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1. INTRODUCTION

R ECENTLY, it has become customary to divide
acoustic waves into waves of small (actually, in-
finitesimally small) amplitude and waves of finite
amplitude. Such a division is a result of the fact
that the set of hydrodynamic equations in the case
of waves of infinitesimally small amplitude can be
reduced to the linear wave equation, which is not
possible in the case of waves of finite amplitude.
Waves of finite amplitude occupy the intermediate
region between waves of intinitesimally small am-
plitude and strong shock waves.
Using the one-dimensional Euler equation
ov _ _ov _ _19p
_p ox

" + Vo as an example, it can be shown

that for the wave v = v;sin (wt —kx) the nonlinear
term vdv/dx has a maximum value of the order
for kvl, while the other terms are of order wvy.
The nonlinear term will be of the same order as
the linear one for a displacement vyy/w = Ly~ A
or for wvyy ~ ¢y, or, finally, for sound pressures
P1g ~ poci which are of the order of the pressure
that determines the elasticity of the medium (the
atmospheric pressure Py in the case of gases or
the internal pressure P, in the case of liquids).

Until comparatively recently, it has been as-
sumed that nonlinear phenomena are not signifi-
cant in the propagation of sound in liquids, and the
fundamental reason for this was considered to be
the smallness of the sound pressures (the maxi-
mum sound pressure in liquids now obtained ex-
perimentally does not exceed several tens of at-
mospheres) in comparison with the internal pres-
sure in the liquid, which is of the order of several
thousand atmospheres.

For a nondissipative medium, the exact Rie-~
mann solutions show that different points of the
disturbance profile should be propagated in space
with different velocities, which depend on the dis-
placement velocity of the particle. The latter
velocity is added to the local sound velocity and
leads to a distortion of the shape of the disturbance
as it propagates. In the finite case this should lead
to the formation of a discontinuity. It should be
emphasized that in a nondissipative medium the

number of wavelengths out to the discontinuity, is
determined, for an initially harmonic wave, by the
Mach number,* and for Mach numbers that are suf-
ficiently small, but not zero, the distance to the
formation of the discontinuity is finite. Thus, in

a nondissipative medium, a harmonic wave even of
small amplitude must be considered as a wave of
finite amplitude at distances that are large in com-
parison with the wavelength. In this sense, all dis-
turbances in an ideal medium are disturbances of
finite amplitude, because the nonlinear effects ac-
cumulate as the wave propagates. The distortion
of the waveform, which can be represented as the
generation and growth of harmonics during the
course of propagation, is slowed down in lossy
media by the different nature of the dissipative
processes. Therefore, an initially harmonic wave
in a dissipative medium, depending on the energy
density, can either lead to the formation of an
acoustic discontinuityt (at high energy densities)
or be so absorbed during its propagation that the
nonlinear effects produce no noticeable effect.
Thus, in dissipative media, in contrast with the
nondissipative ones, conditions can be created

that correspond to waves of infinitesimally small
amplitude.

Proceeding to real media, it should be pointed
out that the absorption per wavelength oA is much
greater in gases than in liquids (at a frequency of
1 Mcs in air, oA = 6.8 X 1073; for water, o\
~ 3.7 X 1079), Liquids, especially those of low
viscosity, are closer to nondissipative media in
this regard than are gases; therefore, the non-
linear effects in liquids can accumulate as the
disturbance progresses.

We also note that in liquids it is technically
much simpler to obtain high ultrasonic intensities.
Intensities of the order of several watts per sq.
cm at frequencies ~ 0.3 —5 Mcs are not difficult

*The Mach number can be defined in the acoustic case as
vo/c, =My, where v, is the amplitude of the displacement ve-
locity and ¢, is the velocity of propagation of the wave in the
undisturbed medium.

1By acoustic discontinuity we mean the production of a
wave close to sawtooth in shape, with a front thickness much
less than A/2.
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to produce in liquids today. A continuous inten-
sity of ~ 300 w/cm? was recently obtained at a
frequency of 1.5 Mcs in an unfocused beam for a
short time (several seconds). Pulsed operation
permits still higher ultrasonic intensities. Focus-
ing systems, when steps are taken to prevent or
reduce the effect of cavitation, can produce inten-
sities of the order of several kilowatts/cm? in the
focus.

It has been established rather recently that the
mechanism of waveform distortion in liquids leads
to a significant increase in the dissipation of acous-
tic energy (this phenomenon has been little studied
in gases). For comparatively low intensities of
ultrasound (of the order of a few w/cmz), in such
low-viscosity liquids as alcohols, the absorption
coefficient increases by two orders of magnitude
over the absorption coefficient determined for con-
ditions corresponding to waves of infinitesimally
small amplitude.

At the present time, a study of various non-
linear effects in liquids has yielded many data
which require generalization. In this review, we
speak only of the distortion and absorption of
waves of finite amplitude, without considering
such interesting phenomena as acoustic stream-
ing, cavitation, etc. In this case, chief attention
will be paid to distortion in dissipative media and
to the increased absorption brought about by this
distortion.

2. THEORY OF DISTORTION AND ABSORPTION
OF WAVES OF FINITE AMPLITUDE

a) Nondissipative medium. For a general analy-
sis of the equations of hydrodynamics of an ideal
liquid, it is appropriate to use the methods of sim-
ilarity theory. The methods of similarity theory
have been applied in acoustical problems to esti-
mate the different terms of the hydrodynamic
equations in references 2, 3, and also for the gen-
eral analysis of the equations.! By means of a
linear transformation of variables and parameters,
in other words, by changing the scales of the meas-
urements for these quantities, it is possible to find
conditions for which the hydrodynamic equations
are invariant under such transformations. For ex-
ample, the transformation of the primed quantities
into the unprimed ones

Yoy TR y'Q_y‘ ¥ .
v v v v @.1)
Q=1 p p <

—P—=P§ B =p, C =C
(here U, 2, P, R, C are certain constants, v is

the velocity, x, y, and z are coordinates, t is
the time, p the pressure, p the density, and c
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the velocity of sound), transforms the equation of
continuity, Euler’s equation, and the adiabatic equa-
tion for the primed quantities into the equations

i av C?
—a’;-+va=O, p[—(%——{—(vV)v] = ——c2Vp,

¢ Rm( )

Thus, the equations are invariant relative to the
transformation (2.1) if C%/U%2=1 and P/RC?=1,
or, what amounts to the same thing, if the local
values of the Mach number M =v/c and of the
number E =p/pc? are identical. When these
numbers are equal and the boundary conditions
of the problem are invariant relative to the trans-
formation (2.1), waves propagating in different
media will be identical for different values of the
wave parameters. It should be noted that arbi-
trary combinations of these dimensionless num-
bers will be equal for similar waves, for example,
E/|M|*=p/p|v|® (“the cavitation number”*),
and also M/E = pev/p, etc. Modeling of waves
of finite amplitude can be achieved for any two
numbers. In a loss-free medium, as was pointed
out above, distortion of the waveform takes place
during propagation up to the formation of a discon-
tinuity. The presence of two numbers demonstrates
that there are two sources of nonlinear distortion,
one due to nonlinearities of the continuity and Euler
equations, and the other due to the nonlinearity in
the equation connecting the density with the pres-
sure.t Expanding the equation connecting density
and pressure, p = ¢ (p) in a series about the
equilibrium density, we obtain
pP—"Pe
)

v =P poc (%)
where Py = ¢ (py) is the pressure and c% =

2.2)

Po dc?

B @2.3)

dg
dp |p=pg
is the velocity of sound propagation in the undis-
turbed medium.

In the case of shock waves of weak intensity,
the change in the entropy can be represented by
a quantity of third order of smallness in compari-
son with the pressure jump, if dissipative proc-
esses in the shock layer are not taken into consid-
eration. Therefore, with accuracy up to terms of
second order of smallness, we can use the adia-
batic equation for gases:

*See, e.g., G. D. Birkhoff, Hydrodynamics, Russian trans-
lation, IL, 1954, p. 92, [Dover, New York, 1955].

It should be noted that such a division is to some extent
arbitrary, inasmuch as the set of hydrodynamic equations is
solved simultaneously. However, it is appropriate for a com-
parison of liquids and gases.
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TABLE 1
& 3 &
Liquid by ? 9 17 e >3 . B/A
S8 22 7 =3
< W go S8 a ¥
Mercury 13.595 1.45 256.01) 24.51) 10.5%)
Glycerine 1.261 1,92 41.51) 4.751) 8.82)
Water 0.99% 1.49 21.81) 3.251) 5.72
4,84
5.06%)
Ethyl alcohol 0.789 1.17 9.1%) 1.001) 9.12);
8,04)
103)
Methy! alcohol 0.791 1.12 7.31) 1.09) 7.32)3);
7.64
n-Propyl alcohol 0.806 1.22 12.3%) 1.54%) 8,04)
n-Butyl alcohol 0.81 1.26 13.2 %) 1.573) 8,4
Carbon tetra-
chloride 1.59 0.94 9.61) 1.04%) 9,24
Carbon bisulfide 1.26 1.16 17.48) 3.228) 5,44);
11.08)
12457)
Benzene 0.879 1.32 10.51) 1.54%) 6,84)
1) Data of static measurement.® !
2) B/A computed from K,/P, = B/A.
3) This value of P_ was determined from the plot of K = o(p’+ P¥).°
4) Data of a thermodynamic calculation with use of the experimental depend-
ence of the velocity of low-amplitude ultrasound on the temperature and pres-
sure.”
5) Data determined from the interaction of two ultrasonic waves.?
6) Data used for the comparison of theory with experiment on the absorption
of ultrasonic waves of finite amplitude.®
7) The same for comparison with harmonics.’ A
8) Calculation from the dynamic modulus K, = p,ci; P, = KD-E.

pen (£ e (52)
+1D R (B )
Po

Here P, is the atmospheric pressure, py is the
density of the undisturbed medium, and y = cp/cy
is the ratio of specific heats at constant pressure
and volume.

The equation of state for liquids is more com-
plicated; however, for the compressions in an
acoustic wave of finite amplitude, it is satisfactor-
ily represented in the form?®

(2.4)

— B — 2
perta (S5 B(ERY. e

Po
Here P, is the internal pressure in the liquid.
The coefficients A and B, which are tempera-
ture dependent, can be determined in terms of the
bulk modulus of the liquid K = p, g—% Using (2.5),

we have

K=(A*+2p'B)"2 22 A -%% P

where p’ =p -P, is the external pressure, and
use is made of the condition 2p'XB2- <« 1, which

is satisfied for all liquids up to ~ 10% atmos. On
the other hand,
K=x(P,+p’) and —ﬁ- =% = —2—: where Ky=K|p—,.
Another method to determine the nonlinear
characteristics of a liquid was used in reference
7: the relative velocity of a certain point in the
profile of the wave was assumed to be determined
by the displacement velocity and by the change pro-
duced in the local sound velocity by the departures
of the temperature and pressure from the undis-
turbed values. The values of B/A for differ-
ent liquids are given in Table I. Some of these
data were determined under static conditions.
However, inasmuch as in liquids cp/cy, = 1.0
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and Kg”/K{" =cp/cy, where K{” =KD,
and K{* = K(m)lp'—_-o are respectively the iso-

thermal and adiabatic elastic moduli, we can use
with sufficiently good approximation the static
value of B/A in the analysis of waves of finite
amplitude, bearing in mind that x; = B/A does
not depend on the temperature.®

From a comparison of the equation for gases
(2.4) and Eq. (2.5) for liquids, we obtain the result
that y corresponds formally to 1+B/A.%"1% In
this sense, a liquid that obeys Eq. (2.5) is “gas-
like:” for equal compressions, the propagation
of sound in the liquid will be the same as the
propagation in a gas with a ratio of specific heats
which is equal to 1+ B/A at an undistrubed pres-
sure P4 equal to the internal pressure in the
liquid. Keeping this circumstance in mind we
shall no longer differentiate between vy and
1+B/A.

Turning our attention to similarity methods, it
is easy to see that if we mean by p, p, and ¢ in
E the total pressure (applied plus internal}, and
the total values of the density and velocity, then
E=vy T—’—% + 1. Thus, all the dimensionless quan-
tities in a wave of finite amplitude must depend on
the parameter that characterized the nonlinearity
of the equation of state and on the Mach number.
In particular, the number of waves up to the for-
mation of the discontinuity is N = xgp /At

N =0y, M.

An exact solution of the problem of a traveling
acoustic plane wave of finite amplitude was first
obtained by Poisson. Then Riemann!! found the
general solution of a one dimensional system of
hydrodynamic equations of a nonviscous liquid,
under the assumption that the equation of state
of the medium could be represented in the form
p=¢ (p), with ¢ an arbitary function. Not
pausing on the details of the solution, because this
solution is given in a number of textbooks on wave
propagation and mechanics of continuous media,
we note that Riemann introduced the function

a{(p) =f9;e, where c = (dp 1/2, a function

which reduces a set of Euler equations to a set
with a solution in the form v (p) = o (p). This
solution for the displacement velocity can be
written in the form

v=dz—t(c+o)+plrttc—o), (2.6)

where ¢; and ¢, are arbitrary functions. The
solution (2.6) represents two disturbances, one
propagated in the direction x >0 with velocity

¢y =c¢ + v, and the second in the direction x< 0
with velocity ¢y = ¢ —v. We emphasize that the
relation between the displacement velocity and
the density (and consequently the pressure) in
a Riemann wave can be easily established if the
equation of state p = ¢ (p) is known:

v(p)=§%’;".

°0

2.7

For an adiabatic propagation of the disturbance,
we have from (2.4), and also from 2.7) for y =1,

s =1, 1Py
= )
\du s <Po)

v(p)=% (PO> —1] @.72)
—723)1 [ (Po >T—1] '
The exact relation
c:co—{—‘r—;—1 v. (2.7b)

follows from Eq. (2.7a) for ¢? and v (p). For

small compressions (p —pg)/py = p’/pg, and also
for ratios of the sound pressure p’ =p—-P; to
the pressure in the medium p’/Py, the usual re-
lations of the linear approximation for a plane wave
v = CO;B)_ and v = P’/pyc, follow from (2.7a).
0

We note that for a linear relation between the

pressure and density (y'= 1) we have

v(p)=colnt-;

2 a2 .
¢ = ¢g = Py/py; oo

v(p):colnf—. 2.7¢)
Py

The wave is distorted, but this distortion is less
than in the case when a nonlinear equation of state
is considered. It should be pointed out that the
equations of (2.7a), strictly speaking, cannot be
used for isothermal propagation of sound, because
in this case it would be necessary to take into con-
sideration losses by heat conduction (see Sec. 1b).
In the particular case of a harmonic sound source
which radiates the wave in the direction x> 0,
(2.6) can be written in the form

U,y S1 /ut ot
= S ) —_— .
U 0S nk P

Here vy, is the amplitude of the velocity at the
source. If we assume that the medium obeys
Eq. (2.4), a case possible only if the motion is
isentropic, we obtain by using (2.7b)

vzvmsinm<t——

T,
t T 2.8)

It is seen from (2.8) that the different points of
the wave profile propagate with different velocities
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cy=c¢Cg+ %lv, and if y> -1 we have v>0
where ¢y > ¢y, and v< 0 where ¢y <cy. This
causes the waveform to distort as it propagates.
The distortion can be interpreted as the genera-
tion, growth, and interaction of harmonics in the
process of wave propagation. Actually, for small
Mach numbers, My =v;q/cy< 1, (2.8) can be
represented in the form

z—vloblnw<t——> + (‘“1)[)”‘”2 sm2w&t——>+
Co

= U0 [sinm(t——cf)

—}—%MmkxsinZw(t-—%)#—...] (2.9)
where k = w/c, is the wave number. It is signif-
icant that the amplitude of the fundamental tone
does not decrease, in spite of the growth of the
harmonics. In an ideal medium no forces oppose
the distortion of the wave shape; independent of
the size of the initial disturbance, the Riemann
solution leads, as propagation proceeds, to the
formation of a strong discontinuity (in which the
positions of the maximum and minimum velocity
g% vanishes), and there-
upon to an “entanglement” of the wave, i.e., to
three values of the pressure (or velocity) at a
single point in space. This latter circumstance
does not have any physical meaning. Moreover,
upon formation of a discontinuity with zero thick-
ness, the equations of hydrodynamics describing
the sound field cannot be applied. Finally, and
what is very important, the motion ceases to be
isentropic upon formation of the discontinuity,
because in the narrow thickness of the front the
processes of heat conduction begin to play an im-
portant role andone can no longer assume that the
pressure can be represented as a function of the
density alone.

It has already been mentioned that the condition

coincide in space, or

0
for the formation of the discontinuity is 8—:’( = oo,

Making use of this condition and of (2.8), we can
determine the distance to the point of formation
of the discontinuity for sound waves that are har-
monic at the source

T = Aegy
T T m(rtyvp

or, in dimensionless form

2

IY92N= — 2
2aN G+ My~

(2.10)

It is easy to see that (2.9) and (2.10), which have
been obtained for the one-dimensional case, are

invariant relative to the transformation (2.1) for
equal values of (y+1)M;y/2. Interms of xgp,
(2.9) can be rewritten as

v =1, [sm (0 — ka) + g sin 2 (02 — ka) + . ] (2.11)
We note that these relations do not depend on the
properties of the medium in which the wave is
propagated. It follows from (2.11) that the ampli-
tude of the second harmonic at the critical dis-
tance X = Xgpr is vy =vyy/2, and similarly,

P2 = p10/2 ete.

For small Mach numbers, the distance to the
formation of the discontinuity can also be deter-
mined in the case of a spherical diverging wave.
For a pulsating sphere of radius rj;, we can, at
r > r, (when the different parts of the spherical
wave can be considered plane ), write the expres-
sion for the wave in the form!4

ur = A cos (kr — ot)

_(_ﬂi >A251112(h7 — wi). (2.12

Upon formation of a discontinuity at a great dis-
tance, when it is possible to consider the various
parts of the wave as plane, v,/v; = ¥,; therefore,
the distance rgy at which the discontinuity of the
spherical wave cumulates is obtained from (2.12):
2

firg In =F (2.13)

o D) My
Here My =vy/cy, where vy, is the amplitude
of the displacement velocity at the surface of the
sphere. Keeping in mind (2.10), we can write
(2.13) in the form

x
cr

TFep =Tpe 7o,

Here Xgpr is the critical distance of a plane wave
with the same Mach number in that medium in
which the spherical wave is propagated. As the
Mach number decreases, the critical distance for
the spherical wave increases rapidly. For Mj,

~ 1073 to 107, it greatly exceeds the critical dis-
tance of the plane wave. On this basis, we can
conclude that in the case of a diverging spher-
ical wave nonlinear distortions are much less sig-
nificant than in the case of plane waves.

Summing up, it can be said that an exact solu-
tion of the hydrodynamic equations in a nondissipa-
tive medium leads, in contrast to the linear equa-
tions, to waveform distortion. The waveform dis-
tortion is sooner or later accompanied by the
formation of a discontinuity, independent of the
amplitude of the acoustical quantities. For kxgr
> 1 or krepy > 1, we can say that the shape
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changes little within a distance equal to a single
wavelength, which indicates the smallness of in-
teraction of harmonics at these distances. There-
fore, at any rate, at distances of the order of a
wavelength, although no discontinuity is formed,
the wave can be considered nonmonochromatic
with weak interaction of the harmonic components.
For the case of a plane wave, the condition kxcr
> 1 is equivalent to the condition

41
1M, < 1.

! @2.14)

2 ~ 1.1 to 1.3; for liquids,

For gases %—
=~ 4 to 6 (see Table I, and also the formal connec-
tion between y and B/A on p. 583). Therefore, the
condition (2.14) is simply equivalent to specifying
smallness of the Mach number: M;y = viy/cyp < 1.
For the maximum intensities obtained at the pres-
ent time (~ 300 w/cm? in water!), v,y ~ 2 x 103
cm/sec and My ~ 1.5 X 1072, Therefore, for all
intensities experimentally obtainable today, the
interactions of the harmonic components of the
wave can be assumed weak and the wave can be
considered in the quasilinear approximation.

b) Dissipative medium. The propagation of a
wave of finite amplitude in a dissipative medium
is much more complicated than in a medium with-
out dissipation. The presence of dissipative proc-
esses makes the propagation of the acoustic wave,
strictly speaking, no longer a reversible process:
the equations of a viscous liquid are not invariant
relative to the transformation ¥ = -1t and v/ =—v.
If the medium, in addition to the viscosity, has a
nonvanishing heat conductivity, then the process
of propagation, strictly speaking, also ceases to
be isentropic even in the absence of a discontinuity.
As is well known, the hydrodynamic equations of a
viscous gas can be obtained from the Maxwell-
Boltzmann kinetic equation by assuming that the
distribution functions of the particles in a phase
space do not differ appreciably from equilibrium
(see, for example, reference 12). The condition
that the deviation of the process from equilibrium
is small means, in the case of a gas, that the
change in temperature is small in comparison
with the absolute temperature at a distance equal
to the mean free path, that the change in the ve-
locity is small in comparison with the velocity of
sound}? and also that the period of the waveis small
in comparison with the relaxation time or that the
mean free path is small in comparison with the
wavelength.!® Whether or not one can consider the
departures from the equilibrium state in a wave of
finite amplitude to be small is still a moot point,
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in our opinion. Without mentioning such rapid non-
equilibrium processes as the collapse of cavitation
bupbles upon formation of a shock wave, the absorp-
tion of waves of finite amplitude in the case of ap-
preciable nonlinear distortions must also be re-
garded from the viewpoint of the thermodynamics
of nonequilibrium processes with large departures
from equilibrium. In the case of shock waves,
there is no doubt of the necessity of accounting
for the large departures of the process from
equilibrium. At the present time, several liquids
are known to have relaxation frequencies of 10°
cps (for example, toluene). When a wave of finite
amplitude and a frequency ~ 10® cps propagates
in these liquids, one cannot consider the departure
from equilibrium to be small in processes occur-
ring in such waves. We shall return to this ques-
tion when we compare the experimental material
with the theoretical results; however, it should be
pointed out here that the available experimental
material and the status of the theory of propaga-
tion of waves of finite amplitude in dissipative
media are such that it is impossible to decide with
certainty on the completeness of the hydrodynamic
equations of a viscous, heat-conducting liquid.

We apply the transformation of variables

Voo in'_“. p’_r_ P ¢’

F“’: C =i RV p T P (/
SIS S R S
W=t =1 =& =0 F=5 F=x

(2.15)

(where 7 and £ are the shear and bulk viscosi-
ties, respectively, T is the temperature, S the
entropy, and k the coefficient of thermal conduc-
tivity) to the set of hydrodynamic equations of a
viscous liquid.

Then we have, in the unprimed variables,

dp U . N .
a+w Vev=0, (2.16)
T av 1z o
" Lw—i—?(vV)VJ
= v——c2A()+ ['qTV%— ‘/E—i—iv \!VVV]
R( N 34 (2.17)
and the equation of heat transfer is
a5 U NQ U2 dui | Gy 2
ot T C TSR C? [ (81,1 ox; () ]
KO ”
sher WV (2.18)

The equation of state and the dependence of the
entropy on the characteristic thermodynamic co-
ordinates are also subject to the transformation
(2.15). Assuming that the equation of state is
known, and also that the pressure dependence of
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the entropy is known, we have the transformation

=L i&>
RC2:\_dp /°

As is seen from (2.16) — (2.19), the equations are
invariant relative to the transformation (2.15)
provided the following five numbers are constant:
the local Mach number M =v/c¢ and the numbers
bw/pc?, p/pc?, bw|v|2/TSpc?* and kw/Spcl.

(2.19)

Here b = %n + £, As is well known, the increase

of entropy in a shock wave of weak intensity is a
quantity of third order of smallness (see, for
example, reference 14). Therefore, with accu-
racy up to terms of second order of smallness,
we can assume S = const., i.e., we assume the
propagation of waves of finite amplitude to be
adiabatic. As was shown in references 3 and 15
for the case of a plane wave, the linearization of
the equation of heat transfer leads to linear dissi-
pative forces. This makes it possible to reduce
the totality of similarity numbers to three: M,

b,w/pc? and p/pc?, where by = (% n+ g) +

(1
(=
Cv

ical meaning: as before, in the case of a nonviscous
liquid, M and p/pc? are numbers determining
the distortion (M accounts for the nonlinearity of
(2.16) and (2.17) and p/pc? for the nonlinear equa-
tion of state). The number bio.J/pc2 determines
the relative effect of the losses due to viscosity
and heat conduction.

For nonmetallic liquids, the contribution of the
heat conduction to the absorption is much less than
that of the viscous absorption; we therefore use the
number bw/pc? inwhat follows. For similar waves
the ratio of the dimensionless numbers will also

- 51_> . These numbers have a simple phys-
P

2
be identical. For example, Re = —% x L2 B
pc bw bw

determines the ratio of the distortion due to the
nonlinear equation of state to the number that de-
fines the dissipation of the energy as a result of
viscous friction; the number Re’ =M p_cz = PV

bw bw
defines the ratio of the distortion due to the non-
linearities of the equations of continuity (2.16) and
of motion (2.17) to the number defining the dissipa-
tion of energy due to viscous friction.* In the

*We note here that for small viscosities and large nonlinear
distortions, as will be shown in what follows, we can use the
Riemann relation (2.7a) for the determination of the number Re”:

17
(L )T] ~ P _
1 \\ 7, = =Re

_pov _

. &
R = =7 =1) tw [

with accuracy up to (p/P,)*.
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acoustic case, Re and Re’ can be called the
acoustic Reynolds’ numbers.

We note that several nonlinear effects (for
example, the distortion and absorption at large
Re, the turbulence of the acoustic streaming, not
to speak of cavitation) observed at the present
time, cannot be explained by considering only
second-order terms in the hydrodynamic equa-
tions. Therefore, the linearization of (2.18) is
far from evident, and even incorrect, strictly
speaking. Unfortunately, a solution of the com-
plete problem of the propagation of waves of
finite amplitude with account of the nonlinearity
of the equation of heat transfer entails difficulties
that are currently insurmountable.

In what follows, we shall consider a set of
hydrodynamic equations for a case in which lin-
earization of the equation of heat transfer is pos-
sible. In this case, as was shown in reference 3,
there are two limiting modes, depending on the
acoustic Reynolds number Re =p/bw. For Re
« 1, by using the method of successive approxi-
mations (which is frequently applicable in the
consideration of the various problems of nonlin-
ear acoustics!®) we obtain for the sound pressure
of the first and second harmonic, with accuracy
up to quantities of second order of smallness,i7-18

P = pme_“gx sin (w? — kz), (2.20)
v g 2 —2a b .
pzz%(e o _ ot ) sin 2 (ot — k). (2.21)

Here py; is the amplitude of the sound pressure
at the source, and oz(l’ is the absorption coeffi-
cient of a wave of small amplitude having the fre-
quency of the fundamental wave. The amplitude
of the second harmonic reaches a maximum value

at a distance

(2.22)

From (2.20) and (2.21) we find that the ratio

P2 _ {1-+1) Reyy —afx _ —3afx
12 2 (6 ¢ )

cos (wt— kz),  (2.23)
(where Reyy =pjy/bw) reaches a maximum at the
distance

(2.24)

This distance can be called the range of relative
stabilization of the wave; p,/p; begins to fall off
at distances x > Xy,. In the formation of a sawtooth
wave, p,/p; =Y, and it follows from (2.24), (2.23)
and the smallness of Re that the stable form of the
wave in this case is far from sawtooth. For Re

~ 1, values of vy, py, and p; were obtained in
reference 18 with amplitudes increasing with time
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and distance. For Re > 1, the dissipative coef-
ficients (viscosity and thermal conductivity) drop
out from an analogous increasing second-approxi-
mation solution. In the latter case (Re >» 1), the
second approximation coincides with the- second
approximation of the Riemann solution. This gives
grounds for assuming that (for Re > 1) the vis-
cosity of the medium cannot prevent the formation
of the discontinuity. The stable shape of the wave
in this case will be close to sawtooth.

Thus, as is usually done in hydrodynamics for
large Reynolds numbers, we can neglect the vis-
cosity in the initial equations. We note, however,
that complete neglect of the viscosity for Re > 1
led in hydrodynamics to a number of paradoxes
which served as the point of departure for the intro-
duction of the boundary layer by Prandtl. Similarly,
viscosity and thermal conductivity can be neglected
here only where the gradients of the velocity and
temperature are small; in an analysis of the nar-
row front of the sawtooth wave, it is naturally
impossible to neglect the viscosity and thermal
conductivity.

In the case of Re ~ 1, the propagation of a
plane wave emitted by a harmonically vibrating
piston in a dissipative medium was studied in ref-
erence 19. Starting from the equations in La-
grangian coordinates, and applying the method of
Hopf-Cowl (for details, see reference 15), we
obtain an expression for the velocity

2b
(L+1)1Po¢o ot 7 In [ ke >
-+ 22 ]n( — T Re) e-n2alx ¢os no <t — %\)] .

1

= (2.25)

vz, t)y=

where Iy ( - Re) is the Bessel function of

imaginary arg‘ument. As was shown in reference
15, beginning with the distance x which satisfies
the condition exp (—2afx) « 1, this solution co-
incides with the solution of Fa,y.20 The solution of
the equation in Lagrangian coordinates was found
by him for the “comparatively stable wave shape,”
i.e., for waves whose form does not change as a
result of the simultaneous action of nonlinear dis-
tortion and absorption. The expression obtained
for the sound pressure in the region of stabilization
of the sawtooth wave has the following form

20,0 ->1 sin n (wt—kzx) *)

p= 2 St (2.26)

11

*We note that in reference 20 the value given for p is four
times larger. This was comected in reference 15.
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e winpt | T
Here «j = sinh ,:('y+1)Re:}'

At the present time there is no exact solution
of the problem of the propagation of a plane har-
monic wave in a dissipative medium for large
nonlinear distortions. This is connected on the
one hand with mathematical difficulties, and on
the other with difficulties of fundamental char-
acter, mentioned at the beginning of this section.

p

P 10/

l z

~

—

t A
FIG. 1. Sawtooth wave.

Thus, for Re >» 1, the initially sinusoidal
wave is gradually transformed to sawtooth. Sub-
sequently, the wave is so propagated that its form
remains close to sawtooth: the sawtooth wave is
relatively stable in a certain region of propagation.
At large distances from the source of the sound,
the wave (because of damping) transforms into
a sinusoidal wave of small amplitude. The spec-
tral composition of the sawtooth wave with front
thickness 6 (see Fig. 1) can be written in the
form

. 3
2P sin nw

nn(\1—%) rm%

where P is the amplitude of the sawtooth wave.

The thickness of the front of the sawtooth can
be determined from the relation for the thickness
of a shock wave in the case of a small pressure
discontinuity.!4 It is easy to see that for a peri-
odic wave the front thickness is

21

R R Ty T (2.28)
where Re = P /bw. We note that this relation is
obtained under the assumption that the dissipative
forces are linear. In liquids, for Re on the order
of several times ten (acoustic pressure ~ 10
atmos at frequencies ~ 1 Mcs), the thickness of
the front in (2.28) ought to be ~ 1073, As follows
from (2.27), the thickness of the front can be de-
termined if the spectral composition of the wave
is known. Current measurements of the spectral
composition (see Sec. 3) give & approximately

(n=1,2,3, ...,

P = (2.27)

o7
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two orders larger than given by (2.28); however,
this may be due to errors in measurement.

c) Absorption of waves of finite amplitude.
It has already been noted in Sec. b) that there does
not exist today a more or less complete theory of
the propagation of waves of finite amplitude in a
dissipative medium, even in the one-dimensional
case. Therefore, all the existing methods of the
determination of absorption are approximate. A
common feature of all these methods is that the
dissipative forces are assumed linear. In the
case of the cumulation of a discontinuity, this
assumption makes the absorption coefficient of
the discontinuity (as in the case of weak shock
waves ) independent of the linear coefficients of
viscosity and of the thermal conductivity. In ad-
dition, even these approximate theories of absorp-
tion demonstrate the possibility of an appreciable
increase in the dissipation of energy in a wave of
finite amplitude in comparison with waves of in-
finitesimally small amplitude. This is connected
with the increase in the dissipation of energy in
the higher harmonics of the wave of finite ampli-
tude. We note here that the absorption of waves

of finite amplitude differs from the absorption of
waves of infinitesimally small amplitude not only
in that it is essentially larger, but also in that it
depends on the spectral composition of the wave.
For example, for initially harmonic waves, the
harmonics grow and the absorption coefficient
changes with increasing distortion. This leads to
the result that, in contrast to the absorption of
waves of small amplitude, the absorption of waves
of finite amplitude is not exponential. Before
turning to the problem of absorption, we consider
several general questions. It has been observed
above that for small Mach numbers and y ~ 1

the waveform distortion at distances on the order
of a wavelength is small. Therefore, in an ideal
medium, the finite-amplitude wave can be consid-
ered at these distances, as a nonmonochromatic
wave with weakly interacting harmonics. The in-
troduction of linear dissipative forces in the equa-
tion cannot lead to a change in the interaction of
harmonic components of the wave. This permits
us to proceed to the problem of the absorption of
waves of finite amplitude from a quasi-linear point
of view.

In the case in which Re « 1, the absorption
coefficient for a plane wave, initially sinusoidal,
can be obtained?! (see also reference 22) from
Egs. (2.20) and (2.21) by thermodynamic calcula-
tions:

a3t )2p%o<e_a9x#8_3agx)2.

a9 1665, (2.29)

Here by =h +« (-l L ) If we can neglect the
Cy Cp

heat conduction (b; =b), the additional absorption
from (2.29) is proportional to Re¥;. It also fol-
lows from (2.29) that even small distortion of the
wave form leads to nonexponential absorption; at
the sound source, « = a‘i’, after which o in-
creases in the propagation direction and reaches

at the point* xm = a maximum value

0
2&1

& < 1+4+0.028(y-+1)2 Re?,.

- 720
a;

(2.30)

a—a} as x—,

1t should be noted that the accuracy of the ex-
perimental determination of the absorption coeffi-
cient of a wave of small amplitude is currently
about 10%. The distortion of the wave can intro-
duce errors in the measurement of the absorption
coefficient of a wave of small amplitude. Using
the relations derived, we can determine the con-
ditions under which “nonlinear” errors are pos-
sible which exceed the limits of the determination
of the absorption coefficient of a wave of small
amplitude by 10%:

(2.31)

An increase in the accuracy of the measurement
of a} requires smaller sound pressures. This
rather stringent limitation on the sound pressure
in the determination of small amplitude absorption
can be relaxed if the measurements are carried
out far from the point xp, = In 3/20a].t .

In the other limiting case, when Re > 1, for-
mation of a discontinuity is possible in the medi~
um, as follows from what was pointed out above.
In this case the relatively stable waveform will be
a sawtooth wave. Thus the absorption determined
under these conditions in the region of stabilization
of the wave is related to the absorption of acoustic
discontinuities.

Writing down the condition for the decrease of
amplitude of the sawtooth wave, under which the
wave remains a sawtooth during the process of

*This distance is larger than the distance of stabilization
of the second harmonic and is equal to the distance of stabili-
zation of the wave where p,/p, is maximum [see (2.2)].

tKeeping in mind that the intensity of ultrasound is I ~ »*UZ,
(where v is the frequency and U__ is the effective voltage on
the piezoradiator), the voltage obtained from (2.31) for a quartz
radiating on one side is U_g S 7 x 10°[b/(y + 1)], where it is
seen that beyond the relaxation region (where b =%y + £ does
not depend on the frequency), the voltage U at different fre-
quencies ought to be identical in the measurement of absorp-
tion. For example, Ueﬁ.é 30v for water, and < 13v for methyl
alcohol. In viscous liquids (keeping in mind also the large bulk
viscosity) this limit lies at much higher voltages.
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propagation, we can obtain the relation!

@ _yFipe _3dlpg
- " Re,.

af T bw 7

2.32)

We note that px is the acoustic pressure at the
point of measurement of the coefficient of absorp-
tion. The coefficient of absorption of such a stable
acoustic discontinuity does not depend on linear
dissipative coefficients. This does not mean at all
that the dispersion of energy is not determined by
the viscosity and thermal conductivity, for it is
just these dissipative processes that bring about
the possibility of the existence of a wave that is
stable in form. We also note that the coefficient

o is proportional to the acoustic pressure, which
is typical of weak shock waves.

A quasilinear method was used in reference 5
for the determination of the absorption. The ab-
sorption coefficient of a plane wave of finite am-
plitude was determined in the following way. The
distance traveled by the wave in the formation of
the discontinuity in a real medium [see (2.10)]
was divided into ten sections Ax = 0.1 xey. Writing
down the change of amplitude of the pressure of
the n-th harmonic in the n-th section in the form

Pt = plexp(—31 —aide),

part = phexp (+8n — n2aiAz) (n=2,3,...),

where 6% are factors that take into account the
interaction of the harmonics, we can obtain the
condition under which p§/pf =A, (n=2,3,...;
1 <s = 10), where the Ap do not depend on the
number of the section. The wave under these con-
ditions becomes relatively stable, i.e., it is prop-
agated so that its relative spectral composition
does not change with propagation, although the
“intensity of the individual spectral lines” does
change. Under these conditions, it was shown to
be possible to determine the absorption coefficient
in the region of the stabilized wave:
a 3] -afAx

— = =14+ 108 (v + 1) Rey,.

0 0
ad afAz

(2.33)

The factor 6%‘ was determined in reference 5 from
the distortion of the waveform in the ideal medium.
It should be noted that the similarity of the wave of
finite amplitude in the ideal medium was employed
in reference 5; this also made it possible to intro-
duce essentially a new coordinate, a fraction of

the total distance to the place of formation of the
discontinuity, for waves of different frequencies
propagated in different media. The limits of ap-
plicability of (2.33) are rather difficult to establish.
For Rey; < 1, stabilization of the wave takes

place for s < 10, where 6f depends on the
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number of the section in which the wave becomes
stabilized. The larger the intensity, the higher
the values of s at which stabilization occurs.
Thus 6f depends on the amplitude of the acoustic
pressure, and (2.33) is not the right equation for

the dependence of % on the pressure. For Rey
1

> 1, as was pointed out above, the stable form of
the wave is close to sawtooth and s = 10. For

s = 10, according to the data given in reference 5,
619 >~ 0.03 and (2.33) gives a value of a/a} close
to (2.32), provided one can neglect the change of
amplitude of the acoustic pressure up to the point
of formation of the discontinuity. It should be
noted that the lack of an analytical expression for
6f makes it difficult to use (2.33). It is more
suitable to use (2.29) for Re < 1 and (2.32) for
Re > 1. We also note that the absorption is deter-
mined in reference 4 by a method that is analogous
in principle to that of reference 5. If Ep is the
mean density of energy in the n-th harmonic, then
the change of this energy is determined by the lin-
ear dissipation of energy by and the interaction
with the other harmonic components of the wave:

[oe]

e B, 4+ Sep= 0B, (1=1,23,...).
s=1 (2.34)
Here €,4 is the wave energy transferred from

the s-th to the n-th harmonic per unit distance
traveled by the wave (with appropriate sign});
oy is the partial coefficient of absorption. If*

1 dE e
o=-=== and E= ), Ey, itis easy to see that
E dx n=t

(2.35)

o
o= als, = a
- nCn = n%n»
n=1

) X
since ), ), ens = 0. Here, op = En/E. Itis
=18=1
seen fr%m {2.35) that the differential absorption
coefficient is determined by the spectral composi-
tion of the wave. Using (2.35) it is possible to show
that o has a maximum in the region of stabiliza-
tion, where E,/E; = B, (Bp does not depend on
X ), and that in this region the absorption coeffi-
cient of the wave of finite amplitude is equal to an
arbitrary partial coefficient ¢« =apn (n=1, 2,
3,...).

*The equality of the energy density of the wave to the sum
of the energy densities of the individual harmonics is not self-
evident. However, as experimental data show, in ordinary non-
relaxing liquids, in the case of a plane wave, the phase rela-
tions between the harmonic components remain unchanged in
the process of wave propagation.
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In other words one can show that in the case of
plane waves of finite amplitude, for Re «< 1, the ab~
sorption coefficient of the wave of finite amplitude
is proportional to Re?; for Re > 1, the absorp-
tion coefficient in the region of stabilization of the
wave is proportional to Re. In this latter region,
as it is not difficult to see, the absorption coeffi-
cient o does not depend on the dissipative coef-
ficients of the medium (the shear and bulk vis-
cosities, and also the thermal conductivity). We
also note that in contrast to the absorption of
waves of small amplitude, the absorption coeffi-
cient of waves of finite amplitude depends on the
distance, i.e., the absorption is nonexponential.
Therefore, outside of the region of stabilization
it is meaningful to speak only of a differential
absorption coefficient.

At the present time there is great interest in
the absorption of waves of finite amplitude in re-
laxing media. The problem of linear relaxation,
for a wave close in shape to sawtooth, was con-
sidered in reference 23, where it was shown that
for a change in the Reynolds’ number from ~1
to ~ 17, the absorption at the relaxation maximum
increased approximately 1.5 times, while the re-
laxation maximum shifted in the direction of lower
frequencies from wT =1 to wr = 0.4. Fora
wave close to sawtooth in shape, the use of (2.26)
yielded

oo
A n?
4d (1} n2w2c?) sinh?n {24 - aiz)

L= (1 oter) 2=t

(2.36)

r 1
Here of is the relaxing part of the absorption
of a wave close to sawtooth, and af is the relax-
ing part of the absorption of a wave of small am-
plitude. As is seen, the relaxing part of the ab-
sorption depends on the Reynolds number and on
wT.

3. DISTORTION OF WAVES OF FINITE AMPLI-
TUDE IN LIQUIDS

In this section we shall consider the experimen-
tal methods for the determination of nonlinear dis-
tortions of the wave shape, and also a qualitative
comparison of theory with experiment. In one of
the first works,? which notes the effect of nonlin-
earity on the propagation of ultrasonic waves in
liquids, it is established that the interaction of
two ultrasonic waves of different frequency, prop-
agating in the same direction, leads to sum and
difference frequencies. Later, a similar experi-
ment was performed on the interaction of waves
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at right angles,?® as a result of which amplitude
and phase modulation of one wave by the other
were noted. This method was applied for the de-
termination of the nonlinear characteristics of
liquids in reference 8. Distortion of the shape

of monochromatic traveling waves of finite am-
plitude was shown in references 10 and 26. The
measurement setup is shown in Fig. 2. An ultra-

N/

FIG. 2. Arrangement for the determination of the spectral
composition of a wave of finite amplitude.

sonic source 3 (quartz transducer) and a quartz
receiver 4 are placed in the tank 1 covered (to
reduce wall reflections) by an absorber 2 made
up of layers of soft rubber. An acoustic filter

is placed between the source and a receiver
whose resonant frequency coincided with the
frequency of one of the harmonics of the wave.
This filter had the form of a thin metallic plate 5,
turned at such an angle to the direction of propa-
gation of the ultrasound as to markedly isolate

the desired harmonic from the signal past the
filter. The use of the filter also eliminated the
possibility of the formation of standing waves by
reflection from receiver 4. The amplitudes of
the harmonic components of the wave in this case
could be determined with the receiver 4 stationary;
only the filter 5 was displaced along the axis of
the ultrasonic beam. The dependences of the am-
plitudes of the second and third harmonics on the
distance to the source of the sound (for a fre-
quency of 1.5 Mcs) is shown in Figs. 3a and 3b.
In these drawings, curves 1, 2, and 3 were deter-
mined for source intensities Ij; of = 0.5, 2, and
7.8 w/cm?, respectively, in tap water. In Fig. 3,
the right ordinate scale applies to transformer oil,
the second harmonic in which (curve 4) was de-
termined for I, = 7.8 w/cm?. The ordinates
represent voltages at the output of a tuned am-
plifier attached to the receiver (with a gain of

50 for the second and 100 for the third harmonic).
In addition to the method just described, the re-
sults of which are indicated in Fig. 3 by crosses,
a method was used in which the wave reflected
from the receiver was attenuated by covering the
receiver with sheets of rubber; further amplifica-
tion with the use of a tuned amplifier permitted a
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FIG. 3a. Second harmonic vs. the distance to the sound
source in water (1, 2, 3) and in transformer oil (4).

Vv
J0

20

20 44 cm
FIG. 3b. Third harmonic vs. the distance to the sound
source in water.

sufficiently accurate separation of the harmonic.
The results of the measurement by this method
are shown in the drawing by circles.

We note that the tuned method described above
permits the measurement of the harmonic content
for small intensities. For example, at 1 Mcs, the
second harmonic could be observed at voltages on
the radiating quartz of the order of several volts.

In contrast to the method of tuned receivers,
which might be called the spectral method, a
broadbhand piezo receiver, in conjunction with a
broadband amplifier, permits direct observation
of the wave. This was done in references 27, 28.
The waveform at 1 Mcs, for an initial intensity
Iijp= 40w /em? obtained by means of a broadband
quartz transducer (with a resonant frequency of
11.5 Mcs), is shown in Fig. 4.27 The first oscillo-
gram pertains to a distance of 2 cm from the
source; the waveform differs somewhat from
sinusoidal, but it is quite different from sawtooth.
The following oscillograms pertain to 10, 20, and
48 cm from the source. These oscillograms show
how the wave gradually transforms to one that is
nearly sawtooth in shape. The maximum curva-
ture of the leading front on the wave was obtained
at 20 cm; further on this wave propagates without
appreciable change in shape. Use of either an
electric or mechanical (as was done in reference
2T) analyzer permits one to obtain the spectral
composition of the wave. A very important factor

10cm
20 cm

FIG. 4. Oscillograms showing the gradual change of wave-
form along the direction of propagation.?”

is that these photographs have been obtained within
time intervals not exceeding 1 second from the
moment of switching on the ultrasonic field.

A variety of optical methods have been devel-
oped for the determination of the waveform dis-
tortion of waves of finite amplitude in liquids.?8~33
It should be noted here that optical methods, as in
other acoustic measurements, possess the advan-
tage that they allow measurement without intro-
ducing any distortion into the acoustic field. How-
ever, the optical methods give in most cases only
indirect information on the change in the wave
shape. In the observation of the diffraction of
light by an ultrasonic wave of finite amplitude, an
asymmetry about the diffraction maximum has
been observed® in the distribution of the intensity
of the light, The envelope of the distribution
has two maxima, located on two sides of the zeroth-
order spectrum. Upon increase in the sound inten-

- sity, one of the maxima decreases and moves away

from the zeroth order spectrum; at the same time,
the other maximum increases and approaches the
zeroth order spectrum. Photographs are shown

in Fig. 5 of the mercury line (A = 4358A), ob-
tained at 583 kes in distilled water at 5 cm from
the sound source (the intensity at the position of
the light beam is shown on each photograph).* The
theory of the method was developed in reference 31
under the assumption that the ultrasonic diffraction
grating only phase-modulates the light. It follows
from this theory, in particular, that for an ideal
sawtooth wave (a wave with zero front thickness)
only a single maximum will be observed around

the k-th order (k = 2A}\nL

, where An is the

*These photographs, as well as those of Fig. 8, were kindly
furnished to the authors by I.G. Mikhailov and V. A. Shutilov.



592

— ion of sound

1.9 w/cm?

2.8 w/cm?

4.9 w/cm"

8.1 w/cm?

FIG. 5. Diffraction of light on a wave of finite amplitude.
Asymmetry was obtained in the distribution of the light inten-
sity over the diffraction maxima.

change in the index of refraction and L is the
depth of the sound field).

For a sawtooth wave with a front thickness 6,
two maxima are observed around the orders
ky = ZAAnL % and ky = *—ZA;:L ?, where A is
the acoustic wavelength and d = A —6. The theory
advanced is valid up to d/6 < 3; for higher values
of d/& it is necessary to take the amplitude modu-
lation of the light into account. We note that, for
small thickness of the wavefront, the need also
arises of investigating the higher-order diffrac-
tion spectra, which can lead to certain experimen-
tal difficulties.

Figure 6 shows the optical setup used in refer-
ence 32 to determine waveform distortion. The
image of illuminated slit S; is focused by a long
focus lens L on slit S;. Slit S; limits the width
of the light beam to ~0.1 — 0.4 A. Therefore, no
diffraction on the ultrasonic wave produced by the
quartz Q was observed in the plane of the slit Ss.
However, for traveling ultrasonic waves, the image
of the slit was displaced, owing to the change in
the index of refraction, which led to the smearing
of the image of slit 8; in comparison with the
image in the absence of the ultrasound. For very
small width of the slit S;, by displacing S; in
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FIG. 6. Optical setup for the observation of wave dis-
tortion.*?

its plane, it is possible to determine the distribu-
tion of light intensity in the smeared image from
the constant component of the photocurrent, pro-

.duced by the photomultiplier P. A method similar

to this was used in reference 29 to determine the
waveform of standing waves. In reference 32 this
method, with an ultrasonic optical shutter which
permitted stroboscopic illumination, was also used
to determine the waveform of a traveling wave of
finite amplitude.

The distribution of the light intensity in the
smeared slit image, obtained in reference 32 for
the propagation of ultrasound (1 Mcs) in water
at different distances from the source, is shown
in Fig. 7 (1—10 cm; 2—50 cm; and 3 —90 cm,
for 500 volts applied to the quartz). The dotted
lines indicate the mean position of the slit. The
qualitative similarity in the behavior of the max-
ima in the smeared image of the slit in Fig. 7 and
the maxima which surround the distribution of
light intensity in the diffraction of light on a wave
of finite amplitude, should be noted.

FIG. 7. Distribution of light
intensity for a broader slit image??
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We also note the possibility of combining the
acoustic spectral method with the optical one.
Making use of a filter plate for separating the
harmonics of the wave, as pointed out above, one
can use as the indicator of the harmonic the dif-
fraction of light by the ultrasound®®* rather than
a piezoelectric receiver tuned to the harmonic.
We recall that in the diffraction of light on the

*This method was also reported by I. G. Mikhailov and V.
A. Shutilov at the All-Union Conference on acoustics in 1958.
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second harmonic, the distance between the dif-
fraction maxima increases at a double rate, and
so forth. The diffraction of light is shown in
Fig. 8 for a distance of 25 cm from the source,
for I, = 7.8 watts/cm? and v =583 kes; the
first of the photographs pertains to diffraction
on the distorted wave, the second and third to
diffraction on the second and third harmonics of
this wave, separated by filter plates made of
heavy flint glass.

FIG. 8. Diffraction of light on a distorted wave and on har-
monics separated with the help of a filter plate.

Thus a number of different experimental
methods confirm the nonlinear distortion of the
waveform in liquids. At the present time the dis-
tortion has been opserved in the frequency range
0.5 —4.5 Mcs. This is connected with the fact
that at these comparatively low ultrasonic fre-
quencies it is sufficiently simple to obtain waves
with high acoustic Reynolds numbers; these fre-
quencies are sufficiently high to allow for the
production of plane waves. In this range of fre-
quencies, the distortion has been observed at
such low intensities that such measurements can
also be carried out in principle at much higher
frequencies.

The amount of experimental data on the dis-
tortion of the waves of finite amplitude is still
small today, and it is not possible to regard it
as sufficiently accurate to permit valid compari-
son with theoretical results. The maximum ac-
curacy with which the harmonic content can be
measured today (second and third harmonics)
is no greater than 10 — 15%. Moreover, com-
parison with theoretical data is essentially com-
plicated by the fact that it is often extremely dif-
ficult to create the idealized conditions of the
theory experimentally. This is especially true
of such phenomena as cavitation, heating of the
medium, etc.

For all that, we shall, where it is possible,
attempt to compare, even if only qualitatively,
the experimental results with the theoretical.

At distances small in comparison with the dis-
tance of formation of a wave of stable shape, the

experimental growth of the second and third har-
monic agrees qualitatively with that which is given
by the Riemann solution; in Fig. 3a, the dashed
lines show the growth of the second harmonic in
accord with (2.9) for B/A =5.0. As is seen, at
small distances the second harmonic is propor -
tional to x and pfo and the third to x* and
pfo,26 The agreement is still better if dissipative
losses are taken into consideration.’ We note that
the method of direct determination of the.distortion,
in view of its sufficient sensitivity, can (the same
as was done in reference 8 by using the interaction
of two waves) be used to determine the dynamic
nonlinear constants of the liquid.

For small Reynolds numbers, the stabilization
range of the second harmonic, determined from
(2.22), agrees very well with the experimental
value. In particular, this has been verified for
acetic acid.%*

The existence of a region of stabilization of
the wave has been confirmed experimentally.

Data of harmonic analysis?? of oscillograms of
the type shown in Fig. 4 are plotted in Fig. 9.

/B
W%y

FIG. 9. Relative spectral Jo}
composition of finite ampli-
tude waves at different dis- 20F
tances from the source of

sound.” 0

0 20 J 4 Slemx

The relative content of the harmonic p,/p; is
plotted along the ordinate, and the distance from
the source along the abscissa; the numbers of the
curves correspond to the numbers of the harmon-
ics. The spectral composition of the wave at dis-
tances ~ 15—40 cm from the source changes
very slightly (~ 10%), which permits us to speak
of a region where the waveform is stable.

All the experimental facts given correspond
qualitatively to the theoretical results. However,
certain phenomena cannot be explained from the
viewpoint of the theory given above. In the first
place, there is the difference in the distortion of
the positive and negative phases of the pressure.
As established in reference 27, the waveform of
an intense ultrasonic wave changes with time. The
oscillograms in Fig. 4 were obtained, as pointed
out, within 1 sec after applying the voltage to the
source of sound. Within 5 — 7 sec, the amplitude
decreases, and on the side of negative pressures
there is a shearing off of the sharp tooth of the
wave. Thereafter, this phenomenon becomes still
more clearly outlined. Such an asymmetry in the
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distortion of the positive and negative phases of
the pressure is evidently explained by cavitation
or precavitation phenomena. It can be interpreted
as the difference in the absorption of the different
phases of the wave, which cannot be explained by
the equations of hydrodynamics of a viscous liquid.

Moreover, the front thickness of the sawtooth
wave, determined from these data, is appreciably
larger than it should be according to (2.28).%

Here it suffices to note that the accuracy of the
determination of the thickness of the front, ac-
cording to the data in the literature, is extremely
small because of the small accuracy of determina-
tion of the spectral composition. A front thickness
~ 10737, obtained in pressure jumps of the order
of tens of atmospheres for a sawtooth wave in
liquids, can scarcely be determined by the method
of harmonic analysis.

The reason for the lack of correspondence with
hydrodynamic theory must evidently be sought in
the nonlinear character of the dissipative proc-
esses that take place in a wave of finite ampli-
tude.

4. ABSORPTION OF WAVES OF FINITE AMPLI-
TUDE IN LIQUIDS

1t has long been known that, when working with
comparatively intense ultrasonic waves, absorp-
tion coefficients can be obtained which differ appre-
ciably from those measured at low intensities. In
the development of the relaxation theory of absorp-
tion attempts were even made at attributing the
excess absorption (over Stokes’) to nonlinear dis-
tortions.*® The fundamental reason for the appre-
ciable increase in the absorption of waves of finite
amplitude in comparison with waves of small am-
plitude is the nonlinear distortion of the wave,
which can be represented as the conversion of the
wave into a non-monochromatic one. The amount
of experimental data today is still insufficient to
be able to say with assurance that the dissipative
processes in the wave are nonlinear, but, from our
point of view, some experimental results can be
regarded as pointing to the nonlinear character of
the dissipative processes.

In speaking of the absorption of waves of finite
amplitude, we should keep it in mind that, in con-
trast to the absorption of waves of small ampli-
tude, the absorption of waves of finite amplitude
is nonexponential. This is connected with the fact
that [as follows from (2.35)] the absorption coef-
ficient depends on the spectral composition of the
wave. Inasmuch as the spectral composition of the
wave changes during propagation, the absorption
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coefficient also changes. As was pointed out above,
there is a region in which the change in the spec-
tral composition changes but slightly (the stabili-
zation region) , where the absorption coefficient
changes slowly. Near the source which radiates
monochromatic waves, the absorption coefficient
is close to the coefficient for waves of small am-
plitude; in the stabilization region, it is maximal;
at large distances, when the wave returns to sinu-
soidal, the absorption coefficient tends to the co-
efficient for a wave of small amplitude.

Before proceeding to the specific results of the
determination of the absorption of waves of finite
amplitude, we note several experimental peculiari
ties of the measurement of finite amplitude waves.
These peculiarities are, in the first place, associ-
ated with the fact that the finite amplitude wave is
nonmonochromatic. Strictly speaking, it is neces-
sary to use a broadband receiver to determine the
absorption coefficient of a finite-amplitude wave.

If the measurements are carried out in the region
of stabilization of the wave, then we can determine
any partial absorption coefficient, which is equal
in this case to the absorption coefficient of a wave
of finite amplitude. At high ultrasonic frequencies
(~ 4 Mcs), the stabilization of the wave takes place
rather rapidly and, keeping in mind the rather
large experimental error, it is possible to assume
that the measurements are carried out in the sta-
bilization region.

We also note that acoustic streaming, the pos-
sible appearance of cavitation, and also the heat-
ing of the medium under the action of the ultra-
sound have an effect on the results of measure-
ment. Very significant difficulties at low (< 1 Mcs)
frequencies can be avoided by measurements car-
ried out ahead of the stabilization region. In this
case, the absorption coefficient will be less than
what follows from (2.30) and (2.32). As a result of
the effect of all the factors mentioned, the error
of measurement of the absorption coefficient of
finite-amplitude waves (~ 10 —20%) is greater
than the error of small-amplitude measurements
(~ 10%). Mention should also be made of one more
difficulty. In order to obtain high acoustic Reynolds
numbers, it is advantageous to work at compara-
tively low ultrasonic frequencies. Along with this,
investigation of the entire range (excluding that
of small Re) is made difficult by the large errors
in the measurement of small absorption coeffi-
cients. This is explained by the fact that the region
of small Re has been investigated up to now at fre-
quencies above ~ 3 Mecs, while the region of high
Re has been studied at frequencies below ~ 2 or
3 Mes. The equivalence of the different frequen-
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cies, keeping in mind some difference in the ex-
perimental and theoretical data (see below), can-
not be assumed as self-evident.

A systematic investigation of the dependence of
the absorption on the intensity was initiated by
Fox.3" At a frequency of 9.916 Mcs, for intensi-
ties 0.01 —5 w/cmz, he made measurements in
boiled distilled water, in water saturated with air,
and in water saturated with CO,. The intensity,
determined with an absorbing radiometer pro-
tected against acoustic streaming, is shown in
Fig. 10 as a function of the distance. Curve 1 cor-

4

FIG. 10. Absorption
in water at 10 Mcs ac-

i cording to reference 37;
ot 4 L L 1-—water saturated with
> air; 2 - water, saturated
a0t N with CO,.
| s s o 5 e s e |
] 10 20 cm

responds to water. saturated with air (the curve
for degassed water, obtained at distances up to

8 cm, coincides with this curve) ; curve 2 corre-
sponds to water saturated with CO,. In the semi-
logarithmic plot, the slope of these curves deter-
mines the absorption coefficient. It is seen from
this picture that up to ~ 0.04 w/cm? the absorp-
tion coefficient is equal to 44 x 1073 and does not
depend on the intensity.* At 5 w/cm?, the absorp-
tion coefficient increased to 190 x 1073, Insertion
of an electric filter to eliminate harmonics in the
signal applied to the radiating crystal gave the
same results, within the limits of measurement
errors. Thereafter, the measurement of the ab-
sorption of waves of finite amplitude was made in
a number of researches??:19:28,38-42,46 iy, gifferent
liquids and by various methods. The majority of
the researches indicate that the increase in the ab-
sorption coefficient depends on the viscosity of the
liquid: for otherwise equal conditions, the relative
absorption coefficient in viscous liquidst is less
than in low-viscosity liquids. This agrees qualita-
tively with the values of both for Re < 1 (2.30)
and for Re >1 (2.32). The dependence of the ab-
sorption coefficient on the viscosity of the liquid
was verified in reference 42, where measurements

*We note that these intensities correspond to a Reynolds
number ~ 1/6; at a value of y ~ 7.7 for water, this result is
in satisfactory agreement with (2.31).

By relative absorption coefficient we mean here and in
what follows the ratio of the coefficient of absorption of a
finite-amplitude wave to the coefficient of absorption of a
wave of small amplitude.

were made of the absorption coefficient in trans-
former oil in the region of its maximum value.
Inasmuch as in this liquid the density and velocity
change insignificantly with changing temperature,
while the shear viscosity changes appreciably, one
can estimate the dependence of the absorption co-
efficient on the viscosity from the temperature de-
pendence of the absorption at an identical fre-
dquency and intensity. These measurements were
carried out for Re ~ 2 —10. It follows from
(2.32) that the absorption coefficient of the finite-
amplitude wave « should not depend on the vis-
cosity in the region of stabilization. The results
of the measurements are shown in Fig. 11, from
which it is seen that the absorption at higher tem-
peratures increases somewhat. This can be at-
tributed both to the inapplicability of (2.32) for Re
close to 1, and to a temperature dependence of the
bulk viscosity which is different from the depend-
ence of the shear viscosity.

2afv? 10"’
L
FIG. 11. Dependence of /v ? =
on temperature in transformer oil 3000 . =
at 1.5 Mcs.**
L

000
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As concerns the frequency dependence of the
absorption of a wave of finite amplitude, a com-
parison of the absorption in water?®3"1? shows
that at lower frequencies (for otherwise equal
conditions) the increase in the relative absorp-
tion coefficient is appreciably greater than at the
higher frequencies. This also agrees qualitatively
with (2.30) and (2.32). Later, this was demon-
strated in measurements of the absorption at dif-
ferent frequencies.® At relatively small intensi-
ties, a ~ p?; as the intensity is increased in the
region of maximum absorption, « ~ p.

Thus, it has been shown by different authors,
working with different methods, that the experi-
mental values of the relative absorption coeffi-
cients of finite-amplitude waves are in qualitative
agreement with (2.30) and (2.32). Turning to a
quantitative comparison with theory, it should be
noted that there are still too few experimental data
and, on the other hand, that the existing material
was obtained at a time when a number of absorp-
tion problems were not yet clear. Therefore, the
literature lacks all the data necessary for com-
parison with theory. Data are given in Fig. 12,
from various sources on the absorption in water
and its dependence on the Reynolds number
27 Rex = px/br, where px is the amplitude of
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FIG. 12. Dependence
40 of the relative coefficient
of absorption in water on
acoustic Reynolds number
ZnRex= px/bv (b =0.036
poise), according to the
measurements of different

o) authors: @—(10 Mcs, t =
20 + 2°C);* 0—(8.73 Mcs,
t = 26°C);** +-(3.85,5.85,
6.8, and 8.74 Mcs, t = 20-
23°C);*° a—(1.5Mcs, t =
" 4 19-20°C);*® A~(1.5, 2.84,
4.5 Mcs, t = 17-22°C).*
The solid line is the theo-
retical curve from (2.30)
and (2.32) for B/A+1=7.7.

J0

3

20

[4
72 05 10 50 100

Prfby

the sound pressure at the point of determination
of the absorption coefficient. On this graph the
solid line is the theoretical curve computed from
(2.30) for Rex =1 and from (2.32) for Rex > 1;
the values b = 0.036 poise and B/A = 6.7 have
been used. It should be remarked that in most
references from which the data are taken, it is

not noted whether the data refer to the sound pres-
sure at the point of measurement of the coefficient
a or to the sound pressure at the source. It is
possible that the deviation of the experimental data
for 2mrRex ~ 6 —30 from the theoretical curve is
due to this fact. Another reason for the rather
large scatter of the experimental results may be
that not all the data refer to the region of stabili-
zation of the wave. As already observed above
(see page 589) the absorption coefficient in the
region of stabilization reaches a maximum value.
Thus the solid curve in Fig. 12 refers to the max-
imum coefficient of absorption. We note that only
deviations on the low side can be explained in this
way. Bearing all this in mind, we can say that the
experimental results of absorption of water agree
quite satisfactorily with the theoretical values if
we use the largest B/A (see Table I).

Figure 13 shows the dependence of the relative
coefficient of absorption on the acoustic Reynolds
number in methyl alcohol.! The solid line corre-
sponds to the theoretical curve of (2.32) with
b = 0.0174 poise and B/A =17.3. In view of the
rather large error of measurement (~ 20%), the
agreement with theory can be regarded as satis-
factory. These measurements were carried out
at 4.5 Mcs for relatively small Reynolds numbers;
the measurements at 1.5 Mcs for relatively large
Re show that there is a substantial difference be-
tween theory and experiment.
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In Table II data are given on absorption in
transformer oil. For calculations here, use has
been made of a shear viscosity 75> = 0.024 poise
and a Stokes’ absorption (2a]/v?)yge = 430 x 10717,

TABLE II. Absorption in
transformer oil4

Px | 2¢ | px | 2a Px 2a
w | 2al | v | 227 | v | 240
14143121130 6.2 55
1.411.2126(3.1| 6.8 9.7
14113129137 | 70| 6.2
1512113959 | 76192
1.7125]|4.1]|4.3 | 821 9.4
1712414868 | 94| 98
1926|4856

It is easy to see that such a choice of the viscosity
does not affect the slope of the curve o/ a‘l)

= ¢ (Rex). It follows from the data of Table II
that for transformer oil, B/A = 15 + 3, which

is also the highest value for liquids (see Table I).

Thus, we can assume that in some liquids, the
absorption, while qualitatively in agreement with
Eq. (2.32), which is derived from the equations of
hydrodynamics, does not conform quantitatively
to the theoretical absorption. We note that the
measurement of the absorption under conditions
in which the production of cavitation is rendered
difficult (by raising the hydrostatic pressure to
15 kg/cm?)' shows that the development of cavi-
tation processes cannot play a significant role in
the increase of absorption.

With regard to the absorption of finite-amplitude
waves in liquids possessing a relaxation frequency
in the frequency range under study, such measure-
ments were carried out in aqueous solutions of
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acetic acid of varying concentration (0.1 —4 M)
at 6.8 Mcs and in solutions of magnesium sulfate
at 3.85 and 6.8 Mcs.40 In solutions of acetic acid,
an increase in the concentration of acid led to a
decrease in the relative absorption coefficient,
which also agreed with references 34 and 38. In
view of the relaxation frequency of acetic acid,*
it should be said that the measurements of refer-
ences 38 and 40 refer to wT > 1; the maximum
value of the Reynolds numbers in these measure-
ments is Re ~ 3.5. It is possible that the small-
ness of the acoustic Reynolds number was the
reason for the fact that the bulk viscosity behaved
the same as the shear viscosity. No difference
from absorption in other liquids was discovered.

Unfortunately, data on the absorption of finite-
amplitude waves in various liquids (other than
water) are extremely scanty at the present time;
measurements of absorption in ethyl alcohol,
toluene,39 and transformer oil were carried out
by the same method (the systematic error asso-
ciated with the method can thus be considerable).
It is quite difficult to explain the reason for the
increase in the absorption coefficient of waves of
finite amplitude over the theoretical value given
by Eq. (2.32). All that is evident is that this in-
crease takes place for intense sound. On the other
hand, this is not energy dissipation due to the usual
nonlinear distortions connected with nonlinear hy-
drodynamic equations. It is known that intense
ultrasonic waves are accompanied by cavitation,
which is not described by the equations of hydro-
dynamics. However, the absorption was deter-
mined under conditions in which cavitation did not
play an essential role. It is highly probable that
there occur in the medium various irreversible
processes, the effect of which increases with in-
creasing amplitude, and which are different from
cavitation.

In this connection, the research of reference 45
should be pointed out, where a study has been car-
ried out on solutions of polymers. In this work it
has been established that when an intense sound
pulse acts on polymer solutions, the absorption
above certain threshold intensities begins to de-
pend on the time of action of the ultrasound on the
solution. After the passage of a sufficiently long
time interval (several times ten minutes), “satu-
ration” takes place; the absorption does not change
with time. It is very important that this absorption
is not determined by the nonlinear distortions, be-
cause transmission of sound pulses of alternately
" *Various values have been obtained for the relaxation fre-

quency of acetic acid, from ~ 5 x 10° to 3 x 10° cps (see, for
example, references 43 and 44).

large and small amplitude has shown that a simi-
lar change takes place in the logarithm of the volt-
age on the receiver. After the ultrasound was
turned on for a certain time (~5 — 10 min under
the conditions of the experiment), the solution
“relaxed,” i.e., it completely regained its initial
acoustical properties. We note that for a solution
of polyisobutylene in benzene at 5 — 35 Mcs and

1.8 kilovolts on the radiating quartz, the absorption
in the disturbed and undisturbed solution- differed
in a ratio of about five to one. The authors attri-
bute this phenomenon as a break in the Van der
Waals links of the polymer chain.

Without mentioning the specific mechanism of
this phenomenon, it should be noted that this work
indicates in some measure that the mechanism
of nonlinear distortion is not the only one respon-
sible for the absorption of waves of finite ampli-
tude. In a medium under the influence of intense
sound, changes take place which can have a strong
effect on the dissipation of energy.

Summarizing, it must be said that the maximum
coefficient of absorption in ordinary, not especially
viscous liquids at intensities of several w/em? can
exceed the small-amplitude coefficient by two or-
ders of magnitude.!®*® Thus, absorption due to
nonlinear distortion is materially larger than the
super-Stokes part of the absorption. It should be
remarked that the theoretical results on the ab-
sorption of waves of finite amplitude correctly de-
scribe the observed phenomena qualitatively and
give values of the relative coefficient of absorption
that are correct in order of magnitude. However,
in liquids other than water the absorption coeffi-
cient in the stabilization region is evidently some-
what larger than it should be from (2.32).* The
reason for this, as also for some of the aforemen-
tioned deviations in the distortion, must evidently
be sought in the nonlinear character of the dissi~
pation processes. In addition to the study of the
absorption of waves of finite amplitude in liquids,
certain researches were devoted to the velocity
of propagation of finite-amplitude waves. In ref-
erence 38, the velocity was measured in degassed
water, glycerin, and weak solutions of acetic acid
and sodium acetate with an ultrasonic interferom-
eter with two crystals, at sound pressures of
0.1 —5 atmos and at 4.7 Mcs. Within the limits
of accuracy of measurement (+0.1%), no change
of velocity with increasing intensity was estab-
lished. Measurement of the velocity of finite-

*It should be noted that, for many liquids, the nonlinear
parameter B/A is not known at the present time. This compli-

cates the comparison of experimental absorption data with
theory.
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amplitude waves in a number of liquids (ethyl
alcohol, benzene, and others), by the method of
light diffraction by ultrasound, was reported in
reference 30. The errors of these measurements
did not exceed 0.05%. No difference in the veloc-
ity of the finite-amplitude wave from the velocity
of a wave of small amplitude was discerned within
the limits of measurement errors. In this connec-
tion, we point out what is noted in reference 16,
that the velocity of propagation of the “zeros” (if
we speak, for example, of acoustic pressure, then
the “zeros” correspond to points of the wave where
the pressure is equal to the hydrostatic pressure
in the medium) must be equal to ¢, the velocity
of sound. It should be noted that the propagation
velocity of a weak shock must also be equal to the
sound velocity (see, for example, reference 14;
the velocity of a shock, as is well known, is deter-
mined by the secant of the Hugoniot adiabat and
differs from the sound velocity). Keeping in view
the possibility of increase in the accuracy of de-
termination of the velocity, the performance of
such experiments with a sawtooth wave at higher
Reynolds numbers is of interest.

CONCLUSION

Until very recently it was assumed that non-
linear distortions of acoustic waves in liquids,
associated with the nonlinear equation of state,
could not take place because of the small value
of the experimentally attainable sound pressures
in comparison with the internal pressure in the
liquid. Investigations of the distortion by differ-
ent methods have shown that these nonlinearities
possess a much larger effect in liquids than in
gases (for equal compressions). Keeping in
mind the relatively small (in comparison with
gases) absorption of sound in most liquids, the
nonlinear distortions lead to the cumulation of a
weak shock at any wavelength. Theoretical re-
searches show that the formation of a shock is
possible in the case in which the acoustic Rey-
nolds number Re > 1. We note here that acous-
tical methods, with application of waves of finite
amplitude, uncover several experiment possibili-
ties; in particular, they permit us to determine
the nonlinear constants of a barotropic liquid.

It is very significant that different characters
of weak shocks in liquids can be investigated by
acoustic methods.

Investigation of the absorption of waves of
finite amplitude in liquids shows that, in contrast
to absorption of waves of infinitesimal amplitude,
this absorption bears a nonexponential character

and depends on the Reynolds number. The absorp-
tion coefficient in the region of stabilization of the
wave, for relatively small intensities (order of
several w/cm?), can exceed the absorption coef-
ficient of a wave of small amplitude by two orders
of magnitude in low viscosity liquids. The mech-
anism of the increase of absorption is fundamen-
tally determined by the nonlinear distortion of

the waveform.

It should be emphasized that a number of the
experimental results set forth do not {it into the
framework of existing theory and can serve as the
basis for further development of theory and for
setting up of experiments.

We note in closing that the processes of wave-
form distortion of an acoustic wave in gases are
sufficiently well understood. However, the absorp-
tion of such waves in gases has been investigated
much less than in liquids.

In solids, the appearance of singularities in
the propagation of waves of finite amplitude is
also possible; however, this question has been
investigated almost not at all. '
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