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INTRODUCTION

a'ne of the characteristic features of a plasma
(ionized gas) is the appearance of nonlinear effects
even at relatively small and readily attainable electric
fields.

This is caused by two factors: first, the mean
free path of the electrons in the plasma is quite con-
siderable, and therefore the electron may acquire from
the field a large energy; secondly, the energy transfer
from the electrons to the atoms, molecules, and ions
is made difficult by the small ratio of the electron mass
to the mass of these heavy particles. As a result the
plasma electrons in an electric field become heated,
and the complex dielectric permittivity of the plasma
begins to depend on the field intensity. In other words,
the polarization and the conduction current are no
longer proportional to the field E, and consequently

1) This article is simultaneously published in German in

Fortschritte der Physik (East Germany).
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the electrodynamic processes in the plasma, and in
particular, the propagation of electromagnetic waves,
acquire a nonlinear character (violation of the princi-
ple of superposition, etc.).

The effect of the field on the properties of a plas-
ma can be neglected in the first approximation if

(0.1)

Here Ep is the characteristic "plasma field" (see
Sec. 1.2), e, m, к are the electron charge and mass
and Boltzmann's constant, T is the absolute tempera-
ture of the plasma in the absence of a field, S is the
average relative fraction of energy transferred upon
collision of an electron with a heavy particle (in
elastic collisions S • 2m/M, where M is the mass of
the heavy particle), ш is the radian frequency of the
field, and v0 v ( 0 \ t t is the effective number of col-
lisions between the electron and the heavy particles
in the absence of a field. We note that in criterion
(0.1) the plasma is considered, for simplicity, to be
isotropic, which it is in the absence of an external
magnetic field.

It is natural to call an electric field that satisfies
condition (0. 1) a weak field. Under the influence of a
strong field (£ > Ep), and especially a very strong
field (E » E ) , the properties of the plasma are sub-
stantially changed.

Estimates show that the values of the "plasma field"
Ep are in many cases quite small. In fact, for example,
in the E layer of the ionosphere, v ~ 105, T ~ 300,
and S ~ 10_3 , while in the F layer v ~ 103, T ~ 103,
and S ^ 10 4 . Therefore, in the iono°sphere, at low
frequencies

« 2 < v* (0. 2)

the field Ep - 10"5 - 10" 7 v/cm. In the sun's corona

subject to the same condition (0. 2) E ~ 10~7 v/cm.
For a denser plasma, or at higher frequencies

со2» (0.3)

the'"plasma field" is, naturally, considerably greater.
For example, m the ionosphere at со = 2x 10 6(^=27TC/OJ~ 1 km),
Ep £ 5 x 1 0 4 v/cm, and when со =2х107{)*2ттс/ш^ 100m)

p _ / , со 2х10{)*2ттс/ш^ 10
Ep £ 5 x 10 3v/cm. In the solar corona, in the meter

band investigated by radio astronomic methods,
Ep ~ 10 v/cm; when k= 1 cm we already get in the
corona E ~ 104 v/cm. Finally, in laboratory installa-
tions (v^ ~ 106 to 109, T - 104, S ~ 10" 1 - 10~3)
one obtains E ~ 10~ 3 to 10 v/cm for a low-frequency
electric field L subject to condition (0. 2)] and
Ep ~ (10 U to 10"10) TTx со v/cm at high frequencies.

Thus, nonlinearity becomes substantial in plasma in
fields which are not too large, at least from the point of
view of values customary under laboratory conditions or
high power radio transmitters. In non-conducting pure
liquids and solids (with the exception of ferroelectrics)
the situation is different. Here the effect of the field
on the properties of the medium can usually be neglected
up to fields on the order of 10 6 to 10 7 v/cm, which ap-
proach electric fields of atomic scale, E ~ e/d2^ 10 8

v/cm (d is the dimension of the molecule or the lattice
constant). In metals and in semiconductors the conduc-
tion electrons can be likened up to a point to electrons
in a plasma. However, the range of nonlinearity in
metals is in practice nearly unattainable, since the high
conductivity prevents the production of a sufficiently
strong field in a metal (in addition, the nonlinearity is
decreased by electron degeneracy1 '3). In semiconduc-
tors, nonlinearity is observed without particular diffi-
culty and qualitatively many deductions obtained in
the investigation of nonlinear phenomena in gaseous
plasma apply here. Yet, nonlinear effects in semi-
conductors are in general less clearly pronounced than
in a gas; the quantitative theory in the two cases is also
different. We shall therefore consider only gaseous plas-
ma (certain results pertaining to semiconductors are
given in references 4—7).

The present article is devoted to the theory of non-
linear phenomena in a plasma. The equations of plasma
dynamics (in the general formulation - the field equa-
tions and the kinetic equations for the plasma particles)
are themselves nonlinear, and thus the theory of non-
linear phenomena covers in broad outlines a considerable
portion of plasma physics. We plan here to throw light
on a considerably narrower but clearly outlined group of
problems. In the first part of the article (Sees. 1 & 2)
we shall consider the effect of a homogeneous electric
field E = EQexp (icot) on a nonrelativistic and nonde-
generate (classical) plasma (the frequency со may be
equal to zero, corresponding to a dc field). The plasma
can in this case be in a homogeneous and permanent
("external") magnetic field HQ. Macroscopic (hydro-
dynamic) motion of the plasma is neglected.

The effect of the field on the plasma reduces in this
formulation of the problem to the variation of the distri-
bution function of the plasma electron velocities. This
distribution function must be determined as a function
of the field intensity EQ, the frequency со, the magnetic
field HQ, and the plasma parameters. The distribution
function of heavy particles (molecules or ions) will re-
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main Maxwellian with temperature T; in the stationary
mode, the only one considered here, this assumption is
usually justified.

Knowing the electron velocity distribution function,
one can determine the average kinetic energy (or the
effective electron temperature T ) and the total electric
current density j ^ . In the particular case of a weak
field, the electrons and the heavy particles have the
same temperatures, and the current density L is pro-
portional to the field E.

The determination of the properties of a plasma in
a homogeneous field of any intensity is of interest in
the analysis of many problems in gas-discharge physics,
the problem of plasma heating, etc. Calculation of the
current j , is, in addition, a necessary preliminary stage
in the solution of electrodynamic problems, particularly
problems connected with the propagation of electromag-
netic waves in a plasma. The second part of the article
(Sec. 3) is indeed devoted to the theory of nonlinear
effects that arise when radio waves propagate in a plas-
ma, specifically in the ionosphere. As to gas dis-
charge ' (particularly at high and microwave frequen-
cies , plasma heating in an inhomogeneous field,
the theory of nonstationary processes in a homogeneous
plasma ' '(including the problem of the "runaway
electrons" , etc, these problems will not be considered.

1. PLASMA IN A HOMOGENEOUS ELECTRIC
FIELD (ELEMENTARY THEORY)

Under the influence of an electric field, the electron
velocity distribution in a plasma ceases to be in equili-
brium: the electrons acquire an accelerated motion in
the direction of the field. This motion of the electrons
along the field is slowed down by collisions with the
heavy plasma particles — molecules, atoms, or ions. As
a result of these two processes ~ acceleration by the
field and retardation by collisions — a certain non-
equilibrium velocity distribution of the electrons is es-
tablished in the stationary state; this distribution must
be determined, in particular, in order to find the electric
current in a field of arbitrary intensity.

In the general case, the kinetic equation for the distri-
bution function must be used to solve this problem. How-
ever, to disclose the physical picture, and frequently
also to obtain sufficiently accurate quantitative formu-
las, it is convenient and useful to use a simpler although
approximate theory, which we call "elementary".

In the elementary theory the state of the plasma is
characterized by two quantities: the average velocity of
directed motion of the electrons, u, and the electron
temperature T . From its definition, the velocity и is
related to the total electric current density j , by

(1.1)

where P is the polarization of the plasma, j the conduc-
tion current density, and /V the electron concentration.2^
The quantities P and j are introduced here to establish
a correspondence with the usual concepts of macroscopic
electrodynamics.

The electron temperature Tg is determined in the
elementary theory by the relation

TkTe=- (1.2)

where К is the average kinetic energy of the plasma
electrons; since the electron velocity distribution in
the plasma is by far not always Maxwellian (see Sec. 2),
it would be more correct, naturally, to call the tempera-
ture Tg the effective electron temperature.

The principal task of the elementary theory is obvi-
ously the derivation of equations for и and T • The
next step is to find the values of и and T themselves
as functions of E, со, HQ, and the plasma parameters.
The accuracy of the elementary theory and the character
of the approximations involved in it can be explained in
a logical manner only on the basis of a kinetic considera-
tion (see Sec. 2).

1.1 Electron Current. Dielectric Constant and
Conductivity of Plasma

The equation for the average electron velocity и can
be derived from the following considerations. In the ab-
sence of collisions each electron moves independently
of the others; its velocity v should obviously satisfy the
equation m dv/dt - eE + (e/c) [ v x H j , where H o is
the constant magnetic field. ' We now represent the
velocity v in the form v = v. + и and average the equa-
tion for v over all the electrons at a given instant of
time, considering here that_vQ = 0. The equation for
the average velocity (u = v) will consequently be the
same as the equation for the total electron velocity v:

This averaging over all electrons is at the same time
tantamount to using an average electric field; in a plas-
ma this field is equal to the average macroscopic field

•Ve neglect the ion motion here and elsewhere. In the
absence of a magnetic field the contribution of the ions is
determined by the ratio mN-/MN (N^ is the ion concentration)
and is always small if the concentration of negative ions is
not very high. In the presence of an external magnetic field,
the role of the ions can be neglected if the ion gyro frequency
fiu = | e | H./Mc is considerably lower than the frequency Ш
of the electric field (this condition is not necessary when(thi

V , whereV is the ion collision frequency).
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of phenomenological electrodynamics (see reference 15,
Sec. 57).

Under the influence of the collisions, the velocity и
should obviously decrease; the time required for the
momentum to decrease by mu will be denoted by
r

e f f

 = V v

e f f - Then the friction force due to the colli-
sion is ~"iVefJu and the equation for и becomes

fY% — _
m~dt~ (1.3)

It must be emphasized that different collisions between
the electron and heavy particles produce different
changes in the momentum, in view of the velocity distri-
bution of the electrons and the different impact para-
meters. The time 7"eff is therefore a certain average
effective time during which each electron experiences
several collisions, the average net result of which is
a change of the average momentum by mu. In the
same sense, Veff = l / r f f is the effective number
of electron collisions per unit time. The calculation of
Vet{ 1S a Рг°Ыет in kinetic theory and necessitates
knowledge of the corresponding effective cross section.
It is clear, however, even without these calculations,
that the number of collisions depends on the electron
velocity and, for example, in the case of a velocity-
independent^effective cross section q we have
vett = 1Nmv' w h e r e N

m is the concentration of molecules
(we neglect here collisions with ions) and v is the aver-
age electron velocity. Since the total electron velocity
in any field is close to its random velocity (see below),
we_can consider the velocity v to be proportional to

Te. Thus, for collisions with molecules, when in the
first approximation the cross section q is independent
of the velocity, we can put

(1.4)

where vyt]miB the number of collisions in the absence
of a field (or in a weak field), i. e., when T = T.

For collisions between electrons and ions, when q
is inversely proportional to v4 (Rutherford scattering),
we have in the first approximation

*«—%.(£)• (1.5)

We shall treat the expressions fur v in greater detail
in Sec. 2. It is important to emphasize here only that

We neglect here and later the action of the alternating
magnetic field of the radio wave; this is usually valid when
u/c « I.

within the framework of the elementary theory there are
grounds for assuming that the number of collisions V
depends only on the electron temperature T , but not on
the velocity и (see Sec. 1.2).

In the absence of an external magnetic field (in an
isotropic plasma) we obtain for an electric field
E = Eoexp {icot) from (1.3).

u =
eE

m(ito-t-vef f)
(1.6)

— l

We consider here only the steady-state solution, and
assume also that Tg, meaning also Ve{(, is independent
of the time (although they may depend on the field ampli-
tude EQ).

In macroscopic electrodynamics, in the linear approxi-
mation, one usually introduces the dielectric permittivity
6 and the conductivity a, defined by the relations

| P = (e - 1) Е/47Г, j = a E . Expressed in these terms,
Eq. (1.1) becomes

E

e = e — 4ла

(1.7)

Comparing (l. 6) and (1. 7) we get

(1.8)

e2iVv

а =
eft

Ч-v2

eff.)

The forms of the quantities € and cr remain obviously
the same if v_ff depends on the field intensity (because
К ftis a f u n c t i ° n of Te and Tg is a function of EQ) and
the medium becomes nonlinear. It is therefore conven-
ient to use the concept of dielectric permittivity and con-
ductivity even in the nonlinear theory [at first under
conditions when the expressions of type (1. 6) are valid
with a time-independent number of collisions v ] . If
the introduction of e and a is inadvisable, the expression
for j must be used directly.

In the presence of a magnetic field HQ the plasma be-
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comes anisotropic (magnetoactive) and one must write
instead of (1.7)

eih — i — , 6 i f t = 1 when i = k, 6ik = 0 when i Ф k,
i h

(1.9)

where repeated indices imply summation (one must not field HQ is aligned with the z axis, then it is readily

confuse the imaginary number i with the index i !) and shown that (see reference 15, Sec. 62):

the velocity и must be determined from (1.3). If the

— —1
Bxx ~ Byy — l

_L f *
2co \ (to —

со — с о я со +

Vх ХУ in 2co \

8„ = 1 -

co H ) 2

(0 — Шя CO - f " С0Д

CO2-f V2

e2iV v_ _ e2iV v f

(CO-COj/J^V2

1 , 1

(co-fcoH)2-f v2"} '

_ _ _ayx — axV —

(w — c o H ) 2 + v 2

v 1
ш — c o H ) 2 + v 2 (co+coH)

i I
tf)

2+v2 J '

(1.10)

Here и>ц = I e \HQ/mc is the gyromagnetic frequency and

V = Vet{- It is seen from (1.10) that in a high-frequency

electric field (ai » v*), in the case when the frequency

со approaches the gyro frequency ш^, there is a resonant

increase in the conductivity, usually called gyromagnetic

(or cyclotron) resonance. The reason for this phenom-

enon is quite understandable. An alternating electric

field of frequency a>, directly perpendicular to HQ, can

be thought of as consisting of two circularly polarized

fields rotating with frequency ш in opposite directions.

In addition, the electrons themselves rotate about the

direction of the magnetic field with frequency

Шт, = \e | Ejmc . Consequently, from the point of view

of the response of the electrons to the component of

E that rotates in the same direction as the electron in

the magnetic field, the presence of a magnetic field is

equivalent to a reduction of frequency by а>ц. There-

fore, when ш is close to ш и, the effect of this component

of the alternating electric field on the electron is equiv-

alent to the effect of a constant electric field, which

indeed causes of the resonant increase in electron velo-

city and consequently in the conductivity of the plasma

at ш У. ШН-

1.2. Electron Temperature

The equation for the effective electron temperature,

T = (2/3A) imv2/2), is obtained from the law of con-

servation of energy. The electric field performs on the

plasma the work j • E = eNu * E per unit time, or the

work eu * E = \t • E/N per electron. On the other hand,

the electrons lose energy by collision with the heavy

particles. This energy has an average value

^effv ff ^ / ^ ) & (T ~ T ) per unit time, where S is a

certain coefficient, which has the physical meaning of

the average relative fraction of energy lost in a single

collision (at the same time 8 is the ratio of the time

of relaxation т of the average momentum to the time

of relaxation T

e(t of the average energy). The defini-

tion of S will be made more precise in Sec. 2. Here

we shall merely identify the effective and average values

with the true values and assume that in each collision

(the number of collisions "being v J the fast electron

transmits to the heavy particle an energy S jnv /2

(the electron is considered fast if its energy

mv /2 = ЗА Г /2 is considerably greater than the

energy ЗАГ/2 of the heavy particles; under such con-

ditions the heavy particles can be considered immobile).

Then the fast electron will give up per unit time an

energy

However, as the electron energy is decreased, this value
of transmitted energy cannot be the actual energy, since
when T - T (thermal equilibrium), it is obvious that
the average electron energy is not changed at all by col-
lision. The physical situation is that as T approaches
T, the heavy particles can no longer be considered immo-
bile and energy is not only transmitted from the electron
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to these particles, but in certain collisions, to the con-
trary, the electrons acquire energy. To take this into
account, therefore, the energy transferred to the heavy
particles is written in the form

Sef f Veff ••^-k(Te — T).

of Eq. (1.11), let us draw on a few particular cases.
In the absence of the electric field,

(i. e., it is independent of Tg) we have
In the absence of the electric field, if &eIt

v

eI{~ const

T,= (1.12)

We can now write the energy balance for the electrons
in a plasma in the form

dl± .j.E-6eft.ve{{(Te~T). (1.11)

A very important fact is that under stationary condi-
tions in a plasma S is always less than unity. '

Because of this, the stationary random velocity of the
electron v is always much greater than its directed
velocity и even in a strong electric field. To prove this
and to clarify in general the character of the solutions

i. e., the temperature relaxation time is actually equal
to T~Y' = (8 v ) . In accounting for the tempera-
ture dependence of S . .v , the situation becomes more

. eff off
complicated, but remains usually qualitatively approxi-
mately the same as when Seffv = const. We note that
that Eq. (1. 3) for и in the absence of a field and

; thus,

e f f e f f is consider-
ably less than т$ = (S e f f V^ fwhen S"f£ << 1. We
shall disregard from now on the relaxation terms in the
expressions for и and Tg, since only steady-state proc-
esses are considered.

To find и and Tg in the electric field, it is necessary
to solve simultaneously (1. 3) and (1.11), which is in
general a complicated matter. The situation becomes
simplified if v £f = const and 8 ff = const. Then in a
field E = EQexpiicat ) the solution (1.6) is satisfied,
or, on going to real quantities

v - const has a solution и = u,_ exp \~v t
the momentum relaxation time, 7"eff = l/^ e f f i

$ = (S e f f V^ fwhen S"f£ << 1.
h

E = Eo cos at, j , = eNu = m'^t+\^ (v cos at + a sin,

Furthermore,

dt

e*El
3/CTO6(CO2

(v + v cos 2co« + « sin 2arf) - 6v (T. - T),

(6v2—2m2) б o , o

to'+ач» c o s 2 ( B ' +
(1.13)

Here and in many cases below we shall omit the index
"eff".

At very low frequencies, when

(0 < 6v, (1.14)

4 ) ,'in a weakly-ionized plasma in monatomic gases at low
electron temperatures (less than of the order of 1 ev),
S e { f = 2m/M ~ 10 to 10 ' (M is the mass of the atom). In
molecular gases under the same conditions 8 £ ~ 10 . With
increase of the electron temperature the role of inelastic col-
lisions becomes greater and S increases; this increases
the degree of ionization and causes breakdown, after which
the ionization increases sharply. Simultaneously electron-ion
collisions begin to play a substantial role, causing 8 again
to decrease. The maximum value of 8 in stationary condi-
tions until breakdown occurs is apparently on the order of
10 . In a completely ionized plasma 8 is equal to 2m/M,
as before. For details see Sec. 2.

we have, accurate to a small term of order w/bv

T T - - 15)

where we take into consideration the fact that in (1.14)
a> is certainly much less than v, since 8 « 1. In the
other limiting case

co>6v,

we have accurate to terms of order bv/on and 8

3fcm6(<o2-t-v2) 3A:m6(a>2-|-v2)

(1.16)

(1.17)

{E is the time average of E ). Thus, in the case of (1.16)
the temperature Tg is constant in the first approximation;
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the ac component of Tg (with frequency 2w) has a low

amplitude, bv /со or S times smaller than the dc compo-

nent of Tg. The fact that the electron temperature is

approximately constant in an alternating electric field

when со >> bv is quite understandable. In fact, as

shown eariler, the relaxation time for the electron tem-

(§
e f f

perature in a plasma is on the order of ^ j e f f eft

and therefore the electron temperature cannot change

substantially within the time 1/co << 1/Bv , during

which the electric field changes. As a result, the tem-

perature is established at a certain average time-inde-

pendent level, and the deviations from this level are

small.

If the dependence of ^eff

v

e[{ °n Tg is taken into

account, (1.11) can be solved subject to conditions

(1.16) by series expansion in powers of (S {l

v

eflУ
ш

and § e f f . In the first approximation the electron tem-

perature T is constant; it is determined by the relation

The expressions (1.18) and (1.21) are implicit solu-

tions of Eq. (1.11) for Te, since the collision frequency

^ depends under real conditions on T' [see (1.4) and

(1.5)1 ; the dependence of S on T will not be considered

here within the framework of elementary theory, although

it can be derived in principle.

Before we find an explicit expression for Tg, let us

write the solution (1.18) in the form

where VQ = vyy (T) is the number of collisions at

T - T and E is the characteristic "plasma field"

( L 2 3 )

т T — — (1.18)

It is clear therefore that even in a very strong field

(when Tg>> T) the average electron velocity t> is close

to the random velocity, since

eE0

(D2-t-v2 (1.19)

whereas the ordered velocity [see (1.6)] is

eEn • Vbv. (I. 20)

In a constant electric field, E = const, obviously

и = eE/mV and according to (1.11) we have in the sta-

tionary state, for arbitrary dependence of S V on

' e '

Tr - T = T
3/cm6v'2

(1.21)

Equation (1.21) can be derived from (1.18) by putting in
it со = 0 and replacing the amplitude EQ by N|2£, where
E is the intensity of the constant electric field. Thus the
heating of an electron gas in a constant field is the same
as in an alternating field of low frequency со << v ,
which is quite understandable, s ince when со « v the
alternating field act s on the electron on the average like
a constant field E = Ee{f = EQ/'-$2 . It follows from(1.21)
that the condition и I < -JSw is satisfied also in a con-
stant field.

Thus, for any frequency со , a s s tated above, и « ~U~
by virtue of the condition S .. « 1.

It i s seen from (1.22) that if the amplitude of the

electric field intensity is lower than the " p l a s m a f ie ld"

( £ « E ) , then the electron temperature changes only
slightly under the influence of the field. The changes
in the electron collision frequency (1.4) and (1.5) are
equally insignificant here, as are consequently the con-
ductivity and the dielectric permittivity of the plasma.
Thus , an electric field E « E barely affects the plas-
ma, and will be called " w e a k . "

Vr,

7

6

5

4

3

2

eff

Figure 1

If, however, EQ £ E , then the electron temperature,
and hence the other parameters of the plasma (y ,e,cr)
change significantly under the influence of an electric
field. As already mentioned in the introduction, such
fields will be called strong, and fields with EQ» E
will be called very strong.

Solving the algebraic equation (1.22) for the case
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when collisions between electrons and molecules play
the principal role, i. e., when ^{{(Те) = VQ -J Tg/T [see
(1.4)], we get

(1. 24)

The dependence of Tg on EQ/E when со2 » v2 and
со « v2 is shown in Fig. 1. It is seen from the dia-
gram that in this case the electron temperature increases
monotonically with increasing E •

At high frequencies со » v , as is clear from (1.18)

(1. 25)

This expression for 7 g is independent of v or VQ and
consequently is valid not only for collisions between
electrons and molecules, but also for collisions with
ions.

An interesting peculiarity arises 3 at low frequencies
со « v in the case of collisions with ions. It is easy
to see that the connection between Tg and EQ/E , de-
fined by Eq. (1.22), is single valued at low frequencies
only when the collision frequency does not decrease
with increasing T (as takes place for collisions with
molecules) or else diminishes not faster than Tg . In
collisions with ions, this condition is naturally not sat-
isfied (v ~ Tg

 3 / 2 ) . As a resu It, when со2 < v2

o' in a
IT T

definite range of values of field amplitude Ejf < EQ4 E£
one value of E corresponds not to one, as usual, but to
three stationary states with different electron tempera-
tures (Fig. 2). However, only two of these, correspond-
ing to the lowest and to the highest curves of Fig. 2 are
stable; the state corresponding to the middle curve is
unstable. The critical field for the lower curve is
El = 0.28 E (0), where E (0) is the "plasma field"
(1.23) for со = 0. The absence of a "low temperature"
stationary state for E ^l is due to the fact that the energy
imparted to the electrons by the low-frequency electric

field increases sharply with increasing electric tempera-
ture (E * j ~ 1/v ~ T ), whereas the energy trans-
ferred to the electrons by the ions diminishes
[ 8 v ( 7 e - T) ~ T~Vl ] . Therefore in a sufficiently

strong electric field (E ~>' Eu) the electrons can no
longer transfer to the ions all the energy they absorb,
and the electron temperature begins to increase. As the
temperature increases, however, the collision frequency
decreases and when it drops below the field frequency
the low-frequency condition is violated. This makes
possible a second ("high-temperature") stable station-
ary state (1.25) for a strongly-heated electron gas, when
v (Г ) « со . The transition from the low temperature
state to the high temperature one is shown by the arrow

E,% и/

Figure 2.

in Fig. 2. The reverse transition occurs at a field
Ef* 1.7(со/vQ)3 / 2 Ep(0); naturally, E^ is weaker
than Efc. This gives rise to a unique hysteresis in the
dependence of the electron temperature on the amplitude
of the electric field.

In the case of collisions with ions the low-tempera-
ture state of the electron gas becomes unstable also in a
constant electric field; the corresponding critical field
is Ek = ££/>1~2~~ 0.2 E (0). In this case, unlike the
alternating field, there is no second stationary state
[since the case (1.25) cannot be realized, naturally,
when со = 0] ; therefore the electron temperature in-
creases continuously with time when E > EL (see refer-
ence 13).

We note, furthermore, that in this case of collisions
with ions, in a very strong constant electric field,

E> Ec~

the average directed electron velocity also becomes un-
stable. This is connected with the fact that under non-
stationary conditions one can no longer assume the
average directed velocity of the electrons, u, to be much
less than the random velocity [as is always the case
under stationary conditions; see (1.20)] . As a result,
the number of collisions between the electrons and the
ions begins to depend substantially on the velocity u,
diminishing as 1/u [cf. (1.5)] . Therefore in a field
E > E the average electron velocity can increase so
strongly, that the role of the collisions becomes negli-
gibly small and the electrons are uniformly accelerated
by the field. For the same reason the fastest electrons
of the plasma, namely the electrons belonging to the
" t a i l " of the distribution function {v >> 4kT /m),
are not in a stable state even when E < E , for they
are uniformly accelerated by the field; such electrons
are customarily called run-away electrons. Thus, for
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a pure electron-ion plasma in the " t a i l " of the distri-
bution function the stationary state is not realized at all
in a constant field. However, under conditions when
E << E , and particularly under stationary conditions
(as regards temperature) E < E^ - E^ / N 2 , the number of run-
away electrons is small. In an alternating electric field,
the electron run-away effect is missing. A detailed ex-
amination of these nonstationary phenomena in low-
frequency and constant electric fields is outside the

scope of this article.
The electron temperature is found to be constant, in

first approximation (in an alternating electric field with
frequency со >> bv), also when the plasma is subject
to an external magnetic field H . In this case we put in
(1.11) dTe/dt = 0 and /• = o-ikEk,aik being defined by
expression (1.10). As a result we obtain for T the
equation

sin2 P
(1.26)

Неге Шц - e \ Hg/mc is the gyromagnetic frequency and
/Sis the angle between the field E and HQ. It is seen from
(1.26) that in the case of a high-frequency electric field
(со » v ) , if the frequency со is close to the gyro-
frequency соц, a resonant increase of the electron tempera-
ture takes place. This temperature increase is the conse-
quence of the resonant increase in conductivity, noted above.

In a constant electric field Eq. (1.26) also applies,
if we put со = 0 and replace the amplitude E by 42 E,
where E is the intensity of the constant electric field.
It must be recalled, however, that in this case the role
of the ion current can be neglected, as was done every-
where above, only if D.^ ;< iA1', where iM' is the colli-
sion frequency for ions.

Within the framework of elementary theory, Eqs. (1.3)
and (1.11) for и and Tg are the starting point for the ana-
lysis of the behavior of a plasma in an arbitrary field,
including one of arbitrary frequency со or one with a more
complicated dependence on the time (for example, if the
alternating electric field is amplitude modulated at a low
frequency Q). It is precisely these equations that are
frequently used in the theory of nonlinear effects that
arise in the propagation of radio waves in the ionosphere
(see Sec. 3), and also in many other cases.

We note that the elementary theory is exact only when
the collision frequency v and the fraction of energy S
transferred in a single collision are the same for all
electrons, i. e., are independent of the electron velocity.
In a plasma, however, v and S are actually functions of
v. The substitution of average or effective values v
and 8 for v{v) and S(v), as is done in the elementary
theory, is not a quite rational operation, and its accuracy
must be checked by kinetic calculations, as will be done
later (see Sec. 2.5b). Naturally, when v and S depend
weakly on v the results of the elementary and kinetic
analysis should be close to each other, as is indeed the

2. PLASMA IN A HOMOGENEOUS ELECTRIC
FIELD

(KINETIC THEORY)

In the kinetic theory, the state of the electron gas in
a plasma located in an electric and magnetic field is
described by a distribution function /(v, r, t). Here, by
definition, the average number of electrons in a volume
dv 'dt = dvxdv dvzdx dy dz is equal to / dv 'dr, where v
is the electron velocity and r the corresponding radius
vector. It follows, therefore, that the electron ^ensity N
of interest to us, the average electron energy K, and the
electron current j at the point r and at the instant t can
be expressed with the aid of the function /in the follow-
ing manner

r, t)dv,

> r ' l)dv'

j = ^ ev/(v, r, t)dv.

(2Л)

2.1 The Kinetic Equation

The Boltzmann kinetic equation, from which the func-
tion /"should be determined, has the following form5'

— ( E

— [vxHn]^)gradv/+5 = 0.
с о у

(2.2)

case.

Here S is the so called collision integral, which describes
the variation of the function /"when electrons collide with

'The applicability of the Boltzmann equation to a plasma

is limited by the conditions e N ' « kT (the interaction

energy per particle should be much less than the particle kinet-

ic energy). In addition, we assume that kT » ~fi N /m

(condition of nondegenerate plasma). The derivation of the ki-

netic equation can be found, for example, in reference 16.
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each other or with all other particles of the plasma

S = '*"М-/(у')/<>;)},
(2.3)

where Vj is the velocity of the particle with which the
electron collides (we call it particle l), и = |v - y |,
q(u, 9) is the differential effective scattering cross sec-
tion, v ' and v't are the velocity of the electron and of
particle 1 prior to the collision (after the collision their
velocities are v and Vj respectively), F is the distribu-
tion function of the particles 1. The integration in (2. 3)
is over the velocities of particle 1 {dx ) and over the
scattering angles du = sin 6d вйф, where (9 is the
angle between v "" v and v ' ~ v ' .

Electrons in plasma are significantly affected by
elastic and inelastic collisions with molecules
[Sf* and S1™1] , collisions with ions (S;) and collisions

with each other (S?), i.e., in general S^Sel +S™el +S- +5 .
In collisions with heavy particles (molecule's or ions) &

their distribution functions F will be considered Maxwell-
ian. If collisions between electrons are considered, then
F = /. The interelectron collisions make Eq. (2.2) non-
linear.

Let us see now how to simplify Eq. (2.2) by using the
principal features of the behavior of electrons in a plas-
ma. We take into account first that, as was shown earlier
in the elementary analysis, the random (thermal) velocity
of the electron in the stationary state is always much
greater than its directed velocity. Accordingly, one can
expect under the same conditions the distribution func-

tion to depend essentially only on the absolute value of
the velocity, and not on its direction. It is therefore
convenient to separate from the distribution function its
principal part fQ(v, r, t) which depends only on the abso-
lute value of the velocity (and which is symmetrical)
from the directional part f^ i. e., to expand the angular
portion of the distribution function in a series of spheri-
cal functions in velocity space.

Let us consider first, for the sake of simplicity, the
isotropic case (HQ - 0) and assume that the spatial gra-
dient of the distribution function is directed along the z
axis, parallel to the field E. Then there is only one
separated direction E (i. e., the z axis) and the distri-
bution can be expanded in zero-order spherical functions,
i. e., in Legendre polynomials Pfricos 6J, where
the angle between E and v

i s

/ К г. О = 2 pk (cos 8X) fk {a, r, 0. (2. 4)

Let us now substitute the expansion (2.4) in Eq (2 2)
multiply it by the polynomials Pk(Cos в), and integrate it
over the angles, using the orthogonality and other prop-
erties of the Legendre polynomials (see reference 17,
p. 394); we also take into account the fact that

Egradr/ = £cos61f. + ^
д (cos 8i) "

We then obtain instead of (2.2) the following system of
linked functions /o, ft, f ...

dt ^

where

5 dz m L dv ' 5v* dv

4я

(2.5)

in
We note that in examining collisions with heavy parti- depends only on the function /,. In fact, substituting i

cles when the collision integral is linear with respect the collision integral the expansion (2.4), multiplying it
to the electron distribution function /, the integral Sk by Pk (cos в ) , and integrating over du we have

(2.5a)

dvx dQ^q(u, 8) uPh (cos BJ { F 2 Ph (cos 8) fk -

== J dvxdUq{u, Q) и {f k.F~F'.fk-Ph (cos Щ..

Here, in the integration over du^ it is taken into con-
sideration that cos 6[ *cos $cos 6^ +sin i9sin в cos ф

W1 is the angle betwreen v' and E), and use is made of
the theorem for the addition of Legendre polynomials (for
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more details see references 18 -- 20).

It is seen from (2.5) that the resultant chain of equa-

tions can be terminated with the first two, if the function

f can be neglected compared with the fundamental func-

tion fQ, or more accurately if ^ > -? — (v3f2)

and
dz

Taking into account the fact that S ~ vfl

 w ' t n

sufficient accuracy (this will be proved in Sec. 2.2) and
that correspondingly S2 ~ vf2, we can express the func-
tion / approximately in terms of fQ. For example, in a
spatially-homogeneous plasma (Э// Bz = 0) under sta-
tionary conditions Ъ{^/Ъ1= iwf^ "f2'

 f % I U J / 2 '

therefore, as is clear from (2.5), j1. =

 e '°
and consequently

eE

m (i&-\- v) 9c

_d
m (/со -f- v) dv

e-i2

l?l2((02-f V2) 3y v v dv

Then the condition
in the form

df0

dv ~7Ж я7, (и fit) c a n b e r e w r l t t e n

m2(co2+v2)

If the inhomogeneity of the plasma is taken into account
along with its nonstationary nature,, it is necessary to
stipulate also that the following conditions be satisfied

dfo
dt

df0

dz

(2.6b)

(2.6c)

Here v - v{v) is the collision frequency for an electron
having a velocity v (see Sec 2.2), while со is defined in
(2.6) as со - | B / ? / 3 t | / / 2 .

In the case of interest to us, of a stationary distribu-
tion in a spatially homogeneous plasma, conditions (2.6b)
and (2.6c) are always satisfied. The decisive condition
is therefore (2.6a). If we confine ourselves to the use of
this condition for an average velocity v ~ 4kT /m and
put By / Ъу ~ f /v, we arrive at the requirement

p 2/72

see now how condition (2.6a) is satisfied at different
velocities v. For small v, condition (2.6a) may not be
satisfied only at electron velocities that are NS smaller
than its average velocity; this region of velocity is usu-
ally of little importance. Condition (2.6a) may also be
violated at high electron velocities. Here in the case of
high frequencies {со •» v ) this condition is not satis-
fied only in the insignificant region of velocities when
v exceeds the average velocity by a factor 1/-ЛГ • At
lower frequencies, and in particular in a constant field,
the region of velocities for which condition (2.6a) is not
satisfied is in general more significant. For example,
in the case of collisions with ions', when v ~ v 3 for a
Maxwellian distribution function f , condition (2.6a) is
not satisfied if (mv2/kTo ~ 3) v6 > B{kTp/m)3i. e.,
even if v £ 3 4kT /m. In this case it is necessary to
carry out a special investigation of the electron distri-
bution function at high velocities.

Thus, condition (2.6a) ~ the condition that only the
first two of the chain of equations (2.5) need be retained
~ is usually fairly well satisfied in a stationary spatial-
ly-homogeneous plasma. ' Conditions (2.6b) and (2.6c)
indicate the permissible degree of nonstationarity and
inhomogeneity in the plasma. By virtue of these condi-
tions, the energy and the density of the electrons should
not change considerably over a time 1 / N « 2 + jy 2 ; an(J
the electron current should not change over the effective
electron mean free path I = v/ N CO^- + v>2 .

A completely analogous expansion of the distribution
function can be made also in the presence of a constant
magnetic field H in the plasma, and also for an arbitrary
direction of the spatial gradient of the distribution func-
tion. In this case, separating again the symmetrical
(dependent only on the absolute value of the velocity)
portion of the distribution function f (v, r, t) from its
directed portion v • f (v, r, t)/v, and neglecting the re-
maining terms (i. e., putting f = f + v • f /v), we can
reduce Eq. (2.2) to the following systems of equations
for the functions f and f :

where expression (1.18) is used for T • Thus, condition
(2.6a) applied to the average values is found to be identi-
cal with the initial requirement S « 1, which, as al-

(2.7a)

ready indicated in Sec. 1, is always satisfied. Let us

In the absence of a magnetic field and when grad / is
parallel to E, Eqs. (2.7) coincide with the first two
equations of the system (2.5), as they should. The con-

' The foregoing pertains to the calculation of the principal
terms. Naturally, when one calculates small correction terms
of order 0, the function f must be taken into account. This is
important, for example, in the calculation of the small variable
terms on the order of OV/CO (see Sees. 3.1 and 3.5), provided
only that the condition OV/ CO » S is not satisfied.



126 V. L. GINZBURG

ditions of the applicability of Eqs, (2.7) are the same as collisions at the point у in velocity space. Relation

the conditions of the applicability of the first two equa-
tions of (2.5).

2.2 Transformation of the Collision Integral

Before we proceed to an analysis of the different
types of electron collisions in a plasma, we note the
most important feature of these collisions: in a major-
ity of cases the principal role is played by collisions
that change only slightly the electron energy and some-
times its momentum.'' In such cases, the change in
the distribution function due to the collisions, i. e.,
the change in the electron density in velocity space,
can be naturally represented in the form

5 = = — div j v , (2.8)

(2.8) is the usual continuity equation in velocity space.
The flux density j is naturally given, for small mo-
mentum changes, by the following expression

j v = i I ]dVl dQg {u'e) u Av

where j is the density of the particle flux due to the

F ( V i ) ~ f ( v ) F ( v *
(2.9)

Here Av = v' ~ v is the change in the electron velo-
city after one collision; the remaining quantities have
the same meaning as in the ordinary collision integral.
It can be shown that expressions (2.8) and (2.9) for the
collision integral when Av « v are identical with the
ordinary expression (2.3) (see reference 21).

If the distribution function depends only on the
modulus of the velocity [i. e., / = fQ(v, r, {)] , then
expressions (2.8) and (2.9) assume a particularly simple
form

К = T \ W v i dQ4 (». 9) M (°' - u) Wo И F (vi> - '° (y') F (Vi)}-
(2.10)

We note also that in this case, when not only the elec- expression in the curly brackets of Eqs. (2.9) and (2.10)
tron velocity but also the state of particle 1 (and its can be simplified to the form
velocity v ) change only slightly in one collision, the

/ (v) F ( V l ) - / (v) F (vO = (Av gradv /) F (Vl) - (Avx gradVi F) • / (v), (2.9a)

where Av, as before, is equal to v' ~ v; Ay = у' - у .
In calculating the integrals in (2.9) and (2.10), Ay and
Ay must be expressed in terms of the velocities v and
v before integrating over dv and dCl.

a) Elastic Collisions with Neutral Particles (Mole-
cules). When a light particle (electron) strikes a heavy

one, the energy or, the modulus of the velocity of the
light particle changes only slightly. Using this fact, we
can assume in the first approximation v' = v and v' - v
Considering also ' that the velocity of the electron is
much greater than the velocity of the heavy particle v ,
we obtain from (2.5a)

= ^ dy, dQq (в, 6) в {tt {v) F (vx) - Px (cos 6) f, (v1) F {y[)} -

(2.11)

v) = Nm-v'^ q(v, 8) (1 - cos 6) dQ.

In elastic, and sometimes also in inelastic collisions
between electrons and neutral particles, there is a slight
change in the electron energy (because of the small elec-
tron mass). In collision with ions and collisions between
electrons, in most cases there is a slight change not only
in the energy by also in the momentum of the electron
(owing to the peculiarity of the Coulomb interaction).

In the present article we actually always assume that
the average energy of heavy particles does not greatly exceed
the average electron energy. Naturally, other conditions are
also possible; for example, in solar corpuscular streams it is
not the average energies of the electrons and ions that are
equal, but their average velocities.
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Here vm(v) is the number of electron collisions and
q(v, в) is the differential effective elastic scattering
cross section of the electron. In collisions with a
heavy sphere of radius a (with which one can approxi-
mate elastic collisions between electrons and neutral
particles at low velocities), we know that q(v, в) -тга^/4,
and consequently

vm (v) = na*Nmv, (2.12)

In the same approximation a value of zero is obtained
for S e as should be if energy exchange is completely
neglected. We can calculate S^Q from the expressions
(2.9a) and (2.10), since the energy or the velocity modu-
lus of the electron, as noted above, changes but little in
one collision. Let us find now the change in the abso-
lute value of the velocity after one collision. As is known
from the laws of elastic impact (see, for example, refer-
ence 22, Sec. 17), the electron velocity after collision is

where /V is the molecule concentration.

v =
mv'-\-M\[

n
M

: nv cos +v;

(the last expression takes into account the fact that the
velocity of the molecule v ^ « v; ф is the angle between

v and v , n is a unit vector directed parallel to v ' —v j ~ v ).

It follows therefore that v СИ v' — v[ (cos 01 — COS i])) and

Д у = о ' _ у ~ v[ (COS Sj — COS l|)) ~ V1 (COS S i - COS t|>) =

vx (cos0-eosi |H-sin9sini |) X cos ф —cos if).
Неге б is the angle between v and n, and в and ф are
the scattering angles (i. e., the angles between n and
v ~v ' ~ v). Finally, we obtain directly from the law of
conservation of energy in the collisions that

Aw = ~mvkv/Mv .
Substituting these equations in the integral (2.10)

[taking (2.9a) into account] and integrating over
dfi. - sin в d6 йф and dv - v2 sin ф dv dф dф , and
assuming furthermore that the heavy particles have a
Maxwellian distribution with temperature T, i. e.,

F

We obtain

^)-= (2л
M 2M1 J

2я

/,. = 4" ^ y i dvi \ s i n 8 d f J \ d < i > \ s i n ^

2я

{v, 9) ju* (cos 6-cos

-sin 0 sin' - cos х|))2 %-F + -jj Wi ( c o s б ' c o s ^ + s i n e s i n ^ cos ф -

- cos
dF

— /0 [ = v m (v) kT v) w vf

Here Vmiv) is the electron collision frequency, determined
from (2.11). The expression obtained in velocity space
for the flux due to the collisions between the electrons
and the heavy particles has a clear physical meaning:
the flux j v consists, firstly, of the "diffusion flux"

9)

•where

In the same approximation we find that S - V(v)f ,

v2(v)=Nmv \ q(v,

From this it i s clear that the quantities V and V are of the

same order of magnitude, as we agreed upon in the derivation

of the conditions for the validity of Eqs. (2.5) and (2.7).

— V
kT

dv
d
dt

= —r- V
dl0

dv
, which occurs in the pres-

ence of a gradient in the velocity distribution of the elec-
trons and is due to the fact that the particles with which
the electron collides have a non-zero velocity; secondly,
a contribution is made to / by the "transport flux"
Vmvfo/M = dvf /dt, which "represents the losses in the
random velocity (or energy) of the electron upon collision.

The expression sought for the collision integral S e

has, consequently, the following form

(2.13)
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Here S = 2m/M is the average fraction of the energy lost
by the electrons in one elastic collision. ' Comparing
(2.13) and (2.11) we verify that the expansion of the colli-
sion integral is in powers of the parameter 8 , so that the
succeeding terms can always be neglected.

b) Inelastic Collisions with Neutral Particles.
Inelastic collisions between electrons and neutral parti-
cles are accompanied by the excitation of rotational,
vibrational, or optical levels, and also by ionization.
In addition, so called second-order impacts are possible,
in which the energy of the excited state of the molecule
is transferred to the incoming electron. An exact cal-
culation of all these inelastic processes is quite compli-
cated; in addition, their cross sections are known only in
a few cases (see references 23 and 24). Therefore there
is no complete theory of inelastic collisions, in which
the problem is solved as accurately as in the case of
elastic collisions. In spite of this fact, it is possible
to analyze relatively simply two important limiting cases;
specifically, we consider cases when the electron energy
is considerably greater than the energy of the excited
level, or the ionization energy (K » fiw), and when, to
the contrary, the electron energy is only slightly higher
than the excitation energy (K ~ irco « K).

In the former case the expression for the integral of
inelastic collisions is found in the same manner as for
elastic collisions. It is merely necessary to consider
that the energy lost by the electron in inelastic impact
is consumed essentially in excitation of the molecule,
and this is connected with a transfer of energy 1гш
(thus, v' ~ v = Jfico/mv); in this case the neutral parti-
cle simply goes from the ground state into the excited
state. We then have

~^T " ^ + U/o J } ' 1(2.14)
cinel — v f I

ci el __ 1 д Г 2

2u2 dv Г Л о

By definition U - oKv is the average energy trans-

ferred by electrons of velocity v to heavy particles when

К » ЪкТ/2 (see Sec. 1.2). On the other hand

U ~Nmv /m2(Av)2/A/ q(v, 6)du , since the heavy particle,

which can be considered stationary, acquires after the colli-

sion a momentum may ~ m(v ~ v) and an energy

[m(Av)] /2Д/ (the impact is considered elastic, and the

term linear in Av in the expression for the energy vanishes

when averaged over the directions of the molecule velocities).

Choosing as the axis the initial direction of the electron velo-

city v ' , we have (Az)z)
2 = v2 (1 —cos 0)2

and 2 = у2 s i n 2

Consequently U=^-v3Nin \ Я (», 0)(1 —cosfl) dil

where К - mv /2, and V is defined by (2.11). Obviously there-

fore S = 2m/U, and this result is independent of the cross

section q{v, 9).

Here V is tUe number of inelastic collision, accompanied
by the excitation of a quantum 1гш (as we shall call the
transfer to the molecule of an energy 1fco, consumed in
excitation of some level)

va (v) = v(N (v, 6) (1 - cos G) dQ,

where q^v, в) is the differential effective scattering
cross section in inelastic collision, N and Л^х are
the number of molecules in the ground and excited
states respectively. Furthermore, r^iv) is the fraction
of the energy lost per unit time by the electron to
excitation of a quantum ~Кш

and Tw is the effective temperature

1ш

TV" '

It is important to emphasize that in the case when the
quantum 1Гш is small not only compared with the electron
energy, but also compared with the energy of neutral
particles {fico « kT), and if the neutral particles have
a Boltzmann distribution N" /N^ = exp {~1гш/кТ)
(i. e., if the collisions with the electrons do not sub-
stantially change the number of excited molecules),
then the effective temperature T'ш is equal to the mole-
cule temperature T.

0 t 2 3 <t 5 6 7 8 9

Figure3.

In the second limiting case, when the electron energy
exceeds but little the excitation energy, the colliding
electron merely goes from the region of large energies
into the region of small energies {К ~ 0). ' There-
fore at large energies

el _
-

B)dQ,
(2.15)
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where \>ш is the total frequency of the excitations of the
level too (it is assumed that N£* « N °). The fact
that the electron cannot simply vanish but goes into the
region of small energies (К ~ 0) is taken into account
here by adding to the equation for / a S-function source
of electrons, - Q $(0)/4TTV2, where Q =dN/dt = 4TTJV f v2dv.

We note in conclusion that in the general case the
characteristic dependence of the total cross section of
the inelastic collision on the electron energy has the
form shown in Fig. 3: the total cross section q{v) van-
ishes when К < frco, then it increases, reaching a maxi-
mum К ~ (3 to 5)Жш, and then starts to diminish slowly.
Since in one impact the electron loses an energy 1ico, it
is clear from the diagram that, generally speaking, the
most probable elastic collisions are those for which the
fraction of the energy lost by the electron is small.

We note also that in those cases when not one but
several levels 1гш • can be excited, we have S = 2 S^ .

It must be taken into account also that some of the in-
elastic collisions ~ ionization and the effective recom-
bination (recombination, capture of electron by a mole-
cule, etc) — are accompanied by a change in the number
of electrons in the plasma. It is therefore necessary to
add in the collision integral for the function f the terms

«

where N^ is the concentration of the ions, which for
simplicity are assumed to be singly-charged.

If we consider the scattering of an electron on a
free ion, then integration should be carried out from 0
to 77(i. e., - 0) and the collision frequency diverges
logarithmically at small в. In a plasma, however, the
ions are not entirely free: as a result of interaction be-
tween the ions and the electrons, the field of each ion,
under equilibrium conditions, has a Coulomb character
only to distances on the order of the Debye radius D,
where И )

D = kTkTu
(кТ~\-кТе) I"1-

the first of which describes the effective recombination,
and the second describes ionization. Here v (v) is the
total recombination frequency

and viOn(v',v)=Nmv' [qiQn(v',u,e)dQ—

is the ionization frequency, i. e., the number of ioniza-
tions produced per second by electrons of velocity v' ,

which lead to the appearance of a new electron of velo-
city v, where Tfco. is the ionization energy. These terms
usually do not exert a noticeable influence on the form
of the distribution function (see reference 9, Sec. 47 and
reference 15, Sec. 56); they do determine, however, the
concentration of the electrons in the plasma.

c) Collisions with Ions. To describe elastic colli-
sions be.tween electrons and ions one can employ the
foregoing general expressions for the integral of elastic
collisions between an electron and neutral particles,
without modification, since the only assumption made in
their derivation was m « U. It is necessary only to cal-
culate the number of collisions between the electrons and
the ions, V- (v). For this purpose one substitutes in (2.11)

the Rutherford formula for the differential effective cross
section for the scattering of an electron by an ion. We
then have

At distances greater than D, the Coulomb field of the ion
drops off rapidly (exponentially) as a result of screening
(see, for example, reference 15, Sec. 56). Consequently,
D is the maximum distance at which a substantial inter-
action between the electron and the ions still takes place,
i. e., the maximum impact parameter. It can be used to ex-
press the minimum scattering angle (see, for example,
reference 22, Sec. 19): L
- 2e2/mv2D Therefore

= 2 tan \e2/mv2D)

v { (v) = 2 In 1 + - (2.16)

e 6/V 1It is important that D2{kTe)
2e 4 ^ U ^

always be a large quantity in the cases of interest to us
[see footnote ] . This means that the second term in

the logarithm is always the principal term. Consequently,
the principal contribution to the number of collisions be-
tween the electron and the ions is made by the weak
scattering — scattering by small angles. In one such
collision, the change in either the energy or in the elec-
tron momentum is insignificant. In fact, the fraction of

the energy lost by the electron when scattered by an
angle в is ST. = 2m (1 — cos 6)/M. Considering that
the principal role is played by collisions that lead to
the scattering by a small angle, on the order of $ m i n ,
we find

This expression is valid for/V- ~ /V, as in equilibrium
in the absence of negative ions; in general, however, /V must
be replaced by the concentration of positive ions, /V + .
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Oft rain = 9min 1ГГ =m
W

m
Ж

l \ 3

Analogously, the change in the momentum is
/ i\ з

m i n =

It must be emphasized that although the change in the
momentum in one impact is small, the change in the
energy is considerably smaller: Ŝ . / 8 ~ m/M.

Scattering by large angles adds to the number of
collisions only a term of order unity, which is small
compared with the main logarithmic term. A similar
correction in equilibrium plasma results from an exact
solution of the problem of scattering in a Debye field,
and also the interaction greater than the Debye radius
(so called collective effects) which are not taken into
account in formula (2.16) (see, for example, references
28 or 29).

It should also be noted that expression (2.16) is
obtained under the assumption that the classical theory
is correct, i. e., subject to the condition e zZ/~fiv » 1;
when z ~ 1 this means that v < 3 x 10° cm/sec, or
Te = mv2/Zk « 3 x 105 °K. A quantum calculation,
however, leads only to a change in the logarithmic term,
for example, for e2/Hv « 1 (i. e., when Te > 3- 105°K)
in (2.16) it is necessary to replace the term Z)2m2t> / e 4

under the logarithm sign by The ex-

pression under the logarithm changes also slightly in
an alternating electric field, of frequency higher than
a) = (477 e 2 N/m) lA for in this case the average colli-

0 \J

sion time Ar~D(kJ' е/т)~ / г ~ 1/U>0 is greater than
the time 1/co, in which the field changes (see reference
15, Sees. 59, 81, and 82). Finally, it is necessary to
introduce analogously in formula (2.16) changes if
Щц > со ; in this case the average radius of curvature

(кТ/т^/шц is less than the Debye radius

от?

D ~ (kTe/m)'2 ш

0~
1 • All these changes, disregarding

the limiting cases (a) » a>Q or и>ц » a>0) are in
practice of little importance, since they change the
effective number of collisions only by a few percent
and only sometimes by as much as 10 — 20%.

Inelastic collisions between electrons and ions,
which lead to their excitation and multiple ionization,
do not differ at all from inelastic collisions with
neutral particles, considered above. However, owing
to the large values of the maximum elastic impact
parameter (D), the role of inelastic collisions is greatly
reduced. Collisions accompanied by bremsstrahlung
of electrons, which are of importance at high electron
energies, will not be considered here (see, for example,
reference 11).

d) Interelectron Collisions. The principal role in
a collision between an electron and ions, as seen above,
is played by long-range collisions, which lead to weak
scattering. Both the energy and the momentum of the
electrons are changed only slightly by one such colli-
sion. This is the consequence of the singularity of the
Coulomb interaction and therefore pertains not only to
collisions between electrons and ions, but also to
collisions between electrons and electrons. The differ-
ence lies only in the fact that the fraction of the energy
and the fraction of the momentum, lost by the electron
when colliding with another electron is of the same
order \/$p "° 1, whereas in the collision with the ion
\/Ь^ m/M (see Sec. 2.2c).

hus, in considering the integral of interelectron
collisions, one can use the differential expressions
derived earlier for S. In addition, we can integrate in
this expression over the scattering angles dQ. [using
the fact that q {в, и) has a sharp maximum at 9 ~ 0] .
We then find that the integral of the collisions between
the electrons are satisfied by the expression (2.8),
where21

Ьр
Th

= 4N \ dyiv M № (/ (v) gradVi / K ) - / K ) gradv / (v)) -

- u [/ (v) (u gradVi / Ю ) - / K ) (u gradv / (v)]}. (2.17)

Неге и =v-Vj, v (u) is the number of collisions
(2.16), where v must be replaced by u and N^ by /Ve= N;
account is also taken of the fact that the scattering
particles are electrons, i. e., that F(vj) = f(vj).

Let us consider now S — the integral of inter-
electron collisions for the function fQ. We note here
that as a result of the nonlinearity of the integral of
interelectron collisions, the integrals Si depend,
generally speaking, not on the function f^ alone.
However, the integral SQg depends only on fQ , since

the terms of type fQ{ t drop out upon integration over
the angles, and terms of type f2 can be neglected com-
pared with / 2 [since, as can be seen from (2.5),
f2 ;< S / 2 , and the entire system of equations (2.7) is
correct only accurate to terms 0 (S) ] . Therefore,
putting / - f0 (v) in (2.17), we can readily perform the
integration over the angles. Then

(2.18)
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where

(2.18a)

Here 6^ is the angle between v and Vj, и = | v — v,
when integrating over the angles we neglected the
variation of the logarithmic term in V (u) (compared
with the variation of the principal term ~ 1/u ') . ' ' ' '
For fast electrons, whose velocity v is much greater
than the average velocity of the plasma electrons, the
coefficients A ^ and A2 assume a simple form: A1=v(v),
and A - 2Kv(v)/3m, where К is the average energy of
the scattered electrons (in the case of a Maxwellian
electron velocity distribution, 2K/3m = kTe/m).

We note that if expression (2.18) for S Q e is multi-
plied by t>2 or by v* and integrated over all the veloc-
ities v (from 0 to °°), then the corresponding integral

vanishes identically, regardless of the type of the
function /0 (i>):

(2.i8b)

These relations reflect the conservation of the number
of particles and of the energy in collisions between
electrons. For a Maxwellian distribution, naturally,

The integral of electron collisions for the function
f j depends both on f and on f0 . The expression for
S l e , as seen directly from (2.3), has the form-

fvf, (v)
/о Ы -'r

+ ^ Г i /.л v ' f i ("') / l v \
/o (v) ^r— /o I* i! —ir^foiv'^dv.dQdQ,. (2.19)

We note that the expression for the integral S lg can be
obtained also from (2.17) (where the weak scattering of
the electron in each collision is made use of). In this
case 5 l e is a rather complex integro-differential ex-
pression, linear in f 1 and containing a large number of
terms. We shall therefore not cite it here, referring the
reader to corresponding papers. ^ 4

2.3 Solution of the Kinetic Equation. Strongly
Ionized Plasma.

The final form of the system of equations for the
electron distribution function / (v, r, t) = /0 (v, r, t)
+ v'fj (v, r, t)/v, i .e., for the functions fQ a n d f j , can
be represented in the form

dJjL 4 JL d i V r f + " <L ( „ 2 E f ) =

dt • 3 г -imv2 dvv l ;dt

i""'• Sin

то [-li (/.) =>/„ +
(2.20a)

(2.20b)

Here Se^ = 2m/M, г^ and î - are the numbers of elastic
collisions of the electron with molecules (2.12) and ions

(2.16), V (v) = Ve^ (v) + v{ (v) + V™el(v) is the total
number of electron collisions, where

inel (y) = \ qw. (v, 0) (1 - cos 0) dil (2.14a)
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is the number of inelastic collisions between an electron
with molecules. 1 2> Next, S%f (fQ) is the collision
integral for the function /Q , which describes inelastic
collisions between electrons and molecules (the ex-
pressions for S1™1 (fQ) for two limiting cases are given
Sec. 2.2b), Ajfo), A2(fQ) and Sle (^) are the integral
expression (2.18a) and (2.19), which describe the varia-
tion of the functions fQ and f t due to collisions between
electrons.

Proceeding now to solve Eqs. (2.20) let us dwell
first on one of their singularities, which will be of
essential use later on. As noted in Sec. 1, the time of
relaxation of the electron energy, T$) - 1/8 v , is
always much greater than the momentum relaxation time
T ~ l / v

e f f • Ь this connection, the relaxation time is
much greater for the function /Q than for the function f j .
As a.result, the function fQ always changes more slowly
than function f t; consequently, when integrating Eq.
(2.20b) for the function f j , the function fQ can be con-
sidered in first approximation as constant and independ-
ent of the time. This facilitates greatly the integration
of Eq. (2.20b). The simple approximate expression
obtained thereby for f j , as shown in reference 35, is
accurate up to terms less than or of the order of §
i. e., to the same degree of accuracy with which Eqs.
(2.7) and (2.20) are in themselves accurate. The prob-
lem reduces therefore to an integration of only one
equation for the function / .

In the equation for the function f , the last term in
the right part of the equation, due to collisions between
electrons, has an order of vgfQ, where vg is the frequency

of the interelectron collisions. The remaining terms,
which describe the collisions between electrons and
heavy particles, have an order of bv fQ , where v = v + v-
It is clear that, depending on the relation between v
and Bv, the form of the function fQ is determined either
by the interelectron collisions, or by collisions between
electrons with heavy particles. We shall therefore first
consider separately these two important limiting cases:
the case of "strongly ionized plasma" when vg » Bv,
and the case of "weakly ionized plasma," when v « Bv
(in a completely ionized plasma we always have
ve » Bv = Sv., since S « 1 and vg ~ IA ; on the other
hand, at a very low degree of ionization, when the con-
centration of the electrons is sufficiently small,
vg « bv = Bvm; the terms "strongly ionized" and
"weakly ionized" are of course arbitrary). The solution
of the problem for any electron concentration, i. e., for
any relation between vg and Bv, is the subject of Sec.
2.5a. There we give criteria for the applicability of
the formulas obtained in each of the limiting cases
indicated above.

o) Distribution Function (Maxwellian Distribution).
In a strongly ionized plasma, when v » Bv, the form
of the function fQ is determined by the interelectron
collisions. The solution of Eq. (2.20a) must be sought
in this case by the method of successive approximations
'o ~ /oo + /n l + ' • • ' considering in the zero approxima-
tion, naturally, only collisions between electrons. In
a homogeneous plasma we then obtain from (2.20a) the
following chain of equations

•V. (/oo) = — ~ 1 ; { У2 [ Лх (/00) y/00 + Л2 (/00)
 9 | М ] } = О,

^ £ { u2 [ Л i (/oi) y/oo + Лi (/oo) o/oi + Л2 (/01) ^ o 4 . ,42 ( /oo) ^ 1 ] } =

(2.21a)

(2.21b)

be written in the form
expression for SJ£f , strictly speaking, should We see directly from (2.21a) that the zero-approximation

2 mi
m

It is easy to see, however, that by virtue of the condition
°eff <K 1>''which must be satisfied for Eqs. (2.20) to be in
themselves correct, the expression for S™f can be approxi-
mately represented in the form (2.14a). On the average, the
error introduced thereby does not exceed S

eff

y
function / is Maxwellian

( 2 - 2 2 )

since it is precisely for a Maxwellian distribution that
the integral of interelectron collisions (2.18) vanishes.
Physically this result is quite understandable: owing
to the interelectron collisions, the Maxwellian distribu-
tion should become established within a time 1/v ; when
ve >> ^v t h ' s P r°cess is much faster than the process of
transfer of energy to heavy particles, meaning the func-
tion / should be close to Maxwellian. With this the
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electron density /V and the electron temperature Tg in
(2.22) need not necessarily be constant, and are certain
functions of the time. They are determined from the
condition of solvability of Eq. (2.21b) for the next
(first-order) approximation. In fact, as indicated in
Sec. 2.2d (see 2.18b), if we multiply the left half of
(2.21b) by v or v and integrate it over the velocities,
then the corresponding integral vanishes identically
(independent of the form of the function fQ s ) . Con-
sequently, the right half of (2.21b) should also vanish
at the same time. This leads to equations for the
density and temperature of the electrons. In fact,
multiplying (2.11b) by 477"t> and integrating it over v,
we obtain

Quite analogously, multiplying (2.
(1/2) /nv2'47Tt;^ and integrating over

21b) by
v, we obtain

-1- 6 2ят
el

vf00 + ! £ ^

10

2юп

or, taking (2.22) into account,

(2.23)

Considering (2.22) and (2.23), we rewrite this" equation
in the form

' (Te) V eff (Te) (Tв - T) = ^ j

whe re,

/~2~
v i o n = V ~V kT'e )

CO CO

X ^ \ W2viim (v, v') охр { ^ g ^ } dvdo'

Here v denotes a parameter, determined by the relation

V«« (7'«> = З Л Ж J ^(V)fmdv =

l ' 2

is the total ionization frequency, and

'2 Г 2

is the total frequency of effective recombination (see
Sec. 2.2b). Equation (2.23) is usually called the
ionization-balance equation. ' '

where v (v) = i ^ (n) + b>i (v) + ̂ ^ e ' ( f ) is the number
of collisions between the electron and the heavy par-
ticles; v it is natural to call the effective number or
the effective frequency of electron collisions. Further-
more, S t is another characteristic parameter, having
the meaning of an average relative fraction of the energy
transfer to the electron by the heavy particles within

a time
f f

(see Sec. 1):

' 'If there exist also substantial external ionizing
factors (such as photo-ionization by solar ultraviolet in the
ionosphere) these must, naturally, also be taken into account
in Eq. (2.23).

Here S^ = 2m/M, ^\ti are the effective number of
elastic collisions [calculated also from formula (2.25),
but provided that V (v) takes into account only elastic
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el
) V e »
el v e f f

- v r e c ) г . (2.26)

collisions with molecules, V е ' (u), and with ions z^-(v)] .
S 1 ^ (y ) is part of the collision integral, describing
the inelastic collisions of the electrons having a
Maxwellian distribution with molecules [the expressions
for S1£Q (/OO) for the two limiting cases are given in
Sec. 2.2b] . Finally, \( is the density of the total
electron current, determined from Eq. (2.1).

An estimate of the first-approximation function shows
that / 0 j ~ (Sv/ve) / 0 0 . Consequently, in a strongly
ionized plasma, for the symmetrical part of the distribu-
tion function / 0 , accurate to terms of order bv/i>e , we
can confine ourselves to the zeroth (Maxwellian) ap-
proximation (for more details see Sec. 2.5a).

b) Effective Number of Collisions. In the case of

^ / ^
UZ Mi

_
т(кТе

kTkTg/where N- is the ion concentration and D kTkTg/
[47Te2N(kT+kTe)] is the Debye radius. The quantity

kTgD/e2, under the logarithm sign in (2.28), is always
much greater than unity. ' As a result, even at
relatively large variations of electron temperature, the
logarithm changes only slightly; we can, therefore,
always assume

' eff 'eff
(2.29)

where [s the effective number of collisions
between electrons and ions in a weak field, when Te = T.

Equations (2.27) and (2.29) coincide with expressions
(1.4) and (1.5), used in Sec. 1.

In the case when the plasma contains heavy particles
of different kinds, the effective number of electron colli-
sions thus determined is merely equal to the sum of the
effective number of collisions between the electron and
the particles of each kind.

This circumstance was already used when making the
transition to the last equation (2.28), where no attention was
paid to a factor of order unity over the logarithm. For the
same reason one can always assume in (2.28) that

when Г. = Г

collisions with molecules, as already indicated, one
can assume for low electron energies that the electron
free path is independent of its velocity, i .e., that
Vm ^ * s determined by (2.12). Inserting this equation
into (2.25) we get

8/2
3/л

,(0)
eff T (2.27)

where v^itm * s ^ е e ^ e c t ; i v e number of collisions
between electrons and molecules in a weak field, when

те = т.
In case of collisions with ions, we obtain by sub-

stituting expression (2.16) for Vf. {v) into (2.25), (for
more details see reference 15, Sec. 61)

^ ,
\ IS1'*")'

(2.28)

c) Relative Fraction of the Energy Transferred.
In the case of elastic collisions between electrons and
heavy particles, such as molecules or ions, it is clear
from (2.26) that § e f f = S e l = 2m/M.

To be able to calculate Se[[ also in the presence of in-
elastic collisions, it is necessary to know the effective
cross sections of all the inelastic processes [see for-
mula (2.26)] . They are known sufficiently well at the
present time only for monatomic inert gases. Suitable
calculations show that the relative fraction of the energy
transferred S is equal in these cases to S up to

eff ^ el r

temperatures on the order of 1 ev, and then increases
rapidly (exponentially) with increasing electron temper-
ature (see Table I).

In diatomic gases (hydrogen, oxygen, nitrogen) both
vibrational and rotational levels can be excited. Little
is still known about the effective cross sections of
these processes (see reference 23 and 24) so that S
cannot be calculated. Experimental investigations of
S and of its temperature dependence are reported in
many papers. 3>3<>-41 т п е results of these measure-
ments in hydrogen, oxygen, nitrogen, and air are listed
in Table I. ' As can be seen from the table, all these

The values of S are given here as obtained from
Я7 ^O ®f'

the latest papers. The dependence of S on T agrees
eff 23

in these data with that obtained by earlier authors, although
there is a considerable discrepancy in the absolute values.
The plasma temperature in the experiment is T "" 290 , and a
special verification at lower T disclosed no variation of о

40 eff
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Table 1

Те

500°
J0003

2000°
3000°
4000°
5000°
6000°
7000°
8000°
9000°

10000°
12000°
15000°

-,
о

Ti

0,27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27

_,
о

и:-

' • • '

2.3
2.5
2.2
2.2
2.5
3.0
3.4
3.9
4.4
4.8
5.3
6.1
7.2

Values of S
eff

о

О -i
CO

li
to

3.7
6.7
8.6
9.0
8.7
8.2
7.7
7.2
6.8
6.6
7.7

21

о

ет •

CO

<о

0,47
0.36
0.33
0.32
0.34
0.38
0.45
0.60
0.82
1.15
2.40

9.8

х 10

о

г-
СО

Ш. I I
Ь '•••

< -зto'

0.89
1.2
1.6
1.7
1.7
1.7
1.7
1.7
1.8
2.0
3.2

И

Ionosphere-

.и
о
о

_

0.86
1.2
1.5
1.6
1.6
1.6
1.6
1.6
1.7
2.0
3.1

10.6

J'
о
о
СЧ

0.08
0.12
0.16
0,18
0.22
0.26
0.32
0.43
0.60
0.85
1.8
7.7

е
о
о
СО

0,06
0.06
0.06
0,06
0,06
0,07
0.07
0,08
0.09
0.11
0.23
1.13

gases are characterized by a S that varies little with
T from room temperatures to temperatures on the order
of 1 or 2 ev; at higher temperatures, S increases
sharply.

If the gas is a mixture of several gases, the value
of S can be readily obtained from the formula

eff

6 eff. = • V
(2.26a)

'eff

where v r and S > is the effective number of colli-
effK _ eff К

sions and fraction of energy transferred for the gas of
kind "к" as determined from (2.25) and (2.26). A
corresponding calculation of S for air (from data ob-
tained for nitrogen and oxygen) is in good agreement
with the directly measured S (see reference 25). The
values of S in the ionosphere are listed in Table I
and were also calculated with the aid of (2.26a).

d) Electron Current. Dielectric Permittivity and
Conductivity of Plasma. To obtain the value of the
electron current j t, it is necessary to determine the
function f , , since

(2.30)

It is consequently necessary to solve Eq. (2.20b).
Inserting in this equation f instead of f , we find

that the dependence of f on the time t can be neglected
here (see beginning of Sec. 2.3). If, furthermore, the
interelectron collisions are insignificant in the equation
for fx, Eq. (2.20b) in the homogeneous case becomes in
fact algebraic. In this approximation its solution, which
can be verified by direct substitution, is

h o — — u

 dv >

where и is the velocity of the directed motion of the
electron, determined by the equation

(2.32)

We note that the equation for и is quite analogous to
Eq. (1.3) for the directed velocity in elementary theory,
the only difference being that V in (2.32) depends, gen-
erally speaking, on the velocity of the random motion i>,
and consequently also и = u(v, t).

Inserting the resultant function / 1 Q in (2.30) and in-
tegrating over the velocity v, we obtain an expression
for the current j , , and consequently also for the conduc-
tivity and the dielectric permittivity of the plasma, since
j f = [cr + ico (e - 1)/4тт] Е (see Sec. 1.1).

The formulas obtained for e and cr can be written in
the form
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8 = 1 -

a =

(2.33)

Here v is the effective collision frequency, determined
from (2.25), and ^J^z) and J^J^z) are certain func-
tions, the numerical values of which, for collisions with
either molecules or ions, are listed in Table II and in
Fig. '4.5 (the analytical expressions for the functions

«^^ and JPQ. are quite complicated (see references
20 and 43) . 1 6 The coefficients JT^ and ^ r e p r e s e n t
the dispersion of the electron collision frequency; they
show the extent to which the values of и and e calculated
in the kinetic theory differ from the corresponding values
obtained with the aid of elementary formulas (1.8). It is
seen from Table II and from Fig. 4.5 that in the case of
collisions with molecules the coefficients J^7^ and

J^T. are close to unity. To the contrary, in collisions
with ions 3@'€ and . л ^ т а у differ considerably from
unity, particularly at low frequencies со < и .

)
eff m

Earlier, in the determination of the function it, we
disregarded the collisions between electrons. This is
true for collisions with molecules (when Vettm

 > : > v

ettj)
and also for collisions with ions {v . » v ), pro-
vided the plasma is multiply ionized or contains a large
number of negative ions (when N- » ^Ve)- If the plasma
is singly ionized and there are no negative ions, the col-
lisions between electrons can play a substantial role.
To determine il in this case, it is necessary to include
the integral term in (2.20b) and to find a solution of this
integral equation. Such a solution was obtained in refer-
ence 44 (see also references 45 and 46) for a constant
electric field by expanding the function t in Laguerre
polynomials; in reference 13 this solution is generalized
to include the case of an alternating electric field. The
same problems were solved also in references 32, 33,
47, and 48, where the authors used integro-differential
("diffusion") expressions for the collision integral
(see Sec. 2.2d); the results of these investigations
agree with those obtained in reference 44, as they
should.

The calculation of e and crwith allowance for inter-
electron collisions shows that these quantities can, as
before, be represented in the form (2.33). All that

changes here are the functions Л?е and Stif^'i these
are also represented in Table II and in Fig. 5 (solid
curves). It is seen from Fig. 5 that allowance for the
collisions between electrons reduces the values of the
functions J¥? € and *%?& , but they still remain suffi-
ciently different from unity. We note also that at high fre-
quencies (со » v ) the functions 3f? and ЛГ_,
* eff e a '

with allowance for collisions between electrons, are
close to unity, i. e., the influence of the collisions be-
tween electrons is insignificant at higher frequencies.
The problem of the influence of electron collisions is
solved also for doubly- and triply-ionized plasma.

We note that the functions к%> and *%? depend on
one variable co/y only in the case of a power-law depend-
ence oiV on V (i. e., when V^ V ). If the dependence of V
on V is more complicated, the coefficients Ov' and Л^г,
depend on two variables, ш/v and T„ (see reference 42).

eff с

If collisions between electrons and both molecules and ions
are significant simultaneously, the values of the functions

3(?e and 3t?' lie between those for ions and those for mole-
cules. To determine these values, it is necessary to perform
suitable computations (an exception is the case of high fre-

2 2quencies CO » ~U , when ^%/, = 3%?' ~ 1.
^ eff € cr
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Table 2

о
0.01
0.05
0.1

0.2

0.5

1.0

2.0

4.0

6.0

10.0
35.0

со

Collisions with

molecules

1 .51
1.51
1.50
1 .48
1.40
1.19
1,07
0.985
1.0

1 .0
1.0

1.0

1

Жв,т

1.13
1,13
1.13
1.12
1.09
1 .02
0.94
0.95
0.98
0,99
1,0

1.0
1

with al-
lowance

electron
collision в

4.59
4.59
4.51
4.34
3.79
2.30
1,41
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0,97
0,98
0,99
1 ,00
\
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without
allowance

collisions
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19.5
15.8
1 1 .1
5.47
2.44
1.52
1.15
1.01
0.97
0.98
0.99

1

with ions

with al-
lowance

collisions

1.95
1 ,95
1.92
1,86
1.65
1.07
0.72
0.62
0,73
0.82
0.92
0.99
1

;Xa.i
without

allowance

collisions

3.39
3.38
2.76
2.12
1.40
0.90
0.68
0.59
0.67
0.72
0.78
0.91
1

2,0

\
with allowance \
for collisions \
between electrons V

with allowance
for collisions I
between electrons
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log(w/veff
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With the aid of the same functions •Ж€ and J^ ' a

it becomes possible to express the components of the
tensors £-7 and cr-i in an anisotropic plasma, i. e., in

bib Ш ••• л "x

the presence of a constant magnetic field H f l. Here the plane), we have1:

tensor components e ^ and a^ in the direction parallel
to the magnetic field (e , o~ ) satisfy, as before, ex-
pressions (2.33); in a plane perpendicular to H. (xy

m 2co

= l m 2(0

(со — с

•(^Г

CO+CO

'eff

(0 —

(ш-со,,)2

eff

eff

(2.34)

a,,y — m + •
eff

eff

These expressions for e.i and ст./ differ from the corre-
sponding expressions (1.10), obtained in the elementary
theory, only in the presence of the factors 3$?£ and
3%? а . Therefore, in particular, a resonant increase in

conductivity cr.i can occur, as before, near the gyro
frequency (at со у. Wn). The value of •^'cr affects in
this case the height of the resonant curve; in particular,
the collisions between electrons lower the height of the
resonance, by reducing J^a and J ^ (see Table II).

The formulas given here are valid, naturally, not
only in a strong field but also in a weak electric field.
Furthermore, in a weak field the distribution function fQ

is usually Maxwellian with Tg = T, regardless of the
degree of plasma ionization. The expressions obtained
for 6^. and cr(-£ can consequently be used to calculate
the conductivity and the dielectric permittivity of the
plasma in a weak alternating electric field of any fre-
quency ш (this is of significance, for example, in prob-
lems connected with propagation of radio waves ).

e) Electron Temperature. Substituting the expres-
sions obtained for the effective collision frequency
v , of the relative fraction of the energy transferred
§ e f f , and the current \t into (2.24) and solving this equa-
tion, we can determine the electron temperature. It is
significant that the equation obtained here for J is

close to the equation of the elementary theory (1.11).
Therefore its solution is completely analogous to the
solution of Eq. (1.11), considered in Sec. 1. For ex-
ample, in a rapidly alternating electric field (when
со » Sve f f) the temperature of the electrons is constant,
as previously; it is given by the equation

2 6 e f f (Г)

b.«(Te)

'+Уе°Н у ( СО \

в II вП

(2.35)

Here E is again the characteristic "plasma field":

It is seen therefore that Eq. (2.35) differs from the corre-
sponding Eq. (1.16) of elementary theory only in the co-
efficient Жр., and also in the fact that the number of
collisions Veft, which has remained somewhat indeter-
minate, is now accurately determined by Eq. (2.25); in
addition, the quantity S = 8 is assumed to be inde-
pendent of Te in (1.16). In the cases of collisions with
molecules, the coefficient J^p- is close to unity; there-
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fore the analysis of this case as given in Sec. 1 remains
completely in force. The same pertains to collisions with
ions at high frequencies (со » v^{{). The factor 3$?a

can influence substantially the electron temperature only
in the case of collisions with ions at low frequencies,
and also in the region of gyro resonance.

2.4 Weakly Ionized Plasma

In a weakly ionized plasma the collisions between
electrons are insignificant in the equation for the func-

tion fQ (since V « bv ) and these can be disregarded
in first approximation. They are even less significant
in the equation for the function f , since V « 8v« v.
Therefore the function f in a homogeneous weakly-
ionized plasma, accurate to terms of order S, is always
given by the expression (2.31), f = ~ и Э/ / Ъv, where
the velocity и = u(u, t) is defined by (2.32). Substitut-
ing this value of f in (2.20a) we obtain finally the fol-
lowing equation for the function fQ

kT el

(2.36)

Depending on the relation between the time 1/co,
during which the electric field changes significantly,
and the relaxation time for the function /Q(T) ~ 1/ bv,
we distinguish here cases of slowly varying field
(со « bv, and rapid ones (со » bv) (the same as in the
analysis of the electron temperature in elementary theory
or in a strongly-ionized plasma). In the former case,
which is quasi-stationary, the dependence of f on the time
in Eq. (2.36) can be disregarded; in particular, this takes
place naturally in the case of a constant electric field.
On the other hand, for a rapidly alternating electric field,
со» Sv the function /Q does not have a chance to change
as rapidly as the field; it therefore settles at a certain
average level, independent of the time, and the variable

deviations from this level are small, of amplitude on the
order of bv/ со (the same as the observations of the elec-
tron temperature in elementary theory). Consequently, in
both cases we can neglect in first approximation the
term B/ 0 /Bt in Eq. (2.36), and thereby get rid in fact of
the time variable. This allows us to find an analytical
solution for Eq. (2.36) for many important cases: for
elastic collisions, in inert gases and in a molecular
plasma. We now proceed to analyze these solutions.

a) Case of Elastic Collisions. If all the collisions
are elastic, the S™^ * 0 in (2.36). Therefore in a con-
stant electric field E we have, according to (2.32),
и = eE/mV at KQ =0 and Eq. (2.36) is written as

v2 dv \ I V
кТ . 2e4i''v 1— ь ,-

el

(2.37)

(Here V = V (v) = V™ + V-). Multiplying this equation
by i>2 and integrating from 0 to v, we see that j v - 0,
since in the absence of an electron source [v2 j v \ V = Q =0.
T_I—.-д.: »!._ _-...,,»•:,._ .• —Q over the velocities,Integrating now the equation j v

we obtain

/0 = С ехр - ^ - mvdv
2e 2 i ' 2

el

(2.38)

We therefore obtain a Maxwellian distribution in a weak
field, but in a strong field the distribution function fQ

may differ substantially from Maxwellian, since v
depends on v. For example, in a strong electric field
upon collision with molecules ~ hard spheres — the
function f is determined by the well known Druyvestein
formula5 0

where I - v/v(v) * l/7Ta^Nm is the mean free path of
the electron, С a constant determined from the normal-
ization condition (2.1a), and the term А;Г is neglected
in (2.38), which is permissible for a strong field.

The Druyvestein distribution at large electron
velocities differs greatly from Maxwellian: it drops off
much more rapidly than a Maxwellian one. The calcula-
tion of the function /Q with allowance for the exact de-
pendence of the collision frequency and the velocity for
different inert gases was made in references 51 and 63.
The effect of a constant magnetic field is taken into
account in reference 4 [the magnetic field changes the
velocity и (v), and accordingly fQ also changes] .

We considered above only the case of a constant
quasi-stationary electric field (со « S v). Quite
analogously the problem is solved also in a rapidly-
alternating (со » Bv) electric field, for in this case we
can neglect in first approximation the derivative Э/"
The function f now assumes the form 52 — 55
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/0 = С ехр
mv dv Here the function </>(v) without the magnetic field is

(2.40) equal to [&>2 + v ( v ) 2 ] — 1 , and in the presence of a
magnetic field

_ cos2 p S:lr

2[(co
(2.41)

where /Sis the angle between E and H, COJJ is the gyro-
magnetic frequency, EQ is the amplitude, and w is the
frequency of the alternating electric field.

The distribution function (2.40) coincides at low
frequencies (ш + Шц « v) with the distribution (2.38)
for a constant electric field except that the correspond-
ing constant field is here, naturally, found to be
equivalent to the effective field Ef[{ = EQ /N2).

Corrections to the function / with periodic varia-
tion in time were calculated in references 56 and 57
devoted to nonlinear effects in the ionosphere.

Elastic collisions are produced in monoatomic
(inert) gases at low medium electron energy (up to 1 ev).

b) Molecular Plasma. We define molecular plasma
as one formed in diatomic or polyatomic gases. In such
a plasma there can be excited not only optical but also
rotational and vibrational levels, the energy of which
is low (~Кш ~ 10~ 2 to 10""* ev for rotational levels and

~Ha> ~ 0.1 to 0.5 ev for vibrational ones). Therefore
inelastic collisions in such a plasma become important
even at electron energies on the order of 10~2 ev, i. e.,
at room temperatures.

In a plasma in a diatomic gas (hydrogen, oxygen,
nitrogen, air) at low average electron energy (less than
or on the order of 1 ev), the principal role is played by
losses due to the excitation of rotational levels, the
energy of which is naturally small compared with the
average electron energy (as found both by computation 58>59
and experiment 39,60)_ Consequently, the principal
role is played in these cases by such inelastic electron
collisions, at which only a small part of the energy is
lost. The integral of inelastic collisions for the
function f0 can therefore be represented in the form

where Ru (v) = ̂  гш- is a summary function, describing
the energy losses of the electron in inelastic collisions
(see Sec. 2.2b).1 7^ Substituting this expression for
^mo* i n t o ^4" (2.36), we can verify that it actually
coincides with the equation considered above for the
case of elastic electron collisions; it is merely neces-
sary to replace S^ = 2m/M by

x 1гЛ _ б е
v (v)

(2.42)

Accordingly, the solution of this equation coincides
for molecular plasma also with the solutions considered
above: it is again enough merely to replace S i by S(u).
For example, in a strong constant electric field we have
instead of the Druyvestein distribution (2.39) in a
molecular plasma

/о = С ехр { - v3b (v) dv } . (2.43)

To obtain finally the form of the distribution
function in molecular plasma, it is also necessary
to calculate the functionS^t»^ - R(vJ/ v fv), which can
be done by using for R (v) the expression (2.14b).
However, to perform this calculation it is necessary
to know the cross sections of all the inelastic proc-
esses, which are still unknown (see references 23
and 24). Another method has therefore been proposed
in reference 25 to determine the total loss function
R(v). In fact, the fraction of the energy lost by the
electron §ef£, in a strongly-ionized molecular plasma,
as is clear from (2.26), is related with the function
R(v) by

( e

This relation can be considered as an integral equation
with respect to R(v), since its right half is known from
experiment. Thus, it is possible, in principle, to de-
termine R(v) from (2.44), and consequently to deter-
mine S (v). The results of the corresponding calcula-

17) It is assumed here that the temperature of the heayy
particles is also higher than the average energy of the rota-
tional quanta, as usually occurs (the energy of the rotational
quanta"^O)~ 2 to 100°).
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tion for hydrogen, oxygen, nitrogen, and air are given
in Fig. 6.

12
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1

О

if the average electron energy is low ~ lower than the
minimum excitation energy ~%w (on the order of 10 ev),
the basic inelastic losses are obviously due to the
electrons whose energy exceedsTia) only slightly
(since the number of electrons having a high energy
and being consequently capable of inelastic collisions
at К > os%, diminishes rapidly with increasing K). In
this case for the integral of inelastic collisions, the
function / can be considered to satisfy with good
approximation the limiting formula S{£* = Уш iv)" f0

[see Eq. (2.15) ] . Therefore in a constant electric

О 1 2 3 4 5 6 7 8 9 10 11 oW'cM/SEC

Figure 6.

Inserting the resultant function S (v) into (2.38),
(2.40), etc, we can calculate the distribution function
of the electrons in a molecular plasma. The results of
such a calculation for electrons in hydrogen in a high
frequency electric field are shown in Fig. 7. The
ordinates represent —In /Q , and the abscissas repre-
sent — v^/v^ where i>2 = 2K/m is the mean squar
electron velocity. The dotted line corresponds to a
Maxwellian distribution function [the distribution
would be Maxwellian were S independent of v, as
occurs, for example, in the case of elastic collisions;
see Eq. (2.40) ] . It is seen from the figure that in this
case the deviations of the distribution function from
Maxwellian are not very large, they increase with in-
creasing average electron energy.

c) Inert Gases. In inert gases at low average
electron energy (up to 1 ev) the principal role is played
by elastic collisions between electrons and atoms of the
gas. At higher energies, the losses due to fast elec-
trons, which are capable of exciting optical levels or
of ionizing the atoms, become more significant. Here,

/ /
/ Marwellian

distribution

5 ог/ог

field in inert gases the equations for the function fQ,
with allowance for inelastic collisions of electrons,
assume the form

__LJLJy2f-
2t l 2 dv \ L

elkT
el

In addition, it is necessary to add, at v - 0, the elec-

tron source Q - dN/dt = 4TTJ vQi {v) v f dv (see Sec.
•JlGO

2.2b). The cross section for the inelastic collision
vanishes at electron energies less than the excitation
energy ~Koo, and when К > "Нш it is possible to assume
approximately that it increases linearly with increasing

electron energy, i. e., Уш („) = v ( § | ^ - 1 V*ff. w h e r e

is the effective mean free path of the electron be-

el

dv
(2.45).

tween two inelastic collisions.
In solving (2.45) it is advisable to distinguish

between the two regions, mv /2 < ~%a) and mv /2
In the former region the distribution function, as before,
is determined by (2.37), since there are no inelastic
collisions here. However, in solving it it is necessary
to take into account the presence of the source Q when
v = 0; consequently the flux j does not vanish in this
region, j = С /v , where С is the integration constant.
The solution of Eq. (2.37) in the first region leads thus
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to a distribution function that differs from the Druyvestein the second region, as can be readily seen:^"
function in the presence of an additional factor. In

(2.46)

Here H1 . 3 is the Hankel function of order 1/3 and

/ • vl^v%i ^VOL>) l s t n e electron free path, which is
independent of the velocity. Both these distributions
join at К -~Нш, and from this one determines the
constants С and С ^ The distribution function (2.46)
diminishes with increasing electron velocity much more
sharply than the Druyvestein distribution function, i.e.,
the " t a i l " of the distribution function in the region
К >~Ксо is so to speak cut off because of the inelastic
collisions, as should be. Kovrizhnykh"1 investigated
also the case of an arbitrary dependence of the mean
free path I and the excitation cross section on the
velocity v.

We note that usually not one but several levels
may be excited, and therefore the dependence v^ (v)
has, generally speaking, a more complicated form. A
corresponding calculation for helium and hydrogen,
with allowance of all the excited levels, is given in
references 27 and 27a. The problem is solved quite
analogously also for a alternating electric field. ^ 2

d) Electron Current and Average Electron Energy.
Using the expressions obtained above for the distribu-
tion function, it is easy to determine the electron cur-
rent and the average electron energy in a weakly-ionized
plasma

,. , (4ле)2 С v» i)ja ,
t = l-i 5 — \ ———j- —— do,

0

oo
Але- Г w df0 ,

о = \ —5 т — ^ dv,
A J Ш-- v- dv ' I

(2.47)

77 2nm

where v - v (v) is the total number of electron colli-
sions.

These expressions for the case of elastic collisions
were discussed in references 50 and 4 for a constant
electric field, in references 52 and 43 for an alternating
field, and in references 43 and 54 for the presence of
a magnetic field, too; the case of a molecular plasma

is considered in reference 25, and the calculations
for a plasma in inert gases have been made in reference
27. For different limiting cases simple formulas were
obtained; in general the formulas are, naturally, com-
plicated; frequently the values of 6, a, and К are ob-
tained only by numerical integration.

It is important to emphasize that the results of the
calculation of 6, a, and К for weakly-ionized plasma,
using formula (2.47), differ almost always only slightly
(up to 10 — 15%) from the results of the calculation of
the same quantities by means of the simpler formula
given above for a strongly-ionized plasma (we have in
mind, naturally, results that are comparable under the
same field intensity, the same values of I and S ,/, etc).
For example, in a strong constant electric field in the
case of elastic collisions_with molecules we have for
a weakly-ionized plasma K~ 0.604 eEl/iS ], and for
a strongly-ionized plasma

kTe=/C~ 0,613 --flL

2.5. Arbitrary Degree of lonization.
Concerning the Elementary Theory.

a) Transition from a Strongly Ionized Plasma to a
Weakly Ionized Plasma. We considered above the
limiting cases of a weakly-ionized plasma, when the
collisions between electrons are insignificant, and a
strongly-ionized plasma, when, to the contrary, the form
of the function f Q is determined precisely by the colli-
sion between electrons. We consider now an intermediate
case, when the form of the function / is substantially
influenced both by collisions between electrons and
collisions of electrons with heavy part ic les . ' 1 In the
equation for the function f 1 in this case we can neglect
the collisions between electrons, since v ~ bv«v.
Therefore the function f l is written, as previously, in
the form fx = _ u Ъfo/Ъv [see Eq. (2.31)].

The problem reduces therefore to an analysis of one
equation for the function f

+ v4) + 2Al (/„)] vf0) }
(2.48)

0,
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where the coefficients A t and A2 are integrals that
depend on the function / (2.18).

Under stationary conditions (constant or rapidly-
varying electric field) the first term in (2.48) can be
neglected. The solution of the remaining nonlinear
integro-differential equation can be obtained by the
iteration method. This method gives good convergence,
since the variation of the function f when going from
weakly-ionized plasma to a strongly-ionized one causes
only a small change in the integral coefficients Ax (fQ)
and A (f ) (compare with Sec. 2.4d).

Choosing as the zero approximation f. a Max-
wellian distribution function with an electron tempera-
ture, which must be determined from Eq. (2.24), we can
verify that in the next approximation

(2.49)
m el r 3/7j

Here we consider for simplicity only elastic collisions
of electrons and

kTe

the coefficients A^ and A^\ since the function
is in this case a Maxwellian one. In a weakly-ionized
plasma, to the contrary, the coefficients Л ^ ) a n ( J д(0)
can be neglected, and the function f}- ' in a strong

by formula (2.16) if N^ is replaced by /V] . In a strongly- field is a Druyvestein function, as should be. Fig. 8
ionized plasma the principal role is played in (2.49) by shows the transition from a Maxwellian distribution to

where ф (x) = 2 {тт)~ / exp (—z2) dz is the probability
о

integral, x = v(2kTp/m)~l/<2, and vp = vg (v) is the
collision frequency between the electrons [it is given

mo2
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the Druyvestein distribution as a function of the degree
of ionization of the plasma, or more accurately, as a

function of the parameter

6v m (»„) я а 2
6 1Q7 l e v (2.50)

[Here v0 = (2АГв/1я)Й, Tg «= eEl/Ш is the electron
temperature] . It is seen from the diagram that approxi-
mately halfway between the Maxwellian and the
Druyvestein distributions lies a curve corresponding to
a value p = 5. Consequently, at p » 5 the distribution
is Maxwellian and the plasma can be considered
"strongly ionized," i. e., the formulas obtained in Sec.
2.3 can be used. When p « 5 the plasma is "weakly
ionized." It must be noted that the region of the transi-
tion is stretched out, particularly strongly at high
velocities, i.e., in the "tail" of the distribution function:
we see from the diagram, for example, that in the "tail"
the deviations from the Maxwell distribution are con-
siderable even at p - 50. In general the Maxwellian
distribution in the "tai l" (i. e., at large v) can be con-
sidered as taking place only when p is greater than
(mv2/2kTe)

2.

b) Conditions of Applicability of Elementary Theory.
We already noted above that the expressions for the
dielectric permittivity, the-conductivity, and the mean
electron energy in a plasma are quite complicated in
the general case. We have also seen that for the same
quantities one obtains in the elementary theory very
simple formulas convenient for computation. It is
therefore important to ascertain when the mean quan-
tities such as 6, a, and К can be calculated by means
of the elementary theory and when the use of kinetic
theory is essential for this purpose.

An important qualitative difference between ele-
mentary and kinetic theories appears only in certain
cases in the analysis of nonstationary effects.1'*''*2

For stationary effects, considered in the present article,
the elementary and the kinetic theories always lead to
a qualitatively identical result. Therefore in the analy-
sis of the question of applicability of elementary theory,
we can speak here only of the magnitude of the quanti-

tative error, which can be tolerated in the elementary
calculation.*")

Let us consider first the simplest case, when the
electron collision frequency V and the fraction of the
energy S are independent of the electron velocity. 64-68,25
The solution of the kinetic equation (2.2Q) has in this
case the following form

(2.51)

where the temperature Te and the average directed
velocity of the electron are determined by

dt

dn

IT m

'3k

Lu x

(2.52)

These equations for и and Tg are identical with
the equations of elementary theory (1.3) and (1.11) for
constant Se f f =8 and Ve{{ =v. In other words, the
elementary theory actually corresponds tothe assump-
tion that V and S are independent of v. It is therefore
clear that in those cases when v and 8 do not depend
too much on v, the error admitted in the elementary
calculation should be small [instead of v (v) and 8 (v)
in the elementary theory, i. e., in Eq. (2.52), it is
natural to use here the values Ve{{ (Tg) and 8 (Г ),
determined in accordance with (2.25) and (2.26) ] .

The corresponding analysis, carried out in refer-
ences 20 and 25, shows that in a strongly-ionized
plasma (i. e., for a Maxwellian distribution), the
discrepancy between the results of the elementary and
kinetic calculations of j and Kis insignificant, provided
the following condition is satisfied

(O2+V2

eff

Here Dy is a quantity that characterized the deviation
of the number of collisions of the electron from its
average (effective) value; in other words, Dv charac-
terizes the dependence of v on v. If, for example,

18)
'The foregoing pertains, naturally, to the calculation

of the average quantities (K, j). Obviously, to find the
velocity distribution of the electrons one cannot avoid the
use of kinetic theory in one form or another.
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v = const, then Bv = 0; when v - A'v, when
v tt ~ ~^%' ®у/р2ц ~ ^-l; wben v = A/v (when

v* f f ~ Г-И), Dj,/v2ff = 0.1; when v = /lt>2 (when

v , ~ Г.), D-u/v2,, - 0.4. In a real plasma in colli-
e if С f e if 4

sions with molecules, the number of collisions is
usually proportional to T^, 0 < a < 0.8 (see refer-
ences 23 and 24); in this case the criterion (2.53) is
always satisfied, so that the error in calculating cr,
€, and К by means of the formulas of elementary theory,

is relatively small. For example, when v ~ T^, as

can be seen from Table П and Fig. 4, the maximum error,

which is obtained when со = О, is 13% for cr and 51%

for 6. At high frequencies со2 » v2

([ the elementary

calculation is found to be in general accurate, owing to

the choice of the effective frequency of collisions in the

elementary theory in the form of Eq. (2.25). The number

of collisions with ions depends greatly on the electron

velocity (2.16); the ratio Dv/v2

{{ {. is found in this case

to be a rather large quantity

'С;
3 / 4

eff 1 1 1 2 kT,

As a result, in collisions with ions condition (2.53) is

satisfied only for a high frequency electric field at

w » W v ^ (10 to 100) vetl •. \{co<Wv, then it is

necessary, generally speaking, to use the results of the

kinetic theory in calculation of cr and € i. e., it is neces-
sary to take into account the correction coefficients
Jtfa and X *, listed in Table II and in Fig. 5. The
maximum difference between elementary formulas and
the kinetic formulas occurs at a constant field (со =0),

when 1 9 ) X a = 1.95 and Xe = 4.59 (we recall that in

elementary theory X a ~ X€ = D-

In a weakly-ionized plasma the distribution function
can deviate substantially from Maxwellian. In order for
the elementary calculation to be accurate in this case
it is essential that, in addition to (2.53), the following
conditions also be satisfied

j _ J\_ <^е» y(Te-T) ,
2 veft. dTe~ y(Te-T) + Te ^ '

de,
2 dT,

'eff У(Те-Т) ,
T ^ IT Т\Л-Т . **>

(2.54)

where dv
Л? г = -

dTe
w 2 +^eff dTK efi

is pertains to a completely ionized plasma with

singly-charged ions.

To satisfy conditions (2.54) it is -essential that at low

frequency со2 < v2

{{ and ve{{ and S e f f depend weakly

on Te [if v e i i and § e f f are proportional to T£ , then

criterion (2.54) is satisfied only if — 0.25 _< a<. l] .

At high frequency, со2 » v2

{{ it is necessary merely

that S e f f depend weakly on Te . An important factor is

that the error of the elementary theory increases rapidly

in the region where v and S decrease with increas-
° eff eff

ing Te . In a plasma formed in either monoatomic or

molecular gas, conditions (2.53 and 2.54) are usually

satisfied (with the exception of the high-energy region

kT„ > 2 ev, where S increases vigorously with

increasing Te , and also in the region of the Ramsauer

effect in heavy inert gases). Therefore the error ad-

mitted in the calculation of crand Khy the formulas of

elementary theory and in the case of a weakly-ionized

plasma is usually small (up to 40%); the error in the

calculation of € in a low-frequency electric field may
be greater (up to 100%).

(The article and the cited literature will be concluded

in the next issue).
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