SOVIET PHYSICS USPEKHI

VOLUME 67 (2), NUMBER 5

SEPTEMBER-OCTOBER, 1959

SOME GENERAL PROPERTIES OF NONLINEAR REACTIVE ELEMENTS

M. D. KARASEV
Usp. Fiz. Nauk 69, 217-267 (October, 1959)

1. INTRODUCTION

AN electric resistance is considered nonlinear if
its volt-ampere characteristic is nonlinear, i.e., if
the current i is not proportional to the voltage u
(Fig. 1). Here

=1 ()=

du uU=ug i (11)
is called the differential conductance of the non-
linear resistance element and is equal in value to
tan @ — the slope of the volt-ampere curve at the
arbitrary point u =uy; Rj is correspondingly
called the differential resistance. Small variations
of voltage, 6u, or of current, 6i, are expressed

approximately by the linear relation

1
R,

b ——8u.
In the absence of nonlinearity the volt-ampere
characteristic becomes a straight line passing
through the origin, and represents Ohm’s law.
Analogously, a capacitance is considered non-
linear if the charge q of the capacitor (capaci-
tance element) depends nonlinearly on the voltage
u impressed on its electrodes (Fig. 2). Small
changes in the charge, 6q, and in the voltage, ou,
are related by the approximate linear equation

0q =< ¢,8u,

dq '
T |u—q =f"(u)=¢;

1.2)

where cj will be called the differential capaci-
tance of the nonlinear capacitor. In the linear case
the “volt-coulomb” characteristic of the capacitor
becomes a straight line passing through the origin,
and the differential capacitance Ci becomes the
usual capacitance C, which is independent of the
voltage.

If the distance between the capacitor electrodes
does not change with changing voltage u, then the
intensity of the electric field E in the capacitor
is proportional to u, and the nonlinearity is due
to the dependence of the dielectric constant € of
the capacitor dielectric on the electric field inten-
sity E. In this case the dependences of the capaci-
tor charge, q =f(u), and of the electric induction
in the capacitor, D = €E, on the voltage u will be

i=flu)
or .
FIG. 1. Nonlinear volt- usglt]
ampere characteristic of a
resistance element. A

similar; in a parallel-plate capacitor with homo-
geneous field the corresponding curves coincide
upon suitable choice of scale. If the distance be-
tween the capacitor electrodes varies with the volt-
age, the field E is no longer proportional to the
voltage but depends also on whether the plates are
coming together (or apart). In this case, even if
€ is independent of E, the connection between q
and u is nonlinear, while D = €E is still linear.
The physical reason for this difference is that in
the former case the nonlinearity is due to the dis-
placement of the bound charges in the domain struc-
ture of the dielectric within the capacitor, and in
the latter case it is due to the displacement of the
free charges on the moving capacitor electrode.
The commercial nonlinear “varicond” capacitor
has a nonlinearity of the former type, while a dia-
phragm capacitor, in which the plates are elastic-
ally deflected under the influence of the mutual
attraction of the electric charges on the plates,

has a nonlinearity of the second type. Such dia-
phragm nonlinear capacitors have not found wide
use in radio engineering because of the large
mechanical inertia of the diaphragm. But recently,
a new type of nonlinear capacitor was introduced,

9/2)
q=Flul
or
u=¢(q)
FIG. 2. Nonlinear
‘“volt-coulomb’?! char-
acteristic of a capaci- 4l
tor.
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FIG. 3. Resonance curves of a tuned circuit with reac-
tive nonlinearity. A ~ amplitude of the oscillations at the
fundamental frequency w; a) reactance (capacitance or in-
ductance) decreases with increasing amplitude of oscilla-
tion; b) reactance increases with increasing amplitude of
oscillations.

a) w b)

in which the free charges are concentrated not on
metallic plates, but on both sides of a p-n junc-
tion of a transistor (see Sec. 4); this nonlinear
capacitor is quite promising.

The reactive dual of the nonlinear capacitor is
the nonlinear inductance, relating the magnetic
flux & with the current i in an inductance coil.
The calculations for a nonlinear capacitance can
be formally employed for an inductance, provided
the voltage u is replaced by the current i and
the charge q by the magnetic flux &.

Most nonlinear problems in radio engineering
involve the use of a nonlinear resistance (positive
or negative ). These include rectification, detec-
tion, amplitude modulation, generation of oscilla-
tions, and amplification of signals. Nonlinear re-
active elements — capacitors and inductors — have
come into greater use only relatively recently. This
is why whatever systematic theory exists for non-
linear systems has been developed principally as
applied to active nonlinearities — resistances. At
the same time there are many singularities in the
behavior of oscillating circuits that contain reac-
tive nonlinearities. The principal difference be-
tween reactive and active elements is that in the
former there is an accumulation and exchange of
oscillation energy in electric and magnetic forms;
resistances, on the other hand (whether positive
or negative ), can only absorb or supply energy.

We cannot say that individual properties of non-
linear reactive elements or processes in systems
with nonlinear reactive elements have not been in-
vestigated at all. In fact, resonance in slightly-
nonlinear oscillating circuits has been investigated
rather in detail. The characteristic beak-shaped
resonance curves (Fig. 3), which are accompanied
by “hysteresis” phenomena (forward and back-
ward jumps ) at different frequencies, are quite
well known (see, for example, reference 1).

Much attention has been paid to the parametric
action on a single resonant circuit, i.e., forced
variation of one of the reactive parameters of the
tuned circuit. These problems which date back to
the works of Melde? and Rayleigh,® have been stud-
ied in detail in the school of L. I. Mandel’shtam and
N. D. Papaleksi.? Many important features of para-

metric action on an electric resonant circuit have
been investigated, with account of periodic variation
of one of the reactive parameters (energy pumping)
as well as of the nonlinearity that limits the oscilla-
tion amplitude.

It is not our purpose to report in detail on all
the investigations performed under the leadership
of L. I. Mandel’shtam and N. D. Papaleksi, A. A.
Andronov, A, A, Vitt, G. S. Gorelik, V. P. Gulyaev,
M. A. Divil’kovskil, V. A. Lazarev, V. V. Migulin,
E. M. Rubchinskii, S. M. Rytov, I. T. Turbovich,
and others on the investigation of parametric sys-
tems. These investigations are well known. It is
appropriate, however, to cite here in most concise
form certain results of these investigations. In
particular, the research on the parametric response
of electric systems, carried out under the leader-
ship of L. I. Mandel’shtam and N. D. Papaleksi, has
established the following.

1. Periodic modulation of the capacitance or in-
ductance of a tank circuit may give rise to oscilla-
tions. A definite relation must be satisfied here
between the natural frequency v, of the tank cir-
cuit (in the absence of modulation) and the modu-
lation frequency v. The instability accompanying
the oscillations occurs at frequencies close to
2vy/v =1, 2, 3... In the presence of damping in
the tank circuit, furthermore, it is necessary that
the depth of modulation exceed a certain minimum
value, which increases with increasing number of
the instability region (Fig. 4). Oscillations are
easiest to produce in the first region at a modula-
tion frequency v = 2y;. A “tightening” of the re-
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FIG. 4. Instability regions of a tank circuit with modulated
reactance: 1, 2, 3. v, — resonant frequency of the tank circuit
in absence of modulation, v — reactance modulation frequency;
m — depth of modulation; the shaded narrowing regions of in-
stability correspond to the presence of damping in the circuit.
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sultant oscillations is observed, i.e., as the detun-
ing is increased, the oscillations generated in the
instability region cease not at the end of the insta-
bility region, but outside it; oscillations resume
only upon return to the instability region. The
tightening occurs on one side of the instability
region, to the left or to the right, depending on

the type of the reactive nonlinearity.

So-called parametric generators have been de-
signed: capacitive, readily producing voltages up
to 1500, and inductive, with a power rating up to
4 kw.% Certain types of parametric generators
have found application in industry.

2. When a sinusoidal emf is applied to an under-
excited circuit with a periodically-varying reac-
tance, resonance is observed in the circuit. It has
been established that the amplitude of the forced
oscillations depends, apart from the detuning and
damping of the circuit, also on the depth of modula-
tion m of the reactance and on the phase ¥ be-
tween the variation of the reactance and the applied
emf. The phase dependence, which is characteristic
of parametric action, manifests itself in the fact
that two different types of resonance curves are
obtained in two limiting cases, so called “strong”
and “weak” resonance.® Figure 5 shows a curve
for “strong” resonance under the influence of
an applied emf

& = &, sin (0l — )

applied to a series circuit consisting of a capaci-
tance C, a fixed resistance R, and an inductance
varying as

L=L,(14 msin2nt).

For comparison, Fig. 5 shows three resonance
curves: A — resonance curves of the same circuit
(with Q = 50) in the absence of parametric action
{(m =0); B — resonance curve with increased Q
(Q =500); C — parametric resonance at y =0
and m = 0.036. The energy is pumped into the
circuit by the parametric action, through reduction
in the damping. At resonance (detuning £ = 0) the
parametric action increases the amplitude of the
oscillation by a factor
1
T = i_?’;ﬂﬁ =10 times.
Q 2 500 2

However, complete equivalence with a higher-Q
circuit is not observed; the bandwidth in paramet-
ric resonance is broader than that of a circuit with
the corresponding value of Q.

The reverse phenomenon, that of damping of
oscillations, is obtained by parametric action at
“weak” resonance (Fig. 6). In this case, at a

f =
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FIG. 5. Resonance curve in parametric regeneration for
‘““strong’’ resonance (¢ = 0). x = U,/&, —ratio of the ampli-
tude of the capacitor voltage to the amplitude of the applied

emf; £= vf,-—;v’

is the relative detuning; v, —resonant fre-

quency of the tank circuit in the absence of modulation;

v —frequency of applied emf; 2v ~frequency of parametric
action; A —resonance curve of a circuit with Q = 50 in the
absence of parametric action (m = 0); B —resonance curve of
a circuit with Q = 500 in the absence of parametric action;
C —resonance curve of a parametrically regenerated circuit
with Q = 50, depth of inductance modulation by parametric
action m = 0.036.

phase shift ¢ = +n/2, the energy, to the contrary,
is removed from the resonant circuit by the para-
metric action, and at small detunings there is a
dip in the resonance curve (curve B, Fig. 6). The
same depth of modulation, m = 0.036, causes a
reduction in the resonant value of the amplitude,
by a factor
1 1
IU _ 5—0
I 0.0%

= =0.54 times.
1 m
T w3

As the detuning is increased, the amplitude of the
forced oscillations rises sharply and becomes
greater than the amplitude in the absence of para-
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FIG. 6. Resonance curve in parametric regeneration for
the case of ‘“‘weak’’ resonance (y = t7/2). x = U/&, — ratio
of the capacitor voltage to the applied voltage.
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metric action (curve A, Fig. 6, corresponding to

m =0 and Q = 50). The resonance curve in “weak”
resonance differs greatly from the resonance curve
of a circuit with Q correspondingly reduced (by a
factor 0.54) (B in Fig. 6).

It has been shown in reference 6 that synchro-
nous action at double the frequency on the reactive
parameter of a tank circuit is analogous to feed-
back (positive when @ = 0 or negative when ¢ =
n/2), and that such a system represents a special
type of parametric regenerative amplifier.

“Strong” resonance can lead to undamped natu-
ral oscillations, if m/2 becomes greater than 1/Q.
However, a mathematical analysis of this mode dis-
closes qualitative differences. As early as in 1933,
Mandel’shtam and Papaleksi’ have shown that the
launching of parametrically excited oscillations
can be explained only by a nonlinear theory. Such
a nonlinear theory was then developed by Mandel’ -
shtam and Papaleksi.* On the other hand, processes
in underexcited parametric regenerative circuits
can be described rather completely by means of
linear equations with variable coefficients. In in-
vestigating the parametrically regenerative sys-
tems, Soviet radio physicists have established
many other properties of such systems. In particu-
lar, G. S. Gorelik® has shown that whereas the sim-
plest types of oscillations in resonant systems with
constant parameters are sinusoidal and that such
systems produce harmonic oscillations at reso-
nance, the simplest oscillations for a parametric
regenerative system will be not sinusoidal, but
represented by other functions, which depend on
the character of the variation of the system pa-
rameter with time. If a sinusoidal emf is applied
to a parametric regenerative system, the system
resolves this oscillation into the eigenfunctions
inherent in that system, just as a resonant system
with fixed parameters realizes the spectral analy-
sis of a complex oscillation into its harmonic com-
ponents. Thus, the concept of resonance was gen-
eralized to include linear oscillating circuits with
periodically-varying parameters.

L. I. Mandel’shtam attached very great signifi-
cance to systems with variable parameters. Un-
fortunately, he was unable to finish the projected
monograph on parametric generation of alternat-
ing currents; the preparatory notes for this mono-
graph were published posthumously.? Mandel’shtam

*The nonlinear theory of self-oscillating systems (including
those with nonlinear reactances) was subsequently developed in
the papers of K. F. Teodorchik for certain types of systems and
reduced to a simple and lucid form by the so-called energy meth-
ods. ABTokoaebareabHbie cucteMsl (Self-oscillating Systems),
M., 1952.
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proposed to consider in this monograph the general
laws of a system with variable parameters and
many degrees of freedom; this analysis would in-
clude ordinary dynamos and electrostatic gener-
ators in a natural manner as degenerate systems,
in which the electric or magnetic energy respec-
tively is negligibly small; he proposed to define
as “non-degenerate parametric generators” those
in which both types of energy, magnetic and elec-
tric (or, in general, kinetic and potential ), play
a substantial role simultaneously, and in which
oscillations are excited when definite relations
obtain between the periods of variation of the
parameters and the magnitudes of the parameters
themselves.

V. V. Migulin, who participated together with
V. P. Gulyaev, V. A. Lazarev, and others in work
on the study of parametric actions on electric sys-
tems, carried out in the Thirties at the Leningrad
Electrophysics Institute under the leadership of
N. D. Papaleksi, was kind enough to report to us
that as early as 1934, the investigations con-
cerned not only single-circuit systems, but also
two-circuit parametric systems. The possibility
of parametric excitation at frequencies non-
commensurate with the frequency of parametric
action were also studied. In a paper!? published
in 1939, Papaleksi describes parametric interac-
tion in a two-circuit electromechanical system
(consisting of an electric oscillating circuit and
a parametric motor) in response to a difference
frequency. He notes in conclusion of his article
that the parametric action in such a system “yields
a new unique frequency transformation at practic-
ally any frequency ratio.” He thus disclosed, as
early as in the Thirties, the possibility of para-
metric action not only at multiple frequencies,
but also at non-commensurate frequencies. How-
ever, the lack of technical facilities in those days
(and also the absence of a definite need) for a
broader utilization of these phenomena did not
stimulate a deeper study.

Recently new interest in variable reactive ele-
ments has been generated in connection with pos-
sible use in the microwave range. But they de-
serve great attention for their own sake, from the
point of view of development of a general theory
of nonlinear oscillations. Variable reactive ele-
ments have properties that are both similar to and
different from those of variable resistances. Thus,
a nonlinear capacitance or a nonlinear inductance
is eapable of generating harmonics, just as a non-
linear resistance. Apparently, the development of
high-Q nonlinear reactive elements for micro-
waves is rapidly displacing nonlinear resistances
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(which are inherently lossy) from all microwave
apparatus used for generating very high frequen-
cies by frequency multiplication.

In the rectification of alternating current, a
nonlinear element is also essential. But in this
case the nonlinear element must be a nonlinear
resistance. It is impossible to obtain dc from ac
by means of a purely reactive element, even a non-
linear one. Let us assume, for the sake of being
specific, that a saturable reactor is used as a non-
linear reactance element and that the electric cir-
cuit is as shown in Fig. 7. A direct voltage E
produces the initial magnetizing direct current, and
an alternating emf without a dc component [ &(t)
= &(t+kT,), where T, is the period], forces the
flow of alternating current in the circuit. The in-
ternal resistance of the two voltage sources, as
well as the internal resistance of the inductance
coil, will be lumped with that of resistor R, the
load. In the absence of an alternating voltage,
only direct current will flow in the circuit, and
its value will obviously be

E

=1

As a result of simultaneous action of E and &(t)
{which are not equal to 0), there will be estab-
lished eventually in the circuit of Fig. 7 a periodic
current, which can be presented as

ity=1I,+21, Cos<2n%t+(p”>,
n=1
where I, is the dc component, I, the amplitude
of the n-th harmonie, T; the shortest period of
current oscillation, which in general can be a mul-

(1.3)

tiple or rational-fraction of Ty, i.e., Ty = (p/q)Ty.

It is obvious that were rectification possible, we
would have

1y 1. (1.4)

Let us find the value of I;. For this purpose we
consider the fact that the periodic current (1.3) ex-
cites in the inductance coil a nonlinear, but also
periodic, magnetic flux

D=0+ kT,

determined by the connection between the ampere
turns of the coil and its magnetic flux. The equa-
tion of the circuit shown in Fig. 7 is of the form

E()+ K =Ri(t)+n%2. (1.5)

If we now find the mean value of the right and left
sides of (1.5) over an infinitely large time interval,
we obtain the sought value of I, as the limit

+I‘ t

+T
Tl_imiT \ @@+ Eyd=1 (Ri(t)+n‘i—?>dz}.a.6)
o U i

FIG. 7. Nonlinear
circuit with a saturable
reactor.

I“é Vzv) &it)= 8t+x1,)
From (1.6) we get E =RI;, i.e., I;=1i;. From
this condition, which contradicts condition (1.4),

it follows that it is impossible to rectify with an
inductance.

This premise is supplemented by its converse:
it is impossible to invert direct current into peri-
odic alternating current by means of a system con-
sisting of any combination of nonlinear reactive
elements and fixed resistances. It is known that
any amplifier, in the presence of positive feedback
and at sufficiently high gain, can become a gener-
ator of undamped oscillations. The question arises:
is it possible to produce a system comprising mag-
netic or dielectric amplifiers, fed from a de source,
capable by itself of converting the direct current
into alternating current with the aid of nonlinear
reactive elements? The answer is no.

This can be demonstrated in the following man-
ner. Assume that we have a passive nonlinear two-
port network, containing any finite number of fixed
resistances Ry, nonlinear capacitors with differ-
ential capacitances C], and inductance coils with
differential inductances Ly, interconnected in
any manner. We connect a direct voltage E to the
input of this network, and connect a fixed load re-
sistance Ry, across the output terminals, as shown
in Fig. 8.

FIG. 8. Passw§ t.wo- N AR R -
port network containing R

" ti 1 £ G, G L
nonlinear reactive ele e L L, -

ments.

Let us ascertain the number of equilibrium states
of the circuit of Fig. 8. In equilibrium, all the cur-
rents in a circuit and all the voltage across each
element are constant. But the capacitor, as a pure
reactance, is an infinite resistance — an open cir-
cuit — to direct current, and an inductance is like-
wise a short circuit to direct current. Consequently,
the two-port network shown in Fig. 8 is equivalent,
in its equilibrium state, to a combination of resis-
tors Ry only, with open circuits where the capaci-
tors are connected and short circuits where the
coils are connected. But in a circuit consisting of
fixed resistors, there can be only one value of cur-
rent and voltage for each network element in re-
sponse to a specified direct voltage. Thus, the
circuit of Fig. 8 has only one equilibrium position.

If this only equilibrium position is unstable,
then self-oscillations are possible in the system
and alternating current can be generated; if the
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equilibrium is stable, no alternating current can
be excited.

To determine whether the equilibrium is stable
we must examine the response of the system to
small changes in all currents and voltages near
the equilibrium values, assuming the capacitors
and inductors to be constant. The equilibrium is
unstable if at least in one of the loops small dis-
turbance produces an increasing deviation of the
current or voltage from equilibrium value. Refer-
ring to the nonlinear characteristics of the reac-
tive elements q(u) and &(i) (see Fig. 2), we
note that they have the distinguishing feature that
although the differential capacitance and differen-
tial inductance are not constant, i.e., they depend
on the voltage or current, they cannot be negative.
In this respect they differ qualitatively from a
nonlinear resistance, the differential values of
which can be negative. For example, in certain
phases of a gas discharge, an increase in the
discharge-gap current causes so large an increase
in conductance by ienization, that the voltage drop
across the gap decreases, in spite of the increased
current; in this case the differential resistance of
the gap is negative. But the charge q of a capaci-
tor or the magnetic field ¢ in an inductor cannot
decrease with increasing electric or magnetic field;
the dielectric constant or the permeability cannot
be negative.*

A negative resistance can be produced artifici-
ally by using dc sources and negative feedback to
control the conductivity. For example, it is easy
to obtain in a pentode, through the transitron effect,
a portion of the characteristic with a negative re-
sistance between the screen grid and the cathode,
by applying a portion of the potential from the
screen grid to the suppressor (pentode) grid
(Fig. 9).T In this case control of conductance by
feedback is accompanied by energy loss only in the
external control circuit (in the resistors of voltage
divider RRy, Fig. 9), and the total energy that
the sectionwith the negative resistance can supply
exceeds the energy necessary to control the feed-
back. Only under this condition is a negative re-
sistance produced. In nonlinear reactive elements
it is also possible to use feedback, for example,
by using additional windings in the inductance coils.
But in reactive elements the currents and voltages
are related respectively with the magnetic and

*This does not contradict the fact that the dielectric con~
stant or magnetic permeability can be less than unity. For ex-
ample, in the substance with the most clearly pronounced
diamagnetism, bismuth, p — 1 = — 8% x 10™. Superconductors
can be likened to substances with u = 0.

tSee K. F. Teodorchik, loc. cit., p. 152.
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a) b)

FIG. 9. One-port network with negative differential resist-
ance: a — electronic circuit, b — volt-ampere characteristic.

electric energy. It can be shown that the feedback
in this case requires the consumption of so much
power, that the effect of the negative reactive re-
sistance is fully balanced by the positive damping
due to energy loss in the feedback circuit. Assume,
for example, that we have succeeded in obtaining,
by using feedback, a section with a negative differ-
ential capacitance. It will be characterized by a
capacitor g vs. u curve that has a negative slope
(Fig. 10). Assume now that the capacitor voltage
has increased by Au (from a value u; to uy

+ Au). Then the capacitor charge, in accordance
with the characteristic shown in Fig. 10, will de-
crease by Aq (from gy to gy —Aq), and the en-
ergy delivered to the external circuit will be

AWout =~ u,Aq. (1.7)

But in this case the reduction in the capacitor en-
ergy is not greater than half the value of (1.7),
being equal to

(1.8)

The value of (1.8) equals half of AW+, with the
opposite sign, for an infinitely large negative dif-
ferential capacitance

1 1
AW cap = —— uAq + 5 q,Au.

1 di
AI/Vcap g‘—?u‘,A(] for d—?[:OO.

On the other hand, if dg/du = 0, then

g1 N

G-
g@p-Ag[—————= T

|
|
! N
|
|
|
|

Uy Up*du «

FIG. 10. Characteristic of nonlinear capacitance with a
section having a negative differential capacitance.
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AW gap & i q,Au > 0,

i.e., the capacitor energy increases with the volt-
age applied to it. Consequently, more than half of
the energy delivered to the external circuit by the
negative capacitance will always be drawn from*
the feedback circuits. Thus, even under optimum
matching, not more than one-half of the total power
can be drawn from any source. It follows there-
fore that it is impossible to construct a negative
capacitance with internal feedback only, capable
of pumping energy into an external circuit without
any external alternating voltage sources.

Returning to the equilibrium state in our two-
port network of Fig. 8, we see that the equilibrium
is stable, for all the reactive elements contained
in the two-port network are positive and when used
in conjunction with positive resistances cannot lead

to increasing solutions near the equilibrium position.

The foregoing features of nonlinear reactive ele-
ments, which distinguish them sharply from the non-
linear resistances used in rectification and genera-
tion of alternating current, are quite remarkable.
They are found to agree with the rather general
relations derived by Manly and Rowe!! in 1956.

The next section will be devoted to an analysis of
these relations, which describe the flow of energy
in a system containing a nonlinear reactance.

2. GENERAL ENERGY RELATIONS FOR NON-
LINEAR REACTIVE ELEMENTS

Nonlinear reactive elements are used most ex-
tensively as modulators in magnetic and dielectric
amplifiers. In this case voltages of two different
frequencies are applied to the nonlinear reactance
— the signal and the amplifier power supply. The
effect of amplification is to change, by means of
the input signal, the energy flowing into the load.
Let us consider the behavior of a nonlinear hyste-
resis-free capacitance, under the influence of two
emfs of different (in general, non-commensurate)
frequencies vy and vq.

Let the relationship between the charge q and
the voltage u across a nonlinear capacitance be
given by the single-valued function

u=¢(g). 2.1)

No additional assumptions are made concerning
the form of the nonlinearity of (2.1), extept for
absence of hysteresis or losses, i.e., except that
the element is considered to be purely reactive.
The charge in the nonlinear capacitance will vary
under the influence of the two periodic emfs with
frequencies vy and v;. In the steady state the
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change in charge will include, generally speaking,
various arbitrary combination frequencies muy,
+nv;, but no other frequencies will be contained
in the spectrum of charge oscillations. With this
consideration, we can represent the charge q for-
mally by means of the complex double Fourier
series in the combination frequencies mv; + ny

“+ oo “+wo

q)y= 20 D Q. el tmmrm,

M=—20 N=—00

2.2)

where x = wgt, wy=2mvy; y =wyt, and w; = 27v,.
Since q(t) is real, we have

. .
Qm, n = th, ~n

(the asterisk denotes complex conjugation).

If the frequencies vy, and v; are not commen-
surate, q(t) may be nonperiodic, but the series
(2.2) retains its meaning; this double series of the
single variable t will accordingly contain compo-
nents with non-commensurate frequencies.

Thus, the change in charge q(t) is represented
by a set of discrete harmonic oscillations with fre-
quencies mvy + nvy; the respective complex am-
plitude of each harmonic component will be Qm,n'
From this we can readily obtain the complex am-
plitude of the current at the corresponding fre-
quency

im,n =]. (mn)o+nw1) Qm, ns (2'3)
and the current i(t) will be expressed by an
analogous double Fourier series

d +co + oo .
i=gr= 3% Xl 0w (2.4

As in the case of the charge, we have

I =1 _n

Using (2.1), we can also represent the voltage
u(t) across the nonlinear capacitance by a double
Fourier series

u()y=9{glz(@), yO}=F (z, y), 2.5)
0= —*io Sjo Um) nej(mx+ny)’
Upon=U% _n. (2.6)

As already indicated, the double Fourier series
is derived formally. The determination of the co-
efficients may entail in general a tremendous
amount of calculation. As will be shown later, im-
portant conclusions can be drawn even without per-
forming any computation, i.e., without specifying
the type of function (2.1) and the type of network
in which the nonlinear reactance is used.

With the aid of known integral forms we can
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express formally all the coefficients of the fore-
going Fourier series. In particular, the coeffi-
cients of series (2.6) are

2n 2n

. 1 " .

U, n =y § dy } dz F (z, y)e=i metmy), (2.7)
Let us multiply (2.7) by ij}'}l,n and sum the re-
sultant terms over n and m from -~ to +%.
Then, interchanging the order of integration and
summation on the right side we obtain

hieg teo . .
2 2 ]mQ:n, nUm. n
M==—00 N=—00

2n 2r +oo

=-——(2:")'g S S dxF(x, y) 2 2 ]”lQm e-—) (mx+ny),

mMm=—00 N==—0C0 (2 8)
Differentiating (2.2) with respect to x we get
+o0 +

B S jmQ

m=—00 N=-—00

el (mz4ny) 2.9)
Making use of the equality of complex-conjugate
coefficients whose indices have opposite signs, we
can rewrite (2. 9) as

m=—00 n=—co

2.9')

The expression (2.9’).taken with a negative sign is
identical with the expression under the double sum
in the right half of (2.8). Using (2.3) and replacing
in it Qm,n by the complex conjugate after insert-
ing (2.8) in the left half, we obtain

+oo oo . 2n 2n
U, nlm. "=Lg dy \ dz 2 F (z, y).(2.10)
m=—-—co n=—00 0 0
The expression g%dx is equal to dq when y

= const. Taking this into account, we rewrite (2.10)
in the form
2n q (2w, ¥)
MUm nlm n

1
2 2 m'vo—i-nvl = —27% dy

M=—00 N=--00 )]

9(q)dg. (.11)

q(0, v
The limits of the second integral on the right half
of (2.11) show that the change in g is determined
by the change in x from 0 to 27 at constant y.

Interchanging the roles of x and y, we can
obtain relations analogous to (2.8) — (2.11), and,
in particular,

n[-/m nIm . 2% q (x, 2m)

< 1
S 3 Hedhaot(

M=+4-00 N==—00 0

?(q)dg, (2.12)
q(x, 0}

where the integration variable in the second integral
changes as y changes from 0 to 27 and X re-
mains constant.

KARASEV

We now introduce the energy characteristics of
the harmonic components of the current and volt-
age in the reactance. We denote by Ppy n a quan-
tity proportional to the average active power at the
frequency mygy + nvy,

Pm.n=U I:n n+U m'n P_m, (2.13)

—n?

and by Xm n a quantity proportional to the reac-
tive power at the same frequency

].Xm,n::[j;n. nj:n.n“U:n, "ljm.'n= —]‘X—m. _ne (2.14)

Then the complex power at the combined frequency
my, +nv; will be proportional to

=8%m _n  (2.15)

ms N

Sm,n =Pm.n+ij,n = ZUm, nd

Turning now to (2.11) and (2.12), we can readily
verify that the right halves contain only active
power components, (2.13), and do not contain the
reactive power (2.14) at all. Actually, if, for ex-
ample, we group the components in the double sum
of the left half of (2.11) in pairs with opposite signs
of m and take the complex conjugate of the coeffi-
cients with negative indices, we obtain

+oo oo P ' 2w q (2%, ¥)
mbm, n
2" Z mvo+nv1=ﬁg dy 9(9)dg. (2.117)
0 g(0, )
Analogously, we obtain from (2.12)
+o  +oo P ' 2‘1: g (x, 2r)
_Pmog
2 X mvg vy =z—n§ dz $(9)dg. (2.12%)
m=—co n=0 0 2@ 0

In Egs. (2.11 ) and (2.12’) the summation is over
different domains; Pmn represents the mean
active power in the nonlinear capacitance at fre-
quencies *[mvy +nv,]. To recast the left halves
of (2.11’) and (2.12’) in identical form, they must
be rewritten so that the denominators contain
only positive frequencies, and the indices of P
have the corresponding values with allowance for
relation (2.13). For example, the term of fre-
quency 3vy~ 2v; (if 3yy > 2vy) in (2.11’) has the
form

The term of the same frequency is written in (2.12")
as
2P+8n -2

2Pg, 40 __
3ve—2v; °

—3vgt+2vy

Since q is periodic both in x and in y in the
steady state, the uniqueness of (2.1) leads to the
vanishing of the integrals from 0 to 27 over x
and over y in the right halves of (2.11’) and (2.12).
In final form, the energy relations for a nonlinear
capacitance have the form

+o0  +oo
2 2

m=0 n=—-co

mP,,, mPp
mvo-}—nvo

0, (2.16)
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o ode
2 Dm0
m=—oo n=0

The vanishing of the right halves of (2.11’) and
(2.12’) means that on the average energy can be
neither accumulated nor consumed by a capacitance
in the steady state. Equations (2.16) and (2.17) es-
tablish the energy distribution over the combination
frequencies. The remarkable fact is that regard-
less of the type of nonlinearity and the type of en-
ergy-consuming device, the power distribution
over the combination frequencies depends on the
magnitudes and signs of the combination frequen-
cies. This is formally reminiscent of the quantum
energy relations, where the energy quantum is pro-
portional to the frequency.*

Since in the absence of hysteresis no energy can
be consumed in a nonlinear reactance, the power
summed over all frequencies should vanish. This
result is obtained by multiplying (2.16) by v,
2.17) by vy, and adding.

Equations (2.16) and (2.17) should hold also for
linear reactances, i.e., for constant C and L.
There is no modulation in a fixed capacitance, nor
are there combination frequencies. Only one term,
Py,0/vy =0 remains in Eq. (2.16), while the only
term remaining in (2.17) is Py ;/vy =0, as should
be.

We have assumed from the very outset that two
sources, with frequencies vy and vy, are con-
nected to the device with the reactive nonlinearity.
Consequently, energy can be fed to this device only
from these sources, and all the Pm n should be
negative, with the exception of Py, and Py ,,
which represent the power flowing from the sources
to the device. Since (2.16) contains Py, and does
not contain Py ; (m =0), and the reverse holds for
(2.17), these two equations are resolved for the cor-
responding generators in terms of sideband-fre-
quency powers.

Equations (2.16) and (2.17) make it possible,
without investigating the network in detail, to an-
swer two important questions concerning the op-
eration of a device with reactive nonlinearity: they
furnish an estimate of the maximum power gain
and an estimate of the stability.

To illustrate the use of Egs. (2.16) and (2.17),
let us consider a simple but important case, of a
modulator or demodulator with only one combina-
tion frequency vy + vy (or vy—vy). We assume
the remaining combination frequencies to be sup-
pressed by ideal lossless filters.

Thus, let a signal frequency v»; and a carrier
frequency vy be applied to a nonlinear capacitance
from two generators. Let furthermore v; > vy,

*See M, T. Weiss, Proc. IRE, 45, No. 7, 1012 (1957).

(2.17)
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We consider first the so-called non-inverted case
of modulation, when the combination frequency is
vy + v ¥

In the non-inverted case (2.16) and (2.17) yield:

Py Py, _
e =0 (2.18)
PO.] P . -
R @.19)

In the modulator circuit, the energy flows from the
generator at the carrier frequency vy; consequently,
Py,¢ is positive. The power flowing into the load is
at the combination frequency vy + vy; this power
Py flowing from the nonlinear reactance to the
load, will be considered negative. Equation (2.18)
shows that the energy flow into the load exceeds
somewhat the flow from the carrier generator

p L1— P 1,0

Vot Vi
Vo
Some of the signal-generator energy is also used
to control the modulator. It follows from (2.19)
that Py ; is positive. The ratio of the output power
—Py,1 to the signal input power, P, i, determines
the power gain of the non-inverted modulator
Py 1 Vo-tV1
G,= — o= Lvl—— .
A non-inverted modulator is always stable. The
gain G, increases with increasing carrier fre-
quency (relative to the signal frequency). If, to
the contrary, a modulated signal with combination
frequency vy + vy is applied to the reactive non-
linearity together with the carrier, we obtain a de-
modulator. The positive power will be Py ;, and
the other two will be negative. The gain of the
demodulator will be the reciprocal of (2.20), i.e.,
less than unity. The energy of the modulated sig-
nal will be partially directed towards the load and
will flow for the most part to the carrier generator.
If the modulated-signal source is sufficiently pow-
erful, the circuit may become unstable because of
the negative resistance introduced by the demodu-
lator in the output of the carrier generator. The
operation of a non-inverted modulator or demodu-
lator is illustrated in Fig. 11.

As indicated in the introduction, reference 10
considered a two-loop electromechanical circuit,
consisting of an electric resonant network and a
parametric motor. This circuit was fed with a
sinusoidal voltage of frequency w, and the net-
work was tuned to a frequency close to w,, while
the inductance in the parametric motor was varied
at a frequency wp = w—wyp (the notation is that

(2.20)

*¥The total modulation is called non-inverted because the
frequency band of the anharmonic modulating oscillation is
merely shifted towards the higher frequencies, while in the
case of differential modulation this band is also mirror-inverted.
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Modulated oscillation

- FIG. 11. Illustration of the
gty | i afEiEE g operation of a non-inverting
modulator and demodulator.

Carrier The two lower levels 1, and v,
are in balance with the upper

Signal level v, + v,.

Spectrum frequencies

Intensity of the spectrum

of reference 10). Thus, the energy was fed to this
parametric network at a frequency w = wp + wy,
and was consumed in part at a frequency wp in
the motor (wp is a multiple of the angular veloc-
ity of the motor) and in part at a frequency w,

in the resonant circuit. By varying the natural
frequency wp of the resonant circuit, the speed
of the parametric motor can be varied over a very
wide range, from a very low value up to w. In our
terms, this circuit is similar to a demodulator; w
corresponds to vy + vy, the frequency w, of the
resonant circuit corresponds to vy, and the pa-
rameter frequency wp corresponds to v,.

Let us consider now an inverting modulator, in
which ideal filters are used to suppress all the
combination frequencies, with the exception of the
differential frequency vy -v;. Equations (2.16)
and (2.17) yield in this case

Pl, 0 Pl. =1
Vo Vo— V)

=0, (2.21)

Po,1 P11 =0
vy Vo— vy

2.22)

It follows from (2.21) that not all the energy
supplied by the carrier generator flows into the
load
Vo—Vq

Vo

-Pl-—1= +P1,o

<P, o

Equation (2.22) shows that the signal power Py,
and the modulated output power Py _; have the
same sign, i.e., no signal power is needed for
control of the modulator in this case but, to the
contrary, the modulator adds to the signal-power
frequency. The inverting modulator introduces a
negative resistance to the output circuit of the.sig-
nal generator and is thus potentially subject to in-
stability. The gain, according to (2.2) is negative:

L1 (2.23)

G = — _ M—Ws
- Py 1 Vo

< 0.

The input signal circuit always produces losses.
These losses can be offset to a greater or lesser
degree by the power fed to the input circuit. If the
energy flowing from the nonlinear reactance to the
signal circuit exceeds the loss in the circuits, sta-

bility is lost and the modulator becomes self-oscil-
lating. The inverting modulator does not operate in
the ordinary manner; the only way that carrier power
can be produced is by applying both the modulated
oscillation and the signal itself to the demodulator.
The operation of the inverting modulator is illus-
trated in Fig. 12.

T Carrier
FIG. 12. Illustration of a
the operation of an invert- 3 " -y’%
ing modulator., The two § Modulated oscillation
levels, v, and v, — v, are g
in balance with the upper P
level v,. g
g v
w

Spectrum intensity

In an ordinary magnetic amplifier both the upper
and the lower sideband frequencies are retained,
and therefore the energy relations are more com-
plicated. But it is clear from the foregoing analy-
sis that the magnetic amplifier can lose stability
and become excited at a certain low frequency, at
which the power delivered to the signal circuit
through the lower sideband of the modulated oscil-
lations in the output circuit will exceed the losses.
Obviously, such a coincidence of circumstances
gave rise to the self-oscillation of the magnetic
modulator described in reference 12.

The following basic question suggests itself:
what limits the amplitude of the self-oscillations
produced when the modulator becomes unstable ?
We imposed no limitations on the signal amplitude
or on the type of the reactive nonlinearity in the
derivation of the relations (2.16) and (2.17). At the
same time, the energy relations do not contain the
type of nonlinearity in explicit form. From the
nature of the analysis of the operation of a non-
linear reactance, carried out in this section, it
follows that the nonlinearity of the reactance is
considered only as a “generator” of combination
frequencies. The greater the nonlinearity, the
easier it is to launch the combination-frequency
oscillations, but since the reactance involves no
loss, the power balance over all the combination
frequencies will be strictly maintained. In the
self-excitation of an inverting modulator the situ-
ation is the following. At first the oscillations
build up and their intensity increases simultane-
ously in the signal and output circuits. The car-
rier generator develops in this case more and
more power. Assuming that the circuit contains
only one reactive nonlinearity, the oscillations
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are limited by the internal resistance of the car-
rier generator. In fact, an increase in intensity
of the oscillation at the frequencies v; and vy -,
is accompanied by an increase in the power drawn
from the carrier generator at vy, and this is
equivalent to a reduction in the load resistance of
this generator. In final analysis, the power de-
livered to the nonlinear reactance from the carrier
generator is limited by internal resistance of this
generator. Assuming that the equivalent load re-
sistance Req, seen by the carrier generator di-
minishes in proportion to the summary intensities
of the oscillations at »v; and vy—vy, i.e.,
’ﬁj;NlPoJ'*'Pl 1l
and considering that

| Po, 1+ Py, _1|=Py,

then the intensity of the steady-state oscillations
can be obtained from the graph shown in Fig. 13.
Generally speaking, the establishment of the steady
state oscillations is influenced by the losses in the
nonlinear reactance, which we do not take into ac-
count and which depend in a complex manner on
the frequency and intensity of the oscillations.
These losses may modify significantly the mech-
anism proposed here for the limitation self-oscil-
lations.

1021+ P1)

Pgg [-————5
Pro

// R // RL
FIG. 13. Establishment of self-oscillations in a self-ex-
cited inverting modulator: P, , + P, ., — power of generated
self-oscillations; P, , — power drawn from the carrier genera-
tor; Pyq — steady-state power; R; and Ry, — internal resist-
ance of the carrier generator and equivalent resistance of its
load.

Attention should be called to still another fact
about the general power relations. When either
the nonlinearity of the reactive element or the
intensity of the oscillations is large, complete
suppression of all the combination frequencies,
with the exception of a few chosen ones (say with
the exception of vy and vy-w,), is possible,
strictly speaking, only with the aid of infinitesi-
mally narrow filters. We readily see that at suf-
ficiently large values of m and n, the difference
between v, and |mv;+nvy;| or between vj—v,
and |my; +nv;| can become sufficiently small,

provided the approximate equality

nkl v
m T v
or
ntl v
mE1— v

is satisfied. If the filters have finite bandwidths,
the amplitudes of these combination frequencies of
higher numbers will not be suppressed and a con~
siderable redistribution of the power will result.
Since high nonlinearity of the reactive element or
high intensity of oscillation makes the amplitude
of the higher combination frequencies commensu-
rate with the amplitudes of v; or vy;-wv;, the in-
verting modulator may become inoperative. The
same applies to the non-inverting modulator.

Since an infinitesimally narrow filter bandwidth
is not realizable physically, we conclude that the
foregoing inverting and non-inverting modulators
can be realized physically only under an additional
limitation, not mentioned in reference 11. This
limitation presupposes that the nonlinear reactive
element or oscillations are sufficiently small, such
that the intensity of the higher combination frequen-
cies that enter in the pass band of the reactive fil-
ters is negligibly small.

It was indicated at the end of Sec. 1 that the im~
possibility of converting ac into de¢ (or vice versa)
by means of a reactive nonlinearity agrees with the
general power equations of ‘Manly and Rowe.

Actually, let us assume that one of the combina-
tion frequencies, generated by the reactive nonlin-
earity, vanishes.

myv, +nv, =0.

The corresponding power must also vanish
Pml. ny = 0,

for in the opposite case the term

5
4 mi, m

Ve
would become infinite, a physical impossibility.

To conclude this section let us also dwell briefly
on the influence of hysteresis.!! Hysteresis intro-
duces an irreversibility in the relation between the
charge and voltage of a nonlinear capacitor. This
makes the integrals in the right halves of (2.11’)
and (2.12’) no longer equal to zero. In the general
case, the power equations become exceedingly more
complicated. But there is one particular case when
the equations remain simple, even with hysteresis.
This is when the carrier is at a high level and the
signal at low level. It should be noted that a high
carrier level can occur when little power is drawn
at the carrier frequency, i.e., at low PI,O' This
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level is set by the voltage applied by the carrier
generator, and P; , depends on the control signal.

Actually, in the presence of hysteresis, the vari-
ation charge vs. voltage curve is complicated and
in general not closed (if vy and v; are not com-
mensurate ). But if the intensity of the carrier is
high, then the hysteresis loop will be determined
essentially by the carrier, and the other oscilla-
tions will merely cause slight variations, barely
affecting the energy associated with the loop. It
is permissible to consider the loop to be approxi-
mately double-valued and to carry out the integra-
tion in the right halves of (2.11’) and (2.12/).

We choose the lower part of the hysteresis
curve for increasing charge and the upper one for
decreasing charge (Fig. 14). Then the right half
of the (2.11’) becomes

h=<§q>(q)dq,

i.e., the area inside the hysteresis loop or the en-
ergy lost to hysteresis per cycle of carrier. The
power H lost to hysteresis will be correspond-

ingly

H = hv,. (2.24)

Thus, Eq. (2.11°), for hysteresis in the form of
a double-valued loop, yields the power equation
_‘_Zoo = mE H

mvo-Fnvy | ¥
m=0 n=—oo

In the right half of (2.12’) the function ¢(q) is in-
tegrated along the curve connected with the varia-
tion of y, i.e., with the frequency v; of the sig-
nal. Under the simplifications made here, the
function will be periodic, and consequently, its in-
tegral will still vanish, as in the absence of hyste-
resis. Equation (2.17) therefore remains unchanged
even if hysteresis is taken into account.

@2.16")

gl

/[
7

It is easy to see that H/vy; can be moved to the
left of (2.16’) and combined with the component
Py into a term of the form

P o—H

Vo

FIG. 14. Allowance for hys-
teresis in the power equations.

Consequently, the change produced by allowance
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for hysteresis reduces to substracting the power
loss due to hysteresis from the power drawn from
the generator. We repeat: we have considered the
effect of hysteresis under greatly simplifying as-
sumptions.

3. ANALYSIS OF THE REACTIVE MODULATOR
BY THE SMALL-SIGNAL METHOD L

The general power relations considered in Sec.
2 do not yield detailed information on devices with
nonlinear reactances. For a more detailed analy~-
sis it is necessary to make the problem more spe-
cific. Calculation of nonlinear circuits without
simplifying assumptions is complicated. In the
case of a reactive modulator that does not become
unstable, the problem can be simplified by lineari-
zation. Reactive modulators were analyzed by
Rowe,13 Bloom and Cha.ng,14 Heffner and Wide,1°
and by Leenov,!® who used small-signal lineariza~-
tion. We shall employ a similar analysis with
certain modifications, which are of no principal
significance, but which help to explain better, from
our point of view, the operation of a two-loop reac-
tive modulator.

Assume that the charge q and the voltage u
are related by the singled-valued function

q=1f(a). (3.1)

Let furthermore only a voltage u,, from a local
carrier generator of frequency v;, be applied to
the capacitor in the absence of a signal. In this
case the alternating charge q, will be, in accord-
ance with (3.1),

9o = [ (u,).

The spectrum of the oscillations of alternating
charge qq, like those of the voltage uy, contain
in the absence of a signal the fundamental fre-
quency vy and its harmonics. We assume, further,
that the signal voltage Ou across the nonlinear
reactance is small compared with uy, and the
variation of the charge is likewise small. The
charge variation can then be related to the voltage
variation by a linear equation (using the concept
of differential capacitance), as has been done at
the start of Sec. 1

8q = C;(u,) bu, 3.2)

where Cj(uy) = df(uy)/du is a capacitance, inde-
pendent of the magnitude of the signal, but vari-
able in time and periodic in the fundamental fre-
quency vy. The time variation of Cj is deter-
mined by the character of the nonlinearity and by
the amplitude and waveform of the oscillations
from the local generator. The remaining calcula-
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FIG. 15. Diagram of two-loop reactive modulator. s = o 1T I
T T

tions will be carried out in the linear treatment
for a system with a variable, pulsating capacitance.
If we are not interested in calculating the non-
linear distortion of the reactive modulator, we can
simplify the problem immediately by dispensing
with the local generator. We assume that the local
generator modulates the capacitance C in a very
simple manner at a frequency wy = 2wy, without
harmonics:

C(t)=Cy(1+mcoswyt). (3.3)

Let us consider now the two-loop reactive modu-
lator shown in Fig. 15. The signal frequency vg
will be considered to differ greatly from the car-
rier frequency v;. The first resonant circuit with
conductance g, inductance L;, and trimming
capacitor Cjt serves to suppress all frequencies
with the exception of vg, while the second reso-
nant circuit, gyc, Ly and Cy leaves only one
of the combination frequencies, vy + vg or vy—vg.
The loops are coupled by the nonlinear capacitance
C(t) which pulsates as in (3.3), and the losses are
represented by the conductance g. We assume that
both loops have sufficient Q@ to make them practic-
ally equivalent to a short circuit at all combination
frequencies except the resonant ones.

Were the capacitance C of Fig. 15 constant, the
analysis of the circuit would reduce to the solu-
tion of a system of two linear second-order equa-
tions with constant coefficients. The general solu-
tion of this system with specified initial conditions
would determine the entire transient process, while
the particular solution in response to a sinusoidal
signal would determine only the steady-state har-
monics. The steady state process could be evalu-
ated very simply by the impedance method. But
since the capacitance C pulsates, analysis of the
circuit requires a solution of equations with vari-
able coefficients; if the modulation is as in Eq. (3.3),
a Mathieu type equation must be solved. The gen-
eral solution again gives the complete picture, in-
cluding the transients in the loops, while the par-
ticular solution in response to a sinusoidal signal
gives only the steady-state process. Here, too,
the steady state can be determined by the imped-
ance method, with slight modifications. Since the
system remains linear, the principle of superpo-
sition can still be employed.

The complete solution of the differential equa-
tions with variable coefficients for the circuit of
Fig. 15 involves no special difficulties. In particu-
lar, a system of two linear equations with variable
coefficients can be reduced by operational calculus*
to a single equation of the same order, but of higher
degree. In the present article however, we do not
consider the transients and confine ourselves only
to the steady state, which is evaluated much more
simply.

Since the principle of superposition holds in our
system we can solve the problem by the ordinary
impedance method by merely finding the current
in the pulsating capacitance upon application of a
sinusoidal voltage

u(t)=U cos (wt+¢)

with arbitrary frequency w and phase ¢.

To use the complex-amplitude method in the
calculations, we replace (3.4) by the complex
function

(3.4)

u="Ue™t,

3.5)

where U =Uel®, and (3.3) is transformed identic-
cally to

Co(l+meoso)=C,+ %mCoeij’ —1—% mCye~o0t, (3.6)

The initial sinusoidal voltage (3.4) corresponds to
the real part of (3.5)

u(t)=U cos (ot +¢) = Re u. (3.7)

The charge q on a linear capacitance C(t) is
q=C-u

and consequently, the current i(t) through the
capacitance will re

=% _2(c.u). (3.8)

If we insert the complex functions (3.5) and (3.6)

into the right half of (3.8), we obtain on the left hand
the complex function i

f= jOC,U et 4] (0 -+ 0,) 5 mC, Ui oo

10— o) %—mCDUéj(‘”—wO)l- (3.9)

*See, for example, Van der Pol and Bremmer, Operational
Calculus, Cambridge University Press, 1950, Chapter X
(Russian translation, M., 1952).
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The real part of the complex function i yields for
the current i(t)

i(t)=Rei= — wCyU sin (ot + ¢)
— (0 + 0) 5 mC,U sin [(@,+0) t + 9]

—(wo—m)%mCoU sin [(0, — 0) t — 9], (3.10)
This can be readily verified by calculating i(t)
directly from (3.3) and (3.4). We conclude hence
that the difference between a capacitance C(t),
pulsating sinusoidally with frequency w, and depth
of modulation m, and a fixed capacitance C; is
that a sinusoidal voltage of frequency w produces,
in addition to a current of fundamental frequency w,
also sinusoidal currents at combination frequencies
W+ wy and w-—wy. All three currents can be cal-
culated by the complex-impedance (or complex ad-
mittance ) method, assuming the admittances of the
capacitance to be, for each component of the triplet,

. . 1
foCy, jlo+e,)5mC, and j(o—w)5mC, (3.11)
and assuming the voltage to be represented by

[']ejmt, U"ej((u+luo)t and Uej(u)-u)o)l. (3‘12)

The appearance of the combination frequencies in
a pulsating capacitance is an indication of its modu-
lating properties.

From an examination of the effect of a pulsating
capacitance it is clear only its variable part mC,
X cos wyt produces the combination frequencies,
while the fixed C; merely combines with the trim-
ming capacitances Cyt and Cyt (Fig. 15).

If we denote

Clt +Co=cly Clt +C0=Cz, 1

3.13
Bst8rc+8=81 Eat+8Lt8 =4 | ( )
and

mCy = AC, (3.14)

then the circuit of Fig. 15 can be replaced by that
of Fig. 16, and the coupling current will contain
only two amplitudes at the combination frequencies.
The reason that the fixed portions C; of the coup-

ling capacitor and the conductance g are so readily

calculated is that the loops are fully uncoupled in
frequency: the second loop is a short circuit at the
frequency vg, and the first one is a short circuit
at the combination frequency to which the second
loop is tuned, i.e., vy +vg or vy—vg. Since the
coupling-capacitor losses depend on the frequency,
they are represented by g in the first loop and g’
in the second loop.

1. Non-Inverting Modulator with Summary Com-
bination Frequency w,; = wq + wy

M. D. KARASEYV
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FIG. 16. Reduced equivalent circuit of two-loop reactive
modulator.

The signal

is= Jgcos (04 + pg) = Re [J'Se"“’a' (3.15)

is fed from a current generator with internal con-
ductance gg.

We denote the admittance of the first and second
loops respectively by

Y . 1 ,
Yi(0)=g+/ (00— ) =8+ X,

i \ (3.16)
Y, (0)=g, "’f(wcz—m‘;):gz'*'/xz:
and their resonant frequencies by
1
= = =27tVy = ——— 3.17
o, = 2mv, TR W, = 2nv, = 8.17)

Let the signal frequency wg = 27vg be close to
wq. Then the combination frequency wy + wg will
be close to wp = wy + wy. The first loop will sepa-
rate the sinusoidal voltage at the signal frequency

u, () = Re [U,€'%"], (3.18)

and the second loop the voltage at the summary
combination frequency wgy + wg

1, () = Re [ ,¢'“07"e)], (3.19)

The current Ai(t) through the pulsating capaci-
tance AC cos wyt can be readily found in accord-
ance with the rule developed above. Its value is

Ai(t)=Re [ — ja)s—%- ACT &%

+1 (00 095 ACT 1e’"‘”°‘“"s"] : (3.20)

We shall henceforth omit the symbol Re, agreeing,
as is usually done in calculations by the impedance
method, to take only the real part of the final com-

plex expression.
Knowing the amplitudes of the coupling current

. \ 1 . . . .
log= —Jos5 ACU;,  logroy=7(0y+0g) Uy, (3.20)

we can readily find the amplitudes of all the cur-
rents and voltages in the circuit of Fig. 16, ex-
pressed in terms of the amplitude of the signal
current Jg. The voltages in the first and second
loop are of the form

}l’z (0o} wg)

U‘ =7 . 1 2
Y1 (0 Va(@rtog)+( 7 AC ) wg(0rtag)

S?

: (3.21)

_ i (0a+04) 3 AC :

A— T i
V1(09) V2 @yt ag+( 5 AC ) 0s (00t 0g)
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Expressions (3.21) are analogous to the formulas
for the voltages produced in ordinary coupled cir-
cuits by an applied sinusoidal voltage. The differ-
ence lies in that the loop admittances S?l(ws) and
Yy(wy + wg) are functions of different frequencies;
in analogy with ordinary coupled circuits, we intro-
duce the coupling admittance

Xeoup= % AC V“’S(‘Do + o) (3.22)

and denote

X coup Xcoup

- Y2 (o 00g) - Y, (g4 @g)

Y.2+ = Y2+e—jq2: (3.23)

where ¢, =tan"1(X,/g, ). We then obtain for the

voltage in the first loop the following expression
) .

Y1 (0g)+Y2, Y5 (00+ o)

and for the ratios of U, to U; (of different fre-
quencies!) we have

U, = Js, " (3.24)

(3.25)

Relation (3.24) shows that the impedance intro-
duced into the first (input) loop is determined in
the same manner as the impedance introduced in
ordinary coupled networks, and that the equivalent
admittance of the first loop has the form

Yi eq = {g,+8.} '}'j(Xx '_stXz)v

where g, = y%,,gz is the active conductance intro-
duced into the first loop. Since y§+ is a positive
quantity, the frequency conversion is accompanied
by the insertion of positive resistance, i.e., by flow
of energy from the signal source to the modulator.
Consequently, the non-inverting modulator is al-
ways stable.

Let us find the power Pyg fed from the signal
source to the modulator (disregarding losses in
the conductance gy). In accordance with (3.20),
(3.23), (3.24), (3.25), and (3.26) we have

/N
Py =1l Uycos (I, Up)=—5—|J .

1 eq

(3.26)

(3.27)

g

The power waws fed to g, from the reactive
converter is considered negative, as agreed upon

in Sec. 2. Its value is
® @ 8+ 7o
- Puso+ms= [u)o-}—u)sUz COs @, = 707:)}_‘37,“ [ J’Si“ (3.28)
s | Yl eq |
The power gain G, is
- P + .
e NTs Do Os
G.=—7p os (3.29)
S

in exact agreement with (2.20).
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However, the power fed to g, flows only par-
tially to the load g,1,; the corresponding fraction
is gy1,/8;. In exactly the same manner, part of the
power from the signal generator is consumed non-
productively in g;c and g. Considering further-
more that the maximum power that the signal gen-
erator can deliver to the modulator is

1|JsP?

(-Pu)s) max == % (3.30)

gs
and under perfect matching at that, we can deter-

mine the actual power gain K, of the non-inverting
modulator, with allowance for losses and mismatch

K = —PL  _ 9tos Ys'g. gL_ o 488 &L
* (Pws)max ©g |Y1 eq I? &2 +]Y1eq 2 g; 51)
3.31

Using (3.31) we can investigate the dependence of
the power gain K, on the frequency and on the
parameters of the modulator circuit.

Let us examine K, under small detuning, i.e.,
let us assume that

Ao = 05— o, (3.32)
satisfies the inequalities
Aw Ao |
' 2 e, |42 <t (3.33)

In this case we can introduce the approximate re-
lations

Yy (og) 22g, (1+Q,-28,),

Y, (@4 0s) 22 g, (14 0, 28,), (3.34)
where
= @b @0y
Ql— &1 r Qz— s N
Ao Aw
gl:—al—7 §g= @y .
The approximate value of y%\, is
2 a2 (B U+E) oo 1
Ve SV TGy STy 639

where

1 2
<'TZ AC> ®;0,
g‘l

LI
Yoo =

The resistance introduced into the first loop is
given by the approximate relation

9 1
g+=Y§+g2%gom )

(3.36)
where

&= Yzogz'
Using (3.34) — (3.36) we can represent K,, for
small detuning, by

o
s2L
4gsgo ==

K =G 52 —
¢ 1—7Qs- 28, r ’

. q (3.37)
¢ “F(Qe2Ey)®

(1 Qu 280 e
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If we neglect the losses in gje, g, gy, and g’

we obtain in (3.37) gg=g; and g1, =g;. In

coupled networks at multiple resonance, the imagi-
nary part of Y, eq = &1 *+ 8, I (&1Q 28 — 8,Q28,)
vanishes, i.e.,

(8,0,-28,—g,0,- 2E,)=0.

In complex resonance, furthermore, the coupling
between the networks should be optimal,

X conp= (Xeouplope=Vs |/ B ~ [1+(0 261V v, 8-

(3.38)

(3.39)
i.e.,
8o = &1- (3.40)
Inserting (3.38) and {(3.40) into (3.37) we get
([(+)max == Gw

i.e., in a reactive non-inverting modulator, as in
an ordinary coupled network, maximum power is
delivered to the second loop at optimum coupling
and complex resonance. In this case the input and
the output are fully matched. But relation (3.38)
can be realized in an infinite number of manners;
at various values of &, and £, in (3.38), and it
follows hence that the matching of the modulator
loops, producing a maximum gain K, = G,, leaves
a degree of freedom for the variation of the reac-
tive input and output elements. This degree of
freedom can be used to select the optimum band-
width of the modulator. Let us assume that

£1=8:=80 Ym=1 (3.41)

Then the complex resonance becomes complete
resonance and

C C
Q.& =g_: Aw, ngzzg—zAm-

If we consider that C; = Cyt + Cy = Cy = Cyt + Cy,
we can introduce a generalized detuning x, equal to

CCs
2=2)/ 2% a0~ 0, 2%, o~ 0% (3.42)
Inserting (3.41) and (3.42) in (3.37) we get
P
2
K=6 —* ¢ 1. (3.43)
thirt o | 1*(175)

If we specify a 3-db reduction in gain, we find the
corresponding bandwidth, by putting Ky =Y in
(3.43)

c=c=+V2, (3.44)

i.e.,

280
@y

(3.45)

51 2
—Vz@3
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We see that the bandwidth of a non-inverting modu-
lator is V2 times wider than that of the corre-
sponding single-loop network. In a system of two
identical optimally-coupled networks the bandwidth
is also V2 times wider than that of each loop; the
analogy becomes complete for the relative band-
width at the geometric mean frequency

280 5 1 ,
Voo, ' VoG @49
Under total resonance the coupling coefficient k of
the loops of a non~inverting modulator equals the
reciprocal of the geometric mean of the Q’s of the
two loops

%AC’ Vo0, "

ke——= .
V‘chl 0,0, VQle

(3.46)

For the absolute value of the band with 2Aw we
obtain the following expression
1

2 : i
Voo V200,=k} 20,0, .

As is known, in a system of two coupled identical
loops the maximum width at the 3-db level is ob-
tained at a coupling greater than optimal, namely
at

200 = (3.47)

k=(1+V2) 5.

Here the resonance curve acquires two humps, the
reduction of the amplitude at the center of the band
reaches 3 db, and the relative bandwidth is

200 5 S T5 1 1
- =2/ 142 =315,

i.e., approximately three times greater than the
bandwidth of the single loop. The same situation
occurs also for the bandwidth of the reactive non-
inverting modulator considered here. Putting

0

L ac
b=t
V' Cie,

1
Vo’

=(1+

V2)
we obtain for the bandwidth
200 5 1
=2/ 14+ V2 e .
Vﬁ)x‘”z l/ + VQle

Thus, we arrive at the conclusion that the frequency
characteristic of the investigated non-inverting mod-
ulator is analogous to the frequency characteristic
of two identical coupled networks.

Let us examine a numerical example. Assume
a signal frequency vg = 100 Mcs (Ag =3m), a
summary frequency v, + vg = 20,000 Mcs (A,
=1.5 cm), and a carrier frequency vy =19,900
Mes.
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The gain at the center of the band will be

G, =200, 10 logG,= 423 db.
The bandwidth is determined by the relation

2BV =2000 1 Mes; (28%) — 107%72 .
We see that even at a very small depth of modula-
tion, when AC/vVCC, amounts to merely 1%, the
bandwidth may reach 10 Mcs.

It must be borne in mind, however, that the cal-
culation results may be substantially modified by
the losses g and g’ of the coupling capacitor.
Let us find an expression for K, at exact tuning
(¢ =0) with allowance for g and g’ (if the two
loops have high Q, gic and gy can be disre-
garded). From (3.37) we obtain

1 \\2
4gs.ggL(? AC /} ;0

e
(x.) ' “Eh) e
(§s18) (g:Lﬁ‘g')%—(T L\C> ﬂ’lﬁ):J

1,507 [ON [

Assuming g, g’, and AC to be specified by the
power pumping device, we can determine the maxi-
mum value of K, by selecting gg and g,1,. Cal-
culation yields

1
K)oy = —2 . .
( +>max (01 (tan 6p‘-‘[‘ V 1—{~tan2 6p)z (3 4:8)
In Eq. (3.48),
tan 8, = P
b ]/%AcméAcwz (3.49)

can be called the parametric tangent of the loss
angle, which characterizes the energy losses in a
coupling capacitor with pulsating capacitance. When
tan 6p » 1 we have

- ¢ Wa
(A +) max == mmp

and (K, )nax =1, i.e., amplification is impossible
if tan® 6p = 0.25 (wy /wy).

2. Inverting Modulator with Differential Combina-
tion Frequency wy = wy— wy

The voltage drops across the resonant circuits
of the modulator are

uy (1) = U "', wy ()= Ugcj(‘“’()" ")t

The coupling current through the pulsating capaci-
tance is

Ai (1) = jog5 ACU 775" — j (0, — wg) o ACT e~/ 1.

The complex coupling-current amplitudes of inter-
est to us are, respectively

ol . 1 * . . 1 -
lo = — JOs ACUT; Lomn =1 (0, — o) - ACUY. (3.50)
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From calculations analogous to those made for
the non-inverting modulator we get

U, -, (3.51)
Yl eq
Uro j _Heew _ g/ mmos(3.59)
U, Y: (0p— 0g) s
. 1 h
Yy (0g)=g,+7 (‘Oscl— wsL1> ’
. , 1
Y, (@ — 0g) =g, + ] [(mrms> C:— 5 —wsm] ’
* Xeous Xeouy; Re Y
V=2 E 0%, Yo =05 gy =tan~i =t %(3'53)
Y; 2 Im Y,

Yi eg = Y1 (0s) — J yi- I?' Yz (0, — )
=g — & +jIm [Yl (ws) — Yg_)}z (y— 0g)],

a2
§-=Y3-8e- J

The gain G_ is found to be

Wy — Ws
G.= —L0—0s

Og

(3.54)

in exact accordance with (2.23). The inverting
modulator is actually found to be potentially un-~
stable, for, as follows from (3.53), the conductance
g._ introduced in the first loop enters into qu with
a negative sign. The system loses stability when

g{ —g_ = 0. Introducing K_, the gain of the entire
inverting modulator, analogous to K, of the non-
inverting modulator [see (3.31)], we obtain

—4%g- HaL

K_ =G — )
| Y, eq 2 82

(3.55)

where Y1 eq and g_ are determined from (3.53).
Let us analyze K_ at small detunings and under
all the other simplifications introduced in the
analysis of the non-inverting modulator. In this
case it is necessary to replace everywhere the
summary frequency w; + wg of the non-inverting
modulator by the differential frequency w)—wg
of the inverting modulator. We obtain

v . ¢ o,C Aw Wy -— Wy |
)1‘*6’1(1’%‘]01'251) 01:‘,1,—1.’ E]z'(;)“:—(, :
51 1 "
‘- . [OXON
Yo~ g, (1-70y28), Q==+,
g _ Ao oy —(0y—0s)  os—o,
2w, Wa T oo !
1§ 1<, [&I<¢l; &1=6+g Ci=Cy
o3/ CiCq o Y o .
x:.).l/—g:g; Ao~ Q-28, =~ 0, 2%,
2

i i,/éAC W, 0,
12 . sl N .
V=V oy Yig = PE ;
Yieq : Y30 . 1 2 2
—lglﬂzi_}‘]x_ﬁ%r’ g~:gom’ 8o = Y20%s = Yz081+
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Inserting into (3.55) the values of Yjeq and g.
from (3.56), we obtain the dependence of the gain
K_ on the detuning x and on the quantity y%o,
which characterizes the parametric coupling of
the loops

—4 Y3 gsgeL

1 2 2
K =G —t= Vo P
e
gs§2L
_ @g—0g 4Y%°—% 1
- Ws (1—v3)? 1+v% 1
L e R e N
(3.57)
At zero detuning (x = 0) the gain K_ becomes
© gsg22L sz
. g0 Y50 ’
K- x=0 Wy (1—v3)* ° (3.57")

Since the resistance introduced into the first loop
is negative, the input can no longer be matched to
the output, as in the non-inverting modulator; K_
can be made as large as desired by reducing the

losses in the input circuit.

When
Yoo > 1

the inverting modulator becomes unstable. But
even when 73, is less than but sufficiently close
to 1, the instability in the inverting modulator in-
creases rapidly. Instability of a radio device is
frequently characterized by the sensitivity S of
the device to small changes of some particular
parameter, defined as the relative change in the
gain divided by the relative change in the parameter
causing the change. It is clear that for good sta-
bility a device should have a low sensitivity S. At
the center of the band, when the input and the out-
put are matched, the gain (K, = G,) of the non-
inverting modulator is independent of either the
active conductance g; =g, =g, or of the ampli-
tude of the capacitance pulsations AC. Therefore

_ 0K, g
0 ago K+

oK, AC

S S+Ac=WK—+=O.

=0; (3.58)
The sensitivity of an inverting modulator, S_, does
not vanish. In the center of the band, depending on
the conductance g; =g, in the amplitude of the
capacitance pulsations AC, it has the form

S — 6K-— gl

0 dg K-

1—v3’

As v%, — 1, the instability of the inverting modu-
lator is characterized by a sensitivity that ap-
proaches infinity.

The bandwidth of the inverting modulator at the
3-db level is determined by setting the last factor

KARASEYV

of (3.57) equal to Y,

1
. (3.60)
1+2(1+v%o w2t (1—1

24
1—v5)? vio)?

1_
=

Let us consider the bandwidth as 'y%o approaches
unity. Solution of (3.60) yields in this case

1
T = i'z‘(i—'yzo)
or

~ - 1 AC
2A({)=.‘__
2V G0,

for (1 —v% < 1).

V")1m2 (I —vyi) =k lemz (1 —v3)

(3.61)

The expression (3.61) differs from (3.47) for the
non-inverting modulator by the factor 1-—+v},. As
can be seen from an examination of (3.57) and (3.61),
when an increase in the parametric coupling in-
creases the gain without limit, the bandwidth of
the parametric amplifier tends to zero. The prod-
uct of the voltage gain by the bandwidth is a con-
stant quantity
/'_ o 'AC
VK_-2A0=u0, Voo,
Let us examine by way of an example the char-
acteristics of an inverting modulator for the same
signal frequencies in the preceding example and,
for various values of v}, assuming ggg,1,/g} = 1:

for (1—vy2)« 1.

vy =100 Mes, vy = 20,000 Mes, vy = 21,100 Mecs.

Gain, Ba:‘:;
' width, Sensitiv-
2 10 logK,, -
20 Zﬁ 20vsk, | ity Se
Mcs

0,172 4-23 1752 —1,414
0,90 -+48,5 70,7 —19
0,99 69 7,07 —199

When v4, =0.172 we get K_ = w,/w,, as in
the case of the non-inverting modulator. In this
case the bandwidth is somewhat narrower than in
the non-inverting modulator. Upon approaching
self-excitation the inverting modulator may have
a gain as large.as desired, but its stability in-
creases greatly. Thus, merely reducing the con-
ductance by 1% or increasing the depth of modula-
tion by an equal amount causes the circuit to os-
cillate if v%, = 0.99.

3. Parametric Amplifier with Negative Input
Conductance

From an examination of an inverting modulator
with differential combination frequency it follows
that a reactive amplifier operating without conver-~
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sion of the amplified frequency is feasible. In such
a device the amplification will be produced by the
negative conductance introduced in the input cir-
cuit by the reactive modulator. The difference
between such an amplifier and an amplifier with
double (or multiple) pumping frequency is that
the former is insensitive to the phase of the pump-
ing generator of carrier frequency vy; moreover,
the frequency of the signal need not be commensu-
rate with the frequency of energy pumping.

It may appear strange that the phase relations
between the signal and the variation of the param-
eter do not play any role whatever in this case,
while in other parametric phenomena the phase
relations are very important. In the mechanism
of energy pumping the phase relations play a prin*
cipal role in this case, too. Pumping will occur
only under a suitable phase of the current at the
corresponding combination frequency. But in a
double -loop modulator the phase necessary for
energy pumping is established automatically by
a total frequency decoupling of the loops. Since
the phase of the oscillations in the second loop
can be arbitrary, it is automatically established
such that, under given arbitrary signal phases
and pumping-generator phases, a redistribution
of the energy flow occurs in accordance with the
general energy relations for nonlinear elements.
This illustrates the need for the second loop, even
if the amplified signal is taken only from the first
loop. Energy consumption (g = 0) must be in-
sured in the second loop, or else the energy flow
to the first loop and the negative resistance intro-
duced in the first loop will be equal to zero. The
presence of two loops is in itself insufficient to
exclude the influence of the phase on the amplifi-
cation factor. It is important that both loops be
completely decoupled. In particular, if there are
two loops, but wy = wy and wy = 2wy = 2wy, then
the first loop will not represent a short circuit to
the frequency w,, nor will the second one to the
frequency w;. In this case the two-loop system
becomes degenerate. At small detuning

[Ao|=]o.—0,| K o,

a voltage at a frequency wj—wg = w; —Aw = wg

- 2Aw will be present not only in the second loop
but also in the first one, provided 2Aw is not far
beyond the bandwidth of the first loop. This will
produce beats of frequency 2Aw. The same will
occur in the second loop.

Let us consider an amplifier with a negative
input resistance due to energy pumping in the first
loop (Fig. 17). This circuit differs from that of
the inverting regulator essentially in that the first

Input

Signal frequency Pulsating
sxgnal Load

filter reactance Ballast circuit

I | - B

b 1
e |

T T
1

FIG. 17. Diagram of parametric amplifier with negative re-
sistance.

signal loop contains an additional active load con-
ductance g1,. In addition, account is also taken of
the active component loop conductance, ge, which
includes also the loss (g) of the coupling capaci-
tor. The general relations obtained above for the
inverting modulator can be readily applied to the
circuit of Fig. 17. In analogy with (3.51), the volt-
age across the first loop is given by the relation

U, = T (3.62)
| ¥, eq |2
where
Yleq = ?1 (og) — YZ»Yz (0, — ).
But now Y; =gy +ge + 8L +J (wsCy —1/wgly),

i.e., it includes an additional load conductance gy,
and the intrinsic conductance gg of the loop. The
power delivered to the load will be

=|JsP .
* meqlz

The maximum signal power Pjp will be as before
$ 1
Py =|Js l2g

The power gain K equals the ratio Py, /Pip
PL_ 4ggL
Pin ‘Yl eq |? )
At exact tuning, Y1 eq =81 +8 *8L—8 and (3.63)
becomes

(3.63)

AgigL

KO = (gxtot"'g)2

. (3.63")
where g = y%_gz is the negative conductance intro-
duced, and g;tot = & + 82 + gy, is the total conduc-
tance of the source, the first loop, and the load.

In a practical amplifier with negative input con-
ductance it is desirable to connect the load through
a unidirectional valve, or else the load noise will
flow back to the amplifier and will return to the
load in regenerated form. It is also advisable to
apply the input signal through a unidirectional
valve. This is done with a circulator/17/ in the
centimeter band and with a balanced double-T
network/18/ in the decimeter band.

Let us examine the circuit of Fig. 18, in which
the circulator is connected between the signal gen-
erator and the input loop in such a way that the in-
cident and reflected waves are separated. The
power Pjpe corresponds to the power delivered
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Circulator

FE 0.

FIG. 18, Diagram of parametric amplifier with circulator
for decoupling the input from the output.

by the signal source; Pyef is the power in the re-
flected wave, guided by the circulator towards the
amplifier gy, which is matched to the internal
conductance of the signal source; P; and P, are
the values of the power to the left and the right of
the pulsating reactance (in our case both P; and
P, are negative). The gain is given by

K=Pref

P inc
The previously introduced definitions (3.54) and
(3.55) now assume the following form

Since the power of the incident wave equals the
sum of the reflected and transmitted power, i.e.,

Pine = Preg + P,

then
Py K_

=1 K

K=1— o - (3.64)

Pinc

Inserting the values of K_/G_ from (3.55) into
(3.64) we get

K =14 188~ gL

e (3.65)

If a narrow-band amplifier is considered, we
can use in (3.64) the expression given for K_ in
(3.57). At v, = 1 it is possible to neglect in
(3.65) unity compared with the sufficiently large
second term, and all the further calculations for
the bandwidth of the inverting modulator can be-
applied directly to the amplifier with negative
conductance.

4. Noise of Amplifier with Negative Conductance

The amplifying properties of modulators with
reactive nonlinear elements can be used where an

amplifier with low level of intrinsic noise is needed.

The greatest interest attaches to this in the micro-
wave region, where it is particularly difficult to
reduce the noise of amplifying devices that em-
ploy free electron beams. The principal reason
for the considerable noise of such amplifiers is
the high temperature of the cathode that emits the
electrons. Many .papers“’“’16 contain an analysis

M. D. KARASEYV

of the noise of parametric amplifiers. To conclude
this section, we consider briefly the noise of an
amplifier with negative conductance and a non-
inverting modulator.

By definition the noise factor F is the ratio
of the output noise power Ngut, divided by the
gain K, to the input noise power, Nijp

. Nout
F=gno-

In the case of a matched input, the input noise can
be considered to be thermal noise and to obey the
Nyquist formula

(3.66)

Nin=kT Av, (3.67)
where k is Boltzmann’s constant, T, the stand- -
ard absolute temperature (290°K), and Ay the
bandwidth. Let us assume that the gain in the band-
width Ay differs little from the resonant gain
(3.63’) in an amplifier with negative conductance.
Inserting (3.67) and (3.63’) into (3.66) we obtain

__ 1 (grtot—8-)2n7 .
F= 4kToAv £16L Nou -

(3.68)

Thus, the determination of the noise factor reduces
to a determination of the level of the output noise
Nout. Reference 15 lists eight components of Noyt,
all assumed to be additive:

1. Thermal noise at frequency w; of the first
loop.

2. The same at frequency w,; in the second loop.

3. Noise current generated by the pulsating ca-
pacitance at frequency wjy.

4. The same at frequency w,.

5. Noise at frequency wy, due to fluctuations in
the amplitude AC of the pulsating capacitance.

6. The same at frequency 2w;.

7. The same at frequency 2w,.

8. The same at frequency w; ~w,.

We can thus rewrite (3.68) as

8
F 1 (81tot—¢-)? Z Ay outc (3.68")
h=1

- 4T AV 181,

To calculate Njoyt of the first output-noise
component let us examine the equivalent circuit
of the first loop (Fig. 19), obtained on the basis
of the diagram in Fig. 17. Noise of frequency w,
is produced in the first loop by the conductance
gy of the generator. The intrinsic noise of the
load is not considered here, since the load is not
included in the amplifier, although this noise may
be of considerable intensity. The noise level, in
accordance with the circuit of Fig. 19, will be

it -
N ;—_-*—g]‘-—

] 4T AV (81 1 £0)
1out (gnor—g._)z -_— gL' (3.69)

(§1tot —g._)2
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iF=4n AV g
—
FIG. 19. Equivalent circuit
% e -7 s for tl?e conductance noise of
the first loop.
BtxTave
—

2

Inserting (3.69) in (3.68’) we obtain the first
component of the noise factor

‘FIG. 20. Equivalent circuit for
the conductance noise of the sec-
ond loop.

F1=1+§~f. (3.70)

The second source of noise is the thermal noise
in conductance g, of the second loop, at a fre-
quency wy. The pulsating capacitance converts
this noise to a frequency w;. The equivalent cir-
cuit for this noise is shown in Fig. 20. The noise
is produced by the ballast network, gy. The nega-~
tive conductance —-g’ = g%_—— g1tot 1s analogous to
the negative conductance —g_ introduced into the
first network. The value of 'yﬁ_ is, correspond-

ingly,

and
3.71)

The mean squared noise voltage ui in the second

loop, in accordance with Fig. 20 and (3.71), is

Vi Vi _VE e
2

4 % g2 (8140~ 8-)

12

f2—&- (3 )
By analogy with (3.50) and (3.52), we can find

the noise voltage v ﬁ? of frequency w; in the

first loop, due to the noise voltage v ug of fre-

dquency w, on the pulsating capacitance AC cos wyt

Va ey Vo ys_y e Vi
R

Wy 2 g Oy Sitot—g_

(3.73)

The second component of the output noise,
Ny out is, in accordance with Fig. 20 and (3.73),

N ou = g u} = 4kT, Av o SEL 20 (3.74)
and the noise factor is
=91 8-
Fy=r o (3.75)

In analyzing the third component of the output
noise, Njgut, we should return to the equivalent
circuit of the first loop, Fig. 19, and replace the

current if by a noise current of frequency wy,

generated by the pulsating capacitance. We denote
this current by ii. This latter current cannot be
determined from the amplifier parameters intro-
duced so far. It is caused by the nature and mech-
anism of the pulsating capacitance, as are all the
remaining components. In particular, if the capac-
itance is varied electronically, i§ corresponds to
the shot-noise current. This noise is substantial
in electron-beam devices and is vanishingly small
if a semiconductor with negative bias is used as
the pulsating nonlinear capacitance. Without eval-
uating i§, we can write

3.76)

5
Nyow=—-3
T (grtor—8-)? L
and
i3

Fy= 4kTAvg

3.77)

We shall not consider the remaining components of
the noise factor, for they cannot be estimated ef-
fectively without stating the concrete type of am-
plifier used. The resultant noise factor (3.68) can
be written

i

!
T Avg, T terms due to shot

_ 4y ey o1
F=14f84 +

Wy —é?
noise and fluctuations in the pulsating reactive
element. (3.78)

For the solid-state variant of the parametric
amplifier, apparently only the first three terms of
(3.78) are important, including the unity term. The
ratio g¢/g; is very small. The third term of the
noise factor, due to the ballast network, is more
substantial and approaches w;/w, at high gains.
But by choosing w; > w; the third term can be
made sufficiently small. If the loop temperature
is reduced by forced cooling, the second and third
term of (3.78) should be multiplied by T/T,, where
T is the actual loop temperature.

It is interesting to estimate the minimum value
of the noise factor. For this purpose we return to
the amplifier circuit with circulator and matched

load gr, =gy (Fig. 18). The resultant loop con-

ductance should be g; + g, since the load and
generator conductances each act only in one direc-
tion. At large gain the negative conductance g in-
troduced is close to g; + ge. Taking these circum-
stances into account and neglecting all terms but
the first three, we can rewrite (3.78) in the follow-
ing form:

Fgl_k_%Jrgm_ (3.79)

®g &1
Since the carrier frequency satisfies the equation
Wy = Wy + wy, then

F o= O g1-gc
=

(3.80)
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If the coupling between the generator and the
amplifying network is large, the ratio (g; +gc)/g
can be made close to unity and the noise factor
reaches a minimum, the value of which is

=%
Wy
It must be borne in mind that the losses in the pul-
sating reactance are accounted for in ge. In the
determination of the minimum of the noise factor,
the circulator is assumed to produce no noise.

The noise factor of the non-inverted modulator,
F,, determined in an analogous manner, is

a —_— \ 2
Vitat [1+$—:(G+Vi+a2) ] 71%’
where o =tan 6p, "in accordance with (3.49); the
gain in (3.66) is determined from (3.48). The min-
imum of F, will not occur at the maximum gain
3.66). If K, is specified, the noise factor can
be reduced, by suitable choice of gg, to

(Foma=t+20 (10 )/ 1+ 2. @.89)
Reference 16 contains the calculation of (F,)min
for a coupling capacitor in the form of semicon-
ductor diode, with losses accounted for. At a sig-
nal frequency v; =500 Mcs and a carrier fre-
quency vy = 10,000 Mcs we get (F, )min = 1.32,
whereas (F, )pin = 1.66 at v; = 1,000 Mcs. These
results are in satisfactory agreement with experi-
ment (see reference 22).

(3.81)

F,=1+

(3.82)

4. NEW TYPE OF NONLINEAR CAPACITANCE
—THE CRYSTAL DIODE

As indicated in the introduction, capacitance
can be changed not only by varying the dielectric
constant in the capacitor, but by changing the dis-
tance between charges on the opposite sides of the
capacitor. Recently the method of changing the
distance between charges has found embodiment
in the use of the capacitance of a p-n junction
of a crystal diode.

At the junction of p and n type semiconduc-
tors there is formed a so-called barrier layer,
owing to recombination of the mobile carriers of
one polarity with the diffusing carriers of the oppo-
site polarity. In the equilibrium state, the distri-
bution of the concentrations of the carriers — holes
and electrons — about the p-n junction is as shown
in Fig. 21a. In the capacitor produced by the p-n
junction, the role of the dielectric is played by the
barrier layer itself, in which there are practically
no moving carriers; the role of the electrodes are
played by the p and n regions adjacent to the
barrier layer, which have normal electric conduc-
tivity.

KARASEYV

s B e e e ————— -
‘g ; 7
3‘51 P junction !
a) 1 /" S A
] | i
{ & 1
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barrier layer

v NS
? \/ i
* X5

FIG. 21. Diagram showing the variation of the thickness of
the blocking layer of a junction with voltage. a — zero bias,
b ~ small forward bias, ¢ — forward bias, d ~ reverse bias.

The width of the barrier layer of a p-n junction
in equilibrium increases with increasing potential
barrier of the junction, and is determined by the
resultant contact potential difference at the junc-
tion. For germanium, the resultant contact poten-
tial difference of the p-n junction ranges from 0
to 0.7 volts. If a small voltage is applied to the
p-n junction in the forward direction, i.e., with
the plus terminal connected to the p -region, then
the potential barrier is reduced and the barrier
layer becomes narrower, as shown in Fig. 21b.
The capacitance of the junction increases. If the
direct voltage is increased still more, consider-
able mixing of electrons and holes occurs, both
in the barrier layer as well as on both sides of it
(Fig. 21c). In spite of the mixing, the moving car-
riers can return to their regions without recom-
bination, if the recombination time is large com-
pared with the duration of the period of variation
of the applied voltage. Experience has shown that
recombination is negligible if the frequency of the
applied voltage is much higher than 1 Mcs. The
nonlinear capacitance produced thereby is called
“diffusion” or “stored-charge” capacitance. At
low frequencies it is shunted by the relatively-
large conductance of the p-n junction in the for-
ward direction.

If a voltage of reverse polarity is applied to
the junction, with the minus connected to the p
region, then the barrier layer broadens, as shown
in Fig. 21d. The capacitance of the junction de-
creases. The minimum capacitance obtainable
is limited by the breakdown voltage, for when the
inverse voltage applied to the p-n junction ex-
ceeds the breakdown voltage, large conduction is
produced because of the cascading process of gen-
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eration of mobile carriers in the barrier layer,
and the diagram of 21d no longer holds. In the
range of voltages from the negative breakdown
voltage to the small positive voltage, not exceed-
ing the resultant contact difference of potentials
on the p-n junction (Fig. 21b), the displacement
of the mobile carriers is not accompanied by a
considerable mixing of the carriers. The non-
linear capacitance that is produced thereby is
called “static” or “barrier-layer” capacitance.
This capacitance is practically independent of the
frequency, whereas the diffusion capacitance de-
pends greatly on the frequency. Generally speak-
ing, the static capacitance also has a dispersion,
but only in the region of very high frequencies.
This dispersion has not been observed experimen-
tally as yet. Calculations show it to be in the 1012
cps (A =0.3 mm) region. It is here that advan-
tage of the electronic nature of the nonlinear ca-
pacitance over the domain nature is manifest. The
invention of the semiconductor nonlinear capacitor
belongs to B. M. Vul (1954). References 19 and
20 give the equivalent circuit of the p-n junction
(Fig. 22), characteristic curves for the dependence
of the capacitances of fused-junction and diffusion
diodes on the reverse bias, and a discussion of the
principles of nonlinear semiconductor capacitors.
Later foreign articles contain analogous calcula-
tions and consider the application of semiconductor
capacitors without any references whatever to these
papers.*

g
V VIV . .
FIG. 22. Equivalent cir~
; 0 —A\N\—%  cuit of crystal diode used as
9 R L it
I b as a nonlinear capacitor,

The losses in a nonlinear capacitor are deter-
mined by the active conductance. Figure 22 shows
the equivalent circuit of a nonlinear capacitor in
the form of a junction germanium diode at micro-
wave frequencies as described by Giacoletto and
O’Connell.?!, This equivalent circuit was found to
be valid for a very broad range of frequencies from
1 to 800 Mcs. The inductance L, includes that of
the leads. In the specimen described it amounted

*In Author’s Certificate (patent disclosure) No. 110441,
issued to B. M. Vul for the invention of ‘‘Semiconductor Non-
linear Capacitors,”’ with priority date June 29, 1954, the ob-
ject of the invention is stated as follows: ‘‘The use of semi-
conductor diodes and triodes as semiconductor nonlinear
capacitors, in which the change of capacity is effected by
changing the voltage on a diode, and by changing the collector
voltage or the emitter current in triodes.”” Along with semi-
conductor diodes, transistors are also finding use as control-
lable.nonlinear capacitors.
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to Lg=2.6 x1073yh. To reduce Ly, the leads
were made short and thick.

The base resistance Ry includes the resistance
in the layer of n -germanium between the contact
of the base and the surface of the barrier layer of
the junction. The quality of a nonlinear capacitor
used at microwave frequencies is determined by
the upper critical frequency

1

Vo= 2aRCmin ’
where Cmin is the lowest attainable value of the
nonlinear capacitance. The base resistance Ry
is inversely proportional to the area of the junction,
and the capacitance C is directly proportional to
this area; therefore vy is independent of the junc-
tion area. To increase v, the base should be made
as thin as possible and its conductance made suffi-
ciently high. The conductance of the base is deter-
mined by the concentration of impurities, which in
turn is related to the breakdown voltage. In the
sample described Rp = 0.5 ohms, the breakdown
voltage is approximately —16v and vy = 10,000
Mes.

The size of the capacitance is determined by the
junction area, which in this case is determined by
the contact surface of the indium point fused into
the n-germanium. The capacitance C in the
sample described ranged from 79 to 24.5 uuf for
a reverse bias ranging from -1 to —15 volts.

The connection between the capacitance C and
the voltage u applied to the junction varies with
the character of variation of the concentration of
acceptors and donors in the p-n junction. If this

variation is linear (diffusion diode), then
1

O~

1%

Vi
In the case of a sharp and ragged variation of con-

centration (in a fused diode) we have
1

C~———,
Vi
¢
where p is the contact difference of potential
(approximately 0.5v). The diode discussed here
obeyed relation (4.3). The relative change in ca-
pacitance, AC/C, can be determined from (4.3):
AC 1 Au
T T To—u 4.4)
As follows from (4.4), AC/C is independent of the
diode dimensions, and at large values of u it is
also independent of the material of the diode (of ¢)
ég ~ 1 Au
cCT 27w
The junction capacitance C is shunted by the
leakage conductance g, which is due to thermal
generation and recombination of mobile carriers.

“4.1)

4.2)

(4.3)

for |u|»e¢. 4.5)



742 M. D. KARASEV

The quality of the nonlinear capacitance in the low-
frequency range is determined by the lower critical
frequency v}

=R (4.6)
where Cpmax is the highest attainable value of the
nonlinear capacitance. In the specimen described
g~ 5x10"% mho and vy =10,000 cps. Figure 23
shows the geometry of the described diode, while
Fig. 24 shows the dependence of the capacitance
on the reverse bias. It is interesting to note that
there is an optimum frequency, at which the Q of
the capacitor has a maximum. The maximum Q
of the capacitor described here was 3,000, albeit

at a relatively low frequency, 1 Mecs.

In FIG. 23. Geometry of a

crystal diode used as a
“ nonlinear capacitor.?!
Thickness of germanium
slab 0.05 mm, dimensions
of indium bead 0.5 mm.
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Thickness
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° (4
g 3
]
3
Q 299
a 40 gﬂ"'
8 X w
J
-6 -2 -8 ~4 a2

Bias (volts) /4] ——=

O — Experimental data at 1 Mcs
X — Experimental data at 2 Mcs
= —. Calculated curve
FIG. 24. Capacitance of crystal diode as a function of the
reverse bias.*

Other types of nonlinear capacitors for micro-
waves are described in reference 22. In particu-
lar, a “flat top” diffusion silicon diode (Fig. 25)
has a capacitance-voltage curve as shown in Fig.
26. The same paper® mentions a germanium diode
with a fused junction, alloyed with gold, in which
the critical upper frequency reaches 40,000 Mcs.
Mass production of germanium diodes for para-
metric amplifiers, with critical frequency of
70,000 Mcs, has been reported.

The question of shot noise due to the electron

conductivity of the p-n junction is considered
in reference 24 as applied to parametric ampli-
fiers.

Contact

FIG. 25. Geometry of

‘“flat top”’ crystal di- 7
ode.??
Contact
100 T g
+/10
74 o
2]
20 9 2
3
Vi 8
1 g
2 ] g
Q72 i/ 4-”/03-
! ‘B-Q\ J &
Yy
05 g
77

a2
ar 02 95 1 2 5 Wcu
——
FIG. 26. Dependence of the capacity of the p-n junction of
a ‘“flat-top’’ diode on the bias voltage.?
+.u) change in capacitance with increasing forward bias on
the junction; —u) change in capacitance with increasing re-
verse bias; O— experimental data at 100 kcs, 0 — experimental
data at 1,000 Mcs.

5. CERTAIN NEW APPLICATIONS OF NONLINEAR
REACTIVE ELEMENTS

With the appearance of high- Q nonlinear ca-
pacitors for microwaves, new prospects have
opened up for the production of reactive ampli-
fiers for this frequency range. Since such am-
plifiers do not contain hot cathodes, the level of
the intrinsic noise can be made quite low. Further-
more, the parametric amplifier does not require
a very low temperature for its operation as does
the maser, and consequently it is much simpler
to service. The June 1958 issue of the Proceedings
of the IRE contains several preliminary communi-
cations on experimental models of various para-
metric amplifiers.

1. Reactive Broadband Amplifier with Low Noise
Level?

The diagram is shown in Fig. 27. It differs from
the ordinary balanced dielectric amplifier only in
that the power is drawn at one (upper) sideband
frequency. The two nonlinear capacitors used were
typical silicon diodes with more or less similar
parameters. The basic characteristics of this am-
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20 Mcs

Crystal-
stabilized
generator,

I Amplifier,

T 21 Mcs

“ux_L

N [ ¢

FIG. 27. Diagram of low-noise reactive
amplifier for 1 Mcs.®

Signal
1 Mcs

generator,

Calijbrated
attenuator

Diode noise
generator

Radio
receiver

plifier are listed in the following table:

Signal frequency 1 Mcs
Carrier frequency 20 Mcs
Output frequency 21 Mcs
Relative bandwidth at input 10%
Power gain bandwidth at input 10db
Effective noise temperature of amplifier 30°K
Total effective temperature 40°K

The effective noise temperature was determined
from the formula Tgff = To(F—1), where F is
the noise factor and T; the standard temperature,
290°K. The diodes were kept at room temperature.
Additional measurements, carried out with the input
loop cooled with liquid nitrogen, have shown that the
thermal noise of this loop amounts to a large frac-
tion of the intrinsic noise.

2. Experimental Characteristics of a Microwave
Parametric Amplifier with a Semiconductor
Diode?8

The amplifier is built as an inverting modulator.
The problem of constructing filters for the neces-
sary signal, carrier, and resonant frequencies,
(vg, vy, and vy—vrg) was cleverly solved by using
a rectangular cavity (Fig. 28). Using three modes,
TE103, TE301, and TE“M, in a rectangular wave
guide with a capacitive diode in the center portion,
the authors have succeeded in obtaining the follow-
ing three resonant frequencies:

v; = 1200 Mcs, v, = 3500Mecs, and v, = v, — v, = 2300Mecs.

The diode capacitance was modulated by pump-
ing energy from a local generator of frequency v,
into the cavity with the aid of a coupling loop. The
input and output at frequencies v, and vy, were
through two probes. The specially developed ger-

—r .
- 1] - P\;mpmg
% - Diode I oop

S

FIG. 28. Diagram of microwave parametric amplifier,?

DC insulation

manium junction diode had a capacitance of 1 pyuf
at zero bias (at low frequency) and a base resist-
ance of 5 ohms.

At a pumping power up to 100 mw at v; = 3500
Mcs, oscillation was induced at the two frequen-
cies, 1200 and 2300 Mcs. At lower pumping power
it was possible to obtain amplification at each of
the frequencies, v; and v;. Most measurements
were carried out in the amplifying mode at a fre-
quency vy with a negative bias of approximately
5 volts.

Gains up to 40 db could be obtained, although
at such a high amplification the device became
extremely sensitive to load variations, since the
circuit did not include a decoupling insulator or
circulator. Furthermore, a noticeable fluctuation
was observed in the gain, owing to the residual
frequency modulation of the pumping generator,
the output of which was connected to a traveling-
wave tube and a filter. The band width was 1.0
Mcs at a gain of 19 db; the product of the voltage
gain by the bandwidth was constant, in accordance
with the known rule. The greatest output power
was 1.5 mw and the dynamic range more than 100
db. Preliminary measurements of the noise factor
gave a value not exceeding 4.8db at a gain of 16db.
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3. Measurements of the Noise Factor of Two Pul-
sating-Reactance Amplifiers with Semiconduc-
tor Diodes??

Herrmann et al. report® briefly on experiments

with two types of parametric amplifiers: a non-
inverting modulator and a negative-resistance
amplifier.

The diagram of the non-inverting modulator is
shown in Fig. 29. The frequencies of the output
signal, the modulator carrier signal (v;) and the
output signal (vy = vy+v;) are 460, 8,915, and
9,375 Mcs respectively. The modulator output sig-

nal is fed to a measuring superheterodyne receiver.

The gain of the modulator is 9db. The noise factor
is 2 + 0.5db, corresponding to a noise temperature
of 170 + 50°K. No special measures were under-
taken to match the pumping generator to the reac-
tive converter.

Noise
generator

Signal

Load

Band
Insulator filter

Pumpin

g
klystron Insulator

Non-inverting

modulator Inter-

mediate-
frequency
amplifier

FIG. 29. Block diagram of parametric amplifier with sum-
mary combination frequency.?

Under very careful tuning (which could not be
repeated immediately ) a gain of 21db and a total
noise factor of 1.1 + 0.5db (87 + 40°K) were ob-
tained. So high a gain exceeds the ratio vy/v,
= 9375/460. Apparently, the difference-frequency
(vy—vy) oscillations were not suppressed suffi-
ciently.*

The negative-resistance amplifier is shown
schematically in Fig. 30. The input signal fre-
quency was 6,000 Mcs and the pumping frequency
11,700 Mcs. The input and output waves were sep-
arated by a circulator. Furthermore, the circu-
lator kept the thermal noise of the load out of the
amplifier. The nonlinear capacitances used were
fused-contact silicon and germanium diodes, al-
loyed with gold. The diode capacitance C, in the
absence of bias, was 0.4 — 2.85uuf. The silicon
diodes were used without bias, but a negative bias
of 1.0 to 1.5 volt was applied to the germanium
diodes to reduce the capacitance to a value suitable
for optimum amplification.

*In particular, difference-frequency oscillations could de-
velop in the circuit made up of the base resistance and the
parasitic inductance of the semiconductor diode, which in this
case serve as a ballast network for the difference-frequency
oscillations.
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FIG. 30. Block diagram of parametric amplifier with neg-
ative resistance.”’

A stable gain of 45db was obtained at a signal
frequency equal to half the pumping frequency
(vy =vy/2). The product of the bandwidth by the
gain was found to be constant. When tuned for
maximum gain of 18db at »; = v/2 (10 Mes),

a bandwidth of 8 Mcs was obtained at the 3-db
level.

The parametric method of amplification leads
in this case to an appearance of the following noise
components in the signal band: 1. Input noise of
frequency vy, amplified together with the input
signal. 2. Input noise of frequency vy —v,;, which
is converted to v, in the amplification process.
3. Diode noise of frequency v;. 4. Diode noise of
frequency vy+vy, which is converted into vy~ v,
in the amplification process.

To reduce the noise, it is useful to amplify a
signal with two symmetrical sidebands, for which
the central frequency is exactly equal to half the
pumping frequency (v; = v3/2). In this case, co-
herence between the components of the signal
spectrum and the corresponding v, —vg will be
maintained. With bands of such symmetry, the
noise factor was 3db, compared with 6db in sim-
ple amplification. But as the equivalent tempera-
ture of the input load is reduced, the noise factor
becomes less than 6 db even in simple amplifica-
tion. The most important source of diode noise is
the base resistance Rp. Analysis has shown that
to reduce this noise it is necessary to strive for
a reduction of the product q = »;R,C. This prem-
ise was confirmed by tests of many diodes used in
the negative-resistance amplifier. It should be
noted that in a non-inverting amplifer operating
at 400 Mcs the noise factor is considerably less
than in a negative-resistance amplifier operating
at 6,000 Mcs. It can be concluded from this, in




SOME GENERAL PROPERTIES OF NONLINEAR REACTIVE ELEMENTS

particular, that the noise generated in a non-
inverting modulator at a frequency vy+v,; [where
vy +vy > vy, and consequently also q (vy+vy)

= q (vy)] is not as great as the noise at vy, for
the latter is amplified in the modulation process.

Heffner3® believes that a parametric amplifier
for the centimeter range is feasible with a noise
factor of 0.5db, i.e., with an equivalent noise tem-
perature of 40°K with all the amplifier elements
kept at room temperature (without cooling).

At the Third All-Union Conference on Radio
Electronics of the U.S.8.R. Ministry of Higher Edu-
cation, held in Kiev on January 23, 1959, V. S. Etkin
and E. M. Gershenzon described a parametric ampli-
fier developed and tested in the Laboratory of the
Faculty headed by Prof. N. N. Malov at the V. L.
Lenin Moscow State Pedagogical Institute. The
wavelength high-frequency signal was 6 to 7 cm,
and the pumping generator operated at 3.0 —3.5cm.
Both amplification and generation were possible with
ordinary microwave crystal diodes.

4. Parametric Electron-Beam Amplifier

It is interesting to note that the intrinsic noise in
an amplifier with a free electron beam can be con-
siderably reduced if a parametric mechanism of am-
plification is used. Bridges? describes a paramet-
ric electron-beam amplifier, the circuit of which is
shown in Fig. 31. The resonator tuned to the signal
frequency vy is coupled through two apertures
with the electron beam, which moves uniformly
past the apertures. If the transit angle o between
the aperture is

a=<2n—i—%>3‘t, n=0, 1, 2, ...,

then the electron beam produces in the resonator a
purely-negative resistance. The negative resistance
produced by the beam compensates for the damping
in the cavity of the resonator and can induce genera-
tion.

On the other hand, if the transit angle « is made
one quarter of a period greater or smaller than the
value indicated above, the beam will induce in the
resonator a pure reactance:

a=(2n-4-1)n for positive reactance,
a=(2n +2)n for negative reactance.

This beam-induced reactance changes the resonant
curve of the cavity without changing the damping.

If the electron beam is now modulated and oscilla-
tions are excited in the resonant pumping cavity
(see Fig. 31), this will result in modulation of the
reactance parameter in the signal resonator. The
optimum distance between resonators necessary for
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FIG. 31. Diagram of electron-beam parametric am-

plifier.?®
.production of a density-modulated beam is one-quar-
ter the effective plasma wavelength.

At a pumping frequency equal to twice the signal-
resonator frequency, parametric pumping of energy
occurs into the signal-resonator tank circuit, i.e.,
the amplifier described is a realization, for the
microwave band, of the single-loop parametric
amplifier, the principle of which, except for the
modulated electron beam and the new technology,
was suggested in the thirties by the school of
Mandel’shtam and Papaleksi.®

A valuable feature of the parametric electron-
beam amplifier is that even at a high level of shock
noise in the electron beam, the noise level induced
in the resonator is low. Since the distance between
the resonator apertures is small compared with the
plasma wavelength, the beam current at the aper-
tures is in the first approximation of equal ampli-
tude and opposite phase, provided the transit angle
is

a=(2n+1)m.

In other words, by choosing transit angles of =, 3w,
5w, ete. it is possible to effect parametric amplifi-
cation without, in the first approximation, coupling
of the signal resonator to the noise component of
the electron-beam current.

In the experimental setup corresponding to
Fig. 31, both amplification and generation of oscilla-
tions were observed at a sufficiently deep beam
modulation. The noise was not measured. The table
lists certain of the measured characteristics:

Signal Resonator

Resonant frequency v 4150 Mcs
Transit angle a 37 radians
Pumping frequency v, 8300 Mcs
Beam voltage 2,450 v
Beam current 18 ma
Pumping power 140 mw
Maximum gain 20 db

Figure 32 shows oscillograms of the output sig-
nal at a swinging input-signal frequency and at vari-
ous levels of pumped energy, with continuous gener-
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FIG. 32. Oscillograms showing the dependence of the
amplification on the pumping power.?*

FIG. 33. Fluctuations of the gain upon change in phase
relations in an amplifier with a multiple pumping frequency.?

ation at a fixed frequency v,. In the case of Fig. 32a,
the pumped energy was zero, and the electron beam
was not modulated. At the resonant frequency a re-
duction was observed in the amplitude of the signal
fed to the amplifier from the swinging klystron. The
input and output of the amplifier were not decoupled,
and the oscillogram showed the usual sharp increase
in energy absorbed by the cavity at the resonant fre-
quency. The oscillogram of Fig. 32b shows the re-
duction in attenuation in the resonator, and was
plotted at a pumping power of 35 mw. The oscillo-
grams of Figs. 32c to 32e were taken at pumping
powers of 56, 82, and 140 mw respectively.

In this degenerate parametric amplifier, the
phase relations between the signal and the param-
eter modulation are important. During the fre-
quency swing of the signal, these phase relations
vary continuously, and the gain fluctuates corre-
spondingly between the maximum value of the
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“strong” and the lowest value of the “weak” reso-
nance. If a detector of sufficiently low inertia is
used at the output, such gain fluctuations can be
observed. The oscillogram of Fig. 33 shows a
band of gain oscillations, obtained in the same
mode as the oscillogram of Fig. 32e, but with a
low-inertia detector on an enlarged scale.

Another electron-beam parametric amplifier
is reported in reference 29.

In addition to the foregoing applications of
high-frequency nonlinear reactance in parametric
amplifiers, such reactances can be used also in
a variety of other devices for frequency conver-
sion, generation of harmonics, or generation of
subharmonics. But this does not exhaust all the
possibilities of nonlinear reactance elements. A
very instructive example is the use of nonlinear
capacitance in conjunction with a nonlinear resist-
ance in a trigger circuit.}"3! Figure 34 shows a
circuit with two positions of stable equilibrium.

Crystal
L diode

FIG. 34. Trigger circuit with
two stable states.*®

The tank circuit, comprising an inductance L in
series with the capacitance Cq of the semicon-
ductor diode, is fed from a high-frequency ac
source. The diode described in reference 21 was
used in this circuit. The parallel RC network is
a filter for the de¢ component due to the rectifying
action of the semiconductor diode. The capacitance
C is considerably greater than Cg, and the time
constant of the RC filter exceeds by many times
the period of the high frequency voltage applied to
the tank circuit. The ratio of the input-voltage
period T to the tank-circuit period Ty =27V LCyq4
is chosen such as to satisfy the following inequal~
ity in the absence of bias:

r,>T,

and to the contrary, in the case of a large inverse
bias:

T, < T.

The rectified output voltage in the circuit of
Fig. 34 (between terminals B and C) is simul-
taneously the inverse bias for the semiconductor
diode. As the amplitude of the input voltage changes,
the rectified voltage across terminals BC will vary
as shown in Fig. 35. As the amplitude is increased
from zero, a corresponding almost linear increase
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FIG. 35. Diagram showing the dependence of the output
dc voltage at terminals BC on the alternating input in the
circuit of Fig. 34.

in voltage will be observed (curve 1 —2 of Fig. 35).
This will continue until the decrease in Cq will
cause resonance of the tank circuit LCq. On ap-
proaching resonance, the ac voltage on Cq will
begin to increase rapidly, and the dc component
of the voltage on RC will also increase, causing
a further decrease in Cq and a corresponding fur-
ther approach to resonance. This results in an
avalanche-like jump in variation of the output volt-
age (section 2 —3 of Fig. 35). The output voltage
changes little with further increase in the input
voltage. Moving back along the curve of Fig. 35,
an avalanche-like decrease in the output voltage
occurs at point 5. At input voltages ranging from
0.2 to 0.7 volt, the circuit had two stable equilib-
rium positions. A sudden increase in input voltage
to 0.75 volt shifts the system to the upper level of
the output voltage, while reduction of the output
voltage to 0.15 volts returns it to the lower level.
The system flip could also be realized by other
means, such as changing the bias or changing the
frequency of the input voltage. Figure 36 shows a
variation of the output rectified voltage in the cir-
cuit of Fig. 34 as the input voltage is varied. Under
suitable conditions, the circuit can be triggered by
light incident on the p-n junction. Using several
series elements of the type shown in Fig. 34 and
adding feedback, it is possible to construct multi-
vibrators and the like.

Generally speaking, a trigger circuit with a
nonlinear resonance loop can be realized also by
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FIG. 36. Variation of the ac output on terminals ac
with the frequency of the ac input voltage in the circuit of
of Fig. 34.
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using other reactive nonlinear elements, such as
coils with ferromagnetic cores or capacitors with
ferroelectrics, and not only a crystal diode. But

in the latter case there is assurance of good high-
frequency performance and easy manipulation. In par-
ticular, by using in Fig, 34 an ac sourceof frequency
2.2 Mcs, C =330uuf, R =500,000 ohms, and an
adjustable inductance L = 64 to 105uh flips of

2 usec approximate duration were obtained. It

must be noted that a reduction in the capacitance

C or an increase in the frequency of the ac source
reduce the duration of the leading front, but hardly
affect the duration of the trailing edge. Very large
values of R, while sharpening the leading front,
cause a prolonged slow trailing edge.

The circuit of Fig. 34 can be improved by using
two identical diodes in a balanced circuit, and also
by using a transistor as two diodes with nonlinear
capacitances and conductances.

CONCLUSION

We have considered by far not all aspects of the
application of reactive nonlinear elements, and
have touched only upon some of their characteristic
properties. Our aim was to call the attention of
large groups of scientific workers engaged in
electronics or making use of electronics, to non-
linear reactance elements and particularly to
parametric systems, and to call their attention
to the developing possibilities of employing such
systems in certain devices in lieu of the more
cumbersome, more complex, and less reliable
vacuum-tube devices, and also to solve new prob-
lems in technology of amplification, modulation,
control, etc. A very important factor in the devel-
opment of reactive nonlinear elements is the devis-
ing and investigating of the new readily-controlled,
reactive elements of high Q and low inertia. In
particular, work is being done on the use of ferro-
magnetic resonance phenomena in parametric sys-
tems.32:33:3,35  Ogeillations in such systems are
analogous to those in the reactive modulators con-
sidered here, but are also subject to many phys-
ical peculiarities of the behavior of ferromagnets
in microwave fields.
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