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1. THE COMPENSATION PRINCIPLE

IN the present paper we consider a possible gen-
eralization of the principle of compensation of
dangerous diagrams to the case of a state which
is non-uniform in space, and we shall also estab-
lish the connection between it and the self-consist-
ent field method.

The main example used here will be the prob-
lem of the electrodynamics of the superconducting
state, when we must investigate the reaction of a
dynamical system to the application of a non-uni-
form external field.

Let A ( r ) be the vector potential, a function of
r. There will then be in the Hamiltonian of each
electron an additional term

which violates spatial uniformity.
We note that the presence of terms of this kind

makes the compensation of diagrams corresponding
to momenta к, — к insufficient. Indeed, if we de-
fine A ( r ) as the superposition of Fourier com-
ponents

we see that diagrams with arbitrary momenta kj,
k2 will be dangerous in the same sense, at any rate
those for which q - k t + k2 is sufficiently small. It
is clear that it is impossible to eliminate them by

our usual canonical transformation which mixes
the creation and annihilation amplitudes of the
momenta ±k, since it contains only one arbitrary
function Ufc (or vjj).

To compensate diagrams with an arbitrary pair
of momenta p t , p 2 we must use the more general
canonical transformation formulated in reference 1,

(1)

where f = (p, a), a is the spin index, while ufv

and Vf,, are arbitrary functions connected through
the peculiar orthonormality relations:

2.
(v)

2.
(v)

(2)

These relations assure, indeed, the canonical char-
acter of the transformation (1) under consideration.

To simplify our discussion we study here the
generalized compensation principle in relation to
a Hamiltonian with direct interactions between the
particles, since the first approximation will in that
case already lead to a nontrivial result. As was
already noted earlier,2 if we take, for instance, the
electron-phonon interaction into account, it is nec-
essary to go to the second approximation.

Having different applications in mind, we shall
use a sufficiently general expression for the total
Hamiltonian

~ = S 3

(3)

where X is the chemical potential, I the Hamil-
tonian of the individual particles, and U the en-
ergy of the interaction between a pair of particles.
We shall, of course, assume here that I and U
satisfy the usual requirements about symmetry,
Hermitian character, and so on.

The principle of compensation of dangerous
diagrams in the first approximation under con-
sideration will be

• = 0 . (4)

The averaging is taken over the state Co, corre-
sponding to the vacuum for the new amplitudes a:

avC0 = (), C5av-(). (5)

We can write Eq. (4) more explicitly by substi-
tuting there Eq. (1) and simply evaluating the vac -
uum averages. In this way we obtain explicit ex-
pressions for the unknowns u, v; these must be
solved in conjunction with the conditions (2).

In a number of cases it is more convenient to
put these equations in a somewhat different form.
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We show thereto that it follows from (4) that

#]>0 = 0,

237

, = 0.

With the aid of these relations we can easily ex-
press the amplitudes a, a in terms of a, a.:

(6)

' — tfaVlaV2}0

We have, indeed,

« = 2 U(«/iVl~,1 +(•'1, v 2 )

= 2 U/i-nUftvA*-/

-r 2 «/ivif/svs (a-,,

(vi. v.)

-b 2 V/i-nuff>t <a-
(~'l, V 2 )

+ 2 f/lVlf/jV* (3Vl
(•'1. Vo)

In view of (5), however,
+ + + +•

(tf a V l a V 2 ) 0 = (aV laV 2ff>0 = (л.,гя..,гН )0 = <//aVlaVa>0 = 0

a n d a l s o
+ + + +

(aVlaV2/7 — tfa^a^),, = ( — a V 2 a V ) # + 7/aV2aVl)0 = 0.

Using (4) it follows therefore also that

r -tfa V l a v2)o-

(Vl, V2)

= 0.

The second equation of (6) is proved in a similar
way.

We can also easily verify that Eq. (4) follows
from Eq. (6). These two sets (4) and (6) are thus
completely equivalent.

We shall show now that the expressions SI and
S3 themselves are not independent.

We start with a transformation of the orthonor-
malization relations (2). We shall introduce the
combined indices:

r = (/,p). p = o.i
> = (v, x ) , x = 0 . 1

and put

(7)

(8)

In this notation the relations under consideration
take the usual form

2 ?.'(£)?.,(£') = 4(g-g'). 0)

from which it follows that

2?.t(g)?v(g) = '4("-(u ').
(9)

or, in the old notation

2 {«/V,tf/Vo •+- f/vsl>/v,} == i (Vl — ^У2<»
2 {f*vi"y vj + V*.,tUfwl | = 0.
(0

(10)

*v = 2 {uhaf + f/vi/J.

We now turn our attention to the identity

(11)

(12)

which is a direct consequence of the properties (5).
Substituting into this Eq. (11) we find

2

у

, = o.

or, explicitly:

2 «/.v.B/.v. (['

+ 2 V/^u

In this way we verify that 9t and S3 are related
by the following identity:*

2 {B/.V.B;,V,83 UV h) + B/,V.»/.V.-• (л, /2)

+ vUu,,vM (/„ /,) + D/'.v.O/.v,»* (Л, /,)} = 0.

We shall now turn to the problem of finding ex-
plicit expressions for 91 and 33. We have

-(/i./a) = (

+ 2

• fHatai,)o + T(ft,f)(a,,a,)o}

i- /,; /2, П) (atiafa + ^ 2 tf (A- /; /2, /0

+ -—. +

X{afuf,af>aff)0+ 2 J ( tf ( / . / a J / 2 , / i ) (в/а/.о^о,»),,
(/, /j, /2)

(14)
and also

(/)
- 2 r {UQi.fcf.fJia^afa,,

('. /,, /2)
Jo

(15)

*We note that if we had replaced the averages over the
vacuum state Co in Eqs. (6), which define 9t and H, by the
average

Sp(... D)

Sr,D

over some distribution D which is diagonal in the . . . n v . . .
( a p = a | , a v ) representation, then the identity (13) would all
the same be true for v, = v2. Indeed, since D is diagonal,

•vav HD) = Tr(HDa+ av) = Tr(Ha+a v D) and, hence,
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We shall determine the vacuum expectation
values

F (/, /') = (<W>o- Ф (A. /2) = (o/.a/^o, (16)

^2 (A. /a;/2,/i) = <a/1a / to /-a / i)0, |

* t ( / i : / i . /..Л) = <в/1в/.в/Л«>о i ( 1 7 )

which occur here by expressing a, a in terms of
a, a using Eq. (1). We find in that way

(18)F (/, /') = 2 »/>/-v- Ф Ui, /2) = 2 B/ivf/.v.
(V) (V)

(19)

/1; /2. /3. /4) - * • ( / ! . /,) Ф (/,. /1) - *" (Л.

(20)

Substituting the expressions obtained into (14)
and (15) we obtain the required explicit expres-
sions for 1 and S3:

We have, for instance,

where

-U(fvf";f,r)}F(f",f').

(21)

(22)

Our generalized compensation principle leads
thus in the first approximation to the equations

(23)

which had already been obtained earlier 3 ' 4 using a
generalization of the well-known Hartree-Fock
self-consistent field method.

Apart from these equations we have yet an ad-
ditional condition, namely, that the functions F
and Ф must be of the form (18).

It would, clearly, be very advisable to formu-
late such an additional condition in the form of a
number of relations which are directly imposed
upon F and Ф.

We note first of all that from (18) it follows at
once that

/2)- (24)

and consider the matrix

—•(<?, г') = 2 ? ! 1

in which

n V i o = 1, /iv, 1 = 0 .

We have t h e n

, 0 ; / ' , 0 ) = 2o/vw*-v, —"(/. 0; /', 1 ) = I• o / v B,.V,
(V) (V)

= 2«/vwb, _•(/, 1 ; / M ) = 2B?VB,..
(V) (V)

By virtue of the orthonormalization condition (2)
we get then

F(f',f); - '

(25)

*•(/. /'); Hf-n-FU, П (26)

On the other hand, we see directly from the defini-
tion (25) that <poj(g) and п ш are the eigenvectors
and eigenvalues, respectively, of the operator K.
Since these eigenvalues are equal to zero or unity,
К must be a projection operator and hence

K = K\ (27)

If we write this relation out in detail we find the
additional conditions which the functions F and
Ф must satisfy:

»f)F(f,f

(28)

We shall now show that conditions (24) and (28)
are completely equivalent to the condition that F
and Ф can be written in the form (18). To do this
we must still prove that arbitrary F and Ф sat-
isfying the conditions (24) and (28) can, indeed, be
written in the form (18).

First we use the trivial conditions (24) and in-
troduce the matrix K(g, g*) by Eq. (26). By vir-
tue of (24), К (g, g*) is clearly Hermitian and can
thus be represented in the form (25), where the
<Pw(e) will represent an orthonormal set of eigen-
vectors of K.

We shall introduce in the point set {g} a point
transformation T which changes (f, 0) into
(f, 1), and vice versa. We have
TK = K(Tg;Tg')

-ф(/> / '); F(f',f)

?')•

We introduce again combined indices g and w

We can easily show because of this relation that
if (p (g) is some eigenvector of the operator K,
and n is the corresponding eigenvalue, <p* (Tg)
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and 1-n will also be an eigenvector and eigen-
value for K.

We can thus use a numbering { CJ } of the eigen-
vectors and eigenvalues of the operator К by a
system of two indices { v, т } ( т = 0, 1), putting

,o = )
(29)

We now use the conditions (28) from which it
follows that

and thus that пш = 0, 1. We shall write down only
the value of n^ and not that of 1-n^, avoiding
thereby any arbitrariness contained in splitting
the index w into (v, 0) and (v, 1).

Having determined ^ ^ ( g ) and <pv,i(g) we
can now determine the functions щи and vf,, by
inverting Eqs. (8). As the «^(g) form a normal
orthonormal set, we see that the functions u, v
which we have found will satisfy Eq. (2).

To conclude our proof we must only still write
out Eq. (25) in detail and note that the representa-
tions* (18) follow directly from it.

Our problem has thus been reduced to the solv-
ing of Eqs. (23) together with the additional condi-
tions (24) and (28). The functions u and v do no
longer explicitly occur here. Having found expres-
sions for F and Ф we can then determine also
the set of functions u, v using the method stated
above.

We emphasize here that the definition of the
set u, v contains a large amount of arbitrari-
ness.

Indeed, let (pv^ (g) be an orthonormal set of
eigenvectors for the operator К corresponding to
a single eigenvalue. If we subject it to an arbi-
trary unitary transformation we obtain again an
orthonormal set of eigenvectors of the operator
К corresponding to a single eigenvalue. The
same observation applies, of course, also to the
4>v,\ (&)• We see, thus that the set {<Py,o (g) } x

*It is interesting to note that if we were dealing with func-
tions F and Ф which only satisfied conditions (24), we
would, by repeating the discussion just given, obtain instead
of (18) a representation of the form

F(f, /') =
(v)

- v(l-" v)

We notice also that if F and Ф are determined by the aver-
aging F(f, f) = Tria*afDl (TrD)-1; Ф (f, f) = Triafaf.Dl
(Tr D)"1 with an arbitrary positive statistical operator D, the
operators К and 1 —К must both be non-negative, and we
have thus in the representation obtained here 0 < n v < 1.

{(Pu,i (g) } is determined only apart from arbi-
trary unitary transformations acting on the in-
dex v. There is thus the same degree of arbi-
trariness also in the functions u, v.

We have already said that Eqs. (23) are not in-
dependent, since % and Ъ are connected through
the identity (13). It is therefore expedient in many
cases to consider one of them:*

-(/i. h\F, Ф) = 0

together with the additional conditions (24) and
(28). The other equation of (23) will then be sat-
isfied automatically.

We consider as an example the problem of de-
termining the superconducting ground state in
superconductivity theory.

We put in our formulae f = (p, a), where p
is the momentum and a the spin index, the two
values of which we shall indicate by the signs +
and - . We shall, as usual, taket

U\

) = Е(р)Ь(р~р'),

XV ( A , (30)

where V is the volume of the system. For J we
shall consider a real function which is invariant
under reflection of the momenta p —- - p .

We can then easily check that we can satisfy
all our equations and the additional conditions,
if we put:

F{f, /') = fi(/-/'
)=-Ф(/>), (31)

where F(p) and Ф(р) are real functions of p,
which are invariant under a reflection of the mo-
menta and which are determined by the equations:

(32)

in which

'. p; P> p')
iV)

-J(p, P';P, (33)

•The case can also occur where Ф = 0. The equation
Я = 0 is then, on the other hand, satisfied in a trivial manner
and we must restrict our considerations to the equation 33 = 0.

tWe call attention to the fact that in our presentation we
use a discrete delta-function, i.e., the Kronecker symbol:

5 (/>) = !, /> = 0; o(p) = 0,
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We put here
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-p;

We get then from (32)

(34)

and we verify that C(p) satisfies the equation

(p'>

= 0. (35)

It is clear that we have here gone over to the usual
equations of the theory of superconductivity.

The corresponding functions u, v can be de-
termined by putting

v{p, +) = v(p), v(p, - ) = -v{p), /(36)

where

2. THE SELF-CONSISTENT FIELD METHOD

We considered up to now only the problem of
determining a time-independent ground state. One
can, however, easily generalize the self-consistent
field method to study also processes which depend
explicitly on the time.

To do this we introduce the time-dependent
functions

and consider the amplitudes a in the Heisenberg
representation. The average that is taken here
must then be considered as the average

j _ Sp (AD)
~ SPD

over some statistical operator D which does not
depend on t.

We note now that the following exact relations
follow from the equations of motion:

• dF (/„ /2)

dt •; " I .

or, in more explicit form

dt i,1)-T{hh)F{h

- 2

(38)

, /)«K/i,

(39)

where again

(40)
ф2-(Л; /г. /з. /4) = ahahahali • )

According to the principles of the theory of
chains of distribution functions, we should express

and again in terms of distribution func-
st at

tions of higher order, and so on.
The transition to a closed set of approximate

equations can be accomplished by "disentangling"
one of these equations, for instance, using some
appropriate approximation which expresses the
higher correlation functions that enter into the
equation in terms of the lower ones.

In the self-consistent field method we are sat-
isfied with a simpler and less accurate approach;
we restrict ourselves, namely, to the first equa-
tions (38) and (39), which we have already obtained
and we make in them an approximate substitu-
tion of F 2 and Ф2 in terms of F and Ф.

We take these functions*

.,.. , 4 _T» {«/,(')«;, (0-1

Tt{ah(t)ah(t)D\
TTD

\D]
(41)

and we assume that the statistical operator D is
diagonal in the . . . n^,... representation, where
nv = «„(t) «„(t) . Strictly speaking we can make
such an assumption only at one fixed moment,
since D remains constant while a(t) and a ( t )
change, generally speaking, with time.

*Ftom this definition it follows at once that F and
always satisfy the conditions (24).
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Nonetheless, our approximation can be consid-
ered to be valid for the first approximation in those
cases where the main part of the Hamiltonian H
in the amplitudes a is of the form

(v)

since then in the "zeroth approximation" the equa-
tions of motion will be

On the basis of this we establish the important
property of the solutions of Eq. (45), namely, that
for any solution

v
~dt

= 0. (46)

In other words, we shall show that the eigenvalues
of the operator К stay constant when the time
changes.

Indeed, in accordance with (25)

and for them

,{t)a^{t) = const.

The main part of the time dependence of af (t)
and af (t) is, so to speak, compensated by the
time dependence of the functions u and v.

Using the above-mentioned approximation, we
substitute Eq. (1) into (41) and perform the aver-
aging, taking into account the fact that D is diag-
onal in the . . . nv . . . representation.

We get

(v)

F (/i, /2) = ! • ["/V'V ( I - «v) + «*IMM/3V«V},
(v)

where nv is the average of av(t) av(t).
We find also

(42)

(43)

(44)

Substituting these expressions (43) and (44) into
Eqs. (38) and (39) we also get the equations of
motion of the self-consistent field in the form

^ - = Я(Л, /2/ЛФ),
(45)

We see easily that the expressions % and й
which occur here are the same expressions as the
earlier ones. This is caused by the fact that the
right hand sides of Eqs. (38) and (39) are the same
as the corresponding expressions in (14) and (15)
and that Eqs. (43) and (44) are the same as Eqs.
(19) and (20).

We can thus use the previously-established
properties of % and 93.

We now turn our attention to the identity (13)
which is correct in the case under consideration*
if ut = v%.

*As was already noticed earlier, the identity (13) will be
correct for arbitrary vx, v2 if in Eqs. (42) all n v = 0.

The statement made will thus be proven when we
only verify that for any w

2 ?-(*)**^W) = 0. (47)
ie, g')

Since, however, always

; / v l —. j — « v 0 ,

we see that we need prove Eq. (47) only for OJ =
( ^ 0).

Using the definition (26) of the operator К and
Eqs. (8) we find

,dK(g,g')

= - 2 v*fv-*f dt dt

and hence, using (45) and (13)

which proves the statement (46).
We have here a typical property of the self-

consistent field method: the fact that relaxation
effects are not taken into account.

Once any set . . . п„ . . . is conserved, the sys-
tem

«v = 0,

which corresponds to the previously considered
ground state will, in particular, also be conserved.
Equations (45) are thus compatible with the addi-
tional conditions (28).

We now write these equations and the additional
conditions in the r -representation for the case
where
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and where the interaction is characterized by a
potential function U (г4, r 2) which does not de-

pend on the velocities or the spins.
We have*

r2)

(«>

i -s^+eA (rt)

<«)

V

r'{U{rvr')

ч Ж . >•')}+U (гг, г,)Ф.11(

(48)

гМЪ.Лг, r) ,(rv r2)—' г*)}, (49)

s
(о)

It is clear that this whole system is gauge in-
variant. The gauge transformation

eA (r) —> eA (r
dr

(51)

is compensated by the transformation of the func-
tions F and Ф:

(52)

The gauge invariance is here caused by the gauge
invariance of the Hamiltonian.

When one considers the problem of the theory
of superconductivity in the model where the elec-
tron-phonon interaction is replaced by a direct
velocity-dependent interaction between the elec-
trons (it is only effective at the Fermi surface),
the corresponding Hamiltonian is no longer rigor-
ously gauge invariant. This property holds only
approximately and the equations of the self-con-
sistent field method will thus only be gauge in-
variant with the same degree of accuracy.

It is important to remark here that the approx-
imations used to derive our equations do not by
themselves violate the gauge invariance. We shall
return to this problem in Sec. 4.

(50)

3. THE REPRESENTATION WITH A FIXED
NUMBER OF PARTICLES

We shall now consider the correlation function

in the r -representation,' completely independently
from what we have said earlier. We put here f =
(r, a), where о is some discrete index, for in-
stance, the spin index.

Let it be possible to write this function in the
form

F, = 2 *K (A, U) V» (/.', Л) + ^2 . (53)
n

in such a way that:
1) when the distance between the pairs (£lt f2)

and (fi, f2) tends to infinity the extra term F2

vanishes sufficiently fast;
2) when the distance between the points ft and

f2 increases without limit the function Фп (fu f2)
will also tend to zero, and the integral

vn (/i> h) I2 df, = ^ | ЧГП (/„ /x) |2 dft (54)

will converge.
It is then clear that we can interpret *n(^i> h)

as the wave function of a pair of particles which

•Here, г denotes the vector r and dr a three-dimensional volume element.
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are in one of the bound states, and the integral (54)
as being proportional to the number density of those
particles at the point fj which are bound in a pair
which is in the state Фп.

We consider our Eq. (43) from this point of view
and, to be specific, take the case of superconductiv-
ity theory. We have for the ground state:

гя) = (к) dk,

С (к)

and

It is clear that the above-mentioned conditions
(1) and (2) are satisfied here and Ф(^, f2) =
Ф_ + (г1, r 2 ) can thus be considered to be the wave
function of a bound pair of particles (with opposite
spins). In the given case there is only one state
Ф(^, f2) and we can say that all bound quasi-
molecules are in a condensate. Bound pairs leav-
ing the condensate are not taken into account in the
method given here as a matter of principle, because
of Eq. (43).*

We now turn our attention to the fact that in our
discussions we essentially used the canonical trans-
formation (1). Consequently, the total number of
particles N = X/ afaf is n ° t - quantum number
either for the state Co or for the statistical op-
erator D, nor does it have a rigorously fixed value.
On the other hand, N is always an integral of mo-
tion for the Hamiltonian (3) considered by us. It is
therefore completely natural to demand that we ob-
tain the same results if we work in a representation
where N is a quantum number.

Let us see, however, what would be obtained in
actual fact were we to attempt our analysis in such
a representation.

First, we could no longer mix up the creation
and annihilation amplitudes, and should therefore
put v = 0 in Eqs. (1). But we get then instead of
(43) the approximation

p(fv h\ /,', /O = -P(/i. n)F(U, /,') -F(h, K)F(h, K)

(55)

of the usual Hartree-Fock method which, in general,
does not take into account the possibility of bound
states of particle pairs.

The situation can be shown to be even worse,

•They can be taken into account by generalizing the ap-
proximation (43) along the lines of Eq. (53).

since independently of any approximation the equa-
tion

ahah = 0

is valid for any averaging where N is rigorously
fixed. A way out of this paradox is, however, not
difficult. Simply, if we want to work with fixed N,
it is necessary to go further in the chain of equa-
tions which connect the correlation functions with
one another, and to turn to correlation functions of
higher order.

In order not to land into complicated calcula-
tions we use now an intuitive, somewhat simplified
approach. Starting from the idea that in the dynam-
ical system under consideration there are bound
pairs which are all in the same state #(fj, f2) we
add to Eq. (55) of the usual Hartree-Fock method
a term

which describes the contribution from such pairs.
Substituting the expression so obtained into the
exact relation (38) we get at once the second of
Eqs. (45).

To derive the first of Eqs. (45), which deter-
mines Ф, we consider a two-time correlation
function of the form

ah(t)a,,{t)ari(z)an(x)

and differentiate it with respect to the time t.
Using the exact equations of motion we get*

d ( a f (t) a f ( t ) a r ( - i ) a f » ( x ) )

= {[ati{t)au(t);

(/)

•X.{al(t)a,t{t) аф)а,{{1) а,.(-)

X(af (t) ah (t) afi (t) af, (?) o / ; (") a,. (x)>. (56)

We note, by the way, that this relation differs
from (39) only in that now there are on the right
two operators a which compensate the change in

*The averaging is here not indicated by a bar above, but by
brackets < . . .>, since that is more convenient for long ex-
pressions.
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the number of particles.
We go now over to an approximate equation by

approximately expressing functions of the kind

<% (0 *f, (t) a/; (0 af[ (t) al; (x) a,» (t))

in terms of products of four and two operators.
We note that when we make this splitting up we
must now take into account that the number N
is rigorously kept constant. After that we shall
let the pair (i'2, f[) move to infinity in the equa-
tion obtained from (56).

We therefore use the following approximation

<«/, (0 «/, (0 an (0 an (0 "/; W«/{M>

= («\ (0 «/,(0) <«/j (0 a/; («)«/; W«/; (*)>

- (a/i (0 a,.t (0> (a/2 (0 o/f (0 a,» (x) a,, (x)>

+ (a/, (0 а/j (t)) (*/s (0 a/; (0 «/2 (')«/; (x)> + S, (57)

where S denotes the sum of terms which contain
a factor <afj '(T)af(t)> or <af£(T)af(t)>. We
shall not write down an explicit expression for S
since these terms will vanish when the point pair
{t'{, Ц ) is moved off to infinity.

We substitute (57) into (56) and let these point
pairs move off to infinity. Expressions of the form

will then break up into products

where *t(fi> ^2) denotes the wave function of a
bound pair, and we shall get, splitting off the com-
mon factor **(fj, f2):

di

-*•«(/. /:)*'»(/. /;)+*'.(/». r,Uv /О)- (58)

We note that in the ground state * t must be
proportional to e~*E t where E is the corre-
sponding energy. We introduce the quantity*

*The meaning of such a quantity Л as being the chemical
potential can be made clear by the following considerations.
On the one hand, the factor e~ iEt must express the time-
dependence of the pair wave function:

X = E

and we put in the general, non-equilibrium, case

so that

It is thus clear that Eq. (58) obtained in this way
becomes the first of Eqs. (45) which we lacked.

We can cast the discussions presented here in
a more perfect form and use them to arrive at
more rigorous equations, but we shall not consider
them. It is now important for us to stress that we
can obtain the equations of the generalized self-
consistent field method in a framework with a
fixed total number of particles. The meaning of
the transformation (1) is then clarified. Namely,
by using it we obtain in a lower approximation
results that are usually obtained in a higher ap-
proximation.

This property is based on the fact that in the
variables a the bound states drop out. In the
first approximation, used by us, we have thus, for
instance,

+ +

(av loVjOvavj) = (1 — n V l ) (1 — nV 2) {a (vx — ч[) S (>2 — \)
+ + + +

— 8 (\ — v 0 3 (V2 — \)} = (avi-tv;) <*v,*vj> - («vi«v;) (aV !a v<).

The same situation can also be achieved for
the higher approximations. The principle of com-
pensating dangerous diagrams is also just the
proper method for that case. All the diagrams
that are compensated according to this principle
are exactly those which determine the bound
states.

In those cases where the possibility of the oc-
currence of bound particle pair states (Bose-
condensate) makes it impossible to use perturba-
tion theory, the compensation principle, which in-
troduces new variables a, a in terms of which
such states drop out, liquidates thereby this im-
pediment to an application of perturbation theory.

where CN denotes the lowest state of the system in the case
where the number of particles is equal to N.

On the other hand, let the total energy of the system in the
state Сц be E (N). The time dependence of the given ex-
pression is then determined by the factor

We have thus
-ilE(JV+2)-E(JV)}(

К ——dE(N)
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4. COLLECTIVE OSCILLATIONS

We now turn to the problem of determining the
spectrum of the elementary excitations of the
ground state.

From the point of view of the self-consistent
field method this problem can be solved as follows.

As we have noted already, the numbers nv stay
constant and all of them are equal to zero in the
ground state. If we wish to study small vibrations
around this state, we shall put п„ = О. In other
words, we impose the additional conditions (28).

Let F o and Фо be the expressions F and Ф

in the ground state. Let us consider infinitesimal
changes

and let us write down for them the equations, linear
in the variations

(59)

dt

Apart from that, we shall take into account the
fact that 6F and 6Ф must be connected through
the additional conditions (28) which lead to

v f)F(h ft)-'.

/, h) + \

. /2)j=o,

W,)>-0.

(60)

We note also that because of (24) 6Ф must be
antisymmetric and 6F Hermitian.

We shall solve the homogeneous equations ob-
tained here by a superposition of elementary solu-
tions which are proportional to e~*E t. We find in
that way* the secular equations to determine the
spectrum of the vibrations.

Because of the presence of conditions (60) 6F
and 6Ф are not independent and it is thus tech-
nically convenient to express them in terms of
new independent unknowns that satisfy (60) auto-
matically. We can immediately obtain such ex-
pressions, if we note that because of (60) the in-
finitesimal transformation is undergone not by
n^ = 0, but by ufy and vfv. These transforma-
tions must be compatible with the orthonormali-
zation conditions (2).

Instead of varying u, v we can perform an
infinitesimal transformation on the a themselves:

( V ) ( V )
(61)

and it follows then from the fact that the given in-
finitesimal transformation is canonical that

We have then

*We stress that such a problem of determining the spectrum
of the elementary recitations by means of linearizing non-
linear equations goes back in principle to the well-known in-
vestigations by A. A. Vlasov.5

We must also remark, by the way, that these very investiga-
tions exerted a large influence on the development of the con-
cept of collective oscillations.

)0 remain equal to zero

and hence

(("/*viavi + f'*mavi) (и/2у,=Ч + f/,v2aV2))n(v,,vo)

• I <
(Vl. V2)

(Vl , -M)

1. h)

(•'i, v s

'/r̂ W/av-A K , v

2) H M/iviW/.vo *̂ K ,

H - t ' / i v . s W ^ K v.)i-

It is clear that the coefficients ц do not enter into
our formulae. This is because in the case under
consideration n,, = 0. We note also that independ-
ently of the considerations given here one can eas-
ily verify that the expressions

W(fi,h)

n-

(62)
(63)

= 2
(v,.

5 Ф(Л

( V i

v.)

_ !"/,v, M/*V,4
. v,)

l.^)+«/,v, ^.v^*(v2,

H '°i:4. ^ * (V2

v,)}.

.v.)l

(64)

(65)

a r e the general solutions of the additional condi-
tions (60) and (24) for any arb i t rary antisymmetric
X(uu v2).

To obtain the equation for т— it is expedient to
dt

express Л also in terms of 6F and 5Ф. To do
this we multiply (64) by Vf „ and (65) by Uf ^
and sum. In virtue of the orthonormalization
condition in the form (10), we find then



246

2 {«ли. W(Л. /,) + в?,ш аф(л, /,)} = 2 «/.v. х {Н, v2).

We then multiply (64) by u f ^ and (65) by
and sum again. We get

2 {«/„, *F (/i. /2) + O/V, &Ф (A, /,)} = 2 »*.v. >

N. N. BOGOLYUBOV

x *>цШ1 vlia, + \ 2 U (fv h; f't, f[)
(66)

or

/0 < V i )

(67)

From (66) and (67) we find by the same method the
required expression for \:

>• (Hi. h) = S {и*.^,y/.^.6F (/i> /2) + и'.^. и/%, 8Ф (/„ /,)

-w/*.»/V^*(/i. /2)-У/,^/,.ч&Ф*(/1. /i)}- (68)

Differentiating this expression with respect to t
and using (59) we get an equation for X:

. 8 t ( ^ , ) _ ^ {И/%,W/lVl033 (/„ /0 +»;,,, <V l4«(A, /,)

/.v. «/,'v, 533* {fv /.) + «/.v, »/.v,»«* (/1. /.)}• ( 6 9 )

To write out this equation in full detail we must
vary the expressions 31 and ЯЗ, and express 6F
and 6Ф in terms of X, using Eqs. (64) and (65).

After long, but essentially simple calculations
we get*

~ ZJ iы

(70)

where

а(м)= 2 5(/, /'

2 u(fv.

- 2 f/(/l./2 ; (/2. /1) a/;v »/:«..

1,1\Г,Гг)-иЦх,1\Г»П
(/l./i)

j , v2; (B1F co2) = у 2 ^ (/i' ^ ; ^ ' 1̂) (K*'v> K'*v» ~ г

X it/-,», и/;», + у 2 ^ (/i- /2; /a. /1) (̂ /{v, f/̂ v, - i

•The index со is here simply a summation index over v in
contradistinction to the notation of Sec. 1.

4 2 <tf(/i./.-./;•/o-tf(/i. /2;/;./;)}

From (70) we get also

вг

f*(vi, v2; <!>!, u)2)X*(co1, co2)

We shall solve the set of linear homogeneous
equations (70) and (72) by a superposition of nor-
mal vibrations;

..*.)-2
(E)

1, v1)=2e-u"4B(v1,'
(E)

(73)

Substituting (73) into (70) and (72) we get the secu-
lar equations to determine the spectrum in the
form

Et K, V2) = 2 {Q (V«, ») 6 (*!, «) - Q (Vlf (0) i- (V2, «)f

, v 2 ; u ) 1 ;

(74)
, V8) = 2 ^ * K , <O)71(V<O)

- 2 * (v1 ; «)) -г) (N 2 , со)} + 2 {X* (v1 ; v2; uij, ш2)

X 71(0)!, o)2) + y * ( v 1 , v2; (Oj, u>2) $(co2, и,)}.

We stress that we would have obtained the same
equations if we had used the method of approximate
second quantization instead of the self-consistent
field method.

In this method we should have introduced Bose
amplitudes pVy (Pyv = -Pvy), replacing products
of Fermi amplitudes av(Xy by them. We should
then have diagonalized the corresponding Hamilto-

which is a quadratic form in the operators 0,
by means of the canonical transformation

(n)

with the normalization law

(75)

(76)

The £n are here the new Bose-amplitudes with
a time-dependence determined by the factor c~^"^
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It would then be shown that £ and r\ must sat-
isfy exactly our Eqs. (74).

We note, by the way, that the derivation of these
equations through the method of approximate sec-
ond quantization has some advantage over the one
which we gave above, since it leads naturally to the
normalization condition (76) which determines the
sign of E.

In the self-consistent field method this sign is
not fixed: we see easily that if E, | , 77 is a solu-
tion of the system of secular equations (74), the
transformation

dt

. dl* ( v ^

u>)X(v2,
(ll),, ID.)

(vx, u))-Q*(v1 , co)X

+ 2 {»/%. H/v, - B/v, W/%.} »/*(/, / , ) •

E-*-E, 5- • 7 1 * 7) —i>

leads again to a solution of the same system.
We have just constructed the equations for the

eigenvibrations. We shall now consider the prob-
lem of forced oscillations excited by small exter-
nal fields causing a variation of I (f, f ) (we as -
sume that the interaction law is independent of the
external fields).

Repeating the previous considerations we then
obtain instead of the homogeneous Eqs. (70) and

inhomogeneous equations of the form

l X * ( u

1, v2; (Oj, co2) X* ((Dl(u2) + Y* (vjv2; coj<o2) X (m2m1)

У (77)

We now apply the general equations just derived
to the specific case of the dynamical system con-
sidered in Sec. 1 in connection with superconduc-
tivity theory.

We substitute Eqs. (30), (31), and (36) of Sec. 1
into Eq. (71) and thus expand Eqs. (74).

We note then that the spectrum divides into two
branches; for one of these

X..-0

and the vibrations occur in particle pairs with op-
posite spins. For the other branch, on the other
hand,

ь_+ = х + _ = о

and the vibrations occur in pairs of the same spin.
We consider here the first branch and put:

I = 5 (pv

The set of Eqs. (74) then takes on the form

+ | 2 5 ( P 1 + P 2 - p [ - P i ) { X ( f t f t ; р[р'г)

x « (P1P2Y + Y Uh> P-2- Pi ft) Ti ( - ft. - Pi))'

у 2 S ( J " I + ft — P[ — ft'){-X4ft- ft; Pi Pi)
(P;. pp

T.(-ft> ~P[)+ Y(PlP2> ft'ft')S(ft'ft')}>

У (78)

where ft (p) has the same form as in Sec. 1, and
where

ft; P'I, pi) = J(PI, л ; pi, pi) {«(Pi)" (pz)«(pi)" (pi)

+ v Ы v (p2) v {pi) v (ft')} + - [ • / ( - ft, ft'; - ft, Pi)

-J (pi, - ft; - pi, Pi)] {v (ft) и (ft) v (ft') и (ft)

^-u(Pi)v(lh)u(pi)v(pl)}+J(pl, -pi; pi, - f t )

X {K (ft) 0 (ft) V (ft) К (ft') + U (ft) И (jB2) M (ft ) V (ft)},

J" (A- A ; pi, pi)*= -J (Pv Pi- pi, pi) iu (pi)u (p-i)v (pi) v (pi)
-\-v{p1)v(p2)u(pi)u(p'i)} + [J( — p1, ft'; - f t , ft)

-J(Pv ~PI, ~Pi ft)] {« (A) «(P2) ^ (Pi) и (pi)
-\-v(p1)u{p2)u(pi)v(p'2)} + J(Pl, -pi; р'г, -p2)

X {̂  (Л) м (Л) ^ (Л) " (ft') + « (ft)»(ft) « (ft') и (ft)}- (79)
It is clear that the equations obtained connect

together the functions

i(Pv P2), 'n(~Pi, - f t)

only for a fixed value of p4 + p 2 . We note also that
the coefficients of X and Y are the same in both
Eqs. (78). It is thus convenient to put

ft = ft ft= -p + q,
HPi> Pi)--n(-Pi, -Pi)=®q(P),
HPi, P2) + •<•<(-Pi, - ft) = »«(/>)•

We transform then Eqs. (78) to the simpler form:
L9(6)=£&, Mq{») = EQ, (80)

where
L, (9) = {̂  (p) + Q(p~g))b (p) +1 У Qq (p, p') 8 (p'),

fq(b) = {Q (p) + Q (p - q)) d (P) + 1 ^ Д, (ft />'
(P')

(81)
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and where

v') = J

q(P> P'4u(p)u(p — q) + v
X{u{p')u(p' -q) +v(p')v{p' -q)}
+ Jq(p,p'){v(p)u(p- q)~ и (p)v{p~ q)}{v(p')u(p' -q)

N. N. BOGOLYUBOV

(p, p') = Jq{p, p'){u(p)u(p-q)-v{p)v(p-q)}

X {u (p1) u(p' -q) -v(/>') v(p' - q)}

u(p')v(p' -q)},X{v(p')u(p' •

while
J

q(p< p') = J{p> —p + q; -p'+'
J

4(P' P') = J(P> р'-я;р', p-q)
— J(p, p' — q, p—q> p')
— J(p, —p'; —p' + q, p — q), (82)

— J(p> P — <7. p — q> p')

+J(p< —p'\ -p' + q< p — q)-

We shall now elucidate the physical meaning of
the functions в and £. We consider thereto the
expressions for the number density of the particles
p ( r ) and the momentum density p ( r ) .

We have:

-i 2
(«)

- 1 V
~v —J(Pl, Pi, a)

and

(83)

'г, »)

(Pi, Ps. »)

We introduce the Fourier components for these
densities

s. (0)

and note that our ground state is uniform in space
and carries no current.

We have thus from (83)

( p )

(84)

On the other hand, writing out Eq. (64) in detail we
get

-Pv ft)
(85)

+ «(Л) " (Pa) X* ( - Pa.

Substituting these expressions into (84) we find
after some obvious simplifications:

p,= 2 ( a W B (pi)+»(ft)«(ft
(Pl+Ps=«)

pa = 4 2 (PI,

(86)

(87)

Pa) - ^* (—Pa. —Pi)}- .

Hence, from (73)

(E) (E)

PeE> = £ S <M (P) ° (P - 9) + u ̂  u (P - 9 ) } a , (P).
(p)

p<E> = ^ 2 ( 2 p - q )

(p)

X '{и (p)" (P - 4) - v (p) и {p - q)} 6g (p).

The contribution of an elementary excitation to the
oscillations in the particle number density is thus
determined by the function ^ and the correspond-
ing contribution to the oscillations of the momen-
tum density by the function в.

We turn now to Eqs. (81). In them we put

= S£(p-p0), j (88)

where St and S2 are constant and p0 is an arbi-
trary, fixed momentum.

Dropping terms of the order V"1, which vanish
when we take the limit V — — and which produce
only local changes in the wave functions, we see
that (88) will be a possible set of solutions, if Sj
and S2 are connected by the relations:

(89)

whence we see that

We satisfy ourselves therefore of the existence of



THE COMPENSATION PRINCIPLE 249

a continuous spectrum*

E = Q(Po) + Q(po-q), (90)

separated by a gap. The energy E depends here,
for given q, continuously on the momentum p 0.

We construct also the asymptotic part of the
wave function of an elementary excitation of this
type; to do this we write out Eq. (65) in detail. We
find

&Ф- (Pi, ft) = и (Pi) и (p2) X (pv Рг)

-v(p1)v(p2)'k*(-p2, -pj),

and thus for the case under consideration with a
б -shaped component

S * - (Pi, Pi) = s (Pi - Pa) & (Ps + Po~
X exp{-i[Q(Po) + Q(p0-

where the constant S will be

We have thus in the r -representation

ЗФ- (rv r2) = const• exp{ - i (Q (p0) + Q(p0-q)) t)

x exp{ipffi + i (q—Po) ra}-

Let us compare this expression with the wave
function for a (-, +) pair in the ground state:

С eiP(?i-U)n(p)v(p)dp.

It is clear that such а фЦ. + corresponds to a bound
state of a pair of particles and, in particular, that
this function tends to zero as | r4 - r21 —• ~. The
expression 6Ф_ + , on the other hand, splits into a
product of two plane waves and corresponds to the
independent motion of two particles with momenta
p0 and q-p 0 .

We see thus that the elementary excitation from
the continuous spectrum can be interpreted physic -
ally as the corresponding dissociation of thequasi-
molecule into separate states of its particles.

We now proceed to study the spectrum of the
collective oscillations, which will be determined
using the solutions of Eq. (81) corresponding (for
fixed q) to discrete values of E.

We first consider the case where the particles
do not have an electrical charge. Since there is

•The positive sign is chosen by us on the basis of the
general normalization condition (76), which in the case under
consideration will be

2 e (p) a (p) > o. (76)

Substituting the solution (88) into this condition we see that
S, and Sj must have the same sign. Therefore Eq. (89) leads
to a positive sign for E.

no Coulomb interaction, we consider all kernels
I, J, and G to be finite.

From Eq. (35) it follows further that

L0(6) = 0 for Q = u(p)v(p).

The inhomogeneous equation

A, (<>) = /(/>)
can therefore be solved only if

2.
(p)

(91)

We see now that the set (81) has a solution

b = u(p)v(p), »-0, £ = 0, (92)

when q = 0 and we shall therefore write its solu-
tion for small | q | as an expansion in powers of

kl :
». e)+l

(93)
E = \q\£1+...,

where

- 2J e°\-
(iS«S3)

M0(»1)=E1u(p)v(p),

Substituting these expansions into Eq. (81) we get

\ * M - L \ ( i ( 9 4 )

(95)

—.(0.)=-—"A- 2 « i=o

i<3\
:S3

(96)

Equation (94) can be solved since the function
f (p) occurring on the right hand side has the prop-
erty f ( - p ) = - f ( p ) so that the condition (91) is
satisfied trivially.

In order that Eq. (96) be soluble we must de-
mand, on the basis of (91), that

( p )

П (97)
(«. p)

From Eq. (95) we see that t?t is proportional to
Ej so that condition (97) gives us the possibility
to determine E\, and so on.

Carrying out in practice the program of calcu-
lations given here for the spherically symmetric
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case we can verify that for small | q |:

where, if we disregard the corrections due to the
interaction, s will be equal to the value of the
particle velocity at the Fermi surface.

We thus find collective oscillations of quasi-
acoustic character. Their region of existence is
bounded by momenta q for which the correspond-
ing E lies below the threshold of excitation for
the continuous spectrum.

Let us now see what happens with oscillations
of this type in a dynamical system of electrons,
such as is considered in superconductivity theory.
We note first that the presence of the Coulomb in-
teraction causes here an important singularity in

the kernel Gq: Gq = , ,2 + Gq.

It is therefore convenient to construct now an
operator Mq of the form

{v (p) u(p — q) + u(p)v(p- q))

(98)

in which we have split off the part with the singu-
larity* at q = 0 explicitly.

To regularize (81) we introduce a new unknown
by putting

Our system of equations can then be written in the
form

(99)

*One should not think that a more rigorous treatment would
have yielded the screening effect in the factor Gq and thereby
would have eliminated this singularity. This is because we are
dealing with oscillations of the electric charge density which
is clear at least from the fact that precisely the amplitude of
these oscillations [see (87)] enters into (98). The screening
effect appears, generally speaking, in expressions correspond-
ing to allowances for correlations. To consider the influence
of spatial inhomogeneities, however, we must always take the
long range character of the Coulomb forces into account. We
must therefore also expect that in a more rigorous treatment
the singularity at q = 0 will remain in the expressions men-
tioned. In investigating the non-uniformity in the charge dis-
tribution, the Coulomb forces are long range in character and
the q-representation must thus always have the above-men-
tioned singularity at q = 0.

We see that for arbitrary E it has, for q = 0, the
solution

so that we can write its solution for small | q |
using the expansion

o, « ) + • • - .

E = E0 + \q\E1+...,

and substituting this into (99) we find

dLq (uv)

( l i a S 3 )
dQa

f;(ft)_n(p)«

e=o

< « , {

(100)

(101)

(102)

(103)

(104)

(«,p)

In Eq. (102) we take

and we can conclude from (100) and (102) that 0t

and i?i must be antisymmetric with respect to a
change in the sign of p, and Eq. (103) is thus sat-
isfied automatically.

We write down our usual condition for the solu-
bility of (104):

- 0

( a ,
, = 0

(106)

The left hand side of this equation will be, if we
use (105):

(107)

We see now that Eq. (106), which determines Eo,
does not have a zero root. Indeed, it follows from
(101) and (102) that the left hand side of (106),
which is expression (107), vanishes for Eo = 0.
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The right hand side of (106), however, is the same
as the right hand side of (97) for Eo = 0, and will
therefore be different from zero.

We now evaluate Eo for the spherically sym-
metric case. We take

and also assume that

J(Pi, /V, Pi Pi)=-J(Pi-Pi) a n d ^ + f t ^ + zv (108)

We can then verify the existence of the identity

){p)u{p-q) -u(p)o(p-q)),

(109)

where

(110)

We note that the case (108) is realized if the inter-
action does not depend on the velocities and is de-
termined by a potential U (r t - r 2 ) . In that case

= /(_;>) = ? U (г) е* (т) dr.

In superconductivity theory one must take into ac -
count, apart from the Coulomb forces for which
Eq. (108) is, of course, satisfied, also the Fro'hlich
interaction produced by the exchange of phonons.
Such an interaction is effective only in a narrow
layer near the Fermi surface and in that region
its contribution to J will be

(111)

where g (q) is a quantity characterizing the coup-
ling of the electrons and the phonons. We can thus
also use here Eq. (109). Strictly speaking, in order
that it be rigorously true it is necessary to change
Eq. (110). We would then note a deviation of the
order of the ratio C/co, where ш is the average
phonon energy, i.e., a deviation of the order of the
magnitude of the electron-phonon interaction time-
lag effects.

Because of this fact it is not expedient to make
this refinement in the model considered here, in
which the electron-phonon interaction is replaced
by a direct interaction between the electrons, since
this replacement itself is possible only if we neg-
lect time-lag effects.

We now use Eqs. (109) and (110) to determine
the value of Eo. Because the operator Lq is
Hermitian, we have

(112)

(P)

X {«(P) u(p — q)-u(p)v (p- q)}. (113)

We shall now evaluate both sides of this equation
2up to terms of the order

(110) we see that

q
| q | 2 , inclusive. From

From (99) and (100) we have, furthermore,

~v ^

so that we get from (113)

(P)

(114)

where e = q / | q | . Substituting Eqs. (36) for u and
v into (114) we find finally,

—?.=i/4—--——. (115)

where pp is the Fermi momentum.
It is clear that we have here obtained the usual

energy value for the well-known plasma oscilla-
tions ; the special character of the superconducting
state has completely disappeared.* Since Eo is
appreciably larger than the energy of the continu-
ous spectrum (for small q) the stationary solu-
tion found here turns out to be only quasi-station-
ary in a more rigorous treatment.

We note, however, one curious fact, namely that
notwithstanding the result obtained here the value
E = 0 can be considered to be an approximate
eigenvalue for the set (81).

Indeed, taking (109) into account one notes easily
that, taking

we satisfy Eqs. (81) up to terms of the order | q | 2 .
After this we note that this fact turns out to be
very essential in order to guarantee the gauge in-
variance of the theory.

We noted just now that the plasma oscillations
with their high value for E are not typical of the

so that

•This result had been obtained before by Anderson.6 The
earlier statement (see Sec. 7 of reference 1) of the importance
of the influence of the superconducting state was not con-
firmed.
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superconducting state. In that connection we can
raise the problem whether there are in general
collective oscillations that are characteristic of
this state.

As we see now, we can look for them only among
oscillations which do not change the electrical
charge distribution density.

In other words, we must look for solutions of
(81) for which the expression

N. N. BOGOLYUBOV

eA(q) = iqo(q). (118)

We must then have, in the r -representation,

( Г 1»^о(>'1. rt)

with which the occurrence of the singularity at
q = 0 [see (98)] is also connected, vanishes.

We now consider the spherically symmetric
case. We take the z -axis in the direction of the
vector q and introduce cylindrical coordinates.
We seek solutions of the form

\{р) = е^Цр\ pz), R _ t ( )

\(p) = e^b(p\ pz),

Such solutions will formally exist, and the above
mentioned expression is identically equal to zero
for these solutions. The question is only whether
the corresponding values of E lie below the thres-
hold for excitation of the continuous spectrum.

One should also analyze oscillations of the
branch of the spectrum not considered here, for
which

5. PROBLEMS OF THE ELECTRODYNAMICS
OF THE SUPERCONDUCTING STATE

We consider the problem of the change in the
superconducting ground state under the action of
a constant external field A (r) .

To work in the linear approximation, we assume
A (r) to be infinitesimally small, of the first order,
and use the general Equations (77).

If we do not take the paramagnetic term* into
account we get then

and

) Л

- " (/') V (p - q)] •

(116)

(117)

We now investigate the properties of this equa-
tion. We take

*In the linear approximation its effect can always be con-
sidered separately.

if there is gauge invariance, or, since in our case
<p is infinitesimally small:

tF{rlt rt) = i{<r{rt)-<f(r1)}F0{r1, rt).

Going over to the p -representation and using
Eq. (85) we get

I = i<? (ft

and

On the other hand, the 0q(p) which we have
found must satisfy Eq. (117) in the case (118), and
thus

Щ (7) Ь, Ы = 4 r {(2p - 4) q} 9{q){v(p)u(p-q)

— u(p)v(p — q)}.

But this is none other than Eq. (109).
The property of gauge invariance is thus true

with the same degree of accuracy as Eq. (109), i.e.,
up to electron-phonon interaction time-lag effects.

Let us now imagine the situation that results if
we proceed as follows. We first consider the
Hamiltonian of the system without the external
field; we perform the canonical transformation

+ +

and determine u, v from the condition of com-
pensating dangerous diagrams with momenta k,
-k.

We shall then introduce into the Hamiltonian
the small external field and transform all expres -
sions in terms of the amplitudes a, a, after which
we apply the usual perturbation theory without both-
ering to compensate the new dangerous diagrams
with momenta k, -k+q, arising from the external
field.

We then obtain instead of (117)

i _ (p) 4- Q (p - 7)! \ (p) = - ~ (2p - q) A {q) {V (p) и (p - q)

— n(p)v(p - <])),

whence

- — (2p-q)A(q)
{v{p)u(p-q)

-u{p)v(p-q)}. (119)

This result is clearly no longer gauge invariant in
any reasonable approximation. By replacing Lq(0)
with
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(124)

we have violated the very basic property of this
operator, namely that we have a zero eigenvalue
for q = 0.

It is of interest to note that Eq. (117) can also
be obtained as follows. We perform in the total
Hamiltonian the usual canonical transformation
mixing up amplitudes with momenta ±q. We then
apply the method of approximate second quantiza-
tion by introducing Bose amplitudes in place of the
operator products OLVO.^. Then, as Galasiewicz
has shown, as we study the "static deformation"
of the system due to the action of a constant vec-
tor potential, we arrive at just Eq. (117). The in-
tegral term in the expression for L can thus be
interpreted in some sense as being produced by
a collective effect. We note that an analogous ap-
proach was developed in a paper by Blatt and Mat-
subara.9

We now proceed to study the dependence of the
current density on the vector potential. From (84)
we have

mjq = ep, - e2A (q) -y ̂  <4

and thus, because of (87)

(p)

(120)

We now denote the solution of the equation

1 = 1 , 2 , 3 . (121)

by T a ( p , q). We find then from (117) and (120):

•a _ e»p 0 ЧП f ?

where

2
PI] ~ и Z.J "'

(123)

Because of (121) we can also write

From this we can satisfy ourselves that Sap is
symmetrical:

From (123) we have also

(«) (p) <p)

(p)

(p)

, - % ) ( « 2 (P) V* (Р-Ч)- V2 (p) U*(p- q)}

<-q(,){v4p-q)-v*(p)}

t - <i,) «• (p - ч) - -j^ 2 (fy - ь)v2 (p)

(p)

, + qt)bt(p)—±-2i2Pt-9,)b'iP)-

We get in this way Buckingham's relations:7

(125)

Because of (125) and (122) we convince ourselves
that the conservation law qj a = 0 is satisfied. We
see also that jq depends practically only on the
transverse part s# of the vector potential A:

We now study the dependence of jq on 31 (q) for
small q. Since now q* 91 (q) = 0, we can write
(117) in the form

where pĵ  is the component of p perpendicular
to the vector q. Taking the z axis in momentum
space along the direction of <й (q) and the x axis
along the direction of q we then get

where

= -^ ft {u (P) v(p-q)~V (p) и (fj - </)}.

(126)

(127)

It is clear that here f (p, q) must be an antisym-
metric function of p z :

HP*. t',r - л ; <i) + f(p*, Py. -i-л; <7) = о. (128)

Such a function will be orthogonal to u (p) v (p).
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We can thus always* look for the solution of Eq.
(127) in the form

where т4, т 2 , . . . are antisymmetric functions of
the variable p in the sense of (128).

On the other hand, substituting (126) into (120)
we find

where e z is a unit vector along the z axis, and

However, as q — 0 the function т will be of first
order of smallness and S (q) must thus vanish as

q 2 -
For sufficiently small q we have thus

and we have the Meissner effect in its exact form.8 '9

We saw that for a consideration of the influence
of a vector potential, only the operator10 Lq(0 )
was of importance.

If we had wanted to consider the influence of an
external scalar potential U, we would have arrived
in the linear approximation at the equation

Mq(b)=-2eU(q){u{p)v{p-g) + v{p)u{p-q)}

with the operator Mq. Since this operator contains
a singular term due to the deformation of the charge
density, we can easily verify that there is no typical
effect for the superconducting state (in the linear
approximation) and that the screening effect will
occur as in the normal state.

We note finally that if we study the influence of
the term proportional to H x a we are led to a

*From a purely mathematical point of view there is the
possibility, finally, that the equation Lo (0) = 0 possesses
apart from the symmetrical solution в = u (p)v(p) also another
eigensolution which is antisymmetrical with respect to p z .
There is, however, physically no ground for considering such
a solution and we shall not take it into account.

new operator, namely just the one which enters
into the equation for the oscillations for that
branch of the spectrum where \_ + = 0.

Note added in proof. We recently saw a new
interesting paper by May and Schafroth11 in which
they used our old method of compensating only
diagrams with opposite momenta and also obtained
convincing results about gauge invariance of the
Meissner effect. Because of this they had to con-
sider all orders of perturbation theory because,
as we showed in the present paper, one must apply
the generalized compensation principle when an
electromagnetic field is present. In contradistinc-
tion to our approach, however, May and Schafroth
considered at once the situation with the threefold
Hamiltonian, which gives additional advantages.
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