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INTRODUCTION

is article is fundamentally devoted to a study
of two closely connected problems. These are, first,
the problem of collective-excitation spectra in systems
of interacting particles, and second, the problem of
energy losses due to excitation of collective oscilla-
tions upon passage of particles through matter.

In systems of strongly-interacting particles, such
as liquids and solids, plasmas and nuclear matter, we
may speak only of energy levels and states of the sys-
tem as a whole. The study of the whole spectrum of
levels of such a system is very complex. It is consid-
erably easier to study the weakly-excited states, i.e.,
the states which do not differ much from the equilibrium
state. Thus, the vibrations of ions in a solid with re-
spect to the crystalline lattice points are states differ-
ing little from the equilibrium state, and may be spoken
of as weakly-excited states. In this case, the excita-
tion levels of the system are phonons, or quanta of
sound. Another example is that of plasma oscillations
in a plasma or in metals. In the quantum treatment, we
may speak here of quasi-particles (phonons, plasmons,
etc.) with a definite energy and momentum, whereas in
the classical treatment we speak of waves with a definite
frequency and wave vector. The relation of the energy
of the quasi-particles to the momentum, or respectively,
of the frequency to the wave number, is referred to below
as the excitation spectrum.

The excitation states, naturally, may obey the
Fermi-Dirac or the Bose-Einstein statistics. Out treat-
ment of collective oscillations is actually devoted to
the study of excitation states obeying the Bose-Einstein
statistics. Such excitation states include sound waves
in solids, phonon-roton excitations in superfluid helium,
and spin waves. The latter are an example of a Bose-
Einstein excitation manifested in a system of particles
obeying Fermi-Dirac statistics.

Wave processes are the analog in classical physics
of the Bose-Einstein excitation states. Orfe such pro-
cess is the propagation of longitudinal plasma waves.
The question of the study of excitation spectra in sys-
tems of, charged particles is taken up in Sees. 3—5 of
this article. Here the study of excitation spectra is
basedon the useof equations for the quantum distribu-
tion function (density matrix), a number of properties of
which are studied in Sec. 1.

In Sec. 6 is studied the problem of energy losses on
passage of a fast charged particle through matter, due
to excitation of collective oscillations. In essence,
the losses are associated with the excitation in the
medium of electromagnetic oscillations (both transverse
and longitudinal). The spectra of these oscillations are
actually determined by the dielectric constant of the
medium. The latter, if spatial dispersion is taken into
account, is a function both of the frequency and of the
wave vector of the corresponding oscillations. Hence,
the energy losses of a fast particle are also completely
determined by the dielectric constant.

However, there are cases in which the formulas given
in Sec. 6 for the energy losses cannot explain the ex-
perimental results. The well-known Langmuir paradox
serves as an example; this consists in the fact that the
experimentally-observed distances at which electrons
entering a plasma will transmit their energy to it turn
out to be much smaller than the relaxation distances which
may be obtained from the formulas of Sec. 6.

In order to analyze this case, another approach has
been studied in Sec. 2 to the problem of energy losses of
charged particles on passing through a plasma. This ap-
proach is based on the use of kinetic equations, by means
of which we may also describe the process of transfer of
energy from the charged particles in the excitation of col-
lective oscillations. In the case in which particles enter-
ing a plasma do not change the properties of the medium
appreciably, the expressions obtained for the retarding
force agree with the expressions which may be obtained
on the basis of the formulas of Sec. 6.

When an electron beam of sufficient intensity passes
through a plasma, these conditions are no longer fulfilled.
That is, we may not consider that the properties of the
plasma in the presence of the beam are characterized by
the same excitation spectrum or the same dielectric con-
stant as in the absence of the beam. In this case, one
must solve a system of simultaneous non-linear equations
for the electrons of the beam and the electrons of the
plasma. Section 7 is devoted to one of the particular
problems of the type in which a sufficiently intense elec-
tron beam passes through a plasma. The results obtained
permit us to explain in basic outline the rapid change in
energy of electrons passing through a plasma, as was
first observed by Langmuir.

In order to make it easier for the reader to become ac-
quainted with our article, we have tried to arrange the
presentation so that each section may, on the one hand,
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be read practically independently of the others, and on
the other hand, so that it may successively cover all the
questions stated above. The authors do not consider
that the bibliography given in the article is exhaustive.
In articles devoted to a study of such a relatively broad
set of problems, such oversights are apparently unavoid-
able.

Finally, we shall point out that Sec. 3 contains the
results of the joint work of the authors published in 1952,'
in which some fundamental problems of the quantum theory
of plasma oscillations were presented. We shall note that
analogous problems in the quantum theory of the plasma

have been treated by other methods also by other authors,
not in connection with the cited reference. However, the
method which we used in reference 3 seems to us to be
the simplest. In the course of several years since the
time that reference 3 was written, the theory of the quan-
tum plasma has been developed along various lines by
the authors of this article. The results obtained along
one of these lines, together with corresponding results

(q, p, t) =
(2я)3N )

obtained by other authors, are presented in Sees. 2 and
7, written by Yu. L. Klimontovich, while those obtained
along another line are given in Sees. 4, 5, and 6, written
by V. P. Silin.*

1. THE EQUATION FOR THE QUANTUM DISTRI-
BUTION FUNCTION

For the statistical description of the quantum proper-
ties of macroscopic systems, we may use the equation for
the density matrix. The most complete analogy with the
classical method involving the distribution function in
coordinate momentum phase space is found in using the
mixed representation for the density matrix. Here, the
matrix is a function of the coordinates and momenta, just
as is the classical distribution function. In this article,
we shall use the density matrix in the form proposed by
Wigner, and shall designate it as the "quantum distri-
bution function." 1"5

The quantum distribution function is related to the
ordinary density matrix in the coordinate representation
by the following transformation:

-itp. q —
(1,1)

In the case of a pure ensemble, the distribution function
is expressed directly in terms of the wave function of
the system

(1,2)

In Eqs. (1,1) and (1,2), N is the number of particles in
the system being studied, and the vectors q and p de-
note the sets of all coordinates and momenta of the
particles. The use of the quantum distribution function
permits us in a unitary way to describe both classical
and quantum systems. The transition from the quantum

description to the classical (7Г ~* 0) is very graphic.
We shall note some properties of the quantum distri-

bution function.
1. /Jy (q, p, t) is a real function, but can take on

negative values. Hence, only the distributions obtained
from the function //y(q> P> *) by integration over the co-
ordinates or the momenta characterize the probability of
finding the system in a state of given q or p, respect-
ively:

\ fN (q, P, t) dp = ¥ * (q, t) W (q, 0 = 6iV (q, t),

\ Is (q. P. 0 d(J = Ф * ( Р . ' ) Ф ( Р , ' ) = F~ (P. ')•

2. The mean values of a function A{q, p) of the co-
ordinates and momenta are determined, as in classical
statistical mechanics, by:

A = ^ A (q, p) fN (q, p, t) dq dp.

Thus, in order to obtain the mean values of physical
quantities, we may use the quantities themselves,
rather than the operators corresponding to them.

3. The symmetry properties of the quantum distri-
bution function are not so graphic as is the case with
the density matrix in the coordinate representation.
Hence, in order to study the symmetry properties of the
function //y(q, p, t), we must refer to the density matrix
in the coordinate representation p ( q ' , q, t), for which
the following relations hold true:

PQ (q\ q, t) - Q (q' f q, /) = Q (q\ q, t) P

*In addition, the development along this line in reference 3

is covered in Sec. 3.
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for systems of particles obeying Bose-Einstein statis-
tics, and

pQ (q#. q, 0 = ( - 1)^C (q\ q. 0 = Q (q', q, 0

for the Fermi-Dirac case. In these expressions, P is
the transformation operator. The equation determining
the variation in the quantum distribution function may
be found by a Fourier transformation of the equation
for the density matrix in the coordinate representation.
It may be written in the form

ft (2л)
6 *

r. 4,

In this equation, Я is the Hamiltonian of the system being
studied. If, for example, H = p 2 /2m + [/(q), Eq. (1,3)
takes the form

(1,3)

X

In the classical case (1r -»0), Eq. (1, 3) goes over into
the equation for the classical distribution function

at
днащ

where [ ] is the classical Poisson bracket.
In establishing the form of the equation for the quan-

tum distribution function, it is possible to avoid use of
the concept of the density matrix, and rather, to proceed
directly from Eq. (1, 4), transforming it in such a way as
to take into account the finite volume of the cell in the
phase space being studied. 3

2. THE KINETIC EQUATION FOR THE QUANTUM
DISTRIBUTION FUNCTION

The direct application of Eq. (1, 3) for the function
/дг is very difficult in most cases, since the desired
function depends on a vast number of variables (67V + 1).
However, for practical purposes, e. g., in calculating the
mean values of physical quantities, in deriving the equa-
tion of state, in calculating the fluctuations of physical
quantities, etc., it is sufficient to know the distribution
functions depending on the coordinates and momenta of
one and of two particles, i. e., the first-order and second-
order distribution functions:

/ i ( 4 i . P i - 0 = J /w ( q , P , t) rfq2, . . ., dqN, dp2,...,dpN,

U ( 4 i . q 2 . P i . P 2 . t) = ^ fN (q , p , t) dq3, . . . . dqN, dp3, ..., d$N.

Hence, it is natural to try to obtain equations which
would contain only the simplest distribution functions
Л M <^ /2' However, the equation for the first-order
distribution function contains the second-order function,
while the equation for the second-order distribution func-
tion contains the third-order function, etc. Thus, we
obtain a chain of equations in which the equation defin-
ing the function fs contains the function f + .

Such a chain of equations for the classical distribu-
tion function was first studied in the papers of N. N.
Bogolyubov6 and of Bron and Green. Using the method
developed in these references, we may obtain from Eq.
(1, 3) for the function fa a chain of equations for the
quantum distribution function,3 relating the functions

' я a n ^ /s + i • The chain of these equations, of course, is
completely analogous to the chain of equations for the
density matrix, which was studied in the paper of N. N.
Bogolyubov and K. P. Gurov.7 Thus, for example, we
may consider systems of interacting particles in which
the Hamiltonian may be written as the sum of kinetic
energies of individual particles and the potential energy
of their interaction in pairs

H = Pi
;T 23 (2.1)

Here, the first equation of the chain, relating the func-
tions / t and /2, has the following form:
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dJl
dt

_Jl_
m dq

- U (4i

Vf/ - q2 + т

(2.2)

As fr -*0, this equation goes over into the corresponding
classical equation. Of course, a rigorous solution of the
chain of equations considered here would be as complex
as the solution of the original equation, since in the
final analysis, it requires a knowledge of the function

fN-
However, as is well known, the so-called kinetic

equations are of fundamental significance for physical
applications. These are closed equations for the first-
order distribution function f1:

in which the rate of change of the distribution function
at time t is completely determined by assigning the
distribution function Д at the same instant of time t.
Among the kinetic equations, for example, belong the
Boltzmann equation, the Fokker-Planck equation in
phase space and the quantum kinetic equation corre-
sponding to it, and the self-consistent equation for the
distribution function. The fruitfulness of the latter in
solving problems concerning plasma oscillations was
first shown by A. A. Vlasov. 8

In the kinetic equation, the initial distribution fl

is completely determined by the value of this function
at later moments of time. On the other hand, we may
see from the chain of equations for the distribution
functions that the form of the distribution function f^
is determined not only by its own initial value, but
also by the initial values of all the higher distribution
functions f , ..., /iy, or by the initial values of all the
correlation functions. Hence it follows that the solu-
tions of the kinetic equations are particular solutions

of the chain of equations for the distribution functions,
for which the form of the correlation functions is com-
pletely determined by the values of the first-order dis-
tribution function /j alone. It is precisely the study of
such solutions which permits us to arrive at the kinetic
equations, starting with the chain of equations. Such
an approach to the solution of this problem was devel-
oped in the well-known monograph of N. N. Bogolyubov.
Even if we limit ourselves to the indicated class of
solutions of the chain for the distribution functions, the

problem of deriving the kinetic equations still remains
too complex. Hence, the chain of equations is common-
ly terminated by approximation of the higher distribution
functions by the lower ones. Of course, the nature of the
approximation to be made is determined by the set of
problems which the kinetic equations are intended to
describe and by the properties of the system being stud-
ied.

We shall assume that the system being studied may
be divided into two sub-systems, one of which is near
to the equilibrium state, while the other is in a non-
equilibrium state. As a result of the interaction of
these sub-systems over a certain period of time r, the
relaxation time, an equilibrium state is established in
the system as a whole. The causes leading to the es-
tablishment of equilibrium are different in different
cases.

In a plasma, the processes establishing the equili-
brium state have several causes. If the concentration
of neutral molecules is small, the relaxation time is
determined by the collisions of charged particles and
by the process of excitation of random plasma oscilla-
tions. In this case, the corresponding kinetic equation
for the plasma is the Fokker-Planck equation in momen-
tum space. 9" 1 1 Such an equation has been derived by
L. D. Landau from the Boltzmann equation, taking into
account only collisions. Because of the slow decline
of Coulomb forces with distance, this equation contains
divergent integrals. In order to obtain finite expressions,
the limits of integration are terminated at large and at
small distances. In order to derive the kinetic equation
in the case of the spatially-inhomogeneous distribution
of non-equilibrium particles, one may use the method of
N. N. Bogolyubov.6

In reference 9, the Fokker-Planck equation for a
plasma was derived by an approximate solution of the
chain of equations for the distribution functions. Due
to the fact that the Debye correlation was taken into
account in the coefficients, the divergence at large
distances in equation derived in this way was eliminated.

A more general kinetic equation was derived in refer-
ence 11, taking into account also the process of excitation
of longitudinal oscillations. For an inhomogeneous dis-
tribution of charged particles, the equation for the elec-
trons of the plasma may be written in the following form:

dt (p. o =
a,(5

= l, 2, 3. (2.3)
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Here, Baa and A are, respectively, the diffusion coeffi-
cients and the systematic friction. Each of these may
be resolved into two parts, corresponding to the processes
of collision and excitation of longitudinal oscillations

; A = A< c o l >В,

The expressions for B^co^ and A^ c o^ were derived in
references 10 and 9 for large and small values of the
energies of the charged particles. The expressions for
B < o s c ) and A ( o s c ) have the following form: u

(OSC)

' (2. 4)

Here T is the temperature of the electrons, К is the
Boltzmann constant, o>£ = %l Атте^п/т is the Langmuir
frequency for the electrons of the plasma, and aka is

the component of a unit vector in the direction of the
wave vector. It follows from the expressions (2, 4) and
(2, 5) that the coefficients Ba(gsc>and A(° s c> differ
from zero only when the condition is fulfilled for Ceren-
kov radiation of longitudinal plasma waves, p/m > w^/k
Hence, as the result of the deceleration of an electron
with momentum p, only plasma waves with wave number
it > u>rm/p may be excited. Since the maximum value of
the wave number is determined by the value of the Debye
radius rj = *\KT/kne^n, the deceleration of electrons
due to radiation of longitudinal waves is possible only
under the condition that their velocity is greater than the
thermal velocity.

We may integrate over the wave number in Eqs. (2, 4)
and (2, 5). In Eq. (2, 4), only the terms with a = /3 differ
from zero. If, in calculating the integrals the polar axis
is taken parallel to the direction of motion of the parti-
cles, then we arrive at the following expressions ^ for
the diffusion coefficients:

Взз =- 5 5-co L ln- I

(coi)
H = # 2 1 = for v > vT. (2.6)

Here vj* is the mean thermal velocity; v = p/m. Equation
(2, 5) determines the decelerating force F acting on a
charged particle due to the radiation of longitudinal waves.
By integration, we arrive at the following expression:

- 2 m 2

^ l n - ^ . (2.7)

equal to the product of the first-order distribution func-
tions, while the second-order functions are expressed in
the forms

ф

2 = /i*'i

+ G(q, P . q ' . p ' , 0. ( 2 ' 9 )

+ g (q. P, <?k, Pk, t). (2.10)

Expressions (2, 6) and (2, 7) agree with the corresponding
expressions obtained by a number of authors by different
methods. The decelerating force F ( ° s c ) is of the same
order of magnitude as F ( c o ' ) *0> 9

(2.8)

The kinetic equation (2, 3) was derived in reference 11 by
approximate solution of the chain of equations for the
classical distribution functions of the electrons and the
plasma oscillations. Such a chain of equations contains
two equations for the first-order distribution functions
/ (q, p, t) and F (Q,, P, , t), the former determining the
probabilities of various states of the electron, and the
latter determining the probabilities of various values of
the coordinate and the momentum of the plasma oscilla-
tion having the wave vector k. The second-order distri-
bution function 0 2 (q ,p, Q^,P^,Renters into the equations
for these functions. The third-order distribution function
enters into the equation for F , etc. The approxima-
tion of the higher functions by the lower ones consists in
assuming that the third-order distribution functions are

Thus, only pair correlations are taken into account.
Eq. (2, 3) describes the process of establishment of the
equilibrium state in momentum space (the spatial distri-
bution being uniform); in deriving this equation from
the system of equations for the functions Д and Ft,
the first term in Eq. (2,9) is not essential. Thus, the
phenomenon of establishment of equilibrium in this
case is due to the correlation between the values of
the coordinates and momenta of the electron and those
of the plasma oscillations. In addition, in deriving Eq.
(2, 3) from the system of equations for the functions ft,
Fj, it is essential to assume that the plasma oscilla-
tions and the plasma particles surrounding the injected
particle occur at the initial moment in a state of thermal
equilibrium.

In another limiting case, we may find the kinetic
equation for the distribution function F% describing the
process of establishment of the equilibrium state of the
plasma oscillations. l l This equation is also a Fokker-
Planck equation in the phase space of the coordinates
and momenta of the plasma oscillations. We shall give
here an equation derived from it for the mean value of
the coordinate of a plasma oscillator with the wave
vector k:
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= \ QkFlClQkdPk.
(2.11)

Here, a>£ = co2^ + (ЗкТ/т) k2 is the square of the
frequency of the plasma oscillation with the wave vec-
tor k, and Jk = NT?778 (шЪ/ф1) exp { ~V2 rfk2}
is the damping factor of the plasma oscillations, the
expression for which was first derived in a paper by
L. D. Landau.2° By using the corresponding chain
of equations for the quantum distribution functions of
the electrons and the plasma oscillations, we may de-
rive the quantum kinetic equations describing the pro-
cess of establishment of the equilibrium state in the
plasma with quantum effects taken into account. Such
an equation has been studied in reference 13, with
collisions between charged particles alone being taken
into account. The approximation of the higher distri-
bution functions by the lower ones applied in this paper
is analogous to that given in the paper of N. N. Bogol-
yubov and K. P. Gurov.

If the system of charged particles being studied is
located in the vicinity of a dielectric or in a decelera-
ting system, the kinetic equation will contain terms
describing the processes of deceleration and diffusion
due to the radiation of electromagnetic waves. *"* The
state of the system being studied is characterized in
this case by the distribution function of the coordi-
nates and momenta of the charged particles and the
coordinates and momenta of the electromagnetic-field
oscillators with various wave numbers. If the initial

distribution of the coordinates and momenta of the os-
cillators is an equilibrium distribution, while the state
of the electrons is near to the equilibrium state, then
a kinetic equation of the Fokker-Planck type may also
be derived for the distribution function of the electrons.
However, now terms B£% ' and A^-iad^ appear in the
diffusion coefficients and the systematic friction, due
to the radiation of electromagnetic waves. The expres-
sions for these coincide with the expressions (8) and
(9), the only difference being that the plasma frequency
&>£ is replaced by ck/че= o> ,̂ and now ак J_ k.
The coefficient # r a " ) determines the decelerating
force in the direction of the field exerted on a particle
with momentum p. The expression for the decelerating
force has the form

,(rad)

and coincides with the well-known expression from the
theory of Cerenkov radiation. With the converse assump-
tions, in which the electrons are in an equilibrium state
at the initial moment, while the state of the field oscil-
lators is near to the equilibrium state, a kinetic equation
may be derived 1" for the distribution function of the field
oscillators. The mean values obtained by means of this
equation for the coordinates of the electromagnetic os-
cillators have the form:

. o?77. - n (2-12)

c 2/c 2

The expression given for y^ is valid for Пд. /k < с In
the contrary case, y^ = 0.

Thus, by an approximate solution of the chain of
equations for the distribution functions, we may derive
the kinetic equations describing the processes of es-
tablishment of statistical equilibrium in the plasma.

It follows from what has been stated that, when the
spatial distribution is uniform, the kinetic equation for
the electrons is a Fokker-Planck equation describing
the process of establishment of the equilibrium distri-
bution "in momentum space. In order to derive this
equation, we must at least take into account the corre-
lation of pairs of charged particles. The first term on
the right-hand side of Eq. (2,9) turns out in this case to
be inessential. The opposite situation may arise when
the distribution is inhomogeneous. Namely, if the di-
mensions of the inhomogeneities are much smaller than
the relaxation distance of the processes discussed

me'
2exT

(2. 13)

above, then in a number of cases it may turn out not to
be essential to take these processes into account.
Hence, under these conditions, the first term in Eq.
(2, 9) will now be the fundamental one, and we may ter-
minate the chain of equations for the distribution func-
tions of the electrons with the first equation by assum-
ing

/ 2(q, p, q\ p \ * ) = P, (2,14)

thus arriving at the kinetic equation for the self-con-
sistent field. Thus, if Eq. (2, 14) is substituted into
the first equation of the chain for the quantum distribu-
tion function (2, 2), we obtain the quantum kinetic equa-
tion for the self-consistent field. This equation goes
over, a s t ~* 0, into the well-known classical equation
for the self-consistent field. The self-consistent equa-
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tion for the quantum distribution function may be made
more accurate if, in the approximation of the second-
order distribution function in terms of the first-order

function, we take into account the correlation due to
the identity of the particles. In order to do this, we
shall use the following expression in place of Eq.(2,14):

U(qi, q2, Pi- P2> 0 = /i {4v Pi. 0 h (ч8. 0 + ^ e ( 4 l + т *Xl1Чз ~ 2" ft<c0 X

xe (2,15)

which may be derived from the corresponding expression
for the density matrix in the coordinate representation.
In Eq.(2,15), the minus sign refers to systems obeying
Fermi-Dirac statistics, while the plus sign refers to
those obeying Bose-Einstein statistics. In the inter-
mediate case, in which the dimensions of the spatial
inhomogeneities are comparable with the relaxation dis-
tance, a more complex kinetic equation is obtained,
which is a generalization of the Fokker-Planck equa-
tion taking the self-consistent interaction into account.
If the relaxation distance or time r i s known, then in
many cases we may use a simplified kinetic equation,
in which the collision integral or the terms describing
diffusion and systematic friction are replaced by the
term

-~U-fo), (2,16)

where fQ is the equilibrium distribution function.
The kinetic equations for the plasma given here may

be used to derive hydrodynamic equations which take
relaxation processes into account.

3. SPECTRA OF COLLECTIVE OSCILLATIONS IN
THE SELF-CONSISTENT-FIELD APPROXIMATION

The method of the self-consistent field^ has been
widely applied in the theory of the classical plasma. By
means of this method, as is known, it is especially simple
to study problems associated with collective effects in
systems of charged particles. We might say that the appli-
cation of the self-consistent-field approximation in the
classical theory of the plasma was a transfer of the quan-
tum method of the self-consistent field of Hartree ' into
the classical field. Hence, the expediency of using such
a method in the theory of the. quantum plasma is quite ob-
vious. We shall present some results with which we are
familiar in this field.*

In the self-consistent field approximation, the wave
function is assumed to have the form of the product of the
corresponding functions of the separate particles. Hence,
likewise, the density matrix and, correspondingly, the
quantum distribution function are also so assumed. In
this approximation, the correlation of the separate parti-
cles is neglected. On the other hand, one may directly
derive thereby from the Schrodinger equation for a system
of many particles the following equation for the single-
particle distribution function /'(q, p, t):^
Here it is assumed that the particles interact by a central
force law, and U( |q |) is the energy of pair interaction,

dt
P
m aq+(2j ' [ f

t) 3A ) [

X

FT (
V

f(4,r

q q +

.0/(4',

l
2

P',

Km

0
) V,

oit(i\—P)d
q q

x dti dq'

1
2

dp'

11 1
= 0.

X
(3,1)

which is equal in the case of electrons to e 2/ |q | (here, scopic, or in the case of oscillations not of microscopic
in general, we must take into account the presence of the wavelength, Eq. (3, 1) takes the form:
compensating charge of the ions). This equation is the well-known kinetic equation of the

In the case in which :ft may be considered to be a self-consistent approximation,which has been widely
small quantity, i. e., when the inhomogeneities are macro- applied in the description of the plasma, and was ap-

(3,2)

parently first proposed by Vlasov.
We shall base the discussion of collective oscilla-

tions in this section on Eqs. (3, 1) and (3, 2). Consider-

*The results presented below are essentially connected with
the taking into account of the influence of the motion of parti-
cles on their self-consistent field. We must note that these

ing the collective oscillations as weakly-excited states, effects, at least as to order of magnitude, may also be studied
we shall assume that the distribution function f is only in the hydrodynamic approximation of Bloch.1^' ^
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slightly different from the equilibrium homogeneous
spatial distribution / 0(p)** (we shall neglect surface
effects, considering the system to be infinite, as is pos-
sible in case that the wavelength of the vibrations is
small in comparison with the dimensions of the body).

Then, we assume a dependence on the coordinates of the
form el 4, as is natural in the study of wave motion in an
infinite medium. Thus we derive from (3, 1) an equation

for the small non-equilibrium correction to the distribu-
tion function фу (p) exp {iqk Khere terms in ф 2 аге
omitted)

where

kp
(3.3)

v (к) = \ U (q) е* кч dq.

In view of the fact that the term in (3, 3) due to the
interaction of particles is proportional to the number
density of particles /ф</р' , it is clear that the spec-
trum of the collective oscillations derived below from
(3, 3) will correspond to the density oscillations, or
longitudinal waves.

It is not nearly always that the collective oscilla-
tions turn out to be undamped. Naturally, this means
that we may speak of the collective oscillations as
new degrees of freedom of the system only in case
that the damping is sufficiently small. In connection
with this, it is convenient2 0 in the solution of Eq.
(3, 3) to consider the initial solution and to study the
possibility of obtaining solutions which have the
asymptotic form exp {~yt~ io>t} for long periods of
time. Using the Laplace-Mellin transformation, we
derive from (3, 3)

IJJ-T

(2JX{) J
— icc-f-(T

*Pk (0, p) j

, + ,-kp/m P ( 3 - 4 )

t'-^S-
/ik lik

• d p ] .
• (kp/m)

Here, 0i (0, p) is the value of the non-equilibrium
correction to the distribution function at the initial
instant of time.

We may easily convince ourselves that the value
of the frequency {со = ~ Im s) and the damping factor
у = — Re s are determined by the poles of the inte-
grand of (3, 4), i. e., they may be found from the fol-
lowing dispersion equation:'

1 = v(k) /оГ: 2 У"
ЙкЛ

(kp/m) — co-j-;'Y
•dp.

(3.5)

**Self-consistent oscillations of electrons occurring in the
periodic field of a lattice have been studied in the p.apers of
Zyryanov and Femberg.

We note that, in integrating (3, 5) over the component of
the momentum parallel to k, we must pass below the
pole (kp/m) = ш• — iy.

In the case of electrons, for which y{k) - Атге2/к\
Eq. (3, 5) has been derived by the method given here in
reference 3 and has been studied in reference 21 and
22.

We note that, for electrons, Eq. (3, 5) may be re-
written in the form

л _ '
\ ^

/o (P) dp (3,5 )

Such a dispersion equation was later derived by another
method by Bohm and P i n e s . " An analogous method of
collective variables has been used by Zubarev2^ as
applied to an electron gas. Finally, Eq. (3, 5) has
also been derived by the method of the self-consistent
field by Zyryanov and Eleonskii25 and by Ferrell.

In the case in which the momentum of the collec-
tive excitation state is small in comparison with the
root-mean-square momentum of the equilibrium state,
we may go over from Eq. (3, 5) to the classical limit.
Here we have

(kp/m) — со-]- iy
dp. (3.6)

Such an oscillation spectrum in the classical theory
of the electron plasma has been studied in the refer-
ences 8, 20, and 27. Here, it turned o u t 2 0 that in the
region of wavelengths small or comparable with the
Debye screening distance r j = N кТ/4тте2п (п being
the number of electrons per cm , T the temperature,
and к the Boltzmann constant), the plasma oscilla-
tions of charge density, or as is obviously the same,
the oscillations of the longitudinal electromagnetic
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field, are strongly damped. On the contrary, in the
region of long wavelengths (A.>> rj), the damping
is small, and

seen from the spectrum of density oscillations of a de-
generate Bose-Einstein gas [/0 = rcS(p)] derived fi^m
(3, 5), and having the form3

3X71

Y =
— ОХр — - -

rik»

where the so-called plasma frequency co-^
There is another case in which it is also possible

to go over to the classical limit; this occurs, for ex-
ample, in the case of the degenerate Bose-Einstein
gas. This case is possible under the condition that
the energy frw of the collective oscillation is large
in comparison with the corresponding energy 1i к /2m
of the separate particle. In particular, this may be

C O " = - кг -J- --
' 4m2

"7 fi7

Such a spectrum was first derived by Bogolyubov
the theory of superfluidity (see also reference 29).

We shall now take up the study of the collective
oscillations of a degenerate electron gas. A problem
of this type for long wavelengths, for which ~Hk is much
smaller than the Fermi limiting momentum pQ =
(377) ' *n ' h, was first studied by Gol'dman. In our
study, not assuming"^ to be small in comparison with
p 0 , we have derived from (3, 5) the following: '

2 рЦк* - 1 + m
со — iy , tik

со — ;у-|-й'£2/2га-|-&/>о/то

со — i у -\- hk2/2m — kpjm
ы — iy-hk- кpjm

)— iy — hk"/2m — kpjm

i£-F)=0
bPo

U ) '

2hk2/m

(3.7)

This dispersion equation has a rather unwieldy appear-
ance. Before we proceed to the study of some simple
limiting cases, we shall make the following remarks.
Oscillations of an electron gas will be undamped only
in case that F = 0. As may easily be seen, this takes
place in the region of sufficiently large со, or of suffi-
ciently long wavelengths. Hence, it is only in this re-
gion that we may speak of longitudinal oscillations of
an electron gas as being a new degree of freedom. In
the long-wavelength region, we obtain from Eq. (3,7) '

»2 = ^ + | ^ + ( £ ) 2 . (3.8)

Here we consider that к << kQ = m coj^/pQ and that
ccj^ »~%k /2m. Thus, in this region the spectrum of
longitudinal oscillations is similar to the oscillation
spectrum of a high-temperature plasma, with the dis-

tinction that in the present case the chaotic motions of
the electrons are due to the Fermi energy, rather than
to the temperature. In addition, Eq. (3,8) takes quan-
tum effects into account. As the wavelength decreases,
the spectrum of longitudinal oscillations goes over into
the single-particle spectrum. Thus, under the condition
that1T2A:2/2m << 4тте2лД2 << p 2/2m, we have

2m

Within the accuracy of an exponentially small term, this
expression coincides with the excitation energy of free
electrons raised upon excitation above the Fermi sur-
face.

We note that, for forces with a finite radius of action
O) is finite ] , we have in place of Eq. (3, 8): 3

face

5 m
(3. 10)
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Such a spectrum is similar to the spectrum of a Bose-
Einstein gas, and corresponds to phonon oscillations.
We must emphasize the distinction of these oscilla-
tions*, as well as of plasma oscillations, from ordinary
sound in a gas. In the latter case, the particles interact
only at the moment of collision. Hence, as the mean
free path of the particles increases, the particles prac-
tically do not interact within the period of the oscilla-
tion, and consequently the damping becomes very great,
and the oscillations cannot be propagated. This is pre-
cisely the picture which must hold true in a completely
degenerate system of particles obeying Fermi-Dirac
statistics and interacting only at the moment of colli-
sion, since at a temperature of absolute zero the mean
free path in such a system becomes infinite. On the
contrary, in the present case, the oscillations of self-
consistent sound are propagated under conditions in
which collisions are inessential, and the excitations
which result here are due to the presence of self-con-
sistent interactions between the particles. As a result,
the particles by no means interact at the moment of
collision alone, but on the contrary, are continually
moving in the general self-consistent field. We must
note that, as may be seen from the material to be pre-
sented in the next section, it is important to take into
account exchange interaction in the spectrum of zero
sound. While the latter does not change the physical
picture, it alters the numerical magnitude of the velo-
city of self-consistent zero sound.

In a system of charged particles, the Hartree approxi-
mation also permits us to derive the spectrum of the
transverse oscillations. The classical approximation**
leads to a spectrum of the transverse oscillations having
the form

not only on w, but also on k. The role of the longitudi-
nal dielectric constant € is played by the expression on
the left-hand side of Eq. (3,7), which is the condition for
existence of longitudinal waves, which are permitted only
when the dielectric constant vanishes. We may easily
convince ourselves of this by taking into account the fact
that the energy of interaction of the charged particles en-
tering into Eq. (3, 1) is determined by the scalar potential
of the electric field. Hence, on expressing the charge
density in terms of this interaction energy by means of
(3, 1), we may easily find С (ш, к), which relates the
longitudinal components of the electric induction and
electric field intensity.

The results formulated above for the electron gas re-
main valid for the case of a system of electrons and ions.
However, here there arises an additional excitation
branch, that of acoustic excitations. The velocity of
these excitation states may easily be determined by cal-
culating the compressibility. Actually, for example, in

со2 = a>i + [c2 + (pk)2/m2k2] k2, (3,11)

where c is the velocity of light, and the bar denotes
averaging overjhe equilibrium state. For a degenerate
electron gas, (pk) = (1/5) pQk .

In our nonrelativistic treatment, the velocity of the
particles is small in comparison with the speed of
light. Hence, the influence of the motion of the parti-
cles in Eq. (3, 11) may be neglected.

The spectrum of the transverse oscillations permits
us to write immediately an expression for the
dielectric constant of the electron gas, taking into
account the definition of the dielectric constant,
e = c^k^/co 2 . We shall call such a dielectric
constant the transverse dielectric constant (see Sec.
6). The point is that in taking into account the motion
of the particles, as may be seen from (3, 11), e r depends

Following Landau, we refer to these vibrations as zero
sound, or as self-consistent sound.

8
**In the classical limit, the self-consistent-field approxi-

mation for charged particles, as is known, corresponds to a
system of Maxwell equations in which the current density and
the charge density are determined by means of a distribution
function obeying the equation (see, e. g., reference 33.)

m dq
( 3 , 2 ' )

The quantum treatment of the transverse field oscillations
leads to a dispersion equation of the oscillations having the
following form:

1 = 4ле2 (со — iy)

rfP(P<-k) I
р/с/те \

С rfP(P<-
J o - iy — dp

Г к

 dh_
[_ dp

where e^ is a unit vector perpendicular to the wave vector к.
Here, the dielectric constant, which determines the propagation
of die transverse waves, has the form

m (со— iy) J со — iy— pk/m X
e t ^ _ :

mco

ЛкЛ

iy— pk/m \ " dp
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the case of a degenerate gas, the pressure will be deter-
mined by the electrons, and P % [(Зтт 2) 2 / 3/5] к2пЦЪ/т,
while the density will be determined by the ions:

oe

= ЭР = (3, 12)

Here, U is the velocity of sound, pog is the limiting mo-
mentum for electrons, m^ and mg are the masses of an
ion and an electron, and Z is the number of electrons per
ion. The velocity of sound (3, 12) has been derived in
reference 34 (see also reference 35) and in reference 36
(see also reference 22) from an analysis of the collective

movements of the plasma. Here, the problem was also
studied in reference 36 of the damping of sound waves in
an electron-ion plasma. We note that the concepts applied
above by us to'Eq. (3, 12) are often also applied to the
high-temperature plasma (see reference 37), whereby a
value of the velocity of sound waves of the order of mag-
nitude of ~\кТ/т- is obtained. However, such waves are
actually not observed in a high-temperature plasma. This
may be associated with the strong damping of these waves
observed in reference 36. We shall give below some re-
sults of this work. We shall consider a system of two
equations of the type of (3, 2) [for example, in the form
(3, 2 ' ) ] for electrons and ions, respectively, and shall
solve the problem for small deviations from equilibrium,
as was done above in die study of Eq. (3, 2). It is not
difficult to find thus the dispersion equation for the os-
cillations in the system of electrons and ions

1 =

4яеа

pk/ra—
dp

A:2 pk/m —
•dp. (3,13)

Here, Z is the number of electrons per ion, and f. and
fo£ are, respectively, the equilibrium distribution func-
tions of the electrons and the ions.

In the region of long wavelengths, large in comparison
with the screening distance of the Coulomb field (rj or rc,
respectively, for the cases of high temperatures and of a
degenerate electron gas), we may neglect the term unity
on the left-hand side of Eq. (3, 13T. This leads to the
condition that со and у become proportional to the wave
number k. In the case of the degenerate electron gas,
the analygis of Eq. (3, 13) is essentially simplified.
This is so, first, because the velocity of sound is small
in comparison with the velocity of the electrons (this is
also true at high temperatures), and second, because
the velocity of sound turns out to be large in comparison
with the velocity of the ions. As a result, we obtain

by Eq. (3, 14) corresponds to the fact that the sonic os-
cillations of a degenerate plasma are states showing a
natural width of the levels. We must indicate that in
the study of the absorption of sound in metals, such a
damping has recently been observed experimentally,
and has been interpreted theoretically in references 38
and 39.

Finally, we point out analogous results relating to
the high-temperature case, in which we can use the
Maxwell distribution for the electrons and the ions. In
this case, the velocity of sound is near to the thermal
velocity of the ions. If we designate

w ••

m = | / ^.^£55 ft;v 6 mi me 12 m

The expression derived for the velocity of sound, natu-
rally, agrees with that determined from the compressibi-
lity [see (3, 12)] . The latter, as we must note, gives
the correct order of magnitude for the velocity of sound
in metals. The damping factor у turns out to be small
in comparison with Ш; this permits the propagation of
sound to great distances. The damping, as determined

we obtain the following equation from (3, 13) for the
determination of x and y:*

dA
2 l t-u

Here, Tg and T^ are the temperatures of the electrons
and the ions. We may easily convince ourselves that

*With regard to the integral in (3, 15), see reference 40.
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solutions of this equation corresponding to the case of
small damping exist only under the condition 7^ <<ZTg

Otherwise, the damping is large.

4. THE INFLUENCE OF THE CORRELATION OF
PARTICLES ON THE SPECTRA OF COLLEC-
TIVE OSCILLATIONS (MICRO-TREATMENT)

There is apparently at present no microscopic
theory that considers in any degree of completeness
the influence of the correlation of particles on the spec-
trum of the collective excitations. Hence, we shall pre-
sent below only certain special results which, as we
consider, permit us to see the general regularities due
to correlation, and may facilitate the understanding of
the phenomenological approach presented in the next
section.

The fundamental assumption, which essentially
simplifies the taking into account of correlation, must
be considered to be the statement: in the region of
excitation wavelengths that are long in comparison with
the correlation distance, the correlation functions of

pairs of particles are practically indistinguishable
from their equilibrium values. It is just this situation
which occurs in the Hartree-Fock approximation, and
which permits us to take into account the exchange cor-
relation of particles. We shall now begin to discuss
this case.

Following Dirac, we shall represent the density
matrix in the form of the determinant of the density mat-
matrices of the individual particles:

s'i> r i k I V О

Sn, Tn\Q\sn, Г„)

Here, ( I/O|) is the density matrix of an individual parti-
cle, the state of which is characterized by its coordinate
r and its spin index s. Here /Oobeys the following equa-
tion of the Hartree-Fock approximation:

v" [U(\v- r" |) - U (| r ' - r ' |)] {(S\ r ' | e I s, r) (s", r" | Q | S", t")

- ( * ' , r ' | e | S " , T")(S",T"\Q\S, r)}.

(4,2)

It is convenient now to go over to the Wigner represen-
tation

(q, p) =
fix

s , q - T

Here we may immediately write the equation for the case
of small deviations from the equilibrium state

/s's(q, P) = -^-6s<s/o(p) + 6/SS'(q, p) (4,4)

(h ere / 0 = eo(F)

S | V

vhere

Ф°(Р, Р') = Пv h

(4,3)

is the energy of the particle, and /J. is the chemical po-
tential). We limit ourselves to the case in which the
wavelength of the excited state is much greater than the
wavelength of particles on the Fermi surface, agreeing
in order of magnitude with the mean distance between
particles. Then we have '

(4,5)

cr being the spin operator, and v(k) = /t/(q) e
The quantity Ф 0 is the exchange component of the

amplitude of forward scattering for the collision of two
particles, as calculated by the Born approximation. For
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forces with a small radius of action, very small in com-
parison with the characteristic distance of the variation
S/, the presence of U( |q - q' |) in Eq. (4, 4) leads to
the appearance of the complete Born forward-scattering
amplitude for two particles of spin one-half

- v (0) + v ( P-P'
h

aa'

The approximate character of Eq. (4, 4) is obvious even
from the fact that it gives the Born approximation for
the scattering amplitude. Hence, the Hartree-Fock ap-
proximation is not accurate in the case of strong inter-
action of particles. Further, the derived scattering
amplitude does not depend on the presence of particles
other than the pair colliding. Generally speaking, it is
highly essential to take into account the other parti-
c le s* . 4 5

We note that the second term in the first curly bracket
of Eq. (4, 5) corresponds to the change in mass of the
particle. In view of the fact that Sf differs from zero only
at the Fermi surface, we may speak of the appearance of
an effective mass of the particle. As is known, the cor-
rection to (l/m) in the Hartree-Fock approximation be-
comes infinite in the case of the Coulomb interaction of
particles. However, in Eq. (4,5), there is still another
term containing Ф and showing the same singularity,
besides the contribution to the effective mass. If we
assume here that the energy of the particle, which is
the argument of the function f , corresponds to the
energy of a free particle, then the singular terms in Eq.
(4, 5) compensate each other. In such an approximation,
we may easily estimate the influence of exchange effects
on the spectrum of plasma oscillations of an electron
gas. In the long-wavelength region, as we may easily
convince ourselves, we have** *

Hence it is clear that the influence of exchange corre-
lation on the relation of the frequency to the wave vec-
tor may be neglected only in the case of an electron gas

•However, as we see it the exclusion law, which is based
on the Pauli principle and which is realized because of the
filling of the levels below the Fermi surface, and which is
taken into account, e. g., in the Bethe-Goldstone equation
in the theory of nuclear matter, does not change the expres-
sion for Ф . This is because, in our treatment, the scattering
of particles at the Fermi surface is essential, the exclusion
law not being valid for these particles.

**The same expression has subsequently been derived in
reference 47.

of high density, for which the Fermi energy (p|j/2m) is
considerably greater than the energy of the plasma os-
cillations ~?icoj (see also references 26 and 50).

In the case of forces with a finite radius of action,
we take as the energy £Q(p) of the particle the corre-
sponding expression from the Hartree-Fock approxima-
tion

Further, in this case the possibility arises of the exist-
tence of other excitation states besides the density oscil-
lations. •",48,49 д п a n a l y S j s of а Ц of j n e discussion

here is made difficult by the necessity of making defi-
nite specifications on the form of v{ \p — p' \/Ж). If,
however, we make no specifications about the form of
the forward scattering amplitude, then Eq. (4, 5) will
differ in no way from the corresponding equation in the
theory of the Fermi liquid. We shall proceed to the
study of the results of the latter theory in the next sec-
tion.

5. THE INFLUENCE OF CORRELATION OF
PARTICLES ON THE SPECTRA OF COLLEC-
TIVE EXCITED STATES. A PHENOMENOLO-
GICAL THEORY OF THE DEGENERATE
ELECTRON FERMI FLUID

Landau's theory of the Fermi fluid is a direct
generalization of the Hartree-Fock approximation, also
neglecting the difference of the correlations from their
equilibrium values. We shall give below some results
obtained on the basis of such a theory. Here it is con-
venient to make some preliminary remarks about the use
of the model of independent particles in the description
of the quantum plasma which is formed by the electrons
in a metal.

The electron theory of metals successfully uses for
the description of many of the properties of metals the
conception of electrons as being independent particles,
thus considering the electrons in a metal essentially
a.s a gas. In view of the fact that the electrons are
situated in a lattice field, their properties differ greatly
from those of free electrons, as characterized, in parti-
cular, by the dispersion law, i. e., the relation of the
energy of the electron to its quasi-momentum*. Another
reason for the difference of the electrons from a gas of
free particles is associated with the interelectronic
interaction, which is by no means small. This may be
seen immediately from the fact that the mean energy of
Coulomb interaction of the electrons in a metal agrees

*We shall not discuss the effects due to the periodic lat-
tice field (just as in the previous sections), but shall analyze
only the collective effects.
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in order of magnitude with their mean kinetic energy.
Hence, we may naturally expect a significant influence
of the correlation of electrons on a number of properties
of metals.

In fact, in the various approximate methods of taking
into account the correlation of electrons, an appreciable
influence of correlation on a number of properties of
metals has been found (the determination of para-magnetic
susceptibility, ' the determination of the heat capa-
city and the correlation energy of an electron gas of
high density, for the influence of correlation on the
vibration spectrum of an electron plasma, see Sec. 4).
However, all such treatments are microscopic theories,
whose applicability to real metals is highly problemati-
cal. This is due to the absence in real metals of a small
parameter, resulting from the practical coincidence in
order of magnitude of the kinetic and potential energies
of the electrons. This situation compels us to pay es-
pecial attention to a phenomenological theory, which
takes into account the correlation of particles rather
fully.

We must note that the correlation of particles is. or-
dinarily not taken into account in the kinetic theory of
electrons in a metal. Actually, the kinetic equation of
Boltzmann is commonly used here. In such a treatment,
a partial account of the correlation of electrons, as
arising at small distances and resulting in collisions,
may be made with the aid of the collision integral of
electrons with electrons. As is known, such colli-
sions play a small role*, and the correlation thus taken
into account does not reproduce the essential effect.

6eS S ' (q, p ) = У \ ^'ss"(q, q ' , P,

The function F is the second variational derivative of the
energy density, and plays an essential role in determin-
ing a number of properties of the fluids. This quantity
depends, in general, on the momenta p and p' and the
spins, and is also a function of the coordinates.

In the theory of He , the dependence on the coordi-
nates was actually taken to have the form 8 (q — q ). In
the present case of an electron fluid, this is no longer
valid, because of the Coulomb force law. In fact, if we
should use the self-consistent Hartree approximation for
particles interacting according to a force law with a po-
tential energy U( q - q ' |), the function would have the
following form in this case:

q'. P. p') = (5.3)

* An exception to this might be the contribution of inter-
electronic collisions on the absorptivity of a metal in the
frequency region in which %U> >> К Т (see references 31,
56, and 57).

On the other hand, as was shown above, taking into
account the correlations due to the identity of electrons
essentially changes the kinetic equations, even when
collisions are neglected. A phenomenological way of
taking precisely these effects into account is contained
in the theory of the Fermi fluid.

In a quantum fluid, due to the significant self-con-
sistent interaction of the particles, the energy of an
individual particle depends on the state of the surround-
ing particles. In this regard, naturally, it turns out that
the energy of the system of particles is no longer equal
to the sum of the energies of the individual particles,
but is some function of the distribution function. Under
these conditions, it is more natural to speak not of
particles (e. g., atoms) of which the fluid consists, but
of quasi particles, inasmuch as the latter are essenti-
ally different from free particles.

For an infinitesimally small variation in the distri-
bution function S/Ss' (q, p), the variation in the energy
density of the system has the form:

(q) = P) 6 / M P) dP- (5.1)

This formula is essentially a definition of the energy
(the Hamiltonian) of a quasi particle, which differs from
the energy of a free particle due to the interaction with
surrounding particles.

Further, upon variation of the distribution function,
the energy of the quasi particle also varies

(5.2)

It is clear that for short-range forces, the approximation
using the S- function on the right-hand side of this for-
mula is permissible for all those states in which the
characteristic dimension of the inhomogeneities which
arise is large in comparison with the radius of action of
the forces.

In the Hartree approximation correlation is completely
neglected, since the distribution function of the system
is taken in the form of the product of the distribution
functions of the individual,particles. Hence it is clear
that the difference {F ~ F ') must be due to the effect
of the correlations of the particles. In the general case,
we may say only rather little about this quantity. How-
ever, the case is of fundamental interest, in which the
radius of correlation is much smaller than the distances
at which the distribution function varies appreciably. In
such a case, we may assume that

p'). (5.4)P. p ' ) - ^ ( H ) ^ S ( q -
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Correspondingly Eq. (5, 2) takes the form

бе (q, p) = \ U (| q - q' |) 6/ (q', p') dq' dp' + \ Ф (p, p') 6/ (q, p') dp'. (5.5)

If the forces have a small radius of action, then formula
(5,5) agrees with that applied in the theory of He'. '

Due to the fact that, in the He' case, both the radius
of action of the forces and the radius of correlation of
the particles are quantities of the order of interatomic
distances, it is clear from what has been stated above
that a localized relation between S e and S^is complete-
ly correct.

Another situation occurs in the case of a system of
electrons. The long-range character of the Coulomb
forces compels us to use a non-localized relation be-
tween Se and Bf, similar to (5,5). However, we must
make some remarks here. In using Eq. (5, 5), we must
satisfy the condition (5,4). Hence, we shall deal with
those correlations which may arise in a system of elec-
trons. In particular, the correlation of electrons occur-
ring in a degenerate state arises as a result of the iden-
tity of the particles. An estimate of this correlation may
be obtained in the Hartree-Fock approximation. However,
we may say immediately that the distances at which this
type of correlation is substantial are of the order of mag-
nitude of the interelectronic distances. Further, for
electrons, for example those of a metal, the correlations
are also substantial, which are due to interactions (the
Coulomb correlation, which leads to the so-called corre-
lation energy of the degenerate electron gas). This
correlation is similar at large distances to the Debye
correlation of particles, as in electrolytes, while at
short distances it is associated with the strong mutual
repulsion of the electrons. An important peculiarity of
these correlations at the electron densities which occur
in real metals is the fact that the characteristic dis-
tances at which the correlations are substantial turn out

where a is the Pauli spin matrix, /3 is the magnetic
moment of an electron, and p+ is the compensating
charge of the positive background of ions. In these
equations, fsg/ is a distribution function determined
by the following kinetic equation:

dl 2 V dp dq ^ dq dp ) 2

to be not much larger than the interatomic distances. ' '
In line with this, we can say that relation (5,4) may be
used for the electrons in a metal. Thus, in Eq. (5, 5),
the nearest-neighbor correlation will be given correctly
by the second term containing the function Ф(р, р' ).

The first term in Eq. (5, 5) takes into account the in-
fluence of long-range Coulomb forces, and in the present
case of electrons, U( |q ~ q' |) = e / |q ~q' |. We
note that, for spatially-homogeneous distributions, the
first term in this formula in its literal sense gives a di-
vergent expression. This situation is due to the fact
that, in the study of a system of electrons, it is neces-
sary to introduce a background of positive charges com-
pensating for the charge of the electrons, and correspond-
ing to the electronic charge of the ions. Hence, in the
term in Eq. (5,5) under discussion, we must take 8/ to
mean the deviation of the distribution function from a
spatially-homogeneous distribution preserving the
neutrality of the system of particles.

The result of what has been presented above may be
the following. The nearest-neighbor correlation may be
taken into account in a way similar to that taken in the
case of He with the aid of the Landau theory. The

long-range Coulomb correlation may be taken into
account by the introduction of a self-consistent
field. Obviously, we may thus take into account
not only the Coulomb (longitudinal) force, which we
discussed above, but also the transverse electromagnet-
ic field. The latter is analogous to what is commonly
done when the Boltzmann equation is used in the kin-
etic theory of metals, the Lorentz force being determined
by the self-consistent electromagnetic field. ' " Hence,
the field equations may be written in the form

divH=0,

(5.6)

dp dq
df
dp (5.7)
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Here, I is the operator corresponding to the collision
integral. For equilibrium distributions, Эе / Эр = у
is the velocity of the electrons, while in the case of
small deviations from equilibrium

+ ^ Ф (p, p') 6/ (q, p') dp'. (5.8)6ex(q, p ) =

Here, the possible spin-orbit interactions have been ne-
glected. We may easily convince ourselves* that the
following equality holds

Sp ^ p/dp = Sp ^ m-^fdp. .

From relation (5, 9) it follows that

P _ dSl

(5.9)

(5.10)

If this relation, which was found by Landau, is sub-
stituted into (5,9), we obtain the following condition:

(5.11)

which may be imposed on Ф in view of the arbitrary
character of the distribution function. We note that in
the case in which Ф corresponds to the Hartree-Fock
approximation and depends only on the difference p ~ p',
relation (5,11) is automatically satisfied. This relation
is also satisfied for equilibrium distributions.

In particular, Eq. (5,7) permits us to study the plasma
oscillations and other oscillations of a degenerate elec-

* The momentum density and the current density may be

determined by the following equations:

P ( « ) = \ Pi/и (Р1Ч1 • • • РтЛп) rfPi dp2 rfq2 . . . rfqn =

p/ (p, q) dp,

) = e \ -£i- /„ (piq, . . . pnqn) dplt dp2, dq2 ... dqn

- r - / (q, p) dp.

The latter takes into account the fact that

Equation (5, 9) follows from a comparison of the expressions
for the momentum density and the current density defined in
terms of f and f.

tron fluid. References 58 and 59 are devoted to this
problem. The oscillations of an uncharged Fermi fluid
have been discussed in references 31 and 60.

First of all, we shall consider oscillations accom-
panied by density oscillations, and therefore leading to
the appearance of a longitudinal electromagnetic field.
These are the plasma waves. If the condition сот>> kvQ

is satisfied, we have in the long-wavelength region the
following expression for the spectrum of these oscilla-

tions:
.58

( 5 Л 2 )

Here A and A are the coefficients in the Legendre
polynomial expansion of the function

where у is the angle between p and p' , pfl is the Fermi
limiting momentum, and v is the velocity of electrons
at the Fermi surface, which, according to (5,10) is re-
lated to pQ by the relation

-»,(i+2 (5.14)

The limiting frequency сот which appears in Eq. (5,12)
coincides with the corresponding value obtained by the
Hartree approximation. However, the correlation of
particles plays a substantial role in the small correc-
tion term in (5,12) determining the dispersion of the
plasma waves. An estimate of the quantities A. and
A may be made under the assumption that the function
Ф is determined by the amplitude of forward scattering,
as calculated in the Born approximation, for a screened
Coulomb interaction using the actual parameters charac-
teristic of the majority of metals. This estimate shows
that these quantities are not large, and in such an ap-
proximation, at least, they do not change the order of
magnitude of the term proportional to к . However, in
real metals, the situation may turn out to be more com-
plex. In particular, the coefficients A of the expan-
sion may turn out to be significantly greater than those
obtained in the estimate stated above.

If we make no assumptions about the form of the
function Ф, then the expressions for the excitation
spectra of an electron fluid, generally speaking, will
be determined by highly complex relations, and will
correspond to the roots of the following equation for
various polarizations I ( \l < n):
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We shall ascertain what changes are brought about in
this relation by taking correlation of particles into ac-
count. It is easy to see that when the following inequal-
ity is satisfied

and the Y (-9-,Ф) are normalized spherical harmonics.
If we assume for simplicity that only A. and A% dif-

fer from zero, then for longitudinal waves (l = 0) we
obtain from (5,15)

(vo/c) (5.21)

as takes place for the majority of metals in the infra-red
region, we obtain from (5,19)

= 0. (5.17) (5.22)

where

( 5 Л 8 )

In the long-wavelength region, kvQ<< co^, relation (5,12)
follows from this for the case A2 = 0. Under the assump-
tion that only AQ and Ax / 0, the spectrum of the trans-
verse oscillations (/ = 1) is determined by the relation

(5.19)

If Ax is neglected, this relation coincides with the cor-
responding dispersion relation in the self-consistent-
field approximation, describing undamped oscilla-
tions. ' ' ' * The oscillations become damped in
the case in which \s | < 1. Under these conditions, the
logarithm in formula (5,18) should be taken to mean the
principal value of the logarithm minus 2771. Taking the
quantity A. into account in the region s >> 1 leads to
the following relation between со and к [see (5,14)] :

(5.20)

In other words, in this frequency region, the taking into
account of correlation is manifested only in a small
term. We note that if we neglect Ax, i. e., in the self-
consistent-field approximation, Eq. (5,19) permits no
undamped solutions in the frequency region a) ~ kvQ.

This relation corresponds to the spectrum of the trans-
verse oscillations of an uncharged Fermi fluid and has
been studied in reference 60. Solutions of (5,22) are
possible only when A t > 6. Estimates for a number of
metals carried out in reference 61 gave A^ £ 3. Hence,
we may suppose that for such metals, transverse zero
sound is hardly possible. In general, however, the
question of the existence of metals in which the propa-
gation of zero sound is possible may apparently be
solved only experimentally, until we obtain more infor-
mation about the correlation of electrons in metals.

We note that, as may be seen from (5,15), the pres-
ence of the charge of the electrons is not essential for
polarizations with I > 1. Hence, in this case, the theory
of zero sound in an electron fluid is analogous to that
for He . ' However, in order that this sound be
possible, it is necessary that the coefficients of the
expansion in (5,13) with n > 1 should also differ from
zero. In the special case in which all A with n > 2
are zero, the dispersion equation for zero sound with
1=2 has the form

(5.23)

Speaking of the nature of zero sound, there is little
that may be added to what has been said above in the
discussion of collective oscillations in the Hartree self-
consistent-field approximation. We note that, for zero
sound to exist, it is necessary that the oscillation
period be small in comparison with the time for estab-
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lishment of equilibrium in the electron fluid. For
example, as we know, this condition is satisfied in the
case of the inequality (5, 21). At first glance, it might
seem that the permitted frequency region for zero sound
might be broadened substantially on lowering the temper-
ature. However, this is actually not the case. The fact
is that in the frequency region 1Га> >^к Т, the electrons
participating in collisions are distributed in an energy
range ~ too from the Fermi surface. 6 2 ' 3 1> 6 3 ' 56> 5 7

This naturally leads to an increase in the frequency of
collisions, making the mean free path of an electron
practically independent of the temperature for suffici-

ently high frequencies со.
We shall take up now some peculiarities of collective

oscillations which are possible in the case in which the
electron fluid is situated in a constant magnetic field
(ff ). Electromagnetic oscillations (longitudinal-plasma
oscillations and transverse oscillations) are modified
here in a way analogous to that which takes place in an
ordinary plasma. The oscillations corresponding to zero
sound are also modified. In the long-wavelength region,
in which the condition kvQ << fi = ev0HQ/cp0 is satis-
fied, we have the following simple expression for the
spectrum of these oscillations

(5.24)

In the case of a gas of free electrons, (5,24) corresponds to
the spectrum of equidistant electron levels in a magnetic
field. As we see, taking into account the correlation of
particles makes these levels no longer equidistant. How-
ever, we should note that the excitation states of (5, 24)
correspond to only a fraction of the possible states of
the electrons in the magnetic field. In particular, these
excitation states are similar to plasma waves, and hence,
they obey Bose-Einstein statistics.

dt

In addition to these effects, which are associated
with the orbital motion of the electrons, excited states
associated with the spin moment are also possible in a
system of electrons. In order to study these excited
states, it is convenient to use the function
cr(q, p) = £ , (£ ) s s ' fs> s(q, p). Then, from (5,7) we
have, in particular, the following equation describing the
oscillations of the component of cr normal to the constant
magnetic field {^ = o-x ± icry):

(5. 25)

Here

(5. 26)

where H is the variable magnetic field, and the function
yip) determines the paramagnetism of the electron fluid,
and is equal to ' ' *°

In the long-wavelength region, (5, 25) gives

(5. 27)

corresponds to the ordinary Bloch frequency. In the
short-wave length region the spectrum of spin waves,
generally speaking, is very complex. In the specialg e r y p g , v y c p p

C0|, n = ( ± Ц, + IQ) ( 1 •+ :—— ) + О (k2), (5, 28) c a s e i n which we may consider that only BQ differs from
zero and that the wave vector к is parallel to the direc

where п = 2y(pQ) H„A", and Bn are the coefficients in
the Legendre polynomial expansion

zero, and that the wave vector к is parallel to the direc-
tion of the constant magnetic field HQ, the dispersion
equation may be written in the form

Г2 ' * (P. P') = 2 BnP,, (cos X ) . 29) s -4- s n — 1

(5. 30;

If / = 0, t h e n ( 5 , 28) g i v e s a>Q Q = ±2/3HQ/1r, w h i c h
Q Q

where s = co/hvQ

lengths, (5, 30) gives
and sQ = 0. /kvQ. For longer wave-
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со = kvos = ± (1 + BQ) {1 + k*vl/'SB0Ql}. (5, 31)

If BQ is positive, then the frequency increases with in-
crease in the absolute magnitude of the wave vector.
Here, in the region in which the inequality kvo>>Q0 is
satisfied, the dispersion equation (5,30) takes the form
(1/BO) = 7](s), and possesses solutions only when BQ

is positive. 3 1 Hence it is clear that in this wavelength
region spin waves are impossible if SQ < 0. For longer
wavelengths, according to Eq. (5,31), the frequency de-
creases in this case with increase in the wave vector.
The spin waves indicated here are due to the paramagnet-
ism of the electrons. Here, the dispersion, the relation
of the frequency of the waves to the wave vector, is de-
termined by function (5,29), which results, in particular,
from the exchange correlation of the electrons. The ex-
change correlation is extremely essential in the case of
ferromagnetic metals, in which it determines a spectrum
of spin waves in the electron fluid having the form
ш ~ к2.

6. LOSSES OF A CHARGED PARTICLE ON
PASSING THROUGH MATTER, ASSOCIATED
WITH THE EXCITATION OF COLLECTIVE
OSCILLATIONS IN THE MEDIUM

As we have seen in the preceding sections, both
transverse and longitudinal oscillations of the electro-
magnetic field are possible in a medium, considered
to be a system of many particles. These oscillations
depend essentially on the properties of the medium, as

may be seen, in particular, from the possibility of pro-
pagation of longitudinal waves, which in general cannot
exist in a vacuum. Such oscillations may be excited by
a charged particle, and correspondingly may cause a
definite fraction of the energy losses of the charged
particle in passing through matter. We must note that
these collective oscillations (of the electromagnetic
field) may be propagated in the medium only when the
absorption is small. In absorbing media, they will not
propagate, but will be rather quickly absorbed by the
medium. This essentially corresponds to the transfer
of energy from the charged particle to the medium by
means of collective oscillations.

An example of the excitation of collective oscilla-
tions of the electromagnetic field in a medium is the
Cerenkov radiation of a charged particle*. '

Here, in an isotropic medium oscillations of the trans-
verse electromagnetic field are excited. The problem of
the excitation of both transverse and longitudinal oscil-
lations of the electromagnetic field in the medium, and
of the energy losses of the charged particle passing
through the medium, corresponding to these excitations,
has been studied in essence by Fermi in a rather
general manner (see also references 69—75). In such
studies, the dielectric constant e(w), which is a func-
tion of the frequency of the alternating field, has been
used as the characteristic of the electromagnetic proper-
ties of the medium. Here, the following expression is
valid for the value of the energy loss of a fast parti-
cle per unit path length, in the Tamm-Frank-Fermi
theory:

со da ^ q dq
1 I I

92и2 + со'2 I e (со) i71

Here eZ is the charge of the particle, v is its velocity,
and hqQ is the maximum momentum transferred by the
charged particle during ionization. We shall not go into
any detailed analysis of Eq. (6,1), inasmuch as it is
given in the references given above. We shall only note
that the first term in the integrand of (6,1) corresponds

« • + " (?-
8 (a/

c 2

(6,1)

to longitudinal losses, while the second term corresponds
to transverse losses, that is, they are due to the excita-
tion of vibrations of the longitudinal and transverse fields,
respectively. It is expedient to consider the case of
transparent media, in which e(co) is a real quantity. In
this case, the formula for the energy losses may be
written in the form6 7 ' 7 0 ) 7 5

(<7o) - \ Г
? (u>)i)2/c2>

г ] со rfco. (6,2)

where the cog are the frequencies of the longitudinal vi-
brations of the electromagnetic field in the medium, and
are determined by the condition

8 K ) = 0. (6, 3)

and it is assumed that vqQ >> b)g.
Thus, in addition to the Cerenkov losses, the expres-

sion for which is given by the integral in Eq. (6, 2), there

*See also the review reference 67.
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occur losses associated with the excitation of longitu-
dinal, or as they are also often called, polarization or
Bohr waves*.

A special case, but apparently one of the most inter-
esting cases of oscillations of the longitudinal field, is
the so-called plasma oscillations in an electron gas
with a frequency equal to

m L =
(6,4)

where m is the mass of an electron, and n is the number
of electrons per unit volume. The dielectric constant
of the electron gas, dissipation and random motion being
neglected, is ordinarily written in the form

e (со) = 1 — G>£/G)2. (6,5)

which, naturally, agrees with (6,3) and gives Eq. (6, 4).
The problem of the excitation of plasma oscillations by a
moving charge is often studied with the aid of some model
(see, e. g., references 8, 12, and 77). This permits us to
concretize the derived formulas greatly. However, such
concretization often does not permit us to see the gene-
ral physical regularities; in connection with this, we shall
try as much as possible to postpone the moment when we

have to use model representations, and in particular, to
use the contents of the preceding sections.

In recent years, the question of polarization losses of
charged particles has been widely discussed in the liter-
ature, and we might say that it has experienced its sec-
ond birth in connection with the problem of discrete
losses of electrons passing through thin films. There
is every basis for assuming that such discrete losses are
associated with the excitation of longitudinal vibrations
determined by relation (6,3). Here we may speak in
quantum-mechanical language of the emission of a quan-
tum of the electromagnetic field with longitudinal polari-
zation and with a frequency со , often referred to as a
plasmon? Such an interpretation of discrete losses has
been developed in references 81 and 23. A correspond-
ing theory of losses has been developed in the papers of
many authors.81' 82> 32> 8 3 ' 7 5 - 8 4 ' 3 8 ' 5 ' 86> 80> 8 7 ' 8 8

One of the peculiarities of the recently-developed
theory of energy losses of charged particles is that of
taking into account the spatial dispersion of the di-
electric constant*. In other words, as the wave depending
on the time and the coordinates as e lWt

propagates in the medium, the dielectric constant is a

function not only of the frequency со, but of the wave
vector k. In the case of an isotropic medium, in dis-
tinction from the usual treatment, the dielectric constant
is no longer a scalar, but in general has the form

i y (o), k) = e' r (со, к) {б„—Ai (o, A). (6,6)

Thus, the propagation of longitudinal and transverse waves The formula for the total losses of a fast charged
in a medium is determined, generally speaking, by dif- particle per unit path on passing through a medium with
fering dielectric constants. spatial dispersion has the form

Qo

In studying discrete losses, fast but non-relativistic
particles have been considered, for which only the longi-
tudinal losses are significant. These losses are charac-
terized by the first term on the right-hand side of Eq.
(6,7). Hence, we shall proceed now to a more detailed
study of the longitudinal losses.

We may derive without difficulty from Eq. (6, 7) an
expression for the probability per unit path of scattering

*The possibility of emergence from matter of radiation

associated with the excitation in the medium of longitudinal

plasma waves has been indicated in reference 78.

}dq. (6,7)

of the particle by an angle between в and в + d в, with
emission of a longitudinal quantum (plasmon) in the fre-
quency interval со to со + dco :

(6,8)
2e2Z2

/i со dO da>
Im

* Optical phenomena in a medium having spatial dispersion

have been studied in references 89, 90, and 91. A well-studied

phenomenon in which spatial dispersion i s manifested is the

anomalous skin-effect.'92
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Here the fact is taken into account that, in the emission
of the longitudinal photon, the momentum of the fast
particle is changed only slightly (p >>Ш), and that the
particle is scattered at a small angle в » 1.

In the case in which we may neglect spatial disper-
sion, the probability of scattering may easily be related
to the optical constants of the medium, the index of re-
fraction n and the absorption coefficient к, according to
the relation

т™' _ _ 2 ^ _ (6,9)

Since the absorption in a given medium may not be small,
Eq. (6,3), strictly speaking, may not be satisfied, since
the simultaneous vanishing of the real and imaginary
parts may be due to pure coincidence. Hence, in order
that we may speak of discrete losses, it is necessary
that Eq. (6, 9) should have a sharp maximum in a definite
frequency region. The determination of the optical prop-
erties of metals permits us in some cases to determine
the value of (6,9), and for the alkali metals and silver
it actually possesses a rather sharp maximum (see refer-
ences 75, 93, and 94). It is obvious that the determina-
tion of n and к for metals over a wide range of frequen-
cies would be highly useful in the further elucidation of
the nature of discrete losses.

It is pertinent here to proceed to the next problem in
the interpretation of the spectra of characteristic losses
of fast electrons. The question is often discussed as to
whether at least part of the discrete losses are associated
with transitions of individual electrons between different
bands. First of all, we note in this regard that the use of
Eq. (6,1) to describe the losses is correct for impact
parameters (1/^ ) much larger than the interatomic dis-
tances, i. e., for solids in the case in which qQ<<10 cm
Hence, for scattering at an angle smaller than < v>/v
(where < v > - 10 cm/sec), the distribution of fast
electrons is determined by the dielectric constant of
the medium alone. In this sense, the discrete losses in
small-angle scattering are always due to collective
effects. Further, the existence of a band structure in
the spectrum of the electrons in the solid is reflected,
of course, in the form of e(a>) as a function of the fre-
quency. Hence, in particular, in the vicinity of certain
frequencies, for which~Hcois near to the distance be-
tween bands, a sharp increase in the quantity (6, 9) is
possible in principle. This increase, naturally, would
lead also to a line in the spectrum of characteristic
losses.

This case, however, is very complex. It is essential
to analyze in a simpler way the spectrum of the discrete
losses in the case in which the width of the forbidden
band is large in comparison with the plasma frequency
of the conduction electrons. Here the dielectric con-

stant may be represented in the form:

e (w) = e 0 — co£/co2. (6,10)

where е„ is the frequency-independent contribution to
the dielectric constant from the electrons of the filled
bands. Here the quantity n may be determined from
measurements of the optical constants of the metal in
the frequency region for which со << со^. Corre-
sponding experiments for Na give a value for the num-
ber of conduction electrons agreeing with high accuracy
with the number of atoms per unit volume; experiments
on the discrete losses give the same value, and thus
confirm the correctness of the optical experiments. On
the other hand, such an agreement completely reveals
the mechanism of the discrete losses, which in this
case is completely due to the conduction electrons.

On the contrary, the measurement of the number of
conduction electrons for a number of other ele-
ments9 5 ' 9 6 > 6 1 (for example Cu, Ag, Аи, А1) gives for
these elements an energy of the plasma oscillations
much smaller than the observed value of the character-
istic losses. In connection with this, we note that
Eq. (6,10) may be applicable to the case in which the
spectrum of electronic levels is separated by a band
whose width is large in comparison with the frequency

of the plasmon (the case of valence electrons), while
the characteristic binding energies of the electrons lying
below this band are small in comparison with the plasma
frequency*. However, in this case the determination of
the discrete losses may in essence only determine n.

In order to understand the field of applicability of re-
lation (6,9), we note the following. If the dissipation
is small, for naturally only in this case will the losses
be in any degree discrete, the characteristic parameter
determining the role of spatial dispersion can only be
the quantity

П = V< u2 > (/c/co). (6,11)

where N < v > is the root-mean-square velocity of the
particles of the medium. (For the conduction electrons
in a metal, 4 < v > is of the order of magnitude of the
velocity at the Fermi surface.) Here the spatial disper-
sion becomes the determining factor only when the para-
meter of (6, 11) is not small in comparison with unity.
As applied to Eq. (6,8), this means that the quantity
which is not to be small must be

< v2 > p*
А 2 со 2

(6,12)

! Cited in reference 80.
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Hence, it is clear that the role of spatial dispersion be-
comes important only in scattering at angles which are
not small in comparison with

(6,13)

Here the fact has been taken into account that the velo-
city of the fast particle is large in comparison with the
root-mean-square velocity of the particles of the medium
(v >> < v > ). The angular distribution of the scat-
tered electrons, according to (6,8), has a sharp maximum
in the region of angles considerably smaller than 6 and
of the order of magnitude of:

80 = hat/pv. (6,14)

In this angular region and in the vicinity of the line in
the spectrum of losses, П is a small quantity.

We shall proceed now to the study of effects in which
spatial dispersion is essential. In the region in which
П is small in comparison with unity, £ may be represent-
ed in the form**:8^

(6,15)

For a gas of free electrons, S is positive.
A calculation based on the theory of the Fermi liquid

gives the following expression for € (со, k) for small
values of Hcf. (5,12)): 5 8

(6,16)

V ' ' CO 2 TOO)2

The quantity е{ш) = e' (со) + ie"(co) in (6,15) is the
ordinary dielectric constant. Assuming S to be real, we
may write the following expression for the differential
probability of scattering:

dWl (0, оз) _2e 2 Z 2 6 E" (ffl)
(6,17)

Experiments studying the dependence of the energy losses
of an electron on the scattering angle, in an angular
range not too small in comparison with 6 , permit us to
determine S (see references 98 and 80). In the general

** In the Hartree approximation for a degenerate electron
gas, we have in this region

case, the full interpretation of such experimental results
is not trivial. In essence, only in the model of free
electrons may we make a prior calculation of S. Even
in such a relatively simple model as that of the Fermi
fluid, S is determined by parameters which may vary
from metal to metal, and which depend on the exchange
and Coulomb correlations of the electrons. Hence, the
experiments on determination of the angular scattering
distribution of electrons actually give new characteris-
tics of metals. As we have seen from the example of
the Fermi fluid, these characteristics cannot be reduced
to any of the known characteristics of the metals.

We shall proceed now directly to an analysis of some
peculiarities of the losses of charged particles, which
are specific for the model of a degenerate electronic
Fermi fluid. From Eq. (5,17), and expression for
£ (со, k) follows, which we shall write in the form

^ ' > l

(6,18)

— ^ o t i (s)] —

Dissipation in the electron fluid, as associated, for
example, with collisions of the electrons with the lat-
tice or with impurities, may be taken into account by
introducing the time of free flight т. This leads to the
situation that in Eq. (6,18), s = {со + iT)kvQ. Equation
(6,18) assumes that 1ik is small in comparison with the
limiting Fermi momentum. An essential peculiarity of the
given expression for 6 , distinguishing it from that de-
rived from the Hartree approximation, ' is the

singularity which appears under the condition

(1 + , = П (6,19)

and which is associated with the excitation of zero
sound.

In order to clarify the qualitative picture associated
with the possibility of exciting zero sound, we shall
discuss a case in which A - 0, while A. is large in
comparison with unity. Then the solution of Eq. (6,19)
acquires the form

(6, 20)

Here 6 may be represented in the form

2

(6,21)

Correspondingly, such a value of the dielectric constant
will give a dependence of the differential scattering
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probability on в and со in the form axis, the expression for the differential scattering pro-

bability has the form:

8 ш£б(со-]/"щ£+(Ло/3)К />УЛ*)(9Ч-бЫ (6,22) dWi <n ш) 2e*Z* 8dWl (8, (o) _ 2e 2 Z 2

 T

hadQdti) ~ hv2

(со) (со)

This formula agrees with that which may be derived

from (6,16) and (6,17), but differs in that it is valid

also when the latter term under the radical sign in (6, 22)

is not small in comparison with со г. Hence, in the re-

gion of angles larger than в ^l(3/A0){fico^/v0p), the

energy lost may turn out to be proportional to the scat-

tering angle, being equal to Ж со = NI Ы О / 3 ) vQp6. This

corresponds to the excitation of a quantum of zero sound

in (6,20). Here, in view of the fact that s is larger than

unity, e is real. Hence, the maximum scattering angle

is determined by the smallness of рв in comparison with

the limiting momentum pQ of the Fermi distribution, for

which our expression for 6 becomes invalid. We note

that, for an ideal electron gas, 6 becomes complex for

в > (fro) /v_p), and consequently, at such angles the

line in the spectrum of losses in the gas becomes dif-

fuse.

In addition to the variation in the value of the energy

lost, the angular distribution also varies. Namely, if

the angular distribution has the same form in the region

of angles smaller than в that it has in the case of the

[/ 2]
g

electron gas, being proportional to [6/(9 , then
for в > в , the angular distribution is proportional to

[\/{82 + в2)] .

The expression for the spectrum of the zero sound

has a simple form even in the case in which AQ << 1

and is positive. Then

(6, 23)

Hence, the excitation of zero sound is manifested in

this case only in a narrow region near the angle

в = itco/pva).
We shall proceed now to the study of frequencies

which are, on the one hand, much smaller than со т,

but on the other hand, are much larger than the frequency

of collisions 1/r. Then, for к < co/v , or correspond-

ingly for small angles, for which 62+ 62< в2 = {tco/pvj2,

£ is real and does not vanish. Hence, in this region
there are no losses. For larger angles {в > в ), the

longitudinal dielectric constant becomes complex. Hence,

in this angular region losses must occur. However, we

cannot rely on the obtaining of any sort of distinct line

in the spectrum of losses in this case.

We shall give some attention to a factor which might

lead to a relation of the value of the discrete losses to

the scattering angle, and which is associated with op-

tical anisotropy. For example, in the case of a uniaxial

crystal, when a fast electron moves along the symmetry

It is obvious that in this case, when the absorption is

small, i. e., when the imaginary part of e is small, the

line of discrete losses will be determined by the nodes

of the expression

In view of the fact that £ j_and б ,, can vanish si-

multaneously only by pure chance, the nodes of the

given expression will depend essentially on the scat-

tering angle в. In particular, for 6 << 8 , the position

of the line is determined by the point at which e j_(co)

vanishes. Since the fundamental contribution to the

total losses due to excitation of plasmons is that of

angles <̂  c9, a broadening of the line takes place when

we measure the total losses. ' '

7. NON-LINEAR EFFECTS DURING PASSAGE
OF CHARGED PARTICLES THROUGH A
PLASMA

The kinetic equations describing relaxation pro-

cesses in a plasma were discussed in the second section

of this article.

As early as 1928, Langmuir found that electron

beams passing through a plasma transferred their energy

to the electrons of the plasma in considerably shorter

distances than the relaxation distance found on the basis

of the formulas of Sees. 2 and 6. Both methods of

analysis of energy losses discussed in these sections

are based in essence on the assumption that the parti-

cles entering the plasma do not change the properties

of the plasma. Thus, for electrons, it is assumed in

the derivation of the Fokker-Planck equation given in

Sec. 2 that the state of the electrons of the plasma sur-

rounding the injected particle and the state of the plas-

ma vibrations are equilibrium states.

In the method presented in Sec. 6, this is manifested

in the fact that, while particles are passing through the

plasma, the state of the latter is characterized by the

same complex dielectric constant as in the absence of

the particles. This implies that the charged particles

entering the plasma do not change its properties.

The existence of the Langmuir effect indicates that

such a treatment is not adequate, i. e., the assumptions

on which the results of Sees. 2 and б are based are not

fulfilled in this case.

In the solution of the more general problem, in which

neither of the subsystems (the electrons of the beam
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and the plasma oscillations) is in a state of statistical
equilibrium, it is necessary to solve a system of non-
linear simultaneous equations for the electrons of the
beam and the plasma.

In experiments in which the Langmuir phenomenon is
manifested, the relaxation distance calculated on the
basis of the formulas of Sees. 2 and 6 is 10 to 10
times greater than the distance at which the electrons
of the beam transfer their energy to the plasma electrons.
Thus it follows that in the inhomogeneous case, which
occurs when ordered oscillations appear in the plasma
at the expense of the energy of the electrons of the
beam, we need not consider those terms in the approxi-
mation of the second distribution function which lead
to the relaxation terms in the kinetic equation. Under
these conditions, the second distribution function may
be represented in the form of the product of the first
distribution functions. As a result, we arrive at the
kinetic equation with a self-consistent field.

In this section will be discussed the solution of the
indicated problem for a classical system of beam and
plasma only. The generalization of the results given
below to the quantum case may be carried out by a meth-
od analogous to that given below, but using the quantum
distribution function.

Thus, let the electron beam enter the plasma along
the x axis at the point x = 0. We shall consider the
one-dimensional case. Then the system of self-con-
sistent equations for the distribution function of the
electrons of the beam and the plasma and the electric
potential may be written in the following form:

dx dv
). (7,1)

;, v, t) dv - л+ } . (7,2)

We assume that the charge of the electrons is compen-
sated by a positively-charged background of ions.

In order to solve the problem of the deceleration of
the electron beam due to the excitation of plasma waves,
we must find a wave solution of Eqs. (7, 1) and (7, 2)
satisfying the given boundary conditions at л = 0 . Here,
if we consider that 0 i s a known function, then by solving
Eq. (7, 1) with respect to фая& eliminating /from Eq.
(7, 2), we may derive a single non-linear equation for the
electric potential.

From the solution of the linearized system (7, 1) and
(7, 2 ) , 1 2 > 2 7 ' " • 1 0° it follows that longitudinal waves
appear in the plasma, increasing along the x axis, and
with phase velocities less than the mean velocity v of
the electrons of the beam. The rate of growth of the
plasma waves which appear depends on the velocity of
the electrons of the beam and on their concentration.

With sufficiently small concentrations of electrons in
the beam, the growth of the plasma waves may be arbi-
trarily small.

Thus, if the concentration of electrons in the beam
is small in comparison with that in the plasma, the solu-
tion of the non-linear equation for the potential may be
sought in the form of a slowly-growing wave

cp(z, t) = <fo(x)bin(wt-kx + Y(x)). (7,3)

where Ф0(х) and Ч* Ы are the slowly varying amplitude
and phase.

We shall first consider the case in which a steady-
state in the wave has been established, i. e., its amp-
litude and phase do not depend on x. In such a state,
the potential is a function only of ж ~ v t. The solu-
tion of Eq. (7, 1) for ф'т this case has the following
form:

f{x, v, 0 =

+ for v > v

- for v < v

where Ф is an arbitrary function. If we eliminate the
function f from Eq. (7, 2) with the aid of expression
(7, 4), we obtain the equation for ф

d2q>
dx2 = 4ite

+ Г <7,5)

If we take the function Ф to be the Maxwell function,
Eq. (7, 5) agrees with the equation given in the paper
of Bohm and Gross.

A solution of Eq. (7, 5) in the case in which the
temperature of the electrons of the plasma and the beam
is zero is given in a paper by Akhiezer and Lyubarskii.
In another paper by Akhiezer, Lyubarskii, and Fein-
berg, a solution for this equation has been found for
the more general case in which the temperature of the
electrons of the plasma is not zero. The expression
for the function Ф in this case may be given in the form

(7,6)

In this expression, n1 is the concentration of electrons
in the beam, v is their velocity, and Ф is an arbitrary
function of the energy.

These solutions cannot be used directly for the prob-
lem under consideration of the deceleration of the elec-
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tron beam, since when the thermal losses are small, the
transfer of energy from the beam to the wave takes place
precisely in the region of growth of the wave. Hence, in
order to solve this problem, we must study the process
of establishment of the steady-state in the wave. In ad-
dition, the problem is still not resolved as to whether a
growing-wave solution will in general approach a solu-
tion satisfying Eq. (7,5).

However, even from a special solution of this sort,
we may conclude that the conditions of applicability of
the linear approximation for the electrons of the plasma
and the electrons of the beam are not identical. For
example, let us assume the function Ф on the right-hand
side of Eq. (7, 5) to be expression (7,6) or a more
general expression taking into account the thermal
fluctuations in the velocities of the beam electrons.
Then we may easily see that for v >> ^ к Т/т, the
linear approximation for the plasma electrons is valid
under the condition еф<< mv /2, while it is valid
for the beam electrons under the condition
eф < < m{~v ~v)2/2. If m {v ~ v ) 2 << mv2, non-

linear effects for the beam electrons will have an effect
at considerably lower potentials than for the plasma
electrons. The use of the non-linear approximation for
the beam electrons alone may be justified, of course,
only in case that the steady-state value of the ampli-
tude obtained from such a solution is such that

Ф0(х) and 44#), as before, are the slowly varying ampli-
tude and phase.

Taking expression (7,9) for the potential, we can find
a solution of Eq. (7,7) for a given value of the distribu-
tion function of the beam electrons at ж = 0. We shall
denote the known function /x at x = 0 as /^ '(w ;
then J/j dv*' - n + 1 . Here and later on, the super-
script (0) will denote that the function or variable refers
to the point я = 0.

Since Eq.(7, 7) is a first-order linear differential
equation for a given function ф, its solution is determined
by the solution of its characteristic equation. Consider-
ing the fact that the amplitude and the phase vary slow-
ly, this equation may be written in the following form:

~ (x)). (7,10)

If we find from Eq. (7,10) the functions
t / 0 ) = W<°>U, v, t) and t<°> = t (0) ( X f Vf t)t

tion of Eq. (7, 7) may be written in the form

Using this solution, we may find expressions for the cur-
rent and the density

ecp << mv1/I.
P

(x, v,t))dv;

Thus, when the concentration of electrons in the
beam is small (but, of course, still large enough to
sustain the plasma oscillations at the expense of the
energy of the beam), instead of the system of equations
(7,1) and (7, 2), we may consider a system of equations
for the distribution function Д of the beam electrons
alone, while the equation for ф will be the wave equa-
tion for the plasma waves. The values of the phase
velocity and the damping factor of the plasma wave
may be taken from the linear theory of plasma oscilla-
tions.

As a result, we arrive at the following system of
equations:

v, t))dv.

If we substitute the expression thus found for p into the
right-hand side of Eq. (7, 8), we obtain the non-linear
equation for the potential. At low electron-beam inten-
sities, the right-hand side of this equation is small, and
hence we may use a well-known method in the theory of
non-linear oscillations to find simpler equations for the
amplitude and the phase of the wave. In order to do
this, we must find the Fourier components of the den-
sity /5 considering the amplitude and the phase of the
beam to be constant during the integration. Let
p = p^ cos (u)j.t ~kx) + p^ein (o)̂ .« - kx). Then

/1 1 /1

~dT + v~dx'

д2ф п у Зф 1 <

dxi vp dx v"t

е дф d/i ^ Q
m dx dv

= 4ne

= ф0 (ж) sin ((uht — (r)).

(7,7)

(7,8)

(7,9)

2я

, v, t))dvd{kx), i = i, 2.

In these equations, co^ = o)£ + (3 к Т/т) k2, where у
is the damping factor including both the damping factor
of the plasma waves, as found by Landau, and the
possible damping due to collisions. The functions

Eq. (7,11) may be simplified by using the Liouville
theorem dx dv - dx^ ' dv^ '; or since dx = v dt, and

> dx dv = W«»A«» dvW. Replacing
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the variables t and v in Eq. (7,11) by № and t/°\ we
obtain the following expression for the Fourier compo-
nents of the density:

2л

', offl\ a) - kx] С (om) d (7,12)

Eq. (7,12) permits us to find p^ when the function * п * 8 equation is a known function of the coordinates
t = t ( i ( 0 ) , «/0), x) is known. In order to determine this a n d * } ' t n e n t h e integral in Eq. (7,10) may be repre-
function, we refer to the equation of motion (7,10). If sented in the form
we consider that the variable t on the right-hand side of

(xr) cos (t -kx' dx'

and we thus obtain the integral equation for the function
t = ,(,«», v<°\x):

t- t o. _ 1 f f л 2ек [ a (x")

и о

X cos K* ( 0 ) + cok (t — t™) — kx" + W {x")] dx"} ~ V 2 dx'. (7,13)

Due to the complexity of Eq. (7,13), the solution of the
problem without the application of numerical methods
may be carried out approximately only in certain special
cases; these cases are primarily of theoretical signifi-
cance. We shall discuss some of them.

Let fj. denote a small parameter. We shall consider
the case in which the steady-state value of the ampli-
tude of vibration is such that еф /mv'• ' ~ /J. , and

the maximum excitation is found for a wave for which
(i/°) - v ) /tr ' ~ /x . Under these conditions, and
under the condition that the amplitude and phase of
Ф0(х) change slowly, 41 ix) in Eq. (7,13) may be sim-
plified by series expansion of the square root, retain-
ing only the first and second terms of the series. As a
result, Eq. (7,13) acquires the form

t-t°

Eq. (7,14) contains two length parameters. One of
these, A = kiv^ - v ) /i/ \ is determined by the dif-
ference between the velocity of the electron beam and
the phase velocity of the most rapidly growing plasma
wave at x = 0. The other, a, characterizes the rate
of change of the amplitude and phase of the wave. We

(t — t'm) = ^ — fx - A X3

cos

We now substitute this expression into the integrand of
Eq. (7,11), and integrate over V~ , and retain again the

\ -; dr dv '-
J (o— vv)

n

(7,14)

shall now discuss the case in which a./A ~ /x .
We shall designate the energy ratio e0o/m(v' '~v )

by X and find an approximate solution of Eq. (7,14) as
a power series in X, assuming that x <̂  1. Retaining
the terms up to X inclusively, we obtain the following
expression for t ~ Г ':

- Ax Л- ¥ ] - ^ sin2[co*(0

terms in X up to X , making use of the formula

(7, 15)
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in which the symbol T indicates that the integral is
taken in the sense of its principal value. Keeping in
mind the fact that p - pt cos {co^ t - kx) +

p2 sin
2 tf - kx), we obtain as a result the following

expression for the density of the beam:

з сQ I

о \т
я е 2 Г

mk [

еф

-}7ffЛ dv .

0*с
р

у У

8-4!

)
h

еф,

m

( у - и ) dv(f

)\.dvb;

Substituting this expression into the right-hand side of
Eq. (7,8), we obtain the non-linear equation for the po-
tential under the condition that the solution of this
equation is sought in the form (7,9).

If the ratio of the concentrations of electrons in the
beam and the plasma is such that the parameter

(7,16)

of the slowness of change of the amplitude and phase
of the wave is of the same order of smallness as the
parameter characterizing the smallness of the right-hand
side of the equation for ф, then, on equating terms of
the same order of smallness, we obtain the following
equations for the amplitude and phase of the wave:

mk
с r 1 3

P o 3 ,

\m(v — v (v-v p)*

(7.17)

(7.18)

In Eq. (7,17), the notation has been introduced

mk dv JX в L
P~8-4!

mk

For self-excitation of the oscillations to occur, it is
necessary that the coefficient a should be positive. If
the value of the damping coefficient is basically deter-
mined by the damping factor of the plasma oscillations,
i. e., collisions play only a small role, the condition
for self-excitation may be written in the form
(Э/ ( 0 ) / dv) _ > 0, where / ( 0 ) is the distribution

1 V ~ Vp J-

function for all the electrons (plasma and beam) at
x - 0. This condition of self-excitation corresponds
to that derived in references 12, 27, 99, and 100.

We shall now concretize the form of the distribution
function /, . With a sufficient degree of accuracy, it
may be apparently be given in the form

/2 m(v—v)2

In this expression n , Т., and v are the concentration,
temperature, and velocity of the beam electrons. With
such a choice of the boundary distribution function, the
condition of self-excitation is satisfied in the region of
phase velocities A v ~ >l к Т/т . The coefficient a is

at a maximum for a wave with a phase velocity such
that V - v = 4 кТ./m. Since ~v and v »4 кТ,/m,

P 1 p i

and v = C0fc/k ~ со^/k , we find that the value of the
wave number of the most rapidly growing wave is

к £ ш^/v. For this wave, the coefficients a and /3
have the form

It follows from the expression for a that, for the as-
signed values of the parameters tT; Tl3 and n, there
always exists a lower limit for the values of the con-
centration of the electrons in the beam for which self-
excitation of the oscillations is possible. With lower
values of the concentration, the transition to the equili-
brium velocity distribution during motion of the electrons
through the plasma takes place by relaxation processes
alone, as described in the first part of this article.

The solution of Eq. (7,17) for the amplitude may be
written in the form

Фо( х) =
ф«",

-—т'о^Гй2"*—1
(7,19)

In this expression, ф'0-* is the value of the amplitude
at x = 0. We shall denote by the symbol 0 g e the steady-
state value of the amplitude. For small values of
x (x << I/a), the solution of Eq. (7,19) increases expo-
nentially with increase in x. For large values of x, the
amplitude approaches the value
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(7, 20)

If the value of у is so small that the second term in the
expression for a may be neglected, then e 0 s s £ ЪкТу.
We may see from the derived formulas that the steady-
state value of the amplitude of the wave approaches
zero as T. ~* 0, i. e., in the case of a beam of uniform
velocity. It follows from the expression for a that in
this case the condition of self-excitation of the waves
is not satisfied. Of course, this does not mean that,
when a beam of uniform velocity passes through a plas-
ma, plasma waves do not appear. The fact here is that
the solution discussed here was obtained under the con-
dition a << A, X ~ 1. Under this condition, plasma
waves in the hydrodynamic approximation actually do
not appear. In order to describe the appearance of
waves in this case, we must study the solution under
the condition that a^ A.

We shall now discuss Eq. (7,18) for the change in
phase of the wave. This equation determines the change
in the wave number of the plasma wave with increasing
x U ¥ /dx = -A k). It follows from Eq. (7,18) that ДА;
is determined by two terms, one of which depends on the
amplitude. They are both of the order of /x k, and thus
are small in comparison with the initial difference
between the velocity of the beam electrons and the
velocity of the wave, which is of the order of /x. We
shall estimate now the distance at which the energy
of the beam electrons is transformed into the energy of
plasma oscillations. In order to do this, we shall find
the value of the ratio of the flux of electrical energy of
the plasma waves in the region in which a steady-state
of the wave has already been established to the value of
the energy of the electron beam at ж =0. This ratio is
equal to

(7, 21)

We shall estimate the order of magnitude of this ratio.
Since ефо/тг)д ~ jJ. , and a/k ~ /x , then it follows
from the expression for a that the ratio of concentrations
of electrons of the beam and the plasma n./n ~ /x .
From Eq. (7, 21) we find that, with these values of the
parameters, the ratio of energy fluxes is the order of
unity. Thus, the beam transfers its energy into the ex-
citation of plasma oscillations at a distance I, of the
same order of magnitude as the distance at which the
steady-state is established. If we designate the wave-
length of the plasma wave as K, then A.<< I £ I /a .
For currents of 20-50 та , к T1 ~ 1 ev, mv~2/2 ~ 20 ev,
nx ~ 108, and n ~ 10 1 0 , the distance I is of the order
of a centimeter. At the same time, the relaxation dis-
tance calculated from the same data by Eq. (1, 2) is
equal to about 10 cm.

In a paper of Looney and Brown, standing waves
were found in a plasma upon passage of an electron

beam through it. The standing waves appear in the
presence of a reflecting electrode.

In order to find the conditions for the appearance of
standing waves upon passage of an electron beam
through a plasma, a solution for the electric field may
be sought, for example, in the form

(fs = <p0 (t) sin (ooZ + Ч1" (t)) sin snx = l, 2,

where ф0 (t) and Ш (t) are the amplitude and phase of the
wave, slowly varying with time, and L is the length of
the region along the direction of motion of the beam.
Calculation shows that, for nj n << 1, the condition
of self-excitation is best satisfied for the frequencies
and wavelengths determined by the formulas

SKVSKV ,

-г- К
2L
s

s = l , 2 . . .

It follows from these formulas that the transition from
the fundamental mode of oscillation to a higher one may
take place either on increasing the concentration of elec-
trons in the plasma or on decreasing the mean velocity of
the beam electrons.

Under the experimental conditions of Looney and
Brown, the basic factor is the concentration of electrons
in the beam, i. e., n./n >> 1. This case may also be
analyzed. Under thes"e conditions, the square of the
frequency of the oscillations for a given mean velocity
will be proportional to the concentrations of electrons
in the beam, or the current.

In a linear approximation, the theory of the excita-
tion of standing waves in a plasma for any ratio n Jn
has been discussed in references 105 and 106.

We shall note that another sort of spatial periodicity
has been observed in the well-known paper of Merrill
and Webb 1 0 3 (see also the new references 107, 108,
and 109). There is no opportunity to spend any time
here on this question. We only note that the value of
the spatial periodicity in this case is determined by the
wavelength of the most rapidly growing plasma wave,
and is equal to

1 —
хГ,

The results of the experiments of Merrill and Webb also
indicate the presence of growing waves in the plasma.
The value of A. obtained from the formula given above
agrees well with the value of the spatial periodicity
found in this paper.

As is known, plasma waves may also appear due to
the energy of the relative motion of the electrons and
ions. This effect may give an appreciable contribution
to the temperature increase in a plasma when a strong
pulse of electric current is passed through it. With a
pulse duration of ~ 10 * sec, establishment of the
plasma oscillations will be possible. The rate of damp-
ing of these oscillations will determine the value of the
energy transformed directly into heat.
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Translator's Comments

This article is not a complete review of the subject of
energy losses of charged particles passing through matter,
but rather, is a rather thorough summary of the development of
one particular theoretical treatment of this subject, in which
the authors have made numerous contributions. This treat-
ment uses the concept of the quantum distribution function, as
developed by Wigner and Moyal , together with the concept
of collective excited states, as developed by Bohm et al. 4 '
These concepts are applied to the problem of the energy losses
incurred by charged particles as a result of excitation of plas-
ma oscillations, both in plasmas and in metals, and are used
to explain such phenomena as the Langmuir paradox. The
phenomena are treated in the self-consistent-field approxima-
tion, and then, considerable discussion is devoted to the influ-
ences of exchange and Coulomb correlations on the interacting
systems.

The treatment of losses in thin metallic films is not ex-
haustive, but covers primarily the subject of discrete losses,
in view of the interest of the authors in the theoretical appli-
cation of the concept of collective oscillations to this phenom-
enon. One section covers the phenomenological theory of the
Fermi fluid, including such predicted phenomena as that of
zero sound. The final section discusses the case in which
the interaction of an electron beam with a plasma is far
stronger than that calculated for the interaction of single
charged particles with the plasma, by virtue of the excitation
of sustained plasma oscillations, such that the plasma can
no longer be assumed to have its original properties, e. g.,

dielectric constant. The non-linear theory applicable to this
case is outlined.

Thus, the article is a valuable summary of the theoretical
work of the authors on the subject of energy losses, in view
of the fact that much of this work is not readily available in
many American libraries, especially since their earlier papers
were published before the period in which translated Russian
journals became available. In addition, the authors have
drawn on a wide variety of other work pertinent to their main
subject, including both theoretical and experimental papers,
recognizing the implications of their treatment over a wide
range of topics. Thus, the 109 cited references form an exten-
sive, although by no means exhaustive bibliography of the
subj ect, being chosen, in general, for their pertinence with
regard to the theories being developed, rather than to the en-
tire subject of energy losses of charged particles.

An idea of how much of the field has been covered in the
article, and how much omitted, may be gained by comparison
with a recently-published collected volume, since some of
the sections of this volume cover very similar topics to those
covered by the article, although not with the same theoretical
treatment.
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