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1. INTRODUCTION

lUCLEAR reactions produced by deuterons play
an important par t in nuclear physics. The c ross
sections for such reactions a r e considerably
greater than those for the corresponding r e a c -
tions by other charged par t ic les . For this reason
deuterons a r e widely used for obtaining radioac-
tive isotopes.

The peculiar features of nuclear reactions p r o -
duced by deuterons resul t from the propert ies of
the deuteron: i ts loose s t ructure which is related
to its low binding energy, and the asymmetric d i s -
tribution of electr ic charge in the deuteron.

Because of the low binding energy of the deu-
teron, the neutron and proton in the deuteron spend
a considerable fraction of the time outside the
range of the nuclear forces . Thus, in the collision
of a deuteron with a nucleus, formation of a com-
pound nucleus (in which case the deuteron as a

whole is absorbed by the nucleus) need not occur.
The more probable processes a re those in which
only one of the par t ic les constituting the deuteron
is absorbed by the nucleus; the other part icle then
appears directly as a reaction product. Such a
process , in which one of the par t ic les in the deu-
teron is absorbed by a nucleus while the other is
set free, is called a breakup or stripping reaction.

The mechanism of the stripping reaction may
be different for different energies of the incident
deuteron. If the energy of the incident deuteron
is less than the height of the Coulomb ba r r i e r , the
repulsive Coulomb force acting on the proton will
allow only the neutron to enter the region of action
of the nuclear forces. In this case the final nu-
cleus is formed as the resul t of neutron capture,
while the proton emerges with an excess kinetic
energy resulting from the re lease of energy in the
breakup of the deuteron and from the Coulomb r e -
pulsion.
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The asymmetr ic distribution of the electr ic
charge in the deuteron makes it possible also for
an electrical breakup of the deuteron to occur, in
which both the neutron and proton a re set free.
This type of disintegration can occur at any energy
of the incident deuterons above the disintegration
threshold.

In the region of energies above the Coulomb
bar r i e r , the stripping reaction occurs principally
from direct interaction of one of the par t ic les in
the deuteron with the nucleus. Since the dimen-
sions of the deuteron a re large, in such a case
the other part icle does not in general enter the
region of action of the nuclear forces . Thus the
capture of one of the par t ic les in the deuteron is
accompanied by the liberation of the other p a r -
t ic le . The angular distribution of the par t ic les
which a re set free is determined by the state of
the final nucleus which is formed as a resu l t of
the reaction. Thus, if the energy is not very high
the stripping reaction can be used for studying
the propert ies of nuclei. At present the spins and
pari t ies of many states of light nuclei a re de te r -
mined by using the stripping reaction.

The picture of the stripping process is e spe -
cially simple at high energies, when the quasi-
classical approximation is applicable. In this
case the momentum carr ied off by the part icle
which is set free is equal to its momentum at the
time of the collision, and consists of the momen-
tum of the center of mass motion of the deuteron
and the momentum of the relative motion of the
part icles in the deuteron.

The stripping reaction with high energy deu-
terons is used for obtaining fast and practically
monoenergetic neutrons.

In addition to the stripping reaction at high en-
ergies we may mention another mechanism of in-
teraction of deuterons with nuclei, which resul ts
in an additional yield of neutrons and protons. This
mechanism is the diffraction breakup of the deu-
teron, occurring far away from the nucleus.

A great deal of both theoretical and experimen-
tal work is being done at present on the problems
of interaction of deuterons with nuclei. But these
problems have not been clarified sufficiently in the
Russian l i tera ture . For this reason it seems d e -
sirable to give a survey of the theoretical papers
concerning processes of interactions of deuterons
with nuclei. (Experimental papers a r e not con-
sidered in the survey; the references to exper i -
mental papers a re for the most par t haphazard.)

Special attention is given in this survey to the
processes of direct interaction of deuterons with
nuclei, which have been the subject of intensive

study recently. We shall limit ourselves to the
range of deuteron energies in which the formation
of mesons does not play an essential role . For con-
venience we shall divide the energy range into two
par t s : the region of low and medium energies (Ed
< 20 Mev), and the high energy region (20 Mev <
E d < 300 Mev).

In the region of low and medium energies, we
consider the following processes : elastic sca t t e r -
ing of deuterons, the effect on the elastic sca t te r -
ing of the spatial extent of the deuteron and the
absorption of the deuteron, the stripping reaction
resulting from direct interaction, the interference
between direct processes and processes involving
compound nucleus formation, and finally the ine-
lastic scattering of deuterons by nuclei, which is
accompanied by excitation of the nucleus and d i s -
integration of the deuteron.

We shall t rea t separately those processes in
which the Coulomb interaction plays a decisive
role: the Coulomb breakup of the deuteron and
(d ,p ) reactions on heavy nuclei. These p roc -
esses a re important in the low-energy region,
especially for heavy nuclei.

In the high energy region, we shall give special
attention to the diffractive interaction of deuterons
with nuclei. In part icular , we shall t rea t the d i s -
sociation of the deuteron in the electromagnetic
field of the nucleus and the formation of deuterons
in the collision of fast nucleons with nuclei.

1. INTERACTION OF DEUTERONS WITH NUCLEI
IN THE LOW AND MEDIUM ENERGY REGIONS

2. Elastic Scattering of Deuterons

1. The role of the Coulomb interaction. For low
and medium energies of the incident deuterons, the
elastic scattering is determined mainly by the Cou-
lomb interaction. Scattering of deuterons through
compound nucleus formation is extremely improb-
able. The reason for this is the high excitation
energy of the compound nucleus formed after ab -
sorption of the deuteron. The decay of such a nu-
cleus with emission of a deuteron is extremely
unlikely because of the competition of other pos -
sible decay processes .

The Coulomb potential ba r r i e r surrounding the
nucleus resul ts from the combined action of the
nuclear forces which a re effective for small d i s -
tances between nucleons and the repulsive Coulomb
forces outside the nucleus. The height B of the
Coulomb ba r r i e r for deuterons can be defined as
follows:

n- —
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w h e r e e i s t h e c h a r g e on t h e d e u t e r o n , Ze i s t h e

c h a r g e on t h e n u c l e u s , and R i s t h e r a d i u s of t h e

r e g i o n of n u c l e a r i n t e r a c t i o n , which should b e s e t

e q u a l to t h e s u m of t h e n u c l e a r r a d i u s R\ and

t h e d e u t e r o n r a d i u s R(j:

R = RA -j- Ra.

U s i n g t h e fact t h a t R A = roA 1/ 3 ( w h e r e A i s t h e

m a s s n u m b e r and r 0 = 1.2 x 10~ 1 3 cm) and R j =

2.1 x 10~ 1 3 c m , we find for B t h e e x p r e s s i o n

5 = 1.2Z^-1/3(i4-i.754-1/3)-i Mev.

T h e i m p o r t a n t quant i ty for t h e p a s s a g e of t h e

d e u t e r o n t h r o u g h t h e Coulomb b a r r i e r i s t h e r e l a -

M At ive k i n e t i c e n e r g y , which i s equal to — =—

i s t h e k i n e t i c e n e r g y of t h e i n c i d e n t

Ed.

w h e r e

d e u t e r o n r e l a t i v e to an infinitely heavy n u c l e u s ,

and M(j and M A a r e t h e m a s s e s of t h e d e u t e r o n

and t h e n u c l e u s . The b a r r i e r i s u n i m p o r t a n t if

E(j » B ' , w h e r e B ' i s t h e effective height of t h e

b a r r i e r , e q u a l to

*A + * - d -
MA

Ji _ i
+ 2)A ;) (1-|-1.75/1 S)"1 Mev. (2.1)

Below we g ive v a l u e s of t h e effective b a r r i e r he ight

B ' in Mev for v a r i o u s n u c l e i

Nucleus

B'

He4»

1.0 1.5

№
2 .8

P i 2 0

^a.io4.8

Z:

6 .4

Sn

9
i?>
.2

Yb'°

11.5 14.0

The Coulomb i n t e r a c t i o n of t h e d e u t e r o n with

n u c l e u s i s convenient ly c h a r a c t e r i z e d by t h e p a -

r a m e t e r
_ Ze*-

w h e r e v i s the ve loc i ty of t h e i n c i d e n t d e u t e r o n .

F o r low v a l u e s of t h i s p a r a m e t e r (n « 1 ) , t h e

C o u l o m b i n t e r a c t i o n c a n b e t r e a t e d by p e r t u r b a -

t ion t h e o r y . In t h e o p p o s i t e l i m i t i n g c a s e of n » 1

t h e q u a s i - c l a s s i c a l a p p r o x i m a t i o n i s a p p l i c a b l e .

F o r heavy n u c l e i t h e p a r a m e t e r n i s a l r e a d y

g r e a t e r t h a n unity for m e d i u m v a l u e s of the d e u -

t e r o n e n e r g y .

The s c a t t e r i n g of c h a r g e d p a r t i c l e s in the C o u -

l o m b field i s g iven by t h e R u t h e r f o r d f o r m u l a . F o r

e l a s t i c s c a t t e r i n g of d e u t e r o n s , d e v i a t i o n s f r o m

t h e R u t h e r f o r d f o r m u l a m a y o c c u r for two r e a s o n s .

F i r s t l y , t h e r e m a y b e d e v i a t i o n s r e s u l t i n g f r o m

t h e s p a c i a l e x t e n s i o n of t h e d e u t e r o n , and secondly ,

if t h e e n e r g y of t h e i n c i d e n t d e u t e r o n i s above the

Coulomb b a r r i e r , t h e r e m a y b e d e v i a t i o n s r e s u l t -

ing f r o m p e n e t r a t i o n of t h e d e u t e r o n t h r o u g h t h e

b a r r i e r l ead ing to a b s o r p t i o n of t h e d e u t e r o n .

2. S t r u c t u r e of t h e d e u t e r o n and e l a s t i c s c a t t e r -

ing. Since t h e d e u t e r o n c o n s i s t s of a n e u t r o n and

p r o t o n , i t i s a c o m p l e x n u c l e u s and h a s a s p a t i a l

s t r u c t u r e . T h e s p a t i a l d i m e n s i o n s of t h e d e u t e r o n

a r e c h a r a c t e r i z e d by t h e a v e r a g e s e p a r a t i o n of t h e

n e u t r o n and p r o t o n which c o m p o s e i t . Thi s s e p a r a -

t ion i s u s u a l l y c a l l e d t h e r a d i u s of t h e d e u t e r o n b e -

c a u s e of t h e low binding e n e r g y ( e = 2.23 M e v ) , t h e

r a d i u s of t h e d e u t e r o n i s g r e a t e r t h a n t h e r a n g e of

t h e n u c l e a r f o r c e s a c t i n g b e t w e e n t h e n e u t r o n and

p r o t o n . A s e c o n d p e c u l i a r i t y of t h e d e u t e r o n s t r u c -

t u r e i s t h e e x t r e m e a s y m m e t r y of i t s e l e c t r i c a l

c h a r g e d i s t r i b u t i o n — t h e c e n t e r of m a s s and c e n t e r

of c h a r g e of t h e d e u t e r o n do not c o i n c i d e . B e c a u s e

of t h i s , even when t h e e n e r g y of t h e i n c i d e n t d e u -

t e r o n i s wel l be low t h e C o u l o m b b a r r i e r we m a y

e x p e c t to s e e d e v i a t i o n s f r o m t h e R u t h e r f o r d f o r -

m u l a . The n a t u r e of t h e s e d e v i a t i o n s w a s expla ined

in a p a p e r of F r e n c h and G o l d b e r g e r . 6 3

T h e m o t i o n of t h e d e u t e r o n in t h e C o u l o m b field

of t h e n u c l e u s , which for s i m p l i c i t y w e m a y a s s u m e

to b e a point s o u r c e , c a n b e d e s c r i b e d by t h e S c h r o -

d i n g e r equat ion

- E\ 'I" (r, r d ) = 0.\

(2.2)

Ad and A r a r e t h e L a p l a c i a n s with r e s p e c t to t h e

c o o r d i n a t e s of t h e c e n t e r of m a s s of t h e d e u t e r o n ,

T(j, and t h e r e l a t i v e c o o r d i n a t e s r ; V ( r ) i s t h e

p o t e n t i a l of t h e n u c l e a r i n t e r a c t i o n b e t w e e n t h e

n e u t r o n and p r o t o n ; Z e 2 / | r ^ - | r | i s t h e e n e r g y

of t h e C o u l o m b i n t e r a c t i o n of t h e d e u t e r o n a n d t h e

n u c l e u s , and d e p e n d s on t h e r a d i u s v e c t o r of t h e

p r o t o n , r^ - | r ; E i s t h e t o t a l e n e r g y of t h e d e u -

fi2k2

t e r o n , and i s equal to E = ——- - e, w h e r e k i s

t h e wave v e c t o r of t h e i n c i d e n t d e u t e r o n .

F o r finding t h e so lut ion, i t i s convenient to r e -

w r i t e (2.2) in t h e f o r m

.'V.
(2.3)

We now expand t h e function * on t h e left s i d e of

(2.3) in e igenfunct ions of t h e r e l a t i v e m o t i o n of t h e

n e u t r o n - p r o t o n s y s t e m ,

T (r. r.O = 9,, (/•) <•> (r,i) + o r t h o g o n a l t e r m ,

w h e r e cp0 ( r ) i s t h e wave function of t h e g r o u n d

s t a t e of t h e d e u t e r o n . We m u l t i p l y (2.3) by q>o(r)

a n d i n t e g r a t e o v e r r . T r e a t i n g the r i g h t s i d e of

(2.3) a s a p e r t u r b a t i o n , we r e p l a c e * by *Q =

<Po ( r ) ^k ( r d ) ' w h e r e # k ( r d ) i s t h e wave func-

t ion of t h e d e u t e r o n in a s t a t e of def ini te m o m e n -
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turn k in the Coulomb field. We thus obtain

21m C (rd) dv, (2.4)
r d - y r

where n = ZeVfiv, and v is the velocity of the
incident deuteron.

The function $k( rd)> normalized to unit flux
of part icles in the incident beam, is

4>k (r) = e~* "r (1 + in) eikr F ( - in, I, i (kr - kr)), (2.5)

where T (x) is the gamma function and F ( a , y, z)
is the confluent hypergeometric function. The func-
tion ^ k ( r d ) is a solution of (2.4) when the right
hand side is set equal to zero, and describes the
scattering of deuterons by the Coulomb field of
the nucleus when we neglect the spatial extension
of the deuteron. At infinity i/'k ( r d ) i s a s u m °f a

plane wave and an outgoing spherical wave.
The function ip ( r ^ ) which is defined by the in-

homogeneous equation (2.4) describes the elastic
scattering of deuterons taking account of the spa-
tial extension of the deuteron.

For large values of the parameter n, the in-
homogeneous te rm in (2.4) will be extremely small .
Because of the spherical symmetry of the ground
state of the deuteron, the only non-zero contribu-
tion to the integral in (2.4) comes from r > 2r(j.
However, since the effective values of r a re of
the order of the deuteron radius Rd, while a deep
penetration of the deuteron toward the Coulomb
center is impossible for large Z, the corrections
to the Rutherford formula can be neglected when
n » 1.

Using the asymptotic Green's function for the
Coulomb field

G(r. r') - * - ~ — eiV<r-n m 2,,,)..,., {r'y

where k' = ( r / r ) k , and

0k, (r) = e~2~nr(l -in)cik'r F(in, 1, - i {kr- k'r)), (2.6)

we can find the asymptotic form of the solution of
Eq. (2.4). The coefficient of the outgoing wave in
this expression will determine the amplitude of
the elastic scattering of the deuterons. This elas -
tic scattering amplitude has the form

) = /«(»)
nk f

1 I A. (2.7)

where •&• is the angle of scattering (the angle be -

tween the vectors k' and k ) , and fR(i>) is the
Coulomb scattering amplitude

/*(») = -
—in In sin2 — • in)

ft

Using a Hulthen function as the wave function of
the ground state of the deuteron,

%(r) N T ? 7

-art) ' h

(2.8)

(where r^ = 1.6 x io" 1 3 cm is the effective range
of the nuclear forces in the tr iplet s ta te) , we can
write the integral appearing in (2.7) in the form

The integration over r can be car r ied out using
formula (10.1) of the Appendix.

We thus find for the differential c ross section
for elastic scattering of deuterons the formula

2-n.n1 - 32r.-A'2/c3e27tn - 1 sin24-exp

- 2 \ ] -^ - (Y i - 2 I

In sin2
M

t )

2 n - l

- m , -in, 1; - dcR. ( 2 . 9 )

The quantity do-R is the c ross section for scat -
tering of point part icles by the Coulomb field, and
is given by the Rutherford formula

do
s i n 4 T

If n « 1, we find from (2.9) for the ratio
d<r/d<TR the value

dzR

-^- - 2 tan - 1
q ^ Y -

q-— Ik sin y . (2.10)

This ratio is equal to unity for small scattering
angles and decreases with increasing angle. For
example, for E^ = 4 Mev and d- = 180°, we find
a ratio of 0.3. Formula (2.10) corresponds to
using the Born approximation.

In the case of large n, formula (2.9) gives unity
for the ratio da/dcrR independently of the angle of
scattering.

For arbi t rary values of n, the integration in
(2.9) can only be done numerically. For example,
for the scattering of 14-Mev deuterons by alumi-
num (n = 0.8), numerical integration gives



I N T E R A C T I O N O F D E U T E R O N S W I T H N U C L E I 199

40 60- SO 100 M
f

FIG. 1. Dependence of the ratio of elastic scattering of
deuterons to Rutherford scattering on scattering angle, for
E d = 15.2 Mev (circles - P b 2 O S , crosses - Bi2 0 9).

do-/dffR = 0.67 for d- = 140° (whi le t h e B o r n a p -

p r o x i m a t i o n g ives 0 . 1 1 ) .

T h u s for d e u t e r o n e n e r g i e s b e l o w t h e Coulomb

b a r r i e r , t h e r a t i o do/dcr^ for s m a l l n d e c r e a s e s

m o n o t o n i c a l l y wi th i n c r e a s i n g a n g l e . With i n c r e a s -

ing n t h i s falloff b e c o m e s l e s s m a r k e d , and for

n » 1 we get R u t h e r f o r d s c a t t e r i n g .

3. B a r r i e r p e n e t r a t i o n and s c a t t e r i n g . E x p e r i -

m e n t s on e l a s t i c s c a t t e r i n g of m e d i u m - e n e r g y d e u -

t e r o n s by heavy n u c l e i show t h a t a t s m a l l a n g l e s

t h e s c a t t e r i n g i s p u r e l y R u t h e r f o r d s c a t t e r i n g , but

s t a r t i n g a t an ang le which d e p e n d s on t h e d e u t e r o n

e n e r g y t h e c r o s s s e c t i o n d r o p s m a r k e d l y f r o m t h e

v a l u e given by t h e R u t h e r f o r d f o r m u l a . F o r e x a m -

p l e , in t h e e l a s t i c s c a t t e r i n g of 15.2-Mev d e u t e r o n s

by P b 2 0 8 , t h e r a t i o of t h e e l a s t i c s c a t t e r i n g c r o s s

s e c t i o n to t h e R u t h e r f o r d c r o s s s e c t i o n i s e q u a l t o

unity out to s c a t t e r i n g a n g l e s of S- = 30°, w h i l e for

g r e a t e r a n g l e s t h e r a t i o fa l l s off e x p o n e n t i a l l y . 7 3

As shown by P o r t e r , 1 0 5 t h i s e x p o n e n t i a l falloff of

c r o s s s e c t i o n with angle c a n b e exp la ined a s t h e

effect of a b s o r p t i o n of t h e d e u t e r o n s in t h e i n c i d e n t

b e a m .

In t h e e n e r g y r a n g e we a r e c o n s i d e r i n g , t h e

d e u t e r o n w a v e l e n g t h i s m u c h l e s s t h a n t h e n u c l e a r

r a d i u s ( for Ed = 15 Mev, t h e r a t i o R/K i s = 1 0 ) ,

s o we c a n u s e t h e q u a s i - c l a s s i c a l a p p r o x i m a t i o n .

To s impl i fy m a t t e r s we s h a l l a s s u m e t h a t t h e t r a -

j e c t o r y of t h e d e u t e r o n in t h e Coulomb field of the

n u c l e u s i s not d i s t o r t e d by t h e n u c l e a r f o r c e s .

Then t h e d e c r e a s e of s c a t t e r i n g c r o s s s e c t i o n with

i n c r e a s i n g ang le c a n b e e x p l a i n e d by c o n s i d e r i n g

t h e a b s o r p t i o n of t h e d e u t e r o n s a long t h e i r t r a j e c -

t o r y in t h e C o u l o m b field.

We c a n w r i t e t h e e l a s t i c s c a t t e r i n g c r o s s s e c -

t ion in t h e f o r m

do = T(§) doR, (2.11)

w h e r e T ( ^ ) i s t h e coeff ic ient for t r a n s m i s s i o n of

t h e d e u t e r o n t h r o u g h t h e n u c l e u s a t a fixed s c a t t e r -

ing a n g l e , and i s equal to

(2.12)

( x i s t h e c o o r d i n a t e of t h e d e u t e r o n a long t h e t r a -

j e c t o r y and l(x) i s t h e m e a n f r e e p a t h of t h e

d e u t e r o n in n u c l e a r m a t t e r ) .

I n t r o d u c i n g t h e d i s t a n c e of c l o s e s t a p p r o a c h b ,

which i s r e l a t e d to t h e s c a t t e r i n g ang le $ by t h e

f o r m u l a

*(») =
Ze-

(2.13)

we find

} l(x) ~A \ aV dr W

w h e r e r i s t h e r a d i u s in t h e p l a n e of t h e d e u t e r o n

o r b i t . I n t e g r a t i o n by p a r t s g i v e s

<r dx „ r , , . d f l
\ TT-r = 2 \ drx (r) -r- — -—-
) I (x) } W i r V I (r6(8)

r) J'

s i n c e x = 0 for r = b , and I 1 — p for r —* °o.

T h e m e a n f r e e p a t h i s i n v e r s e l y p r o p o r t i o n a l t o

t h e d e n s i t y of n u c l e a r m a t t e r .

A s s u m i n g t h a t t h e v a r i a t i o n of t h e d e n s i t y of

n u c l e a r m a t t e r wi th r a d i u s i s g iven by

? ( r ) = - - l a — - == ) P o , (2.14)

w h e r e R i s t h e n u c l e a r r a d i u s and d t h e width of

t h e diffuse b o u n d a r y of t h e n u c l e u s , we find

2.. (
1 t a n h

r — R
1 (r)

( w h e r e Zo i s t h e m e a n f r e e p a t h a t t h e c e n t e r of

t h e n u c l e u s ) .

A s s u m i n g for s i m p l i c i t y a s t r a i g h t - l i n e t r a j e c -

t o r y of t h e d e u t e r o n i n s i d e t h e n u c l e u s , we finally

get
OS 1

T (&) = exp j - ~ \ dr ,< (r2 — 62

b (8)
) 2 sec №

(2.15)

If t h e b o u n d a r y of t h e n u c l e u s i s a s s u m e d to b e

s h a r p , s

find

we

By s u i t a b l e c h o i c e of t h e p a r a m e t e r s R, d,

and Zo, we c a n fit t h e a n g u l a r d e p e n d e n c e of t h e

c r o s s s e c t i o n r a t i o given by f o r m u l a (2.15) to the

e x p e r i m e n t a l l y o b s e r v e d d e p e n d e n c e (Fig . 2). T h e

b e s t fit i s obta ined for t h e following c h o i c e of p a -
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FIG. 2. Depend-
ence of cr/ffR on dis-
tance of closest ap-
proach b(d) for var-
ious values of R//o-
(Ed = 12.2 Mev,
R = 14 x 10~" cm,
d = 3.5 x 10"u cm).

r amete r values: R = 14 x 10 13 cm, d = 3.5 x 10"13

cm and R/Zo - 1) (for the case of elastic sca t te r -
ing of deuterons by Pb208 and Bi209 at Ed = 15.2
Mev).105

It should also be kept in mind that the decrease
of the elastic scattering c ross section with angle
may also be related to the possibility of electr ical
dissociation of the deuteron.

3. (d,p) and ( d ,n ) Stripping Reaotions.

1. Introduction. Of pr imary interest in the low
and medium regions a re the (d ,p ) and (d, n) r e -
actions, which are widely used at present in nuclear
spectroscopy for studying nuclear proper t ies . These
reactions can proceed in two different ways.

Firs t , under the action of the deuterons, the for-
mation of a compound nucleus can occur; then the
compound nucleus decays with the emission of a
proton or a neutron. Schematically such a two-
stage process can be represented as follows:

A - f d - * C ^ B + p.

In this case, for sufficiently low energies of the in-
cident deuterons, one can observe resonance phe-
nomena (especially for light nuclei) , which a re
due to the quasi-discrete s tructure of the spec -
trum of the compound nucleus. In the center of
mass system, the angular distribution is then
symmetric about a line perpendicular to the d i -
rection of incidence of the deuteron.4

Secondly, direct transitions (breakup or s t r i p -
ping react ions) a re possible in which the nucleus
absorbs only one of the part icles constituting the
deuteron,

Such direct processes a re possible because of the
low binding energy of the deuteron. The angular
distribution of the reaction products from direct

transitions is characterized by a very definite
shape, from which one can deduce the spin and
parity of the final state of the residual nucleus
if the spin and parity of the initial nuclear state
a re known.

The possibility of using deuteron reactions for
obtaining data on the spectroscopy of nuclei was
first pointed out by Butler.43 The theory of the
stripping reaction with medium energy deuterons
was also given by Butler,44 who determined the
angular distribution of the products of the s t r i p -
ping reaction by using the condition of continuity
of the wave function at the nuclear surface. The
resul ts of the theory were in good agreement with
the experimental data.

But ler ' s derivation of the angular distribution
of the products of a stripping reaction was ex-
tremely complicated, so that there have been a
whole ser ies of papers35 '92 '87 '70 '61 '116"121 in which
the angular distribution has been found by other
methods. Bhatia, Huang, Huby and Newns35 d e -
termined the stripping angular distribution using
the Born approximation. Although there is little
justification for applying such an approximation
in this energy range, the resul ts were extremely
close to those of Butler. Later Daitch and French57

showed that the Born approximation gives the same
resul ts as Butler 's theory, (cf. also references 30
and 118).

A more consistent theory of stripping reactions
on the basis of perturbation theory, which takes
into account the scattering of the deuteron and
proton waves, was developed in a paper of Toboc-
man.116

In this paragraph we shall t rea t the stripping
reaction by using a method which is due to Landau
and Lifshitz,17 and was applied by them to the d i s -
sociation of the deuteron in the Coulomb field of a
heavy nucleus.

For definiteness we shall consider the (d ,p )
stripping reaction, although the resul ts will be
applicable also to (d, n) reactions since for the
case of light nuclei the Coulomb interaction can
be neglected.

2. Energy relat ions. Energy relations play an
important par t in stripping reactions at low and
medium energies of the incident deuterons. On
the assumption that the initial nucleus was in i ts
ground state ( E A = 0) , the energy balance for the
A (d, p) B reaction can be written in the center of
mass system as

EA — e = Ep — SD + £B ,

where E<j and E p a re the kinetic energies of the
incident deuteron and the emitted proton, e is the
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bonding energy of the deuteron, Sn is the energy
with which the captured neutron is bound in the
nucleus B if the lat ter is in its ground state, and
Eg is the excitation energy of nucleus B in i ts
final s tate . (To take account of the finiteness of
the nuclear masses , E,} and E p should be taken
as the total kinetic energy of the system before
and after the collision.)

The change in the total kinetic energy of the
system (the Q value) for the stripping reaction
is

<? = £ p - £ < , = £ „ - S - ^ B -

The most interesting stripping reactions are those
in which the nucleus is formed in its ground state
or a state of low excitation energy. If the nucleus
B is formed in i ts ground state ( E g = 0) , the Q
of the reaction will be ~ 6 Mev.

Assuming that the state of the nucleons which
constitute nucleus A is not changed when nucleus
B is formed, we can ascr ibe the energy E n =
E B ~ Sn = E(j - Ep - e to the absorbed neutron.

This energy can be either negative or positive.
If E n < 0 the neutron will be in a bound state in
the nucleus. If E n > 0 the state will be virtual,
i .e. , the nucleus B will be unstable with respect
to decay with emission of a neutron.

The energy relations we have given will also
be applicable to the (d, n) stripping reaction, if
n and p a re interchanged in all the formulas.

3. Angular distribution in a stripping reaction.
Let us determine the angular distribution of the
part icles formed in the stripping reaction A (d ,p ) B.
We shall assume that the mass of nucleus A is in -
finitely large compared to the mass of the deuteron.
Then the Schrodinger equation describing the m o -
tion of the deuteron (system of neutron + proton)
in the field due to the presence of a nucleus A
can be written as

the equation

/ r A —

rn, r p )=0 , (3.1)

where H A is the Hamiltonian for the internal m o -
tion of the initial nucleus A, and £ is the coordi-
nate describing its motion; A n and A p a re the
Laplace operators with respect to the neutron co-
ordinates r n and proton coordinates rp ; Vn and
Vp a re the potentials of the interaction of the neu-
tron and proton with the nucleus A, V n p is the
potential for the nuclear interaction of the neutron
and proton, and E is the total energy of the system.

To solve Eq. (3.1), we expand the wave function
* in t e rms of the wave functions of the residual
nucleus B. These wave functions which we denote
by <Pb(£>rn)> with quantum number b, satisfy

rn) = 0. (3.2)

^ is subjected

(C, r«) fi (C. rn) dC drD = 6bV. (3.3)

The solution of (3.1) can be represented as

We shall assume that the function
to the normalization

(C, rn, rp) - 2 <h (FP) ?b (C. rn)

+ orthogonal t e r m s , (3.4)

where the expansion coefficients ^b, which depend
on the proton coordinates, can be regarded as the
wave functions of the proton, freed as a resul t of
the interaction, corresponding to definite s ta tes
cph of the residual nucleus B.

After substituting (3.4) in (3.1) and using the o r -
thogonality of the functions <pb, we get the follow-
ing equation for determining the function ifo:

?6l

2M

nP V (C, rn, rp) rfC (3.5)

where kp = •—f~ (E - Ejj). By using the Green's

function, this differential equation can be converted
to an integral equation.

To find the c ross section for the (d ,p ) reaction
it is necessary to know only the asymptotic form of
fe ( r p ) • It is easily found by using the asymptotic
expression for the Green's function5 of Eq. (3.5):

rp. rJ>) ~* - X T '

£D = — %, rp-rp
(3.6)

Here is the wave function of the emerg -

ing proton in a state with a definite wave vector
kp, taking into account the scattering of the p r o -
ton in the field of the residual nucleus B. At in-
finity J/IU is the sum of a plane wave and an out-
going spherical wave.

Using (3.6) we get the following asymptotic ex-
pression for the function i/n,, valid for large r:

(3.7)

rp. (3.8)

The coefficient f of the outgoing wave in (3.7) is
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the amplitude for the (d, p) reaction. The differ-
ential c ross section is related to the amplitude by
the formula

= — - 1 / | WO. (3.9)

where V(j is the velocity of the incident deuteron
and Vp is the velocity of the outgoing proton.

Formula (3.8) gives the exact value of the r e -
action amplitude, but to compute it we must know
the exact wave function for the whole system,
*( f , r n , r p ) . The reaction amplitude can be com-
puted approximately by replacing the exact function
* in (3.8) by the "incident" wave

where <pa (£) is the wave function of the initial
nucleus A, <Po(r) = V a/2n e~ar/r is the wave
function of the ground state of the deuteron ( a =
VMe/R2 , e is the binding energy of the deuteron),
— d̂ ipk^( r ^ ) is the wave function for the motion
of the deuteron center of mass in the field of the
nucleus A. At infinity, 0^ , is the sum of the in-
cident plane wave with wave vector k^ and the
scat tered outgoing spherical wave. (This rep lace-
ment is actually equivalent to using the first ap -
proximation of perturbation theory.)

Thus we find the following expression for the
reaction amplitude:

/ =

where

(3.10)

(3.11)

We see that F ( r n ) can be considered to be the
function of the neutron in the final s tate .

Because of the short range character of the
nuclear forces, in evaluating the integral appear-
ing in (3.10) we can use the realtion (cf. the Ap-
pendix )

/ ^ 0 - n - r p ) . (3.12)

(This equation holds for zero range of the nuclear
forces between neutron and proton in the deuteron.)
We thus finally get for the reaction amplitude

(r) F* (r) ^ (r) dr. (3.13)/ = 2 | / - £

The main contribution to this integral comes from
the region outside the nucleus ( r > R where R is
the nuclear rad ius ) , since in the energy region we
a re considering (E^ < 20 Mev) the mean free path
of deuterons and protons in nuclear matter is very
short , so that the wave functions ^u , and ^u

which describe the free s ta tes of the deuteron and
proton go to zero in the interior of the nucleus.

The inclusion of the possibility of penetration
of deuterons and protons into the interior of the
nucleus corresponds to treating the (d ,p ) process
as occurring via compound nucleus formation.

It is convenient to expand the wave function of
the neutron in the residual nucleus in a se r ies of
spherical harmonics:

= 2
/, in

(3.14)

The individual t e rms in this expansion correspond
to different states of the neutron with definite va l -
ues of the orbital angular momentum. We may
note that according to the shell model there should
be only one te rm in the sum over I, i .e. , the neu-
tron in the nucleus should be in a state with a defi-
nite value of I.

In the external region r > R, an exact wave
function can be found for the neutron. If the neu-
tron energy E n is negative, the radial wave func-
tion for a neutron in a state of orbital angular m o -
mentum I will have the following form in the r e -
gion outside the nucleus:

9t((7-) = Clfi(A;nr), r > R,

where fy(x) = VTT/2X K J + | ( X ) is the spherical

MacDonald function, kn = 2M|En| a n c j Q^ i s

a normalization constant. The constant C7 is
conveniently expressed in t e rms of the reduced
width yi of the state, which is given in terms of
the value of the radial wave function of the neu-
tron at the surface of the nucleus by the formula

Y ( = g £ | 9 f . ( / ? ) | 2 .

In the case of a virtual neutron state ( E n > 0) ,
the reduced width yj is proportional to the in-
t r ins ic neutron width F j which character izes
the probability of decay of the residual nucleus B
with emission of a neutron carrying off orbital an-
gular momentum I. Thus, expressing C/ in
t e rms of y,, we have

(3.15)

Since in (3.13) the region of integration in the
interior of the nucleus is unimportant, in calcu-
lating the amplitude f we can use the expansion
(3.14) and replace the radial fuctions 9ty(r) by
the expressions (3.15). We then find

(3.16)

where I, m
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Substituting this expression for the amplitude into
(3.9), we find for the differential c ross section

rfO. (3.18)
I, m

4. Inclusion of spin. If we take into account the
spins of the nuclei and the spins of the deuteron,
neutron and proton, we get an additional factor in
(3.16) which depends on the spins and their p r o -
jections.

In fact when the spin is taken into account, we
should take for the wave function of the initial
state * which appears in the general expression
(3.8) for the reaction amplitude the function

»F0 = tp(£) 90 (r) <l>kd(rd) Xii-Zlv

where Xi/r and Xiu, a**e the spin functions of the
initial nucleus (i and m a re the spin and its p r o -
jection for the initial nucleus) and the deuteron
(^4 is the projection of the deuteron spin) . The
spin wave functions will be assumed to be or tho-
normal:

For the wave function of the final state we
should take

)Xiv9i*j&, rn),

where Xi^ is the spin function of the liberated
proton and cp\^. is the total wave function of the

residual nucleus in the state with spin j and spin
projection \iy Obviously the spin j of the r e s id -
ual nucleus is the sum of the spin i of the initial
nucleus, the orbital angular momentum I of the
captured neutron and the spin of the neutron.

The wave function of the residual nucleus can
be expanded in spin functions of the initial nucleus,
spin functions of the neutron and eigenfunctions of
the orbital angular momentum of the neutron:

(S, rn)

= 2

(3.19)

where (/xyxn | igs^g) and
Clebsch-Gordan coefficients.

We note that the integral

a re

can be regarded as the wave function of the captured
neutron and can be represented in the region outside
the nucleus in the form

rD>R,

w h e r e y j j s i s t h e r e d u c e d w i d t h o f t h e s t a t e i n

w h i c h t h e a b s o r b e d n e u t r o n h a s o r b i t a l a n g u l a r

m o m e n t u m I and t h e n u c l e u s h a s t o t a l s p i n j .

W e n o w u s e ( 3 .19 ) a n d t h e e x p a n s i o n of t h e d e u

t e r o n s p i n f u n c t i o n in t e r m s of s p i n f u n c t i o n s f o r

t h e n e u t r o n a n d p r o t o n

, = 2 ( l l!•.

A f t e r c a r r y i n g o u t t h e i n t e g r a t i o n and t h e s u m m a -

t i o n o v e r t h e s p i n v a r i a b l e s w e g e t f o r t h e r e a c t i o n

a m p l i t u d e :

'. ». m, Hs. %

X f 4 4 - ( 3 - 2 o )

w h e r e I m i s d e f i n e d a s b e f o r e in ( 3 . 1 7 ) .

T h e c r o s s s e c t i o n w i l l b e g i v e n b y t h e s q u a r e

m o d u l u s of ( 3 . 2 0 ) . T h e c r o s s s e c t i o n m u s t b e a v -

e r a g e d o v e r s p i n p r o j e c t i o n s in t h e i n i t i a l s t a t e

a n d s u m m e d o v e r s p i n p r o j e c t i o n s in t h e f ina l

s t a t e :

3(2i + l) 2 I / I 2

4Mx
3(2£

X i • \ f l 4

) IT I1

T h e s u m m a t i o n c a n b e d o n e b y u s i n g t h e f o l l o w i n g

r e l a t i o n s :

2 ( { y

2 ( ^ T (3 .21 )

w h i c h r e s u l t f r o m t h e o r t h o g o n a l i t y p r o p e r t i e s of

t h e C l e b s c h - G o r d a n c o e f f i c i e n t s .

F i n a l l y , a f t e r a v e r a g i n g and s u m m i n g o v e r s p i n

s t a t e s , w e g e t t h e f o l l o w i n g e x p r e s s i o n f o r t h e

( d , p ) c r o s s s e c t i o n :

(3.22)

I

H e r e i and j a r e t h e s p i n s of t h e i n i t i a l s t a t e

of n u c l e u s A a n d t h e f i n a l s t a t e of n u c l e u s B and

T h e s u m m a t i o n in ( 3 .22 ) e x t e n d s o n l y o v e r t h o s e

v a l u e s of I w h i c h s a t i s f y t h e s e l e c t i o n r u l e
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Also, if the parity of the initial state of nucleus A
and the final state of nucleus B a r e the same then
only even values of I a r e possible, while if the
initial and final states have opposite parity only
odd values of I a re possible.

The amplitude I m which appears in (3.22) is
given by

IT = \ ^ P W l M ) Y'm (ft' *> *** ( r ) d t ' ( 3 - 2 3 )

where is the wave function for the center of

mass motion of the deuteron in the field of nucleus
A, and ipy, is the wave function for the motion of

the proton in the field of nucleus B. The value of
kn is related to the energy EQ of the absorbed
neutron by the equation kn = v - 2 M E n / f i 2 .

Formula (3.22) determines the angular dis t r ibu-
tion of the protons from the (d, p) stripping r e -
action.

5. The plane-wave approximation. The calcu-
lation of the angular distribution of the protons
produced in a stripping reaction reduces to the
computation of the integral (3.17). This integral
can be calculated in explicit form if we neglect the
scattering of the deuteron and proton waves in the
field of the nucleus, i .e. , if we replace the wave
functions ipy^ and ip\r in the integral (3.17) by

plane waves e^dr and e*kpr, and integrate only
over the region outside the nucleus, r > R. Thus
E?1 can be represented approximately as

k = k d - k p . (3.24)

Obviously the plane wave approximation can be
used only if the energy E^ of the incident deuteron
and the energy E p of the emerging proton a re con-
siderably above the Coulomb ba r r i e r Ze2 /R.

Using the expansion of the plane wave in spher i -
cal harmonics,

1, m
{kr) Y?m y

and the orthogonality property of the spherical
harmonics, we find

IT = Yfm (»k, 9k) ^ /, [kr) ^ g g -
it

^ (K,

ITn
l n <3-24'>

Substituting this expression for I m in (3.22) and
carrying out the summation over m by using the
relation

I v I2 —
\X lm\ —

2/-J1

we obtain finally for the c ross section of the s t r i p -
ping reaction in the plane wave approximation the
following expression:

da = 2/+1 'CP iMaR3

•M \ ! | l 2 Y i l

dji (kR)
dR

( 3 . 2 5 )

W e h a v e m a d e u s e o f t h e r e l a t i o n k 2 + k ^ =

2 { a 2 + ( £ k d - k p ) } 2 , w h i c h f o l l o w s f r o m c o n s e r v a -

t i o n o f e n e r g y .

T h e p r o t o n a n g u l a r d i s t r i b u t i o n g i v e n b y f o r m u l a

( 3 . 2 5 ) d e p e n d s o n t h e e n e r g y E d o f t h e i n c i d e n t

d e u t e r o n , t h e e n e r g y E p o f t h e e m e r g i n g p r o t o n ,

a n d o n t h e o r b i t a l a n g u l a r m o m e n t u m o f t h e c a p -

t u r e d n e u t r o n .

F o r f i x e d i n i t i a l s t a t e o f n u c l e u s A a n d f i n a l

s t a t e o f n u c l e u s B , t h e p e r m i s s i b l e v a l u e s o f I

a r e g i v e n b y t h e s e l e c t i o n r u l e s :

( a ) j i s t h e v e c t o r s u m o f i , I, a n d g , i . e . ,

( b ) I f t h e i n i t i a l a n d f i n a l s t a t e s h a v e t h e s a m e

p a r i t y , I i s e v e n . I f t h e p a r i t i e s a r e o p p o s i t e ,

t h e a d m i s s i b l e I v a l u e s a r e o d d .

F o r m u l a ( 3 . 2 5 ) c o n t a i n s t w o f a c t o r s w h i c h d e -

p e n d o n t h e a n g l e d- o f e m e r g e n c e o f t h e p r o t o n

( t h e a n g l e b e t w e e n t h e v e c t o r s k p a n d k d ) .

( 1 ) T h e d e u t e r o n f a c t o r { a 2 + ( | k d - k p J 2 } " 2 .

T h e p r o t o n , h a v i n g a n i n i t i a l m o m e n t u m | k d ,

i s e m i t t e d w i t h m o m e n t u m k p . T h e d i f f e r e n c e

kp ~ i ^ d i s t h e m o m e n t u m o f t h e r e l a t i v e m o t i o n

o f t h e p r o t o n i n t h e d e u t e r o n a t t h e m o m e n t w h e n

t h e n e u t r o n i s s t r i p p e d o f f . T h e f a c t o r { a 2 +

( g k d - k p ) 2 } " 2 i s p r o p o r t i o n a l t o t h e p r o b a b i l i t y

f o r a g i v e n v a l u e o f t h e r e l a t i v e m o m e n t u m i n t h e

d e u t e r o n . A s a f u n c t i o n o f t h e a n g l e £ b e t w e e n

k p a n d k d , t h i s f a c t o r h a s a m a x i m u m i n t h e f o r -

w a r d d i r e c t i o n . T h e g r e a t e r t h e a n g l e a t w h i c h

t h e p r o t o n e m e r g e s , t h e g r e a t e r m u s t b e t h e m o -

m e n t u m o f t h e r e l a t i v e m o t i o n i n t h e d e u t e r o n a n d

t h e l e s s t h e p r o b a b i l i t y . T h e d e u t e r o n f a c t o r i s

t h e s a m e f o r t r a n s i t i o n s w i t h d i f f e r e n t v a l u e s o f

I. T h e d e p e n d e n c e o f t h e d e u t e r o n f a c t o r o n a n g l e

i s s h o w n i n F i g . 3 .

( 2 ) T h e n e u t r o n f a c t o r

dR

x — In fz(knR)

The neutron leaves the deuteron with momentum
k = kd - kp. The neutron t ransfers this momentum
to the nucleus. The factor
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dR dR 111 f, {k.nR)

is proportional to the probability that a neutron
with momentum к will be found on the surface of
the nucleus and have orbital angular momentum I.
This factor, which contains spherical Bessel func-
tions, is an oscillating function of the angle 4,
whose oscillations decrease with increasing •&.
If 1 = 0, the neutron factor has its principal max-
imum in the forward direction ^ = 0. For all other
values of I, there is a minimum at 4 = 0. The
position of the first maximum for I * 0 can be
found from the quasi-classical condition for cap-
ture of the neutron: kR = I, where к = [(кд - kp )2

+ 4k(jkp sin2 (чЯ/2)]1/2. The greater the angular mo-
mentum к which the neutron must have to pene-
trate to the distance R.

As I increases, the first maximum of the neu-
tron factor shifts toward larger angles •& and de-
creases in magnitude. The angular dependence of
the neutron factor for different I values is shown
in Fig. 3.

Figure 3 also shows the characteristic depend-
ence of the differential cross section on angle &
for various values of I.

FIG. 3. Angular
distribution for a
stripping reaction.
The solid curve is
for I = 0, the dashed
curve for 1=1, and
the dotted curve for
I = 2. E d = 6.9 Mev,
E p = 10.8 Mev,
R = 7 x 10"" cm.

If the selection rules permit several different
I values, the differential cross section will be the
sum (without interference) of contributions from
different I values. The weight factors for the
various terms will be determined by the reduced
widths y\i.

6. Transition to the Serber model. If the energy
of the incident deuteron is sufficiently high (E<}» e),
the neutron will be captured in a virtual state (k n =
iKn corresponds to an energy of the final nucleus
which lies in the continuous spectrum ). И we de-
note the density of final states of the nucleus by
Pjj, the cross section for stripping leaving the
final nucleus with energy in the interval dEj can
be written in the form

Using the principle of detailed balancing, which
states that the reduced width y-jj is related to the
neutron sticking probability ti and the density
рц of final states of the nucleus by the formula2

and noting that for KnR » 1 we have approximately
Ihi^KnR)! 2 =* l/KnR

2, we get the following expres-

We see that the energy of the deuteron is shared
approximately equally between the neutron and
proton.

In the case of fast neutrons we may assume that
absorption occurs only at impact parameters smal-
ler than the nuclear radius. Since we are interested
in a stripping process we must consider only those
neutrons which are bound to protons which do not
interact with the nucleus. If the radial projection
of the distance between neutron and proton is p,
it is obvious that such neutrons will have impact
parameters Vk (* = 2/kd) which are contained in
the interval between R - p and R. Carrying out
the summation over impact parameters in this in-
terval, averaging over different values of p and
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integrating with respect to energy and angle of the
emerging protons, we get the Serber111 formula for
the total c ross section for the stripping reaction

ap-y /M? a , * „ « * . (3.27)

The distribution of the emerging protons in energy
and angle then corresponds to the "transparent"
model of Serber,111

Noting also that

< * « ( » ) _ « „ / ^

(3.28)

7. The effect of finite nuclear m a s s . For the
case of stripping reactions on light nuclei the fact
that the nuclear mass is finite can lead to s i z e -
able correct ions. We shall show how the resul ts
of the preceding paragraphs should be changed to
take account of the finite mass of the nucleus.

(1) In Eq. (3.10) for the reaction amplitude, the
proton mass M should be replaced by the reduced
mass M M B / ( M + M B ) . (We assume the neutron
and proton masses to be equal and denote them by
M, the mass of the initial nucleus A is M A . the
mass of the final nucleus B is M B - )

(2) The reduced mass of the neutron appears in
the reduced width yj / , so that the neutron mass M
in (3.15) should be replaced by the reduced mass of
the neutron M M A / ( M + M A ) •

(3) In the expression for the deuteron velocity
vd = fikd/Md, which appears in the cross section
(3.9), the deuteron mass M^ = 2M should be r e -
placed by the reduced mass 2 M M A / ( 2M + M A )•

Inclusion of these corrections gives the addi-
tional factor

in the c ross section formula (3.22).
(4) The expression (3.10) contains the vectors

r n and r p , which determine the coordinates of
the neutron and proton relative to the center of
mass of the initial nucleus. Let us introduce the
vector r p = Tp - ( M / M B ) r n , which gives the co-
ordinates of the proton relative to the center of
mass of the residual nucleus B. It is obvious that
when we take account of the finite mass of the nu-
cleus the wave function j/ijj. in (3.10), which de -
scr ibes the motion of the proton in the field of the
residual nucleus B, should depend on r p . Thus,
in the plane wave approximation we get for the
reaction amplitude

we finally get, in the plane wave approximation
taking account of the finite nuclear m a s s , the fol-
lowing expression for the differential c ross s e c -
tion for the stripping reaction:

« « . - & ! 4 £

M
' Mk

2i

dji (kR)
dR do,

= k d -
MB

(3.29)

This formula gives the angular distribution of the
protons in the center of mass system.

8. Comparison with experiment. The angular
distribution of the products of a stripping reaction
given in formula (3.25) was first found by Butler.
Despite the large number of assumptions made in
deriving formula (3.25) (the assumption of zero
range of the nuclear forces between neutron and
proton, the replacement of the exact wave function
* by the approximate wave function \J>0 in the ex-
pression (3.8) for the amplitude, the neglect of
scattering of the deuteron and proton waves in the
field of the nucleus, and the neglect of the poss i -
bility of penetration of the deuteron and proton into
the nucleus), the angular distribution given by this
formula is in good agreement with experimental
data for a large number of reactions (especially
for light nuclei) .

Figures 4, 5, 6, and 7 show the angular d i s t r i -
butions observed in various react ions. The ob-
served angular distributions and the theoretical
distributions given by formula (3.25) are in good
agreement in the region of small angles. At large
angles there is a discrepancy which resul ts from
the possibility of processes involving compound
nucleus formation.

FIG. 4. Angular distri-
bution of protons from Al2'
(d, p)Al",Ed = 8Mev,
Q = 5.49 Mev, I = 0. The
solid curve is for R = 6.15
x 10~13 cm, the dashed
curve for R = 5.4 x 10~" cm.
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FIG. 5. Angular distribution
of protons from Si" (d, p) Si",
E d = 8.18 Mev, Q. = 4.97 Mev,
E, = 1.28 Mev, / = 2, R = 4.4
x 10"" cm.

FIG. 7. Angular distribution
of protons from Mg" (d, p) Mg",
E d = 8.21 Mev, Q. = 7.05 Mev,
E, = 1.83 Mev, I =0,2 mixture,
R = 5.3 x 10-13 cm.

In comparing the experimental data with (3.25),
one should choose the best value of the parameter
R; this value may differ somewhat from the usu-
ally accepted value of the nuclear radius Ro. A
good fit with experiment is obtained by choosing
R somewhat larger than the nuclear radius Ro

as given by the empirical formula
i

Л„ = (1.7 + 1.22Л3)-1(Г13 cm.

where A is the mass number of the nucleus.
Figure 4 shows how the angular distribution

changes if the value of R is changed by 10%.
However, in many cases one observes consid-

erable deviation of experiment from the predic-
tions of the Butler theory. These deviations show
the importance of taking into account both the nu-
clear and Coulomb scattering of the particles
participating in the stripping reaction.32

9. Inclusion of scattering of deuteron and pro-
ton waves. If we take into account Coulomb and
nuclear scattering, the wave functions of the deu-
teron and proton in the region outside the nucleus,
can be chosen in the form

, (r) -4,2;'

-af*Hf(nf, V))'-^1

-"••<V {/", (n p, Apr)

п ( » к р . ? к „ ) 5 ' ! т (»•?).

(3.30)

(3.31)

№ •

FIG. 6. Angular
distribution of pro-
tons from Ca4 1 (d, p)
Ca4 ', E d = 7 Mev,
Ca43 in its ground
state, I = 3, R =7.5
x КГ 1 3 cm.

where Fj(n, kr) and Gj(n, kr) are the regular
and irregular radial Coulomb functions, which are
solutions of the equation

2MZe21 n

щ = arg Г (1 +Z + in) is the Coulomb
scattering phase; n = Ze2/Rv where v is the ve-
locity of the particle; the amplitudes a^ and ofy
describe the purely nuclear scattering of the par-
tial deuteron and proton waves.

The amplitudes a" and oq can be expressed
in terms of the logarithmic derivative of the radial
wave function fy at the nuclear surface4

-is Hi (Я)
1—i-is Н((Д) }•

where

The expressions for the amplitudes щ simplify
in various limiting cases.

(a) For an absolutely impenetrable nucleus

1 Hi (Щ •

(b) In the neighborhood of a resonance energy

i Г1 H*(R)
lit (Щ

(c) For a black nucleus

{ 0 l>kR.
However when we use the functions of (3.30)

and (3.31), the integral I m cannot be calculated
in explicit form. Numerical computations carried
out by Tobocman and Kalos117 have shown that in-
clusion of Coulomb and nuclear scattering of the
deuteron and proton can result in marked devia-
tions from the results of the Butler theory.

In Figs. 8 and 9 we give graphs showing the
influence of Coulomb and nuclear scattering on
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^ o

<r 2tr 0
FIG. 8. Angular distribution of protons from F " (d, p) FJ0,

for Ed = 14.3 Mev, Qo = 4.37 Mev, I = 2, R = 5.05 x 10~3 cm;
a) plane wave approximation; b) Coulomb scattering included;
c) Coulomb scattering and absorption of protons with lp < 4
included; d) Coulomb scattering and hard sphere scattering of
protons included. N is the normalization factor.

FIG. 9. Angular distri-
bution of protons from Ti"
(d, p)Ti49, Ed = 2.6 Mev,
Qo = 4.46 Mev, I = 1,
R = 6.49 x 10"" cm;
a) plane wave approxima-
tion; b) Coulomb scatter-
ing included; c) Coulomb
scattering and absorption
of protons with I < included.

the angular distribution of protons from the (d ,p )
reaction.

Coulomb scattering of the deuteron and proton
waves resul ts in a shift of the maxima of the an-
gular distribution toward larger angles and a
broadening and reduction in height of the maxima.
There is also a reduction of the total c ross section.
In the case of low-energy incident deuterons, the
Coulomb effects can change the angular d is t r ibu-
tion completely. If the deuteron energy is consid-
erably above the top of the Coulomb ba r r i e r , the
Coulomb effects may produce a noticeable change
in the angular distribution but they will not spoil
the unique assignment of the I value for the cap-
tured neutron.

The effect of nuclear scattering of the deuteron
and proton waves on the angular distribution is
opposite to that of the Coulomb scattering. As a
resul t of nuclear scattering the maxima in the an-
gular distribution a r e shifted toward smaller angles
and the width of the maxima decreases . The size
of the total c ross section decreases , just as it does
because of the Coulomb effects.

10. The investigation of nuclear s tructure by
means of the stripping reaction. The (d,p) and (d,n)

stripping reactions on light nuclei with medium
energy deuterons are a powerful tool for studying
nuclear proper t ies . Of principal interest a r e the
stripping reactions which lead to formation of the
residual nucleus in i ts ground state or a low-lying
excited state.

The passage of a monoenergetic beam of deu-
terons through a layer of mater ia l A resul ts in
the formation among the reaction products of
monoenergetic groups of protons or neutrons.
Each such group corresponds t o a definite level
of the residual nucleus B. By measuring the Q
of the reaction for the different proton groups,
we can determine the level energy Eg of a state
of the residual nucleus B from the relation

But the rea l importance of stripping reactions
for nuclear spectroscopy is related to the cha rac -
ter is t ic angular distribution from such react ions.
The study of the angular distribution of the protons
(or neutrons) of a given group enables one to draw
conclusions concerning the spin and parity of the
corresponding state of the residual nucleus.

If the spin and pari ty of the initial state of nu-
cleus A a re known, we can find the spin and parity
of the final state of nucleus B by comparing the
experimentally observed angular distribution of
the protons with the distribution given by (3.25).
This comparison enables us to find the possible
values of the orbital angular momentum I of the
neutron absorbed by the nucleus. Very often one
can obtain satisfactory agreement with experiment
for only one definite value of I. A first indication
of the possible values of I can be found by studying
the experimental distribution at small angles. A
forward maximum shows that I = 0 is present ;
a forward minimum shows that I = 0 is absent.

If I has been found, the selection rule de te r -
mines the parity of the final state uniquely, while
the spin j is one of the possible values obtainable
from vector addition of i, I, and g. It is conven-
ient to choose a target nucleus A which has zero
spin or a low value of the spin, to make the number
of choices for j a minimum. If i = 0, only two
values of j a r e possible (while for 1=0, j is
uniquely determined).

The stripping reaction can also be used to find
reduced widths of levels of the residual nucleus by
examining the intensities of the groups of protons
emitted in the reaction. In fact, after having de te r -
mined the possible I values from the shape of the
angular distribution, one can by a suitable choice
of the radius R make a fit at small angles of the
curve determined from (3.25) to the experimental
curve. Then from the measured absolute value of
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the c ross section at the first maximum, one can
use formula (3.25) to calculate the reduced width
yjl of the corresponding level of the residual nu-
cleus B.1 1 4 '6 5

If the captured neutron in the final state of the
residual nucleus can have several possible values
of I, we can in this same fashion determine the
reduced widths y-w corresponding to the different
I values.

According to the shell model, a nucleon in the
nucleus must be in a state of definite orbital an-
gular momentum. The possible I values can be
enumerated from the shell model. Thus the values
of the reduced widths ya determined from a
stripping reaction can be used to tes t the validity
of the shell model.34 '45

The values of reduced widths obtained from
stripping data using formula (3.25) a re several
t imes smal ler than those obtained by other meth-
ods (for example, from experiments on ( p , p )
scattering, e tc ) . This is due to the approxima-
tions made in (3.25). It has been shown87'117 that
taking account of scattering of the deuteron and
proton waves leads to a reduction of the factor

\ I m I2 which appears in the more exact formulalm l

(3.22) for the c ross section. Thus the inclusion
of scattering of the deuteron and proton waves
enables one to obtain a more cor rec t value for the
reduced width. Despite the fact that the plane wave
approximation which is used in (3.25) gives too
small values for the reduced widths, the ratios
of the reduced widths for different levels a r e given
correctly by this approximation.65

11. Polarization in stripping react ions. From
general symmetry considerations it is evident that
the par t ic les liberated in a stripping reaction may
be polarized in a direction perpendicular to the
plane containing the wave vectors of the incident
deuteron and the emerging par t ic le . A determina-
tion of the polarization produced in a stripping r e -
action can give additional information concerning
the spin of the residual nucleus.

In the plane wave approximation, the reaction
products a r e unpolarized. In fact in this case the
neutrons [ if we consider the reaction A (d, p ) B]
a re absorbed by nucleus A independently of the
polarization of the incident deuteron, so that the
emerging protons a r e unpolarized. However,
when we take into account the interaction of the
emerging proton with the nucleus, we get a po la r -
ization.

The possibility of polarization from a stripping
reaction was first pointed out by Newns,99 who de-
termined the polarization on the assumption that
the nucleus is opaque for protons.

The possibility of absorption of the proton by
the nucleus causes the average value of the p r o -
jection (along the vector kp x k^) of the orbital
angular momentum of the neutron, which was o r ig -
inally bound to the proton in the deuteron and later
absorbed by the nucleus, to be positive. This r e -
sults in a polarization of the protons. The total
angular momentum of the absorbed neutron can
assume the values l + \ and I — 2, i .e. , the o r -
bital angular momentum and spin can be either
paral le l or antiparallel . Since the spins of the
proton and neutron a r e paral lel in the deuteron,
and since in the capture a positive value of the
projection of the orbital angular momentum is
more probable, the protons will be partially po -
larized along the direction of the vector kp x k^
if j n = Z + 2, and will be polarized in the opposite
direction for j n = I — g. The magnitude of the po-
larization will be given by the expression

(3-32)

Thus the sign of the polarization gives an indi-
cation of the value of j n . Since the spin j of the
residual nucleus is the vector sum of i and j n ,
knowledge of j n simplifies the problem of finding
j . For example, if i = 0, j = j n = l±g, so that j
is uniquely determined by the sign of the polar iza-
tion.

Horowitz and Messiah88 have determined the
polarization of the protons from the stripping r e -
action, using a hard sphere model of the nucleus.
They found the same sign for the polarization as
did Newns.

Cheston49 determined the polarization of the
protons from stripping reactions which resul ts
from spin-orbit interaction of the proton and the
residual nucleus. The pa ramete r s for the poten-
tial of this interaction were chosen on the basis
of data on scattering of low energy protons by
nuclei. It turned out that the polarization due to
the spin-orbit coupling is opposite to the po la r i -
zation which resul ts for a black nucleus or a
hard-sphere nucleus.

Polarization of the protons was observed ex-
perimentally by Hillman84 in the C12 ( d , p ) C13

reaction. The experimentally determined sign
of the polarization agrees with that given by
Cheston, but the absolute value of the polar iza-
tion is three t imes as large as the calculated
value. It was later shown by Tobocman, Newns,
and Refai123 that the correct sign of the polar i -
zation of the protons from a stripping reaction
can be obtained if the scattering of the deuteron
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by the nucleus is taken into account. The exper i -
mental results1 2 4 '1 2 5 agree with reference 123.

12. Angular correlations in (d ,py) and (d, ny)
react ions. Additional information on the spin of
the final state of the nucleus in a stripping r e a c -
tion A (d, p) B can be gotten by studying the an-
gular correlat ion between the protons and the y -
quanta emitted by nucleus B if it is formed in an
excited s ta te . The theory of the angular co r r e l a -
tions for (d ,py) and (d,ny) reactions was given
by Biedenharn, Boyer, and Charpie36 (Cf. also
references 68, 107, and 89).

The determination of the angular correlation in
a (d ,py) reaction reduces to finding the angular
distribution of the y radiation for a fixed direction
of emergence of the proton. The mat r ix element
for such a stripping process with subsequent e m i s -
sion of a y quantum having angular momentum L
and projection M will be proportional to the prod-
uct of the stripping amplitude (3.20) and the matr ix
element of the multipole moment (Q_M)j/ni;jfjuf>

for the transition of the residual nucleus from the
state j , jij to the state jf, fxf by emission of a y
quantum. Using (3.20) and (3.24') and omitting
factors depending on the angular momentum p r o -
jections (which do not affect the angular dis tr ibu-
t ion), we get

M=
l.tmv-s

X (sl^m | />;.) qt (k) YL (K?k) (QLU)^-, ,-/iy (3.33)

where we have introduced the abbreviation

,(-) = - / , (kR) A -

The summation in (3.33) extends over all possible
values of the projection /UJ in the "intermediate"
state .

Since the operator Q L M of the multipole m o -
ment is an L -vector, i .e. , a quantity t ransform-
ing according to the (2L + l ) -dimensional i r r educ -
ible representation of the rotation group, and since
the wave functions cpj^. and <Pjgxf a re also L -
vectors (with L = j and L = jf) , the matr ix e l e -
ments of Q L M coincide (except for factors inde-
pendent of the angular momentum projections) with
the coefficients of the expansion

The squared modulus of the matr ix element
(3.33) gives the probability of emission of a y
quantum with given angular momentum L and
projection M. The angular distribution of such

radiation is uniquely determined by the well-known
functions ¥\j&, which a r e given, for example, in
reference 1. We thus obtain for the angular d i s -
tribution of the y quanta, averaged over the po-
larizations of the angular momenta in the initial
and final s ta tes , the following expression:

d i p

( 2 2 W " IX ( 2

X (jjpp, I LM) Yfm (K, 90 It (k) I2 FLU (kT). (3.34)

This expression is usually called the correlation
function.

The summation over /*d, Mp. Mi. and nn in
(3.34) can be car r ied out by using the orthogonal
propert ies (3.21) of the Clebsch-Gordan coeffi-
cients. If we now use the formula for expansion
of a product of spherical harmonics in a se r ies of
spherical harmonics

Y* v -i 1 V Y V r(2£+iH2r+i)-] |
V [JL-=— v J

X (W 00! v0) ill' - mm' \ vp.) 7vii, (3.35)

and also use the formula for summing over angular
momentum projections:38

- mm'

- ( _ 1)- '+ ' ' -+^ ( 2 / + 1) (//^ - ^ | vO) W (1,1'r, «), (3.36)

we finally get the correlation function in the form

ll'sv

X ( - 1)' (21 + I)2 {21' + 1)2 (Z/'OO | v0) (LL1 - 1 1 v0)

X W {Ijl'j; s-i) W (jLjL; ; » qt (k) qv (k) i>v (cos 6), (3.37)

where 0 is the angle between the direction of
emission of the y ray and the direction of the
momentum k t ransferred to the nucleus formed
in the stripping process ; W(abcd;ef) denotes
the Racah coefficients;106 the factor il~1' in (3.37)
is rea l since the conservation of parity forces
l-V to take on only even values.

Because of the law of combination of angular
momenta, the highest degree, v m a x , of the Le-
gendre polynomials appearing in (3.37) is an even
integer less than or equal to 2j, 2Z m a x , and 2L.

If the angular distribution of the y rays is not
isotropic, I is different from zero . From the
shape of the angular distribution one can, in gen-
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era l , determine the relative magnitudes of the
reduced widths yus-

If the spin of the initial nucleus is i = 0, the
angular correlation depends only on j , jf, Z,
and L, and is independent of y u s . In this case
one can, from the observed correlation, make a
unique choice of one of the two possible j values
determined from the angular distribution of the
protons.

Figure 10 shows the angular distribution of y
rays observed53 in the Be9 (d, p) Be10 reaction.
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FIG. 10. Angular distribution of y rays from the transition

of B10 from its first excited state (2+) at 3.37 Mev to the
ground (0+) state, for Ed = 3.5 Mev, 6p = 20°. S is the chan-
nel spin.

13. Formation of deuterons in the-collision of
nucleons with nuclei. The inverse process to the
stripping reaction is the so-called pickup (cap-
tu re ) reaction, in which a proton incident on the
nucleus pulls out a neutron to form a deuteron.
The pickup process , like the stripping reaction,
occurs as a resul t of direct interaction, in which
the transition from the initial to the final state
proceeds without formation of a compound nucleus.
By using the principle of detailed balancing for in-
ve r se p rocesses , we can relate the c ross section
for the pickup reaction to the stripping cross s e c -
tion. Thus the c ross section for the B (p, d) A
reaction will be given by the formula

3 / n ; i 4 \ /f j\£ I —p 1 ̂  Q
2(2, + l) /^ (3.38)

where do^p is given by (3.22).
By using formula (3.38) we can determine the

spin and parity of nuclei by studying the angular
distribution of the deuterons formed in the r e a c -
tion. (p ,d ) and (n, d) reactions at medium en-
ergies have been observed experimentally for
several nuclei. It should be pointed out that there
a re experimental difficulties in the use of the
pickup reaction because of the large negative Q
value for such react ions.

14. Other direct processes involving deuterons.
Stripping reactions can occur not only in collisions

of deuterons with nuclei, but also for collisions of
other light nuclei with nuclei. For example, in the
collision of tr i tons or He3 with nuclei, as a resul t
of the stripping process deuterons can be formed
whose angular distribution is the same as for (d ,p )
and (d, n) reactions. The theory of the (t, d). and
(He3, d) reaction was treated by Newns98 and Butler
and Salpeter.47 The differential c ross section for
the (t, d) and (He3 ,d) reactions is given by for-
mulas of the same type as (3.22), except that the
deuteron factor {a2 + (sk<j-kp)2}~2 is replaced
by a factor which gives the probability for finding
the relative momentum 2/3 k^ - k^ in the ground
state of the tr i ton or He3. Qualitatively this fac-
tor gives the same angular dependence as the deu-
teron factor.

Just as in the stripping reaction A (d, p ) B, the
reduced neutron width yjj appears as a parameter
in the c ross section for the A (t , d) B reaction.
Simultaneous investigation of the transition A — B
using both deuterons and tritons enables one to
eliminate this undetermined parameter from the
theory.

Because of the practical difficulties in obtain-
ing beams of tr i tons or He3 nuclei, the inverse
reactions ( d , t ) and (d, He3) using deuterons are
more important. These reactions also proceed
without compound nucleus formation. A neutron
or proton in the bombarded nucleus is captured
by the deuteron in flight, without the deuteron
penetrating into the nucleus. The angular d i s t r i -
bution of the products of such reactions has the
same character as that for pickup reactions in-
duced by protons.

4. ( d , p ) and ( d , n ) Reactions with Compound
Nucleus Formation

1. Determination of the reaction amplitude.
The angular distribution for the ( d , p ) reaction
calculated on the basis of the stripping mechan-
ism is usually in good agreement with the exper i -
mentally observed angular distribution at small
angles. But in the region of large angles devia-
tions may occur due to the possibility of p r o c -
es ses occurring via the formation of a compound
nucleus. The formation of a compound plays a
specially important role for deuteron energies
in the neighborhood of resonances. However, in
many cases even at small angles the observed
experimental angular distribution deviates from
that predicted on the basis of either mechanism.
This is an indication of the importance of in te r -
ference between the two processes , which may be
important in the case of low energies and very
light nuclei, where the quasidiscrete spectrum
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of the compound nucleus manifests itself.32 '96

Interference between the stripping process
and the process with formation of a compound
nucleus was treated by Thomas,115 and independ-
ently in references 55 and 22.

To find the angular distribution of protons from
the (d, p) reaction when both direct transit ions
and transitions with compound nucleus formation
are taken into account, it is convenient to use the
method of Bethe, as presented, for example, in
reference 3.

Let us consider the reaction A (d ,p ) B. The
total wave function of the system will satisfy the
Schrodinger equation

where E is the total energy of the system,
total Hamiltonian can be written in the form

7.2 .

(4.1)

The

(4.2)

where H B is the Hamiltonian for the internal m o -
tion of the residual nucleus B, and V p g is the
potential for the interaction between the proton and
the residual nucleus B, which includes the in te r -
action of the proton with the absorbed neutron.

To find the solution of (4.1) we represent the
wave function * in the form

- <poij>d<!><i + ?6<!>p + orthogonal t e rms (4.3)

<pa, (pfo and (pfo a re internal wave functions for
the initial nucleus, the deuteron and the residual
nucleus, all normalized to unity; cpc is the wave
function of the compound nucleus and differs from
zero only within a finite region which is de ter -
mined by the nuclear radius R c , and c is a co -
efficient to be determined la ter . For simplicity
we t rea t the case where there is one level E c of
the compound nucleus. The function ipd describes
the relative motion of the deuteron and nucleus A
(ipd * 0 for r n , rp > RA.) and the spin s in the
initial channel. (The spin s of the entrance chan-
nel is given by the vector sum of the deuteron spin
and the spin of nucleus A.) The function $p de -
scr ibes the relative motion of the proton and the
residual nucleus B (ipp * 0 for rp > Rj$), as
well as the spin s ' in the exit channel (where s '
is the vector sum of the spin of the emergent p r o -
ton and the spin of the residual nucleus) . If (4.1)
is valid, the following equations must be satisfied:

9*a (II - E) W dt dxK = 0,

ft (If - E) M" dxv, = 0,

* (II-E) T dx, = 0.

(4.4)

(4.5)

The equations (4.4) a re differential equations for
the wave functions ipd and #p. Equation (4.5) en-
ables us to determine the coefficient c of the
wave function of the compound nucleus in (4.3).

Let us determine the wave function ^p of the
emergent proton. Substituting (4.1) and (4.3) in
(4.4), we have

Ur} ^ = 2~ B, (4.6)

(4.7)

Using the asymptotic Green's function (3.6), we can
find for the solution of (4.5) the following asymptotic
expression, valid for large rp:

(4.8)

In this formula, the reaction amplitude f is the
sum f = fB + fc, where the first t e rm fB is the
amplitude for the direct transition (stripping r e -
action )

M \ (4-9)

while the second te rm f° is the amplitude for the
(d ,p ) reaction with compound nucleus formation

and

(4.10)

a re the spin wave functions forg Xs'n's
the entrance and exit channels, respectively.)

For the calculation of fB, we note that VpB =
But the contribution of VpA to fB can

be neglected, since $$ is different from zero only
for rp > R^, whereas because of the short range
of the nuclear forces VpA is effective only for
rp < R&. Thus we get

Vpn +

/ B = ~ A \ ^

Expanding the spin wave function Xs'/xs °^ t n e

state of the system in eigenfunctions Y; m of the
orbital angular momentum of the neutron absorbed
by the nucleus and using the condition (3.12) for
zero range of the nuclear forces, we get finally

I --C (4.11)

where I m is given by (3.17).
The coefficient c multiplying the compound

nucleus wave function in (4.3) can be determined
by using (4.5) in the same fashion as in reference 3:
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E-BC+±TC (4.12)

is the potential acting between the deuteron
and nucleus A; r c is the total width of the r e s o -
nance level of the compound nucleus at energy E c ,
in a state with definite angular momentum I c . F c

is equal to the sum of the deuteron and proton
widths, I'd and TP, which are given by the for-

U :cmulas

where

Zds
and

2/2M

PB 9, (4.13)

Thus the amplitude for the (d ,p ) reaction with
formation of a compound nucleus is given by the
expression

M <h

(4.14)

Using the expressions for ip^ and $kp, and the
law of vector addition of angular momenta, we can
write the amplitude (4.14) as

2 V(2Zd-

E-EC+±YC " p (4.15)

where the z axis is taken along the vector k^.
2. The reaction c ross section. The differential

c ross section for the (d, p) reaction with unpolar-
ized part icles is given by the square modulus of
the reaction amplitude, averaged over the spin
projections for the entrance channel and summed
over spin projections in the exit channel:

''do. (4.16)

'V
Noting that the amplitude for the (d, p ) reaction is
the sum of the amplitude for direct transit ions and
the amplitude (4.9) for transitions with compound
nucleus formation, we can write the c ross section
as a sum of three t e rms :

dass. = .1(01/ (4.17)

Finally the differential c ross section for the
(d,p) reaction when we disregard the channel spins
s and s' is obtained by averaging (4.16) over all
possible values of s and summing over all s ' :

(4.18)

(The fraction in (4.18) gives the statist ical weight
of the spin s in the entrance channel.)

The te rm dcrB in the total c ro s s section (4.17)
gives the contribution of direct t ransi t ions. When
this t e rm is averaged and summed over the v a r i -
ous values of s and s ' , we find, as expected,
that it coincides with (3.22).

The te rm do 0 in (4.17) is the contribution of
transit ions with compound nucleus formation. In
order to simplify the expression for dcr0, we use
the expansion (3.35) of a product of spherical h a r -
monics in a se r i e s of spherical harmonics. Then
the sum of absolute square moduli f° can be
written as

1 r*

X (lpl'p — | LM)

The summation over angular momentum pro jec-
tions can be done using (3.36). We then find for
the differential c ross section, which determines
the angular distribution of the protons from the
(d ,p ) reaction with compound nucleus formation,
the formula of Blatt and Biedenharn:40

dac
s, = 2 RL(s,s')PL(cosb)do, (4.19)

la 001L 0) (/PZP 001L 0) W (Zd/cZd/c; sL)

X W (ZP/CZP/C; s'L) &afcp ^ U
is

(4.20)

The summation in (4.20) over l& and Ẑ  runs
from | l c - s | to I c + s, while the sum over
Zp and Zp goes from | l c - s ' | to I c + s ' .

Integrating (4.19) over angles, we easily get
the Breit-Wigner formula

(4.21)

for the total c ross section. Substituting (4.12) and
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(4.15) in (4.17), we find for the interference t e r m
in the cross section,

tinier/ = L_ !_ I /™*_

2 Wi+in

'd'p'n

xRe
w

E-EC~~YC

In specific cases formula (4.22), and similarly
(4.20), simplifies considerably. As an example,
let us consider the case when the orbital angular
momentum of the captured neutron is equal to
zero, ln = 0. Then the spins of the entrance and
exit channels a r e the same, since {lasni.r^i.a \ s'ix's)

— ( OSOMS I s 'Ms) = ^ss '^sM's ' C a r r v i n g o u t the
summation over ns ( m p = 0) in (4.22) by means
of the relation

^ . \ ' ^ i - 2 / d + l

we get

fjainlerf = _ 2 / g • ^ L 1 / M a 1/7 •
fta 2s4-1 v& V 2n№R V ho

2 Re {/° ^ ^ i — } . P ( ( c o s & ) d o . (4 .23)
I=U c -«i E-Ec——rc

In t h e p l a n e w a v e a p p r o x i m a t i o n t h e i n t e r f e r e n c e

t e r m f o r t h e c a s e of ^ = 0 h a s t h e f o r m

dainterf _ _ 2/. + 1 rp - l / ~ M ^ ~ i?2 l/:t7o
2s-r'l I ' ! r 2/t27J f \ -2

x 2 R e i • r ^ ( c o s & ) d o -
J

Because of the interference between the direct
process (stripping reaction) and the process with
compound nucleus formation, the angular distr ibu-
tion can differ drastically, even at small angles,
from the distribution given by stripping theory, if
the energy of the compound nucleus is in the r e -
gion of the quasi-discrete spectrum.

If the energy spread of the incident deuterons
is large compared to the distance between neigh-
boring levels of the compound nucleus, the inter-
ference t e r m (4.22) which resul ts from superpo-
sition of the two amplitudes vanishes as a result
of the averaging over energy. Thus the average

c r o s s s e c t i o n f o r t h e ( d , p ) r e a c t i o n w i l l b e t h e

s u m of t h e i n d i v i d u a l c r o s s s e c t i o n s f o r t h e s t r i p -

p i n g p r o c e s s a n d t h e ( d , p ) r e a c t i o n v i a c o m p o u n d

n u c l e u s f o r m a t i o n . T h i s s a m e s i t u a t i o n w i l l o c c u r

if t h e e n e r g y of t h e c o m p o u n d n u c l e u s i s i n t h e r e -

g i o n of t h e q u a s i - c o n t i n u o u s s p e c t r u m .

5 . I n e l a s t i c S c a t t e r i n g of D e u t e r o n s

1. I n e l a s t i c s c a t t e r i n g p r o c e s s e s . W h e n d e u -

t e r o n s c o l l i d e w i t h n u c l e i , w e c a n a l s o h a v e i n e -

l a s t i c s c a t t e r i n g p r o c e s s e s : s c a t t e r i n g of t h e

d e u t e r o n a c c o m p a n i e d b y e x c i t a t i o n of t h e n u c l e u s ,

A ( d , d ' ) A * ; s c a t t e r i n g a c c o m p a n i e d b y b r e a k u p of

t h e d e u t e r o n , A ( d , n p ) A ; a n d f i n a l l y s c a t t e r i n g

i n w h i c h t h e d e u t e r o n b r e a k s u p a n d t h e n u c l e u s i s

e x c i t e d , A ( d , n p ) A * . L i k e t h e s t r i p p i n g r e a c t i o n ,

t h e s e p r o c e s s e s m a y o c c u r w i t h o u t f o r m a t i o n of a

c o m p o u n d n u c l e u s . T h e a n g u l a r d i s t r i b u t i o n i n

s u c h i n e l a s t i c s c a t t e r i n g p r o c e s s e s , j u s t a s i n t h e

s t r i p p i n g r e a c t i o n s , i s c h a r a c t e r i z e d b y a c o m p l e x

s t r u c t u r e f r o m w h i c h o n e c a n d r a w c o n c l u s i o n s

c o n c e r n i n g t h e s p i n a n d p a r i t y of t h e f i n a l s t a t e of

t h e n u c l e u s .

T h e m e c h a n i s m of t h e i n e l a s t i c s c a t t e r i n g p r o c -

e s s e s i s s i m i l a r t o t h a t f o r t h e s t r i p p i n g r e a c t i o n .

T h e i n e l a s t i c s c a t t e r i n g c a n b e d e s c r i b e d p a r t i c u -

l a r l y s i m p l y if w e a s s u m e t h a t i n t h e c o l l i s i o n of

t h e d e u t e r o n w i t h t h e n u c l e u s o n l y of t h e c o n s t i t u -

e n t s of t h e d e u t e r o n ( s a y , t h e n e u t r o n ) i n t e r a c t s

w i t h t h e n u c l e u s , w h i l e t h e o t h e r ( t h e p r o t o n ) i s

o u t s i d e t h e r a n g e of t h e n u c l e a r f o r c e s . T h e n t h e

i n t e r a c t i o n o c c u r s e s s e n t i a l l y o n l y w i t h t h e s u r -

f a c e of t h e n u c l e u s . T h e t r a n s f e r of e n e r g y f r o m

t h e i n t e r a c t i n g p a r t i c l e ( t h e n e u t r o n ) t o t h e n u -

c l e u s c a n o c c u r e i t h e r w i t h o r w i t h o u t d i s r u p t i o n

of t h e b i n d i n g of t h e n e u t r o n a n d p r o t o n i n t h e d e u -

t e r o n . I n t h e l a t t e r c a s e w e c a n h a v e i n e l a s t i c

s c a t t e r i n g of t h e d e u t e r o n a c c o m p a n i e d b y e x c i t a -

t i o n of t h e n u c l e u s , 9 1 w h i l e i n t h e f o r m e r c a s e t h e

s c a t t e r i n g i s a c c o m p a n i e d b y b r e a k u p of t h e d e u -

t e r o n a n d w e m a y a l s o h a v e s i m u l t a n e o u s e x c i t a -

t i o n of t h e n u c l e u s P

2. E x c i t a t i o n of t h e n u c l e u s i n d e u t e r o n s c a t t e r -

i n g . In t r e a t i n g i n e l a s t i c s c a t t e r i n g of d e u t e r o n s ,

w e s t a r t f r o m (3.1) b u t n o w n e g l e c t t h e i n t e r a c t i o n

of t h e p r o t o n w i t h t h e n u c l e u s . T h e n

w h e r e E = E ^ - e . W e a r e a s s u m i n g t h a t t h e i n i t i a l

n u c l e u s i s i n i t s g r o u n d s t a t e E a = 0 . W e s h a l l t r y

t o f i n d a s o l u t i o n of (5.1) of t h e f o r m

Wit. r, r d ) = I ? a ( Q ? 0 W V a M

+ o r t h o g o n a l t e r m s (5.2)
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where <p
equation

and (̂ o ( r ) a re solutions of the

(5.3)

We then get from (5.1) the following equation for
the wave function describing the center of mass
motion of the deuteron after scattering:

*L ^ 0 ? 0 (r)

where k'2 = ( 4 M / R 2 ) ( E d - E a ) ; E a is the excita-
tion energy of the nucleus in the final s tate . Re -
placing the exact wave function * on the right
side of (5.4) by the incident wave * 0 = e ^ d x
<Po(r) <Pa. (£) (where k is the wave vector of
the incident deuteron), we find for the asymptotic
behavior of the solution of (5.4),

1 r.h- e"1"1"" ?l (0 ?« Q Vn ?a0 (*) ^ ' ^ drd- (5.5)

The differential c ross section for scattering of the
deuteron accompanied by excitation of the nuclear
level E a , is

do = 'j\f\-dO. (5.6)

To simplify the calculation of the scattering a m -
plitude, we shall neglect the neutron spin. Assum-
ing that the neutron-nucleus interaction occurs only
at the nuclear surface, we can express the integral
over the internal coordinates of the nucleus, which
appears in (5.6), as

?* Q V (rn, L) ?ao Q

4M

X'S ( - 0 7 .
I, m

i v

The cross section (5.6) must be summed over
spin projections /XJ in the final state and averaged
over spin projections /^j in the initial s tate . We
then get

k' , (5.8)

,r,rrl)dCdr, (5.4) where

ur-
2 _ ZA1 - iri , ,y.

If we include the neutron and proton spins, the
expression for | B ; | 2 is replaced by

IB, 2 _ . AM-
"3r. (2i+

and xi^' a re the deuteron spin functions
before and after scattering.) However, since the
theory is not able to calculate the absolute value
of the cross section, we should regard | B; |2 as
a free parameter of the theory.

Noting that f q>\ ( r )

91

q 4 a '
we finally get for the cross section for deuteron
scattering accompanied by transition of the nu-
cleus from a state with spin i to one with spin j ,

-, k' /' 4a , — 1 q N 2 v~* i T-I 'odaji = -r-{ —tan f- ; >,!£, i-11 k \ q 4a J *—i ' ' '

q = k ' - k . (5.9)

The angular momentum transferred from the deu-
teron to the nucleus in the scattering is given by I.
The summation in (5.9) extends over all integral
values of I given by the selection rule

;, ?n

where R is the nuclear radius, I is the angular
momentum transferred from the neutron to the
nucleus, and

(Pi I V \ !'.'"'> = ] ?* Q V (>'n. Q ?a. Q Ylm (K, ?n) #, dOn.

(We assume that the functions ^ a Q and cp0 refer
to nuclear states with spins and spin projections i,
Hi and j , /XJ.)

Transforming from the variables r and rd to
r and r n in (5.5), and using the spherical h a r -
monic expansion of the plane wave, we find

(if i = 0 and 1 = 0, then j = 0 or 1) . The values
of I a re odd or even according as the parity of the
nucleus does or does not change in the transition.

Formula (5.9) gives the angular distribution of
the deuterons at small angles. (Obviously, at large
angles we must include the inelastic scattering
which occurs via compound nucleus formation.)
We can determine I from the experimental angular
distribution by using (5.9). (If the selection rule
allows several values of I, the lowest I will be
the most important one.) Having found I, and
knowing the spin and parity of the initial state,
we can determine the spin and parity of the final
state.
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Just as in the case of the stripping reaction,
the best agreement with experiment is obtained
by choosing a value of R which is somewhat
larger than the nuclear radius Ro.

Figures 11 and 12 show the angular dis t r ibu-
tions of deuterons inelastically scattered7 8 from
Li7 and Mg24. The energy of the incident deuter-
ons was E(j = 15.1 Mev. The comparison shows
satisfactory agreement of theory and experiment.

( •

(5.H)

FIG. 11. Angular
distribution of inelas-
tically scattered deu-
terons from Li7 (d, d')
Li7*; Ed = 15.1 Mev,
Q = - 4.61 Mev, 1= 1,
R = 4.8 x 10~" cm.

3. Breakup of the deuteron in the scattering
process . The scattering of the deuteron by a nu-
cleus may be accompanied by breakup of the deu-
teron, and we may also have simultaneous t r an -
sition of the nucleus to an excited state. We can
use Eq. (5.1) to describe the breakup process , but
now we must look for a solution of the form

r, i - u ) - S T . ( 0 ? f ( ' ) • ? _
ta

' r or thogona l t e r m s , (5.10)

w h e r e cpf ( r ) i s t h e wave function for t h e r e l a t i v e
mot ion of the n e u t r o n and p r o t o n in the unbound
s t a t e ; f i s the wave v e c t o r of the r e l a t i v e mot ion
of the s y s t e m .

The function (pf(r) i s a so lu t ion of the equat ion

2 0 0

1 1 J 0

1 6 0

m

1 2 0

1 0 , 0

S 0

6J>

4 . 0

Z O

n

-

-

-

I

1 *

1

1

1

1

1

1

1

- 1

1

. 1

1

1

\

1

I

\

1

1 {

\

FIG. 12. Angular
distribution of inelas-
tically scattered deu-
terons from Mg24(d, d')
Mg"*; E d = 15.1 Mev,
Q = - 1.37 Mev,/= 2,
R = 6.2 x 10"" cm.

w h e r e ef = B2f2/M i s the e n e r g y of r e l a t i v e mot ion
of the n e u t r o n - p r o t o n s y s t e m . If we a s s u m e tha t
the n e u t r o n and p r o t o n i n t e r a c t only in an S s t a t e
(which i s jus t i f ied for low e n e r g i e s of r e l a t i v e
m o t i o n ) , the wave function can be w r i t t e n a s the
s u m of a p l ane wave and an outgoing s p h e r i c a l
wave

o - i / r c _ | (5.12)

where a ( s ) = - l / ( a s - i f ) is the neutron-proton
scattering length in an S state and depends on the
spin state of the neutron-proton system. If the
neutron-proton system is in the triplet s = 1
state, at = a = i/Me/H2 , where e = 2.23 Mev
is the binding energy of the deuteron. If the s y s -
tem is in the singlet s = 0 state, a0 = a' =
VMeo/B2 , where e0 = 69 kev is the energy of
the virtual state of the deuteron.

The outgoing spherical wave in (5.12) c o r r e -
sponds to the production of par t ic les .

It is easy to verify that the wave functions
( ^ ' ( r ) a r e orthogonal to the wave function
<po(r) = Va/27r (e~ar/r), which describes the
bound state of the neutron-proton system,

The funct ions ^ ^ ( r ) t o g e t h e r with the function
<p0 ( r ) f o r m a c o m p l e t e se t of o r t h o n o r m a l func-
t ions , sa t i s fy ing the r e l a t i o n

?o ('•) ?«('•') -i- \ ?? ('•) ?r ('•') ^Hj5 = a ( r - r'). (5.13)

We note that the wave functions (p£0)(r) which
correspond to singlet states of the neutron-proton
system a re not orthogonal to the wave function
(PQ ( r ) . The orthogonality of the total wave func-
tions in this case comes from the orthogonality of
the spin wave functions for the singlet and triplet
s ta tes .

Using the expansion (5.10) and choosing the in-
cident wave to be * 0 = e""d <Po( r)<PaoU). we get
the following expression for the amplitude for
breakup of the deuteron:

20

\ ^ i"rJ?*f('-)<J'a(C)V<fo(r)9nn(:)(Z:fZrdrd, (5.14)

w h e r e q = k ' - k, and the modulus of k ' i s given by

Taking into accoun t the n u c l e a r sp in and the sp in s
of neu t ron and p r o t o n , and p e r f o r m i n g o p e r a t i o n s
s i m i l a r to t h o s e in the p r e c e d i n g c a s e , we finally
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get the following formula for the differential cross
section for breakup of the deuteron in scattering
by a nucleus:

a k'

-- к

-ln-
*(..«>-/) f_i.g+i0

\B\si\yi(qR)dSdO. (5.15)

In deriving (5.15) we have used the relation

-ln-

The summation in (5.15) runs over all values of
I given by the selection rule j = i + I + 1. Only
even values of I are taken if the parity of the
nucleus is unchanged, and conversely. If the state
of the nucleus does not change in the deuteron
breakup (j = i, E a = 0), the sum in (5.15) consists
of a single term corresponding to 1 = 0.

The wave vector of the center of mass, k', and
the wave vector of the relative motion f can be ex-
pressed in terms of the wave vectors of the liber-
ated neutron and proton, kn and kp, by means of
the equations

k'=kn-bkp, f=4-(k n -k P ) .

Formula (5.15) gives the differential distribution in
angle and energy of the neutrons and protons emitted
in the dissociation of the deuteron.

Expression (5.15) is extremely complicated.
However, if we limit ourselves to the region of
small angles between the wave vectors of the cen-
ter of mass of the neutron-proton system before
and after the breakup, qreff « 1 (reff ~ a~l),
the results become much simpler. Making the
additional assumption that feff « k, we get the
following formula for the momentum distribution
of the protons from the breakup:

-,-/."—/*

[2kp-k|7?)dkp
•=•- J. (5.16)

(5.17)

Formulas (5.16) and (5.17) are given for the
case where the state of the nucleus does not change
during the breakup.

Similar formulas will apply for the neutrons
formed from the breakup.

6. Interaction of Deuterons with Heavy Nuclei

1. Deuteron reactions in a Coulomb field. In
the preceding paragraphs, in treating the collision
of deuterons with nuclei we neglected the Coulomb
interaction of the deuteron with the charge on the
nucleus. This is valid when the energy of the deu-
teron is considerably above the top of the Coulomb
barrier. But if the energy of the incident deuteron
is comparable to or less than the height of the bar-
rier, the Coulomb interaction plays an essential
role.

For medium energy deuterons (E^ > 5 Mev)
colliding with light nuclei, Coulomb effects can be
neglected. But for collisions of deuterons with
heavy nuclei, the Coulomb interaction is extremely
important. The Coulomb interaction is especially
important for low deuteron energies, when the
classical distance of closest approach b = Ze2/E(j
is much greater than the nuclear radius R.

Because the center of mass and center of charge
of the deuteron do not coincide, the Coulomb inter-
action can lead to various processes of dissocia-
tion of the deuteron. The following processes are
possible: liberation of both neutron and proton,
capture of the neutron and emission of the proton,
capture of the proton with emission of the neutron,
and capture of both particles. All these processes
are possible even when the energy of the incident
deuteron is below the Coulomb barrier. In fact,
because of the relatively low binding energy of the
deuteron, a process of "dissociation" of the deu-
teron can occur outside the nucleus, which later
leads to the reactions enumerated. The probabil-
ity of the process occurring with this "preliminary"
breakup of the deuteron turns out to be consider-
ably greater than the probability for the same proc-
ess occurring via formation of a compound nucleus.

The mechanism of "preliminary" breakup was
pointed out by Oppenheimer and Phillips102 in con-
nection with (d,p) reactions. (The (d,p) reac-
tion at low energies is sometimes called the Op-
penheimer-Phillips process.) The theory of all
the processes enumerated was given in the quasi-
classical approximation (when the deuteron energy
is much less than the height of the Coulomb bar-
r ier) by Lifshitz18 (cf. also references 33 and 119).
However, the quasi-classical approximation, in
which one considers only "head-on" collisions of
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the deuteron with the nucleus (collisions with
zero orbital angular momentum of the deuteron
relative to the nucleus) could give only the v a r i -
ation of the effective cross section with deuteron
energy.

Later Landau and Lifshitz17 developed a method
which enabled one to calculate the effective cross
sections for the various p rocesses . In their paper,
Landau and Lifshitz treated the (d, np) reaction
on heavy nuclei. The theory of the (d ,p ) reaction
on heavy nuclei was given by Ter-Martirosyan2 S

and Biedenharn, Boyer, and Goldstein.37

2. The (d ,p ) reaction on heavy nuclei. Let us
treat the (d, p) reaction on heavy nuclei, a s sum-
ing that the energy of the incident deuteron is less
than the height of the Coulomb ba r r i e r , E^ < Ze2/R.
In this case the angular distribution of the protons
emitted in the reaction is determined mainly by
the Coulomb field of the nucleus. Then, unlike
the case of the (d ,p ) reaction on light nuclei, the
angular distribution depends very little on the o r -
bital angular momentum I of the captured neutron
and has typically a maximum in the backward di -
rection. The treatment is very much simplified
in the limiting case of n^ = Ze2/Kvd » 1 and
np = ZeVhVp » l , when the quasi-classical ap -
proximation is applicable.

In finding the differential c ross section we can
use the general theory of the (d ,p ) reaction given
in Sec. 3, according to which

—+T
(6.1)

But now in calculating the coefficients I m we must
use Coulomb wave functions for the deuteron and
proton.

For the deuteron wave function we take the Cou-
lomb function

—kdv)), (6.2)

which is made up at infinity of a plane wave with
wave vector k^ and an outgoing spherical wave.

For the wave function of the proton we should
take a Coulomb function which at infinity contains
a plane wave with wave vector kp and an incom-
ing spherical wave,

i i k p ( r ) = e 2 P F ( 1 — in

XF (inp, 1, — i(kpr — 1 (6.3)

The integral (3.17) can be calculated approxi-
mately in the limiting case of n^ » 1 and n p » 1.
Then the integration in (3.17) can be extended over

the whole space r , since the contribution of the
region r < R is very small . In fact in the quasi-
classical approximation n^ » 1 and n p » 1, the
main contribution comes from distances greater
than both the distances of closest approach bd =
Ze2/Ed and b p = Ze 2 /E p , which for low energies
of the incident deuteron gives a distance much
greater than the nuclear radius R.

Using the ser ies expansion of

i (r\~
n e~* V (* + *)•*

h=0
(6.4)

w e n o t e t h a t i n t h e i n t e g r a l (3 .17 ) t h e f a c t o r

e~Kr <ik*p (r) ^ (r) = cxp { - knr + In <)k*p (r) ^ (r))

i s a r a p i d l y v a r y i n g f u n c t i o n of r . T h e v a l u e of a n

i n t e g r a l o v e r s u c h a r a p i d l y v a r y i n g f u n c t i o n c o m e s

p r i n c i p a l l y f r o m t h e r e g i o n n e a r t h e s a d d l e p o i n t

r i ( r t , £t, q>i) a t w h i c h t h e f u n c t i o n F ( r ) =

- k n r + In # j L ( r ) tyk^ir) h a s a n e x t r e m u m . T h e r e -

f o r e t h e s l o w l y v a r y i n g s p h e r i c a l h a r m o n i c i n (3 .17)

c a n b e t a k e n o u t s i d e t h e i n t e g r a l a n d e v a l u a t e d a t

£ = i?j a n d cp = (pt. In t h e i n t e g r a l w h i c h r e m a i n s ,

t h e f u n c t i o n t^k^) c a n b e r e p l a c e d a p p r o x i m a t e l y

b y t h e f i r s t t e r m of t h e e x p a n s i o n ( 6 . 4 ) , if k n r t >

l(l + \)/2. T h i s c o n d i t i o n i s a l m o s t a l w a y s s a t i s -

f i e d , if I i s n o t v e r y l a r g e a n d | E n | i s n o t v e r y

s m a l l . 1 8 W e t h u s g e t

S u b s t i t u t i n g t h i s e x p r e s s i o n f o r I m i n ( 6 . 1 ) ,

w e f i n d

2/ + 1

U (*nK)
•dO. (6.5)

I t f o l l o w s f r o m (6 .5) t h a t o n l y t h e a b s o l u t e v a l u e of

t h e c r o s s s e c t i o n d e p e n d s o n Z; i n t h i s a p p r o x i m a -

t i o n t h e a n g u l a r d i s t r i b u t i o n i s i n d e p e n d e n t of I.

T h e i n t e g r a l o v e r t h e C o u l o m b f u n c t i o n s i n t h e

c r o s s s e c t i o n (6 .5) c a n b e e v a l u a t e d e x a c t l y :

- ' • • n > '

J

H e r e £ = £ 0 s i n 2 ^ / 2 ,

C)

a n d

i? i s t h e a n g l e b e t w e e n t h e v e c t o r s k<j a n d k p .

T h e s q u a r e m o d u l u s of t h e i n t e g r a l i s e q u a l t o



I N T E R A C T I O N O F D E U T E R O N S W I T H N U C L E I 219

e
2*Bp_l) (e

2 ' l"d_1)

pxpi2n,] (it —

where the angles
mulas

and

1+C

are given by the for-

f o r i ? n < 0 ,

f o r £ ' n > 0 .

In the limiting case of n p » 1, n^ » 1, we
can use the following asymptotic formula for the
hypergeometric functions:

*H~

<6-6'

Using this asymptotic formula we find for the
cross section25

, _ 2/ + 1 A-p Ma
2i-r 1 A-J ft2A- /

cxp{ —2np̂ p + (6.7)

The expression in the exponential in N ( £) in-
c reases with increasing £, i.e., with angle i?;
therefore the c ross section da increases expo-
nentially with increasing angle S-. The function
N ( £) is a maximum at d- = n, and for small
values of it--3- the dependence of N ( f ) on ir-d-
is close to a Gaussian. This is easily shown by
expanding the argument of the exponential in N ( f )
in powers of f0 ~ f ~ £0 ( T - ^ ) 2 / 4 . In this way one
finds

{ — ^ - } , (6.8)

where

Gaussian distribution in the backward direction is
the smal ler the greater the value of Z, the smaller
the energy E^ of the incident deuteron and the
grea ter the energy E n of the captured neutron.

In reference 37 a specific set of pa ramete r s
was considered and made it possible to see how
the character of the proton angular distribution
changes when the parameter n^ changes. Since
the angular distribution of the protons depends

—--- . The width 5 of the

FIG. 13. Angular distribution of protons as a function of
incident deuteron energy Ed (Z = 92).

only slightly on the energy of the level into which
the neutron is captured, the energy of this level
was taken arbi t rar i ly to be 2.23 Mev. The angular
distributions of the protons, normalized to unity
at their maxima, a re shown in Fig. 13 for various
energies of the incident deuterons, for Z = 92.
The parameter n^ var ies from n ĵ = 7.1 at
Ed = 10 Mev to nd = 1.3 at Ed = 300 Mev. With
increasing energy, there is a qualitative change
in the shape of the angular distribution. Even
though for energies Ed of the order of tens of
Mev the angular distribution has a maximum in
the forward direction, already for an energy of
200 Mev the distribution has a maximum in the
forward direction.

The total c ross section for the (d ,p ) reaction
on heavy nuclei is found by integrating (6.7) over
solid angle dO. Noting that dO = (47r/f0) df, we
get

(H dO =
So

Because of the rapid falloff of N ( £) with increas
ing to - £. the important values of f in the in-
tegral a re those near to So- Expanding the expres
sion under the exponential in powers of x = f0 - f
and extending the integral to infinity, we find

x exp -2Hp'i>p(0) 2«uOd(0)],

where i/p(0) and ^ d ( ° ) a re the values c o r r e -
sponding to £ = f0. (The factor multiplying the
exponential has been taken out of the integral and
evaluated at £= £0.) We finally get the following
formula for the total c ross section for the (d, p)
reaction:25
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•(/I
— - o x p { - $ ( £ „ , £ • „ ) } ,

I

4> ( £ d , £ n ) = - 2 « p ( ? p - <JP ( 0 ) ) - ; - 2 « d ( ? d - O d ( 0 ) )

= 2 R e \ - H n t a n
- i V— £ • „ — Y z i

•-———^ziiLLl. (6.9)

(We note that the energies Ed, E n , and Ep a re
related by the formula Ed - e = E p + E n . ) The ex-
ponential factor in (6.9), which gives the depend-
ence of the cross section on incident deuteron
energy, can also be gotten from the quasi-classical
approximation.18 •93

Formula (6.9) gives the c ross section for the
(d ,p ) reaction with capture of the neutron into a
definite energy level. The neutron energy E n co r -
responding to maximum cross section for the (d, p)
reaction with fixed energy Ed of the incident deu-
teron can be found by determining the minimum of
the function $ (Ed, E n ) appearing in the exponen-
t ial . This most probable energy for the captured
neutron E n is a function of the energy Ed of the
incident deuteron, and decreases with increasing
Ed so long as Ed < 1.7 e. (Over this region, E n

lies in the range 1.5 — 0.5 e.) If E d > 1 . 7 e , the
most probable energy of the captured neutron is
zero .

3. Breakup of the deuteron in the Coulomb field
of the nucleus. A deuteron passing at some d i s -
tance from a nucleus can, under the influence of
the Coulomb field of the nucleus, dissociate into
a neutron and a proton. If the energy of the inci-
dent deuteron is less than the height of the Cou-
lomb ba r r i e r , the probability for such an electr ic
breakup is much greater than the probability for
the (d,np) process occurring via compound nu-
cleus formation.

On the assumption of zero range of the nuclear
forces between neutron and proton, the amplitude
for breakup of the deuteron in the Coulomb field
of the nucleus is equal, according to (3.13), to

- h \ r ) d r -

I n t h i s f o r m u l a t h e n e u t r o n w a v e f u n c t i o n i s t a k e n

t o b e a p l a n e w a v e , w h i l e t h e C o u l o m b f u n c t i o n s

( 6 . 2 ) a n d ( 6 . 3 ) a r e u s e d f o r t h e d e u t e r o n a n d p r o -

t o n . U s i n g ( 6 . 1 0 ) , w e g e t t h e f o l l o w i n g e x p r e s s i o n

f o r t h e c r o s s s e c t i o n :

ZM
do = E n d O n ( Z 0 p , ( 6 . 1 1 )

I = \ eivf ( _ i,,d, 1, i (k&r — kdr))

F( — iiip, 1, i (kpr — kpr)) rfr,
— L'. L- b- (a i o\

«d **p "̂ n1 \\>»i.£if
This integral can be calculated exactly:

( 6 . 1 3 )

13= - A-xi ( q - - 2 q k d - 2 X * d ) * " d

X((f + 2 q k p - 2 U - r ) i " p < 7 - 2 < i " <

2 — 2 q k d —

I f t h e e n e r g i e s o f t h e d e u t e r o n a n d p r o t o n a r e

s u f f i c i e n t l y l o w , t h e e x p r e s s i o n f o r t h e c r o s s s e c -

t i o n c a n b e s i m p l i f i e d c o n s i d e r a b l y . I f n d » 1

a n d n p » 1 , w e c a n u s e t h e a s y m p t o t i c e x p a n -

s i o n ( 6 . 6 ) f o r t h e h y p e r g e o m e t r i c f u n c t i o n

F ( - i n d , - i n p , 1 , f ) . T h e n t h e c r o s s s e c t i o n a s

a f u n c t i o n o f t h e e n e r g y o f t h e l i b e r a t e d n e u t r o n

w i l l h a v e i t s m a x i m u m v a l u e a t E n = 0 a n d w i l l

d e c r e a s e e x p o n e n t i a l l y w i t h i n c r e a s i n g E n . A s a

f u n c t i o n o f t h e d i r e c t i o n o f t h e o u t g o i n g p r o t o n ,

t h e c r o s s s e c t i o n i s a m a x i m u m f o r m o t i o n o f t h e

p r o t o n o p p o s i t e t o t h e d i r e c t i o n o f i n c i d e n c e o f t h e

d e u t e r o n , a n d f a l l s o f f e x p o n e n t i a l l y w h e n w e m o v e

a w a y f r o m t h i s d i r e c t i o n . T h u s i n c a l c u l a t i n g t h e

i n t e g r a l I , w e m a y s e t

/ r n = q = J — k r = — k r i

i n a l l t h e n o n - e x p o n e n t i a l e x p r e s s i o n s [ a c c o r d i n g

t o ( 6 . 6 ) , t h e e x p o n e n t i a l f a c t o r i s c o n t a i n e d i n t h e

h y p e r g e o m e t r i c f u n c t i o n ] . U n d e r t h e s e c o n d i t i o n s

t h e d e r i v a t i v e d f / d \ | ^ = 0 i s z e r o , s o t h a t t h e t e r m

i n I w h i c h c o n t a i n s t h e d e r i v a t i v e o f t h e h y p e r g e o -

m e t r i c f u n c t i o n d r o p s o u t . T h u s w e f i n d for t h e

a b s o l u t e s q u a r e o f t h e a m p l i t u d e ,

I / Is = Ii4its
h- — in,u —irtr

Ze2

where we have introduced the notation ft =
M i /
•—j , and kp refers to the energy E p =

Ed - e.. The argument £ of the hypergeometric
function, which appears in the exponential in the
asymptotic formula, must be expanded in powers
of the neutron energy E n and the angle t?p b e -
tween the vectors k p and — k^:

•I P . i P ~ d 1.2
— / r^ • w •> / i / w " • n

* n s i » 8 B nn

w h e r e I d e n o t e s t h e i n t e g r a l ( 0 n i s t h e a n g l e b e t w e e n t h e v e c t o r s k n a n d -
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q> is the difference of the azimuths of kn and kp
taken relative to the polar axis -k<j).

Using the asymptotic formula (6.6) for the ab -
solute square of the hypergeometric function, we
get the following expression for the c ross section:

(6.14)

where

<D = $0 -|- Ti'n'I'j + En sin2 On3),, -j- &p<I>3 -4- Op£n sin 8n cos 9$4,

and

' 3 =

4-:

The total c ross section o-(Ed), as a function
of deuteron energy, is obtained by integrating (6.14)
over the energy of the neutron (where, because of
the rapid convergence of the integral, we can in te-
grate from 0 to °o), and over all directions of the
neutron and proton (where again the integration
over 0p can be taken between the limits 0 and

p
As a resul t of the computation, we get

(£rt (6.15)

For example, for Bi (Z = 83), the c ross section
for breakup is or = 4.5 x 1CT26 cm2 at E d = 8.2
Mev, and a = 0.3 x 1O~26 cm2 at Ed = 6.3 Mev.

After integration of (6.14) over proton d i r ec -
tions only ( i .e . , over dOp), the angle 6n drops
out of the resultant expression, i .e. , the dis tr ibu-
tion of the neutrons over direction (uncorrelated
with the direction of the protons) is isotropic.
We get the following expression for the energy
distribution of the neutrons:

n i
rfo (6.16)

found by integrating (6.14) with respect to dE n dO n ,
giving

The angular distribution of the protons can be

Thus the distribution of the protons with respect to
angle dp is a Gaussian with a maximum in the d i -
rection opposite to the direction of motion of the
deuteron.

II. INTERACTIONS OF DEUTERONS WITH NUCLEI
IN THE HIGH-ENERGY REGION

7. Diffractive Interaction of Deuterons with Nuclei

1. Nuclear diffraction. In treating the in te rac-
tion of deuterons with nuclei for deuteron energies
of the order of tens of Mev and above, we can use
the optical model, according to which the nucleus
is t reated phenomenologically as a medium char -
acterized by definite optical propert ies (refractive
index and absorption coefficient). If the mean free
path of nucleons in nuclear mat ter is small com-
pared to nuclear dimensions, the nucleus can be
treated as a black absorbing body. The treatment
becomes especially simple for the case of an ab -
solutely black nucleus.

We know that the absorption of part icles sca t -
tered by the nucleus leads to an additional pe r tu r -
bation of the incident wave and thus to additional
elastic scattering which is not associated with
compound nucleus formation. For point part icles
(such as neutrons) whose wave length is small
compared to nuclear dimensions, this scattering
is analogous to the diffraction of light by an abso-
lutely black sphere.

The diffraction scattering of complex part icles
like deuterons must show some special features.
In addition to absorption and diffraction elastic
scattering, which occur for point par t ic les , the
following processes can occur with deuterons:
stripping of a neutron or a proton, and diffraction
breakup of the deuteron.

In the case of the stripping reaction, when a
fast deuteron passes the nucleus a proton or neu-
tron may bump into the nucleus while the other
part icle goes by outside the nucleus. The resul t
is that a proton or neutron is instantaneously cap-
tured by the nucleus while the second part icle con-
stituting the deuteron is l iberated and continues
on its path outside the nucleus. The theory of the
stripping reaction at high energy was given by
Serber.111

Because of the low binding energy of the deu-
teron, the diffractive interaction of deuterons with
nuclei can resul t in diffraction breakup of the deu-
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teron occurring far from the nucleus. This d i s so -
ciation which resul ts in liberation of a neutron and
proton occurs when the change in deuteron momen-
tum resulting from the diffraction scattering is
sufficiently large. The possibility of diffraction
breakup of the deuteron was established independ-
ently by Akhiezer and Sitenko,9 '10 '28 Feinberg,2 6 '7

and Glauber.71

The diffraction scattering of part icles by a b -
sorbing nuclei can be investigated by an optical
method using Huygens' principle, which can be
generalized to take account of the Coulomb in ter -
action and the complex s t ructure of the par t ic les
undergoing scattering.

Fi rs t let us consider the simplest problem of
diffraction scattering of point par t ic les (for ex -
ample neutrons) by absorbing nuclei. For s i m -
plicity we shall limit ourselves to the case of an
absolutely black spherical nucleus whose radius
we denote by R. We shall assume that the wave-
length \ of the incident part icle is small com-
pared to nuclear dimensions, A. « R. This con-
dition will be satisfied for deuterons with energy
greater than 10 Mev.

The free motion of the par t ic les in the plane
perpendicular to the wave vector of the incident
part icle (the z axis) is described by the wave
function ipK = e^KP, where K and p a r e the
projections of the wave vector and radius vector
of the part icle on a plane perpendicular to the z
axis . The functions >pK a re normalized by the
condition ftp^Krdp = 8KK'-

The wave function for the incident part icle is
4>o = 1. The presence of the absorbing nucleus
resul ts in the absorption of the par t of this func-
tion at p < R. The diffraction pattern can be ob-
tained by expanding the par t of the wave function
which corresponds to scattered par t ic les , * =
{fi(p) - l } ^ o . where

Qln\ = •
o,

in t e rms of the functions J/>K:

XV = y a*ii*. (7.1)

The differential c ross section for diffraction
scattering in which the wave vector K of the sca t -
tered part icle l ies in the range d« is related to
aK by the formula

If k is the magnitude of the wave vector of the
part ic le , K = k sin £ and d« = k2dO, where dO
is the element of solid angle. The scattering am-
plitude f (t£) is related to the expansion coeffi-

cient aK by

From (7.1) it follows that

(7.2)

Carrying out the integration and using (7,2), we
get the well known formulas:

0, ae = r.R2 (7.3)

(Since the diffraction treatment is valid for small
angles, sin £ can be replaced by t?.) The cross
section for absorption of the neutrons is also

The total c ross section for interaction of fast
neutrons with nuclei can be found from the forward
elastic scattering amplitude,

a, = 4irAlm/(0); (7.4)

For neutrons, f ( 0 ) = ikR2 /2, and crt = 27rR2, as
it should be.

In the case of scattering of fast neutrons by
nonspherical nuclei, in addition to elastic sca t te r -
ing we may also have scattering of the neutrons
accompanied by excitation of the nucleus. In this
case the function £2 should be taken equal to zero
in the region of the shadow cast by the nucleus on
the plane perpendicular to the wave vector of the
incident neutron, and equal to unity outside this
region. Obviously the a rea of shadow will depend
on the relative orientation of the symmetry axis
of the nucleus and the wave vector of the incident
neutron. Then the diffraction wave function must
be built up from products of the functions ipK with
eigenfunctions of rotational states of the nonspher-
ical nucleus. The excitation of rotational states of
nonspherical nuclei in diffraction scattering was
treated by Drozdov.15

At high energies, when the mean free path of
the par t ic les in nuclear mat ter becomes compar-
able with the dimensions of the nucleus, the nucleus
should be treated as a semitransparent body which
is characterized by a complex absorption coeffi-
cient

where b4 is the absorption coefficient and v the
refractive index of nuclear mat ter . Then the fac-
tor Q should be assumed to be

Q(p) =
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For neutrons the nucleus begins to be semi t rans -
parent at energies above 100 Mev.

2. Diffraction scattering and diffraction breakup
of deuterons. Our treatment of the diffraction of
point par t ic les can be generalized to the case of
diffraction scattering of weakly bound composite
part ic les like the deuteron by absolutely black
nuclei. To do this we again use an expansion of
the diffracted wave function, but now we have two
factors £2n and Bp for the neutron and the p r o -
ton. (In this t reatment we a r e of course neglec-
ting the Coulomb interaction of the deuteron and
the nucleus.)

In studying the diffraction of deuterons we must
consider both the motion of the center of mass and
the relative motion of the neutron and proton in
the deuteron. The motion of the center of mass of
the deuteron in the plane perpendicular to the wave
vector of the incident deuteron (the z axis) is
described by the wave function ipK = e*KPd, where
K and pd a re the projections of the wave vector
and the radius vector to the center of mass of the
deuteron on the plane perpendicular to the z axis.
The relative motion of the part icles in the deuteron
cpa ( r ) , and the relative motion of the neutron and
proton emitted as a resul t of the breakup is de -
scribed by (pf(r). The functions cpf together
with the function cp^ form a complete system of
orthonormal functions.

Since the deuteron is a weakly bound system,
in which the neutron and proton spend a large f rac-
tion of the time outside the range of the nuclear
forces, the diffraction of deuterons by an abso-
lutely black nucleus is given by expanding the
function * = (Bnfip - 1) tpQ(Po in the complete set
of functions tyttfo anc^ tynVi'-

X », f

The expansion coefficients aK and aKf can be r e -
garded as probability amplitudes for diffraction
scattering and diffraction breakup, respectively.
From (7.5) it follows that

§* (Pa)

(7.6)

flxr = — \ ^ f onu)p}

(7.7)

where, for convenience, we have introduced the
notation <j(p) = l — f i ( p ) .

Using the expansion

(7.8)

we can write the elastic scattering amplitude
which is related to aK by (7.2), as

= ik { 2 i l tan"1 JL

2̂  J
4a

J | 2g -x |

V '

The differential c ross section for elastic scatter
ing of the deuterons is then:

7>2 9 AP -1 %'/,(*')

tan"

1~ J |2g'-->

—g'l dv.'

where we have introduced the dimensionless quan
tities K' = KR, g' = gR and p = R/Rd- The for-
mula becomes much simpler in the limiting case
of large p:

> P>

To get the total elastic scattering cross section,
we use the condition of completeness of the func-
tions i/iR. From formula (7.6), we get

ae = \ I' (?<i) ^Pd, I (?d) = J {«>n -T ("i. — ^n^p} ?» ('") dr-

If p » 1, the contribution of the region p^ < R
to the cross section is equal to TTR2 to t e rms of
order l /p 2 . The product _nujp is equal to zero
when pd > R, so

CD
1 CM) - 2 \"f lan-1 i / , fe) J. ( ^ ) dg

&*P

Using the asymptotic expressions for I t (x) and
K()(x) when x » 1, we get

f'd

and consequently the contribution of the region
Pd > R to cre is

CO CO
2T.R \ db j w §-1' = \ (1 - In 2) RRA.

u 1
Thus the total c ross section for diffraction elastic
scat ter ing of deuterons is
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7? d «i? . (7.10)

In addition to purely elastic scattering which is
analogous to the diffraction scattering of point p a r -
t ic les , for composite part icles like the deuteron
we can also have diffraction breakup. Using (7.7),
we write the amplitude aKf for diffraction breakup
in the form

where z = K/2a and u = t/a. The cross section
for diffraction breakup is related to the amplitude
aKf by

^ = i % r g . (7.1D

The total c ross section for diffraction breakup is
given by the formula:

where I ( u ) gives the distribution of the relative
energy of the products of the breakup, and has the
form

/ (u) = ^ - u f ,j — sin ,

- 1 6 ( 1 - I n 2)—-if-- (7.13)

The total c ross section for the diffraction breakup
of deuterons is

«d R&'&R. (7.14)

Like the stripping reactions, the diffraction
breakup of the deuteron resul ts in emission of a
neutron and a proton, i .e. , it increases the yield
of neutrons from the interaction of fast deuterons
with nuclei.

3. The stripping reaction at high energies . We
can also use the diffraction method in treating the
stripping reaction at high energies of the incident

deuterons (energies exceeding several tens of
Mev).

For the case of an absolutely black nucleus one
can then develop a theory of the stripping reaction
which takes into account the finite radius of the
nucleus.12

Let us determine the c ross section for a p r o c -
ess in which one of the part icles originally const i -
tuting the deuteron is liberated, while the other
part icle is captured by the nucleus. To be specific,
let us consider the reaction in which the neutron is
liberated while the proton is absorbed by the nu-
cleus. This process can be described by the wave
function

Expanding *
~ n (where

in an integral over the functions
e~ n (where r n is the radius vector of the neu-
tron ), we get the probability amplitude for the
neutron to have wave vector k and the proton to
be at the point rp . This probability amplitude is
obviously equal to

(rp) = (r) drn. (7.15)

Integrating | a k ( r p ) | 2 over dpp between the l im-
its pp = 0 and pp = R, we get the differential
c ross section dcrn for stripping in which the wave
vector of the emitted neutron is in the interval dk:

rfk (7.16)

In the limiting case of p » 1 (when the nuclear
boundary is a plane), the amplitude afc ( rp ) can be
found in explicit form. Except for an irrelevant
phase factor, this amplitude is

where P = ( a 2 + ky + k | ) v 2 and the x axis is
along the normal to the nuclear boundary. In this
limiting case the differential c ross section for the
stripping reaction is given by the expression:

271
, dk Jti?a (' df D D in -I e / \

u 'ca-
using the completeness of the system of func-

tions e1*""1!. we can write the total c ross section
for stripping as

Substituting the expansions (7.8) for fin and Op,
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= A

This expression simplifies in the limiting case
of large p . Using the fact that for p » 1,

we get Serber ' s approximate formula for the total
stripping cross section:

The dependence of <rn on p is shown in Fig. 14.
For lead, p = 4.2 and formula (7.17) gives a n =
3.2 x 10"25 cm2, while Serber ' s formula gives cjn =
2.7 x 1O"25 cm2. For p = 1, an = 5.8 x 10"26 cm2

and erg = 6.9 x 1O"26 cm2.

4,
®r

us

FIG. 14. Dependence
of <7n on p = R/Rd. (The
dashed curve is a plot of

0 12 3 4 5 6 S III p

The c ross section for stripping off of a proton
will also be given by (7.17) and (7.18).

To find the energy distribution of the emitted
neutrons, we must integrate (7.16) over the perpen-
dicular components of the vector k:

Using the completeness of the functions
and the expansions (7.8) for fin and flp
get finally

dcn = an (k) dk,

we

1
x \ Kl(j&V\+k*) (sin"1 C -KV'T-T 3 ) 'CdZ, (7.19)

o
where the dimensionless quantity /•* is related to
the energy E n of the liberated neutron by the for-
mula

K = -

(Ed is the energy of the incident deuteron.) Fo r -
mula (7.19) determines the energy distribution of
the emerging neutrons for a rb i t ra ry values of the
parameter p = R/Rd.

In the limiting case of p » 1, formula (7.19)
goes over into Serber ' s formula

on (&) = £- (7.20)

We see that the center of the distribution is at a
neutron energy equal to half the energy of the in-
cident deuteron. The width of the distribution is
A = V 22/3 - 1 V~eE*d~, which amounts to 31 Mev
for a deuteron energy of 190 Mev.

To get the angular distribution of the neutrons,
we must integrate (7.16) over dk z . Restricting
ourselves to the limiting case of p » 1, we get:

do r=
m< {1 - 2=? [(1 + C2)tan"1 C - C]} d(k, (7.21)

where £ = #/#„, £0 = ( e / E d ) 1 ^ and dOf
We see that most of the neutrons move inside a
cone whose axis coincides with the direction of
the initial deuteron beam and whose opening angle
is equal in order of magnitude to t£0 = ( e /Ed) 1 ' 2 ,
which amounts to about 6° for 190 Mev deuterons.

The experimentally observed angle and energy
distributions of neutrons liberated from stripping
reactions at high energies a re in agreement with
the theory. The neutron yield for incident deu-
teron energies ~ 200 Mev is l | to 2 t imes the
value given by (7.18).110 Formula (7.17) only p a r -
tially explains this discrepancy. The remaining
difference may be due to Coulomb or diffraction
breakup of the deuterons, which have not been
studied experimentally.

4. Total c ross section for diffractive in te rac-
tion of deuterons with nuclei. The total cross s e c -
tion at for interaction of fast neutrons with nuclei
can be determined by using (7.4) if we know the
elastic scattering amplitude at zero angle. The
amplitude for scattering of deuterons at zero angle
from an absolutely black nucleus is

Consequently the total c ross section is

Using formula (7.8), we get

P'ldr- (7-22)

= «.. (7.23)
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FIG. 15. Dependence
of total cross section <7t

on the parameter p =R/Rd.

(The cross section at naturally does not include
the Coulomb scattering.) The dependence of at
on p is shown in Fig. 15.

In the limiting case of p » 1 we have

r) rj2 i DD D // T) /f7 O/t\
ce = i/atv -\- it/t/i(j, /td «; xt. \ I .At)

It can be shown that the following relations hold
for arbi t rary values of p = R/R^:

ac + °d = y ° ! . On + Op+Oa-i-a, , (7.25)

where a a is the c ross section for absorption of
deuterons by the nucleus. In fact substituting (7.7)
in (7.11) and integrating over K and f, we get

= J J

Comparing this expression with (7.22) we a r r ive
at (7.25).

Using (7.17) for the stripping c ross sections
a n and ap, and the expression (7.23) for the total
c ross section, we easily find for the c ross section
for absorption of the deuteron by the nucleus the
formula

CO
aa = 2irfl2(\ l - tan^- i -A^tfC, p = ~ . (7.26)

In the limiting case of p » 1, this expression
gives

Ga = %Rn--~RRi, Ra<tR. (7.27)

The c ross section for absorption of one part icle by
the nucleus is 7rR2, but since the c ross section for
the process in which one of the par t ic les of the deu-
teron enters the nucleus while the other passes by
outside the nucleus is (7r/2)RR,j, the cross s e c -
tion for absorption of both par t ic les is irR2 -
(7r/2)RRd-

5. Interaction of fast nucleons with deuterons.
The character is t ic feature of nucleon-nucleon
scattering at high energies (greater than 400 Mev)
is inelastic scattering, i.e., scattering accompanied
by the production of ir mesons.

In the energy range 800 — 1400 Mev, it was
found52'48 that the elastic and inelastic c ross s e c -
tions a r e practically equal to one another and con-

stant. Therefore the interaction between nucleons
in this energy range can be described using the
diffraction model, according to which the total in-
teraction cross section will be 2irR2, where R
is the radius of the region of interaction. Taking
for the cross section the value <J0 ~ 45 mil l ibarns,
we get for this radius the value R - 0.85 x 1O~13

cm.

In this same energy range (800 —1400 Mev),
the total c ross section for interaction of a nucleon
with the deuteron is noticeably less than the sum of
the interaction c ross sections with a free neutron
and proton.52 This effect was explained using a
diffraction mechanism for the interaction of nu-
cleons at very high energies.7 2 Obviously the sca t -
tering or absorption of the incident particle by one
of the nucleons in the deuteron will be reduced if
this nucleon enters the shadow cast by the other
nucleon in the deuteron (eclipsing effect).

Let us consider the scattering of a fast nucleon
by a bound system of nucleons (a deuteron). If
the velocities of the nucleons in the deuteron a r e
small compared to the velocity of the incident nu-
cleon, their motion can be neglected during the
time of passage of the nucleon through the deuteron.
The scattering of the nucleon by the fixed neutron
and proton with coordinates r n and r p can be
characterized by functions fin and fip with cen-
t e r s at the positions of the neutron and proton:

Expanding * in t e rms of the functions ipn = e*KP
and averaging the amplitude over all possible r e l a -
tive separations of the neutron and proton in the
deuteron, we get an expression for the elastic
scattering amplitude which coincides with (7.9),
but now R represents the radius of the region
of interaction of two nucleons. Then using (7.4)
we can get the following expression for the total
c ross section for interaction of a nucleon with
the deuteron:

JL

If p « 1, it is easy to show that

o . _ 2 o 0 { l - - !

(7.28)

(7.29)

The main contribution to the total cross section
comes from processes in which the deuteron is
dissociated. One can show that for p « 1, the
cross section for elastic scattering of nucleons
by deuterons is
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1. (7.30)

Actually, p is only a little less than unity
(p =* 0.85/2.1 = 0.4). Using the graph in Fig. 15,
we find for the total cross section the value ato
— 1.8 <T0 =* 81 millibarns, which in satisfactory
agreement with the experimental data.52

8. Breakup of Fast Deuterons in the Coulomb
Field of the Nucleus.

1. Electric and magnetic breakup of the deu-
teron. The interaction of a fast deuteron with the
Coulomb field of a nucleus can also result in the
breakup of the deuteron into a neutron and a proton.
Even though the Coulomb breakup of the deuteron
at high energies is less important for most nuclei
than the breakup resulting from direct nuclear
collisions and the diffraction breakup, for the
case of very heavy nuclei the cross section for
Coulomb breakup is of the same order of magni-
tude as the cross section for nuclear breakup.

The Coulomb breakup of high energy deuterons
was treated by Dancoff,58 who found the cross sec-
tion for the process and also obtained the angle
and energy distribution of the products of the dis-
integration (cf. also reference 97). Relativistic
corrections to the Coulomb breakup, and the mag-
netic breakup of the deuteron, which is accompa-
nied by transition of the n-p system from the
triplet to the singlet state, were treated in refer-
ence 20.

Let us consider the interaction of a fast deu-
teron with the Coulomb field of the nucleus. If
the condition n = Ze2/Kv « 1 is satisfied, we
can use perturbation theory, treating the inter-
action of the deuteron with the nuclear Coulomb
field as a small perturbation.

In finding the cross section for disintegration
of the deuteron, it is convenient to use a coordi-
nate system in which the deuteron is at rest be-
fore the collision while the nucleus moves with
velocity v. The electromagnetic potentials of
the moving nucleus are then given by

/ —

The time dependent perturbation is

1/(0 = .
ЧМс {РрА(гР)Н-А(гр)рр}

— m pH(r p) — mnH(rn)

ГЬ
2Mc

(8.1)

and д п are the magnetic moments of the pro-
ton and neutron, expressed in nuclear magnetons).

The initial and final wave functions of the sys-
tem are

- — E I

Wt = ф,;е
 n l , <!>i = cp0 (r) x i i V Ei = - з,

^ - ф г е " ^ ' . «^-е""'??>(')„*„ Я,—*£- + *., (8.2)

where к is the wave vector of the motion of the
center of mass and £ is the wave vector of the
relative motion of the n-p system after the
breakup.

With the normalization we have used for the
wave functions, the differential cross section for
a breakup in which к and f are in the intervals
dk and df is given by

da = I a I dkdi (8.3)

where a is the probability amplitude for the
transition,

oo

Noting that ^ у^(И = т-К0^-у^1^?) e~v z,

. hv д \ г?- f w - / i 77Ь

we get

v 2Ze*

If we also carry out the integration in a over the
coordinates of the center of mass of the deuteron,
we find

a = — i -
. Ize"-

dz

" )

--r r [vxk](a n —

where S = | (ffn + op) is the spin operator for the
n-p system.

With regard to the calculation of the integral
over the relative coordinate r, we not that we
should cut off the range of k, since very large
values of к correspond to small values of the
impact parameter, which should however not be
less than the nuclear radius R. In fact, for im-
pact parameters which are less than the nuclear
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radius R, a collision with the nucleus will occur,
and then the Coulomb interaction is unimportant.
Therefore, in treating the Coulomb breakup of the
deuteron, we should assume that к is bounded
and the maximal value of к should be of the
order of R"1.

The effective value of the separation between
neutron and proton in the deuteron is of order Rd;
thus the effective value of the product kr is of
order R(j/R and is thus much less than unity.

Expanding the exponentials e ±2—г i n series and
stopping at the first non-vanishing term, we get
the following expression for the probability ampli-
tude:

where ag and адо are the probability amplitudes
for electric and magnetic transitions, and are
equal respectively to

.2Z

+ s in d s in Ь' cos tj> — ,82 cos 8- cos &') o i M M

k —
V

(8.4)

(8.5)

where d- is the angle between к and v, У is the
angle between £ and v, and <p is the difference
of the azimuthal angles of к and f.

In the electric breakup of the deuteron, the spin
of the n-p system does not change; in the mag-
netic breakup the neutron-proton system makes a
transition from the triplet to the singlet state.

Taking the absolute square of (8.4) and noting

that б2 — — 6 ( k z - — V we integrate over dk

and get the following expression for the differential
cross section for electric disintegration of the deu-
teron:

, /Ze2V 2a/1 f . , „ , , Г2 — 3=

+ [2(1 - P ) cos* ft - sin* »']-~^^ dt, (8.6)

where Г = fiv/(e + ef) R. (In view of our previous
remarks, we have limited the £ integration to the
region from 0 to 1?щах. where cos ч^пах = Г"1.)

Integrating (8.6) over angle, we find the energy
distribution of the disintegration products:

с/ол-(г,) = —
VA!

Since the upper limit k m a x is determined only
to order of magnitude, formula (8.7) makes sense

only if the argument of the logarithm is large
(Г » 1). This condition is satisfied for high en-
ergies of the deuteron. The factor (1 - Д 2 ) " 1

under the logarithm takes account of the relativis-
tic dilation of the cross section for electric disin-
tegration with increasing energy of the deuteron.

Using (8.5) it is easy to find the energy distri-
bution of the products for magnetic disintegration:

In- rdaf. (8.8)

(In the case of magnetic disintegration, the angular
distribution of the products is isotropic.)

The integration of (8.7) and (8.8) over energy
ef can be done numerically. Figure 16 shows the
behavior of the total cross sections erg and егм in
the energy interval Ed = 0.2 — 10 Bev, for R =
1.1 x 10~13 cm. In the extreme relativistic region,
the magnetic disintegration cross section ay[ is
an order of magnitude less than the electric cross
section OTR.

w

«-•»

—

fy

Ed(Mev)
10*

FIG. 16

2. Polarization of neutrons from electromag-
netic breakup of deuterons. Despite the relatively
small value of the cross section for magnetic
breakup, the latter can be detected easily since
the interference between the electric and magnetic
processes leads to a polarization of the disintegra-
tion products. The polarization of the neutrons
formed in the disintegration of the deuteron in the
electromagnetic field of a nucleus was treated by
Sawicki.108

For fixed values of the wave vectors к and f,
the polarization of the neutrons will obviously be
proportional to the following expression:
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When we take account of the normalization, it is
easy to see that the polarization of the neutrons
will be

- | Re (aEaM*)

Using (8.4) and (8.5) and transforming to the labo-
ratory system (this corresponds to replacing к
by к - ко), we can obtain the following expression
for the polarization of the neutrons:

II

(8.9)

where kg and к are the wave vectors of the cen-
ter of mass of the n-p system in the laboratory
frame before and after the breakup, and Л = fi/Mc
is the Compton wave length of the nucleon. In the
case we are considering, where n « 1, the neu-
tron polarization is independent of the nuclear
charge Z and is large for small values of the
cosine of the angle between the vectors f and
k-kfl. We note that the polarization is an ex-
tremely sensitive function of the angles of emerg-
ence of the neutron and proton. If we assume
En = Ep = Ed/2, then for Erf = 100 Mev, when
the angle of emergence of the neutron is t£ = 10°,
and the angle between the directions of the neutron
and proton is в = 18°, the polarization P = - 0.21.

9. Formation of Deuterons in the Collision of
Fast Nucleons with Nuolei.

1. Methods for producing deuterons. In the
collision of fast nucleons with nuclei, the produc-
tion of fast deuterons can occur. Production of
deuterons was first observed experimentally in
the bombardment of nuclei with 90 Mev neutrons.77

The beam of deuterons which was observed was
emitted in the forward direction with a halfwidth
~ 25 — 30°, while the maximum of the energy dis-
tribution of the deuterons was at 60 — 65 Mev.
The total cross section for carbon was 2.6 x 10~26

cm2, and increased for heavier nuclei. Later, pro-
duction of deuterons was also observed from proton
bombardment of nuclei (cf. for example, reference
83). The sharp peaking in direction of the deuter-
ons and their high energy show that the observed
deuterons are not products of evaporation from a
compound nucleus.

There are two possible ways in which deuterons
can be produced in the collision of fast nucleons
with nuclei, without formation of a compound nu-
cleus .

First there is direct capture (pick-up), in
which the deuterons are formed as a result of the
direct capture by the incident nucleon of one of
the nucleons in the nucleus. Deuterons which are
formed by such a direct capture are characterized
by being peaked sharply in the forward direction
and can have energies of the same order as the
incident nucleon. Chew and Goldberger,50 using
the Born approximation, gave the theory of the
direct capture, which was later developed by Heid-
mann.82

Secondly, indirect capture is possible. The in-
cident nucleon colliding with some nucleon in the
nucleus loses only a part of its energy. The nu-
cleon in the nucleus which takes up this energy
may form a deuteron by capturing some other
nucleon inside the nucleus along its path. The
mechanism of indirect capture was proposed by
Bransden.41 For energies of the incident nucleons
above 300 Mev, indirect capture is more important
than direct capture.

2. Direct capture. Let us treat the formation
of deuterons in the collision of fast neutrons with
nuclei as a result of direct capture. Let r0 be
the radius vector of the incident neutron, r4 the
radius vector of the proton which is captured, and
r2 etc the radii-vectors of the other nucleons in
the nucleus. If we treat the interaction of the in-
cident neutron and the proton which it captures
as a small perturbation, we can write the transi-
tion amplitude as

м ,-»",[ (ro+rO/2 (

x ? ; ( 2 , . . .A)V01^
r»9i(l,. • -Л) dx, (9.1)

where к is the wave vector of the incident neu-
tron, к,} is the wave vector of the deuteron which
is formed, <p0 is the deuteron wave function, <pi
and q>i are the wave functions of the nucleus in
the initial and final states.

If we limit ourselves to heavy nuclei, we can
use the Fermi model, in which the nucleus is
treated as an assembly of non-interacting particles
contained in a spherical well of nuclear dimen-
sions . Then the initial wave function can be taken
as

where p is the wave vector of the proton and V
is the volume of the nucleus. The integration in
(9.1) with respect to r2 . . . Гд gives unity if these
nucleons remain in their initial state; the integra-
tion over Tj gives a result different from zero if
k-kd =p. Since the Fermi distribution p is re-
stricted to lie below L, the cross section will be
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different from zero only if | к - k<j | « L. Actually
the fast nucleon transfers a momentum greater
than L. To take this possibility into account, we
make corrections to the Fermi model. The cor-
rection to the Fermi model reduces to taking ac-
count of the interaction of the proton which is to
be captured with another nucleon in the nucleus.
Then the wave function of the initial state can be
taken as

(9.2)

(9.3)

For the final state wave function we can take

Transforming from r0, Tj and r 2 to new vari-
ables r = r o - r l 7 r / = r 1 - r 2 and r2, the ampli-
tude for the reaction takes the form

^k—-1
V. 2

(9.4)

where the last integral should be taken over the
region of the nucleus, and

F(k - -1kd) = J e ' H 4 ) r

9 o (,) V(r) dx,

If the neutron-proton interaction is described
by the Yukawa potential

V (r) = Vo —--̂ -, Fo = 67.8 Mev, ц = 0.847 • Ю13 cm" 1,

and (2.8) is used for the deuteron wave function,

4rc.W0

(9.5)

Choosing the wave function for the relative motion
of the neutron and proton interacting with one an-
other in the nucleus in the form

?P ('') = - TI
sinjpr'+Ъ)

sin 5

^ - - e o t " 1 ^ - , Y = <

we also get the function

ir.V -_{ I
1 1 q* + (v- +G'(q) =

(at + pif

q = k - k d + P. (9.6)

The differential cross section for formation of

the deuteron is given by the square modulus of the
amplitude (9.4), integrated over all possible values
of p ' . We note that this integration gives

Thus if the initial state of the nucleons in the nu-
cleus is characterized by the vectors p and P,
the cross section for formation of a deuteron with
wave vector k^ is equal to

The factor § is the statistical weight factor for
the triplet state of the neutron and proton forming
the deuteron. The factor w gives the number of
different proton-proton or proton-neutron pairs in
the nucleus.

The wave vectors p and P can be expressed
in terms of the wave vectors p t and p 2 of nu-
cleons 1 and 2 in the initial state, when the sep-
aration of the nucleons is large compared to д" 1 ,
by the formula

P = -j(Pi-P2)' P = | ( P i + P2)- (9.8)

The energy of the outgoing deuteron is deter-
mined from energy conservation:

— e,-Щ-+917(к-к«1 + Р1

where Uo is the depth of the potential well for the
nucleon in the nucleus, which is taken to be 29 Mev.

To obtain the cross section for deuteron forma-
tion regardless of the initial state of nucleons 1
and 2, (9.7) must be multiplied by the probability
5P(p, P) for definite values p and P and then
integrated over all possible values of p and P
subject to the condition (9.9) of energy conserva-
tion. This probability is

$(p, P)dpdP = - dp dP,Z^jdpdP, (9.10)

if Pt and p 2 < L, and is equal to zero otherwise.
The coefficient in (9.10) is obtained from the nor-
malization condition J $ d p d P = l .

In the expression (9.7) for the cross section,
only the factor Gpp depends on p and P.

We may mention that the integral J G 2 ^ dp dP
for fixed value of k^ can be replaced approxi-
mately by
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a = 3.6- Aa-10""
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where the energy E is measured in Mev. We in-
troduce the notation

), Q = k - k d . (9.11)

This function determines the momentum distribu-
tion of the nucleons in the nucleus. If Q is very
small, the correction to the Fermi model can be
neglected, and N ( Q ) a V . In the general case,
the function N(Q) of (9.11) cannot be obtained
in explicit form. Numerical integration gives the
following values for n (Q) = NQ/A:

n = 17 x 10"" cm1 for Q - 0; n = 3.6 x 10"" cm3 for Q = 1.3

x 10~" cm"1; n = 7.6 10"/Q' 10"" cm for Q large.

These values refer to a temperature of the Fermi
distribution equal to в ~ 9 Mev

(L = 1.0 x 10u cm"1, V = 17 • A x 10"" cm3,

a"1 = 5.39x10-" cm).

Thus the differential cross section for forma-
tion of a deuteron by direct capture, per Mev of
energy, is

In Figs. 17 and 18 we give the differential cross
sections per nucleon for different energies of the
emitted deuterons, and the energy spectra of the
deuterons at various angles. (The energy of the
incident nucleon is 90 Mev.) The yield of the
faster deuterons drops off more rapidly with angle
than that for slower deuterons. The most probable
energy of the deuterons decreases with increasing
angle of emergence. These regularities of the
deuteron spectra are in agreement with the ex-
perimental data.

By numerical integration82 the following values
were found for the total cross section for deuteron
formation:

да Mev

cm2, E n = 100 Mev; a = 5.5 • A2-10~" cm2,

En = 200 Mev; a = 4.5 • A2 • lO"" cm2, En = 300 Mev.

For high energies of the incident nucleons ( E n >
0.5 Bev), the following asymptotic formula was
found for the cross section:

•7.7-4-
100

Mev cm (9.13)

i.e., at high energies the total cross section is in-
versely proportional to the sixth power of the en-
ergy of the incident nucleons.

The cross section per nucleon for formation of
a deuteron is of order r2,, where r 0 is the radius
of the volume ascribed to a single nucleon in the
nucleus. For this reason, of the total volume

— rj)A of the nucleus only the volume 7rr0 (rnA1/3)2

О

will be effective for formation of deuterons. This
means that the effective number A in (9.12) should
be taken equal to f A2/3. Thus, for carbon at 90 Mev,
we get a cross section of 8 x ю 2 6 cm2, which is
approximately three times as large as the meas-
ured cross section.

i-•

30°

/S\J£. "

w

40 SO

FIG. 18

60 70
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3. Indirect capture. Again treating the inter-
action of the incident neutron with the nucleon in
the nucleus as a small perturbation, we write the
amplitude for an indirect transition which leads to
formation of a deuteron in the form

/ = - 2 ^ S e ~ i k ' r o e ~ i k d ( r i + r 2 > ' 2

L — ' г ) 9 / ( 3 , ••• 1, . . . A)di, (9.14)

FIG. 17

where к and k' are the wave vectors of the inci-
dent neutron before and after the collision, and кд
is the wave vector of the deuteron which is formed.

Using the Fermi model with the correction for
the interaction between nucleons 1 and 2, and
choosing new variables r = r t - r2, r^ = \ (rj + r 2 )
and r ' = r 0 - r 1 ( we write the amplitude in the
form
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M

where

F(k-k') =

Gp (k - k') = \ e«*-*')r/2 9 o ( r ) 9p ( r ) d t .

We note that F (к - к') also determines the
cross section for scattering of the free neutron
by nucleon 1, which in the center of mass system
has the form

The factor Gp can be obtained in explicit form
by using (2.8) and (9.6):

G p (k-k') = («4-<7?) <

- l 0 — "

-Itan-'-

The differential cross section for deuteron for-
mation is given by the square modulus of (9.15) in-
tegrated over all possible values of k'. Integra-
tion of the square modulus of the last factor in
(9.15) gives

= \ dk'o(k-k'-J

So the cross section for formation of a deuteron
with wave vector k(j, for fixed values of p and P
in the initial state, is given by

k' = k-k d + 2P. (9.16)

Here w is the number of neutron-proton pairs in
the nucleus which are in the triplet state (w =
% Z (A — Z)). In (9.16) we have taken the sum of
the cross sections crnp and <rnn. since the deu-
teron can be formed in the scattering of the inci-
dent neutron by either a proton or a neutron in the
nucleus.

The energy of the emitted deuteron is deter-
mined from energy conservation:

?.*

The cross section (9.16) must be averaged over
all possible values of the vectors p and P in the
region pj and p2 < L. This averaging can only be
done numerically. In doing this we use the experi-
mental values of стПр and стцд at the appropriate
energies.

The total cross section for formation of deuter-
ons by indirect capture is proportional to the
square of the mass number A, unlike the direct
capture, for which the cross section is propor-
tional to A.

The following values were found for the indirect
capture cross section:

cm2, £„ = 100 Mev;

cm2, Яп = 200 Mev;

a = 4,5• A*-• 10"28 cm2, En = 300 Mev.

Assuming that the cross sections стПр and
change very little with energy, one can obtain the
asymptotic variation of the indirect capture cross
section with energy,

- n •

Though the indirect capture is only 11% of the
direct capture cross section at E n = 100 Mev, it
is already twice as large as the direct capture at
E n = 300 Mev. Thus the indirect capture plays
the principal role at high energies.

The energy spectrum and angular distribution
from indirect capture differ from those for direct
capture. In indirect capture the maximum in the
deuteron energy spectrum is shifted toward lower
energies from the maximum in direct capture. The
differential cross section for indirect capture has
a much weaker angular dependence than the cross
section for direct capture. In particular the in-
direct capture mechanism explains the large num-
ber of energetic deuterons which were observed
to be emitted at large angles from collision of
fast nucleons with nuclei.8 3 '7 9 '9 4

Ш. APPENDIX

1. Integral of a product of Coulomb functions.
The integrals occurring in Sees. 2 and 6, which
contain the product of two Coulomb functions, are
special cases of the following integral
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rF{inv 1, i ( V — k1r))F(in2, 1, i{k2r-k2r))

a V т J V Т У

XF(i-inv in2, 1 , - ^ -

v = k,q i — а , о = J

k 2 -k 3 X > 0, /->. = ( (1)

The derivation of this integral is given in refer-
ence 100.

2. Pseudopotential. At low and medium ener-
gies, the interaction between neutron and proton
manifests itself mainly in the S state. Since the
detailed character of the nuclear interaction is
then unimportant, we can describe the neutron-
proton interaction by using a pseudopotential cor-
responding to zero range of the nuclear forces.
The pseudopotential can obviously be introduced
if the wave length of the relative motion of the
neutron and proton is large compared to the range
of nuclear forces. This condition is satisfied if
the energy of relative motion of neutron and pro-
ton is less than 20 Mev.

Let us denote the wave function describing the
motion of the neutron and proton by Ф ( r n , r p ) .
If the neutron and proton are not at the same
point, this function satisfies the Schrodinger
equation

H04r = EW, r n ^ r p , (2)

where Ho is the Hamiltonian for the non-interact-
ing neutron and proton in the external field. For
r —• 0, this function must satisfy a boundary con-
dition which describes the presence of interaction
between the neutron and proton. If we denote the
wave vector of the relative motion of neutron and
proton at the instant of collision by k, the boun-
dary condition can be expressed as

ц.-—>(ei—+ a—j^)$(r,,), •0, (3)

where the function ip (?d) * s determined by the ex-
ternal field, and the expression in parentheses is
the wave function of the relative motion. If there
were no interaction between neutron and proton,
the relative motion would be described by a plane
wave. The quantity a appearing in the boundary
condition is the scattering length, for which we
can use the expression a = -l/(a + ik), which
holds for the scattering of free neutrons by protons

The boundary condition (3) and Eq. (2) can be
written as a single equation4

(4)

where V(г) =
M

is the pseudopotential

describing the neutron-proton interaction.
It can be shown that (4) admits a solution de-

scribing the bound state of the neutron-proton
system. From (4), we get the following equation
for the relative motion of a free neutron and pro-
ton:

d(re~
dr (5)

where e = K2k2/M is the energy of relative motion.
It is easy to show that срй (г) = Va/2jr ( e ~ a r / r ) ,
the ground state wave function of the deuteron, sat-
isfies (5) if e = -R2Q!2/M. In fact, using the form
of <p0, the right side of (5) can be transformed as
follows:

-V(r)
8 (ге~и

dr

We thus get from (5) the equation

which is identically satisfied.
Using an equation like (4) to describe the inter-

action of a deuteron with a nucleus, we can get the
following exact expression for the stripping am-
plitude:

/ = - ;
a(re-' (Г,

Substituting the incident wave </>о$кн f° r *
in this equation, and using the explicit expression
for the pseudopotential, we find

Comparing this expression with (3.10), we see
that for zero range.of the nuclear forces, we get
the relation

(6)
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