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The energy distribution in a continuous spectrum
describes mostly the dependence on the wavelength of
the spectral density, which is the derivative of the ra-
diant flux P, i.e., the intensity, with respect to the
wavelength A:

apP
P (7‘1)=d—;‘: .

This function (frequently called the spectral intensity)
can vary in form. In the special case p(A)= const, the
spectrum is usually called a constant-energy spectrum,
because equal intervals A\ of the spectrum scale
contain equal fluxes (Fig. 1).

It is also possible to write down the energy distri-
bution in the spectrum as a function of any other quan-
tity which bears a single-valued relationship with the
wavelength, ! taking into account the derivative of the
flux with respect to this quantity. If we take the wave
number? n = 1/ X\ as such a quantity, then the function
characterizing the energy distribution in the spectrum

will be

dP
pm=o--

This function is connected with p(\) by the relation

p)=—hip()=—E3)

For p(n) = const, (Fig. 2), the spectra can be called
constant energy in the same sense as in Fig. 1. How-
ever, in a constant-energy spectrum characterized by
constant p(A), the energy distribution, which is a
function of p(n), has the form shown in Fig. 2,'3 while
for p(n) = const, the spectral density p(\) is inversely
proportional to the wavelength (Fig. 1).

Let us consider the radiant flux in the interval A,
A + A Xof the constant-energy spectrum of Fig. 1:

AP =p(A) AN

it is represented by the shaded area. In Fig. 2, this
same flux, also shown by the shaded area, is given by

AP =p (na‘;) An.
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for sufficiently small A A, where

and n__ is the average wave number in this interval.
We now change the wavelength A while keeping the
interval A\ fixed. We then find the same flux AP
in the constant energy spectrum of Fig. 1. The pre-
vious flux is also obtained for Fig. 2, if we change
the interval An and the average wave number in
correspondence to the new value of the wavelength.
If the interval Ap remains unchanged, then the flux
found in Fig. 2 will change, increasing with increas-
ing wavelength.
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Figure 1

If the energy distribution over the spectrum is
such that p(A) has a maximum at some wavelength,
then the function p(n) has a maximum at another
wavelength. Considering the flux in the interval
A X, which is unchanged over the entire spectrum,
we find the maximum value of this flux in the inter-
val An, which is also constant over the spectrum,
we find its maximum value at the point of the maxi-
mum p(n). Both are, of course, valid: in the first
case, we find the maximum flux in the interval A X
which is constant over the spectrum, and in the
second, in the constant interval A . These maxima
are at different points in the spectrum, a constant
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interval A\ corresponds to variable intervals An
‘over the spectrum, and vice versa. 4

In the general case, the spectral scale can be
represented by some function f (A), while the energy
distribution over the spectrum — the spectral inten-
sity — is given by

pih=" (1

Depending on the form of the function f(\), the
spectral density will have different values at a
given point in the spectrum (as was pointed out by
Fabry>), and its maximum will be located at one
wavelength, or another, as pointed out by Planck

in considering scales of wavelength and frequency.®
Nevertheless, spectral densities composed in a dif-
ferent fashion are of equal usefulness for the calcu-
lation of the flux, since

pP— g p(f) df. (2)

which permits us to find the flux as the area’ bounded
by the curve p(f) and the axis f (A) in the limits under
consideration. But the maximum flux, like the flux in
the interval df, takes on different values and is found
in the different parts of the spectrum, depending on the
form of the spectral scale, i. e., the function f ().
This has led to a search for a spectral scale in which
the maximum of the spectral density would be found at
the position of the assumed “‘real’’ maximum flux.

However, as Gershun ! has pointed out, such a problem
cannot be validly set up, because the flux at some
point or other of the spectrum is conceivable only as a

flux in a certain range of some particular spectral scale.

It is possible that the lack of precision of terminology
contributed to an incorrect statement of the problem, as
the consequence of which the maximum of the spectral
density was called the maximum of the energy curve.8
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To each point of the spectral scale one can assign

a certain radiant flux, by considering the interval f,
f + Af of the spectrum and computing the flux p(f)A f
in this interval or the ratio of the same flux to the total
flux of the entire spectrum
=0l ®)
which has the meaning of the efficiency in the given
interval.? In the latter case the spectral coordinate f
will be assigned the flux 7 P. For Af = const, the
efficiency will have a maximum for the same value of f
as the density p(f). If f(\) = A, then the interval
AXshould be small in comparison with the wavelength A ;
in the opposite case, the flux in it, i.e., the numerator
of (3), must be computed in the part of the spectrum
under consideration in which the efficiency 7) is com-
puted, for AX = const. Then the efficiency will have a
maximum at the point of the maximum of the spectral
density p(A). In particular, for an absolutely black
body, the wavelength for which the efficiency is maximum
will be determined in this case by the displacement law
in the form obtained by Wien.

For an absolutely black body one can study the maxi-
mum of the efficiency coefficient 7) in another manner,10
by considering 77 as a function of the temperature T and
of the wavelength. By introducing the Stefan-Boltzmann

constant 0" and the Planck constants ¢

, and c,s we ob-

tain

q=C1. ATSTA)

o exp 2y
AT

Setting A = const, we find the temperature T for which
the efficiency 77is a maximum. From

o

dT

it is not difficult to obtain9
_ c (4)
Tm— }\' M

where

while x is determined by the equation 10

x
1—exp(—w):4'

Then the maximum efficiency for the wavelength A is

a2
Nmax = o (5)
where
c, Cc-% .

ket 7 . .
0 exp z—1
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Equation (5) shows that the maximum efficiency 7
which is possible for each wavelength A will be the
same over the entire spectrum if the relative value
AN /X of the interval is constant over the spectrum, the
fraction of the total flux of the radiator occurring in
which interval is determined by this coefficient. In this
case, each wavelength corresponds to a value of T_ of
its own, as given by (4). For the wavelength A , this
will be the temperature T”%, for which n < m ___for
all wavelengths A $ A. Consequently, in the relative
interval determined by the wavelength A’ the flux will
be maximum for this case, i.e., for a temperature T1.
But the constancy of the relative interval AN /X takes
place in the spectral scale f(A) = In A. The flux in
an interval of such a scale should be a maximum for that
wavelength for which the spectral density is maximum:

» (In M:%J:xp ). (6)
As a consequence, the spectral density p(ln A) of the
radiation of an absolutely black body at a temperature
T,, is a maximum for a wavelength connected with T,
by Eq. (4).10 The maxima of the efficiency 7 and of the
spectral density p(ln A) are obtained at the same point
in the spectrum only when, as would be expected, we
consider the efficiency of the radiator in a relative
wavelength interval that is constant over the spectrum,
i.e., in a constant interval of the logarithmic spectral
scale. This can be obtained directly from the expres-
sion for the efficiency. Setting

Al
oA = 5= const

and keeping (6) in mind, we find that

'fl:ﬁ—(%ll) shCL ATETTIOA Y]

exp %-—1

Differentiation of this expression with respect to A for
T = const leads to (4) and (5) with the previous4 values
of C and k. We note that Eq. (7) differs by only a con-
stant factor from the expression introduced by Worthingl1
for the number of photons in a unit spectral interval
emitted per unit time per unit area of a perfectly black
body. This number, consequently, is a maximum under
those conditions for which the 7 as given by Eq. (7) is
a maximum. )

Any spectral scalel can be used, the preferable one
depending on the problem solved. The energy distribu-
tion in the spectrum can be described by the spectral

density of radiant flux in an interval of this scale. In a
given spectrum, each spectral density expressed as a
function of the chosen spectral scale, has, as Gershun!
pointed out, its own characteristic maximum, if it has
one at all. In particular, this refers to the description
of the energy distribution in the spectrum of a perfectly
black body. Wien’'s law in its classical expression,
which corresponds to the description of the energy
distribution by the function p(\), is just as valid as in
the other expressions which it obtains in the applica-
tion of other functions, in particular, p(ln ) or p(In A).
Although in the latter two cases the maximum of the
spectral density occurs at the same wavelength, 3» 12
there is no basis for assuming the logarithmic scale to
be privileged for the determination of the ‘‘maximum
energy’’ in the spectrum, as has become popular in re-
cent publications.4» 10, 13 The logarithmic scale is
suitable, as Rayleigh has shown, for the graphic
representation of spectra, for it makes all octaves of
equal length. 14 The frequency scale v which preserves
its values in the transition from one medium to another
can be preferable in problems where this is the case.15
If there are no special conditions, then one should use
for the description of the energy distribution in the
spectrum the usual scale of wavelength, which is most
suitable in that corresect data are customarily given in
it.
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