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1. INTRODUCTION

NUC LEAR reactions produced by deuterons play
an important part in nuclear physics. The cross
sections for such reactions are considerably
greater than those for the corresponding reac-
tions by other charged particles. For this reason
deuterons are widely used for obtaining radioac-
tive isotopes.

The peculiar features of nuclear reactions pro-
duced by deuterons result from the properties of
the deuteron: its loose structure which is related
to its low binding energy, and the asymmetric dis-
tribution of electric charge in the deuteron.

Because of the low binding energy of the deu-
teron, the neutron and proton in the deuteron spend
a considerable fraction of the time outside the
range of the nuclear forces. Thus, in the collision
of a deuteron with a nucleus, formation of a com-~
pound nucleus (in which case the deuteron as a
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whole is absorbed by the nucleus) need not occur.
The more probable processes are those in which
only one of the particles constituting the deuteron
is absorbed by the nucleus; the other particle then
appears directly as a reaction product. Such a
process, in which one of the particles in the deu-
teron is absorbed by a nucleus while the other is
set free, is called a breakup or stripping reaction.
The mechanism of the stripping reaction may-
be different for different energies of the incident
deuteron. If the energy of the incident deuteron
is less than the height of the Coulomb barrier, the
repulsive Coulomb force acting on the proton will
allow only the neutron to enter the region of action
of the nuclear forces. In this case the final nu-
cleus is formed as the result of neutron capture,
while the proton emerges with an excess kinetic
energy resulting from the release of energy in the
breakup of the deuteron and from the Coulomb re-
pulsion.
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The asymmetric distribution of the electric
charge in the deuteron makes it possible also for
an electrical breakup of the deuteron to occur, in
which both the neutron and proton are set free.
This type of disintegration can occur at any energy
of the incident deuterons above the disintegration
threshold.

In the region of energies above the Coulomb
barrier, the stripping reaction occurs principally
from direct interaction of one of the particles in
the deuteron with the nucleus. Since the dimen-
sions of the deuteron are large, in such a case
the other particle does not in general enter the
region of action of the nuclear forces. Thus the
capture of one of the particles in the deuteron is
accompanied by the liberation of the other par-
ticle. The angular distribution of the particles
which are set free is determined by the state of
the final nucleus which is formed as a result of
the reaction. Thus, if the energy is not very high
the stripping reaction can be used for studying
the properties of nuclei. At present the spins and
parities of many states of light nuclei are deter-
mined by using the stripping reaction.

The picture of the stripping process is espe-
cially simple at high energies, when the quasi-
classical approximation is applicable. In this
case the momentum carried off by the particle
which is set free is equal to its momentum at the
time of the collision, and consists of the momen-
tum of the center of mass motion of the deuteron
and the momentum of the relative motion of the
particles in the deuteron.

The stripping reaction with high energy deu-
terons is used for obtaining fast and practically
monoenergetic neutrons.

In addition to the stripping reaction at high en-
ergies we may mention another mechanism of in-
teraction of deuterons with nuclei, which results
in an additional yield of neutrons and protons. This
mechanism is the diffraction breakup of the deu-
teron, occurring far away from the nucleus.

A great deal of both theoretical and experimen-
tal work is being done at present on the problems
of interaction of deuterons with nuclei. But these
problems have not been clarified sufficiently in the
Russian literature. For this reason it seems de-
sirable to give a survey of the theoretical papers
concerning processes of interactions of deuterons
with nuclei. (Experimental papers are not con-
sidered in the survey; the references to experi-
mental papers are for the most part haphazard.)

Special attention is given in this survey to the
processes of direct interaction of deuterons with
nuclei, which have been the subject of intensive

study recently. We shall limit ourselves to the
range of deuteron energies in which the formation

of mesons does not play an essential role. For con-

venience we shall divide the energy range into two
parts: the region of low and medium energies (Eg
< 20 Mev), and the high energy region (20 Mev <
Eq < 300 Mev).

In the region of low and medium energies, we
consider the following processes: elastic scatter-
ing of deuterons, the effect on the elastic scatter-
ing of the spatial extent of the deuteron and the
absorption of the deuteron, the stripping reaction
resulting from direct interaction, the interference
between direct processes and processes involving
compound nucleus formation, and finally the ine-
lastic scattering of deuterons by nuclei, which is
accompanied by excitation of the nucleus and dis-
integration of the deuteron.

We shall treat separately those processes in
which the Coulomb interaction plays a decisive
role: the Coulomb breakup of the deuteron and
(d,p) reactions on heavy nuclei. These proc-
esses are important in the low-energy region,
especially for heavy nuclei.

In the high energy region, we shall give special
attention to the diffractive interaction of deuterons
with nuclei. In particular, we shall treat the dis-
sociation of the deuteron in the electromagnetic
field of the nucleus and the formation of deuterons
in the collision of fast nucleons with nuclei.

I. INTERACTION OF DEUTERONS WITH NUCLEI
~ IN THE LOW AND MEDIUM ENERGY REGIONS

2. Elastic Scattering of Deuterons

1. The role of the Coulomb interaction. For low
and medium energies of the incident deuterons, the
elastic scattering is determined mainly by the Cou-
lomb interaction. Scattering of deuterons through
compound nucleus formation is extremely improb-
able. The reason for this is the high excitation
energy of the compound nucleus formed after ab-
sorption of the deuteron. The decay of such a nu-
cleus with emission of a deuteron is extremely
unlikely because of the competition of other pos-
sible decay processes.

The Coulomb potential barrier surrounding the
nucleus results from the combined action of the
nuclear forces which are effective for small dis-
tances between nucleons and the repulsive Coulomb
forces outside the nucleus. The height B of the
Coulomb barrier for deuterons can be defined as
follows:

Ze?
B=—
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where e is the charge on the deuteron, Ze is the
charge on the nucleus, and R is the radius of the
region of nuclear interaction, which should be set
equal to the sum of the nuclear radius Rp and
the deuteron radius Rq:

R=R,-Ry.

Using the fact that Ry = r,AY® (where A is the
mass number and ry=1.2 x 107 cm) and Rq =
2.1 x 1073 cm, we find for B the expression

B=1.2ZA~Ys(1 +1.75A="s1 Mev.

The important quantity for the passage of the
deuteron through the Coulomb barrier is the rela-

Ma
Mp Mg Eq,
where Eq is the kinetic energy of the incident
deuteron relative to an infinitely heavy nucleus,
and Mg and M, are the masses of the deuteron
and the nucleus. The barrier is unimportant if
Egq >» B’, where B’ is the effective height of the
barrier, equal to

B

tive kinetic energy, which is equal to

 My+M,
=~ B

4 1
=12Z(A+2)A 3 (1 - 1.7547 31 Mev. (2.1)

Below we give values of the effective barrier height

B’ in Mev for various nuclei

Nucleus He? Be} Nely Caly 7Znd Snjy,
B 10 15 28 48 6.4 9.2

Ybi, U
1.5 14.0

The Coulomb interaction of the deuteron with
nucleus is conveniently characterized by the pa-

rameter
_ Ze2

v

where v is the velocity of the incident deuteron.
For low values of this parameter (n «< 1), the
Coulomb interaction can be treated by perturba-
tion theory. In the opposite limiting case of n>»>1
the quasi-classical approximation is applicable.
For heavy nuclei the parameter n is already
greater than unity for medium values of the deu-
teron energy.

The scattering of charged particles in the Cou-
lomb field is given by the Rutherford formula. For
elastic scattering of deuterons, deviations from
the Rutherford formula may occur for two reasons.
Firstly, there may be deviations resulting from
the spacial extension of the deuteron, and secondly,
if the energy of the incident deuteron is above the
Coulomb barrier, there may be deviations result-
ing from penetration of the deuteron through the
barrier leading to absorption of the deuteron.

2. Structure of the deuteron and elastic scatter-
ing. Since the deuteron consists of a neutron and

proton, it is a complex nucleus and has a spatial
structure. The spatial dimensions of the deuteron
are characterized by the average separation of the
neutron and proton which compose it. This separa-
tion is usually called the radius of the deuteron be-
cause of the low binding energy (¢ = 2.23 Mev), the
radius of the deuteron is greater than the range of
the nuclear forces acting between the neutron and
proton. A second peculiarity of the deuteron struc-
ture is the extreme asymmetry of its electrical
charge distribution — the center of mass and center
of charge of the deuteron do not coincide. Because
of this, even when the energy of the incident deu-
teron is well below the Coulomb barrier we may
expect to see deviations from the Rutherford for-
mula. The nature of these deviations was explained
in a paper of French and Goldberger.%

The motion of the deuteron in the Coulomb field
of the nucleus, which for simplicity we may assume
to be a point source, can be described by the Schr&-
dinger equation

Ze? b _
— i L«}I (r, rg) = 0.

he h2 .
{ Bg— 5 &, V(D) +
l‘d 3

(2.2)

Ag and Ay are the Laplacians with respect to the
coordinates of the center of mass of the deuteron,
rg, and the relative coordinates r; V(r) is the
potential of the nuclear interaction between the
neutron and proton; Ze?/|rq—ir| is the energy
of the Coulomb interaction of the deuteron and the
nucleus, and depends on the radius vector of the

proton, ry-— ir; E is the total energy of the deu-
2.2

teron, and is equal to E = — ¢, where k is

4M
the wave vector of the incident deuteron.

For finding the solution, it is convenient to re-
write (2.2) in the form

h2 h2 ;o Ze? ol
{_TATA(,_WA,,H (4= =k} W

d

:zeﬁ{i—f Ll

Ta ‘rd»—é»l'll

(2.3)

We now expand the function ¥ on the left side of
(2.3) in eigenfunctions of the relative motion of the
neutron-proton system,

W (r. rq) =9, (r) % (r4) + orthogonal term,

where ¢, (r) is the wave function of the ground
state of the deuteron. We multiply (2.3) by ¢4 (r)
and integrate over r. Treating the right side of
(2.3) as a perturbation, we replace ¥ by ¥ =
@o(r) Yk (ryq), where Pk(rq) is the wave func-
tion of the deuteron in a state of definite momen-
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tum k in the Coulomb field. We thus obtain
(2= o)
= 2kn S {%~%1 w2 (r)dx (rg) da (2.4)
rg— T i (1]

where n = Ze%/fiv, and v is the velocity of the
incident deuteron.

The function Pk (rq), normalized to unit flux
of particles in the incident beam, is

Ox(r)=¢ 2 T (14-in)eike F(—in, 1, i (kr—kr)), (2.5)

where I (x) is the gamma function and F(«,vy, z)
is the confluent hypergeometric function. The func-
tion YK (rq) is a solution of (2.4) when the right
hand side is set equal to zero, and describes the
scattering of deuterons by the Coulomb field of

the nucleus when we neglect the spatial extension

of the deuteron. At infinity Yk (rq) isa sumofa
plane wave and an outgoing spherical wave.

The function @ (ryq) which is defined by the in-
homogeneous equation (2.4) describes the elastic
scattering of deuterons taking account of the spa-
tial extension of the deuteron.

For large values of the parameter n, the in-
homogeneous term in (2.4) will be extremely small.
Because of the spherical symmetry of the ground

. state of the deuteron, the only non-zero contribu-
tion to the integral in (2.4) comes from r > 2rq.
However, since the effective values of r are of
the order of the deuteron radius Rq, while a deep
penetration of the deuteron toward the Coulomb
center is impossible for large Z, the corrections
to the Rutherford formula can be neglected when
n>1,

Using the asymptotic Green’s function for the
Coulomb field

G(r. r')— -——/1—

wr

where k/ = (r/r)k, and

et (hr—n 1n 2Ahr) ,'?ﬁ, (rl)-

O (r)=e 2 T (1 —in)cik’s ¥ (in,

1, —i(kr—k'r). (2.6)

we can find the asymptotic form of the solution of
Eq. (2.4). The coefficient of the outgoing wave in
this expression will determine the amplitude of

the elastic scattering of the deuterons. This elas-
tic scattering amplitude has the form
f@)=/r (D)
— 2 Qg () {__'_1—, —%l x (ra) & () drdra. (2.7)
' T '

where ¢ is the angle of scattering (the angle be-
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tween the vectors k’ and k), and {R(4#) is the

Coulomb scattering amplitude

¢
—inInsin2 o+~

Ze? 2
fR(ﬂ)—_/;]l;ue i)

Sing —
sin 5

T(i+in)
T(1—in)

Using a Hulthén function as the wave function of

the ground state of the deuteron,
—ar__ e——‘p}r

(=N "7t —, B=Ta

o _ 7 M= (2 . 8)
I (—ary ’ 770

(where ri=1.6 x1071% ¢cm is the effective range
of the nuclear forces in the triplet state), we can

write the integral appearing in (2.7) in the form

NE=

e L T ) LA S P
ba 43 2a+23

The integration over r can be carried out using
formula (10.1) of the Appendix.

We thus find for the differential cross section
for elastic scattering of deuterons the formula

Znn

dc_ll—32 N 2f2eP 1sin2—g—exp<inlnsin2%>

@
(o] o« —211.-—

{_S —}—8—2 R ] ‘iY (12— 2ivk) 2"(«( ~|—4k25m2—)

fa 4% 20423

xF(-—in, —in, 1; —T—sm“ 2)' dag. (2.9)

The quantity doR is the cross section for scat-
tering of point particles by the Coulomb field, and
is given by the Rutherford formula

Zet 2 do
4 v? A
sint =

If n« 1, we find from (2.9) for the ratio
do/dog the value

ds 1 tan 1 49
dsp { 1—ar (

dop =

4a
. -1 ¢ -1 4 N\\*?
+tan Z;—Ztan za+2§/} ’
g=2ksin ¥ (2.10)

This ratio is equal to unity for small scattering
angles and decreases with increasing angle. For
example, for Ej =4 Mev and ¢ = 180°, we find
a ratio of 0.3. Formula (2.10) corresponds to
using the Born approximation.

In the case of large n, formula (2.9) gives unity
for the ratio do/doRr independently of the angle of
scattering.

For arbitrary values of n, the integration in
(2.9) can only be done numerically. For example,
for the scattering of 14-Mev deuterons by alumi-
num (n = 0.8), numerical integration gives
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FIG. 1. Dependence of the ratio of elastic scattering of
deuterons to Rutherford scattering on scattering angle, for
Eq = 15.2 Mev (circles — Pb*®, crosses —~Bj**®).

do/dog = 0.67 for ¢ = 140° (while the Born ap-
proximation gives 0.11).

Thus for deuteron energies below the Coulomb
barrier, the ratio do/doR for small n decreases
monotonically with increasing angle. With increas-
ing n this falloff becomes less marked, and for
n > 1 we get Rutherford scattering.

3. Barrier penetration and scattering. Experi-
ments on elastic scattering of medium-energy deu-
terons by heavy nuclei show that at small angles
the scattering is purely Rutherford scattering, but
starting at an angle which depends on the deuteron
energy the cross section drops markedly from the
value given by the Rutherford formula. For exam-
ple, in the elastic scattering of 15.2-Mev deuterons
by Pb2% the ratio of the elastic scattering cross
section to the Rutherford cross section is equal to
unity out to scattering angles of 4 = 30°, while for
greater angles the ratio falls off exponentially.™
As shown by Porter,'% this exponential falloff of
cross section with angle can be explained as the
effect of absorption of the deuterons in the incident
beam.

In the energy range we are considering, the
deuteron wavelength is much less than the nuclear
radius (for Eq = 15 Mev, the ratio R/A is = 10),
s0 we can use the quasi-classical approximation.
To simplify matters we shall assume that the tra-
jectory of the deuteron in the Coulomb field of the
nucleus is not distorted by the nuclear forces.
Then the decrease of scattering cross section with
increasing angle can be explained by considering
the absorption of the deuterons along their trajec-
tory in the Coulomb field.

We can write the elastic scattering cross sec-
tion in the form

do =T (%) dog, (2.11)

where T («#) is the coefficient for transmission of
the deuteron through the nucleus at a fixed scatter-
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ing angle, and is equal to

reen(~{ %)

(x is the coordinate of the deuteron along the tra-
jectory and I(x) is the mean free path of the
deuteron in nuclear matter).

Introducing the distance of closest approach b,
which is related to the scattering angle ¢ by the

formula
sm —_—

2

(2.12)

) ’ (2.13)

we find

87#2 \ dr dr l(ir) ’

where r is the radius in the plane of the deuteron
orbit. Integration by parts gives

de o d 1Y
\ 16y =2\ 20 (=167 )
(

since x=0 for r=b, and I —p for r — .
The mean free path is inversely proportional to
the density of nuclear matter.
Assuming that the variation of the density of
nuclear matter with radius is given by
1 r—R
p(r)——2-<1—ta.nh7—>po, (2.14)
where R is the nuclear radius and d the width of
the diffuse boundary of the nucleus, we find
1 r—R N
1(r) )
(where I is the mean free path at the center of
the nucleus).
Assuming for simplicity a straight-line trajec-
tory of the deuteron inside the nucleus, we finally
get

© 1
T (%) =exp { — I‘l_d \ dr < (rz—bz(ﬁ))z sec bt r—dR
AT

= )lo (t- tanh -

(2.15)

If the boundary of the nucleus is assumed to be

)dolé(r R), we

sharp, so that — (
find

l(r)

T(S):exp{—£<

By suitable choice of the parameters R, d,
and [;, we can fit the angular dependence of the
cross section ratio given by formula (2.15) to the
experimentally observed dependence (Fig. 2). The
best fit is obtained for the following choice of pa-
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FIG. 2. Depend-
ence of o/oR on dis-
tance of closest ap-
proach b(3) for var-
ious values of R//,-
(Eq = 12.2 Mev,
R=14 x 107 cm,

d =3.5 x 10** cm).

W%

rameter values: R=14 x10 ¥ em, d=3.5x10"1
cm and R/I, ~ 1) (for the case of elastic scatter-
ing of deuterons by Pb2%® and Bi?% at Eq=15.2
Mev)'105

It should also be kept in mind that the decrease
of the elastic scattering cross section with angle
may also be related to the possibility of electrical
dissociation of the deuteron.

3. (d,p) and (d,n) Stripping Reactions.

1. Introduction. Of primary interest in the low
and medium regions are the (d,p) and (d,n) re-
actions, which are widely used at present in nuclear
spectroscopy for studying nuclear properties. These
reactions can proceed in two different ways.

First, under the action of the deuterons, the for-
mation of a compound nucleus can occur; then the
compound nucleus decays with the emission of a
proton or a neutron. Schematically such a two-
stage process can be represented as follows:

A+d—-C—B4p.

In this case, for sufficiently low energies of the in-
cident deuterons, one can observe resonance phe-
nomena (especially for light nuclei), which are
due to the quasi-discrete structure of the spec-
trum of the compound nucleus. In the center of
mass system, the angular distribution is then
symmetric about a line perpendicular to the di-
rection of incidence of the deuteron.*

Secondly, direct transitions (breakup or strip-
ping reactions) are possible in which the nucleus
absorbs only one of the particles constituting the
deuteron,

A+d-—B+p.

Such direct processes are possible because of the
low binding energy of the deuteron. The angular
distribution of the reaction products from direct
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transitions is characterized by a very definite
shape, from which one can deduce the spin and
parity of the final state of the residual nucleus
if the spin and parity of the initial nuclear state
are known.

The possibility of using deuteron reactions for
obtaining data on the spectroscopy of nuclei was
first pointed out by Butler.3 The theory of the
stripping reaction with medium energy deuterons
was also given by Butler,* who determined the
angular distribution of the products of the strip-
ping reaction by using the condition of continuity
of the wave function at the nuclear surface. The
results of the theory were in good agreement with
the experimental data.

Butler’s derivation of the angular distribution
of the products of a stripping reaction was ex-
tremely complicated, so that there have been a
whole series of papers?®?%2,87,10,61,116,121 j,, whioh
the angular distribution has been found by other
methods. Bhatia, Huang, Huby and Newns® de-
termined the stripping angular distribution using
the Born approximation. Although there is little
justification for applying such an approximation
in this energy range, the results were extremely
close to those of Butler. Later Daitch and French®’
showed that the Born approximation gives the same
results as Butler’s theory. (ef. also references 30
and 118).

A more consistent theory of stripping reactions
on the basis of perturbation theory, which takes
into account the scattering of the deuteron and
proton waves, was developed in a paper of Toboc-
man, 116

In this paragraph we shall treat the stripping
reaction by using a method which is due to Landau
and Lifshitz,!? and was applied by them to the dis-
sociation of the deuteron in the Coulomb field of a
heavy nucleus.

For definiteness we shall consider the (d,p)
stripping reaction, although the results will be
applicable also to (d,n) reactions since for the
case of light nuclei the Coulomb interaction can
be neglected.

2. Energy relations. Energy relations play an
important part in stripping reactions at low and
medium energies of the incident deuterons. On
the assumption that the initial nucleus was in its
ground state (Ep = 0), the energy balance for the
A (d,p) B reaction can be written in the center of
mass system as

Ed—é‘-:Ep—Sn‘l‘EB;

where Eq and Ep are the kinetic energies of the
incident deuteron and the emitted proton, € is the
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bonding energy of the deuteron, Sy is the energy
with which the captured neutron is bound in the
nucleus B if the latter is in its ground state, and
Ep is the excitation energy of nucleus B in its
final state. (To take account of the finiteness of
the nuclear masses, Eq and Ep should be taken
as the total kinetic energy of the system before
and after the collision.)

The change in the total kinetic energy of the
system (the Q value) for the stripping reaction
is

Q=Ep—Eq=Sy—=—Ej.

The most interesting stripping reactions are those
in which the nucleus is formed in its ground state
or a state of low excitation energy. If the nucleus
B is formed in its ground state (Eg =0), the Q
of the reaction will be ~ 6 Mev.

Assuming that the state of the nucleons which
constitute nucleus A is not changed when nucleus
B is formed, we can ascribe the energy Ep =
EB — Sp = Eq — Ep —€ to the absorbed neutron.

This energy can be either negative or positive.
If Ep < 0 the neutron will be in a bound state in
the nucleus. If E, > 0 the state will be virtual,
i.e., the nucleus B will be unstable with respect
to decay with emission of a neutron.

The energy relations we have given will also
be applicable to the (d,n) stripping reaction, if
n and p are interchanged in all the formulas.

3. Angular distribution in a stripping reaction.
Let us determine the angular distribution of the

particles formed in the stripping reaction A (d,p) B.

We shall assume that the mass of nucleus A is in-
finitely large compared to the mass of the deuteron.
Then the Schrddinger equation describing the mo-
tion of the deuteron (system of neutron + proton)
in the field due to the presence of a nucleus A

can be written as

{H B Ay A+ Vot Vot Vap— E
A~ o7 D~TAI_D+ o+ Vo4 Vap—

XW (L, 1y, rp)=0, (3.1)

where Hp 1s the Hamiltonian for the internal mo-
tion of the initial nucleus A, and ¢ is the coordi-
nate describing its motion; Ap and Ap are the
Laplace operators with respect to the neutron co-
ordinates rp and proton coordinates rp; Vp and
Vp are the potentials of the interaction of the neu-
tron and proton with the nucleus A, Vyp is the
potential for the nuclear interaction of the neutron

and proton, and E is the total energy of the system.

To solve Eq. (3.1), we expand the wave function
¥ in terms of the wave functions of the residual
nucleus B. These wave functions which we denote
by ¢p(¢, rp), with quantum number b, satisfy
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the equation

h
{HA— 2;4 An+V!1"Eb} gy (L. ra)=0.

(3.2)

We shall assume that the function ¢, is subjected
to the normalization

S% @, o) 9t (€, ro) dS drg = Gpe. (3.3)
The solution of (3.1) can be represented as
V@, 1 1p)= 2 by (rp) P (€, Tn)
b
4 orthogonal terms, (3.4)

where the expansion coefficients yp, which depend
on the proton coordinates, can be regarded as the
wave functions of the proton, freed as a result of
the interaction, corresponding to definite states
¢} of the residual nucleus B.

After substituting (3.4) in (3.1) and using the or-
thogonality of the functions ¢p, we get the follow-
ing equation for determining the function yYp:

2M
{Ap+k§*'h—z Vp} ¥ (rp)

2M . .
=03 Sep: (€ o) Vap ¥ (€, ra, 1p)dldry,

(3.5)

2
where kf, = gl;/[“ (E — Ep). By using the Green’s

function, this differential equation can be converted
to an integral equation.

To find the cross section for the (d,p) reaction
it is necessary to know only the asymptotic form of
Yp(rp). It is easily found by using the asymptotic
expression for the Green’s function® of Eq. (3.5):

ihor
G (. 1) — — g T 8k, (1),

(3.6)

p
kp:r;kp’ I'p—>co.

Here z,bkp(rp) is the wave function of the emerg-

ing proton in a state with a definite wave vector

, taking into account the scattering of the pro-
ton in the field of the residual nucleus B. At in-
finity zpkp is the sum of a plane wave and an out-

going spherical wave.
Using (3.6) we get the following asymptotic ex-
pression for the function ¥y, valid for large r:

ethprp

bu(rp) — f (8.7

- rp—> o,
p

M

f= T 2nh?

x4k, () 9 G 1) Vi (5, 1, 1) 0 dra dry. (3.8)

The coefficient f of the outgoing wave in (3.7) is
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the amplitude for the (d,p) reaction. The differ-
ential cross section is related to the amplitude by
the formula

14
dc=%]f[2d0, (3.9)
where vg is the velocity of the incident deuteron
and vp is the velocity of the outgoing proton.

Formula (3.8) gives the exact value of the re-
action amplitude, but to compute it we must know
the exact wave function for the whole system,
¥ (¢, rp, rp). The reaction amplitude can be com-
puted approximately by replacing the exact function
¥ in (3.8) by the “incident” wave

WCO (Cy Tn, l'p) = Pa (C) Po (r) 4’kd (rd)'

where ¢, (¢) is the wave function of the initial
nucleus A, @q(r)=vVa/2r e */r is the wave
function of the ground state of the deuteron (a =
VvMe/Re, € is the binding energy of the deuteron),
and Yk4(rq) is the wave function for the motion
of the deuteron center of mass in the field of the
nucleus A. At infinity, Ykq is the sum of the in-
cident plane wave with wave vector kg and the
scattered outgoing spherical wave. (This replace-
ment is actually equivalent to using the first ap-
proximation of perturbation theory.)

Thus we find the following expression for the
reaction amplitude:

= — s § 4, (6,) P (50) Voo (1) fro) dradiy, (3.10)

where

F*(rp) = Scp: (€, rn) 9 () dEC. (3.11)

We see that F(r,) can be considered to be the
function of the neutron in the final state.

Because of the short range character of the
nuclear forces, in evaluating the integral appear-
ing in (3.10) we can use the realtion (cf. the Ap-
pendix)

4mh? RN

Vasto ()= =221/ & i —my). (8.12)
( This equation holds for zero range of the nuclear
forces between neutron and proton in the deuteron.)
We thus finally get for the reaction amplitude

1=2y = Vot, 0 F* @ 4, (dr. (3.13)
The main contribution to this integral comes from
the region outside the nucleus (r>R where R is
the nuclear radius), since in the energy region we
are considering (E4 < 20 Mev) the mean free path
of deuterons and protons in nuclear matter is very
short, so that the wave functions zpkd and z,bkp

which describe the free states of the deuteron and
proton go to zero in the interior of the nucleus.

The inclusion of the possibility of penetration
of deuterons and protons into the interior of the
nucleus corresponds to treating the (d,p) process
as occurring via compound nucleus formation.

It is convenient to expand the wave function of
the neutron in the residual nucleus in a series of
spherical harmonics:

F(r)=12rin R, (1Y, (3, o). (3.14)

The individual terms in this expansion correspond
to different states of the neutron with definite val-
ues of the orbital angular momentum. We may
note that according to the shell model there should
be only one term in the sum over [, i.e., the neu-
tron in the nucleus should be in a state with a defi-
nite value of 1.

In the external region r > R, an exact wave
function can be found for the neutron. If the neu-
tron energy E, is negative, the radial wave func-
tion for a neutron in a state of orbital angular mo-
mentum ! will have the following form in the re-
gion outside the nucleus:

R (r)=C}¥ (kr), r>R,

where ;(x)= Vr/2x Kz+1(x) is the spherical
'%M and C; is

a normalization constant. The constant Cj is
conveniently expressed in terms of the reduced
width v; of the state, which is given in terms of
the value of the radial wave function of the neu-
tron at the surface of the nucleus by the formula

MacDonald function, kp =

2
T =g—1£|9?z "2

In the case of a virtual neutron state (Ep > 0),
the reduced width Y7 is proportional to the in-
trinsic neutron width I'; which characterizes
the probability of decay of the residual nucleus B
with emission of a neutron carrying off orbital an-
gular momentum !. Thus, expressing Cj; in
terms of Yp we have

2M kyr
ERI (r) = I/TLTR T :ll((k:R)) ’
Since in (3.13) the region of integration in the
interior of the nucleus is unimportant, in calcu-
lating the amplitude f we can use the expansion
(3.14) and replace the radial fuctions R7(r) by
the expressions (3.15). We then find

4M ST ym
=y SES v
I, m

r> R. (3.15)

(3.16)

where
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m f kn *

g =S (r) ‘k;))) (9. ¢) du, (r) dr.
Substituting this expression for the amplitude into
(3.9), we find for the differential cross section

2 V ];TL

4. Inclusion of spin. If we take into account the
spins of the nuclei and the spins of the deuteron,
neutron and proton, we get an additional factor in
(3.16) which depends on the spins and their pro-
jections.

In fact when the spin is taken into account, we
should take for the wave function of the initial
state ¥ which appears in the general expression
(3.8) for the reaction amplitude the function

(3.17)

/fp 8Ma

do = ¢~ 'nh?R

(3.18)

Vo= (C) 9o (r) $x, (ra) Wiw Ltw»

where Xigg and X1y, are the spin functions of the
initial nucleus (i and uj are the spin and its pro-
jection for the initial nucleus) and the deuteron
(14 is the projection of the deuteron spin). The
spin wave functions will be assumed to be ortho-
normal:

E L At = 04i’0 ‘e
Xmi’(t [ Bl

For the wave function of the final state we
should take

q’kp (rD) X.%Pcpipj (e l'n):

where X1, is the spin function of the liberated
proton and ¢’j,uj is the total wave function of the

residual nucleus in the state with spin j and spin
projection uj. Obviously the spin j of the resid-
ual nucleus is the sum of the spin i of the initial
nucleus, the orbital angular momentum ! of the
captured neutron and the spin of the neutron.

The wave function of the residual nucleus can
be expanded in spin functions of the initial nucleus,
spin functions of the neutron and eigenfunctions of
the orbital angular momentum of the neutron;

Piu; (€, o)

2 P (‘:’ rp) <F’i Pn
L8 m,

s
T,

!

.1 ; g
L?sps> (e,m| Slﬂ‘j)xi&‘ixlu Fim

2%n

(3.19)

where (pipn|issug) and (ugm| sljuj) are
Clebsch-Gordan coefficients.
We note that the integral

{ s (€0 ma) o Q)2 = Ry ()

can be regarded as the wave function of the captured
neutron and can be represented in the region outside
the nucleus in the form
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Ry (ra)= ) S (knra)

7zl Tits T (kaR) ra> R,

where vjjs is the reduced width of the state in
which the absorbed neutron has orbital angular
momentum ! and the nucleus has total spin j.

We now use (3.19) and the expansion of the deu-
teron spin function in terms of spin functions for
the neutron and proton

=2 (37 Pn“p]hh)x X,
Bobp

After carrying out the integration and the summa-
tion over the spin variables we get for the reaction

amplitude:
_ 4Ma
f—- nh2 R 2 V—Y;ls (Pd"'n >(u‘ mISIIP,
i, 8, m, B B
(3.20)

X (7%%%[ 1p, ) n,
where I%n is defined as before in (3.17).
The cross section will be given by the square
modulus of (3.20). The cross section must be av-
eraged over spin projections in the initial state
and summed over spin projections in the final
state:

1
sy 21/
4M2 . '
= 7R 3(Zi41) 3(21+1) Z | E l"x’ns(vapn l%s

k)
piopy Lis,mopg,
B Bp

, 11 m
X (slpym| jp;) <‘2“2'9an' fp, ) "2
The summation can be done by using the following
relations:

Z (2 2Pan|1F‘d><2 2Pan11Pd> SXE

3

Z (ifwn Sm) <i 3 Byt S’pé> Budups, [ (3.21)
LR

2 (Slf“sm | /‘P'j) (Sl,}"s | ]P‘]) - 21_1_1 ‘“""‘m

Pgy By J

which result from the orthogonality properties of
the Clebsch-Gordan coefficients.

Finally, after averaging and summing over spin
states, we get the following expression for the
{(d,p) cross section:

. k .
do = 2/+1 *p 4Ma Z 2YJL

T 2041 ky nh®R - 141 (3.22)

3112 dO.

Here i and j are the spins of the initial state
of nucleus A and the final state of nucleus B and
Yji = ? Yjls-

The summation in (3.22) extends only over those
values of I which satisfy the selection rule
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li—j]—g|<l<i+j+g

Also, if the parity of the initial state of nucleus A
and the final state of nucleus B are the same then
only even values of ! are possible, while if the
initial and final states have opposite parity only
odd values of [ are possible.

The amplitude Illn which appears in (3.22) is
given by

"= S ¥, (1) :‘ ((lflr{) Y (3, ¢) i, (r)dr, (3.23)

where i d is the wave function for the center of

mass motion of the deuteron in the field of nucleus
A, and ‘Pkp is the wave function for the motion of

the proton in the field of nucleus B. The value of
ky is related to the energy E, of the absorbed
neutron by the equation kp = \; —~2ME, /h2 |

Formula (3.22) determines the angular distribu-
tion of the protons from the (d,p) stripping re-
action.

5. The plane-wave approximation. The calcu-
lation of the angular distribution of the protons
produced in a stripping reaction reduces to the
computation of the integral (3.17). This integral
can be calculated in explicit form if we neglect the
scattering of the deuteron and proton waves in the
field of the nucleus, i.e., if we replace the wave
functions Ykyq and ‘Pkp in the integral (3.17) by

plane waves eikgr and eikpr, and integrate only
over the region outside the nucleus, r = R. Thus
I?l can be represented approximately as

n": S eikrYl*m(lu}’ ) ¥ (kyr) dr,

T k=kq— k.

(3.24)
>R

Obviously the plane wave approximation can be
used only if the energy E4 of the incident deuteron
and the energy Ep of the emerging proton are con-
siderably above the Coulomb barrier Ze?/R.

Using the expansion of the plane wave in spheri-
cal harmonics,

&kr — 4 }‘ ', (kr) Yim (8%, o) ¥, (8, ?)

and the orthogonality property of the spherical
harmonics, we find

I = 4mi'Y i (Y, i) S . (Ar) - 1 () ridr = 4ei'Y i (%x, k)

TN

§dji (ki)

/»2-} K21 dR_ ‘(kR)

In¥, (kn R)} (3.24')

Substituting this expression for I}n in (3.22) and
carrying out the summation over m by using the
relation

A. G. SITENKO

S‘Iytmi2 21'1
m

we obtain finally for the cross section of the strip-
ping reaction in the plane wave approximation the
following expression:

241 Fp 4MaR? ’dn(kR)
— 5 1 12
2041 kg T { +< ! kd—kp> }
= (/cR) & In ¥, (kaR) 24O, (3.25)

We have made use of the relation k% + kz =
2{a? + ($kq - ky )}%, which follows from conserva-
tion of energy.

The proton angular distribution given by formula
(3.25) depends on the energy Eq of the incident
deuteron, the energy Ep of the emerging proton,
and on the orbital angular momentum of the cap-
tured neutron.

For fixed initial state of nucleus A and final
state of nucleus B, the permissible values of 1
are given by the selection rules:

(a) j is the vector sum of i, I, and %, i.e.,
i—il—g|<i<itity

(b) If the initial and final states have the same
parity, [ is even. If the parities are opposite,
the admissible ! values are odd.

Formula (3.25) contains two factors which de-
pend on the angle ¢ of emergence of the proton
(the angle between the vectors kp and kg).

(1) The deuteron factor {a? + (3kq - ky )32

The proton, having an initial momentum 3kgq,
is emitted with momentum kp The difference
kp ~ 31kq is the momentum of the relative motion
of the proton in the deuteron at the moment when
the neutron is stripped off. The factor {a? +
(kg —kp)*}™% is proportional to the probability
for a given value of the relative momentum in the
deuteron. As a function of the angle ¢4 between
kp and kg, this factor has a maximum in the for-
ward direction. The greater the angle at which
the proton emerges, the greater must be the mo-
mentum of the relative motion in the deuteron and
the less the probability. The deuteron factor is
the same for transitions with different values of
l. The dependence of the deuteron factor on angle
is shown in Fig. 3.
el él;R) —j1(kR)

(2) The neutron factor

d 2
X s In f(kpR)

The neutron leaves the deuteron with momentum
k = kg —kp. The neutron transfers this momentum
to the nucleus. The factor
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1 R

. d
— 7, (kR) <5 It (knR)

is proportional to the probability that a neutron
with momentum k will be found on the surface of
the nucleus and have orbital angular momentum 1.
This factor, which contains spherical Bessel func-
tions, is an oscillating function of the angle +#,
whose oscillations decrease with increasing 4.

If 1=0, the neutron factor has its principal max-
imum in the forward direction 4 = 0. For all other
values of I, there is a minimum at ¢ = 0. The
position of the first maximum for 7 = 0 can be
found from the quasi-classical condition for cap-
ture of the neutron kR =1, where k= [(kq— kp)z
+ 4kgkp sin? 19/2)]1/2. The greater the angular mo-
mentum k which the neutron must have to pene-
trate to the distance R.

As ! increases, the first maximum of the neu-
tron factor shifts toward larger angles ¢ and de-
creases in magnitude. The angular dependence of
the neutron factor for different ! values is shown
in Fig. 3.

Figure 3 also shows the characteristic depend-
ence of the differential cross section on angle ¢
for various values of 1.
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If the selection rules permit several different
! values, the differential cross section will be the
sum (without interference) of contributions from
different ! values. The weight factors for the
various terms will be determined by the reduced
widths vj;.

6. Transition to the Serber model. If the energy
of the incident deuteron is sufficiently high (Egq> ¢),
the neutron will be captured in a virtual state (k, =
ikp corresponds to an energy of the final nucleus
which lies in the continuous spectrum ). If we de-
note the density of final states of the nucleus by
pjls the cross section for stripping leaving the
fmal nucleus with energy in the interval dEj can
be written in the form
2j+1 8MaR® kp 1

2041 R* hy {“2’*’(%1‘(1““9) }

— . (kR) S In 1§ (xoR) r pudH do.

do =

2 Y;L]d“ (kR)

(3.26)

If there are a large number of terms with different
! values in (3.26), the main contribution will come
from angles for which the difference k%—«% is

small, so that

[ p—

dh{l nR i
{d“ (kR)h‘”(an)—]l (kR) u % } i

S TRR

Using the principle of detailed balancing, which
states that the reduced width vyj; is related to the
neutron sticking probability ¢; and the density
A of final states of the nucleus by the formula?
_ 1 ei+ng

Uit = e R 2+ Doyt
and noting that for kR > 1 we have approximately
|h§”(icnR)l2 ~ 1/k}R?, we get the following expres-
sion:

do = 2= S 20+ 1) L dE jdo.

()T

We see that the energy of the deuteron is shared
approximately equally between the neutron and
proton,

In the case of fast neutrons we may assume that
absorption occurs only at impact parameters smal-
ler than the nuclear radius. Since we are interested
in a stripping process we must consider only those
neutrons which are bound to protons which do not
interact with the nucleus. If the radial projection
of the distance between neutron and proton is p,
it is obvious that such neutrons will have impact
parameters ¥ (X =2/kq) which are contained in
the interval between R—-p and R. Carrying out
the summation over impact parameters in this in-
terval, averaging over different values of p and
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integrating with respect to energy and angle of the
emerging protons, we get the Serber!!! formula for
the total cross section for the stripping reaction

op =§RRd, Ry < R. (3.27)

The distribution of the emerging protons in energy
and angle then corresponds to the “transparent”
model of Serber,!!

e $dy
dc(B)—GD Esd :i)
/5_,5_32)2
d
E4dE
do(Bp)=S — L2000 (3.28)

7. The effect of finite nuclear mass. For the
case of stripping reactions on light nuclei the fact
that the nuclear mass is finite can lead to size-
able corrections. We shall show how the results
of the preceding paragraphs should be changed to
take account of the finite mass of the nucleus.

(1) In Eq. (3.10) for the reaction amplitude, the
proton mass M should be replaced by the reduced
mass MMp/(M+Mp). (We assume the neutron
and proton masses to be equal and denote them by
M, the mass of the initial nucleus A is Mp, the
mass of the final nucleus B is Mpg.)

(2) The reduced mass of the neutron appears in
the reduced width Yjl, 8O that the neutron mass M
in (3.15) should be replaced by the reduced mass of
the neutron MMy /(M +My ).

(3) In the expression for the deuteron velocity
vq = hkq/Mq, which appears in the cross section
(3.9), the deuteron mass Mg = 2M should be re-
placed by the reduced mass 2MMp /(2M +Mp ).

Inclusion of these corrections gives the addi-

tional factor

-1 -1 I 2
CEONCE NG G DR
in the cross section formula (3.22).

(4) The expression (3.10) contains the vectors
ryp and rp, which determine the coordinates of
the neutron and proton relative to the center of
mass of the initial nucleus. Let us introduce the
vector Tf, =rp—(M/Mp)ry, which gives the co-
ordinates of thé proton relative to the center of
mass of the residual nucleus B. It is obvious that
when we take account of the finite mass of the nu-
cleus the wave function g in (3.10), which de-
scribes the motion of the proton in the field of the
residual nucleus B, should depend on rf,. Thus,
in the plane wave approximation we get for the
reaction amplitude

— -
fZZI/%Se"“‘ﬁ(r)dr. k=ka— 3 kp.
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Noting also that

Rk ——u—— +(——kd——kp> }

we finally get, in the plane wave approximation
taking account of the finite nuclear mass, the fol-
lowing expression for the differential cross sec-
tion for the stripping reaction:

M
241 by <H‘MA> 4MaR® .
2i4+1 kg / 1 ST
o (e

M 2
()
o Z . ‘dn R (kR) o In, (FuR) |2do,

do =

k= kd——% kp. (3.29)

This formula gives the angular distribution of the
protons in the center of mass system.

8. Comparison with experiment. The anguldr
distribution of the products of a stripping reaction
given in formula (3.25) was first found by Butler.
Despite the large number of assumptions made in
deriving formula (3.25) (the assumption of zero
range of the nuclear forces between neutron and
proton, the replacement of the exact wave function
¥ by the approximate wave function ¥, in the ex-
pression (3.8) for the amplitude, the neglect of
scattering of the deuteron and proton waves in the
field of the nucleus, and the neglect of the possi-
bility of penetration of the deuteron and proton into
the nucleus), the angular distribution given by this
formula is in good agreement with experimental
data for a large number of reactions (especially
for light nuclei).

Figures 4, 5, 6, and 7 show the angular distri-
butions observed in various reactions. The ob-
served angular distributions and the theoretical
distributions given by formula (3.25) are in good
agreement in the region of small angles. At large
angles there is a discrepancy which results from
the possibility of processes involving compound

nucleus formation.
0 \
&

FIG. 4. Angular distri-
bution of protons from Al¥ \
(d, p)Al**, E4 = 8 Mev, & \
Q = 5.49 Mev, [ = 0. The \!
solid curve is for R=6.15 & 3

x 107" cm, the dashed 5
curve for R = 5.4 x 107" cm.
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FIG. 5. Angular distribution
of protons from Si*® (d, p) Si**,
E4 = 8.18 Mev, Q, = 4.97 Mev,

E,=128Mev, [=2,R=4.4
l / \ x 107 em
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A FIG. 7. Angular distribution

of protons from Mg* (d, p) Mg*®,
Eg4 = 8.21 Mev, Q, = 7.05 Mev,
\ E, = 1.83 Mev, [ =0,2 mixture,
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R=53x10"cm
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In comparing the experimental data with (3.25),
one should choose the best value of the parameter
R; this value may differ somewhat from the usu-
ally accepted value of the nuclear radius Ry. A
good fit with experiment is obtained by choosing
R somewhat larger than the nuclear radius Ry
as given by the empirical formula

1
R,=(1.7+1.224%}.107 cm.

where A is the mass number of the nucleus.

Figure 4 shows how the angular distribution
changes if the value of R is changed by 10%.

However, in many cases one observes consid-
erable deviation of experiment from the predic-
tions of the Butler theory. These deviations show
the importance of taking into account both the nu-
clear and Coulomb scattering of the particles
participating in the stripping reaction.%

9. Inclusion of scattering of deuteron and pro-
ton waves. If we take into account Coulomb and
nuclear scattering, the wave functions of the deu-
teron and proton in the region outside the nucleus,
can be chosen in the form

Yx, () = 4z 21‘,”;’ D (F (nghar)
—alH, (ng, ker)) r ¥ in (On, 91 Yo (9, @), (3.30)
by (1) = 28R O (g, o)
— aP*HY (np, kpr)} 17 Y i (Vi 21 ) Yo (B, 9), (3.31)

12 —r
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FIG. 6. Angular ‘
distribution of pro- & ﬁ
tons from Ca* (d, p)

Ca**, E4 =7 Mev, 60 v
Ca* in its ground
state, /=3, R=7.5
x 107 cm
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where Fj7(n, kr) and Gji(n, kr) are the regular
and irregular radial Coulomb functions, which are
solutions of the equation

d2y; [ _ (l+1) __2_MZ€_2] u, = 0,

r2+

H;=F7-iGy; ny=arg T (1+1+in) is the Coulomb
scattering phase; n = Ze’/fiv where v is the ve-
locity of the particle; the amplitudes a‘li and aIl)
describe the purely nuclear scattering of the par-
tial deuteron and proton waves.

The amplitudes al and O‘Pl) can be expressed
in terms of the logarithmic derivative of the radial

wave function f; at the nuclear surface*
l—_\J—ls H( )
SRR = i
where

GG T F
A\=R g[ GGl l] ,
! r=R

G F; —FiG
G A s;=R [———.l Bl :] .
i i r=R

G £7

The expressions for the amplitudes «j simplify
in various limiting cases.
(a) For an absolutely impenetrable nucleus

_ iR
Hi(R)

(b) In the neighborhood of a resonance energy

fo b I HI(R)
gyl R
(c) For a black nuecleus
1
wo| 7 1<HR
(\ 0 I>FkR.

However when we use the functions of (3.30)
and (3.31), the integral Illn cannot be calculated
in explicit form. Numerical computations carried
out by Tobocman and Kalos!!? have shown that in-
clusion of Coulomb and nuclear scattering of the
deuteron and proton can result in marked devia-
tions from the results of the Butler theory.

In Figs. 8 and 9 we give graphs showing the
influence of Coulomb and nuclear scattering on
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FIG. 8. Angular distribution of protons from F*'*(d, p)F*,
for Eq = 14.3 Mev, Q, = 4.37 Mev, [ =2, R=5.05x 107" cm;
a) plane wave approximation; b) Coulomb scattering included;
c)Coulomb scattering and absorption of protons with I, <4
included; d) Coulomb scattering and hard sphere scattering of
protons included. N is the normalization factor.

vy FIG. 9. Angular distri-
bution of protons from Ti*®
(d, p)Ti*®, Eq = 2.6 Mev,
Q, =4.46 Mev, /=1,
R =6.49 x 107 cm;
a) plane wave approxima-
tion; b) Coulomb scatter-

{ ing included; c) Coulomb
2+ / 4 scattering and absorption

\ /Il‘\\\/”(ﬁedja/ of protons with / < included.

R A X 5
the angular distribution of protons from the (d,p)
reaction.

Coulomb scattering of the deuteron and proton
waves results in a shift of the maxima of the an-
gular distribution toward larger angles and a
broadening and reduction in height of the maxima.
There is also a reduction of the total cross section.
In the case of low-energy incident deuterons, the
Coulomb effects can change the angular distribu-
tion completely. If the deuteron energy is consid-
erably above the top of the Coulomb barrier, the
Coulomb effects may produce a noticeable change
in the angular distribution but they will not spoil
the unique assignment of the ! value for the cap-
tured neutron.

The effect of nuclear scattering of the deuteron
and proton waves on the angular distribution is
opposite to that of the Coulomb scattering. As a
result of nuclear scattering the maxima in the an-
gular distribution are shifted toward smaller angles
and the width of the maxima decreases. The size
of the total cross section decreases, just as it does
because of the Coulomb effects.

10. The investigation of nuclear structure by
means of the stripping reaction. The (d,p) and (d,n)

A. G. SITENKO

stripping reactions on light nuclei with medium
energy deuterons are a powerful tool for studying
nuclear properties. Of principal interest are the
stripping reactions which lead to formation of the
residual nucleus in its ground state or a low-lying
excited state.

The passage of a monoenergetic beam of deu-
terons through a layer of material A results in
the formation among the reaction products of
monoenergetic groups of protons or neutrons.
Each such group corresponds ‘to a definite level
of the residual nucleus B. By measuring the Q
of the reaction for the different proton groups,
we can determine the level energy Ep of a state
of the residual nucleus B from the relation

Ep=Sa—e—Q.

But the real importance of stripping reactions
for nuclear spectroscopy is related to the charac-
teristic angular distribution from such reactions.
The study of the angular distribution of the protons
(or neutrons) of a given group enables one to draw
conclusions concerning the spin and parity of the
corresponding state of the residual nucleus.

If the spin and parity of the initial state of nu-
cleus A are known, we can find the spin and parity
of the final state of nucleus B by comparing the
experimentally observed angular distribution of
the protons with the distribution given by (3.25).
This comparison enables us to find the possible
values of the orbital angular momentum [ of the
neutron absorbed by the nucleus. Very often one
can obtain satisfactory agreement with experiment
for only one definite value of I. A first indication
of the possible values of I can be found by studying
the experimental distribution at small angles. A
forward maximum shows that =0 is present;

a forward minimum shows that =0 is absent.

If I has been found, the selection rule deter-
mines the parity of the final state uniquely, while
the spin j is one of the possible values obtainable
from vector addition of i, I, and %. It is conven-
ient to choose a target nucleus A which has zero
spin or a low value of the spin, to make the number
of choices for j a minimum. If i =0, only two
values of j are possible (while for I=0, j is
uniquely determined).

The stripping reaction can also be used to find
reduced widths of levels of the residual nucleus by
examining the intensities of the groups of protons
emitted in the reaction. In fact, after having deter-
mined the possible 7 values from the shape of the
angular distribution, one can by a suitable choice
of the radius R make a fit at small angles of the
curve determined from (3.25) to the experimental
curve. Then from the measured absolute value of
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the cross section at the first maximum, one can
use formula (3.25) to calculate the reduced width
Yjl of the corresponding level of the residual nu-
cleus B.114,6

If the captured neutron in the final state of the
residual nucleus can have several possible values
of I, we can in this same fashion determine the
reduced widths Yjl corresponding to the different
1 values.

According to the shell model, a nucleon in the
nucleus must be in a state of definite orbital an-
gular momentum. The possible I values can be
enumerated from the shell model. Thus the values
of the reduced widths vj; determined from a
stripping reaction can be used to test the validity
of the shell model.3445

The values of reduced widths obtained from
stripping data using formula (3.25) are several
times smaller than those obtained by other meth-
ods (for example, from experiments on (p,p)
scattering, etc). This is due to the approxima-
tions made in (3.25). It has been shown®">1!7 that
taking account of scattering of the deuteron and
proton waves leads to a reduction of the factor
Zn—:,l ip |2 which appears in the more exact formula

(3.22) for the cross section. Thus the inclusion

of scattering of the deuteron and proton waves
enables one to obtain a more correct value for the
reduced width. Despite the fact that the plane wave
approximation which is used in (3.25) gives too
small values for the reduced widths, the ratios

of the reduced widths for different levels are given
correctly by this approximation.%

11. Polarization in stripping reactions. From
general symmetry considerations it is evident that
the particles liberated in a stripping reaction may
be polarized in a direction perpendicular to the
plane containing the wave vectors of the incident
deuteron and the emerging particle. A determina-
tion of the polarization produced in a stripping re-
action can give additional information concerning
the spin of the residual nucleus.

In the plane wave approximation, the reaction
products are unpolarized. In fact in this case the
neutrons [if we consider the reaction A (d,p) B]
are absorbed by nucleus A independently of the
polarization of the incident deuteron, so that the
emerging protons are unpolarized. However,
when we take into account the interaction of the
emerging proton with the nucleus, we get a polar-
ization.

The possibility of polarization from a stripping
reaction was first pointed out by Newns,* who de-
termined the polarization on the assumption that
the nucleus is opaque for protons.
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The possibility of absorption of the proton by
the nucleus causes the average value of the pro-
jection (along the vector kp x k) of the orbital
angular momentum of the neutron, which was orig-
inally bound to the proton in the deuteron and later
absorbed by the nucleus, to be positive. This re-
sults in a polarization of the protons. The total
angular momentum of the absorbed neutron can
assume the values !+3 and I-—3, i.e., the or-
bital angular momentum and spin can be either
parallel or antiparallel. Since the spins of the
proton and neutron are parallel in the deuteron,
and since in the capture a positive value of the
projection of the orbital angular momentum is
more probable, the protons will be partially po-
larized along the direction of the vector kp x kg
if jn = I+3%, and will be polarized in the opposite
direction for j =1—%. The magnitude of the po-
larization will be given by the expression

2 NI
P= m = —1—
T 321D ZU?‘.“’)’ =it
m

Thus the sign of the polarization gives an indi-
cation of the value of j;. Since the spin j of the
residual nucleus is the vector sum of i and jp,
knowledge of j, simplifies the problem of finding
j. For example, if i=0, j=j, =1+3, sothat j
is uniquely determined by the sign of the polariza-
tion.

Horowitz and Messiah®® have determined the
polarization of the protons from the stripping re-
action, using a hard sphere model of the nucleus.
They found the same sign for the polarization as
did Newns.

Cheston®? determined the polarization of the
protons from stripping reactions which results
from spin-orbit interaction of the proton and the
residual nucleus. The parameters for the poten-
tial of this interaction were chosen on the basis
of data on scattering of low energy protons by
nuclei. It turned out that the polarization due to
the spin-orbit coupling is opposite to the polari-
zation which results for a black nucleus or a
hard-sphere nucleus.

Polarization of the protons was observed ex-
perimentally by Hillman® in the C!?(d,p)C!
reaction. The experimentally determined sign
of the polarization agrees with that given by
Cheston, but the absolute value of the polariza-
tion is three times as large as the calculated
value. It was later shown by Tobocman, Newns,
and Refail?® that the correct sign of the polari-
zation of the protons from a stripping reaction
can be obtained if the scattering of the deuteron
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by the nucleus is taken into account. The experi-
mental resultsi?4:1%5 agree with reference 123.

12. Angular correlations in (d,py) and (d,ny)
reactions. Additional information on the spin of
the final state of the nucleus in a stripping reac-
tion A (d,p)B can be gotten by studying the an-
gular correlation between the protons and the vy -
quanta emitted by nucleus B if it is formed in an
excited state. The theory of the angular correla-
tions for (d,py) and (d,ny) reactions was given
by Biedenharn, Boyer, and Charpie® (Cf. also
references 68, 107, and 89).

The determination of the angular correlation in
a (d,py) reaction reduces to finding the angular
distribution of the vy radiation for a fixed direction
of emergence of the proton. The matrix element
for such a stripping process with subsequent emis-
sion of a vy quantum having angular momentum L
and projection M will be proportional to the prod-
uct of the stripping amplitude (3.20) and the matrix
element of the multipole moment (QL.M )juj sifufs

for the transition of the residual nucleus from the
state j, uj to the state jf, uf by emission of a ¥
quantum. Using (3.20) and (3.24’) and omitting
factors depending on the angular momentum pro-
jections (which do not affect the angular distribu-
tion), we get

M= Z Vail (%%Ppﬂu'1Pd><i%}‘ipnlsb‘s)
l

smihs
i‘-nP']'

X (slum | jo;) g, (K) Yim (Mepad) (Qandiv iy (3.33)

where we have introduced the abbreviation

0.0 ={ LR — ) kR) 5 %, (k,B)}
The summation in (3.33) extends over all possible
values of the projection 1 in the “intermediate”
state.

Since the operator Qi of the multipole mo-
ment is an L -vector, i.e., a quantity transform-
ing according to the (2L +1)-dimensional irreduc-
ible representation of the rotation group, and since
the wave functions ¢jy,. and @j are also L-
vectors (with L =j and L = jf), the matrix ele-
ments of Q,r coincide (except for factors inde-
pendent of the angular momentum projections) with
the coefficients of the expansion

= .2 (]‘."j:ljnu'_f | LM) YL

PinPipy

The squared modulus of the matrix element
(3.33) gives the probability of emission of a vy
quantum with given angular momentum L and

projection M. The angular distribution of such

radiation is uniquely determined by the well-known
functions Fjpg, which are given, for example, in
reference 1. We thus obtain for the angular dis-
tribution of the y quanta, averaged over the po-
larizations of the angular momenta in the initial
and final states, the following expression:

Wik~ 3|3 Vi

Pty Lsmug
P‘/Al Pty

11 .1 .
X(if“pﬂnl 1Pd> (l 3 bibn | St )(slvsmlw;)
X (T ggeg | LMY Yin (i, o1) ¢, (k) [P Fras (ko). (3.34)

This expression is usually called the correlation
function.

The summation over pg, up, pj, and up in
(3.34) can be carried out by using the orthogonal
properties (3.21) of the Clebsch-Gordan coeffi-
cients. If we now use the formula for expansion
of a product of spherical harmonics in a series of
spherical harmonics

v 1
% m i 2
Videw=(— "3 3 [SEHEED ]

v op=—v
X (11 00 [¥0) (11’ — mm” | ) Yy, (3.35)

and also use the formula for summing over angular
momentum projections:38
> (=" (shagm | ) (U pgm’ | fu) QU — mm v

: mm’ys
=(— [y7HEst 97 1 1) (J7e; — v OYW (41]; sv),  (3.36)

we finally get the correlation function in the form
Wk k)= 2 Vi,
Usy

1 1
X (= 1)* (21 + 1)2 (21" + 1)2 (1700 |¥0) (LL1—1]+0)

XW VT, )W (GLIL; ) g, (k) gy, (k) Py(cos0),  (3.37)

where 6 is the angle between the direction of
emission of the vy ray and the direction of the
momentum k transferred to the nucleus formed
in the stripping process; W (abed;ef) denotes
the Racah coefficients;1% the factor i~V in (3.37)
is real since the conservation of parity forces

{-U' to take on only even values,

Because of the law of combination of angular
momenta, the highest degree, vy5%, of the Le-
gendre polynomials appearing in (3.37) is an even
integer less than or equal to 2j, 2lLy,,3%, and 2L.

If the angular distribution of the y rays is not
isotropic, ! is different from zero. From the
shape of the angular distribution one can, in gen-
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eral, determine the relative magnitudes of the
reduced widths v;jjg.

If the spin of the initial nucleus is i =0, the
angular correlation depends only on j, jf, I,
and L, and is independent of Yjls- In this case
one can, from the observed correlation, make a
unique choice of one of the two possible j values
determined from the angular distribution of the
protons.

Figure 10 shows the angular distribution of vy
rays observed® in the Be®(d,p)Be!’ reaction.
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FIG. 10. Angular distribution of y rays from the transition
of B' from its first excited state (2*) at 3.37 Mev to the
ground (0*) state, for E4 = 3.5 Mev, 6, = 20°. § is the chan-
nel spin.

13. Formation of deuterons in the.collision of
nucleons with nuclei. The inverse process to the
stripping reaction is the so-called pickup (cap-
ture) reaction, in which a proton incident on the
nucleus pulls out a neutron to form a deuteron.
The pickup process, like the stripping reaction,
occurs as a result of direct interaction, in which
the transition from the initial to the final state
proceeds without formation of a compound nucleus.
By using the principle of detailed balancing for in-
verse processes, we can relate the cross section
for the pickup reaction to the stripping cross sec-
tion. Thus the cross section for the B (p,d)A
reaction will be given by the formula

3(2i-+1) kg

m kf, dcdp, (3-38)

dopa=
where dogp is given by (3.22).

By using formula (3.38) we can determine the
spin and parity of nuclei by studying the angular
distribution of the deuterons formed in the reac-
tion. (p,d) and (n,d) reactions at medium en-
ergies have been observed experimentally for
several nuclei. It should be pointed out that there
are experimental difficulties in the use of the
pickup reaction because of the large negative Q
value for such reactions.

14. Other direct processes involving deuterons.
Stripping reactions can occur not only in collisions

of deuterons with nuclei, but also for collisions of
other light nuclei with nuclei. For example, in the
collision of tritons or He® with nuclei, as a result
of the stripping process deuterons can be formed
whose angular distribution is the same as for (d,p)
and (d,n) reactions. The theory of the (t,d) and
(He3,d) reactioh was treated by Newns®® and Butler
and Salpeter.4” The differential cross section for
the (t,d) and (He® d) reactions is given by for-
mulas of the same type as (3.22), except that the
deuteron factor {a? + (3kq—kp)?}™? is replaced

by a factor which gives the probability for finding
the relative momentum %;k; —kg in the ground
state of the triton or He’. Qualitatively this fac-
tor gives the same angular dependence as the deu-
teron factor.

Just as in the stripping reaction A (d,p)B, the
reduced neutron width YjI appears as a parameter
in the cross section for the A (t,d)B reaction.
Simultaneous investigation of the transition A —B
using both deuterons and tritons enables one to
eliminate this undetermined parameter from the
theory.

Because of the practical difficulties in obtain-
ing beams of tritons or He® nuclei, the inverse
reactions (d,t) and (d, He®) using deuterons are
more important. These reactions also proceed
without compound nucleus formation. A neutron
or proton in the bombarded nucleus is captured
by the deuteron in flight, without the deuteron
penetrating into the nucleus. The angular distri-
bution of the products of such reactions has the
same character as that for pickup reactions in-
duced by protons.

4. (d,p) and (d,n) Reactions with Compound
Nucleus Formation

1. Determination of the reaction amplitude.
The angular distribution for the (d,p) reaction
calculated on the basis of the stripping mechan-
ism is usually in good agreement with the experi-
mentally observed angular distribution at small
angles. But in the region of large angles devia-
tions may occur due to the possibility of proc-
esses occurring via the formation of a compound
nucleus. The formation of a compound plays a
specially important role for deuteron energies
in the neighborhood of resonances. However, in
many cases even at small angles the observed
experimental angular distribution deviates from
that predicted on the basis of either mechanism.
This is an indication of the importance of inter-
ference between the two processes, which may be
important in the case of low energies and very
light nuclei, where the quasidiscrete spectrum
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of the compound nucleus manifests itself 92,%

Interference between the stripping process
and the process with formation of a compound
nucleus was treated by Thomas,!® and independ-
ently in references 55 and 22.

To find the angular distribution of protons from
the (d,p) reaction when both direct transitions
and transitions with compound nucleus formation
are taken into account, it is convenient to use the
method of Bethe, as presented, for example, in
reference 3.

Let us consider the reaction A (d,p)B. The
total wave function of the system will satisfy the
Schrodinger equation

(H—E)W =0, 4.1)

where E is the total energy of the system. The
total Hamiltonian can be written in the form

I = —E)‘%}Ap'f‘}]B'i‘VDB’ (42)

where Hp is the Hamiltonian for the internal mo-
tion of the residual nucleus B, and Vpp is the
potential for the interaction between the proton and
the residual nucleus B, which includes the inter-
action of the proton with the absorbed neutron.

To find the solution of (4.1) we represent the
wave function ¥ in the form

¥ = 9,0ada |+ ppbp - cp. |- Orthogonal terms  (4.3)

¢¥a, ¢4, and ¢p are internal wave functions for
the initial nucleus, the deuteron and the residual
nucleus, all normalized to unity; ¢, is the wave
function of the compound nucleus and differs from
zero only within a finite region which is deter-
mined by the nuclear radius Ry, and c¢ is a co-
efficient to be determined later. For simplicity
we treat the case where there is one level E; of
the compound nucleus. The function y¥q describes
the relative motion of the deuteron and nucleus A
(¢q # 0 for rp, rp>Rp) and the spin s in the
initial channel. (The spin s of the entrance chan-
nel is given by the vector sum of the deuteron spin
and the spin of nucleus A.) The function p de-
scribes the relative motion of the proton and the
residual nucleus B ( Yp= 0 for rp > Rp), as
well as the spin s’ in the exit channel (where s’
is the vector sum of the spin of the emergent pro-
ton and the spin of the residual nucleus). If (4.1)
is valid, the following equations must be satisfied:

(oo (1 — 1y wardey =0,
i @b (H — )W dxy = 0, @.4)

\ g (11— )W de, =0, (4.5)

The equations (4.4) are differential equations for
the wave functions yq and Pp. Equation (4.5) en-
ables us to determine the coefficient ¢ of the
wave function of the compound nucleus in (4.3).

Let us determine the wave function #p of the
emergent proton. Substituting (4.1) and (4.3) in
(4.4), we have

2 2 *
{AD + kﬁ = UP} (‘PD = hi‘zl S ?DVDB ((Pa?d'?d + c?c) dtB, (4'6)

M wpr
Up:fi g o5V psp, d . 4.7)
Using the asymptotic Green’s function (3.6), we can
find for the solution of (4.5) the following asymptotic
expression, valid for large rp:

1 eihprp
fp—

(4.8)

N B . B
o . .
o Ls (Lsfspsn s'itg

In this formula, the reaction amplitude f is the
sum f=fB + fC where the first term fB is the
amplitude for the direct transition (stripping re-
action)

4.9)

b

e
PP= = 5w \ O o8V pmdbn o Fag 5,

while the second term fC is the amplitude for the
(d,p) reaction with compound nucleus formation
C M * % *
ff=—c5s S PikpXea, 9LV pBP, A (4.10)
(Xsp s and Xs’uy are the spin wave functions for
the entrance and exit channels, respectively.)

For the calculation of B, we note that VpB =
Vpn + Vpa. But the contribution of Vpa to fB can
be neglected, since yq is different from zero only
for rp > Rp, whereas because of the short range
of the nuclear forces Vpp is effective only for
rp <Ra. Thus we get

M (o« ® :
B— —Se S "?kp)(s';:.; Po Vpnﬁ,’lu':"d'IJkdXsp_\,d:-

Expanding the spin wave function Xs’ul of the final
state of the system in eigenfunctions Yy, of the
orbital angular momentum of the neutron absorbed
by the nucleus and using the condition (3.12) for
zero range of the nuclear forces, we get finally
Mo S T Usmus, | 8" I3,

Im

=

[s—s" | <l <s+8, (4.11)
where Ifl’f1 is given by (3.17).

The coefficient ¢ multiplying the compound
nucleus wave function in (4.3) can be determined
by using (4.5) in the same fashion as in reference 3:
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*
X Ge VdA‘{'a“FdH!’kdng\‘ dz

C =

E_Ec+2irc (4.12)

Vda is the potential acting between the deuteron
and nucleus A; I';, is the total width of the reso-
nance level of the compound nucleus at energy Eg,
in a state with definite angular momentum I;. T'¢
is equal to the sum of the deuteron and proton

widths, I'd and IP, which are given by the for-
mulas I'd = kdE

where
Ule, =2 V,?M g 18T, (rg) Yisr g pE 93V aap, dt,
Ul =2V 10 ofy (1) Vigr 0 6V g, . (4.13)

Thus the amplitude for the (d,p) reaction with
formation of a compound nucleus is given by the
expression

M kot el Vopee @t § @2V a%aaly, g T

¢ = —
fr= 2nh?

E—Ec+—1‘c . (4.14)

2
Using the expressions for k4 and zpkp, and the
law of vector addition of angular momenta, we can
write the amplitude (4.14) as
1 1 1
F=— 2 w2+ 1) a0k, L) (Lo myus| Lo

ld‘ Ip. m

1\:,

I« I
Ul;s
Ko Yy (¥ 9).

E— Fc—,-—l‘ (4.15)

where the z axis is taken along the vector kq.

2. The reaction cross section. The differential
cross section for the (d,p) reaction with unpolar-
ized particles is given by the square modulus of
the reaction amplitude, averaged over the spin
projections for the entrance channel and summed
over spin projections in the exit channel:

doy; o = BN | fous o [ o

.&\llv_l
e \L

(4.16)

Noting that the amplitude for the (d,p) reaction is
the sum of the amplitude for direct transitions and
the amplitude (4.9) for transitions with compound
nucleus formation, we can write the cross section
as a sum of three terms:

Ao = dogr + doly -1 doitt . 4.17)

Finally the differential cross section for the

(d,p) reaction when we disregard the channel spins
s and s’ is obtained by averaging (4.16) over all
possible values of s and summing over all s’:

(4.18)

(The fraction in (4.18) gives the statistical weight
of the spin s in the entrance channel.)

The term doB in the total cross section (4.17)
gives the contribution of direct transitions. When
this term is averaged and summed over the vari-
ous values of s and s’, we find, as expected,
that it coincides with (3.22).

The term do® in (4.17) is the contribution of
transitions with compound nucleus formation. In
order to simplify the expression for do€, we use
the expansion (3.35) of a product of spherical har-
monics in a series of spherical harmonics. Then
the sum of absolute square moduli f® can be
written as

ST 5 ! UlUiasVy o UL o
A 1FE= Y S @a+ 122+ 1).&_‘1
it AR (E—E.)2- ZI?

s

] * (Lol 00| LO) 3¢

> (=p™

i p. m mpltl

2y +1) 2yt
X Z [W

x (ldsof"s I ‘[cp’s) (12180[13 | ](:l s) (ZDS le"'SI Ic« s) (ZD‘S mp}Ls| Icp‘;
X (bplp — mpmy | LM) Y1y

The summation over angular momentum projec-
tions can be done using (3.36). We then find for
the differential cross section, which determines
the angular distribution of the protons from the
(d,p) reaction with compound nucleus formation,
the formula of Blatt and Biedenharn:*?

dogy = ZS—H Z Ry (s, s") Pp(cos D) do,

L=0

(4.19)

1

Ry(s, s') = -
o[ gyt ]

1 1 1 1
XD @A) 2L+ 1) 2Ly 1) 2L+ 1)2 (2 - 1)?
Lalalplp

% (lala 00| LO) (Lply 00| LOYW (Ial ful,; sL)

<W (gLl ' L) Kaley Re (Uly, Uy, Unye Up o). (4.20)
The summation in (4.20) over Ig and Ij runs
from |Io—s| to Ig+s, while the sum over
Ip and I goes from |Ic-s’| to Ic+s’.
Integrating (4.19) over angles, we easily get
the Breit-Wigner formula
L 201 Pal'y
o = WK Tt
PR m—pg g

(4.21)

for the total cross section. Substituting (4.12) and



214 A. G. SITENKO

(4.15) in (4.17), we find for the interference term
in the cross section,

2Ma
h2R

1 74

dcinier/ — L
2541 vy

1
<D D @t )E (a5 TasOp, | L)

talply w wgmym,,
X (lpS'mpFé ‘ Icl"'s) . Vlen_

€3
UldsD lps'

x Re {1;’;nE Yim (3, cp)} do. (4.22)

. i
—Ec—5 T

In specific cases formula (4.22), and similarly
(4.20), simplifies considerably. As an example,
let us consider the case when the orbital angular
momentum of the captured neutron is equal to
zero, L, = 0. Then the spins of the entrance and
exit channels are the same, since (lpsmpug|s’us)
— (0sOug | s’ul) = Oss/Ougus. Carrying out the
summation over pg (mp =0) in (4.22) by means
of the relation

2 (IGSO}"‘s l Icl"'s) (ZpSOp, ] [cl"'s) =

By

27,41 3
2041 Lalp!

we get

2Uetr1 tp

. Ma
dotmiert=—5"7 5, V mwr Vi

Ic+s

S Re{n

=11, —s}

U4uPb,
;T—}p[ (cos9)do. (4.23)
E—E — T

In the plane wave approximation the interference
term for the case of 7, =0 has the form
R2Yq,

a'-’—-{—(% ky—kp )

Ma
20

dointerf — __ 2[7+1 ‘_'g
28—r'1 Ud

L dig(kR) . o d .
< — o BB T Inty (KR |

~dr-p*
x Y Re {~—L‘—L?.——~}pl (cos§) do. (4.24)
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Because of the interference between the direct
process (stripping reaction) and the process with
compound nucleus formation, the angular distribu-
tion can differ drastically, even at small angles,
from the distribution given by stripping theory, if
the energy of the compound nucleus is in the re-
gion of the quasi-discrete spectrum.

If the energy spread of the incident deuterons
is large compared to the distance between neigh-
boring levels of the compound nucleus, the inter-
ference term (4.22) which results from superpo-
sition of the two amplitudes vanishes as a result
of the averaging over energy. Thus the average

cross section for the (d,p) reaction will be the
sum of the individual cross sections for the strip-
ping process and the (d,p) reaction via compound
nucleus formation. This same situation will occur
if the energy of the compound nucleus is in the re-
gion of the quasi-continuous spectrum.

5. Inelastic Scattering of Deuterons

1. Inelastic scattering processes. When deu-
terons collide with nuclei, we can also have ine-
lastic scattering processes: scattering of the
deuteron accompanied by excitation of the nucleus,
A (d,d’) A*; scattering accompanied by breakup of
the deuteron, A (d,np)A; and finally scattering
in which the deuteron breaks up and the nucleus is
excited, A (d,np)A*. Like the stripping reaction,
these processes may occur without formation of a
compound nucleus. The angular distribution in
such inelastic scattering processes, just as in the
stripping reactions, is characterized by a complex
structure from which one can draw conclusions
concerning the spin and parity of the final state of
the nucleus.

The mechanism of the inelastic scattering proc-
esses is similar to that for the stripping reaction.
The inelastic scattering can be described particu-
larly simply if we assume that in the collision of
the deuteron with the nucleus only of the constitu-
ents of the deuteron (say, the neutron) interacts
with the nucleus, while the other (the proton) is
outside the range of the nuclear forces. Then the
interaction occurs essentially only with the sur-
face of the nucleus. The transfer of energy from
the interacting particle (the neutron) to the nu-
cleus can occur either with or without disruption
of the binding of the neutron and proton in the deu-
teron. In the latter case we can have inelastic
scattering of the deuteron accompanied by excita-
tion of the nucleus,?! while in the former case the
scattering is accompanied by breakup of the deu-
teron and we may also have simultaneous excita-

tion of the nucleus.?
2. Excitation of the nucleus in deuteron scatter-

ing. In treating inelastic scattering of deuterons,
we start from (3.1) but now neglect the interaction
of the proton with the nucleus. Then

h2 hi2 o .
{Ha— o 84 =" A4 Vot Vi = E} (0 1, 1) =0, (5.1)

where E = Eg—e¢. We are assuming that the initial

nucleus is in its ground state Ea,=0. We shall try
to find a solution of (5.1) of the form

v = 3 g, (070 () 4, (1)

+ orthogonal terms (5.2)
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where ¢4 (%) and @g(r) are solutions of the
equation

(A= E) 9, (5)=0

he ;
(=534 Vante ) g0 () =0 (5.3)
We then get from (5.1) the following equation for
the wave function describing the center of mass

motion of the deuteron after scattering:

{Ag~-5"2) 0, (rq)

~ \ 6@ 0 () Va I G, xra) dldr,

(5.4)
where k% = (4M/h?)(Eq—Ey); Ej is the excita-
tion energy of the nucleus in the final state. Re-
placing the exact wave function ¥ on the right
side of (5.4) by the incident wave ¥, = elK'd x

@y (1) <pao(§) (where k is the wave vector of

the incident deuteron), we find for the asymptotic
behavior of the solution of (5.4),

’H )d

9, (re )—-f

M —-11 =\ TS - - 7
J= = e VTG () 98 () Va g (D) d dr diee (5.5)

The differential cross section for scattering of the
deuteron accompanied by excitation of the nuclear
level Ej, is

K
%
To simplify the calculation of the scattering am-
plitude, we shall neglect the neutron spin. Assum-
ing that the neutron-nucleus interaction occurs only
at the nuclear surface, we can express the integral
over the internal coordinates of the nucleus, which
appears in (5.6), as

ds =172 q0. (5.6)

S OV (s 9 50, () d

_ Y

= T \1 <1 11 lU- lm>)l*n' (&nv '—Pn)v

l m

(5.7)

where R is the nuclear radius, ! is the angular
momentum transferred from the neutron to the
nucleus, and

(g |V L) = 22V (e Dr () Vi Oy ) d2dO

(We assume that the functions ¢,, and ¢, refer
to nuclear states with spins and spin projections i,
pi and j, pj.)

Transforming from the variables r and rg to
r and rq in (5.5), and using the spherical har-
monic expansion of the plane wave, we find

f= 4M S eigq

X Z (_’) /i (gR) <.J\ Cwdmy Y i (Bqs 2q).

I,m

"o2 (r) dr

The cross section (5.6) must be summed over
spin projections puj in the final state and averaged
over spin projections puj in the initial state. We
then get

12

do =] Se‘i"”?g(r)_dr "D BEjE@R) A0, (5.8)

where

AAr?

=G 2 | iViwdm) .

;LL:ij
If we include the neutron and proton spins, the
expression for |Bj |2 is replaced by

P

3 (2i-1) ht E.‘ ' 5 ?‘;TU-)-XTH'I'leiL’TF‘iL tm ds dO

oot ITRe
By pm

(Xil»l and X' are the deuteron spin functions
before and after scattering.) However, since the
theory is not able to calculate the absolute value
of the cross section, we should regard | Bz]2 as
a free parameter of the theory.

Noting that f go% (r) e%qr dr = % tan™! Z%,
we finally get for the cross section for deuteron
scattering accompanied by transition of the nu-
cleus from a state with spin i to one with spin j,”1
dagy =2 ( Ztan = ) DY ‘Bl 22 (qR) dO,

q=k’ —k. (5.9)
The angular momentum transferred from the deu-
teron to the nucleus in the scattering is given by I.
The summation in (5.9) extends over all integral
values of I given by the selection rule

i=islid

(if i=0 and I=0, then j=0or 1). The values
of 1 are odd or even according as the parity of the
nucleus does or does not change in the transition.
Formula (5.9) gives the angular distribution of
the deuterons at small angles. (Obviously, at large
angles we must include the inelastic scattering
which occurs via compound nucleus formation. )
We can determine ! from the experimental angular
distribution by using (5.9). (If the selection rule
allows several values of I, the lowest I will be
the most important one.) Having found I, and
knowing the spin and parity of the initial state,
we can determine the spin and parity of the final
state.
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Just as in the case of the stripping reaction,
the best agreement with experiment is obtained
by choosing a value of R which is somewhat
larger than the nuclear radius R,.

Figures 11 and 12 show the angular distribu-
tions of deuterons inelastically scattered’® from
Li" and Mg?*. The energy of the incident deuter-
ons was Eq = 15.1 Mev. The comparison shows
satisfactory agreement of theory and experiment.

FIG. 11. Angular
distribution of inelas-
tically scattered deu-
terons from Li’(d,d")
Li’™*; E4 = 15.1 Mev,
Q==4.61Mev,I=1,
R =4.8 x 107" cm,

3. Breakup of the deuteron in the scattering
process.A The scattering of the deuteron by a nu-
cleus may be accompanied by breakup of the deu-
teron, and we may also have simultaneous tran-
sition of the nucleus to an excited state. We can
use Eq. (5.1) to describe the breakup process, but
now we must look for a solution of the form

W ) = g () 9 (1) dta ()

-+-orthogonal terms, (5.10)

where ¢@g¢(r) is the wave function for the relative
motion of the neutron and proton in the unbound
state; f is the wave vector of the relative motion
of the system.

The function ¢@g¢(r) is a solution of the equation

FIG. 12. Angular
distribution of inelas-
tically scattered deu-
terons from Mg? (d, d")
Mg***; E4 = 15.1 Mev,

=~ 1.37 Mev, I= 2,
R=6.2x 107" cm.

(-—;LTZA-FVnp“el>?I‘(r)=O' (5.11)

where ef = 1i%f*/M is the energy of relative motion
of the neutron-proton system. If we assume that
the neutron and proton interact only in an S state
(which is justified for low energies of relative
motion), the wave function can be written as the
sum of a plane wave and an outgoing spherical
wave

(5.12)

T

) e 47 i
wr (1‘).—_(3”4*70"”, s=0, 1,

where a'® = —1/(ag—if) is the neutron-proton
scattering length in an S state and depends on the
spin state of the neutron-proton system. If the
neutron-proton system is in the triplet s =1
state, @y =a =VMe/h?, where e = 2.23 Mev

is the binding energy of thé deuteron. If the sys-
tem is in the singlet s =0 state, q;= o' =
VMey /M, where €, =69 kev is the energy of
the virtual state of the deuteron.

The outgoing spherical wave in (5.12) corre-
sponds to the production of particles.

It is easy to verify that the wave functions
q)é”( r) are orthogonal to the wave function
@o(r) = Ya/2r (e~%T/r), which describes the
bound state of the neutron-proton system,

Y () i (1) dr =0,

The functions <pé1)(r) together with the function
@o(r) form a complete set of orthonormal func-
tions, satisfying the relation

t

w2 et (o) =0 0—1). (5.13)

We note that the wave functions goéo’(r) which
correspond to singlet states of the neutron-proton
system are not orthogonal to the wave function
@9 (r). The orthogonality of the total wave func-
tions in this case comes from the orthogonality of
the spin wave functions for the singlet and triplet
states.

Using the expansion (5.10) and choosing the in-
cident wave to be ¥ =e™" ¢ (r) gy, (£), we get
the following expression for the amplitude for
breakup of the deuteron:

==

\' i et (1) ¢ (€) Vo, (r) a, () dodrdry,  (5.14)

where q =k’—k, and the modulus of Kk’ is given by

Taking into account the nuclear spin and the spins
of neutron and proton, and performing operations
similar to those in the preceding case, we finally
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get the following formula for the differential cross
section for breakup of the deuteron in scattering
by a nucleus:

de®) = — * k'
a? m(f—— )
. diwatin |
e T 2 | B{¥ |22 (qR) df dO. (5.15)
f—zqtia
In deriving (5.15) we have used the relation
{ o g (" ar
i,
- 1 BRAS Lha
=V Bra s 1 T g (ia® )w—j) 1
[ a—-l—Kf—§q> I——“(I'I ia

The summation in (5.15) runs over all values of
I given by the selection rule j=1+1+1. Only
even values of [ are taken if the parity of the
nucleus is unchanged, and conversely. If the state
of the nucleus does not change in the deuteron
breakup (j =i, Eg = 0), the sum in (5.15) consists
of a single term corresponding to I =0

The wave vector of the center of mass, k’, and
the wave vector of the relative motion £ can be ex-
pressed in terms of the wave vectors of the liber-
ated neutron and proton, kp and kp, by means of
the equations

K =kn-kky, £= (kn—kp)-

Formula (5.15) gives the differential distribution in
angle and energy of the neutrons and protons emitted
in the dissociation of the deuteron.

Expression (5.15) is extremely complicated.
However, if we limit ourselves to the region of
small angles between the wave vectors of the cen-
ter of mass of the neutron-proton system before
and after the breakup, qreff < 1 (reff ~ a™!),
the results become much simpler. Making the
additional assumption that fqff < k, we get the
following formula for the momentum distribution
of the protons from the breakup:

;o

8a \‘4

32
B2 e 22 > (2kp—Kk)?
dsti) () = 2

|/n x 4
)

x| B 2 (1 2k, — k| ) dky,

g=1,

(5.16)

t

9

(x—2ay) »~Ix -]\],‘1
do® (k) = 2 (5 )

B <~/ ﬁilp> (Zk —kp—a ~a0>

x [ BOPi2( 2k, — k| Rydky, s =0

(5.17)

217

Formulas (5.16) and (5.17) are given for the
case where the state of the nucleus does not change
during the breakup.

Similar formulas will apply for the neutrons
formed from the breakup.

6. Interaction of Deuterons with Heavy Nuclei

1. Deuteron reactions in a Coulomb field. In
the preceding paragraphs, in treating the collision
of deuterons with nuclei we neglected the Coulomb
interaction of the deuteron with the charge on the
nucleus. This is valid when the energy of the deu-
teron is considerably above the top of the Coulomb
barrier. But if the energy of the incident deuteron
is comparable to or less than the height of the bar-
rier, the Coulomb interaction plays an essential
role.

For medium energy deuterons (Ej > 5 Mev)
colliding with light nuclei, Coulomb effects can be
neglected. But for collisions of deuterons with
heavy nuclei, the Coulomb interaction is extremely
important. The Coulomb interaction is especially
important for low deuteron energies, when the
classical distance of closest approach b = Ze?/ Eg
is much greater than the nuclear radius R.

Because the center of mass and center of charge
of the deuteron do not coincide, the Coulomb inter-
action can lead to various processes of dissocia-
tion of the deuteron. The following processes are
possible: liberation of both neutron and proton,
capture of the neutron and emission of the proton,
capture of the proton with emission of the neutron,
and capture of both particles. All these processes
are possible even when the energy of the incident
deuteron is below the Coulomb barrier. In fact,
because of the relatively low binding energy of the
deuteron, a process of “dissociation” of the deu-
teron can occur outside the nucleus, which later
leads to the reactions enumerated. The probabil-
ity of the process occurring with this “preliminary”
breakup of the deuteron turns out to be consider-
ably greater than the probability for the same proc-
ess occurring via formation of a compound nucleus.

The mechanism of “preliminary” breakup was
pointed out by Oppenheimer and Phillips!® in con-
nection with (d,p) reactions. (The (d,p) reac-
tion at low energies is sometimes called the Op-
penheimer-Phillips process.) The theory of all
the processes enumerated was given in the quasi-
classical approximation (when the deuteron energy
is much less than the height of the Coulomb bar-
rier) by Lifshitz!® (cf. also references 33 and 119).
However, the quasi-classical approximation, in
which one considers only “head-on” collisions of
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the deuteron with the nucleus (collisions with
zero orbital angular momentum of the deuteron
relative to the nucleus) could give only the vari-
ation of the effective cross section with deuteron
energy.

Later Landau and Lifshitz!” developed a method
which enabled one to calculate the effective cross
sections for the various processes. In their paper,
Landau and Lifshitz treated the (d,np) reaction
on heavy nuclei. The theory of the (d,p) reaction
on heavy nuclei was given by Ter-Martirosyan?
and Biedenharn, Boyer, and Goldstein.%

2. The (d,p) reaction on heavy nuclei. Let us
treat the (d,p) reaction on heavy nuclei, assum-
ing that the energy of the incident deuteron is less

than the height of the Coulomb barrier, E§ < Ze%/R.

In this case the angular distribution of the protons
emitted in the reaction is determined mainly by
the Coulomb field of the nucleus. Then, unlike
the case of the (d,p) reaction on light nuclei, the
angular distribution depends very little on the or-
bital angular momentum [ of the captured neutron
and has typically a maximum in the backward di-
rection. The treatment is very much simplified
in the limiting case of nq = Ze?/fivq > 1 and
ny = Zez/ﬁvp > 1, when the quasi-classical ap-
proximation is applicable.

In finding the differential cross section we can
use the general theory of the (d,p) reaction given
in Sec. 3, according to which

241 4Ma ky .
ds = 2041 whiR ky 12 A1 072 dO. (6.1)
But now in calculating the coefficients Irln we must

use Coulomb wave functions for the deuteron and
proton.

For the deuteron wave function we take the Cou-
lomb function

Prg (1) =€ 2 T (1 - ing) €5

XF (—ing, 1, i(kqr —kqr)), (6.2)

which is made up at infinity of a plane wave with
wave vector kg and an outgoing spherical wave.

For the wave function of the proton we should
take a Coulomb function which at infinity contains
a plane wave with wave vector kp and an incom-
ing spherical wave,

ks
G (1) =€ 2 T (L—ing) ™"

X F (ing, 1, — i (kpr— kur)). (6.3)
The integral (3.17) can be calculated approxi-
mately in the limiting case of nq > 1 and np > 1.

Then the integration in (3.17) can be extended over
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the whole space r, since the contribution of the
region r <R is very small. In fact in the quasi-
classical approximation ng > 1 and np > 1, the
main contribution comes from distances greater
than both the distances of closest approach bq =
Ze?/Eq and bp = Ze?/ Ep, which for low energies
of the incident deuteron gives a distance much
greater than the nuclear radius R.

Using the series expa.nsion of ¥;(x),

_meT I U o L !
E, (“'”>“772 W —R) (22)F

we note that in the integral (3.17) the factor

6.4)

e Gk (1) kg (1) = exp { — kar - 1n OF (1) Uiy (1))
is a rapidly varying function of r. The value of an
integral over such a rapidly varying function comes
principally from the region near the saddle point
ry(ry, 44, ¢1) at which the function F(r) =
—kpr +1n zpi{p(r) zpkd(r) has an extremum. There-

fore the slowly varying spherical harmonic in (3.17)
can be taken outside the integral and evaluated at

4 =44 and ¢ = ¢;. In the integral which remains,
the function f(kpr) can be replaced approximately
by the first term of the expansion (6.4), if kpry >
1(1+1)/2. This condition is almost always satis-
fied, if I is not very large and |Ep| is not very
small.!® We thus get

—hpr

e
{4k, () g () .

I = T Yim (21, %)
DT 0k T R (gR)

Substituting this expression for Illn in (6.1),
we find

241 Ky Ma Y

4o =551 hd 4h%GR ig r

I L
<2 TH (kB d0.

It follows from (6.5) that only the absolute value of
the cross section depends on I; in this approxima-
tion the angular distribution is independent of I.

The integral over the Coulomb functions in the
cross section (6.5) can be evaluated exactly:

it (1) g () dr |

(6.5)

b
— Rt

“ € n 'k 1
—— vk, (1) kg (1) d

U (kg Th)2- K i

_gee | " : 4

=8z L™ Py (™" 1)] [(k —ky ) Ay ]

(hy—ikg)2 413 ~ing | F—iny, —ing. 1. —E)
x[ (kg —K )21 A3 (g —K )i A2 T+¢

4lpkg
R P
Here f = g, sin?d/2, &, = , and
£= 5 07 (kd—kp)? + Kk

¢ is the angle between the vectors kq and kp.
The square modulus of the integral is equal to
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( 2 B4ntnpng

el =g

d | (eh“np—-ﬂ(eznnd——])

exp{2n) (m —a) - 2npgp} | F (inp, ing, 1, —&) 1|2
(g —hp)24-k22 T 18

where the angles ¢ and ¢q are given by the for-
mulas

2kenk g

-1 2k lrp
, ga=tan"! R
ez de-—/cf)—kﬁ

kG — kR kS

¢a=0

wp =tan

@y =0, for 1, >0.
In the limiting case of np > 1, ng » 1, we

can use the following asymptotic formula for the

hypergeometric functions:

158 exp{2ngdq-+2np (7 —p)}

1, =P

| I (ing, ing,

™ gt V@) —(T—p)2
o, = cog-1{l=p)E—2%
“’ 20V 15¢
T | e T
R4 = cos 21/1-1 ’ o nq (66)

Using this asymptotic formula we find for the
cross section?®

_ 27 -1 kp Tt 32n3np
ds =5 l.dh?A 1{2 [T (haB) P [(liq— kp)2-+ kal?
X exp {2nppp — 2nga} N (2)dO,

. xXp {—2npPp + 209,
N@©=- exp { —2npyp + 2napat

LUV G —(1—p)?

(6.7)

The expression in the exponential in N (¢) in-
creases with increasing ¢, i.e., with angle 4;
therefore the cross section do increases expo-
nentially with increasing angle 4. The function
N(¢) is a maximum at ¢ =7, and for small
values of 7—4 the dependence of N(¢) on 7—¢
is close to a Gaussian. This is easily shown by
expanding the argument of the exponential in N (¢)
in powers of &, —¢ = & (m—4¢)%/4. In this way one

finds
{m—M1

O

N ~exp { — (6.8)
(kd —kp)? + K
ndakd )

Gaussian distribution in the backward direction is
the smaller the greater the value of Z, the smaller
the energy Eg of the incident deuteron and the
greater the energy E, of the captured neutron.

In reference 37 a specific set of parameters
was considered and made it possible to see how
the character of the proton angular distribution
changes when the parameter ng changes. Since
the angular distribution of the protons depends

where 6% = The width 6 of the

for £, <0,
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FIG. 13. Angular distribution of protons as a function of

incident deuteron energy Eq4 (Z = 92).

only slightly on the energy of the level into which
the neutron is captured, the energy of this level
was taken arbitrarily to be 2.23 Mev. The angular
distributions of the protons, normalized to unity
at their maxima, are shown in Fig. 13 for various
energies of the incident deuterons, for Z = 92.
The parameter ng varies from ng ="7.1 at

Eq =10 Mev to ng =1.3 at Eg= 300 Mev. With
increasing energy, there is a qualitative change
in the shape of the angular distribution. Even
though for energies Eg of the order of tens of
Mev the angular distribution has a maximum in
the forward direction, already for an energy of
200 Mev the distribution has a maximum in the
forward direction.

The total cross section for the (d,p) reaction
on heavy nuclei is found by integrating (6.7) over
solid angle dO. Noting that dO = (4n/%y)dg, we
get

(¥ @0 -tz | o2t g
o gy

A0V Gy —(1—p)?

Because of the rapid falloff of N(¢) with increas-
ing ¢;— ¢, the important values of ¢ in the in-
tegral are those near to ;. Expanding the expres-
sion under the exponential in powers of x = {;—¢
and extending the integral to infinity, we find

1—kp)® ki ] :

alrd

. = [
S N (a0 == [
x exp { — 2npdy (0) 4+ 21494 (0)),

where ¥p (0) and Pq(0) are the values corre-
sponding to ¢ = £,. (The factor multiplying the
exponential has been taken out of the integral and
evaluated at ¢= £;.) We finally get the following
formula for the total cross section for the (d,p)
reaction:?
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2714 4mtlf

G = e

i
C2i--b peR3kE R Z Tt Fad)

exp{—@(Ey, Iy)},

D (Lq, En)= —2np (¢p — $p (0)) -- 214 (pa — Ya (0))

—9Re ! —p tan-1V BV Z
_Rel nptan Vi

L ngtan™? (6.9)

V=25,—V:
V[ d }
(We note that the energies E4, Ep, and Ep are
related by the formula Eq—e¢ = Ep+ Ep.) The ex-
ponential factor in (6.9), which gives the depend-
ence of the cross section on incident deuteron
energy, can also be gotten from the quasi-classical
approximation. 18,93

Formula (6.9) gives the cross section for the
(d,p) reaction with capture of the neutron into a
definite energy level. The neutron energy Ep cor-
responding to maximum cross section for the (d,p)
reaction with fixed energy Eq of the incident deu-
teron can be found by determining the minimum of
the function & (Eq, E;) appearing in the exponen-
tial. This most probable energy for the captured
neutron Ep is a function of the energy Eq of the
incident deuteron, and decreases with increasing
Ed solong as Ed < 1.7¢. (Over this region, Ep
lies in the range 1.5 —0.5¢.) If Eq > 1.7¢, the
most probable energy of the captured neutron is
Zero.

3. Breakup of the deuteron in the Coulomb field
of the nucleus. A deuteron passing at some dis-
tance from a nucleus can, under the influence of
the Coulomb field of the nucleus, dissociate into
a neutron and a proton. If the energy of the inci-
dent deuteron is less than the height of the Cou-
lomb barrier, the probability for such an electric
breakup is much greater than the probability for
the (d,np) process occurring via compound nu-
cleus formation.

On the assumption of zero range of the nuclear
forces between neutron and proton, the amplitude
for breakup of the deuteron in the Coulomb field
of the nucleus is equal, according to (3.13), to

=2y { emargd, (1) 4wy () dr. (6.10)
In this formula the neutron wave function is taken
to be a plane wave, while the Coulomb functions
(6.2) and (6.3) are used for the deuteron and pro-
ton. Using (6.10), we get the following expression
for the cross section:

2Mak, naMp

n’/«.'zkd (e —1)(e

(6.11)

ds =

1112 L, dOy dOy,
1)

27y 21v.np

where I denotes the integral

1= S G F (—ing, 1, i (kgr — kar))

F(—inp, 1, i (kpr — kp)) dr,

q:kd‘”kp_kn- (6.12)
This integral can be calculated exactly:
, . . . ]
= 2 (BF (= ing. — ing, 1,0)) hims,
B = —4mi (¢* — 2qkq — 2kq)ina
(6.13)

X(q2 4 2qkp — 2)Jip)i“pq“2““d+inp+”,

. ‘)qz (kdl;p - k,,kp)—z (qkg--Akq) (qkp—)\/fp)
=TT T (q*—2qkg—2iky) (¢F - 2qkp — 2hhy)

If the energies of the deuteron and proton are
sufficiently low, the expression for the cross sec-
tion can be simplified considerably. If nq > 1
and np > 1, we can use the asymptotic expan-
sion (6.6) for the hypergeometric function
F(-ind, —inp, 1, ¢). Then the cross section as
a function of the energy of the liberated neutron
will have its maximum value at E; = 0 and will
decrease exponentially with increasing E,. As a
function of the direction of the outgoing proton,
the cross section is a maximum for motion of the
proton opposite to the direction of incidence of the
deuteron, and falls off exponentially when we move
away from this direction. Thus in calculating the
integral I, we may set

ka=0, q=ki—k,  kokp= — kok,.

in all the non-exponential expressions [according
to (6.6), the exponential factor is contained in the
hypergeometric function]. Under these conditions
the derivative d;/dA,;FO is zero, so that the term
in I which contains ‘the derivative of the hypergeo-
metric function drops out. Thus we find for the
absolute square of the amplitude,

BM- G4n?

U= T ety

| F (—ing, —ing, 1, 0) 3

2
where we have introduced the notation g = Ze”

M 1/2 h
X(?) , and kp refers to the energy Ep =

Eq — €. The argument ¢ of the hypergeometric
function, which appears in the exponential in the
asymptotic formula, must be expanded in powers
of the neutron energy E, and the angle J¥p be-
tween the vectors k and —ky:

4k k 0" A —k3

(= — 25y {1 7 2/\4 k k ka
—/~,,)' (kg —kp)*
A2 sin? 0 knop sinf/ cos¢

T (kg—kp)? kg—ky

(6 is the angle between the vectors k; and —kg;
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@ 1is the difference of the azimuths of kn and ky
taken relative to the polar axis —kq).

Using the asymptotic formula (6.6) for the ab-
solute square of the hypergeometric function, we
get the following expression for the cross section:

1

2 (£ )2 exp (— BD)
s b =GB e + dEqd9,db,,

R VEE (B, be) [REY - (Eg—2) P

do=13

(6.14)

where )

® =@, - £, + L 5in? B,®, + 630, + 0,55 sin b, cos ¢y,

and
1

1
. 8 2 -1 Ed—e>.
@D =< - cOoS ~
¢ ﬁd—E) <Ed—|—s
1

O (2) -1 TN _ 2e (Bg—32)
[ é COS (b.d+5) (bd"fe)z (ﬁd—i) ’
(Ed“°)~
'S

z (Ed’!‘s 27
d, = : R

TRE (g — )
o 4z

P B9 (28g) e (g —e) )

The total cross section ¢ (EQ), as a function
of deuteron energy, is obtained by integrating (6.14)
over the energy of the neutron (where, because of
the rapid convergence of the integral, we can inte-
grate from 0 to «), and over all directions of the
neutron and proton (where again the integration
over Op can be taken between the limits 0 and
»). As a result of the computation, we get

I U 3
G = (’m)2 ﬁz ";7-_ 22470 (Eo+ s)-?‘ b, Zo—t (6.15)
For example, for Bi (Z = 83), the cross section
for breakup is o = 4.5 x 107%® ecm? at Eg=8.2
Mev, and ¢ = 0.3 X 10726 ¢cm? at Eq = 6.3 Mev.

After integration of (6.14) over proton direc-
tions only (i.e., over dOp), the angle 6n drops
out of the resultant expression, i.e., the distribu-
tion of the neutrons over direction (uncorrelated
with the direction of the protons) is isotropic.
We get the following expression for the energy
distribution of the neutrons:

1

do (En) =2V o B0 230" (6.16)

The angular distribution of the protons can be

found by integrating (6.14) with respect to dE,dOy,
giving

30, B,

de(00) = & 00

[{))
exmf—-’j Lt
P

i :
(jrl,l,. ![)_1

03} d0,. (6.17)

Thus the distribution of the protons with respect to
angle 6, is a Gaussian with a maximum in the di-
rection opposite to the direction of motion of the
deuteron.

II. INTERACTIONS OF DEUTERONS WITH NUCLEI
IN THE HIGH-ENERGY REGION

7. Diffractive Interaction of Deuterons with Nuclei

1. Nuclear diffraction. In treating the interac-
tion of deuterons with nuclei for deuteron energies
of the order of tens of Mev and above, we can use
the optical model, according to which the nucleus
is treated phenomenologically as a medium char-
acterized by definite optical properties (refractive
index and absorption coefficient). If the mean free
path of nucleons in nuclear matter is small com-
pared to nuclear dimensions, the nucleus can be
treated as a black absorbing body. The treatment
becomes especially simple for the case of an ab-
solutely black nucleus.

We know that the absorption of particles scat-
tered by the nucleus leads to an additional pertur-
bation of the incident wave and thus to additional
elastic scattering which is not associated with
compound nucleus formation. For point particles
(such as neutrons) whose wave length is small
compared to nuclear dimensions, this scattering
is analogous to the diffraction of light by an abso-
lutely black sphere.

The diffraction scattering of complex particles
like deuterons must show some special features.
In addition to absorption and diffraction elastic
scattering, which occur for point particles, the
following processes can occur with deuterons:
stripping of a neutron or a proton, and diffraction
breakup of the deuteron.

In the case of the stripping reaction, when a
fast deuteron passes the nucleus a proton or neu-
tron may bump into the nucleus while the other
particle goes by outside the nucleus. The result
is that a proton or neutron is instantaneously cap-
tured by the nucleus while the second particle con-
stituting the deuteron is liberated and continues
on its path outside the nucleus. The theory of the
stripping reaction at high energy was given by
Serber.!!

Because of the low binding energy of the deu-
teron, the diffractive interaction of deuterons with
nuclei can result in diffraction breakup of the deu-
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teron occurring far from the nucleus. This disso-
ciation which results in liberation of a neutron and
proton occurs when the change in deuteron momen-
tum resulting from the diffraction scattering is
sufficiently large. The possibility of diffraction
breakup of the deuteron was established independ-
ently by Akhiezer and Sitenko,?1%:2% Feinberg,26:7
and Glauber.™

The diffraction scattering of particles by ab-
sorbing nuclei can be investigated by an optical
method using Huygens’ principle, which can be
generalized to take account of the Coulomb inter-
action and the complex structure of the particles
undergoing scattering.

First let us consider the simplest problem of
diffraction scattering of point particles (for ex-
ample neutrons) by absorbing nuclei. For sim-
plicity we shall limit ourselves to the case of an
absolutely black spherical nucleus whose radius
we denote by R. We shall assume that the wave-
length A of the incident particle is small com-
pared to nuclear dimensions, A « R. This con-
dition will be satisfied for deuterons with energy
greater than 10 Mev.

The free motion of the particles in the plane
perpendicular to the wave vector of the incident
particle (the z axis) is described by the wave
function ¢, = elkP, where k and p are the
projections of the wave vector and radius vector
of the particle on a plane perpendicular to the z
axis. The functions ¢, are normalized by the
condition f Yrdyrdp = Oyt

The wave function for the incident particle is
Py = 1. The presence of the absorbing nucleus
results in the absorption of the part of this func-
tion at p < R. The diffraction pattern can be ob-
tained by expanding the part of the wave function
which corresponds to scattered particles, ¥ =

{2 (p) —1}9,, where

9(0)___{?, p‘\\’lz
' L, p> A,

in terms of the functions P,:

W= Z Qx5 (7.1)

The differential cross section for diffraction
scattering in which the wave vector Kk of the scat-
tered particle lies in the range dk is related to
ay by the formula

o A%
do =!(1Z]'(—§';5§ .

If k is the magnitude of the wave vector of the
particle, k =k sin ¢ and dk = k*dO, where dO
is the element of solid angle. The scattering am-
plitude f () is related to the expansion coeffi-

cient a, by
R .k
@)= — 5 Q. (7.2)

From (7.1) it follows that

a.= {412 () — 1} 4y ds.
Carrying out the integration and using (7.2), we
get the well known formulas:
joy=ir G,

A

2JE (kR N
= R 19-(2 R) d0, o,==R?

ds (7.3)

(Since the diffraction treatment is valid for small
angles, sin ¢ can be replaced by +4.) The cross
section for absorption of the neutrons is also

= =R®.

The total cross section for interaction of fast
neutrons with nuclei can be found from the forward
elastic scattering amplitude,

o, = 4= Im £ (0); (7.4)

For neutrons, f(0) = ikR%*/2, and o = 27R?, as
it should be.

In the case of scattering of fast neutrons by
nonspherical nuclei, in addition to elastic scatter-
ing we may also have scattering of the neutrons
accompanied by excitation of the nucleus. In this
case the function € should be taken equal to zero
in the region of the shadow cast by the nucleus on
the plane perpendicular to the wave vector of the
incident neutron, and equal to unity outside this
region. Obviously the area of shadow will depend
on the relative orientation of the symmetry axis
of the nucleus and the wave vector of the incident
neutron. Then the diffraction wave function must
be built up from products of the functions ¥, with
eigenfunctions of rotational states of the nonspher-
ical nucleus. The excitation of rotational states of
nonspherical nuclei in diffraction scattering was
treated by Drozdov.!®

At high energies, when the mean free path of
the particles in nuclear matter becomes compar-
able with the dimensions of the nucleus, the nucleus
should be treated as a semitransparent body which
is characterized by a complex absorption coeffi-
cient

b=0b,—2(v— 1)k,

where by is the absorption coefficient and v the
refractive index of nuclear matter. Then the fac~
tor € should be assumed to be
e~bV Ry

9(9)={1 ,
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For neutrons the nucleus begins to be semitrans-
parent at energies above 100 Mev.
2. Diffraction scattering and diffraction breakup

of deuterong. Our treatment of the diffraction of
point particles can be generalized to the case of
diffraction scattering of weakly bound composite
particles like the deuteron by absolutely black
nuclei. To do this we again use an expansion of
the diffracted wave function, but now we have two
factors Qp and Qp for the neutron and the pro-
ton. (In this treatment we are of course neglec-
ting the Coulomb interaction of the deuteron and
the nucleus.)

In studying the diffraction of deuterons we must
consider both the motion of the center of mass and
the relative motion of the neutron and proton in
the deuteron. The motion of the center of mass of
the deuteron in the plane perpendicular to the wave
vector of the incident deuteron (the z axis) is
described by the wave function ¥k = e'¥Pd, where
K and pq are the projections of the wave vector
and the radius vector to the center of mass of the
deuteron on the plane perpendicular to the z axis.
The relative motion of the particles in the deuteron
¢y (r), and the relative motion of the neutron and
proton emitted as a result of the breakup is de-
scribed by ¢@g¢(r). The functions ¢¢ together
with the function ¢, form a complete system of
orthonormal functions.

Since the deuteron is a weakly bound system,
in which the neutron and proton spend a large frac-
tion of the time outside the range of the nuclear
forces, the diffraction of deuterons by an abso-
lutely black nucleus is given by expanding the
function ¥ = (Qnﬂp —1)$ypy in the complete set
of functions Pg@y and Pref:

W =2 @yt + 2 axtbur. (1.5)
% Ay

The expansion coefficients ay, and ayf can be re-

garded as probability amplitudes for diffraction

scattering and diffraction breakup, respectively.

From (7.5) it follows that

ax= =\ \ 2 () 03 (pa) {wa - 0p —wnog)

X 9 (pa) 9o (7) dpa dr, (7.6)
Uyp = — K S of (1) 9% (pa) {on - wp— wqop}
X Qo (Pa) 9o (r) dpa dr, (7.7)

where, for convenience, we have introduced the
notation w(p) =1-2(p).
Using the expansion

® (5 )-—LS

_F‘ilgﬂ ¢'¢P dg, (7.8)
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we can write the elastic scattering amplitude f(4¢),
which is related to a, by (7.2), as

F®) =ik {25 tan™1 2 B OR)

x
Ayt
5 ) T

-112g—%| RJ,(gR) R, (|x—g|R)

Ktan o 7 Tx—g|

dg} . (7.9)

The differential cross section for elastic scatter-
ing of the deuterons is then:

ds,=R?| 222 tan~1 X 11 (D)
x

2p
02
2% | 2g"—' |

—1]2g" —%"| Jy(g) Ji(x' —g) , ]2
2p g =

~ tan

where we have introduced the dimensionless quan-
tities k' = kR, g =gR and p = R/Ry. The for-
mula becomes much simpler in the limiting case
of large p:

<

ds —9rR2{<2pt —1X 2J3 (%)
o6 L

To get the total elastic scattering cross section,
we use the condition of completeness of the func-
tions P,. From formula (7.6), we get

=\ Pl doa, L) = fonoy —wwy) 0} () dr.

If p > 1, the contribution of the region pgq < R
to the cross section is equal to 7R2? to terms of
order 1/p?. The product wpwp is equal to zero
when pgq> R, so

"R Jd) d”

Pf‘—1p> bg > R.

()%

Using the asymptotic expressions for I;(x) and
Ky (x) when x> 1, we get

. o
R dy i
I (2q) = . K :T,C"*“b‘,
’d .i =

1
dy
=\ 5§
[y

b=p0a—R>0, p>1,

and consequently the contribution of the region
pd> R to o¢ is

-R\dbll S emimz G2

T

= (1—1n2)RR,.

Thus the total cross section for diffraction elastic
scattering of deuterons is
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oy == 25 (1 —In2)RRy, Ry R. (1.10)

In addition to purely elastic scattering which is
analogous to the diffraction scattering of point par-
ticles, for composite particles like the deuteron
we can also have diffraction breakup. Using (7.7),
we write the amplitude agf for diffraction breakup

in the form
3

= —‘—M {22 (@ (u, 2) 4@ (u, )]

! o D (e
21:8 g I g

D < Zg )}

1 1
—+(z—u)? - 2-(1—u)

u-z4-1
p Mo )
u—z4i

®(u, z)=

where z =k/2a and u=£/a. The cross section

for diffraction breakup is related to the amplitude

agf by

5 dw df
2m)® ”

The total cross section for dlffraction breakup is

given by the formula:

dog = | a,,]

(7.11)

cd=f—: S S dzdu‘é—(g—)[@(u, z) + ® (u, —2z)]

l

— g § g B 5 D@( )| (1

If p>»1,
9o e .
sa= = RRq § wl () du,
where I(u) gives the distribution of the relative

energy of the products of the breakup, and has the
form

__ 3 ; - 2u =1 u
I (2) = ATy [u $ s sin ;/1+u2]

—16(1—1n2)m§m, (7.13)
The total cross section for the diffraction breakup
of deuterons is
oa="% (2 In2— %)Rlid. Re< R (7.14)

Like the stripping reactions, the diffraction
breakup of the deuteron results in emission of a
neutron and a proton, i.e., it increases the yield
of neutrons from the interaction of fast deuterons
with nuclei.

3. The stripping reaction at high energies. We
can also use the diffraction method in treating the
stripping reaction at high energies of the incident
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deuterons (energies exceeding several tens of
Mev).

For the case of an absolutely black nucleus one
can then develop a theory of the stripping reaction
which takes into account the finite radius of the
nucleus.12

Let us determine the cross section for a proc-
ess in which one of the particles originally consti-
tuting the deuteron is liberated, while the other
particle is captured by the nucleus. To be specific,
let us consider the reaction in which the neutron is
liberated while the proton is absorbed by the nu-
cleus. This process can be described by the wave
function

W = 2ndy (pa) Po (7)-

_Expanding ¥ in an integral over the functions
e '™ (where rp is the radius vector of the neu-
tron), we get the probability amplitude for the
neutron to have wave vector K and the proton to
be at the point rp. This probability amplitude is
obviously equal to

ay (rp) = S ¢ o (1) dry. (7.15)
Integrating | ak (rp) |2 over dpp between the lim-
its pp =0 and pp =R, we get the differential
cross section doy for stripping in which the wave
vector of the emitted neutron is in the interval dk:

dk H1
dop = @) S dpp | ax (pp) [*
op IR

dk ,
= @y  deoi1— 2} ax(py) I (7.16)

In the limiting case of p > 1 (when the nuclear
boundary is a plane), the amplitude ak(rp) can be
found in explicit form. Except for an irrelevant
phase factor, this amplitude is

Vm >
ax (I'p) = m el *p,

where P = (o +k} + k%)¥? and the x axis is
along the normal to the nuclear boundary. In this
limiting case the differential cross section for the
stripping reaction is given by the expression:

2n

Ik y
dcn-——(—k— wRa & dyg Ry«

(2=} (az--k%) £

(a4 k2422 sin? )2

R. (7.16')

Using the completeness of the system of func-
tions e!®In, we can write the total cross section
for stripping as

on = S\ dpp dra {1 — 2p) 2ol (1)

Substituting the expansions (7.8) for §n and flp,
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we get finally

(7.17)

This expression simplifies in the limiting case
of large p. Using the fact that for p » 1,
Sﬁt _ICJl()d,
¢ P
0
1

- {am (D)~

we get Serber’s approximate formula for the total
stripping cross section:

o = ;RRG, Ry < R. (7.18)

The dependence of o, on p is shown in Fig. 14.

For lead, p =4.2 and formula (7.17) gives op =
3.2 X 10™% cm?, while Serber’s formula gives of =
2.7%x107% ecm?. For p=1, op=5.8 X102 cm?
and of =6.9 X 10726 cm?,

%

!

FIG. 14. Dependence
of 0, on p = R/Ry. (The
dashed curve is a plot of
o5 =7 RRq.)
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The cross section for stripping off of a proton
will also be given by (7.17) and (7.18).

To find the energy distribution of the emitted
neutrons, we must integrate (7.16) over the perpen-
dicular components of the vector k:

i/\
dcﬂ (/ﬁz) = \ (2ﬂ)z S dPP l - Q’D}

g dpne™ %@ & dze™ g (r) r .

Using the completeness of the functions ei"Pn,
and the expansions (7.8) for £ and Qp, we
get finally

don = on (k) dk, on (k) = 4{?”

b
x S K2 (pi VT A2 (sin™!
0

SV 103 Ldg, (7.19)
where the dimensionless quantity % is related to
the energy E, of the liberated neutron by the for-
mula
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(Eq is the energy of the incident deuteron.) For-
mula (7.19) determines the energy distribution of
the emerging neutrons for arbitrary values of the
parameter p = R/Rg.

In the limiting case of p » 1, formula (7.19)
goes over into Serber’s formula

T 1 .
Gn(k) = ZRRd(_f—}———K")S/{ , Rd L R (7.20)

We see that the center of the distribution is at a
neutron energy equal to half the energy of the in-
cident deuteron. The width of the distribution is
A=vV2B8-1 €Eq , which amounts to 31 Mev
for a deuteron energy of 190 Mev.

To get the angular distribution of the neutrons,
we must integrate (7.16) over dk,. Restricting
ourselves to the limiting case of p > 1, we get:

do = {1

(182 )2

where {=3/8), % =(e¢/Eq)2 and dO; = 2nzdt.
We see that most of the neutrons move inside a
cone whose axis coincides with the direction of
the initial deuteron beam and whose opening angle
is equal in order of magnitude to &) = (e/Eq)"/?
which amounts to about 6° for 190 Mev deuterons.

The experimentally observed angle and energy
distributions of neutrons liberated from stripping
reactions at high energies are in agreement with
the theory. The neutron yield for incident deu-
teron energies ~ 200 Mev is 13 to 2 times the
value given by (7.18).“° Formula (7.17) only par-
tially explains this discrepancy. The remaining
difference may be due to Coulomb or diffraction
breakup of the deuterons, which have not been
studied experimentally.

4. Total cross section for diffractive interac-
tion of deuterons with nuclei. The total cross sec-
tion ot for interaction of fast neutrons with nuclei
can be determined by using (7.4) if we know the
elastic scattering amplitude at zero angle. The
amplitude for scattering of deuterons at zero angle
from an absolutely black nucleus is

o (1t tan1L — ] faoc, (7.21)

FO) =i \ %5 (1) (a1 0, — ooy} dpadr.

Consequently the total cross section is

G, =2 S \ w5 (1) {wn + 0, — w0} dpy dr. (7.22)
Using formula (7.8), we get
o) = hnl® S 2 tant I3 Mu st /[7 (7.23)
V]



FIG. 15. Dependence

of total cross section ¢

L t
1 on the parameter p =R/Ry.
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(The cross section ot naturally does not include
the Coulomb scattering.) The dependence of ot
on p is shown in Fig. 15.

In the limiting case of p > 1 we have

o, =2zR? L nwRRy, Rgq « R. (7.24)

It can be shown that the following relations hold
for arbitrary values of p = R/Rq:

(7.25)

] 1
cc"{‘cd:jcu °n+°p+ca=§‘°“

where o0, is the cross section for absorption of
deuterons by the nucleus. In fact substituting (7.7)
in (7.11) and integrating over k and £, we get

o0 aa= { § ¢4 {oa+ 0p— wrwp) dpadr.

Comparing this expression with (7.22) we arrive
at (7.25).

Using (7.17) for the stripping cross sections
on and op, and the expression (7.23) for the total
cross section, we easily find for the cross section
for absorption of the deuteron by the nucleus the
formula

15 Ji()

0 = 2zR2 S Ptan (7.26)
]
In the limiting case of p > 1, this expression
gives

G = ﬁﬁz_gﬁﬁd, Ry < R, (7.27)

The cross section for absorption of one particle by
the nucleus is 7R2, but since the cross section for
the process in which one of the particles of the deu-
teron enters the nucleus while the other passes by
outside the nucleus is (n/2) RRq, the cross sec-
tion for absorption of both particles is 7R% —

(7/2) RR4.

5. Interaction of fast nucleons with deuterons.
The characteristic feature of nucleon-nucleon
scattering at high energies (greater than 400 Mev)
is inelastic scattering, i.e., scattering accompanied
by the production of 7 mesons.

In the energy range 800 — 1400 Mev, it was
found®2:48 that the elastic and inelastic cross sec-
tions are practically equal to one another and con-
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stant. Therefore the interaction between nucleons
in this energy range can be described using the
diffraction model, according to which the total in-
teraction cross section will be 27R2%, where R
is the radius of the region of interaction. Taking
for the cross section the value oy ~ 45 millibarns,
we get for this radius the value R ~ 0.85 x 10713
cm.
In this same energy range (800 — 1400 Mev),
the total cross section for interaction of a nucleon
with the deuteron is noticeably less than the sum of
the interaction cross sections with a free neutron
and proton.’? This effect was explained using a
diffraction mechanism for the interaction of nu~
cleons at very high energies.™ Obviously the scat-
tering or absorption of the incident particle by one
of the nucleons in the deuteron will be reduced if
this nucleon enters the shadow cast by the other
nucleon in the deuteron (eclipsing effect).

Let us consider the scattering of a fast nucleon
by a bound system of nucleons (a deuteron). If
the velocities of the nucleons in the deuteron are
small compared to the velocity of the incident nu-
cleon, their motion can be neglected during the
time of passage of the nucleon through the deuteron.
The scattering of the nucleon by the fixed neutron
and proton with coordinates r, and rp can be
characterized by functions 2 and $p with cen-
ters at the positions of the neutron and proton:

U =QuQph,.

Expanding ¥ in terms of the functions g = elkp
and averaging the amplitude over all possible rela-
tive separations of the neutron and proton in the
deuteron, we get an expression for the elastic
scattering amplitude which coincides with (7.9),
but now R represents the radius of the region

of interaction of two nucleons. Then using (7.4)

we can get the following expression for the total
cross section for interaction of a nucleon with

the deuteron:

c,=2%{1_ { —’:’-tan"i}g_fi“’d;}
0
2 R
6, = 2=R2, =g (7.28)

If p«1, itis easy to show that

oy =20, {1+ p}, R < Rq. (7.29)
The main contribution to the total cross section
comes from processes in which the deuteron is
dissociated. One can show that for p « 1, the
cross section for elastic scattering of nucleons

by deuterons is
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:’;Rzpzlni, p &1 (7.30)
P
Actually, p is only a little less than unity
(p = 0.85/2.1 = 0.4). Using the graph in Fig. 15,
we find for the total cross section the value oy
=~ 1.8 gy = 81 millibarns, which in satisfactory
agreement with the experimental data.??

8. Breakup of Fast Deuterons in the Coulomb
Field of the Nucleus.

1. Electric and magnetic breakup of the deu-
teron. The interaction of a fast deuteron with the
Coulomb field of a nucleus can also result in the
breakup of the deuteron into a neutron and a proton.
Even though the Coulomb breakup of the deuteron
at high energies is less important for most nuclei
than the breakup resulting from direct nuclear
collisions and the diffraction breakup, for the
case of very heavy nuclei the cross section for
Coulomb breakup is of the same order of magni-
tude as the cross section for nuclear breakup.

The Coulomb breakup of high energy deuterons
was treated by Dancoff,’® who found the cross sec-
tion for the process and also obtained the angle
and energy distribution of the products of the dis-
integration (cf. also reference 97). Relativistic
corrections to the Coulomb breakup, and the mag-
netic breakup of the deuteron, which is accompa-
nied by transition of the n-p system from the
triplet to the singlet state, were treated in refer-
ence 20,

Let us consider the interaction of a fast deu-
teron with the Coulomb field of the nucleus. If
the condition n = Ze?/liv «< 1 is satisfied, we
can use perturbation theory, treating the inter-
action of the deuteron with the nuclear Coulomb
field as a small perturbation.

In finding the cross section for disintegration
of the deuteron, it is convenient to use a coordi-
nate system in which the deuteron is at rest be-
fore the collision while the nucleus moves with
velocity v. The electromagnetic potentials of
the moving nucleus are then given by

1
Z 5 —_
o= A=ve r(O=((1-8)p+(z-up)T .

The time dependent perturbation is

V(1) = ep (rp) — 537 {PoA (xp) 4 A (rp) pp)

—myH (rp) — mH (ry),

h o

Pr=-73

Ol'p )

1 9 R
He — L2 [vx Vo], my=o e,

(8.1)

eh s
= ——
my SMec *n9n

(kp and pp are the magnetic moments of the pro-
ton and neutron, expressed in nuclear magnetons).

The initial and final wave functions of the sys-
tem are

e Est
IF-:({)/LB 7t

i

? d.)i:(?o(r) Xi',x’l, Ij‘i:—_.- — g,

h2k?
M T"’f}

‘Iff = q)fe n Ett y f,",)( = ei“d ?i-s) (“)Xsps, E( (82)
where k is the wave vector of the motion of the
center of mass and £ is the wave vector of the
relative motion of the n-p system after the
breakup.

With the normalization we have used for the
wave functions, the differential cross section for
a breakup in which k and f are in the intervals

dk and df is given by

dk df

do=1al* gy

(8.3)
where a is the probability amplitude for the
transition,

a=—5(n V), V= { V()ewd, o=

-0

E;—F;
e

1ut

()d‘——K (+ YT=F,) oV

Noting that S

we get
V= '7Ze2

(1 i 2 5o )Ko\—Vl—Fﬂsz
_%VW<PD [npx op] , K, (%VWPD)‘;%ZD
—+ o [mg xOn] K, (% Vmpn%i%n) } .

If we also carry out the integration in a over the
coordinates of the center of mass of the deuteron,
we find

2ze (2= )2 ("-7)<<{;f/us {e~ kr<1-—ih—vi>

¢== hv X2 8%) k2 Me® 5z

ke Lk
+1 m(\[vxk]bppe 27 Sppe? )

- % [vx k] (on— ap)(ipe —% - P‘ne_;-kr> } ) ‘Pond) ’

where S=3(op+ 0p) is the spin operator for the
n-p system.

With regard to the calculation of the integral
over the relative coordinate r, we not that we
should cut off the range of k, since very large
values of k correspond to small values of the
impact parameter, which should however not be
less than the nuclear radius R. In fact, for im-
pact parameters which are less than the nuclear
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radius R, a collision with the nucleus will occur,
and then the Coulomb interaction is unimportant.
Therefore, in treating the Coulomb breakup of the
deuteron, we should assume that k is bounded
and the maximal value of k should be of the
order of R71, :

The effective value of the separation between
neutron and proton in the deuteron is of order Rg;
thus the effective value of the product kr is of
order Rq/R and is thus much less than unity.

Expanding the exponentials ei%kr in series and
stopping at the first non-vanishing term, we get
the following expression for the probability ampli-
tude:

a= aEEIS -+ aMB[,s,
where ap and ap; are the probability amplitudes
for electric and magnetic transitions, and are
equal respectively to

2Z &3--(271:)2 V 8ra 3(1‘:

eg=1ij- T — R CEwEE (cos & cos ¥

(a? —1 /
+-sind sin’ cos ¢ — B2 cos ¥ cos ') 6,4, (8.4)

. Ze? 2 8
az\l‘—-l—“—?‘Mﬂz (!J.n P‘D)%
z

N a-—a’
X“,("’ >(f‘+ =i | K
where ¢ is the angle between k and v,  is the
angle between £ and v, and ¢ is the difference
of the azimuthal angles of k and f.

In the electric breakup of the deuteron, the spin
of the n-p system does not change; in the mag-
netic breakup the neutron-proton system makes a
transition from the triplet to the singlet state.

Taking the absolute square of (8.4) and noting

2 1 (
that 6* — -5 (k;

V

olp (8 '5)

w . .
—7> , we integrate over dk

and get the following expression for the differential
cross section for electric disintegration of the deu-

teron:
[ Zer N2 22 f o, rz—ge
dGE—— W/‘ T(‘G.Tm; {bllllﬁ In Tﬁ"!
+[2(1--B%)cos?d —sin? '] 1,2 - }df (8.6)

where T =hv/(e+eg)R. (In view of our previous
remarks, we have limited the ¢ integration to the
region from 0 to dmax, where cos dmax =1I"1.)
Integrating (8.6) over angle, we find the energy
distribution of the d.lsmtegratlon products:

2 M Veer? 12
dop (= ‘)—_<Mc ) B (e In 17__52—d¢,.

Since the upper limit kpax is determined only
to order of magnitude, formula (8.7) makes sense

(8.7)
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only if the argument of the logarithm is large
(T > 1). This condition is satisfied for high en-
ergies of the deuteron. The factor (1-82%)7!
under the logarithm takes account of the relativis-
tic dilation of the cross section for electric disin-
tegration with increasing energy of the deuteron.
Using (8.5) it is easy to find the energy distri-
bution of the products for magnetic disintegration:

=3 (52

Ve, (Ve V&) I
In

Ll iy e e L

d.‘:‘.g. (8.8)
(In the case of magnetic disintegration, the angular
distribution of the products is isotropic.)

The integration of (8.7) and (8.8) over energy
€f can be done numerically. Figure 16 shows the
behavior of the total cross sections op and o) in
the energy interval Eq = 0.2 —10 Bev, for R =
1.1 x 1078 ¢m. In the extreme relativistic region,
the magnetic disintegration cross section oy is
an order of magnitude less than the electric cross
section og.

dljc m2)

v
’\_d[__//

4 "
/0-30 //
Y
oy .t
Eq (Mev)
FIG. 16

2. Polarization of neutrons from electromag-
netic breakup of deuterons. Despite the relatively
small value of the cross section for magnetic
breakup, the latter can be detected easily since
the interference between the electric and magnetic
processes leads to a polarization of the disintegra-
tion products. The polarization of the neutrons
formed in the disintegration of the deuteron in the
electromagnetic field of a nucleus was treated by
Sawicki .18

For fixed values of the wave vectors k and f£,
the polarization of the neutrons will obviously be
proportional to the following expression:
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1
3 Z (aEX1e + aM)00)* On (2EX1n + BMX00)-
18
When we take account of the normalization, it is

easy to see that the polarization of the neutrons
will be

2
3 Re (aEaM*

ag it o lay >

Using (8.4) and (8.5) and transforming to the labo-
ratory system (this corresponds to replacing k
by k~-k;), we can obtain the following expression
for the polarization of the neutrons:

Pl k)=

e f (fk—1ky) | (k, Ko} |
P B LR DY C RN 8.9
= (fk—fk o Tk kg* * (8-9)
A 2 2
e A Gampt e

where k; and k are the wave vectors of the cen-
ter of mass of the n-p system in the laboratory
frame before and after the breakup, and A = li/Mc
is the Compton wave length of the nucleon. In the -
case we are considering, where n « 1, the neu-
tron polarization is independent of the nuclear
charge Z and is large for small values of the
cosine of the angle between the vectors f and

k —k;. We note that the polarization is an ex~
tremely sensitive function of the angles of emerg-
ence of the neutron and proton. If we assume

Ep = Ep = Eq/2, then for Eq =100 Mev, when
the angle of emergence of the neutron is 4 = 10°,
and the angle between the directions of the neutron
and proton is 6 = 18°, the polarization P =-0.21.

9. Formation of Deuterons in the Collision of
Fast Nucleons with Nuclel.

1. Methods for producing deuterons. In the
collision of fast nucleons with nuclei, the produc-
tion of fast deuterons can occur. Production of
deuterons was first observed experimentally in
the bombardment of nuclei with 90 Mev neutrons.
The beam of deuterons which was observed was
emitted in the forward direction with a halfwidth
~ 25 —30°, while the maximum of the energy dis-
tribution of the deuterons was at 60 — 65 Mev.
The total cross section for carbon was 2.6 x 1072
cm?, and increased for heavier nuclei. Later, pro-
duction of deuterons was also observed from proton
bombardment of nuclei (cf. for example, reference
83). The sharp peaking in direction of the deuter-
ons and their high energy show that the observed
deuterons are not products of evaporation from a
compound nucleus.

There are two possible ways in which deuterons
can be produced in the collision of fast nucleons
with nuclei, without formation of a compound nu-
cleus.

i

229

First there is direct capture (pick-up), in
which the deuterons are formed as a result of the
direct capture by the incident nucleon of one of
the nucleons in the nucleus. Deuterons which are
formed by such a direct capture are characterized
by being peaked sharply in the forward direction
and can have energies of the same order-as the
incident nucleon. Chew and Goldberger,5° using
the Born approximation, gave the theory of the
direct capture, which was later developed by Heid-
mann. %

Secondly, indirect capture is possible. The in-
cident nucleon colliding with some nucleon in the
nucleus loses only a part of its energy. The nu-
cleon in the nucleus which takes up this energy
may form a deuteron by capturing some other
nucleon inside the nucleus along its path. The
mechanism of indirect capture was proposed by
Bransden.!! For energies of the incident nucleons
above 300 Mev, indirect capture is more important
than direct capture.

2. Direct capture. Let us treat the formation
of deuterons in the collision of fast neutrons with
nuclei as a result of direct capture. Let r; be
the radius vector of the incident neutron, r; the
radius vector of the proton which is captured, and
r, etc the radii-vectors of the other nucleons in
the nucleus. If we treat the interaction of the in-
cident neutron and the proton which it captures
as a small perturbation, we can write the transi-
tion amplitude as

. M —ik
/= SB Ha (roxro/2 @ (T —1y)

T 2xht

@ (2,. .. A) Voeikrop (1,. .. A) dx, (9.1)
where Kk is the wave vector of the incident neu-
tron, kq is the wave vector of the deuteron which
is formed, ¢; is the deuteron wave function, ¢j
and ¢¢ are the wave functions of the nucleus in
the initial and final states.

If we limit ourselves to heavy nuclei, we can
use the Fermi model, in which the nucleus is
treated as an assembly of non-interacting particles
contained in a spherical well of nuclear dimen-
sions. Then the initial wave function can be taken

as

1
e (1,.. Vo Zeirtig, (2,. .. A),

where p is the wave vector of the proton and V

is the volume of the nucleus. The integration in

(9.1) with respect to r,...rpa gives unity if these
nucleons remain in their initial state; the integra-
tion over r; gives a result different from zero if
k -kd =p. Since the Fermi distribution p is re-
stricted to lie below L, the cross section will be

LAy =
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different from zero only if |k-kq| « L. Actually
the fast nucleon transfers a momentum greater
than L. To take this possibility into account, we
make corrections to the Fermi model. The cor-
rection to the Fermi model reduces to taking ac-
count of the interaction of the proton which is to
be captured with another nucleon in the nucleus.
Then the wave function of the initial state can be

taken as
1

@, (1,... Ay =V ZeiP itrdg, (r) — 1) 9;(3,.. . 4).  (9.2)
For the final state wave function we can take
1
91(2,...A)=V Zemg (3,...4), (9.3)

Transforming from ry, r, and r, to new vari-
ables r=ry~ry, r =r;—ry, and r,, the ampli-
tude for the reaction takes the form

o — o F (k —%k(,)Gpp(k—kd)V"l
(9.4)

where the last integral should be taken over the
region of the nucleus, and

. 1
Fk-3ka)=§ 2wy pyar,
Gom (k —ka) = | o *7H70 gy () .

If the neutron-proton interaction is described
by the Yukawa potential

V)=V, *’: , V,=67.8 Mev, p=0.847-10% cm™!,

and (2.8) is used for the deuteron wave function,

i -1 1
—tan __} ,
a+ pt+w

F(l)= ““l‘f;“ {tan“

1=k — kg (9.5)

Choosing the wave function for the relative motion
of the neutron and proton interacting with one an-
other in the nucleus in the form

i) =B [ e e,
(a®+p )-2‘
1 1
B=V %1, 4= —cot™' L, v=J3R,

P
we also get the function

¢(q) = 4rV ‘1{ 1 +

_ Y+ ¢t—ay—p? }
7+ (v +7)? ’

(*+¢>+ p*)* —4g°p?
g=k - kq+P. (9.6)

The differential cross section for formation of
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the deuteron is given by the square modulus of the
amplitude (9.4), integrated over all possible values
of p’. We note that this integration gives

e

- (Ko —n'
V-1 S ei( kq+2P—p’)ry dl‘2

= S dp'd (k —kg+2P —p’')=1.

Thus if the initial state of the nucleons in the nu-
cleus is characterized by the vectors p and P,
the cross section for formation of a deuteron with
wave vector kg is equal to

kd M 2 1 N 3 2
o= (s ) (k=g ke ) gl (k—k).  (9.7)

The factor $ is the statistical weight factor for
the triplet state of the neutron and proton forming
the deuteron. The factor w gives the number of
different proton-proton or proton-neutron pairs in
the nucleus.

The wave vectors p and P can be expressed
in terms of the wave vectors p, and p, of nu-
cleons 1 and 2 in the initial state, when the sep-
aration of the nucleons is large compared to pL

by the formula

p=—(Pr—P:) P=15(pi+Ppa)- 9.8)

The energy of the outgoing deuteron is deter-
mined from energy conservation:

h? o
o7 B4 pi+p)—U,

By | k2

=gr + oo K —katp+p.)—e (9.9)

where U; is the depth of the potential well for the
nucleon in the nucleus, which is taken to be 29 Mev.

To obtain the cross section for deuteron forma-
tion regardless of the initial state of nucleons 1
and 2, (9.7) must be multiplied by the probability
R (p, P) for definite values p and P and then
integrated over all possible values of p and P
subject to the condition (9.9) of energy conserva-
tion. This probability is

R (p, P)dpdP = oo dpdP, (9.10)

if p; and p, < L, and is equal to zero otherwise.
The coefficient in (9.10) is obtained from the nor-
malization condition f R dpdP = 1.

In the expression (9.7) for the cross section,
only the factor Gf)p depends on p and P.

We may mention that the integral f G%BdpdP
for fixed value of kq can be replaced approxi-
mately by

S G*Rdp dP |y, o~ 3 G*Bdp dP S Bdp dP |x,

5 dE
= 5 G*Rdp dP - .




INTERACTION OF DEUTERONS WITH NUCLEI 231

where the energy E is measured in Mev. We in-
troduce the notation

SwG;p‘de dP=N(Q), Q=k —ks  (9.11)
This function determines the momentum distribu-
tion of the nucleons in the nucleus. If Q is very
small, the correction to the Fermi model can be
neglected, and N (Q) =~ V. In the general case,
the function N(Q) of (9.11) cannot be obtained

in explicit form. Numerical integration gives the
following values for n(Q) = NQ/A:

n=17x10"* cm® for Q - 0; n = 3.6 x 10~** cm® for Q = 1.3
x 107 em™; n = 7.6 10°°/Q* 10~ cm for Q large.

These values refer to a temperature of the Fermi
distribution equal to 8 ~ 9 Mev

(L=10x10%em?, V=17-A x 107° cm®,
o = 5.39x 107" cm).

Thus the differential cross section for forma-
tion of a deuteron by direct capture, per Mev of
energy, is
a.—-A;% Z_i‘fﬁy%zf%k —é—kd>n(k——kd)z‘%. (9.12)

In Figs. 17 and 18 we give the differential cross
sections per nucleon for different energies of the
emitted deuterons, and the energy spectra of the
deuterons at various angles. (The energy of the
incident nucleon is 90 Mev.) The yield of the
faster deuterons drops off more rapidly with angle
than that for slower deuterons. The most probable
energy of the deuterons decreases with increasing
angle of emergence. These regularities of the
deuteron spectra are in agreement with the ex-
perimental data.

By numerical integration®? the following values
were found for the total cross section for deuteron
formation:

1072 cm?/Mev
<

FIG. 17

o = 3.6- A% 107 cm?, E,, = 100 Mev; 0 = 5.5+ A* 10™* cm?,
E, = 200 Mev; 0 = 4.5 A*: 10~ cm®, E,, = 300 Mev.

For high energies of the incident nucleons (Ep >
0.5 Bev), the following asymptotic formula was
found for the cross section:

o—7.7.-4. 10 )“10—25 em?,

\ En Mev (9.13)

i.e., at high energies the total cross section is in-
versely proportional to the sixth power of the en-
ergy of the incident nucleons.

The cross section per nucleon for formation of
a deuteron is of order r(z,, where ry; is the radius
of the volume ascribed to a single nucleon in the
nucleus. For this reason, of the total volume
‘g—” r3A of the nucleus only the volume Ly (roAi/a)2
will be effective for formation of deuterons. This
means that the effective number A in (9.12) should
be taken equal to %Az/a_ Thus, for carbon at 90 Mev,
we get a cross section of 8 x 10 % cm?, which is
approximately three times as large as the meas-
ured cross section.

t b
>
o
5
\Ej'
N
* 0
A
7
6} A 1 -l
L 5 o 70 &
Egq Mev
FIG. 18

3. Indirect capture. Again treating the inter-
action of the incident neutron with the nucleon in
the nucleus as a small perturbation, we write the
amplitude for an indirect transition which leads to
formation of a deuteron in the form

¥4

XCPO (rl—‘rz) ?f (31 LR} A) VOIeikro?i(l, e A)dt, (9.14)

where k and k’ are the wave vectors of the inci-
dent neutron before and after the collision, and kg
is the wave vector of the deuteron which is formed.

Using the Fermi model with the correction for
the interaction between nucleons 1 and 2, and
choosing new variables r =ry-r,, rq=3(ri+ry)
and r’ =ry-r;, we write the amplitude in the
form
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M ’ ’ -
fo o F(k—K') Gy (k— k) V

1] =

>< i ARK kg t2PIrg g (9.15)
where

F(k—k')= S &=V (7Y dr,

Gy (k— k) = { k212 g () gy (1) .

We note that F (k—-k’) also determines the
cross section for scattering of the free neutron
by nucleon 1, which in the center of mass system
has the form

o(k—k)= (%)’ F2(k—k).

The factor can be obtained in explicit form
by using (2.8) and (9.6):
otk = s LT I G G o
oyt e s o
+412—tan_1 4(v+(z)—z'.?)j(ﬁq)l:—(gi)+qz)“ } ’

1 ’
7, 2= |k—k'|[£p.

The differential cross section for deuteron for-
mation is given by the square modulus of (9.15) in-
tegrated over all possible values of k’. Integra-
tion of the square modulus of the last factor in
(9.15) gives

1
dk’ |3 i(k—k’—kg+ 2P)r 2
!V 2 S (4 d ddr
S 2=y | e

- S dk’s(k— k' — kg +2P)=1.

So the cross section for formation of a deuteron
with wave vector kg4, for fixed values of p and P
in the initial state, is given by

, ’ 2 ’
app = 224{an(k——k')+cm‘(k—-k N wGs (k—k'),

k' = k —kq -+ 2P. (9.16)

Here w is the number of neutron-proton pairs in
the nucleus which are in the triplet state (w =
% Z (A —17)). In (9.16) we have taken the sum of
the cross sections Opp and Opp, since the deu-
teron can be formed in the scattering of the inci-
dent neutron by either a proton or a neutron in the
nucleus.

The energy of the emitted deuteron is deter-
mined from energy conservation:

hz 2 €
o B+t p)— 20,

h2kd

h2 ’
=i — ¢+ agr k— K+ py -+ po). (9.17)

The cross section (9.16) must be averaged over
all possible values of the vectors p and P in the
region p; and p, < L. This averaging can only be
done numerically. In doing this we use the experi-
mental values of opp and opn at the appropriate
energies.

The total cross section for formation of deuter-
ons by indirect capture is proportional to the
square of the mass number A, unlike the direct
capture, for which the cross section is propor-
tional to A.

The following values were found for the indirect
capture cross section:

0 =3.6-4%10"% cm?, E, =100 Mev;
a==5.5.42.10"% cm?, £, =200 Mev;
6 =4,5-42-10" cm?, E, = 300 Mev.

Assuming that the cross sections onp and opp
change very little with energy, one can obtain the
asymptotic variation of the indirect capture cross
section with energy,

1

S~ ——
n

Though the indirect capture is only 11% of the
direct capture cross section at E, = 100 Mev, it
is already twice as large as the direct capture at
Eyp = 300 Mev. Thus the indirect capture plays
the principal role at high energies.

The energy spectrum and angular distribution
from indirect capture differ from those for direct
capture. In indirect capture the maximum in the
deuteron energy spectrum is shifted toward lower
energies from the maximum in direct capture. The
differential cross section for indirect capture has
a much weaker angular dependence than the cross
section for direct capture. In particular the in-
direct capture mechanism explains the large num-
ber of energetic deuterons which were observed
to be emitted at large angles from collision of
fast nucleons with nuclei.?3:79:%

1. APPENDIX

1. Integral of a product of Coulomb functions.
The integrals occurring in Secs. 2 and 6, which
contain the product of two Coulomb functions, are
special cases of the following integral
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1, i(k;r—kyx)) F(in,,

1, i(kyr —k,r))

== _Lﬁt_ e—Tn1 (i)inl <_._Y+a>—in2
a 1 1

26 —8¢

N
a(y=oy J°

r
— e\ (iny,

S dr e

X F( 4—iny, iny, 1,

1, 5 .
a=5(g*+ 1), B=Lkyq—iM,,
v=k,q+irk, —a, =kk,+ ki, —B

q=k, —k,~k;, A>0, Imr=0. 1)

The derivation of this integral is given in refer-
ence 100.

2. Pseudopotential. At low and medium ener-
gies, the interaction between neutron and proton
manifests itself mainly in the S state. Since the
detailed character of the nuclear interaction is
then unimportant, we can describe the neutron-
proton interaction by using a pseudopotential cor-
responding to zero range of the nuclear forces.
The pseudopotential can obviously be introduced
if the wave length of the relative motion of the
neutron and proton is large compared to the range
of nuclear forces. This condition is satisfied if
the energy of relative motion of neutron and pro-
ton is less than 20 Mev.

Let us denote the wave function describing the
motion of the neutron and proton by ¥ (rp, rp).
If the neutron and proton are not at the same
point, this function satisfies the Schriodinger
equation

HW =EW, 1,1, (2)

where H; is the Hamiltonian for the non-interact-
ing neutron and proton in the external field. For

r — 0, this function must satisfy a boundary con-
dition which describes the presence of interaction
between the neutron and proton. If we denote the
wave vector of the relative motion of neutron and
proton at the instant of collision by k, the boun-
dary condition can be expressed as

thr
lp~_><eikr+a.e_r._)d.) (l'd)’ r—-)O, (3)

where the function ¥ (rq) is determined by the ex-
ternal field, and the expression in parentheses is
the wave function of the relative motion. If there
were no interaction between neutron and proton,
the relative motion would be described by a plane
wave. The quantity a appearing in the boundary
condition is the scattering length, for which we
can use the expression a = —1/(a + ik), which
holds for the scattering of free neutrons by protons
The boundary condition (3) and Eq. (2) can be
written as a single equation?

(Hy—E)¥ = —V (r)

’

SALULER 4

2
where V(r) = %— ?65_—% is the pseudopotential

describing the neutron-proton interaction.

It can be shown that (4} admits a solution de-
scribing the bound state of the neutron-proton
system. From (4), we get the following equation
for the relative motion of a free neutron and pro-
ton:

a(,.e ithr )

{%Ar-}—e} e =V (r)—5—. (5)

where € =1%?/M is the energy of relative motion.
It is easy to show that ¢y (r) = v a/2r (e %/r),
the ground state wave function of the deuteron, sat-
isfies (5) if ¢ = —h?a?/M. In fact, using the form
of ¢,, the right side of (5) can be transformed as
follows:

LY
-V ( ) 4 ("e ‘Pn)

=V (r) |/2_(lk+a) e—ihtar — ‘/ a lmzhla\( ",

We thus get from (5) the equation

(8 —a®) gy (1) = — 4 /i (),

which is identically satisfied.

Using an equation like (4) to describe the inter-
action of a deuteron with a nucleus, we can get the
following exact expression for the stripping am-
plitude:

M a (re=ikry’) (r,
f= —5.hE S ‘Pl‘(‘p (rp) F* (ry) V (r) _ar\)(rrﬂ_) dry drp.
Substituting the incident wave (pozpkd for ¥

in this equation, and using the explicit expression
for the pseudopotential, we find

J= =g § ¥y (00 7% (ra)

4mh? " .
- lM V%“ (ra— "p)} Yxq (ra) drp dryp.

Comparing this expression with (3.10), we see
that for zero range,of the nuclear forces, we get
the relation

4mh?

Vappo = — e 2,: 4 (x). (6)
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