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1. INTRODUCTION

A<LGAINST the background of the brilliant succes-
ses of spectroscopy, which has long since become
a powerful and, for the time being, indispensable
means of scientific research and manufacturing
control, a serious gap has been all the more notice-
able in recent years. The existing methods of spec-
tral analysis are shown to be of little fruitfulness,
if not completely powerless, when applied to light-
scattering objects. The classic example of this is
the phenomenon of the self-reversal of spectral
lines, which at the present time lend themselves
only to comparatively rough, semiquantitative e s -
timates. The situation is still worse with the r e -
gion, very broad in the variety of objects and ex-
tremely important in practical use, of spectral
analysis of materials in a dispersed state. Either
because of their nature or because of the character
of the analytical problems, these substances permit
only the application of absorption methods. The im-
portance of such a type of problem can be judged if
only by a simple enumeration of some of the ob-
jects that are treated therein. These include in
first degree all kinds of pigments, powders, col-
loids, polymers, aero-and hydrosols, emulsions,

adsorbates, mineral formations, ceramics, poly-
crystalline and fibrous materials, and, finally,
the majority of biological objects — blood, chloro-
plasts and tissues. Furthermore, it happens fre-
quently, especially in infrared spectroscopy, that
one has recourse to artificial dispersion of mate-
rials under study if their absorption capability is
too great for the use of traditional methods; below
we shall see that it is reasonable to turn to this
approach even in the case of very weak absorption.
Virtually all the same problems arise also in con-
nection with luminescent powders.

Up to the present time, there have been thou-
sands of researches devoted in this or that measure
to the spectroscopy of dispersed materials. How-
ever, if one considers them from the methodologi-
cal point of view, then it is easy to find that in the
overwhelming majority of cases the specific nature
of object either was not considered at all, or was
considered in very primitive fashion. This fre-
quently not only limited the amount of information
and lowered its reliability, but also led to direct
mistakes. Yet, in recent years, a fairly large num-
ber of theoretical and experimental works have
appeared which, if they do not permit us to solve
the fundamental methodological problems, do in
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every case state them clearly. Therefore, it
seems opportune to review the present state of
spectroscopy of dispersed materials, and to mark
out those problems whose experimental and theo-
retical study is most essential from the viewpoint
of the development of methods of spectral analysis.
We shall consider below the theoretical foundations
of spectral analysis of dispersed materials — the
experimental data will be discussed in Part 2.

The specific difficulties, which we mentioned
above and which stand in the way of the develop-
ment of the spectroanalysis of dispersed materials,
are connected in the final analysis with the neces-
sity of separating absorption effects from scatter-
ing effects. Even in the case of individual parti-
cles of rather small dimensions, this problem r e -
quires special investigation.

On the other hand, the transition to an aggregate
of many particles, that is, to a dispersive medium,
is associated with a qualitative complication of the
character of the analytical problem itself, since
here various effects of the mutual irradiation of the
particles inevitably begin to manifest themselves;
these distort the picture materially. In other
words, in going from single particles to their aggre-
gate (and in the great majority of practical prob-
lems we must deal with the dispersive medium and
not with individual particles), we enter into the r e -
gion of the optics of scattering media. Therefore,
the development of spectral analytical methods
must be based first on an understanding of the laws
of scattering and the propagation of light in a dis-
persive medium. We shall attack the problem un-
der consideration from just this point of view.
However, inasmuch as the optics of scattering
media possesses a number of specific peculiari-
ties, and inasmuch as the fundamental representa-
tions referring to this region are burdened, for
reasons of historical character, by widespread
errors , it is appropriate to begin a discussion of
the questions of interest to us from basic princi-
ples. It is necessary above all to make some gen-
eral observations.

Until comparatively recently the possibilities of
a theoretical investigation of the interaction of ra -
diation with matter within the framework of optics
were restricted essentially to two limiting cases.
On the one hand, there is the propagation of radia-
tion in quasi-homogeneous media, where the param-
eters of the radiation field changed smoothly and
comparatively slowly as functions of the spatial co-
ordinates. On the other hand, there are the phenom-
ena of emission, absorption and scattering of radia-
tion by single particles, or by inhomogeneities in-
terspersed in a homogeneous medium; in this case

the object of study becomes the act of a sharp lo-
cal transformation of the radiation field under the
action of the material. Bordering directly on the
latter circle of problems are questions connected
with local transformations experienced by radiation
at sharp single boundaries of quasi-homogeneous
media (reflection, refraction, etc.).

The intermediate case of the propagation of r a -
diation in media which do not satisfy the condition
of quasi-homogeneity (including turbid scattering
media) remained, and indeed still remains, little
studied with the exception of a comparatively small
number of special cases. It would appear that, un-
der the pressure of numerous practical needs, this
circle of problems forms, in ever increasing de-
gree, one of the fundamental directions of develop-
ment of contemporary physical optics. One need
only recall the recent successes of the optics of
thin films, i.e., of essentially inhomogeneous sys-
tems, or the vigorous development of the theory of
radiation transfer. Moreover one must mention
the inadequate attention given to these problems by
a wide variety of physicists which must be attrib-
uted to the complicated nature and originality of
these problems and a certain alienation of them
from the traditional directions of development of
contemporary physics.

The restriction of the theory of propagation to
quasi-homogeneous or, in the best case, regularly
inhomogeneous media is dictated by the desire to
preserve the applicability of Maxwell's phenom-
enological equations, which permit us to separate
the theory of propagation from the theory of scat-
tering and the theory of dispersion phenomena.
The appearance of molecular (both classical and
quantum) optics did not change the state of affairs
essentially because its contribution was limited
precisely to the region of scattering theory and
dispersion (determination of material constants)
in quasi-homogeneous (molecular) media.

Turning to scattering media, we are at once de-
prived of this possibility. The decisive factor that
determines the specific nature of the conditions for
the propagation of radiation in a statistically in-
homogeneous medium is the mutual exposure of the
light-scattering inhomogeneities. Therefore, even
if one succeeds in keeping scattering theory and
propagation theory strictly separate, the latter
deals essentially with the determination of the ef-
fective field in which the separate inhomogeneities
are located and with the interference of waves scat-
tered by them. Inasmuch as the outstanding pecu-
liarity of turbid media is the irregularity of their
construction, we are confronted with statistical
problems which do not allow us to make use of the
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equations of phenomenological electrodynamics,
nor to separate dispersion theory from the theory
of propagation.

However, a closer examination indicates1 that
the corresponding statistical problem admits of
important simplification. It is shown that the mu-
tual influence of the inhomogeneities breaks down
essentially into two parts — coherent and inco-
herent. The coherent part, for which only the im-
mediate vicinity of this or that scattering inhomo-
geneity is actually responsible, is manifest here
exclusively in two effects: 1) dispersion phenomena,
i.e., a change of the effective complex index (gen-
erally a matrix) of refraction of the medium, and
2) in the difference of the effective function (gen-
erally a matrix) of the scattering from the medium
for an isolated particle. At the same time the in-
coherent part of the interaction, which owes its ori-
gin to the whole volume of the scattering medium,
enters in the form of multiple scattering and there-
fore can (with known reservations) form the sub-
ject of an independent investigation.

Inasmuch as all three factors — optical proper-
ties of the isolated particle, coherent cooperative
effects, and multiple scattering — are important
for the solution of spectroscopic problems, we
shall consider each of them separately.

2. OPTICAL PROPERTIES OF AN ISOLATED
PARTICLE

The immediate problem of an absorption spectro-
analytic experiment is the determination of the spec-
tral dependence of the absorption coefficient к and
(or) the index of refraction n of the substance
forming a particular body. If the body is homoge-
neous and rather large in comparison with the op-
tical wavelength, then diffraction and surface ef-
fects can be eliminated with the help of traditional
methods; hence, no difficulties in principle arise
in the realization of the spectro-analytical experi-
ment. However, if the dimensions of the body are
comparable with the wavelength of light, then both
diffraction and surface effects begin to play the
dominant role and it is not possible to separate
them. In this case the particle no longer enters
as an individual entity characterized by certain
optical properties, and the basic problem of the
theory of scattering by small particles consists
indeed of the establishment of the connection be-
tween these properties, the geometric parameters
of the particle, and the optical parameters of the
material of which the particle is composed. By
way of example, we note that the absorbing prop-
erty of a particle depends essentially on what part
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FIG. 1

of the radiation incident upon it can penetrate to
the interior of the particle, i.e., on the condition
of the diffraction of light on its surface, and in turn
on its dimensions and shape. Another example is
the important effect of the surface (for example,
adsorbed) layer on the optical properties of a
particle, especially the effect due to a sharp in-
crease in the specific area of the interphase bound-
aries in the case of dispersion.

In what way should we characterize the optical
properties of the particle as a whole? Obviously,
these properties must first find their expression
in the character of the radiation field scattered by
the particle, including the character of its polariza-
tion. We assume that a completely (generally ellip-
tically) polarized plane light wave is incident along
the z axis on a particle located at the origin of
the coordinates (Fig. 1); the components of the
electric field intensity of this wave are E x and
Ey, and we observe the light waves scattered in
the direction r, which is defined by a polar angle
$ (scattering angle) and azimuth <p. Then, as a
consequence of the linearity of the equations of
electrodynamics, the meridional and the latitudinal
components E^ and E^ of the electric field of
the scattered wave at a distance r from the par-
ticle (sufficiently large so that the point of obser-
vation is in the wave region) will be equal to

r W
<E,
E

(2.1)

where the components of the matrix щ^ depend
upon the angles £ and <p, and naturally on the
wavelength. Thus the amplitude scattering matrix
/̂ ik completely characterizes the scattering prop-
erties of the particle.

On the other hand, for reasons which will be ex-
plained below, the radiation field must be character-
ized, within the framework of the optics of scatter-
ing media, not by the field intensities, but by cer-
tain statistical parameters that are additive for in-
coherent light fluxes. Among such parameters are
the so-called Stokes parameters, which entirely
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characterize the state of the radiant flux from the
viewpoint both of its intensity and its polarization,
and which are genetically connected with the quan-
tum-mechanical density matrix.* In generalized
form, the Stokes parameters Ŝ  are defined by the
relation

(2.6)

= l , 2, 3, 4) (2.2)

and can be incorporated in the single four-dimen-
sional S^ojce^vector^garameter S. Here, (Tj is a
unitary matrix of second rank, while <x2, a3 and
04 are Pauli matrices which permute in cyclic
order, beginning with the third. For clarification
we recall that

Sl = /, S, = Ipcos2Ц, (2.3)

where I is the intensity of the light beam, p is
the degree of its polarization, ф is the angle be-
tween the direction of the principal polarization
and some arbitrarily chosen reference plane that
includes the direction of the light beam, and q is
the so-called degree of ellipticity, equal to the
product of the angular frequency of the radiation
and the flux density of the spin angular momentum
of the light wave divided by its power.

Again, as a result of the linearity of the equa-
tions of electrodynamics, the vector-parameter of
the light wave scattered by the particle is con-
nected with the vector-parameter of the light
wave irradiating the particle by the linear relation

с scat A (2.4)

where the energy scattering matrix D is of fourth
rank and is directly related to the matrix /лц^: the
components of D are real bilinear functions of the
components Djk and their conjugates (for details,
see reference 2).

Furthermore, it is reasonable to characterize
the scattering particle by the transverse scattering

where the component dn coincides with the so-
called scattering function or scattering indicatrix,
which is widely used in the literature on light scat-
tering.

But not all the energy carried away by the par-
ticle from the incident wave is scattered; part of it
is absorbed by the particle. Therefore, the optical
properties of the particle are also described in
terms of the attenuation (extinction) cross section
!°, i.e., the fraction of the power carried away by
the particle independent of the way in which this
power is consumed. To determine f °, one must
consider the energy flux through a closed surface
surrounding the particle, with allowance for the
interference of the incident and scattered waves.
For this purpose, in particular, one can expand the
scattered wave field in a set of coherent plane
waves of different directions, and take two infinite
planes in front of and behind the scattering particle
as the enclosing surfaces.1 Completing such an ex-
pansion, and denoting by Et (•&, cp ) and E2 (•&, <p)
the components of the electric field of the plane
wave of direction (A cp), we again obtain a rela-
tion of the form (2.1) with replacement of the ma-

) ЬУ the matrix g ^ (•&, <p). Fur-trix ~Mik (

ther, computing the energy flux through the enclos-
ing planes and taking it into account that

(2.7)

where к = kon0 is the wave vector in the medium
surrounding the particle, n0 the index of refrac-
tion of the medium, k0 = 27г/А., and б is the Dirac
delta function, we find readily that the transverse
cross section of attenuation is equal to

cross section a ° i.e., by the fraction of the light i" = - щ> { По U'i, (0) 4-.?•>, (0)| j Re [gn (0) - Stt (0)]
•y.f

power carried away by the particle from the wave
irradiating it and scattered in various directions.
However, it immediately follows from (2.3) and
(2.4) that the transverse scattering cross section
depends on the character of the polarization of the
incident wave. Therefore, it is advantageous in a
number of cases to introduce the transverse scat-
tering cross section q-0 for a completely unpolar-
ized incident wave (s\n0 = S^nc = s j n c = 0). We
can then set

Dik = ^dik, (2.5)

which corresponds to the normalization condition

*For further details on the Stokes parameters and their prop-
erties, see reference 2.

1 111 _

с" in с

(2.8)

where the zero in the parentheses means that the
values of gjĵ  are those corresponding to plane
waves traveling along the z axis parallel to the
incident wave (•& = 0). It is seen from (2.8) that
f° depends essentially ou the polarization of the
incident wave and that this dependence disappears
only in the case of isotropic particles.

Finally, to describe the particles, we introduce
also the transverse absorption cross section S°,
which is defined as the difference between the at-
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tenuation and scattering cross sections:

T Tie I /T°

where by c?0 is understood the quantity

K
rinc rinc

(2.9)

(2.10)

which depends on the polarization of the incident
wave; the integration is carried out over all the
scattering angles [see (2.4)].

In a number of cases, it is reasonable to intro-
duce the attenuation cross section 1° and the ab-
sorption cross section aj for a completely unpo-
larized incident wave ( S m c = S^110 = S m c = 0),
carrying out the corresponding renormalization of
the matrix g^ . in this case, an expression of the
form (2.9) remains in force for !°, a 0, and a0.

It should be noted that all the quantities men-
tioned, which characterize the optical properties of
the particle, depend on the orientation of the latter
relative to the direction of incidence. Only in the
case of isotropic particles does this dependence,
and also the dependence of f°, S°, and <т° on the з
polarization of the incident beam vanish and the lat-
ter quantities can be considered as the actual char-
acteristics of the scattering particle, which do not
depend on the conditions of its irradiation. With cer-
tain reservations, the latter statement can be ex-
tended to an ensemble of non-isotropic, randomly
oriented and non-interacting particles, wherein the
quantities 1°, a9, and ст° will have the meaning of
averaged statistical characteristics.

We now turn our attention to the consequences
that follow from what was said relative to spectro-
analytical problems. First, a transition from the
rather numerous optical characteristics of the
particle as a whole to the few (for a given wave-
length) parameters that characterize the material
of which it is composed (n and к), its dimensions
and, in the worst case, its shape and orientation,
requires a well-developed theory of light scattering
by small particles. The contemporary state of
scattering theory (see, for example, references
3 and 4) is very far from being able to serve reli-
ably in problems of this type. In fact, the diffraction
problem has been solved only for particles of very
simple shape, and essentially only in principle at
that. The solutions obtained, with few exceptions,
are expressed in the form of complicated series,
in which it is necessary to take into account an
enormous number of terms of the expansion. In
practice, this reduces to .the situation that the solu-
tion can be obtained only by numerical calculations
on mathematical machines. Therefore, at the pres-

ent time, we do not have at our disposal even a suf-
ficient set of detailed partial solutions, which could
serve as a more or less reliable set of basic laws
suitable for the interpretation of the experimental
data. The existing tables are modest in scope, as
a rule, ignore polarization effects, and refer almost
exclusively to nonabsorbing particles.

We have discussed above the direct problem of
scattering theory — the determination of the opti-
cal characteristics of a particle from its given
properties. The situation is still worse for the
solution of the inverse problem, which is necessary
for spectro-analytical purposes. Here, essentially
nothing has been done, and one can hardly hope to
obtain any sort of rigorous solution in the near
future. Therefore, it is of great importance to try
such approximate methods of solution of the inverse
problem of scattering theory as would guarantee a
semi-quantitative or even qualitative approximation,
and would permit us to determine the extent of ex-
perimental information on the optical properties of
particles necessary for analytical purposes. In
such a state of the theory, the empirical and semi-
empirical methods of investigation of basic depend-
encies acquire a special importance; unfortunately,
experimental researches in this direction have been
practically nonexistent to date.

Further, it should be borne in mind that the
spectral dependences of a0, <r°, and f° for par-
ticles of a given size do not correspond at all to the
spectral dependences of n and к of the material
forming them, and reflect them only in very indi-
rect form. Thus, for particles whose dimensions
are appreciably greater than the wavelength of the
light, i° is virtually independent of A., and is
equal to twice the geometric cross section of the
particle,3 while the absorption inside the particle
affects essentially the amount of light scattered in
the rear hemisphere. The latter circumstance, in
particular, frequently prevents us from obtaining
even qualitative information on the actual absorp-
tion spectrum of dispersive material by measuring
the attenuation of a parallel light beam by a thin
layer of scattering particles. This was decisively
shown in the experiments of E. V. Shpol'skii and
A. A. Il'ina with erythrocytes.5 '6 It was shown by
the same experiments that the character of pure ab-
sorption of the hemoglobin contained in the erythro-
cytes is much more reliably determined in scattered
than in transmitted light. We shall see below that
just this circumstance permits the realization of
those specific possibilities which are connected
with the use of the effects of multiple scattering.

Another effect, which appreciably distorts the
spectrum of the attenuation of light by a particle
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FIG. 2. a —transmission curves of Christiansen filters;
b — dispersion curves. A — dry rock-salt powder; В — sodium
chloride powder suspended in carbon bisulfide; С — pure car-
bon bisulfide; E — rock salt; D — carbon bisulfide.17

(or by a thin layer of particles ) in comparison
with the absorption spectrum of the material com-
posing it, is the sharp dependence of the scatter-
ing cross section on the ratio of the index of re-
fraction of the particle to that of the surrounding
medium. This effect, the operating principle of
the well-known Christiansen optical filter* (which
consists of a layer of a suitably chosen dispersive
medium), is illustrated in Fig. 2, in which the
sharp increase in transmission as the index of r e -
fraction of the particles approaches that of the im-
mersion liquid, is clearly evident.17 A unique var-
iant of this effect (Fig. 3) is the transmission of
a disperse medium in the region of a resonance
absorption band of the dispersive material, con-
nected with the decrease in the index of refraction
of the latter in the region of anomalous dispersion;
this effect is frequently observed when matter is
dispersed in air (powder, water, fog, etc) . 1 8 ' 1 9

We note that the decrease in the extinction cross
section takes place in the given case chiefly as
the result of the decrease in the scattering ability
of the particles, i.e., cr°. Naturally, this suggests
the possibility of the elimination of scattering
effects by immersing the scattering particles in
suitably selected immersant. However, the effects
of scattering can disappear completely only if the
real and imaginary indices of refraction of the
particles and of the medium surrounding them co-
incide (see, for example, references 3 and 16).
Therefore, application of the immersion method,
for all its undoubted attraction, requires precau-
tions and special preliminary investigations.

We point out one more significant effect of the
*In addition to the effect described, the cooperative effects

considered in the next section (see references 7-16) also play
an important role in the Christiansen filter.

12 13 /•»

FIG. 3a. Transparency of a layer of powdered quartz with
particle dimension 28.1 ц. Thickness of equivalent solid layer
of quartz, 7.8 ft. "
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FIG. 3b. Dispersion of quartz (ordinary ray).

dependence of the extinction cross section on the
wavelength. It follows from Mie's theory3 '4 that
for definite relations beween the dimensions of
the particle, the optical wavelength, and the in-
dices of refraction of the particle and the medium
surrounding it, a sharp resonance increase in scat-
tering sets in, which is manifest, in particular, in
the appearance of corresponding minima of trans-
mission, i.e., pseudo-absorption bands. An ex-
ample of this rather well-studied effect is shown
in Fig. 4.2 0

Thus, we see that by measuring the transmis-
sion of a thin layer of a dispersive medium (so
far, we neglect effects of multiple scattering), we
can essentially determine only the spectral varia-
tion of the extinction cross section, and the ques-
tion of how much this variation is responsible for
the spectral dependence of the absorbing ability
of the material of the particle requires a special
study each time.

We are in a somewhat better position when the
dimensions of a sufficiently transparent particle
are so large that we can make use of microspec-
troscopic methods, in which only that light is used
for the analysis which travels through the studied
particle. In this case, it is true, we are usually
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deprived of the possibility of determining the real
thickness of the material traversed by the light,
and we must limit ourselves only to the determi-
nation of the location of the absorption bands and
to qualitative judgments on their intensities.

Finally, in principle, the absorption cross sec-
tion a 0 of an isolated, we emphasize, isotropic
particle can be determined by placing the latter
in a photometric sphere. However, because of
the smallness of the effect, this is realizable only
for sufficiently large particles. But if we attempt
to increase this effect by increasing the number
of simultaneously irradiated particles, then we
inevitably encounter noise due to multiple scatter-
ing. Thus, we see that the methods of direct de-
termination of the extinction or absorption cross
sections are not among the best or most suitable
ones, and, in any case, do not guarantee the sepa-
ration of the effects of absorption and scattering.

A great deal of information, at least in prin-
ciple, can be extracted by studying the angular
dependence of the scattering matrix. By itself,
measurement of the angular dependence of the
scattering matrix of a single particle, especially
for very small and very large scattering angles,
is a very complicated and sensitive experimental
problem, in which one of the fundamental obstacles
is the extreme weakness of the scattered light. To
be sure, there is some possibility of increasing
the measured effect by accumulation (for example,
photographic) in the successive viewing of many
particles.2 1 But here we come against the neces-
sity of guaranteeing the strict identity of the meas-
ured particles; furthermore, we do not reduce in
the least the demands as regards the signal-to-
noise ratio, which, in the last analysis, determines
the minimum size of particles accessible to meas-

urement. The number of simultaneously irradiated
particles can be increased within very narrow (and
not yet sufficiently clear) limits because of the
noise created by multiple scattering. It must be
noted that experimental investigations of a detailed
character are still extremely few in number.

One finds in the literature a whole series of
attempts at determining the scattering cross sec-
tion a0 by integrating the experimentally-observed
curve of the angular dependence of the intensity of
scattered light (including the use of various ne-
phelometers). However, as a consequence of the
difficulty of measuring the latter at very small
scattering angles, especially in the region of the
diffraction aureole, the results so obtained are
very unreliable.

In addition, there are grounds for assuming
that the development of procedures for interpre-
tation of the angular and spectral dependence of
the scattering matrix will allow, in the future, a
direct determination of the spectral characteris -
tics of the material forming the particle. A guar-
antee of this is the success in the development of
procedures for determining particle dimensions
from the structure of the corona (for particles
commensurate with the optical wavelength) or
aureoles (for much larger particles).

3. COOPERATIVE EFFECTS

While the theory of light scattering (diffraction)
by small particles, in spite of all its inherent dif-
ficulties, exists and is successfully developed, the
first rough steps have scarcely been made towards
an investigation of coherent cooperative effects.
Therefore, we must limit ourselves to the general
outlines of the phenomena that occur in this area.
We shall speak of closely interrelated phenomena
of two kinds — the dependence of the effective field
in which the particles are located on their concen-
tration, and the interference of waves scattered by
neighboring particles. We emphasize that, as a
consequence of the random nature of the spatial
distribution of particles and of their mobilities,
the problem possesses an essentially statistical
character. In particular, the light field, which is
formed as the result of the interference of scat-
tered waves, will be inhomogeneous in space and
fluctuating in time. However, if the detecting ap-
paratus has dimensions large in comparison with
the scale of the interference picture (i.e., the
scale of the distances between particles) and has
a sufficient inertia, then we should be interested
only in the picture averaged over all possible po-
sitions and orientations of the particles. We shall
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begin with a discussion of interference effects, in
which, taking into account the specific character-
istics of the dispersion (non-molecular) of the
medium, we shall modify somewhat1 the well-known
discussions of L. I. Mandel'shtam.22

Let us represent the radiation scattered by the
particle in the form of a set of plane waves in dif-
ferent directions, and consider first waves propa-
gating along the z axis parallel to the incident
wave. Because of the coherence of the scattered
and incident waves, all the plane scattered waves
that we have selected are strictly in phase, inde-
pendent of the positions of the scattering particles.
Therefore, the total intensity of the field scattered
forward by a layer of thickness dl is proportional
to the concentration N of the scattering particles
and, by virtue of (2.7), is equal to

2лЛ
(3.1)

where i, j = x, y, E = E i n c + E s c a t is the total
field in which the scattering particles lie, kj
= кощ is the wave number in the scattering me-
dium (which differs from к = kono, the wave num-
ber in the medium in which the particles are im-
mersed),* and gij(O) are the components of the
matrix gij (defined above) for the scattering
angle d- = 0. If the particles are not identical, then
by gn we must understand the corresponding sta-
tistical average. Since the wave incident on the
layer changes in the path dl (in the absence of
scattering particles ) by an amount - ikE dl, then
we have, in the presence of scattering particles,1 '2

(see also references 4, 23, and 24)

(3.2)

where the components of the dispersion matrix

a r e

j , = iA6£, - - — - ffiJ (0). (3.3)

If the matrix gij(O ) is diagonalized, then for a
turbid medium, one can introduce the concept of
an effective complex index of refraction щ for
each of the alternately polarized components of
the field Ei:

or

" i ^ «u -

(3-4)

~i- J m Sn (0) + i •—?- Re 8 i i (0). (3.5)

•Because of the smallness of nj —n0, one can usually neg-
lect this difference. As is seen from what follows, the intro-
duction of к^ is permissible only if the matrix Vjj is diagon-
alized.

Thus in the general case of anisotropic particles,
the scattering medium is seen to be doubly r e -
fracting (or optically active) and dichroic.1 '2

For the isotropic case, the scattering matrix i>ij
degenerates into a scalar [gn(O) = g22(O) = g(0)].
the real part of which is seen to be equal to
[compare (2.8)]

whence
№° Im g (0) . NJQ

~' ~2kZ

(3.6)

(3.7)"° ' 2/c0 Re g (0)

We note that while the determination of the imagi-
nary part of the index of refraction, that is, the
extinction exponent f°, is usually burdened by the
effect of multiple scattering and by difficulties con-
nected with noise due to the diffraction aureole, the
determination of the phase shift due to the presence
of scattering particles is free of this noise and in
a number of cases can be shown to be more expedi-
ent from the point of view of spectroscopic prob-
lems.

The dispersive medium as a whole must no
longer be characterized by the single-particle
cross sections a0, a°, and !° but by the trans-
verse cross sections (or coefficients) of absorp-
tion a, of scattering cr, and of extinction f of
the medium referred to unit volume (with dimen-
sions cm" 1 ) or to unit mass (with dimensions
cm 2/g). It immediately follows from (3.7) that

f = Nt°

and, correspondingly,

a = Л'ст", а = Na°,

(3.8)

(3.9)

i.e., Bouguer's law (the additivity of the cross
sections) holds for monochromatic light. If we
now identify our particles with non-absorbing
molecules, i.e., we set

g (0) = - ik3a - (3.10)

(compare reference 3), where a is the polariz—
ability of the molecule, then we immediately obtain
from (3.5) the classical expression for the index
of refraction and the scattering ability of a rarefied
gas, not taking into account the difference of the ef-
fective field from the field of the incident wave. In
other words, the relations obtained are valid only
if the distance between scattering particles is so
great that the coherent effects of self-radiation
vanish. If the distances between particles are com-
parable with the wavelength, then these effects cease
to be negligible and the matrix gji(O) acquires an
additional factor, which takes these effects into
account, as it is done in the case of a molecular
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medium by means of the Lorentz-Lorenz formula.
We shall return to this problem. For the moment
we only note that in this case the additivity of the
cross sections is violated and Eqs. (3.8) and (3.9)
lose their validity.

In addition to the general theory stated above,
a number of authors 7" 1 6 have considered coopera-
tive effects in scattering media (especially in
connection with the theory of the Christiansen
optical filter), by starting out from various model
representations of the structure of the medium.

In light flux penetrating a medium described by
the Stokes vector-parameter, Eq. (3.2) must be re-
placed by the equivalent relation

dS^-^KijSjdl, (3.11)

where кц are the real components of the energy
dispersion matrix к and are expressed linearly
in terms of the matrix components VJJ.1 '2

We now consider the fate of plane waves scat-
tered in other directions. As soon as the direction
of the scattered wave ceases to coincide with the di-
rection of the incident wave, its phase begins to
depend upon the position of the scattering particle,
i.e., plane waves scattered by particles are no
longer in phase and it is desirable to investigate
the results of their interference. If the distance
between the particles is much less than the wave-
length then, as L. I. Mandel'shtam22 has shown, in
the absence of fluctuations whose dimensions are
comparable or greater than the wavelength of light,
the scattered waves are completely canceled out in
all directions.* In the opposite case of extremely
rarefied particles, the waves scattered by them
will be completely incoherent with respect to each
other, and the vector-parameter of the light scat-
tered in any given direction will be expressed by
the relation [see (2.4)]

c scat 1
Oj = -

iVV -,inc
(3.12)

where V is the scattering volume and the matrix
_ij /r 2 can be expressed in terms of the matrix
gij (we have not taken the effect of multiple scat-
tering into account). We note that what has been
said is also completely applicable to fluctuations
which we can consider as inhomogeneities of ap-
propriate scale imbedded in the medium; this

*This follows directly from Maxwell's equations, inasmuch
as in this case the medium can be regarded as quasi-homogene-
ous and its properties (and consequently the field intensities)
do not depend on the coordinates x and y. Under these con-
ditions, the periodic solutions of Maxwell's equations will be
plane waves which propagate in directions satisfying Snell's
law.

emerges most clearly in the case of critical opal-
escence.

But as soon as the distances between particles
become comparable with the wavelength, the situa-
tion changes radically. Now the waves scattered
by neighboring particles are only partially coher-
ent, and the degree of coherence depends essen-
tially on the scattering angle and wavelength. While
the coherence can be preserved completely at small
angles, i.e., the scattered waves will completely
cancel one another, at large angles (backward
scattering) it may be completely destroyed, and
the particles will scatter independently. Thus the
cooperative scattering matrix (which we shall

denote by —- h\ in what follows) can differ
4тг J

greatly from the scattering matrix — djj of the

individual particle (in particular the scattering
function ftl can be extended backward), andean
depend essentially on the particle concentration.
Similar effects were observed by Oster and his
coworkers25 in the case of colloids and also, evi-
dently, by A. I. Kolyadin and N. A. Voishvillo26 on
sodium-bo rosilicate glasses.* It should be empha-
sized that in this case the very characteristic spec-
tral dependence of the form of the indicatrix (ma-
trix) and of the absorption coefficient should be ob-
served, t

From the theoretical point of view, the result
of the interference of scattered waves is deter-
mined by the form of the so-called structure func-
tion p (r - r 0 ) , which describes the conditional
probability of finding neighboring particles at the
distance r - r 0 from the point r0, where an ar-
bitrary fixed particle is already located. A theo-
retical consideration of a similar nature, which
bears, it is true, a highly tentative character, is
contained in reference 27 (see also the bibliography
therein), and from a somewhat different stand in
reference 1.

It is worthy of attention that the gradual decrease
of scattering (that is, the decrease of a and con-
sequently of I) with increasing particle concentra-
tion is in no way shown in the relations (3.1) — (3.7),
in clear contradiction of the law of conservation of
energy. Actually, however, the change in the effec-
tive field in which the particle is located is una-
voidably associated with the appearance of cooper-
ative effects, that is, the factor for gij(0), which
depends upon the concentration, and which has

•The explanation advanced by Kolyadin" is quite similar
to the above, but has little basis as a whole, because it as-
sumes, without sufficient justification, the formation of stable
and identical quadrupoles in the glass.

tSee also Sec. 13.
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already been mentioned above, should appear in
relations given (for two-dimensional colloids see
references 1, 28, and 29).

The problem of the determination of the effec-
tive field in a dispersive medium is one of the dif-
ficult problems of the optics of scattering media,
and to date, so far as we know, no satisfactory
solution has been found. In fact, only the case of
a medium with dipole (Rayleigh) scattering par-
ticles has been considered. As is well known, the
Lorentz-Lorenz formula is obtained in the case of
a molecular medium, which is amenable to a quasi-
static approximation, (see, for example, reference
30); this has been generalized by Maxwell-Garnett31

to include volume colloids. The case of a two-di-
mensional colloid with dipole-scattering particles
was considered by the author.1 '2 8*2 9 In particular,
for normal incidence of light on a layer, the effec-
tive field E e f is connected with the field E of
the incident wave by the relation

E
E e f =

i-уцС '
(3.13)

2TTN'
where TJ = 2 > N ' i s the number of part ic les

per unit surface of the layer,

. /Vit/V7 k
^ 2k ' ЗиЛ" (3.14)

and С is the coefficient of dipole scattering of the
particle, which is found from the solution of the
Mie problem (see, for example, reference 3). One
can show1 '2 8 '2 9 that in the transition to a three-
dimensional medium these expressions lead to the
Maxwell-Garnett formula for colloids, and to the
Lorentz-Lorenz formula for molecular media
(see also reference 23). We note that in the case
of a two-dimensional colloid the most important
role is played by the reflection of light from the
underlying surface, which can also be taken into
account.1 '2 8 '2 9

For colloidal complexes and high-polymer mol-
ecules, the calculations of the internal effective
field were carried out by Debye .3 2

Of fundamental interest is the completely dis-
regarded case of the dense packing of scattering
particles, which occurs, for example, in powders,
minerals, biological objects, and also under the
conditions of critical opalescence. The singular-
ity of this case is that the particles are in a
strongly inhomogeneous field (in the non-wave
zone) and one must take into account the longi-
tudinal component of the field of the scattered
waves, and also the very important effects of
mutual screening of the particles. We note that
the expansion of the scattered wave in the non-

wave zone in terms of plane waves leads to the
necessity of considering the so-called inhomo-
geneous waves (see reference 28), i.e., to the
necessity of generalization of the problem of Mie.
The latter is of independent interest from the point
of view of the analysis of the phenomenon of scat-
tering under conditions of total internal reflection,
in particular, in connection with problems of ultra-
microspectroscopy (the dark-field variant).

Returning to the general case, it must be borne
in mind that the mutual irradiation of the particles,
which creates the effective field, also consists of
coherent and incoherent components. In this case
the effective field proper, which influences the
magnitude of the effective index of refraction, is
formed exclusively of the coherent component that
owes its existence only to nearest neighbors. The
incoherent component is what we isolate as mul-
tiple scattering, for which the volume element of
the medium must be regarded as a whole, together
with its own cooperative matrices of extinction

(qj and scattering ~j~fij> which take into account

not only the optical characteristics of the scatter-
ing particles but also the properties of the medium
in which these particles are located.

4. MULTIPLE SCATTERING

Separation of the coherent component of the
mutual irradiation of particles allows us, as we
have seen, to characterize the properties of the
scattering medium by a set of two wavelength-
dependent matrices, extinction кц and scattering

•j- fii, where the latter also depends upon the angle
47Г J

of scattering. Then, account of multiple scattering
can be accomplished even in the approximation of
ray optics, which at once permits a formulation of
the fundamental equation of propagation theory,
namely, the equation of radiation transfer in the
scattering medium.

As is well known, this equation was first formu-
lated more than a half century ago by O. D. Khvol'-
son and later by Schwartzschild, who started out
from rather evident intuitive considerations and
formulated it only as the law of conservation of
energy. The physical meaning of this equation is
very simple. It states that the change in the inten-
sity of the light beam over an element of its length
is composed of the attenuation brought about by ab-
sorption and scattering and of the amplification, by
scattering into this same direction, of the light that
strikes this volume element from all other direc-
tions. In this case it is important that the light
beams scattered by various elements of the vol-
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ume are incoherent with respect to each other,
that is, that their intensities are additive. As we
have seen, this statement is inherent in the defi-
nition of multiple scattering. But we have also
seen that scattering phenomena are described not
by a coefficient, but by a matrix of scattering, that
is, that the fate of the radiant flux depends essen-
tially on the character of its polarization. But since
the character of the polarization inevitably changes
in each scattering act, and is therefore different
for different scattering angles, then, in formulating
the equation of transfer, we can no longer ignore
this difference. This implies essentially the r e -
quirement that the system of ray optics include
all the dynamic characteristics of the photon flux
(its energy, momentum, spin) and that we take into
consideration not only the law of conservation of en-
ergy but also the remaining laws of conservation,
inasmuch as the latter predetermine the form of
the scattering matrix. Furthermore, since the in-
coherent light beams propagating in the scattering
medium have very different past histories and are
mixed in very different proportions or, in other
words, since the process of light propagation in a
scattering medium is statistical in nature, we can-
not retain the description of a light wave by means
of field intensities, we are therefore obliged to turn
to statistical parameters, which are additive for in-
coherent waves. It was pointed out that the compo-
nents of the Stokes vector-parameter are such pa-
rameters. Therefore, taking into account what was
given in Sees. 2 and 3, the equation of transfer can
be formulated in the form1 ' 2

(4.1)

where the integration is carried out over all direc-
tions t>' and <p' of the beams incident on a given
scattering volume, while the extinction and scatter-
ing matrices are referred to unit volume of the
medium. The component S- (i?, cp ) takes into ac-
count the possible self radiation of the volume ele-
ment, of importance for example in the infrared
region or in luminescent media. It should be noted
that in this form the equation assumes a strict
monochromatic character and there are no fre-
quency transformations in the radiation, that is,
the equation is not applicable to luminescence
problems or to problems of self-reversal of spec-
tral lines, since in the latter the shape of the ab-
sorption line is important. The corresponding
generalization is carried out without special diffi-

culty, but we cannot dwell on it. We also note that
Eq. (4.1) is valid not only for light but also for cur-
rents of arbitrary particles with spin V2 .

Many terms of this equation, or more precisely
of the set of four integro-differential equations,
which take into account polarization effects, have
generally the same order of magnitude as those
contining only Кц and fllf which form the clas-
sical transfer equation without consideration of
polarization effects. This leads immediately, as
pointed out above, to the inadmissibility of ignor-
ing polarization effects even in those problems in
which at first glance they do not seem to play a
serious role. Examples of this will be given below.

Equation (4.1) permits us to solve, at least in
principle, all problems of the optics of anisotropic
scattering media, including the theory of electro-
and magneto-optical phenomena in colloids. How-
ever, excluding such specific cases, we usually
encounter isotropic media, especially in spectro-
analytical problems, although the isotropy is com-
monly the result of a random distribution of ori-
entations of anisotropic particles. In this case,
the extinction matrix к^ degenerates into the
extinction coefficient f = a + a, and the equation
takes on the form in which it was first obtained
independently by Chandrasekhar,33 the author,34

and somewhat earlier, for the special case of
Rayleigh scattering, by V. V. Sobolev.35 It is in
this form that we shall consider it further.

In conclusion, we point out that the essential
premise in the derivation of Eq. (4.1) was, as
rightly noted by B. I. Stepanov (see, for example,
reference 36), the assumption that the dimensions
of the scattering particles are much smaller than
the mean free path of the photon in the scattering
medium. From this Stepanov drew the conclusion
that this equation is invalid, for example, in
strongly absorbing powders. However, it should
be noted that the transfer equation has an essen-
tially probabilistic character. Therefore it is
possible, by replacement of local probabilities by
some mean probabilities, to preserve the equation
in unchanged form even in this case, at least for
certain problems. In particular, in the problem
of the reflection of light- from the surface of the
scattering medium, one can evidently speak about
the mean probability of transition of the photon
from one depth to another in a given direction,
about the mean intensity of light at a given depth,
and about the intensity of the reflected light aver-
aged over the surface. It would seem here that the
connection between the parameters of the medium
averaged in such fashion (a, a, fik) and the param-
eters of the individual particles making up the me-
dium needs special consideration, and that the valid-
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ity of the above hypothesis needs a most searching
verification.

5. GENERAL FORMULATION OF THE PROBLEM
OF THE SPECTROSCOPY OF DISPERSED
MATERIALS

Turning aside from the numerous gaps in the
present-day theory, which were partially noted
above, and which seriously complicate practical
application of the theory, we see that the spectro-
analytical interpretation of experimental data for
scattering materials is incomparably more diffi-
cult than in the case of quasi-homogeneous bodies,
and requires much more information about their
properties. In addition, the experimental possibil-
ities of obtaining this information are much broader
and more varied. The radiation field can be meas-
ured not only in transmitted and reflected light but
also within the scattering material and in very dif-
ferent directions. There are also possibilities
available to the experimenter of varying the di-
mensions and shape of the specimen, the conditions
of its irradiation, and also its properties. Examples
of such changes are dilution (with scattering or
non-scattering impurities), which has an effect on
cooperative effects, the introduction of immersion,
which changes the optical characteristics of the
individual particles and, in a number of cases, a
change in the degree of dispersiveness of the ma-
terial. Therefore, to plan the experiment reason-
ably, one needs to know how the different factors
affect the result of the experiment. Furthermore,
the multiplicity of experimental possibilities de-
mands a careful and skillful selection of the mini-
mum amount of experimental information which
will guarantee the success of the analytical inves-
tigation, and which is essentially determined by
the character of the analytical problem. At the
present time, there is still no possibility of ob-
taining well based answers to all the questions
arising here, but many of them have already been
subjected to some degree of investigation; their
consideration forms the basic content of what fol-
lows. Here we shall attempt to formulate only
certain general situations which follow from what
has been said.

In all cases, direct experiment gives evidence
on the character of the radiation field at the bound-
aries or inside the specimen as a function of the
geometric characteristics of the latter, and the
conditions of its irradiation. From these data,
we can in principle extract the cooperative optical
characteristics of the medium — the coefficients
of attenuation and scattering (the medium is as -

sumed to be isotropic ) and the scattering matrix.
However, the possibility of extracting such de-

tailed information hinges by the solvability of the
transfer equation (4.1) relative to quantities of in-
terest to us.

Up to the present time the development of the
theory of propagation of radiation in scattering
media has followed two principal paths. The es -
tablishment of a more precise formulation of the
transfer equation itself has led to the development
of mathematical methods of its solution for various
models of the turbid medium, as a result of which
a large, independent branch of mathematical physics
was developed (see references 33 and 35). How-
ever, the crudeness of the corresponding mathe-
matical apparatus materially encumbered the pos-
sibilities of its application, and dictated a restr ic-
tion to extremely schematized cases. It is true,
the application of mathematical machines permits
us to solve a wide circle of straight-forward prob-
lems of propagation theory, but the inverse prob-
lems, which are of special interest from the view-
point of spectroscopy, still remain practically un-
touched and not even propounded, with a few ex-
ceptions about which we shall speak below.

As a consequence, it appears that a great deal
of effort has been made to obtain methods based
on replacement of Eq. (4.1) by very crude repre-
sentations the validity of which remains unestab-
lished. They are frequently doubtful from the theo-
retical viewpoint and, in the great majority of cases,
they have not been subjected to serious experimen-
tal test. Sometimes this course has led to more
or less satisfactory (at least at first glance) r e -
sults, which represent an essential step forward.
But the reasons for such (generally surprising)
success, and also the limits of applicability of the
corresponding simplified expressions, remain
undiscovered.

Therefore, giving their due to both the paths
mentioned, one can hardly consider them as a
reliable basis for the development of spectral
analysis of dispersive materials. It seems that
the only correct path is as rigorous and general
a formulation of the transfer equation as possible
and a subsequent search for such experimental
conditions for which there is a possibility of ob-
taining approximate solutions of the inverse prob-
lem in comparatively simple analytical form, and
with a sufficient degree of accuracy. By approxi-
mate solutions we mean primarily the establish-
ment of connections among the different types of
experimentally-measured characteristics of the
light field, without far-reaching a priori assump-
tions regarding the form of the scattering matrix.
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The latter requirement has a fundamental charac-
ter, since, under actual conditions, the scattering
matrix is unknown, and all indicatrix and polariza-
tion effects would be hidden in experimentally de-
termined parameters. It should be especially noted
that a certain stylization of the transfer equation,
based on empirical and theoretical investigation of
the character of the light field in the scattering
medium, should accompany this search for such
"permissible" experimental conditions. The pos-
sibilities of such stylization undoubtedly exist,
because the transfer equation (4.1) permits us to
obtain a much more detailed picture of the light
field than is usually required for purposes of
spectral analysis, one that corresponds to the
essentials of the physical problem as a conse-
quence of the non-monodisperse character of the
material and the incomplete monochromaticity of
the light. The well-known low sensitivity of the
form of the solution to a variation of certain pa-
rameters of the medium, and the success of the
rough-model representation already mentioned
bears convincing witness to this. However, there
is still not enough of either experimental or theo-
retical investigations of the character of the light
field in the scattering medium, which could serve
as a basis in the search of means of such styliza-
tion. Yet they are essential also for an explana-
tion of the amount of information actually obtain-
able about the optical properties of the medium,
with account of its inherent statistical nature (in-
cluding the unavoidable fact that the particles are
not identical) and of the completeness and relia-
bility of the experimental data obtained in practice.

Thus, under favorable (that is, "solvable") ex-
perimental conditions, a certain set of measure-
ments permits us, at least in principle, to obtain
the effective optical characteristics of the medium
as such. It is evident that the next stage should be
the elimination of complications brought about by
the cooperative effects. The simplest from this
point of view is the case of strong dilution, where
the cooperative effects vanish. If the character
of the object does not allow such a strong dilution,
then the cooperative effects must be subjected to
a special investigation, the concrete character of
which it is difficult to discuss because of the in-
adequacy of the theory of these effects. We note
only that the experimental criterion of their ab-
sence is the satisfaction of the conditions (3.8)
and (3.9) and the independence of the form of the
scattering matrix of the concentration.

Finally, the transition from optical and geomet-
rical characteristics of the scattering particles to
the optical characteristics of the material of which

they are composed is an entirely separate problem,
lying, as we have seen, outside of the framework
of the theory of propagation and dispersion, and
representing the inverse problem of scattering
theory. Inasmuch as the latter still does not
guarantee any possibility for the existence of a
similar transition, the establishment of the em-
pirical rules by means of a study of artificially
dispersed materials is of great importance. We
note that in industrial control of dispersed mate-
rials, control of the optical and geometrical char-
acteristics of the particles as such is usually ade-
quate and there is no need for dealing with the
characteristics of the material of the particles.

The marked differences of the three spectro-
analytical problems described above, namely the
determination of the optical characteristics of the
scattering medium, the transition from these char-
acteristics to the individual characteristics of the
particles and, further the transition to the optical
properties of the material of the particles, has in
our view fundamental importance. Not only the
theoretical treatment, but also the methods of ex-
perimental investigations and the practical prob-
lems to be solved are entirely different. Yet, by
tradition, these three problems are frequently con-
fused, which, naturally, holds back their solution.
In what follows we shall deal essentially with the
first of these problems.

6. SUBSURFACE CONDITIONS AND THE SPEC-
TROSCOPY OF WEAKLY ABSORBING MATE-
RIALS

A detailed experimental study of the conditions of
light in the interior of colored scattering media was
made by V. A. Timofeeva.37"39 It led her to the dis-
covery of a number of empirical laws, which were
confirmed by other experiments, for example in the
optics of the sea,40 and also led to the theoretical
studies of V. A. Ambartsumyan,41 V. V. Sobolev,42

Chandrasekhar,33 M. V. Maslennikov43 and S. G.
Slyusarev.44 In addition to the direct applicability
of these laws to the solution of many problems of
the optics of scattering media, they were shown to
be noteworthy in that they disclosed certain new,
rather original possibilities of absorption spec-
troscopy. However, the theoretical investigations
mentioned above, which brought about the solution
of the direct problem of the theory of propagation
and which assume the scattering function to be
known, cannot serve as the basis for the solution
of analytical problems.

In addition, it has been shown45'46 that the condi-
tions of light in a semi-infinite scattering medium
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illuminated from the surface belongs among those
situations which yield an approximate solution of
the transfer equation in a form suitable for spec-
tr о-analytical purposes.

It follows from very general physical considera-
tions, which have been confirmed by rigorous math-
ematical analysis,43 that at a sufficient distance
from the boundary, where there is no longer any
direct light, there should be established certain
stationary forms of the attributes characterizing
the angular dependence of the quantities Si (in-
cluding the brightness ) for the scattered light.
These forms, which are determined by the optical
properties of the same scattering medium, do not
depend either on the depth or on the character of
the light flux incident on the external boundary of
the medium. Moreover, in the case of an isotropic
medium and with properties independent of the hor-
izontal coordinates, the amplitude dependence of
the values of Si must also disappear. Conse-
quently, at a sufficient distance z we can write

S{ (z, u., ф) = S{ (u.)/?(z), (6.1)

where ц = cos &, and £ is the angle between the
direction of the light beam and the normal to the
irradiated surface of the medium. Substituting
(6.1) in (4.1) and integrating over z, we obtain

Я(2) = е-''(*-*о)( (6.2)

where ZQ is a constant depending essentially on
the boundary conditions, while V is determined
from the condition of solvability of the equation

, (6.3)

w го JO Z.CM

in which it is assumed that

(6.4)

is the specific absorbing ability of the medium,

and

(6.5)

(6.6)

Thus, at sufficiently large distances, a decrease
in the intensity of the radiation St with depth takes
place according to the exponential law (6.2) with a
damping coefficient t' = yl which does not depend
on the direction of the ray and which differs from
the coefficient of extinction k. We note that, gen-
erally speaking, Eq. (6.3) yields a series of values
y, but at a sufficiently great depth z, all solutions
are damped out with the exception of that corre-
sponding to the smallest value of y, which will in-

1
\o°

Jdr

FIG. 5. General picture of the angular and subsurface dis-
tribution of intensities in a milky medium with a small specific
absorption /3 (t = 1.9 cm"1)-37 The numbers on the curves refer
to the angle &.

deed contribute to the establishment of a stationary
mode.

This analysis was confirmed by direct experi-
ments of V. A. Timofeeva34 and Lenoble40 (Fig. 5).
Integrating Eq. (6.3) with respect to ju, and con-
sidering the properties of the scattering matrix
for an isotropic medium45 [in particular, the nor-
malization condition (2.1)], we obtain

where

Ф у

(6.7)

(6.8)

is the mean cosine of the angle of inclination of the
light beams,

<D V = (6-9)

is the density of the light flux across a horizontal
area, i.e., the difference of the densities of the in-
coming and outgoing fluxes, and

(6.10)
- l

is the so-called volume density of the radiation
field, i.e., the radiant flux incident on a spherical
surface of unit area. Taking (6.4) and (6.5) into
account, along with (2.9) which is valid for an iso-
tropic medium, we can rewrite (6.7) in the form

a = f'( (6.11)
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Thus, by measuring the I, Фу> and $s in the in-
terior of the scattering medium, we can, making
use of (6.11), find a directly, i.e., the actual ab-
sorption coefficient of the scattering medium; fur-
thermore, knowing the coefficient of extinction f
(see Sec. 9), we can find the scattering coefficient
ст.

It is important to note that in addition to the iso-
tropy of the medium, the only important condition
that predetermines the satisfaction of the relation
(6.11) is the assurance of the subsurface conditions.
The depth of establishment of the latter in a homo-
geneous medium is determined by the quantity /3,
by the form of the scattering function, and by the
character of the illumination of the surface. For
directed radiation, it can be significant, but if the
radiation is diffuse and close to the state of the sub-
surface conditions, then it is not large. Therefore,
the relation (6.11) retains its force also for media
which are inhomogeneous in depth ( say, for the
sea), when the scale of the inhomogeneity is suffi-
ciently large in comparison with the depth of estab-
lishment of a changed stationary mode.

In the case of a weak specific absorption (j3 « 1),
both theory4 5 '4 6 and experiment37'38 lead to the ap-
proximate relation

Vs^y^, (6.12)

where q is a constant dependent on the form of
the scattering function. The constant can be deter-
mined either from the relation

9 = -р-Й. (6.13)

(if the coefficient of extinction f is known) or (by
artificially coloring the medium with a non-scatter-

ing dye of known a) from the dependence of
/2

Г
I

on the concentration of the dye. Extrapolation of
the corresponding straight lines to zero should
give the values of the coefficient of absorption a 0

of the undyed medium. The situation is illustrated
in Fig. 6, taken from reference 38. It is extremely
significant that in a highly scattering medium (t
» 1) even very small absorption produces a sig-
nificant change of f (see references 6 and 12) —
the scattering medium here plays the role of a
multi-channel cuvette. Therefore the dispersion
of weakly absorbing materials, and also the intro-
duction of a disperse, non-absorbing phase in the
weakly absorbing liquid, must produce a large
shift, by approximately two orders of magnitude,
of the lower boundary of absorption coefficients
accessible to measurement. 3 7 ' 3 8 ' 4 5 ' 4 6

Finally, changes of the angular distribution and
polarization of the scattered light in the interior

-Hal-
0.02 ОМ 0.06

a~do (in cm'1)
0.08

FIG. 6. Dependence of — on ( a - a0) for a dyed milky

medium; c^ is the coefficient of absorption of the undyed
medium.38

of the scattering medium, 3 7 ' 3 9 ' 4 5 ' 4 6 where polariza-
tion effects are shown to be occasionally very sig-
nificant, especially upon increase in the absorp-
tion,46 can also be used for spectral analysis pur-
poses. However, the interpretation of the laws45

obtained here entails certain difficulties and r e -
quires additional investigation. On the other hand,
the character of the radiation field in the interior
of the scattering medium contains abundant infor-
mation about the scattering matrix.4 5 This infor-
mation, as we have seen, is of independent interest
and must be the object of a special study.

In conclusion let us point out that under consid-
erable absorption, the establishment of the subsur-
face condition is connected with a very strong at-
tenuation of the light, which makes experiments of
this nature impractical. Another obstacle in this
case is that the measuring apparatus must be small
in comparison with the mean free path of the pho-
ton. Therefore, in practice, the method described
here is applicable only to weakly absorbing media
(j3 « 1). However, the latter is connected with the
requirement of a sufficiently large amount of vol-
ume filled with the medium which, together with
the necessity of immersion of the apparatus in the
medium under study, is a serious limitation. How-
ever, in a number of cases (certain biological ob-
jects, emulsions and hydrosols, the sea and other
natural waters, clouds, smokes and fogs, snow and
snowy masses, etc.), these limitations do not play
a serious role.

7. REFLECTION FROM THE SURFACE OF A
SCATTERING MEDIUM IN THE CASE OF
VERY STRONG ABSORPTION

The second case which permits an approximate
solution of Eq. (4.1) in a form suitable for spectral-
analysis purposes is the reflection of light from the
surface of a scattering medium that possesses a
high specific absorption.
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Inasmuch as the depth of penetration of the ra-
diation is small in this case, the conditions that
correspond to reflection from an unbounded, semi-
infinite half-space, filled by the scattering medium,
the optical characteristics of which do not depend
on the coordinates (the Milne problem), can be
realized experimentally without difficulty. In this
case we assume that the regular interphase bound-
ary is absent, that is, that the binding medium, in
which the disperse phase is immersed, is identical
with the medium which extends over the surface of
the scattering medium.

Inasmuch as the absorption is large, it is reason-
able to make use of the method of solution of the
transfer equation (4.1) developed in detail by E. S.
Kuznetsov47 in connection with problems of the
theory of visibility, of necessity modifying its
form somewhat to take into account polarization
effects.1'6'4 8 Without going into mathematical de-
tails, we shall show only that the method consists
in the successive calculation of the contribution
introduced in the reflectivity of the medium by
scatterings of different multiplicity, and that their
successive application in the case of an isotropic
medium leads to the expressions

>ref , , <P)
(1-hpT1 (7.1)

for the components of the Stokes vector parameter
Ŝ  of the light reflected from the medium. Here i?
and <p are the coordinate angles that determine
the direction of the reflected ray (the normal to
the surface of the medium directed into the in-
terior of the latter is taken as the polar axis; the
corresponding meridional cross sections are taken
as reference planes both for the reflected and for
the incident rays), Sj is the intensity of the light
beam irradiating the medium, p = a/cr is the spe-
cific absorptivity of the medium, n is the multi-
plicity of scattering, and

.2
5 = 1

(7.2)

Here c? = SJ /S\ are the polarization characteris-
tics of the incident beam [cf. (2.3)] and ai j n are
coefficients that depend only on the direction of the
incident (iV <Po) and observed reflected (•&, <p)
light rays and on the form of the scattering matrix.
In particular,

[ ] ]
; = i о о

2,

\ hi О*, Ф> n'> <p')/[j (И-', ф ' . I V %)-^y

where, as before,
reflectivity by

- 1 О

= cos -3-. Denoting the energy

,ref

(7.3)

R = (7.4)

and introducing the coefficients cj = Ŝ  /Sj, which
characterize the polarization of the light reflected
from the medium, we find

- V ( (7.5)

It is then immediately evident that as /3 increases,
the role of scattering of higher multiplicity quickly
dies out, in which connection the intensity, spectral
composition, and polarization of the reflected light
must change. This change of the relative role of
scattering of different multiplicity with changing
/3 is a fundamental effect that determines the spec-
tral and polarization characteristics of the light r e -
flected from the scattering medium.

As Ambartsumyan49 has shown, the average

multiplicity of the scattering in the case of reflec-
tion from a semi-infinite scattering medium (for
diffuse illumination and spherical scattering func-
tion) is equal to V 1 + 1//3 (see also Sec. 8), i.e.,
it is less than two for /3 > % . In other words, for
p > V3, one can with a sufficient degree of accuracy
restrict oneself to the third or even the second ap-
proximation. Besides, for a strongly elongated
scattering function and indirect illumination, the
convergence of the series (7.5) must be somewhat
worse for certain angles of observation.

Inasmuch as the coefficients a m depend on the
form of the scattering matrix, and also on the an-
gles of incidence and observation and the character
of the polarization of the incident light beam, and
inasmuch as the form of the scattering matrix en-
tering into Eq. (7.3) is usually unknown, their de-
termination must be made experimentally. The
latter is possible, in particular, by means of
artificially coloring the specimen (that is, by
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means of a specified change of p), but under the
condition that the scattering matrix remain con-
stant. This can be brought about, for example, by
adding a non-scattering dye to the binding medium.

Furthermore, in the case of polydisperse media
with sufficiently large particles, one can with cer-
tain reservations assume that the scattering ma-
trix depends weakly on their absorptivity. In par-
ticular, this should be expected in the mixing of
different polydisperse materials (for example,
pigments) with different a and ст. If this as -
sumption is valid, a hypothesis that requires a
special experimental test, then the scattering
material itself can be used as a dye (or diluent).
If the scattering matrix remains unchanged, the
coefficients a m in the expansion (7.5) will be
identical for colored and uncolored specimens.
Then, limiting ourselves to the first two terms
of the series (7.5) for strongly colored specimens,
and making use of the entire series for weakly
colored specimens, we obtain the following result
after simple transformations1 '6 '4 8

(7.6)

where Ro is the reflectivity of the weakly colored
specimen (for p = /30 « 1) and

" l , 11-H (7.7)
n = l

takes into account the relative contribution of the
scattering of higher multiplicities for p = /30.

The quantities Ro and Q depend upon the an-
gles of incidence and observation and on the form
of the scattering matrix, but cannot depend on
either the degree of dilution of the medium (this
follows from the similarity theorem) or on the
nature of the dye, as long as the dye has no effect
on the form of the scattering matrix. Thus, Eq.
(7.7), like (7.5), describes the variation of the an-
gular dependence of the reflection coefficient of
dispersive material's on the concentration of the
dye. In this sense the equation can serve as the
basis, for example, for solving problems in illu-
mination engineering, and also problems connected
with the use of dyes in the textile, polygraphic and
lacquer industry, architecture, color photography,
painting, etc.

If now the structure of the disperse medium
permits us to neglect cooperative effects, then
for a mixture of two components with volume con-
centrations Ct and C2, we can use Bouguer's law,
i.e., from (3.9) we can write

с = da" + Call.

Then, varying the relative concentration of the
components C4/C2, and measuring the ratio
Ro/R(/3), we find Q and at the same time have
the possibility of a separate determination of the
absorption coefficients a and the scattering co-
efficients ст of both components, expressed as
fractions of the scattering coefficient of one of
them. This circumstance can be used as the
basis of spectral analysis of strongly absorbing
polydisperse materials to the extent to which we
are concerned with the determination of the mean
optical characteristics of the scattering parficles
(see, for example, reference 96).

We note that the mixing procedure that we have
described, i.e., the coloring or dilution by scatter-
ing additions, is in principle analogous to the ar-
tificial coloring by a non-scattering dye in the
case of the relation (7.5). While guaranteeing
wider experimental possibilities, the procedure
requires in this case greater rigor as regard the
constancy of the scattering matrix.

The relations (7.5) also permit us to find the
degree of polarization p of the reflected light.
According to (2.3),

P= Si = I / c ? + ca (7.9)

or, transforming the reference plane for the r e -
flected light2 so that S3 = 0, we can set p = c2.
Then, making use of (7.5) and limiting ourselves
(in the case of strong absorption) to the first two
terms of the series, we find

p =
(7.10)

(we recall that the coefficients a m depend on the
polarization of the incident light beam). Therefore
it is not difficult to obtain an expression for the
polarization of the light reflected by the colored
material:

(7.11)
14

(7.8)

where p0 and p,» are the degrees of polarization
of the reflected light for p = рй « 1 and p — ~,
respectively, which also depend on the polarization
of the incident light.

The dependence thus determined of the degree
of polarization of the reflected light on /3 is es-
sentially the well-known Umov effect.50 Umov first
made use of it indeed for spectral analysis pur-
poses — for the determination of the absorption
spectrum of a dye from the spectrum of the polar-
ization of diffusely reflected light. We note that,
together with the effect described, which owes its
origin to the change in the relation between the in-
tensities of the scatterings of different multiplici-
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ties, another effect, considered by A. S. Topo-
rets, 5 1 can exist in the presence of interphase
boundaries. It consists of a change in the relation
between the intensities of light directly reflected
from the interphase boundary and the light scat-
tered by the dispersive medium (see also Sec. 13).

We shall show that as /3 — ~ , that is, for very
high absorption, only single scattering is main-
tained. This gives a direct possibility of deter-
mining the scattering function, free from obstacles
created by multiple scattering [see (7.3)]. The
advantage of this method lies not only in that in
dealing with a great number of scattering particles,
we obtain a significant gain in the intensity of the
scattered light, but also that by such means we
can make cooperative effects apparent (for ex-
ample, in powders).

8. ALBEDO OF A SCATTERING MEDIUM AT
WEAK ABSORPTION

The relation (7.5) permits us to find the albedo
of the surface of a scattering medium that fills the
half-space. By definition, the albedo (ft of the sur-
face is equal to the ratio of the light flux Ф г е£ r e -
flected from the surface to the light flux Фщс ш ~
cident on the surface,

Ф.1ПС
(8.1)

Inasmuch as

(8.2)

where I m c is the intensity of the incident light
rays; similarly, for #ref> we obtain, by taking
into account (7.4):

- 1 2TC 1 2-я

\ \ \ \ ')
31=-

7 inc (Ц'. ?') H' dV-' (8.3)

or, substituting the value R from (7.5), where we
set i = 1 (cj = 1), we find (see also reference
52)

*= (8.4)

where

I I I I Fmd',?,^',') Iiac(\i',q>')d\id<pdyi' de/
и и о о

/ i n ' d(f' (8.5)

Thus, the value of the albedo in general depends
strongly on the angular structure of the incident
light beam.

If we recall that the index n corresponds to
the multiplicity of the scattering, it is not difficult
to find the average multiplicity of scattering from
(8.4):

i

_ j

(8.6)

Indeed, by differentiating (ft with respect to /3, we
have49

dji
rfl dp1

(8.7)

and from (7.5) we get similar expressions (which
are different for the different components of the
Stokes vector-parameter) for the average multi-
plicity of the radiation in the case of steady inci-
dent and observed radiation fluxes.

For the case of weak absorption, n is large and
it is necessary in (8.4) to take into account the very
large number of terms (for /3 — 0, n — - ) . There-
fore, it is more reasonable here to expand the solu-
tion of Eq. (4.1) in a series of not the scattering
multiplicities, but of the small parameter j3 or
the parameter у connected with it, as we saw in
Sec. 6; this parameter characterizes the attenua-
tion of the radiant flux in the interior of the scat-
tering medium (6.5). It has not yet been possible
to carry out the similar expansion in the general
case. However, this is possible if the structure
of the incident beam corresponds to the subsur-
face mode considered in Sec. 7. In this case, for
weak absorption,

/(u) = Io [1 ~- a (u) Y + b(\i) Y2-r • • •], (8.8)

where a(/^) and Ь(/л) . . . are determined only
by the form of the scattering matrix.4 5 Expanding
(ft in a series in y,

.// = .7?0-:-./;1У + ж 7

2 + . . . , (8.9)

substituting (8.8) and (8.9) in (8.1) and (8.2), and
equating terms with equal powers of y, we find

Jla = 1, .97x = - 2 \ u [a (u.) - a ( - ц.)] djx,

(8.10)

In particular, for a spherical scattering function
we get from (6.3)

/ = r = ~ S " /f> (Y) (1 +УШ- YV2+ • • •). (8.11)

У/2 = —2 \ u, [b (u) - b ( - }i)] d\x — 2.//1 ^ [ia (JX) d\i.

That is, a(/*)=M> b(ju)=/x2, whence

(8.12)
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Thus for a small specific absorption /3, the
albedo of the surface of the dispersive medium
is equal to

Я = 1 - • J?tY + •$•$- + • • •, (8.13)

where (Rt and (ft2 depend only on the form of the
scattering matrix. Taking it into account45 that
for small specific absorption

/

d<ft

(8.14)

and that (Rj = —— , we get from (8.7) and (8.10)

[a(u) —a( — [я (u) - я (— n)]du

(8.15)

which, with accuracy to within a multiplicative fac-
tor (which depends only on the form of the scat-
tering matrix), coincides with the expression ob-
tained by Ambartsumyan49 for diffuse illumination
and a spherical scattering function when /3 « 1.

It is not difficult to see that the relations (8.9)
and (8.14) can serve as the fundamental method of
determination of the specific absorption coefficient
of the reflecting medium. In this case, however, it
is necessary to keep in mind that the change in /3
(and consequently in y) brings about, as a conse-
quence of (8.8), a change in the structure of the in-
cident light beam. How significant these effects
are is not yet clear.

Inasmuch as the character of irradiation of the
surface influences only the coefficients An of the
series (8.4), and inasmuch as these coefficients,
as well as the coefficients of the series (7.2), do
not depend upon /3 [in accord with (7.3) and (8.5)],
a relation similar to (8.9) is retained for the direct-
reflection coefficients R:

R = Rtt -f i?! (Y) + R,Y2 + • • • , (8.16)

where у has the previous value of (8.14). Here
the coefficients of the expansion Ro, Щ, R2,. . .
will depend only on the direction of the incident
and observed reflected rays and on the character
of the polarization of the incident beam. There-
fore, in spectroscopic situations, these param-
eters will vary with the conditions of the experi-
mental arrangement and require experimental de-
termination. In particular, the angular dependence
of these parameters forms a correction to Lam-
bert's law which is never obeyed in practice.
Moreover, in the range of angles that insure an
approximate satisfaction of Lambert's law, Ro,

and possibly also Rj, will be virtually independ-
ent both of the conditions of observation and, what
is especially important, of the form of the scatter-
ing matrix.

9. TRANSMISSION OF AN OPTICALLY THIN
LAYER AND THE MEASUREMENT OF THE
EXTINCTION COEFFICIENT

An infinite optically thin layer is another case
that permits solution of the transfer equation (4.1)
in the form of a series with a small number of
terms. In fact, if the optical thickness ft of the
layer (t is its geometrical thickness) is small,
then the effects of multiple scattering will be
greatly weakened, and more so the larger the
specific absorption coefficient /3. This permits
us to resort to the same method of solution of
the transfer equation (4.1) by successive approxi-
mations as was employed in Sec. 7, and again to
limit the series to scatterings of low multiplicity.
In particular, for the case in which an unpolarized
light beam of intensity Io is incident on the layer
(in the direction дд, <p0), we obtain1 the result
that the intensity of the light which has passed
through the layer in the direction ц, q> is equal
in second approximation to

/ (ц, ф) = /„ e

g MM-

— <Po)

(9.1)

where A depends only on fx, <p, ju0, and срй while
В also depends on t and f. The first term in the
square bracket takes into account the attenuation of
the direct beam, while the others take into account
the additional light transmitted in different direc-
tions as the result of single and double scattering.

Thus, the spectral composition of the direct
and scattered light which penetrates a layer will
be entirely different. If only the factor f (i.e.,
extinction) acts on the intensity of the direct light,
then the spectrum of the scattered light will, in
addition to the change of the effective path of the
light rays in the medium, be distorted by the effect
of a factor containing /3. Therefore, the result of
the measurement will depend essentially both on
the thickness of the layer and on the way in which
the scattered light is collected by the receiver.

This effect was already illustrated in the ex-
periments of E. V. ShpoFskil5 mentioned above,
in which the distance between a cell with a sus-
pension of erythrocytes and the light detector was
varied; this led to a significant change in the form
of the transmitted spectrum.

Keeping this circumstance in mind, M. M. Gure-
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vich and L. Chokhrov53 attempted to reserve the
term "transparency" only for direct light, in con- .
trast to the term "transmission" for the scattered
component. Experimental division of these quan-
tities is possible up to rather large optical thick-
nesses of the layer by means of apparatus devel-
oped by the same authors and shown schematically
in Fig. 7. A parallel light beam penetrating the
layer С passes through the lens L2, in the focal
plane of which is placed the diaphragm D2, which
removes either the scattered or the direct beam.
In the first case the transparency of the layer,
i.e., the coefficient of extinction of the medium,
is measured directly; in the second, the transition
is measured. However, as is clear from (9.1), this
method is effective only under the condition that the
role of multiple scattering remains small, which
indeed limits the permissible thickness of the layer.
Moreover, in the case of a strongly disperse me-
dium, the receiver inevitably picks up a major part
of the light diffracted by the particles, i.e., in the
region of small angles the measured value of f is
reduced by a factor equal to the scattering coeffi-
cient.

We note that a reduction of the transverse di-
mensions of the layer, i.e., the conversion of the
layer into a column, leads to a reduction of the ef-
fects of multiple scattering and to an improvement
in the conditions of measurement of I. However,
this case has not yet been considered theoretically.
Besides, the effect of multiple scattering leads to a
violation of the exponential dependence of the trans-
parency on the thickness of the layer (the length of
the column), which can also serve as an experimen-
tal criterion of the reliability of the measurement.

We now assume that the layer is irradiated not
by a parallel beam but by a diffuse one, with a
structure close to the subsurface conditions (see
Sec. 6). Then the transmission of the layer will,*
by (6.2), be equal to
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FIG. 7. Schematic arrangement for the measurement of the
transparency of a layer of scattering material. S = source of
light, L, and L2 = lenses, M = layer, D t and D2 = diaphragms,
R = light receiver.

layer on the supporting surface thus forming a
two-dimensional colloid. Then, if the particles
are sufficiently bulky or sufficiently thinned out,
one can regard them as isolated, and it is neces-
sary to consider only interference phenomena
brought about by the presence of the underlying
surface. If their dimensions are smaller than or
of the order of the wavelength, then cooperative
effects become of paramount importance (Sec. 3 ).
The connection of the optical properties of such
two-dimensional layers with the optical charac-
teristics of the particles forming them is consid-
dered in detail in references 1, 28, 29, and 54;
see also the literature cited there.

' trans ^trans (9.2)

where, in the case of weak absorption, V is de-
termined by (6.12). Incidentally, the relation (9.2)
will be satisfied very approximately, since, in con-
trast to the subsurface conditions, the lower sur-
face of the layer is not illuminated. Nevertheless,
comparison of (9.2) and (9.1) clearly illustrates
the essential dependence of the transmission of
the layer on the angle of its irradiation, use of
which can generally be made for an independent
determination of I and V, i.e., a and ст.

Frequently, especially in experiments with
strongly absorbing materials, such thin layers are
used that the particles are arranged in a single

10. DIFFERENTIAL EQUATIONS

An approximate solution of the integro-differ-
ential equation (4.1), even in a general form suit-
able for the solution of analytical problems, i.e.,
for an arbitrary (unknown) scattering matrix,
have been found only for exceptional cases, some
of which were discussed above. In this connec-
tion, naturally, attempts were made of a simpli-
fied approach to the problem by going (in the one-
dimensional problem) from intensities to radia-
tion flux, to be able to replace (4.1) by a certain
differential equation. Inasmuch as this method is
widely used in a number of physical investigations,
it is necessary to explain its basic premises and
the limits of its applicability. In this case, we
shall follow the work of E. S. Kuznetsov,55 in which
polarization effects were not considered (the con-
siderations given here can be suitably generalized
without special difficulty). Thus, we assume that
a scattering medium, infinite in horizontal direc-
tions whose properties do not depend on the hori-
zontal coordinates, is illuminated from the side
of the upper or lower boundary. Then the intensi-
ties of the light beams in different directions will
be functions of a single coordinate — the depth z
— and (4.1) (without consideration of polarization
effects ) takes the form

и ——-̂—— = — ! / ( _ ,
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where du> = dju d<p is an element of solid angle in
the direction r and f denotes the component f41

of the scattering matrix.
The density of radiant flux through the horizon-

tal area is

(Ю.2)

where integration is carried out within the upper
or lower hemisphere; the index j = 1 corresponds
to the downward direction and the index j = 2 to
the upward direction. Integrating (10.1) over _
within these same limits, and taking into account
the sign of ix, we obtain

2

^ 2 ) )
where

/u(r, r') = /(r, r'), /12(r, r') = / ( - r , r ' ) ,
/21 (r, r') = / (r, - r'), /„ (r, r') = /( - r, - r')

and д ranges from 0 to + 1 .
Let us introduce the auxiliary quantity

(10.3)

(10.4)

(10.5)

— the average of the cosines of the angles of incli-
nation of the light beam in the descending and as-
cending fluxes, and

•4л
(Ю.6)

— the energy of the descending flux scattered down-
ward (j = 1), or the ascending flux scattered up-
ward (j = 2), with the integration carried out every-
where over the hemisphere.

Then the equations of (10.3) take the form:

I — 0(1 — ч.
ог(1 — Уо)

1*1

(10.7)

As long as pfj and 7»j remain constant, we obtain
a set of two differential equations which are iden-
tical in form with the equations obtained from gen-
eral physical considerations by G. A. Gamburtsev.56

If, furthermore, ut = v2 = г , the equations derived
by Mecke,57 Ryde,58 Kastrov,58 Gordov,60 and also by
Kubelka61 are obtained. Finally, if we additionally
set /itj = /L*2 = 2 • we obtain the equations formulated
by Schuster62 and later by Kubelka and Munk63 (in
the absence of absorption or scattering, these r e -
duce to the Schwarzschild equations6* for a spher-
ical scattering function).

The latter equations are most frequently em-
ployed in physical literature devoted to the inter-

pretation of experimental data on the reflectivity
and transmission of layers of scattering material.
Therefore, it is necessary to highlight the assump-
tions that determine the region of their application
(see also references 65 and 66).

It follows from (10.5) that the constancy of /7j
with depth implies the constancy of the angular de-
pendence of the radiant flux, i.e., the invariance of
the brightness (which also guarantees the con-
stancy of ui). At the surface, as was shown theo-
retically by E. S. Kuznetsov,55 the juj depend sub-
stantially on the boundary conditions, i.e., on the
character of the illumination of the surface. Ex-
perimentally this dependence was studied by V. A.
Timofeev37 and is shown for two cases in Figs. 8
and 9. Thus the equations in (10.7) are valid only
when both boundaries of the medium are illumi-
nated by light rays, the structures and intensity
ratios of which correspond to the subsurface mode
for a medium with given coefficients of absorption
and scattering and a given scattering matrix. We
recall that the form of the brightness pattern de-
pends essentially on у (that is, on /3), and differs
strongly from spherical for some particular spe-
cific absorption coefficient of the medium /3
(Fig. 10). Consequently, the complete diffusivity
of the illumination is known to violate the condi-
tion of independence of the brightness pattern
(i.e., juj and Vi) of the depth.

Furthermore, the assumption ~vx = v2 = | can be
satisfied only for a strictly fixed relation between
the form of the scattering function and the angular
dependence of the luminous fluxes Ij. In particular,
this assumption will be satisfied for the never-to-
be-realized spherical scattering function or for a
symmetric (in relation to the forward and back-
ward directions ) function of the Rayleigh type, but
under the condition of a homogeneous angular de-
pendence of the fluxes Ij and I2 (for example,
for a spherical brightness diagram), i.e., in prac-
tice, only in the absence of absorption. Finally,
the assumption jJj = /J2 = | corresponds to a
spherical brightness diagram, i.e., to the absence
of absorption.45 We shall illustrate these remarks
by the example of an infinitely thick layer, the ex-
ternal boundary of which is illuminated in corre-
spondence with the requirements of the subsurface
mode. We introduce the notation

_ t — ov t ; q ( l - v t )

t — (TV,
' ^ й — = "

Then the solution of (10.7) takes the form

(10.8)

(10.9)
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z -» 0.5 cm 1.0 cm

FIG. 8. Polar diagrams of the bright-
ness of a turbid medium at different
depths I (milky medium; 1 = 1.9 cm"1).
The illumination is from above with nor-
mal incidence.17

FIG. 9. Change of the polar diagram and of the direction of
maximum brightness with depth in the case of illumination by
oblique rays of the sun (milky medium; t = 9 cm"1).37

where the albedo of the infinitely thick layer is

Xi —- "п-t-^ _ q-i /in -tn\

.уг .JO — ~ — _L / ' \iu. lu^

while L is determined from the equation

L- -;- ( « n 4- a,2) L + («ii« 2 2—«i 2« 2i) = 0, (10.11)

In par t icular , for a spherical scattering function

fj« = 1 and for small /3, it is easy to verify from

(8.11), (10.5), and (10.6) that

whence у = К З — [compare (8.14)]. Correspond-

ingly, we obtain:

an + a22 — "г CTY,
a n a 2 2 ~~ a i2 n 2i —= 4aa,

(10.13)

i.e.,

£ей]/3аст, (10.14)

which coincides in value with the subsurface coef-

1.5 cm 2.0 cm 3.0 cm S.O cm 1.0 cm 10 cm

У Y/

Magnified
ten times

z = 20 cm 40 cm

m

t = 1.9 cm"1

FIG. 10. Form of the brightness in the depth of a medium
with Rayleigh scattering as a function of the factor y.46

ficient of attenuation V [Eq. (6.12)] for the corre-
sponding spherical scattering function of value
q = V3 [compare (8.11) and (8.14)].

However, if we neglect the effect of у on the
parameter jitj, and set Дг = /J2

 = г. we get L
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of

V4CKC7 , i.e., approximately 15% higher.
Furthermore, with account of the dependence
/Ij on у we get for 61 oo the value

Moo = l~-^y (10.15)

from (10.10), in correspondence with (8.11) —(8.13).
Without consideration of this dependence we get

Y, (10.16)

i.e., the error in the correction that is dependent
on у amounts to 20%. We note that with increas-
ing /3, the error due to neglect of the deviation of
/7j from | must increase rapidly.

Thus, Eqs. (10.7), in the form formulated by
Schuster and Kubelka and Munk, are valid only in
diffuse illumination for an unbounded (or identi-
cally illuminated from both sides ) non-absorbing
medium, and, consequently, they cannot, strictly
speaking, be used for spectral analysis problems.
Even the artificial separation of a certain "directed
component," suggested by Ryde58 and Silberstein,67

is of no avail in this connection. The problem as
to within what limits the solution of these equations
remains little sensitive to violation of the initial
assumptions needs special consideration (see, for
example, reference 68). From this viewpoint there
is needed an experimental study of the dependence
of juj and the form of the brightness diagram on z
for different /3 and different structures of the in-
cident beam, along with a theoretical study of the
dependence of Vj on the form of the scattering
matrix and on the form of the brightness diagram.
It can be expected that under certain conditions the
corresponding dependences of Щ and V\ can be
approximated sufficiently well by general empirical
formulas with a small number of parameters, which
would permit us safely to make use of (10.7) in
spectral analysis problems. In conclusion, we em-
phasize that frequently in experimental research
one uses (10.7) or its solution not for fluxes, but
for the intensities of the incident and reflected
(or transmitted) light beams, which is already
utterly inadmissible.

11. THE CONNECTION BETWEEN THE TRANS-
MISSIVITY AND THE REFLECTIVITY OF A
LAYER

The transfer equation (4.1) permits us to find
in general form the connection between the trans-
missivity and the reflectivity of a layer of finite
thickness. For this purpose it is convenient to
make use of the principles of invariance, rigor-
ously formulated by Ambartsumyan,69 which r e -
duces to the statement that the transmissivity and

reflectivity of a pair of consecutive layers of iden-
tical material coincide with the corresponding
properties of a single unified layer. As a result,
we obtain two nonlinear integral matrix equations,
which connect the transmissivity and the reflectiv-
ity of the layer in given (arbitrary) directions
with the scattering matrix, the extinction and scat-
tering coefficients, and the thickness of the layer.
We shall not write out these equations because of
their cumbersome nature (see reference 33). It
immediately follows from a consideration of these
equations that if the angular dependence of the ra-
diant field remains unchanged throughout the thick-
ness of the layer and on its boundaries, and only
in this case, the reflectivity R and the transmis-
sion coefficient T of the combined layer are con-
nected with the corresponding characteristics of
the pair of successive layers which make it up by
the simple relations

7f' (U.2)

where t t and t 2 are the thicknesses of the layers.*
Thus, it is not possible to agree with B. I. Stepanov,
who emphasizes that these formulas are exact and
applicable to an arbitrary light-scattering layer
under the condition of complete homogeneity of
the medium and complete diffusion of the light.36

In fact, we have seen in Sec. 6 that invariance of
the angular dependence of the light field is achieved
only in the subsurface mode, that the character of
this structure depends strongly on the value of the
specific reflectivity of the medium and on the form
of the scattering matrix,4 5 '4 6 and that complete dif-
fusivity of the light is obtained only in the absence
of absorption (see Fig. 10). Moreover, in a layer
of finite thickness, subsurface conditions are
reached only when the layer is illuminated from
both sides, while the illuminating beams must have
different intensities and different angular depend-
ences, the relations between which depend on the
properties of the medium. If these requirements
are not met (for example, as the result of advance
along the spectrum, i.e., change of /3) changes in
the angular dependence of the light field with depth
inevitably take place (even in the case of a spher-
ical scattering function). Also, as a consequence
of the essential dependence of R and T on this
structure (see Sec. 9), Eqs. (11.1) become incon-
sistent. They become all the more inapplicable
to systems of layers with different optical proper-

*The relations (11.1) are derived under these assumptions
from the principles of invariance by an elementary method both
for fluxes and for direct beams.
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ties, because the passage through the boundary in-

evitably causes structural changes in the light

field. We emphasize this point especially inas-

much as Eqs. (11.1) are widely used in theoretical

and experimental investigations of the optical prop-

erties of layered materials (see, for example, ref-

erences 61 and 70).

Thus, in investigations, under experimentally

reliable conditions, of the optical properties of

layers that are composed of scattering materials,

Eqs. (11.1) are never strictly applicable, and the

basic question is how stringent are the conditions

of their applicability, i.e., in what measure does

departure from these conditions violate Eqs. (11.1).

At the present time, we still do not have a com-

plete answer to this question, but the experimental

data which will be considered in the second part

of the paper permit us to think that the region of

applicability of (11.1) is rather wide, but only as

far as tentative, semi-quantitative estimates are

concerned. In other words, the practical applica-

tion of the relations (11.1) and their consequences

in the case of scattering media, a practice quite

widespread in experimental investigations, re-

mains weakly based at present and requires great

care.

The same remarks also apply to the much more

detailed consideration of the problem of the rela-

tions between R, T, and t in the researches of

M. M. Gurevich,71 A. A. Gershun72 and Shannon

et al.73 Starting out from Eqs. (11.1) and allowing

the thickness of one of the layers (t2) to approach

zero, Gurevich assumed that the albedo <R and

the transmission of the diffuse flux .7 of an infi-

nitely thick layer are equal, respectively, to

,-2L(

Л {dt) = Kxdt, ,7 (dt) = 1 - K2dt, (11.3)

where Щ and K2 are certain constants, directly

connected with a, a, and the form of the scatter-

ing matrix. This immediately leads to a system of

differential equations

d-Я
dt (11.4)

-Kx-ft),

which are completely equivalent to (10.7) if vt = v2

and /Jj = ju2> and if these constants are independent

of the depth and magnitude of the absorption, a con-

sequence of the identity of the initial assumptions.

In this case,

—v)
j \ 2 — — (11.5)

in contrast, in particular, with the values given by

A. A. Gershun.72 The solution of these equations

has the form:

02 „-4U >

(11.6)

where, in correspondence with (10.10) and (10.11),

L=\fK\-K\ (11.7)

and

Thus the optical properties of the layer as a whole

are defined here by the two parameters, L and

(Roo or Kt and K2, which are connected by the

relations

Ko = (11.9)

whereupon the corresponding theory has obtained

the name "two-parameter" in contrast to "four-

parameter," in which /Ij is different from ju2

and vl from ~пг-

Equations (11.8) and (11.5) immediately reduce

to a form which is very convenient in practice:

(1 —v) a
(11.10)

which also serves as the basis for the interpreta-

tion of the experimental data in most researches

dealing with the spectroscopy of scattering mate-

rials (dyes, dusts, etc.), in which it is customary*

to assume U = | (spherical scattering). However,

this simple equation is immediately violated as

soon as the necessity arises of distinguishing jTt

from jT2, or^i from T"2, i.e., in all cases in which

a ^ 0. In other words, Eq. (11.10) can never be

strictly satisfied, and the question of the degree

of its correspondence to reality requires special

investigation, the more so that in a real experi-

ment one usually measures not the albedo (ft»

under conditions of illumination corresponding to

the subsurface mode, but the reflectivity Roo in

a given direction for diffuse or directed illumina-

tion. In this connection, we return to the results

of Sees. 7 and 8.

We have seen that in the case of a weakly ab-

sorbing medium (Д « 1) the relation (8.16) holds

for R, from which, with the aid of (6.5) and (6.12),

it follows that

(11.11)

l — -

*In a number of researches, it has been erroneously as-
sumed that v = 0
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In the opposite case of very strongly absorbing
media, we can use the relations (7.5) or (7.6)
(that is, expansion of R in terms of 1/0), from
which we obtain, respectively,

До.,.
R = (11.12)

а„ «u

and

- -
До

where [see (7.7)]

О,-*——-.

(11.13)

(11.14)

(11.15)

In Eqs. (11.12) — (11.15) the zero subscript denotes
the value of R and Q corresponding to j3 = 0
(i.e., to the absence of absorption) for a medium
with the same scattering matrix and under the same
conditions of illumination and observation. In a real
experiment, Ro is determined by substituting a
white standard for the specimen and, since the con-
ditions of illumination and observation remain un-
changed, the difficulty consists only in the neces-
sity of eliminating effects brought about by the dif-
ference of the scattering matrix for absorbing and
non-absorbing materials. If the absorption is
brought about exclusively by the binding medium
and the scattering particles themselves in the spe-
cimen and the standard are identical, then this dif-
ficulty does not arise. If the particles themselves
are the absorbing agent in the specimen, then it is
necessary either to choose a particular standard
of nearly the same scattering matrix (which is
scarcely possible in practice), or to carry out
the measurements under conditions for which the
indicatrix effects are of little importance. We can
assume that this takes place for not too large an-
gles of observation and incidence outside the zone
of specular reflection, where, as is well known,
the departures from Lambert's law for colorless

О 25 50 15
С (in %)

FIG. 11. Dependence of the difference function

( 1-—N'"
/ (R, = -̂  £ - - -

on the concentration of the mixture of colored and uncolored
glass powders. If the coefficients of scattering of both pow-
ders are identical then, in agreement with (11.16), (7.8), and
(6.4), f(Rcol)-f(Runcol)~CCol-

media are not large (see Part II).
Finally, the experimental data (for example,

references 97, 98; for details see Part II) show
that even in the region of moderate absorption the
condition

= 6'P, (11.16)

is sufficiently well satisfied, where С remains
constant over a rather wide interval of variation
of p (Fig. 11); this is still without a theoretical
foundation. Thus we can assume that for the ex-
perimental conditions chosen, the value of С will
depend rather weakly on /3, and one of the most
important problems lying in the path of the devel-
opment of practical methods of the spectroscopy
of dispersive materials is the investigation of the
character of the dependence of C(/3), and also the
explanation of the connection of this quantity with
the properties of the medium. In each case, there
is today no basis for the assumption that С = 1.

In conclusion we give a table7* of values of the
2x

function ( 1 - х ) 2

•IT

Values of the function (i—*)2

л:

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
i .0

o.uu

0.000
0.247
0.63
1.23
2.22
4.00
7.5

15.5
40.0
ISO

i> .01

0.020
0.278
0.67
1.30
2.36
4.25
8.0
16.7
44.8
224
—

и .02

0.042
0.310
0.72
1.38
2.50
4.51
8.6
18.4
50.7
287

-

0 .03

0.064
0.343
0.78
1.47
2.05
4.80
9.2

20.0
57.5

37!)

и. о 4

0.087
0.379
0.83
1.56
2.81
fi. 10
9,9

21.9
66
522
—

0 . 0r>

0.111
0.414
0.89
1.66
2.97
5.44
10.6
24.0
76
760
—

0.06

0.136
0.453
0.95
1.76
3.16
5.79
11.4
26.4
88
1200

0.07

0.162
0.493
1.01
1.86
3.35
6.2
12.3
29.1
103
.2160

1 .08

0.189
0.535

1.08
1,98
3,55
6.6
13.3
32.3
122
490O

Q.09

d.217
9.578
l.io
2.10
3.77
7.0

J4.4
35.8
147

:H»8(JU

.
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12. MODEL REPRESENTATIONS AND FINITE-
DIFFERENCE EQUATIONS

To counter the concepts put forward above,
which stem from a representation of the continuity
of the scattering medium, a number of authors,3 6 > 7 5~8 0

have advanced a model representation of its struc-
ture. Basic here is the assertion that in the case
of strongly absorbing or strongly scattering par-
ticles, when their dimensions are comparable with
or exceed the mean free path of the photon, sepa-
ration of the medium into layers whose thickness
is less than the dimensions of the particles3 6 is in-
admissible. Therefore the light-scattering medium
is represented in the form of a set of elementary
layers of thickness I (I is the average dimension
of the particles), wherein each layer is character-
ized by the coefficients of reflection r and trans -
mission t. If we assume that the coefficients of
reflection of all layers are identical, i.e., that they
do not depend upon the depth of the layer, then the
problem reduces to the classical problem of a pile
of thick plates, treated in detail by Stokes81 and
Vasicek.82 From the mathematical point of view
this is equivalent to replacing the differential
equations (11.5) by finite differences. If the number
of layers in the pile is equal to m = d/l, where d
is the thickness of the pile, then

Rm Tm I

—Д. R b~"
(12.1)

where

«со =

(12.2)

We note that (12.1) coincides with (11.6), if we as-
sume In b = LZ, which is natural, since in both
cases it has been assumed that the structure of
the radiation field is independent of the depth. Thus,
all remarks made in connection with the theories
considered in Sees. 10 and 11 retain their force in
this case, too.

We have pointed out above that as long as we
are concerned with the reflectivity or the trans-
missivity of a single layer, which is infinite in the
transverse directions, we are interested not in the
local probabilities of absorption or scattering of
the photon and in the probability of its transition
from one elementary layer to another in the given
direction, but in the average value of these quanti-
ties over the entire extension of the layer. Further-
more, inasmuch as the particles are considered not
to be in layers but arranged at random, these prob-
abilities cannot be referred to an infinitesimally
thin layer, independently of the individual proper-

ties of the particles. However, if the particles are
sufficiently large and in the shape of platelets, which
is not at all uncommon, then the concept of a layered
structure of the scattering medium can be pretty well
substantiated. In this case, the equivalence of (12.1)
and (11.6) is completely retained, and the advantage
of the model treatment is the explicit introduction
of the mean diameter of the particles into the for-
mula. But, if the particles have an entirely irregu-
lar shape, and do not form any clearly expressed
(even if local) layers, then the quantity m = d/l
in Eqs. (12.1) loses its direct physical significance,
and it is no longer possible to take the parameter I
as the mean dimension of the particle.

The greatest difficulty in model theories lies
in the determination of the parameters r and t
of the elementary layer, which is natural, since
the problem of the relation of r and t with the
individual properties of the medium already lies
o.utside the theory of propagation, and belongs to
scattering theory. In correspondence with the
general picture of a plate-like structure of the
scattering medium, which lies at the basis of the
model, all the authors mentioned36 >75~T9 assume
the elementary layers to be continuous and to con-
sist of the same material as the particle. It is not
difficult to see that even in the case of dense pack-
ing of the particles, such an assumption is far from
correct if the specific area of the gaps between
particles is in any way comparable with the spe-
cific area of the particles themselves.* Thus this
assumption can be valid only for dense packing of
rather thick plates. The next assumption is that
Fresnel reflection takes place on the surfaces of
the plates (as a consequence of the roughness of
the surface this reflection can be diffuse), but
scattering does not, i.e., once again the dimen-
sions of the plates are assumed to be much larger
than the wavelength of the light. Then, if r 0 is
the coefficient of Fresnel reflection from the sur-
face of the plate, while к is the index of refrac-
tion of the material composing it, then

- _, (1-го)»^8-ы

(12.3)

where the bars denote values corresponding to
the statistical average over the directions of the
plate and the direction of the light ray [in the lat-

*As A. P. Prishivalko15 has shown, cooperative effects
play an important role in such a model and must be taken into
account, in particular in the interpretation of data not only on
transmission but also the reflectivity of the layer (see also
reference 52 and Sec. 13).
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ter case, the effective thickness of the plate T also
does not coincide with I (see reference 28)] . Thus
r and t, generally speaking, depend on the angular
dependence of the light rays in the scattering medium.

Now the problem reduces to the determination
of r 0 and T. In references 75, 77, and 78 it is
assumed that r 0 corresponds to the Fresnel co-
efficient of reflection for normal incidence of light,
independently of the angle of incidence, while
1 = 1. Johnson76 assumed the radiation field to be
completely diffuse and that, in the mean, r 0 cor-
responded to the value of r 0 at an angle of inci-
dence of 30° (i.e., approximately 1.5 times larger
than in the case of normal incidence). In both cases
the coefficient of reflection, which is directly con-
nected with the index of refraction of the material
composing the particle, takes the place of the scat-
tering coefficient. A similar consideration is sub-
stantially based on the representation that at all
depths the radiation field remains completely dif-
fuse, and that the plates are randomly oriented,
which, as we have seen, contradicts the conditions
for the validity of the model. We also note that in
the case in which the pile is formed of plates ori-
ented parallel to one another, the angular depend-
ence of r 0 leads to a stretching, which increases
with depth, of the indicatrix of the illumination
along the normal to the surface of the pile.8 2 How-
ever, in plate-like scattering media, the stratifi-
cation can bear only a local character and it must
be concluded that this effect does not play an es-
sential role.

V. V. Antonov-Romanovskii,80 considering an
aggregate of particles of irregular shape, also r e -
placed the scattering by surface reflection, but in-
troduced in addition a correction to the total inter-
nal reflection of light within the scattering particle,
and estimated this correction within the framework
of geometric optics, which is valid for sufficiently
large particles.3

Thus, while the problem of the propagation of
light in a scattering medium is solved correctly
in the model theories that have been considered,
at least within the framework of the same (unre-
alizable, as we have seen) assumptions as in the
case of differential equations, the problem of the
scattering of light by particles is solved extremely
primitively and without consideration of what has
already been accomplished by scattering theory.
Furthermore, cooperative effects are completely
ignored. Therefore it appears to us that it is es-
sential to segregate clearly, in the analysis of the
experimental data, the effects connected with the ,
various facets of model theory and that an experi-
mental investigation of the degree of reliability of

each of the assumptions separately is most impor-
tant at the present time.

In this connection we note that references 77 —
79 contain detailed tables that simplify the analysis
of experimental data on the basis of model theories
and permit us to display the sensitivity of the result
to variations of the parameters that enter into these
theories. In particular, A. P. Ivanov83 has shown
that model theories guarantee satisfactory fulfill-
ment of conditions (11.16) in a very wide range of
the dimensions of the particles and their optical
characteristics, and has considered the problem
of the sensitivity of the corresponding methods in
the absorption coefficient.84 It should be pointed
out that the experimental data in many cases are
in excellent agreement, both qualitatively and quan-
titatively, with the conclusions of the model theory
(see Part II), a fact deserving of intensive analysis
(in particular, the comparison of these data with
the conclusions of the other theories).

13. THE ROLE OF THE BOUNDARY OF A
SCATTERING MEDIUM

Nowhere in Sees. 7 — 12 did we take into con-
sideration the phenomena of reflection and refrac-
tion of light at the boundary of the scattering sur-
face. Therefore, it is essential to make clear in
what cases these phenomena take place and to what
extent they can affect the results of measurements,
the more so that discussions of this problem in the
literature are insufficiently clear.

We first assume that the binding medium (for
example, air or liquid) in which the scattering
particles are immersed is identical with the me-
dium located over the surface of the scattering
volume.

We have seen in Sec. 3 that if the mean dimen-
sions of the particles or the distance between them
is large in comparison with the optical wavelength,
then the light waves scattered by the particles are
mutually incoherent in all directions except the
direction coinciding with that of the radiating wave.
However, there is also one direction in which the
light waves scattered by the particles are in phase,
independently of the relative positions of the par-
ticles — this is the direction of specular reflection
from the boundary, in conformity with Snell's law.1

To be sure, this occurs only within a layer the thick-
ness of which is of the order Л/4д.

In order to find the intensity of the specularly
reflected wave, we must consider the result of
the interference of waves scattered in the corre-
sponding direction by all the particles, taking it
into account that the waves are propagated in a



A B S O R P T I O N S P E C T R O S C O P Y OF D I S P E R S E D M A T E R I A L S 693

medium with a complex effective index of refrac-
tion, n = A + iB, determined by the relation (3.5).
If the medium is irradiated by a plane wave, then
the refracted and specularly reflected waves will
be inhomogeneous inside the medium, i.e., their
amplitudes will vary with the depth z as

For fj,' « 1, (13.3) reduces to the form

(13.5)

, where \x' is the cosine of the
angle S-' that determines the direction of the wave
normal to the refracted wave (for details see ref-
erence 28). Expanding the scattered wave in a set
of plane waves of different direction (see Sec. 2),
we can make use of Eq. (2.7) in which, if we take
into account the inhomogeneity of the refracted
wave and its inclination to the layer parallel to
the outside boundary, we must replace k2 by

(AM' +iB )2

Щ — — ; — • Then we get for the components

of the intensity of the specularly reflected wave
CO

F r e f _ 2яЛ>' С -2! !о(гА [Р.'+В;): , VI . p ine
* frgMiU'+iBi)2 J _ j Si;spec i

о i

_ nNP' V в- F i n c ~ r V е-- F-nc (14 1)
/ i n L / l i LL —1— L ) i I ——™ ™̂—•

ino
Here Ej is the component of the field intensity
of the incident wave, N = concentration of particles,
and g^ s p e c are the components of the cooperative
scattering matrix corresponding to a plane scattered
wave whose direction satisfies the conditions of
specular reflection and, in accordance with (3.5)
and (3.6),

(13.2)

If we form the Stokes vector-parameter for the
reflected wave according to the general rule (2.2),
we find that the intensity of the specularly reflected
light in an isotropic medium is proportional to

- i =

% —

Щ
2kn

2nN

Щ
Im gu (0),

and depends, like the polarization, on the form of
the matrix gij spec > which in turn depends on the
scattering angle, equal to 2.S-'. It would appear that
the resulting formulas are valid only for small ef-
fective index of refraction. If д' is not too small,
then, as a consequence of the smallness of A - n 0

and B, we obtain

CC*e^ 6 , ,a . (13.4)

In other words, the coefficient of specular reflection
is in general very small, and increases rapidly with
increase in the angle of incidence, which explains
the generally well-known phenomenon of the clearly
pronounced specular reflection from scattering sur-
faces at grazing angles of incidence.

that is, the specular reflection should disappear.
However, as a result of the extreme smallness of
B, this effect becomes apparent only for very small
grazing angles, when the mutual screening of the
particles forming the rough surface of the medium
begins to have an effect.

Thus, as the result of cooperative effects, regu-
lar specular refraction and reflection of light waves
takes place on the statistically smooth boundary of
the scattering medium as though the medium pos-
sessed a certain effective index of refraction. How-
ever, as a result of the departure of the scattering
function for large particles from the Rayleigh scat-
tering also under the action of the cooperative ef-
fects considered in Sec. 3, the effective indices of
refraction for the phenomena of reflection and re-
fraction are shown to be different and to depend es-
sentially on the angle of incidence.1 The Fresnel
formulas are obtained only as a limiting case in
the transition to a quasi-homogeneous molecular
medium with Rayleigh scattering function (here
our treatment is seen to be similar to the treat-
ment of Oseen and Ewald8 5"8 7), but also for the
case of a small index of refraction of the medium
n = l + e (e « 1). In this case, as is not difficult
to show, our formulas reduce to expressions iden-
tical with those resulting from the Fresnel formula:

1 — 2 [ l ' 2 ) 2 e 2

16,u4 (13.6)

where the indices s and p as usual designate the
coefficients of reflection for the s and p compo-
nents of the light wave, respectively. It is signifi-
cant that we have been concerned above with a
boundary which is statistically smooth in the scale
of the averaging brought about by the detecting ap-
paratus , independently of the character of the mi -
crostructure of the surface of an aggregate of scat-
tering particles (let us say, a powder) known be-
forehand not to be physically smooth. This specu-
lar reflection is completely analogous to that which
takes place at grazing incidence for x-rays on a
polished surface of glass (not crystal) and which
is used for the production of mirror systems for
x-ray optics. But it has nothing in common with
the reflection of light from the outer boundaries
of a rough layer of particles that form a scattering
medium. The latter has essentially a diffusive
character, and is entirely taken into account by
single scattering, which also increases at grazing
angles of incidence as a consequence of the elonga-
tion of the scattering function for large particles.
In this case the surface layer of particles is not
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distinguished from any other, except perhaps by
the intensity of the single scattering, which is also
completely accounted for by the transfer equation
(4.1). We add that, with the exception of grazing
angles of incidence and very concentrated colloids
with sufficiently small particles, in which the ef-
fective field differs essentially from the field of
the incident wave, the effective specular reflections
should be weak and do not have to be taken into con-
sideration.

Thus, the albedo of the boundary separating two
scattering media that have the same binding me-
dium (one of the media may also not be scattering)
is known to be equal to zero (in each case outside
of the region of specular reflection), and the ac-
tually observed albedo of the medium is essentially
a volume effect, completely taken into account by
the transfer equation.

Quite a different picture will be observed in the
case in which the binding medium in which the par-
ticles are immersed differs from the medium sur-
rounding the scattering volume on the outside (opal
glass, emulsions, lacquers, wetted powders, etc.).
The existence of a boundary between the binding
material of the two-phase scattering medium and
the single-phase non-scattering medium bounding
it results in the existence of sharply pronounced
boundary effects (reflection, refraction), whose
character depends materially on the form of the
surface — the latter can be either smooth or rough
— and is described by the Fresnel formulas.

Account of the effect of such reflecting and r e -
fracting boundaries (including the phenomenon of
total internal reflection) is one of the most diffi-
cult problems of the general theory of propagation
of radiation in a scattering medium, and is still
far from having a solution acceptable for practical
needs. Therefore, we shall not continue with dis-
cussions of the general theory and shall only briefly
touch on several researches stemming from the
considerations of Sees. 10 — 12.

Inasmuch as the differential equations of Sees.
10 and 11 refer to certain "diffuse" radiant fluxes,
the authors who have considered the role of the
boundary of separation (mirror-like or rough)
have concentrated almost exclusively on the prob-
lem of its reflectivity and transmission coefficient
as applied to diffuse flow. This permits us to r e -
turn formally to Eqs. (11.1), in place of the corres-
sponding field equations which take angular depend-
ence into account, and thus to generalize directly
the results of Sees. 10 and 11 to the case of the
presence of a boundary of separation. In this case,
as A. A. Gershun90 has shown, one must distinguish
between the external p and internal p' for the

albedo of the boundary (p' > p).
In particular, for the albedo of an infinitely thick

layer we obtain72

'a, = 1 - ^ (13.7)

where (R«, is the albedo of the same layer without
consideration of the boundary effect. It should be
noted that the presence of the boundary of separa-
tion must (as a consequence of the angular depend-
ence of the Fresnel coefficients ) materially change
the angular distribution of the radiant fluxes, and
that in its turn the character of this distribution
must have an important effect on the values of p
and p'.58,70,72,91 - n u S ) allowance for the boundary
in the manner described introduces new and ex-
tremely contradictory assumptions into the treat-
ment of the differential equations. From the point
of view of the interpretation of the experimental
results, this is connected with the introduction
into the theory of two essentially stop-gap param-
eters p and p' , which makes the interpretation
itself completely unreliable. At the same time,
the researches described have convincingly dem-
onstrated that the boundary of separation plays a
very important role and that it is not possible to
ignore it whenever it exists.

Countering this, B. I. Stepanov and his co-
workers77'78 and Bodo,75 who developed model rep-
resentations, assume that at the boundary of the
scattering medium, even for an identical binding
material on both sides of the boundary, external
(and only external) reflection takes place, where-
in the latter is identified with the scattering abil-
ity of the surface layer of particles which, as seen
above, has no foundation.

A. S. Toporets51'91'92 adopted the same position
in the interpretation of data on the polarization of
light reflected by the scattering medium. In this
case, the diffusely reflected flux divides into two
components — polarized and unpolarized — and
the first of these is fundamentally due to surface
reflection. A number of interesting properties,
found in the process of these investigations by
Toporets will be considered in Part II. Here we
shall limit ourselves to certain observations bear-
ing on the interpretation from this viewpoint. Ac-
tually, one can unambiguously divide any light flux
into polarized and unpolarized components (see,
for example, references 2 and 93), and their sep-
arate consideration is of some interest. However,
there is no basis for connecting one of these with
the surface (external), and the other with the
volume (internal) reflections. Above all, in the
reflection from a rough surface, as a consequence
of the difference in the orientations of the individ-
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ual reflecting surfaces and the additivity of the
components of the Stokes vector-parameter, a
partially polarized light beam is formed, i.e.,
both components are always present. Further-
more, tha beams formed as a result of both single
and multiple scattering will also be partially po-
larized. Finally, as we have seen, the very rep-
resentation of external diffuse reflection in the
case of identical binding media (for example, air
in the case of dry powders) has no basis of its
own. In particular, this pertains to the explanation
of the Umov effect51 (see Sec. 7). The circum-
stance that the polarized component, owing its
origin primarily to single scattering, depends
more weakly on /3 than the unpolarized one,
which is due primarily to multiple scattering,
is quite natural from the theoretical viewpoint.

On the other hand, in the presence of an inter-
phase boundary, i.e., of a difference of binding
materials, the isolation of the surface reflection
has a definite physical meaning and polarization
studies can undoubtedly contribute to the reliabil-
ity of this separation. In this connection the in-
vestigation of the effect of a boundary that is par-
ticularly rough on the polarization of the light r e -
flected from it and transmitted through it takes
on great importance. Thus, A. P. Ivanov and A. S.
Toporets,94 considering a diffuse boundary as an
aggregate of microsurfaces of different orienta-
tions , showed that such a boundary exerts a strong
polarizing effect on the diffuse light beam passing
through it, an effect that depends materially on
the microstructure of the boundary and that in-
creases with departure of the angle of observation
from normal.

14. CONCLUSION

We have considered above the principal theo-
retical foundations that can be established through
development of the method of absorption spectro-
scopy of disperse materials. We have tried here
to concentrate on questions of principle, and have
not attempted either to encompass all the general
literature connected with this circle of questions,
or to elaborate on the actual recent experimental
procedures. Part II will in chief measure be de-
voted to the latter. In this part various methodo-
logical questions of measuring techniques will be
considered along with a review of experimental
data. Furthermore, our review touches chiefly
only on the possible means of determination of
volume coefficients of absorption and scattering
of the medium as such, and does not treat the en-
tirely different problems of getting rid of coopera-

tive effects and the transition from the individual
characteristics of the scattering particles to the
optical constants of the material composing them.
However, the material that has been set forth
does permit us to make a number of conclusions
both as to present-day possibilities, and to the
development in other problems of spectral analy-
sis of disperse materials.

Above all, it should be emphasized that the
careless attitude to the specific conditions of the
propagation of light in scattering media, which is
characteristic of many experimental spectral-
analysis researches, has no foundation and can
lead to serious mistakes even of a qualitative
character. On the other hand, the present state
of the theory permits us to guarantee trustworthy
determination of the specific absorptivity of the
medium /3 and the coefficient of extinction I
which is sufficient for the separate determination
of the volume coefficients of absorption a and
scattering a. Here it is only necessary to con-
struct the measuring methods in strict corre-
spondence with the requirements of the theory.
Along with this, it is necessary to note that the
majority of theoretical situations still require,
if not a direct verification, then the experimental
determination of the limits of their applicability.
Unfortunately, among the many experimental r e -
searches of methodological character, only a few
are devoted to this problem.

Further, the existing methods of the determina-
tion of /8 and t by no means exhaust all the pos-
sibilities that lie in the transfer equation. Rather,
one can regard them as the first and thus far rather
rough steps in this direction, the more so that even
these methods are very poorly adapted for use in
practical experiments. Evidently further r e -
searches in appropriate experimental situations
are necessary, situations for which the approxi-
mate solution of the equation of transfer of radia-
tion for arbitrary (unknown) scattering matrix is
possible in comparatively simple analytical form,
which permits us to obtain from the experimental
data the necessary information on the optical prop-
erties of the scattering material. In particular,
we have given practically no consideration to the
different variants of the integrating photometric
sphere which are widely used in practice. Here
we are obliged to limit ourselves to the warning
that data obtained with its help can be completely
unreliable in the case of scattering media. No less
important is the treatment of methods of experi-
mental determination of the scattering matrix, be-
cause without knowing it the exclusion of coop-
erative effects and the development of the optical
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constants of the medium forming the particles be-
come, generally speaking, impractical problems.
If we have hardly touched on this question above,
it is only because there are no such methods today.

Turning to approximate theories (differential
equations, model representations), it must be
stated that they are unsatisfactory from the theo-
retical point of view. However, in a number of
cases, the results obtained with their help more
or less agree both with the rigorous theory and
with experiment, at any rate accurate within the
possibility of juggling the parameters. Therefore,
clarification of this "insensitivity" of the resulting
formulas to violation of theoretical premises, and
also the appearance of limits of this "insensitivity,"
are very important theoretical and experimental
problems.

Frequently, even among such experienced spec-
troscopists as Lecomte,95 one can meet up with
statements in the vein that although the specific
properties of the scattering medium affect the
behavior of the intensities in the reflection or
transmission spectra, the very fact of the exist-
ence and the location of the absorption bands are
free of this effect, except for rare cases. Actu-
ally, under certain precautions, this should be so in
the majority of cases. However, the experimenter
must be certain that all the necessary precautions
have been taken. This in itself is not trivial and
requires careful theoretical analysis of the ex-
perimental situation, especially since the shape of
the band can be subject to considerable distortion.

Finally, many problems connected with account
of cooperative effects and the solution of the in-
verse problem of scattering theory (which as we
have seen is quite necessary for the solution for
a number of spectroscopic problems) are still
not completely clear.

The spectroscopy of dispersive materials fol-
lows, both experimentally and theoretically, a
more or less isolated path, with its own specific
methods of investigation and its practically un-
bounded range of higher degrees of actual prob-
lems and objectives. We should like to draw at-
tention to this as yet only formulated (but already
leading to certain success ) trend of contemporary
optics, the more so that problems of a similar
nature are encountered in very widely differing
branches of science and industry.
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