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1. INTRODUCTION

THE simplest laws of propagation of electromag-
netic, acoustic or other waves in homogeneous or
non-homogeneous media are obtained in the region
of extremely small wavelengths A, that is, for the
case described by geometrical optics. The wave
fields of geometrical optics are localized planes in
the sense that over small regions they obey the
same laws as plane waves propagating in homoge-
neous media in well defined directions. We will re-
fer to these directions as rays. In the case of iso-
tropic media the aggregate of the rays represents
a family of lines orthogonal to the family of the
propagating wave fronts.

On the basis of the ray concept, we can consider
the geometric-optical field as decomposed into ar-
bitrarily small tubular sections (referred to as
ray tubes), the propagation within each of which
is entirely independent of the rest of the field.

This leads to a phenomenon characteristic of
geometrical optics. Thus, if an obstruction is
placed along the path of propagation such that some
of the rays terminate on it while others pass by,

a sharp boundary line is formed between the bright
and dark regions.

However, in case of a small but finite wavelengths
A the sharp boundary between the bright and dark re-
gions becomes blurred. This represents the ordi-
nary phenomenon of diffraction. It seems as if a
splitting of the edge rays takes place and therefore
the field penetrates partially into the region of geo-
metrical shadow. The word diffraction (from the
Latin diffringere — to divide, split) related to
this apparent splitting of rays was first proposed
by Grimaldi (1665) to describe the broadening he
observed of a narrow beam of sunlight passing
through a small aperture and the smearing out of a
shadow of a rod illuminated by a narrow light beam.
Therefore, diffraction in the narrow sense of the
word is used to describe these relatively small de-
viations in the propagation of waves from the laws
of geometrical optics when the wave field or each
of its individual components closely resemble lo-

*This article is a revision of the article ‘‘Wave Diffrac-
tion’’ written for the new edition of the Physics Dictionary.

cally-plane waves, although new directions of prop-
agation may appear which cannot be explained by
geometrical optics.

The term diffraction in the broad sense is used
to describe arbitrary deviations from the laws of
geometrical optics. This includes almost all wave
phenomena associated with propagation in regions
of arbitrary shape.

2. HISTORICAL DEVELOPMENT OF THE DIF-
FRACTION CONCEPT

The first wave treatment of the diffraction phe-
nomenon was given by Young (1800) and the sec-
ond by Fresnel (1815). The characteristic fea-
tures of these treatments are easily followed in
the simple example of diffraction by a straight
edge.

Young* considers the wave field behind an ob-
struction to be the resuit of two phenomena, dif-
fraction proper and interference. To explain the
diffraction phenomenon Young introduced, in addi-
tion to the geometric-optical principle of propaga-
tion of locally-plane waves in the direction of rays,
the notion of transverse transmission of the oscilla-
tion amplitudes directly along the wave fronts. He
has shown that the transmission velocity, i.e., the
amplitude flux, is proportional to the wavelength
and to the amplitude gradient along the wave front.
Figure 1, taken from Young’s article, illustrates
how the diffracted wave is formed behind the ob-
struction owing to the ray amplitude transmission
along the cylindrical wave fronts from the boundary
of the geometrical shadow. The formation of the
diffracted waves is thus, according to Young, of lo-
cal character since it takes place in the vicinity of
the boundary of the shadow behind the edge of the
obstruction. A similar diffracted wave is also
formed in the bright region (see Fig. 2). Cylin-
drical wave fields are thus present, which appear
to be emitted from the edge of the aperture. Inter-
ference between the diffracted wave and the portion
of the incident wave not blocked by the obstruction
explains the presence of interference fringes on

*Thomas Young, A Course of Lectures on Natural Philos-
ophy and Mechanical Arts, Vol. I-II, London, 1807.

749



750

PL

FIG. 2

the screen B’ above the boundary BB’ of the
geometrical shadow and the absence of fringes
below the boundary.

Unable to explain with Young’s method the fact
that near the boundary line of the geometrical
shadow (] @ |« 1)* sharp and rounded edges lead
to the same diffraction pattern on a screen, Fresnel
(1815) rejected the treatment of diffraction as a
local phenomenon that takes place in the vicinity of
the aperture edge. Using the concepts embodied in
Huygens’ principle, he visualized the diffraction phe-
nomenon as a consequence of interference of an in-
finitely large number of waves originating from vir-
tual sources distributed over the entire aperture
surface (see Fig. 3). To visualize graphically the
magnitude of the diffraction field at an arbitrary
point A behind an aperture large compared with
the wavelength A, Fresnel subdivided the aperture
plane into circular half-wave zones. The zones,
starting with the first one, can be constructed with
a compass. This is shown in Fig. 4 for the example
of a plane wave incident on a circular aperture of
radius a and for a point A located on the aperture
axis. In the example shown, exactly five Fresnel
zones fit in the aperture. The effects of the Huygens
sources distributed in the adjacent zones 2, 3 and
4, 5 essentially cancel each other, because of the
opposite phases of the oscillations that reach A
from these zones. The resultant field at the point
A is therefore determined primarily by the Huy-
gens’ sources of the first zone. When OA = a?%/x,
there is only one Fresnel zone on the aperture.
Beyond this distance a beam of light, sound, or of
any other radiation spreads (in width) relatively
rapidly because of diffraction. The region of

*The region of large diffraction angles ¢, where differ-
ences are found in the diffraction properties of sharp and
rounded screen edges, was not investigated at that time.
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space for which the distances from the aperture
are much greater than a?/A is referred to as the
Fraunhofer zone. In this region the diffracted
wave regains its directivity and obeys essentially
the laws of geometrical optics.

Fresnel’s notions of diffraction, which he de-
veloped mathematically, soon became predominant
and brought about the final victory of the wave the-
ory of light over the Newtonian corpuscular theory.
Although Fresnel’s method is the more formal one,
insofar as it introduces sources far removed from
an edge in order to describe diffraction by the edge,
Young’s local approach, which is more representa-
tive of the physical nature of the diffraction phenom-
enon, was considered incorrect after Fresnel’s time.
Later Magie (1888) and Rubinowicz (1917, 1924)
have shown that the results obtained by Fresnel’s
methods can be reduced by means of a mathemati-
cal transformation to the same form as predicted
by Young.
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In the more exact formulation of Helmholtz (1859)
and Kirchhoff (1882), Huygens’ principle leads fo
an integral equation that relates the value of the
wave field at an arbitrary point of a given region
to the value of the field and its derivatives at the
boundary of the region. Huygens’ principle is thus
used only to formulate the mathematical problem
as an integral equation. Generally this integral
equation cannot be solved. It is, as a rule, pos-
sible to get an idea of the diffraction field and de-
termine its values on the basis of Huygens’ prin-
ciple only if the aforementioned boundary condi-
tions (i.e., the values of the field and its deriva-
tives at the boundary) are known from other con~
siderations. According to Kirchhoff’s approxi-
mate solution the values of the field and its deriva-
tives in the aperture plane are assumed to be the
same as if the screen had no influence on the in-
cident wave. Thus, in the shadow directly behind
the screen, these values are assumed to be zero.
This makes it possible to find approximate rela-
tions for the diffraction field of apertures of ar-
bitrary form for both the near zone (Fresnel dif-
fraction) and the far zone (Fraunhofer diffraction).
A comparison with the exact solution of diffraction
by a semi-infinite plane, obtained by Sommerfeld
(1896), shows that although the approximate solu-
tion for the Fresnel diffraction leads to smaller
values of the diffraction field in the shadow region
for large diffraction angles, it gives a good picture
of the diffraction field for small diffraction angles,
i.e., near the boundary of the shadow.

Fresnel’s method entails difficulties whenever
it is impossible to guess beforehand, even approxi-
mately (as does Kirchhoff for large apertures),
the distribution of the elementary sources on the
boundary surfaces. This applies, for example, to
diffraction by an absorbing surface when the wave
is propagating along (i.e., parallel to) the surface,
or to the bending of waves by a smoothly convex
obstruction.

3. MODERN DEVELOPMENTS OF YOUNG’S NO-
TIONS OF DIFFRACTION!™®

According to the laws of geometrical optics, the
propagation within each ray tube is independent of
the rest of the field. The amplitude of the ray (a
quantity defined such that the square of its magni-
tude is proportional to the energy flux along the
ray tube) is assumed to remain constant along each
ray tube. However, it can be different from zero in
one group of ray tubes and equal to zero in adjacent
ones. This corresponds to the presence of sharp
boundary lines (between bright and dark regions)
in the geometrical theory. According to more ac-
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curate ideas diffraction, in the narrow sense of the
word, represents in the first approximation the ef-
fect of transverse diffusion of the ray amplitude
from some ray tubes to adjacent ones, or, in other
words, the diffusion of ray amplitudes along the
wave fronts.

On the basis of this idea, all results of the sim-
plified Fresnel theory for diffraction by apertures
of arbitrary shape in a plane surface and small dif-
fraction angles are obtained by considering the
transverse diffusion of the ray amplitudes along the
fronts of the nearly-plane waves. If we substitute
the expression U = A (x, y, z) e HWt-KX) g5 5
nearly plane wave propagating in the x direction
into the wave equation 82U/at? = ¢?AU, we obtain
for a continuously varying amplitude A (x,y, z),

04 D 2*A D /A | 34
or ¢ = Toy? T ozE )¢

dx c 0z ¢
where D = Ac/4ni. The second term in the left-
hand side of the equation is small compared with
the first one (because of the small value of the
wavelength A). Neglecting this term we obtain
2 2
If we set x =ct, that is, if we place our coordinate
system on a moving wave front which coincides at
t = 0 with the plane x =0 in which the screen with
the aperture is located, Eq. (1) can be rewritten in
the form of the two-dimensional diffusion equation

for diffusion and heat conduction,
2 g2

%}4 = %ﬁ + (()32.21 ) * (2)
When a plane wave of unit amplitude impinges upon
a screen with an aperture (see Figs. 5 and 6) then,
if we assume the amplitude directly behind the aper-
ture also to be unity and the amplitude behind the
screen to be zero, a spreading of the amplitude
along the wave front is found, which increases with
the advance of the latter — analogous to the conven-
tional diffusion or heat conduction. This is illus-
trated graphically in Figs. 5 and 6 by means of
vertical lines of varying thickness which is as-
sumed to be proportional to |A| on the wave

Tt
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FIG. 6

front. The determination of such a spread in am-
plitude from Eqgs. (1) and (2) leads to equations that
agree with the approximate equations for Fresnel
diffraction. As A — 0 the diffusion coefficient

D = Ac/4nmi disappears, i.e., 8A/3x =0 (the

case of geometrical optics with its sharp shadow
boundaries).

The imaginary value of the coefficient D which
leads to a similarity between Eq. (2) with Schrod-
inger’s wave equation in quantum mechanics, im-~
plies that the diffusion of the complex amplitude
A is accompanied with a phase shift, and as a re-
sult oscillations are possible in the distribution
of the magnitude |A| of the amplitude along the
wave front. In most typical cases, however, the
diffusion of the wave amplitude shows more simi-
larity with the conventional diffusion and heat con-
duction processes than with quantum mechanics.

The method described permits the solution of
problems that cannot be solved by Fresnel’s
method. One example is the problem of wave
propagation along an absorbing surface y =0
(characterized by a surface impedance 1/g)
where the boundary condition for the surface has
the same form as the condition for “surface heat

conductivity,” i.e., 8A/8y =hA, where h = 2wg/iA.

In Fig. 7 an example is illustrated where the wave
is gliding first along an ideal reflecting surface

9
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(g = 0), then passes over an absorbing region

(g >0), x4 <X <Xy, after which it reaches again
a nonabsorbing surface. The diffraction phenome-
non manifests itself here in the fact that the ampli-
tude of the wave A, determined from equations
fully analogous to the equations for heat conduction
and diffusion, decreases on the lower portion of the
wave front as the wave advances along the absorb-
ing section. The process taking place is similar to
the cooling of an initially heated plate by outward
heat conduction h from the lower end. When the
wave again enters the non-absorbing region the in-
verse process of “warming up” of the lower end at
the expense of the “warm?” upper end starts. This
is illustrated in Fig. 7.

The phenomenon of transverse amplitude diffu-
sion along a wave front, like conventional diffusion
or heat conduction, is of local character and is
strongly pronounced only in the zones of effective
diffusion, where the gradients of the complex am-
plitude of the wave front are relatively large. In
Fig. 5 a similar zone is outlined by a parabola
(dotted line). As the wavelength decreases this
parabola approaches the boundary line of the geo-
metrical shadow and coincides in the limit with it.
In the case of an aperture (Fig. 6) the two para-
bolic zones of effective diffusion overlap at a dis-
tance a?'/?\. This distance appears also in Fresnel’s
investigation of diffraction. Further spreading of
the amplitude maximum continues approximately
linear with distance.

Examination of the transverse amplitude diffu-
sion along the front of a plane wave is insufficient
to yield a more exact idea of the diffraction phe-
nomenon. An analogous investigation is necessary
of the diffusion of the ray amplitude along curved
wave fronts, which are obtained in accordance with
the laws of geometrical optics for given shapes of
the diffracting objects and given positions of the
field sources. Let us limit ourselves to the two-

dimensional case of a simple field described by
2 2

P Icl_z-— AU, propagating in

a nonuniform medium with a continuously varying
refractive index n. It is then possible, within the
approximation of geometrical optics, to introduce
(see Fig. 8) a family of rays ny, 73, n13... and
the orthogonal family of wave front surfaces

&1, &9, £3..., where ¢ is the optical path length
(eikonal). Introducing the specific transverse
area of the ray tube, k = do/dn, the expression
for the wave field in terms of the coordinates ¢
and 7 can be written

the wave equation

A ; .
U = G-L(m(—h)’

V nx
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where A(£, n) is the ray amplitude, also referred
to as the attenuation function. Substituting the above
expression for U into the wave equation and neg-
lecting terms similar to those neglected previously,
an expression analogous to Eq. (1) is obtained for
A,

84 D 1 8 /1 8 A

GE T Ym0\ 3N Y 3)
Setting £ = ct, this equation goes over into the dif-
fusion heat conduction equation for a curved front
that is being deformed with time.

The foregoing description of diffraction by aper-
ture edges, based on the consideration of transverse
diffusion along plane wave fronts, is only a poor ap-
proximation and is not more exact than Fresnel’s.
For a more exact description it is necessary to
consider Young’s more complete picture of the
wave field and to take into consideration the fact
that the transverse diffusion of the ray amplitude
takes place along the fronts of a cylindrical wave
that diverges from the aperture edge. To deter-
mine the diffusion of the ray amplitude, Eq. (3)
must be used instead of Eq. (1). For a uniform
medium (n =1) and the cylindrical case, Eq. (3)
becomes.

a4 D 324
o g )
Figure 9 shows a schematic diagram of the trans-
verse diffusion for the case of diffraction of a plane
wave by an ideal reflecting wedge with an arbitrary
opening angle. The dotted parabolas show two zones
of effective diffusion, which encompass the bounda-

ries of the geometrical shadow of the incident and
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reflected waves, respectively. The curved arrows
within these zones indicate the direction of the
transverse diffusion along the cylindrical fronts.
The other arrows indicate the propagation direction
of the wave fronts. Because of the spreading of the
cylindrical wave fronts the gradients of the ray am-
plitude are very small in the regions outside the
parabolas and the transverse diffusion is therefore
very weak in these regions and can be practically
neglected. The diverging wave in these regions,
which can be referred to as the Fraunhofer zones,
has the characteristics of a conventional eylindri-
cal wave originating at the edge of the wedge and
possessing a well defined directivity. Actually,

the origin of this wave is not at the edge of the
wedge but in the zone of effective diffusion. Strictly
speaking, it is in this zone that the diffraction phe-
nomenon takes place. Since the diffusion process
is associated with a certain delay, the cylindrical
wave in the Fraunhoffer zones lags in the conju-
gate plane wave on the boundary of the geometri-
cal shadow by A/4.

The application of Eq. {4) to the solution of dif-
fraction by an ideally reflecting wedge leads to re-
sults that coincide asymptotically for large dis-
tances r > A with the exact solution found by
Sommerfeld. Since the transverse diffusion ap-
proximation is not valid at the edge of the wedge,
the asymptotic agreement shows that the sections
in the direct vicinity of the edge have a negligible
influence on the overall diffusion effect, which ac-
cumulates as the wave spreads away from the edge.
In the small angular region |¢| « 1 near the
boundary of the geometrical shadow the cylindri-
cal wave differs very little from a plane wave and
can be considered, together with the portion of the
incident wave which is not cut off by the screen, as
a single nearly-plane wave. This is essentially the
justification for the foregoing approximation, in
which amplitude diffusion was assumed to take place
behind the aperture along nearly-plane wave fronts
(see Figs. 5 and 6). Since the zones of effective
diffusion, which is influential at small diffraction
angles, also belong to the region |¢ | < 1 results
based on the assumption of diffusion along nearly-
plane waves are valid for small diffraction angles.
The error resulting from the incorrect assumption
of the wave front direction is in part automatically
corrected by the diffusion effect. The smaller the
initial error the better, of course, is the correction.

The reasons for the incorrect results of the ap-
proximate calculations for large diffraction angles
at both sides of the geometrical shadow become
apparent when it is realized that the diffusion ac-
tually takes place along cylindrical rather than
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plane wave fronts. However, similar simplifica-
tions in the form of the wave fronts, which result
in only small deviations in the zones of effective
diffusion and their vicinity, can be conveniently
used for an approximate quantitative analysis of
more complex diffraction phenomena. This is also
the approach used by Leontovich and Fock.l™3

In case of diffraction by rounded edges the phe-
nomenon of transverse diffusion in the bright and
shadow regions has its specific characteristics.
These are more easily followed if we assume for
simplicity that the normal derivative of the field
is zero at the boundary and investigate the wave
propagation along planes that terminate at the
rounded edge either only in the rear or only in
the front. In the presence of a convex obstacle
(see Fig. 10) the ray from the source to an arbi-
trary point in the shadow region can be constructed
in accordance with Fermat’s principle. In a homo-
geneous medium it coincides with a thread stretched
between these two points.. In case of a rear round-
ing (see Fig. 11) the wave fronts in the shadow re-
gion are evolutes of this type of rays. The diffrac-
tion depends on the transverse diffusion of the ray
amplitudes from the bright to the shadow region
along these wave fronts. The zone of effective dif-
fusion can be correspondingly divided into three
regions, Dy, Dp and Dg, indicated in Fig. 11 by
dotted lines. In the region D, and in the neighbor-
ing angular region the diffraction picture is similar
to the one obtained in the vicinity of the geometri-
cal shadow in case of diffraction by a sharp screen
edge or by a wedge (see Fig. 9). We observe that
within the region D two ray tubes sufficiently far
removed from each other (for example, two ray
tubes located within the sections A’ and A” re-
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spectively) are not linked by a common wave front.
The diffusion of the ray amplitude along the arc s
can therefore take place only through a “cascading”
process. That is to say, diffusion and ray propaga-
tion so alternate that the diffusion process in suc-
cessive ray tubes starts only after the diffusion in
the preceding ones is completed. As a result, if
the radius of curvature r; of the convex body is
constant, there is established in the zone D, a
diffusion process that decreases in strength along
the arc s. The decrease of the ray amplitude in
adjacent ray tubes along the arc proves to be pro-
portional to the amplitude. Thus,

dA
w——: —aA, (5)

where more detailed calculations show that

i—V3 ¥ n
—e=a V}Tg

The constant o depends on the material prop-
erties of the body and on the type of polarization of
the incident wave. « = 1.02 — the first root of the
derivative of the Airy function — if the normal de-
rivative of the field is zero at the boundary; if the
field itself is zero at the boundary, then « = 2.34.

Equation (5) is valid also for the case of vary-
ing radius of curvature, ry=ry(s), provided that
the radius changes only slowly along the arc s in
the interval which corresponds to the length of the
section of the ray within the region Dg,. Solving
Eq. (56) we obtain

A(s)=A(s,))exp [a i—21/3— ls/——% g T, %(8)] ds,

or, for r; = constant,

A(s)=A(s) exp [ i—zlfi f/%(s—so)] . ®)

The real part in the exponent indicates an exponen-
tial decrease of the amplitude of the ray gliding
along the arc s. The imaginary component in the
exponential indicates a decrease in the propagation
velocity. This is related to the delay resulting from
the foregoing mechanism of sequential (step-by-
step) diffusion in the zone D,. When one of the
rays branches off tangentially from the arc s,
leaves the zone D, and enters the Fraunhofer
zone further amplitude decrease and time retar-
dation stops. The ray amplitude now remains
constant and the decrease in the amplitude of the
wave field is due only to the widening in the cross
sections of the ray tubes. However, because of
the substantial decrease of the ray amplitude in

its passage through the diffusion zone, in the shadow
region and at large diffraction angles the field he-
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hind a convex obstruction is much weaker than the
field behind an equal screen with sharp edges. In
the lower part of Fig. 11 the surface of the obstruc-
tion becomes a plane and the diffusion process dis-
continues if the surface is ideally reflecting with
the boundary condition 8u/8n =0 (otherwise the
diffusion process described in connection with

Fig. 7 would take place).

Within the intermediate zone Dy, near the point
B the wave fronts are cylindrical and have rela-
tively small radii. The diffracted wave directed
from point B upwards and backwards toward the
incident wave is formed at the expense of the ray
amplitude diffusion along these cylindrical wave
fronts. The greater the radius of curvature of
the surface of the body to the right of the point B,
the smaller near this point the disturbance that
originates from the penetration of the field into the
narrow region between the boundary of the geomet-
rical shadow and the surface of the body. When the
radius of curvature is large the diffusion along the
cylindrical wave fronts of small radii is very weak
and the dispersion in the upward and backward di-
rection is therefore, in contrast to the case of a
sharp edge, negligibly small.

A characteristic property of diffraction by an
edge of an obstruction which is rounded in front
(see Fig. 12) is the transverse diffusion of the ray
amplitude directly from the incident to the reflected
wave. To analyze this process it is necessary to
generalize the geometric-optical notion of incident
and reflected waves for a curved boundary surface.
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When the normal derivative at the boundary of
the body is zero (0Uy/0n = 0) the diffraction field,
Uy can be uniquely resolved into a sum of an inci-
dent wave U; and a reflected wave Uy, where Uy = 1/,
X(UN +Up) and Uy = 1,Q(UN -Up); Up is adiffrac-
tion field analogous to Uy but satisfying the bound-
ary condition Up =0. We can now imagine that two
separate spaces surround the object, and assume
that in one of the spaces only the incident wave Uy is
present and that in the other only the reflected wave
U, is present. At a smooth boundary surface of the
body the reflected wave is then found to be a continu-
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ous and smooth extension of the incident wave (if the
reversed signof the surface normal is taken into con-
sideration). In the limitas A —0, U; and U, go
over into conventional incident and reflected waves
of geometrical optics. At small but finite wave-
lengths A the diffraction phenomena can be, as be-
fore, described by the process of ray amplitude dif-
fusion along geometric-optical fronts continuously
passing over from the region of the incident to the
region of the reflected wave. In Fig. 12 where the
incident wave is assumed to be a plane wave it is,
seen that as the point B is approached the trans-
verse area of the ray tubes of the reflected wave
increases relatively sharply. This results in a
rapid attenuation of the field. It is also noticed

that the rays squeeze more and more closely to

the boundary of the body where the incident and re-
flected waves join. Owing to these two factors, con-
siderable differences develop in the ray amplitude
over small sections of the combined fronts of the
incident and reflected waves. This causes the
transverse diffusion.

Thus, in contrast to the reflection of a plane wave
from a plane boundary surface, or from a smoothly
convex boundary at steep incident angles, there is in
this case a twofold mechanism of energy transfer
from the incident to the reflected wave. In addition
to the conventional reflection mechanism character-
istic of geometrical optics, there is in this case the
additional process of diffusion transfer.

The two overlapping zones D; and D,y of effec-
tive diffusion, for the incident and reflected waves
respectively, are shown dotted in Fig. 12. At the
boundary of the body the ray amplitude diffuses
from D, into D,. The incident wave near the sur-
face therefore becomes weaker as it approaches the
point B, and this results at the same time in a di-
minishing of the resultant field. Behind the point B
where, as shown in Fig. 12, the incident wave is as-
sumed to glide along an ideally reflecting plane
(8U/6n = 0) the reflection link between the re-
flected and incident waves is broken. However,
the diffusion link remains preserved. As the wave
moves away from the point B the resultant field
gradually settles and coincides in the limit with the
undisturbed incident plane wave.

If instead of the horizontal surface behind the
point B the body is further curved as in Fig. 11,
the resultant diffraction phenomena will be analo-
gous to the ones described previously, with the for-
mation of zones Dy, Dp, D¢ of effective diffusion.

In the case of diffraction at the edge of a large
smoothly convex body, the dispersion in opposite
directions from the point B can be neglected (see
Fig. 11). The fronts of the geometrical approxima-
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tion for the incident, reflected, and diffracted (into
the shadow) waves are then found to be almost nor-
mal to the surface of the body in the regions of ef-
fective diffusion (except for the far sections of the
zone Dg) and their neighborhood, and are all found
to propagate along the body in the same direction.
By making a further approximation and replacing
these wave fronts with fronts that are exactly nor-
mal to the boundary surface, Fock and Leontovich3
developed an approximate theory for the propaga-
tjon of radio waves around the earth.

The diffraction phenomena in nonuniform media
are analogous to the diffraction phenomena in homo-
geneous media. For example, when a cylindrical
wave in a medium having a refractive index varying
with the height, n(z) = eZ/ro, is reflected by a
plane (see Fig. 13) the rays bend upwards and a
shadow region is formed, into which the field pene-
trates as a result of the transverse diffusion be-
tween the ray tubes. As in the example shown in
Fig. 11, zones of effective diffusion Dy, Dp, and
D, are formed. For the rays emerging from D,
into the Fraunhofer zone the field decreases from
ray to ray in the direction of s, according to the
same exponential law as given by Eq. (6) for the
homogeneous case, and the propagation takes place
with the same time delay. In fact, through a simple
transformation, s =rg¢ and z =ryln (r/r;), the
wave field in the nonuniform medium in the semi-
infinite region z > 0 is mapped into the region,
r.> ry, outside a homogeneous cylinder (n =1).

This problem is thus exactly analogous to the prob-
lem of diffraction in a homogeneous medium by a
cylindrical obstruction with a radius of curvature
o

4. DIFFRACTION IN THE BROAD SENSE OF THE
WORD

Diffraction in the broad sense of the word is gen-
erally understood to be a study of excited wave
fields in finite or infinite regions filled with homo-
geneous or nonhomogeneous media. The theoretical
investigation of diffraction reduces to the solution of
the mathematical problem of forced oscillations in
the given region.

As an example of the formulation of the problem
we consider the case of a scalar wave field

G. D. MALYUZHINETS

U(Q)e-iwt excited by a point-source harmonic os-
cillator e-iwt (w is the radian frequency) situated
at the point Q = Q; (see Fig. 14). In the acoustic
case the function U(Q) can represent either the
sonic pressure or the velocity potential. In the case
of a two-dimensional electromagnetic problem this
function can represent one of the components of the
Hertz vector, or thefield intensity of the electric or
magnetic fields.
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FIG. 14

Asg an illustration let us consider the case when
the field in a given three-dimensional region with a
piecewise-smooth boundary I’ is described by the
equation

AU + kn2 (Q)u= — 478 (0 — Q,), )

where the refractive index n(Q) > 0 is a continu-
ous function of the point Q within the region G,
n(Qy) =1, k is a constant parameter, and
0(Q—-Qp) is a delta function.

At the boundary I the field is continuous and
satisfies one of the boundary conditions:

W0, S kg =0
where v is the outward normal.

The third condition implies in the acoustic case
that the normal impedance 1/g is known at the
boundary. In the electromagnetic case it is re-
ferred to as the boundary condition of Leontovich.”
In special cases the boundary conditions can also
include derivatives of arbitrarily high order, as for
example, in the case of diffraction of sound waves
by elastic membranes.?

Equations (7) and (8) do not define the problem
uniquely. It is necessary to add conditions that ex-
clude, in the case of a lossless system, the possi-
bility of exciting free oscillations of a natural fre-
quency equal to the frequency w of the source and
have eigenfunctions orthogonal to the distribution
function of the source. It is also necessary to add
a condition that guarantees the absence of superflu-
ous sources of forced oscillations at infinity or at
the boundary of the region.

In order to exclude from the analysis the pos-
sible natural oscillations of the system, we use the

U =0; (Reg > 0), 8)
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fact pointed out by I. M. Gel’fand that the solution

U (Q; k) is an analytic function of k only for
forced oscillations. The sources at infinity are
excluded by making use of the stability condition.
This condition is based on the fact that in a lossy
medium the field strength must decay rather than
increase with increasing distance from the source.
Since the positive imaginary component of the wave
number k represents the losses of the medium,
the stability condition leads in conventional cases
to the requirement that the solution U(Q; k)

be bounded for Im(k) > 0 over the entire region
G, except for the small neighborhood of the source.
However, in certain regions a bounded solution may
not exist when Im(k) < |Re(k)|!® (because of con-
centrated effects). It is therefore generally con-
venient, following Fock,? to impose the requirement
that the solution be bounded for pure imaginary val-
ues of k, that is, to require that in the region

G -Gy

| U (Q; k)l < o 9

when the phase of k is m/2. The requirement that
the solution be bounded also excludes the presence

of superfluous sources at the boundary of the region.

The problem of forced oscillations or of diffraction
in case of a point source is thus reduced to the
problem of finding, subject to the boundary condi-
tions (8), a solution of Eq. (7) analytic in k and sat-
isfying the stability condition (9).

The function U (Q; k), which represents forced
oscillations, is also referred to as the resolvent.
The function U =K (Q, Qp), which is considered to
be a function of the pair of observation and source
points, is Green’s function for the given equation,
region and boundary conditions.

In more general diffraction problems the field
can become infinitely large at certain points on the
boundary (ribs, sharp edges). Then, to exclude
superfluous sources on the boundary, we use instead
of the requirement that the solution be bounded the
requirement that the solution be square integrable
(energy bound) in the neighborhood of the sharp
tip Gj (see Fig. 14). The latter condition is
equivalent to a limitation on the order of magni-
tude of the decrease in field with decreasing dis-
tance d from the singular element (i.e., from the
sharp tip). For example, in case of a sharp edge
on the boundary the field should increase not faster
than d™¥? as the edge is approached.

If all diffracting objects are distributed at a
finite distance R < A from the origin of the co-
ordinate system and all the sources are situated
in the region R > A, it is convenient, for the case
of a uniform medium (n = 1), to separate the in-
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cident wave Uy(Q) from the overall diffraction
field U(Q). (In the case of a single point source
as assumed in Eq. (7), the incident wave is simply

the spherical wave Uy(Q) = Ri eile.) The stabil -
1
ity condition (9) can then be written in the form:
|U—-U,| < (10)

for the region G where Im (k) > 0.

This formulation of the problem permits us to
solve diffraction problems involving not only spher-
ical incident waves but waves of arbitrary shape.
This formulation is in particular convenient when
the incident wave is a plane wave arriving from in-
finity. The stability condition (10) can then be re-
placed by the Sommerfeld emission condition:!2

imR[a(U——U“)-—ik(U~UO)J=O an

1
R—co dR
for k > 0.

As an example of an exact solution we consider
the solution®® of the wave equation V2U + kKU =0
for Sommerfeld’s problem of diffraction of a plane
wave

U, = e~ihreos (¢=20) (|Reg,| < D)

in a wedge shaped region G (-® < ¢ < @, r > 0)
with the boundary conditions U(r, + &) = 0. The
general solution of the wave equation in the region
G is given by the integral
1 .
U= | oo s atq)d
b
where the integration contour 7y is shown in Fig.
15. The stability condition reduces in this case to

the requirement that the function s(a) - (& —(po)'jl
be regular in the strip |Re (a)| = &. Substituting

|
|
l
|
FIG. 15

the integral into the boundary conditions. we obtain
the two identities:

S e-ihr cos ag ((1 i (D) dao = O (r > 0)

Y
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This requires;‘14 that the functions s(a+ ®) be even.
We thus obtain two simple functional relationships:

s(a + D)y—s(—a + D)=0.

The solution of these equations which satisfies
the foregoing requirement of regularity, is of the
form

s (@)= 5 [cot Z%(a—cpo)-{-tgn%(a + %)] .

The solution of the diffraction problem is ob-
tained by substituting this function into the original
integral.

The solution for the case when the boundary con-
ditions are of the third kind

U

%$ik8iU=0 (p=+D)
can be derived in an analogous way.!® The functional

relations, however, are more complicated.
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