while the populations of the re-

maining levels remain unchanged. Next, with a relax-

ation time of order T e , equilibrium is established be-

tween the levels μ and μ' and also between the levels

μ — 1 and μ - 1'. Finally, the complete stationary

state is established with a relaxation time of order

Tn· We denote the orientation parameters correspond-

ing to these three stages by the indices r, e, and η

respectively.

In the first stage we have

ΛΓ(μ)=ΛΤ(μ-1') =
2(27+1)

and the populations of the remaining states are the

same as in total equilibrium in the absence of an al-

ternating field.

In the second stage we have the following equations

for determining the populations of the states

_YV (μ) _ Λ τ (μ-1) = 2 δ

Ν (μ') Λ ( μ - Ι ' )

^ , _ 2JV

27+1 '

We can also write out the equations that must be

satisfied by the populations in the third stage.

It is easy to obtain*

f — - 1

2/(27 + 1)
tanh ό,

/; =
7 (227 (27 + 1) (27 — 1)

f{ = tanh δ,
7(27 + 1)

tanh δ,

7(27+l)(27-l)

(11.1)

(11.2)

(11.3)

(11.4)

/ • ' ' = — '

/[ 1(27-1)

We can also show that for any k

(11.7)

Let us analyze the physical meaning of the results.

The fact that ft is negative is readily understood. Ac-

tually, the alternating field will cause more μ —* μ - V

transitions than μ - 1' —·· μ transitions, for prior to

saturation the population of the state μ exceeds the

population of the state μ — 1'.

Comparison of (11.1), (11.3), and (11.5) yields

|/Π<Ι/ίΚί/ϊ|, (11.8)

•The expressions for f[* and fj were derived in reference 79
for a nuclear relaxation due to the contact interaction. The re-
maining expressions were obtained in reference 80, and are inde-
pendent of the mechanism of nuclear relaxation.

which is also easy to understand. After the populations

of the states μ and μ — 1' become equalized, the ver-

tical relaxation produces the transitions μ'-" μ and

μ — 1' — μ - 1. As a result, the alternating field will

produce additional transitions μ — μ - 1'. When nu-

clear relaxation enters into play, transitions will take

place from the left levels of Fig. 2 to the right levels.

This causes an increase in the populations of the states

with small m.

If the condition T r « T e is not satisfied, Eqs.

(11.1) and (11.2) become meaningless, since the equi-

librium over the alternating field and over the vertical

relaxation will be established simultaneously. On the

other hand, Eqs. (11.3) — (11.6) retain their meaning.

If the condition T e « T n i s not satisfied, Eqs. (11.3)

and (11.4) also become meaningless, for in this case

the equilibrium is established simultaneously over the

vertical and nuclear relaxations.

As regards (11.5) and (11.6), they remain in force

in all cases, and furthermore, if the saturation of the

transitions μ —- μ — V is incomplete (which will take

place if T r ~ T n ), a factor s ( μ) appears in their

right halves, equal to the degree of the resonance sat-

uration. 7 9

At first glance it would appear more convenient to

have T n as small as possible. This is not so, however,

for in rapid nuclear relaxation it is difficult to saturate

the forbidden transition.

It is easy to show next that if the forbidden transi-

tion μ -—* μ + 1' is saturated, then the minus sign of

formulas (11.1) — (11-4) must be replaced by a plus

sign, and in addition, the factor 2μ — 1 must be re-

placed by 2μ + 1. The formulas for fj1 and fn become

much more complicated, since the alternating field

produces transitions ΔΜ = Am = ± 1, while the nuclear

relaxation connected with the transitions ΔΜ = - Am

= ± 1.

The first experiments on the Jeffries method were

set up by Abraham, Kedzie, and Jeffries.81 The sample

used by these authors was the pagamagnetic salt

La2Mg3( NO3 ) 1 2 . 24D2O, in which some of the magnesium

atoms were replaced by cobalt atoms (both stable

and radioactive isotopes). The ratio of the number of

atoms of magnesium, Co59 and Co60 was 104 : 50 : 1.

The experiments were carried out at 1.6° K. The fre-

quency of the saturating field was 9300 Mcs. The au-

thors saturated one of the hfs components of the for-

bidden resonance of Co80 and measured the angular

anisotropy of the γ radiation of these nuclei.

Very brilliant experiments on the application of the

Jeffries method to silicon doped with arsenic or anti-

mony were set up by Pipkin and Culvahouse.72'63'82'83

The authors measured the intensity of y radiation of

the As78 or Sb122 nuclei in the direction of the external

field and perpendicular to it. Upon saturation of one of

the hfs components of the forbidden paramagnetic res-

onance of the radioactive nucleus, these intensities

stop being equal and become furthermore functions of

the time, corresponding to an increase in the para-
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meters fk by a factor of two when equilibrium is es-
tablished in the vertical transitions. The value of the
external field at which the forbidden paramagnetic res-
onance takes place* at a fixed frequency of the satur-
ating alternating field makes it possible to determine
the hyperfine structure constant of the radioactive nu-
cleus. Using this, we can determine the magnetic mo-
ment of the radioactive nucleus, if the magnetic moment
and the hyperfine structure constant of the stable iso-
tope of the given element are known.

Next, measurement of the time dependence of the
angular anisotropy makes it possible to determine the
relaxation times. The numerical values of Tn and T e

obtained by these authors are listed in subsection d)
of the present section along with the values of Tn and
T e for stable isotope impurities.

We note also the theoretical paper by Odenhal,84

who considers the polarization of nuclei in paramag-
netic salts with saturation of forbidden transitions due
to quadrupole interactions.

b) Method of Double Resonance (Feher Method)

The method of double resonance was proposed by
Feher. This method was found to be quite effective
for the investigation of fine details in the structure of
paramagnetic resonance of impurities in solids (see,
for example, reference 85). We shall deal only with the
use of the method of double resonance to obtain polar-
ized nuclei.86

In Sec. 3 we have considered briefly the problem of
adiabatically fast passage through resonance. We have
seen that if the sweep through resonance is fast enough
the result is an inversion of two corresponding levels,
i.e., an interchange of their populations. We shall
henceforth denote the inverted pair of levels i and k
by the symbol [ i, k].

Let us turn to Fig. 2 (or Fig. 8). Let the pair of
levels [μ, μ'] be inverted first. For this purpose it
is necessary to apply to the specimen a microwave
field with fixed frequency and, by rapidly varying the
magnitude of the main field (or, to the contrary, fixing
the value of the main field and rapidly changing the
frequency of the microwave field), pass through the
resonance corresponding to the transition between
levels μ and μ'. It is clear that this inversion does
not change the degree of polarization of the nuclei.

We next invert one of the following four pairs of
levels: [μ, μ - 1], [μ, μ + 1], [μ', μ - Γ ] or
[ μ', μ + 1' ]. As a result, considerable polarization of
the nuclei is produced.

Actually, at first the populations of the levels are
given by (5.1). After inverting the pair of levels
[μ, μ' ] we obtain

Ν

27 + 1

N

27+1

•The presence of the resonance itself is determined from the

occurrence of the angular anisotropy of the γ radiation.

If we next invert, for example, the pair of levels
[ μ', μ — 1' ], we obtain

27+1

.•V

27 + 1 e" + e-«

The remaining populations are again given by (5.1).
The final result is equivalent to an interchange of the
populations of the levels μ and μ - Γ . Such a sequence
of two inversions causes an increase in the number of
nuclei with spin projections equal to μ - 1, and a re-
duction in the number of nuclei with spin projections
equal to μ. In this case we obtain therefore negative
polarization of the nuclei (fx < 0), regardless of the
sign of the magnetic moment of the nucleus.

Let us introduce the final expressions for ft and
f2 for the four possible cases:80

1

7(27+1)
tanh δ,

7 (27 + 1) (27-1)
tanh δ,

(11.9)

(11.10)

where the upper sign corresponds to inversion of the
pair [μ, μ - 1 ] after the pair [μ, μ'], and the lower
respectively the pair [μ', μ- 1'] after the pair [μ, μ' ].
Next,

- ι
7(27 + 1)

3(2μ + 1)

tanh δ,

tanh δ,

(11.11)

(11.12)

where the upper sign corresponds to inversion of the
pair [μ, μ + 1 ] after the pair [μ, μ'], and the lower to
the pair [ μ', μ + Γ ] after the pair [ μ, μ' ].

We note that (11.9) - (11.12) are valid when the time
interval between two successive inversions is much
less than the time of vertical relaxation T e . In the
opposite case we obtain a smaller degree of orienta-
tion, since prior to the second inversion the vertical
relaxation has a chance to reestablish partially the
equilibrium between the inverted levels.

The question arises as to how long the time in which
we obtain polarization of the nuclei will continue. Let
us consider the most frequent case Te « T n . In the
aforementioned case of inversion of the pairs [μ, μ']
and [ μ', μ - 1' ] with a relaxation time on the order of
T e, vertical relaxation transitions will take place be-
tween the levels μ and μ', and also between the levels
μ — 1 and μ — 1', since the populations of these levels
are not in equilibrium with each other. After estab-
lishment of equilibrium over the vertical transitions,
we obtain

2e - 2β

27 + 1

2e,2β

27 + 1
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These values of the populations coincide exactly

with the populations obtained in total saturation of for-

bidden resonance μ •*—- μ — 1' (after establishment of

the equilibrium over the vertical transitions).

In vertical relaxation, however, the projection of

the nuclear spin does not change. Therefore the nu-

clear polarization obtained by the Feher method will

attenuate with a relaxation time on the order of the

time of nuclear magnetic relaxation.

Comparison of the results obtained in the present

and in the preceding subsections of this section shows

that the same values of fk are obtained by the Feher

method and in the second stage of the corresponding

cases of the Jeffries method. For example, upon in-

version of the two pairs [μ, μ'] and [μ', μ - 1' ] we

obtain the same result as upon saturation of the for-

bidden transition μ -—- μ — 1'.

For realizability of the Feher method, it is very

important that the energies of the transitions μ -—- μ

— 1, μ •·—- μ + 1, and μ' •«—*· μ — 1' not be the same.

Actually, the energies of these transitions differ by

amounts on the order of B2/g/3H, gjjSH, and P.

The foregoing arguments show that two rapid pas-

sages can be replaced by a single one, namely the in-

version of a pair of levels the transition between which

corresponds to forbidden resonance. For example,

instead of inverting the pairs [μ, μ' ] and [ μ', μ — 1' ],

we can invert the pair [ μ, μ - 1' ].

Later on, Feher proposed a modification of the

double-resonance method, more convenient for obser-

vation of fine details in the paramagnetic resonance

spectrum. It is first proposed to saturate the allowed

transition μ -—- μ'. In this case the paramagnetic res-

onance signal diminishes because of the reduction of

the excess Ν (μ) — Ν ( μ'). It is then proposed either

to saturate* or to invert one of the horizontal pairs of

levels (see Fig. 8). It is clear that in this case the

signal of paramagnetic resonance μ — μ' increases.

Thus, from the radio frequency that intensifies the

microwave resonance we can determine the energy

differences between the levels μ and μ - 1, etc., so

that the quantities gj, P, A, and Β can be determined.

Let us consider the use of these modifications of

the Feher method to obtain polarized nuclei.

It is easy to see that the values of f̂  obtained with

total saturation of the transition μ •·—- μ' and the sub-

sequent inverstion of one of the pairs [μ, μ + 1],

[ μ, μ - 1 ] [ μ, μ - Γ ] or [ μ', μ + Γ ] are one half the

values of f̂  given by (11.9) — (11.12). In other words,

the values of f̂  will coincide with the values of fjj in

the first stage of the corresponding cases of the Jef-

fries method.

We note that after inversion, vertical transitions,

as well as vertical relaxation transitions, will take

place under the influence of the saturating field. These

•Simultaneous saturation of the electron and nuclear transi-
tions was proposed before Feher by Kastler.87

transitions, however, do not change the degree of

orientation of the nuclei. We obtain thus, a nuclear

polarization which tends, with a relaxation time of

order Tn, to its stationary value [see (8.7) and (8.8)].

It is also easy to see that the removal of the sat-

urating field after inversion will not change the polari-

zation of the nuclei (it is assumed that T e « T n ) .

Nuclear polarization is obtained also by saturation

of one of the vertical and one of the horizontal transi-

tions. For more details see reference 80.

The first experiments on the verification of these

methods were made by Feher and Gere.88 The sample

used was silicon containing 3 χ 1016 atoms of phos-

phorus per cubic centimeter. The experiments were

carried out at 1.2° Κ and in a field of approximately

3000 oersteds. Under these conditions the relaxation

time of the electron spin is sufficiently long.

Since the spin of P 3 1 is l/%, the level scheme is as

shown in Fig. 5 (we neglect in this figure, however,

the spin-spin interaction energy ).

Let us carry out in succession two adiabatically

fast passages through resonance, corresponding to a

transition between the levels a and a.'. If the time in-

terval between two passages is considerably less than

T e, the level populations will not have time to change

between the passages. Therefore the signal obtained

in the second passage will be equal in magnitude but

opposite in polarity to the signal of the first passage.

If, however, we carry out the inversion of the pair

[ a, b] between two inversions of the pair [ a, a' ], then

the signal should disappear in the second inversion of

the pair [a, a ' ] .

Experiments have confirmed these predictions.

However, in the second inversion of the pair [a, a' ]

the signal was not strictly equal to zero, since the

time between the two passages was merely one-third

of T e .

Further experiments on the application of the Feher

method were carried out by Pipkin and Culva-

house6 2 '6 3 '8 2 '8 3 on arsenic doped silicon at 1.25°Κ in a

field of 8000 oersteds.

In one series of experiments, the angular distribu-

tion of the γ radiation of As76 nuclei was measured.

One of the pairs [μ, μ' ] was inverted, following by the

inversion of either pair [μ, μ + 1] or [μ, μ — 1].

Comparison of the obtained angular distribution with

the angular distribution obtained by the Jeffries

method made it possible for the authors to determine

the sign of the magnetic moment of the As76 nucleus.

From the angular distribution itself it is possible,

independent of the Jeffries method, to determine the

absolute value of the magnetic moment.

In experiments with As75, saturation was produced

in the transition μ -—- μ'. This was followed by inver-

sion of one of the pairs [ μ, μ + 1] or [ μ, μ - 1], and

the change in the resonance μ—' μ' was used to de-

termine the hyperfine structure constant and gyro-

magnetic ratio of the As75 nucleus.
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ο) The Experiments of Abragam and Combrisson

Abragam and his co-workers carried out many ex-
periments with silicon doped with phosphorus or
arsenic.

Let us discuss first the experiments of Abragam
and Combrisson,8 9 '9 0 in which the nonstationary phe-
nomena in the Overhauser effect were investigated in
a sample of silicon doped with 1017 atoms of arsenic
per cubic centimeter. The experiments were made at
2° Κ in a field of 3000 oersteds.

Since As7 5 has spin 3/2>
 t h e level scheme is shown

in Fig. 6. We assume that we can neglect all the re-
laxations, except the vertical and the flip-flop relaxa-
tions. Furthermore, we can write for the probabilities
of the relaxation transitions per unit time

W (a'a) = W (b'b) = W (c'c) = W (d'd) = We6, )

W (aa') = W (bb') = W{cc') = W (dd1) = We~\

W (b'a) = W (d'c) = XWe6, W (ab') = W (cd1) = XWe-

M(t)

6 + 3?.
(11.17)

W (c'b) = ~
Ο

W (be1) = 4

(11.13)

where W and γ are certain functions of the tempera-
ture in the field. The fact that W (c' b) is % times
greater than W(b' a) follows from the expressions
for the nondiagonal matrix elements of the spin opera-
tor, equal to 3/2.

Usually two relaxation times are introduced, one
relative to the vertical transition, T e , and one rela-
tive to the flip-flop transitions T x , given by the for-
mulas

Te — OWcaihf, ' (11-14)

1

' 2>.»cosh6
(11.15)

In the case of arbitrary Ι, λ is the ratio of the
probability of the extreme flip-flop transition, i.e., the
transition I —·• I — 1', and the probability of the vertical
transition [see, for example, (11.13)].

Assume that first the equilibrium is established in
the absence of an external field. Then

N(a)=N (a') = A (b) = N(b')

= Ν (c)=N (c') = N(d) =

We then apply the main external field H. Then,
confining ourselves to time intervals t « W"1, we
readily obtain

Ν (a) - iV(a') = V

Ν (b) - Ν (b1) = W sinh
7 Ν-§-λ J t.

( 1 1 · 1 6 >

We denote by E (t) and Μ (t) the signals of the
resonances a ·*—- a' and b •*—- b' respectively. Since
the resonance signal is proportional to the difference
in the populations of the corresponding levels, we ob-
tain

This formula is valid if Wt « 1. It is easy to see,
furthermore, that the signals of resonances c -—*· c'
and d *—* d' should equal respectively the signals of
resonances b •*—*• b' and a -—* a'.

A suitable experiment was set up. It was found that
at small t the two extreme signals (i.e., signals
a ··—* a' and d •*—* d') are smaller than the two mid-
dle signals (b —— b ' and c •*—* c ' ) . With t on the
order of two or three minutes and less, the ratio
Ε (t)/M (t) is independent of t and is approximately
equal to 0.6. This yields λ s 2 (for Τ = 2"Κ and Η
= 3000 oersteds).

For times considerably in excess of W"1, equili-
brium is established and we obtain

TV (α)-Ν (α') = Λτ (b)-i\ (?/) = ^- tanho. (11.18)

The four signals become equal in intensity. For the
ratio of the signals of the resonance a •+-— a' at small
and large t we obtain

(11-19)ι; (co)

In the experiments of Abragam and Combrisson,
Ε ( t ) was measured for t equal to two minutes. The
stationary signal was next measured, i.e., the value of
E ( » ). The value of δ was approximately 0.1. Using
the foregoing value of λ, the authors obtained from
the last expression W"1 = 20 minutes.

Additional investigations have shown that W depends
little on the external field. On the other hand, the de-
pendence on the temperature was found to be strong.
Namely, for the same specimen, W"1 was found to be
of the order of one minute at Τ = 4° Κ and the order
of one second for Τ = 8° K.

We see that at low temperatures in silicon doped
with arsenic (As75) the flip-flop relaxation is more
probable than the vertical relaxation. Abragam and
Combrisson,9 0 and also Pines, Bardeen, and Slichter6 1

have shown that in this case, upon application of an
external field, the degree of nuclear polarization will
not vary monotonically in time from zero to Bj (2Ϊδη)
(this proceeds with a relaxation time of the order of
T x ) , and then diminish to an equilibrium value
(with a relaxation time on the order of Te )·

Let us discuss still another interesting effect, in-
vestigated by Abragam and Combrisson 9 0 ' 9 1 ' 9 2 (see also
the paper by Abragam and Proctor 7 1). Although these
experiments were carried out successfully with silicon
doped with arsenic, we shall consider, for the sake of
simplicity, silicon doped with phosphorus (this case
is simpler, since P 3 1 has spin V2). We assume that
the temperature is so low, that the impurity atoms are
not ionized.

We deal with a system consisting of two spins, S
and I, with values V2, in an external field and connected
by a contact interaction. The Hamiltonian of this sys-
tem is of the form
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(11.20)

In the case of a strong field (g/3H « A) the energy
levels are of the form

£.„,„ = Mg$H - mgfiH r AMm, (11.21)

and each state has a definite Μ and m.
In the case of a weak field (g/3H « A) the vectors

S and I add up to form a total spin

(11.22)

which is then quantized in the external field.
For energy levels in the absence of an external

field we have

(11.23)

Thus, in the absence of a field we obtain two levels:
the triply degenerate level with F = 1 and energy A/4,
and the simple level with F = 0 and energy - 3A/4.

In the general case of an arbitrary field, the problem
was considered by Breit and Rabi. For the energy
levels we obtain (see, for example, reference 93)

, ±)

where
(g+g;)

(11.24)

(11.25)

Here, if Μ + m = 0, both signs must be taken in
front of the radical, and if Μ + m = ± 1, only the plus
sign is taken.

Thus, we obtain four states with energies

Κ(b') = _ l

E(a)= -~A-\

(11.26)

Since the operator Sz + I z commutes with the Ham-
iltonian (11.20), Μ + m will always be a good quantum
number. In a strong field, Μ and m themselves are
approximately good quantum numbers, and in a weak
field it is F that is an approximately good quantum
number.

The case Μ + m = 1 is realized only in one way:
Μ = m = V2. Analogously, the case Μ + m = — 1 is
realized only in one way, Μ = m = - V2. Therefore the
states a' and b for arbitrary value of an external
field are pure states in Μ and m. In particular,*

«' = ( + , +), b = (-, - ) . (11.27)

On the other hand, the states a and b are super-

•As before, (+, - ) denotes, for example, the wave function of
the state with Μ = +% and m = -%.

positions of the states (+, - ) and (-, +). In particu-
lar, in a strong field we have approximately

* = ( - . + ) • &' = ( + . - ) •

On the other hand, in a weak field we have

α = 7Ί[{-~' + ) + < + · ->]•

b' U + ) ± ( + )]

(11.28)

(11.29)

where the upper signs must be taken if A > 0 and the
lower ones if A < 0.

Next, in the case of a weak field, for A > 0, the
states a', b', and b correspond to F = 1, and a cor-
responds to F = 0. If A < 0, F = 1 corresponds to
a', a, and b, while F =0 corresponds to b'.

The energy levels are shown as functions of the
external field in Fig. 9 for A > 0 and in Fig. 10 for
A < 0.

FIG. 9

b'

a'

FIG. 10

After these preliminary remarks regarding a sys-
tem consisting of two spins of value V2, let us proceed
with the Abragam-Combrisson method.

Let equilibrium first be established in a strong
field. If we neglect the energy of the spin-spin inter-
action and the nuclear Zeeman energy in the Boltz -
mann factors for a strong field, we obtain for the pop-
ulations

(11.30)



316 G. R. KHUTSISHVILI

We now reduce the external field to a value which
is considerably less than A/g0. If the time during
which exchange is effected is considerably less than
the relaxation time (either T e or T n ) , there will be
no transitions, i.e., the process will be adiabatic (for
more details regarding the adiabatic nature, see ref-
erence 71). If, for example, the system was in state
a, it remains in state a after the field is increased.

Therefore, after a weak field is reached, the popu-
lations of the four levels will be given, as before, by
(11.30). But in a weak field the states a and b' are
not pure states in the projections of the nuclear spin
m. The mean value of m in these states is zero. This
gives rise to a considerable polarization of the nuclei.
It is easy to obtain

/ 1 = - I t a n h o , (11.31)

and it is important that the δ contained therein in-
cludes a strong initial field.

The state obtained is, naturally, not in equilibrium
and the polarization will attenuate with a relaxation
time on the order of T e and Tn. If, after reducing the
field, we again increase and return it to the initial
state, the nuclear polarization will again be zero (pro-
vided the duration of the entire process is considerably
less than the relaxation times).

Actually, however, the situation is more complicated
and more interesting.

We assume that the relaxation times T e and T n

are sufficiently large and that all the processes have
been effected within a time considerably shorter than
T e and Tn. In this case the system which we consider
will be isolated from the lattice, and it can be subject
only to transitions in which the spin-system energy
does not change. It is enough to look at Figs. 9 and 10
to verify that in the case of strong fields all transi-
tions will be forbidden, and therefore in strong fields
the populations will not change with changing field.
But if the external field is H* = A/ (g + gj) β = 42
oersted, corresponding to a value of unity for the par-
ameter χ (for the sake of being specific, we consider
the case A > 0), the three levels b', b, and a become
equidistant. In this case the energy of the spin system
does not change if the two transitions

b—>a or b—>b',

proceed simultaneously, and therefore such transitions
can occur under the influence of external interactions
in the spin system. When the system passes through
the value H* as the field is changed, an internal equi-
librium corresponding to a certain spin temperature
is established between the three levels b', b, and a
(provided the passage is slow compared with the in-
ternal spin-spin relaxation). We can readily write
down the equations for the populations that should be
obtained after establishment of this internal equili-
brium

N(b')
N(b) •

N_(b)

A (a)

Ν
(11.32)

We confine ourselves to an analysis of the case of
small δ. Then the system (11.32) becomes

(11.33)

N(a)-N(b') = ^-6..

The solution yields

For the corresponding nuclear polarization we obtain

while at small δ we obtain from (11.31) ft = - V2 δ.
If we increase the field and turn to strong fields,

we obtain

/χ = -ίδ. (11.36)

All these predictions of the theory can be verified
experimentally in the following manner. First, after
equilibrium is established in a strong field, the signals
of resonances a ·*—·• a' and b *•—* b' are equal to each
other. If we reduce the field to a value less than H*
and return to strong fields, we should have according
to (11.34)

Ν (a) — Ν (α') = ^ Νδ, Ν {b)-Ν (b') = ~ Νδ,

and therefore the ratio of the signals of the resonances
a *—* a' and b -—* b' should be %.

On the other hand, if the field is reduced to a value
greater than H*, and a return made to strong fields
afterwards, the process should be reversible, in par-
ticular, the resonant signals a ·*—- a' and b -—- b'
should remain equal.

Figure 9 shows that at certain values of the field,
considerably less than H*, the levels a', b', and b
become equidistant, and therefore in such a field an
additional redistribution takes place, which will in
particular influence the resonance signals observed
after returning to the strong field.

It was impossible to verify these facts with silicon
doped with phosphorus, because the relaxation times
are not sufficiently long. These facts were investigated
with silicon doped with arsenic (As75) by observing
the changes in the resonance signals. For details see
reference 90.

On the other hand, it was impossible to observe
anisotropy of the γ radiation in an application of the
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Abragam-Combrisson method to a specimen of silicon
doped with radioactive arsenic.62

d) Magnetic Relaxation in Silicon with Pentavalent
Impurity

We present a table of experimental data on the
values of T e and T x in silicon doped with arsenic.
The table is taken from reference 83.

A - G
F

P - C
P - C

Im-
purity

As ' 5

A s ' 5

As ' 5

As7 6

3
2

Con-
cen-
tra-
tion

10"
5-10"
8-1016

3-101°

1
•I

1

2
2
3
25

9
9

24
24

.000
000
000
000

196
196
196

93.7

τ
Λ

10
40
4.7
>75

τ
e

20
80
6.5

4

A—C, F, and P —C denote respectively Abragam-
Combrisson, Feher, and Pipkin-Culvahouse, ve is the
electron resonant frequency in Mcs, the hfs constant
A is also in Mcs, T x and T e are in minutes, the con-
centration is in cm"3, and the temperature Τ is in
degrees Kelvin.

Theoretically the question of magnetic relaxation
in silicon containing pentavalent or trivalent impuri-
ties was considered by Pines, Bardeen, and Sliehter61

(see also reference 94). The authors note that the
longer relaxation times are due to the following cir-
cumstance. The electron is bound with the impurity
ion in such a way, that it reacts adiabatically to
changes in external conditions. This causes a strong
decrease in the matrix elements connected with the
change in the spin direction. A calculation was made
for the relaxation time T x for transitions produced by
hyperfine interactions between the electron and the
spin of the impurity nucleus. In some cases the value
obtained for T x agrees with the experimental data.
For example, calculation yields for As7S impurity at
Τ = 1.2° Κ and ve = 9000 Mcs a value T x = 56 minutes,
whereas the tabulated experimental value is T x = 40
minutes. We note, however, that this theory is unable
to explain the excessive value of T x obtained for the
As76 impurity.

A calculation was later performed for the relaxa-
tion time T e . Transitions were considered, caused by
the modulation of the spin-orbit and hyperfine interac-
tion of the electron with the spin of the Si29 nuclei
(the modulation is due to the lattice vibrations). The
theoretical values obtained for T e are considerably
higher than those experimentally measured. Nor is
there any agreement concerning the dependence of
T e on Τ or H. One must note furthermore that the
empirical values of T e depend greatly on the impurity
concentration.

Experiments have been recently performed on the
dependence of the relaxation time in silicon doped with
phosphorus on the temperature, external field, and im-
purity concentration. In particular, Honig and Stupp95

measured the dependence of T e on the field in the in-

terval 3.5 — 10 kilooersted for temperatures 1.27° Κ
and 2.06° Κ (the phosphorus concentration was 1.4
χ 1016 cm"3).

Feher and Gere96 measured the dependence of dif-
ferent relaxation times in phosphorus doped silicon on
the temperature (in the interval 1.25°Κ — 4.2°Κ), on
the external field (in the interval 3.2 — 8 kilooersted),
and on the impurity concentration. It was found that at
a phosphorus concentration less than 1016 atoms/cm3,
T e is independent of the concentration; at greater con-
centrations T e diminishes rapidly with increasing
concentration. We denote that according to experiment
made on silicon doped with P31, T e is much less than

Τχ·
The experimental values of T e disagree likewise

with the theory of Bardeen, Pines, and Slichter in the
case of silicon doped with phosphorus. Thus, the prob-
lem of magnetic relaxation of silicon with donor im-
purity is at present in an unsatisfactory state.

Let us note, finally, the interesting fact observed
by Feher and Fletcher97 (for more details see refer-
ence 96). It was found that when a crystal is illum-
inated, the time of relaxation of T e diminishes rapidly.
This reduction in T e is attributed to the fact that upon
illumination additional free electrons are produced in
the silicon, and these cause additional relaxation of
the electron spin.

12. CONCLUSION

From the point of view of applications to nuclear
physics and to the physics of elementary particles, the
greatest interest attaches to the production of samples
containing polarized protons. In Sec. 7 we have con-
sidered a method of induced dynamic polarization,
which makes it possible to obtain polarized protons.

From the point of view of obtaining polarized pro-
tons, a recent work by Jen, Foner, Cochran, and
Bowers93 is also of interest. This work is devoted to
an investigation of paramagnetic resonance by atomic
hydrogen that intrudes in the lattice of solid hydrogen.
Of considerable interest is to obtain the Overhauser
effect or the effect of induced dynamic polarization of
nuclei in such specimens.

In connection with the possibility of using targets
with polarized protons, mention should be made of the
theoretical paper by Capps.98 He considers the proc-
esses

+ p—.>

(and also processes obtained by replacing the Λ hy-
peron with a Σ hyperon) in the case of polarized pro-
tons. It was shown that measurement of the angular
distribution of the pions (obtained from the decay of
the hyperons ) relative to the direction of the polariza-
tion of the protons makes it possible to determine
uniquely the relative parity of the Κ meson and hy-
peron.
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