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I N the theory of atmospheric diffusion, a study is
made of the propagation of impurities in the air.
One of the most important problems confronting
the theory of atmospheric diffusion is the question
of the contamination of the air by industrial estab-
lishments and transport vehicles, especially the
contamination of the air in cities. In the absence
of atmospheric diffusion, the contamination would
accumulate in the lower atmosphere, which would
make the normal activities of human beings diffi-
cult. No less important is the problem of the
propagation of radioactive particles in the atmo-
sphere, a problem which has been troubling all
mankind in recent years. Because of atmospheric
diffusion, a certain fraction of the radioactivity
generated in atomic explosions comes to us. We
are confronted with the phenomenon of atmospheric
diffusion even in agriculture, for example, in the
dusting of plants by chemical substances in the
fight against pests, or in the use of artificial
smoke sources for the protection of plants from
frost. Because of atmospheric diffusion, sea salt,
volcanic dust, bacteria and viruses, pollen and
plant seeds are propagated in the air, air masses
over the sea are saturated with moisture, and
those over the desert, by dust.

Because of the complicated nature of the phe-
nomena investigated, the development of a theory
of atmospheric diffusion requires the combined
efforts of specialists in a number of branches of
science. In first degree, this refers to special-
ists in hydromechanics and geophysics, into which
categories falls the largest number of problems
arising in the study of atmospheric diffusion.

1. Factors which affect atmospheric diffusion.
Atmospheric diffusion is a complicated phenome-
non and depends on many factors. In the first
place, it is necessary to know what kinds of con-~
tamination enter the air, i.e., what is the nature
of the contamination source. The contaminations
can enter the air from industrial plants, from the
surface of the earth or from artificial sources.
The sources can be instantaneously or continu-
ously acting with constant or time-dependent dis-
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charge. The sources can be concentrated (on the
ground surface or elevated) or distributed along a
line, surface or volume. It is also important to
know whether the contamination particles acquire

a definite velocity at the exit of the source (for ex-
ample, the velocity of exhaust gases from a smoke
stack) and what sort of temperature is posséessed
by the contaminated air at the source exit (a gas
heated with respect to the surrounding air will rise
upwards, one cooled will move downwards).

In the second place, it is necessary to know
the laws of propagation of the contamination in
the air for different meteorological conditions.
The contaminations are transported by air cur-
rents and diffuse in the air as a result of the ac-
tion of turbulence. A description of these proc-
esses relates to the realm of hydromechanics.

For an account of the transport of the contam-
ination by the wind, one needs to know the kine-
matics of air currents. In particular, for calcu-
lations of the propagation of contaminations in the
lower atmosphere, one must have information on
the vertical wind profile for various meteorolog-
ical conditions (in the first place, for different
character of thermal stratification of the air).

For computation of the mean contamination around
a given source after a long time interval, one must
assemble statistical data on the direction and force
of the wind in the given region. Thus, by grouping
the values of the wind force about intervals with
centers Aj, and knowing the frequencies Pij of
occurrence of the corresponding pairs of values

of force and wind direction, it is possible to com-
pute the average distribution of the contamination
by the formula

sz, y, 2)= E}pijs (=, v, ziu,, 4,),

where s(x,y, z|uj, Aj) is theecomputed distribu-
tion of the contamination for wind force uj and
direction Aj.

For the calculation of the propagation of con-
tamination from an instantaneous source in scales
of the terrestrial sphere, it is necessary to know
the kinematics of the air currents, which are con-
trolled by synoptic processes, on a large part of
the globe after a sufficiently long period of time
(measured in weeks ).
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Besides the regular, macroscopic currents,
there are chaotic hydrodynamic motions of differ-
ent scales, down to very small, of the order of
centimeters, which are known as turbulence. The
displacement of the air brought about by turbulence
is the reason for turbulent diffusion of the con-
tamination. For a description of turbulent diffu-
sion, we must know some statistical characteris-
tics of the turbulent velocity field. These charac-
teristics, generally speaking, are dependent on
meteorological conditions, primarily, the field of
the mean wind velocity and the thermal stratifica-
tion of the air. For example, in stable thermal
stratification of the air, turbulent diffusion takes
place slowly, and the contaminations are trans-
ported by the wind almost without scattering.
Under convective conditions, on the other hand,
the turbulent diffusion takes place intensively,
and leads to a rapid scattering of the contamina-
tion.

The third group of factors which influence at-
mospheric diffusion is related to the properties
of the contaminations themselves. In the first
place, it is necessary to know the effect of the
force of gravity on the contamination. For ex-
ample, gases heavier than air, and with suffi-
ciently large particles, will settle, while the pre-
cipitation rate of the particles will depend on their
dimensions, specific gravity and shape. One must
take into account the possibility of chemical and
radioactive transformations of the contamination,
and also such physical transformations as coagu-
lation, sublimation and adsorption on aerosols.

In particular, interaction can take place between
the impurities and atmospheric moisture — water
vapor, water droplets in clouds and fogs, and par-
ticles of precipitates. Thus, rain can purify the
air of contaminations, leading to their precipita-
tion on the surface of the earth.

A fourth group of factors relates to the condi-
tions of interaction of the contamination with the
surface of the earth (or water). The contamina-
tion can either be retained by this surface, as it
were, “adhering” to it or being absorbed by it
(the surface of water possesses such a property
relative to most contaminations ), or be “reflected”
from it and returned to the air. Intermediate
cases of partial absorption and partial reflection,
or “adhesion” at some (random ) time, after which
the contamination rises again into the air, are also
possible. For a mathematical formulation of the
boundary conditions for the contamination of the
surface of the earth, it is necessary to take into
account its degree of roughness and its capacity
to absorb the contamination of given form. Obvi-

ous complications will be created by the inhomo-
geneity of the earth’s surface — peculiarities of
relief, the presence of structures, trees, etc.

Investigations in the theory of atmospheric
diffusion are devoted to the development of a
standard method of calculation of the propagation
of the contaminations in the air under idealized
average conditions (usually over a plane homo-
geneous region under stationary atmospheric con
ditions ), and also to the study of the effect on at-
mospheric diffusion of one or another of the fac-
tors mentioned above (for example, the effect of
the thermal stratification of the air).

Without pausing to give any sort of exhaustive
review of the literature on the theory of atmo-
spheric diffusion, we recall the names of just a
few authors. We note that the principal contribu-
tions to the theory of atmospheric diffusion were
made by the English scientists L. F. Richardson,
G. L. Taylor, O. G. Sutton and G. K. Batchelor.

2. Specific characteristic of turbulent diffusion.
The specific characteristic of turbulent diffusion
is the multiple scale of the turbulent motion cre-
ating the mixing of the air. The character of the
turbulent diffusion is determined by the way in
which the energy is distributed among the turbu-
lent motions of different scales. The largest of
the scales of motion, on whose account almost all
the energy flow takes place, is called the scale of
the turbulence I. The value of the velocity of mo-
tion of the air at points, whose separation does not
exceed I, is shown to be statistically random, rel-
ative to one another. Therefore, the particles or
portions of contamination, whose separation does
not exceed I, will not move independently of each
other. Generally speaking, this disturbs the anal-
ogy between turbulent and molecular diffusion.

In a number of cases, the scale of turbulence !
is shown to be small in comparison with the dimen-
sions of the region in which the diffusion mainly
takes place (for example, in comparison with the
diameter L of the contamination cloud). In these
cases, we can say that the diffusion takes place
principally because of the small-scale turbulence.
Here the particles of the contamination at relative
small distances (in comparison with L) will move
independently of each other. In similar cases, evi-
dently, the description of turbulent diffusion by anal-
ogy with molecular diffusion is justified. Such an
approach is usually applied for the description of
turbulent diffusion along the vertical in the lower
atmosphere.

3. Analogles between diffusion in the field of
small-scale turbulence and molecular diffusion.
The chaotic molecular motion can be characterized
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by the mean velocity vy, of motion of the mole-
cules (which depends on the temperature of the
gas) and the length of the mean free path of the
molecules l;,. The coefficient of molecular dif-
fusion ky, ~ vplm can be determined by these
quantities. The coefficient is understood as the
coefficient of proportionality between the diffusion
current of the given substance and the gradient of
its concentration, Vs: S = —pky, Vs (p is the
density of the gas). Similarly, chaotic turbulent
motion can be characterized by the mean value v
of the velocity of turbulent fluctuations (which
serves as a measure of the intensity of the turbu-
lence) and the scale of the turbulence, [.

(L. Prandtl! introduced the “mixing path” as

I — a quantity similar to the mean free path length
of the molecules.*) Thereafter, the coefficient of
turbulent diffusionf k ~ vl, understood as the co-
efficient of proportionality between the mean tur-
bulent flow of a given substance S =ps’u’ and the
gradient of its average concentration Vs could
be introduced:

S = —okVs (2)

(the bar indicates averaging, the prime indicates
departure from average value and u = the velocity
field). The assumption of the proportionality be-
tween S and V& was formulated by W. Schmidt.3
On the basis of this assumption, the so-called
semi-empirical theory of turbulent diffusion was
developed, in mathematical behavior analogous to
the theory of molecular diffusion in an inhomoge-
neous medium.

The scales of molecular and turbulent motions
differ from one another in many ways. Thus, in
the lower atmosphere, for molecular motion,

vm ~ 104 em/sec, Iy ~ 1075 em, kpy ~ 107! em?/
sec, while for turbulent motion, v ~ 10 ecm/sec,
I~102—10%° cm, k~ 10°—10? cm?/sec. It is
clear from these figures that one can neglect mo-
lecular processes in most problems of atmospheric
diffusion. At the same time, the difference in the
scales no longer leads to a qualitative difference
of turbulent and atmospheric diffusion. More im-
portant is the difference in the velocities of the
motion, since the usefulness of the parabolic equa-
tion of diffusion is the more limited, the smaller
the real velocities of motion of the diffusing par-
ticles (we shall return to this question below).

It is also important that, in contrast to molecular
diffusion, turbulent exchange in the atmosphere is

*The concept of ‘‘mixing path’’ was suggested still earlier
by G. L. 'I‘aylor.2

tTranslator’s note: pk is the ‘‘interchange coefficient” of
Schmidt.3

anisotropic as a rule. However, the corresponding
generalization of the theory does not present any
difficulties (namely, by I and k, one must un-
derstand tensors ).

4. The semi-empirical equation of turbulent
diffusion. In the semi-empirical theory, the equa-
tion of turbulent diffusion for the lower atmosphere
is written down in the form
This equation expresses the law of conservation of
the matter s in differential form. Here the x
axis is directed along the wind direction, the x
axis is vertically upward; t = time; u = wind ve-
locity; kg, ky, k, are the coefficients of turbulent
diffusion in the direction x, y, z. If it is necessary
to consider gravitational settling of the diffusing
particles (with velocity w) and the possibility of
exponential decay of the amount of the diffusing
material (with half life (ln 2)/«), then we must
add the quantity (—w(8s/8z) + as) to the left
hand side of Eq. (2). However, in the construction
of the standard method of calculations, this quan-
tity is usually not taken into consideration. Equa-
tion (3) was formulated for the halfspace z > z,,
where z; is the so-called “roughness height” of
the surface of the earth, while at the level z =z,
some boundary condition is given for the concen-
tration s.

In the most general form (with consideration
of gravitational settling of particles of contamina-
tion with velocity w) the boundary condition can
be written in the form

ds

/1': -a—:"

+ws=3s for z=gz, 4)
where p = some constant of the dimensions of ve-
locity. Here, k,(8s/0z) is the vertical flow of
the contamination because of turbulent diffusion,
while ws 1is due to gravitational precipitation.
For B =0, the condition (4) means that the flow
of the contamination on the surface of the earth is
equal to zero, i.e., all the contamination remains
in the air, being “reflected” from the earth’s sur-
face. For B = », the condition (4) takes the form
8§ =0 (z=2z;) and means that the contamination
falling on the surface of the earth “disappears,”
as it were, being absorbed by this surface of “ad-
hering” to it. In the intermediate cases (0 <
< «), the contamination is partially “reflected”
from the surface of the earth and partially “ad-
heres” to it. Usually, only two limiting possibili-
ties are observed — “reflection” or “absorption.”
Typical problems are encountered in the search
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for the solution of Eq. (3) corresponding to instan-
taneous or continuous sources of contamination

(in the study of continuous sources, the component
(98/8x)ky (8s/8x) 1is usually neglected in compari-
son with u (9s/9x)).

The coefficients u, kg, ky, k, of Eq. (3) are
generally variable. The analytic solution of the
equation, suitable for standard mass calculations,
is obtained only under certain special assumptions
on these coefficients. In the case of constant co-
efficients, the solutions of Eq. (3) corresponding
to the basic type of sources were studied by O.
Roberts.?

Thus, in the presence at the point x =y =0,

z =h of a standard point source of contamination

and for a boundary condition of “reflection” at the
level z = 0, the solution of Eq. (3), under neglect
of the component (9/9x) kx (8s/8x), has the form

wy2 _u(:uh)? u(z+h)2
[

s (JC, Y Z) == [:17]112-7@ e lhyx hizx e Ahax :I . (5)
: y Az

The distribution of contamination across the direc-
tion of the wind has here the form of a Gaussian
curve with mean square deviation (2kyx/u)1/2,
which increases with the distance x from the
source. The distribution of contamination on the
surface of the earth, in terms of the direction of
the wind from the source, has great practical in-
terest:

& (-T, a, (n = rlﬁ_—‘r;:j e ikza . (6)

The .ighest concentration sy = (2¢/meuh?) (kg / ky)l/ 2

(inversely proportional to the square of the alti-
tude of the source) is achieved at a distance xp, =
uhz/élckZ from the cource (proportional to h?).
For the boundary condition of “absorption,” the
contamination distribution in the air is described
by a formula which differs from (5) in the replac-
ing of the plus sign between the terms in square
brackets by a minus sign. The quantity of prac-
tical importance in this case is the settling rate
of the contamination on the earth’s surface:

uy2 uh?

- T LU S rE = U

s Ja=o 4ra? iv’/fy/\‘x

s (s, y) =

This function characterizes the rate of formation
(on the earth’s surface) of a “track” of fallen con-
tamination. The track is symmetric with respect
to the wind direction. The maximum settling rate
of the contamination is achieved on the axis of the
track at the point x;';l = uh?/8k; and is equal to
om = (4cky /mefuhd) (ky /ky ) V2.

The solutions of Roberts give a correct quali-

tative description of the diffusion processes; how-
ever, they are not in quantitative agreement with
experimental data (the rate of decay of the con-
centration of the impurity upon removal from the
source is too small). Moreover, as the theory of
the turbulent regime in the lower atmosphere
shows (and also direct measurements of the tur-
bulent diffusion) these coefficents are not constant,
but increase with altitude (for neutral stratifica-
tion, they are proportional to the altitude). Solu-
tions of Eq. (3) for u = const and ky, kz ~ z
were studied by S. Bosanquet and J. Pearson.’
Finally, the case was considered by a number of
authors in which the wind velocity u and the co-
efficient of turbulent diffusion are given as pro-
portional to some power of the altitude z. For-
mulas of such a type permit an excellent approxi-
mation of the experimental regularity. In the
USSR, a similar method was treated in detail in

a series of papers by D. L. Laikhtman.®”7 For
example, in one of the variants of the formulas

of D. L. Laikhtman there was obtained u = const,
ky = const, ky =k (z/21)1" /P where p is a
parameter characterizing the degree of thermal
stability of the air (for neutral stratification,

p = =, for stability p > 0, for convection, p < 0),
while the value of k; for z; =1 m can be roughly
determined by the formula k; =u/40 (u is meas-
ured in m/sec, while k; is measured in m%/sec).
For such coefficients of Eq. (3), there is obtained

1
s it

2y = ptl L 8_41:;2::“% [(ﬁ) ‘p“]

P 2z} muxky

1 .
GV (2], ®

in place of the formula of Roberts (5), where L =
(p/(p+1))2(uh?/k, (h)). In the index of the cylin-
drical function, the plus sign is to be taken for the
boundary condition of “absorption,” and the minus
for the condition of “reflection.” In analogy with
Eq. (6), we have

s{z, ¥,

L \pti —=
$(e 0. 0= 24T (147%) Vaﬂiﬁh’;)pﬂe )

The maximum of this function is obtained at the
point x,, = ((2p+2)/(3p+1)) L. The abscissa of
the maximum is proportional to h!*1/P)  the
value of the maximum is proportional to h~¥2-1/2P,
In the use of Eq. (3) for the description of the
propagation in the air of smoke and gasses given
off by smoke stacks, account of the possible float-
ing of the smoke as a result of its warming and
the presence of a velocity w; of the exhaust smoke
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is accomplished in practice by replacing the real
altitude of the smoke stack h by some “effective
height” h+6h, where o6h is determined, for ex-
ample, by the formula

5/1:3.83%9% . (10)

Here R is the radius of the mouth of the pipe,

u is the wind velocity, T, is the temperature of
the smoke and T is the temperature of the air at
the altitude of the pipe.

5. Statistical approach to turbulent diffusion.
The equation of diffusion (3) can be derived from
the assumption that each individual diffusing par-
ticle is moving randomly, while its coordinates
change with time according to the law of a Markov
random process. Equation (3) is the equation of
A. H. Kolmogorov® for this random process. Such
a conclusion leads to a statistical interpretation
of the coefficients of turbulent diffusion:

Lass) o ()= (2 () =z (O], (11)

TG T dt

k

where s (t) is the abscissa of the diffusing par-
ticle at time t (similar formulas are valid for
ky and ky). It is then evident that the primary
concept is not the coefficient of turbulent diffusion,
but the dispersion of the coordinate of the diffusing
particle (which depends on the diffusion time).
The advantage of following the diffusing particle
(i.e., the Lagrangian rather than the Eulerian
method of describing the motion of the medium )
is the special characteristic of the theory of tur-
bulent diffusion, in contrast with the theory of a
number of other phenomena produced by the tur-
bulence. Here, the most convenient characteristic
of turbulence is the Lagrangian correlation func-
tion of the velocity field:

u, (tu, (f+7) =uiR,(v), (12)

where uyx(t) =dx(t)/dt is the x-component of
the velocity of motion of the diffusing particle at
the time t, and the bar denotes time averaging.
The assumption of the existence of an instantane-
ous velocity of motion of the particle is the essen-
tial difference of the statistical theory of turbulent
diffusion thus far advanced from the theory of mo-
lecular diffusion (i.e., inertia-free Brownian
motion).

We note that in the turbulent atmosphere, an
“evolution of the level” generally takes the place
in the velocity field: the time average of the value
of the characteristics of the velocity field depends
essentially on the duration of the averaging inter-
val. Therefore, the determination of the correla-
tion function (13) is valid, strictly speaking, only

in cases of small-scale turbulence (in the same
sense as was pointed out above). In the most gen-
eral cases, it is better to start out from the La-
grangian correlation function not for the velocity,
but for the acceleration.

The dispersion o%; (t) can be represented by
the correlation function (12) in the following way:

. t
st =ui \  B.(5 —w))ds,de,. (13)
Q0

This important formula was put forward by G. I.
Taylor. O. Sutton proposed to approximate the
function R (7) by the formula R(T) = (1+7/T)™2,
where T is some characteristic time, to which
corresponds o (t) = (c%/2)(ut)®™ at large t,
and obtained the corresponding basic types of
sources on the basis of the formula for the con-
centration of the contamination.

In particular, in place of Egs. (5) and (8), Sutton
obtained the formula

o (z-h)2

0 —_ - 9

54 cZx? c2x2 T
; e

S(x, Y, Z) = ’n_cyczua:'z‘” €

_fzrhy2

2 2-n
¢ cox ' (14)

This formula can be obtained as the stationary sd-
lution of Eq. (3) for u = const; ky =0, ky =
((2-n)/4)c} sux'™ (a value between 0 and 0.2
is assumed for the parameter n, while the coeffi-
cients cy and cyz are chosen in dependence on the
altitude of the source h, decreasing with increase
in h). According to Eq. (14), the maximum of the
contamination concentration in the lower atmo-
sphere is obtained on the x axis at the point xy; =
(h/c5)?/*™™ (which does not depend on the wind
speed); this maximum is equal to sy =
(C/meuh®)(cz /cy).

The formulas of Sutton have been shown to be
very suitable for the description of experimental
data and have obtained a widespread currency as
the basis for calculations of the diffusion of con-
tamination in the air.

It follows from the formula of Taylor (13) that
for short diffusion times, o® ~ t> and k ~ t,
while for long times, o> ~t and k — const (the
latter rule is analogous to the case of molecular
diffusion). Making use of these relations, and
describing the contamination concentration in the
presence of an instantaneous point source by a
Gaussian function with dispersion o‘;‘{ (%), o*g‘, (t),
ozz (t), F. Frenkiell! worked out a method for the
calculation of diffusion of the contamination, with
a successful application by him to the description
of the contamination in cities.

6. The effect of thermal stratification of the
alr on turbulent diffusion. As has already been
mentioned, the turbulent diffusion in the lower
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levels of the atmosphere always depends signif-
icantly on the thermal stratification of the air.
In the consideration of the effect of the stratifi-
cation on the turbulent regime, it is appropriate
to make use of a dimensionless parameter

Ri= g ol /au \\'-'

W oz \0: ;o (15)

where g = acceleration due to gravity, while 6 =
the so-called temperature potential (in the lower
atmosphere, 6 % T +I'z, where T is the ordi-
nary temperature, while I’ =~ 1°C/100 m). This
parameter was introduced by L. Richardson.!?

For thermal instability, Ri < 0, while for stable
stratification, Ri > 0. With the aid of energy con-
siderations, Richardson established the fact that
for Ri > Rigy > 0, turbulence dies out, losing its
energy in the work against the Archimedes’ forces.
Recently, S. C. Priestley!® and E. Deacon!! in Au-
stralia, H. Lettau' in the USA (sic), A. M. Obukhov
and A. S. Monin!®~¥ in the USSR worked out similar
methods of calculation of the effect of stratification
on the turbulent regime in the lower atmosphere.
Obukhov and Monin developed the theory of simi-
larity, according to which the turbulent regime is
completely determined by three dimensional quan-
tities: the turbulent pressure of friction, the tur-
bulent flow of heat along the vertical, and the pa-
rameter g/T, which characterizes the effect of
Archimedes’ forces. In this case, the effect of
stratification on the characteristics of the turbu-
lent regime is described by non-dimensional fac-
tors depending on Ri. These factors can be effec-
tively determined in a number of cases. In par-
ticular, the velocity profiles of the wind T(z)

and of the temperature T (z) in the lower atmo-
sphere are given by the formulas

[/\/} 1 "\1 i
T () =T(s) (/K/»‘ %;,5

I T, = _L,L (16)

where vy = (7/p)1/? is the so-called “friction”
velocity (7 = turbulent force of friction, p = den-
sity of the air); = vertical turbulent flow of
heat; k = 0.4 = von Karman’s constant, and ()
is a universal function, which is connected with
the Richardson number (15) by the relation

Ri(z) 1
Rier

, 5 —‘{ ) (1 7)
f ‘\T J

For small ¢, the function f(¢) is approximately
equalto In | ¢| +8¢ (8 is a number of order

unity ), for large positive ¢ (the case of a stable
stratification ), the function is asymptotically pro-
portional to ¢, while for large negative ¢ (case
of thermal convection), it is asymptotically ap-
proaches a constant according to the law ¢y +cy¢™ 3,

7. Account of the limiting velocity of turbulent
diffusion. The theory set forth above of small-
scale turbulent diffusion has the inadequacy that
the actual limitation of velocity of propagation of
the contamination in the turbulent atmosphere,
connected with the limitation of the magnitude of
the fluctuation of the wind veloecity (which pro-
duced the turbulent displacement), is not taken
into account. The parabolic character of the
semi-empirical equation of diffusion means that
the contamination, upon exit from the source, is
instantaneously propagated in all directions and
can be discovered quickly, even though in com-
pletely negligible quantity, at any large distance
from the source. Usually, this inadequacy is ac-
ceptable, since the volume inside which the con-
tamination concentration is not too small is al-
ways limited, and the concentration distribution
inside this volume is generally satisfactorily de-
scribed by the parabolic diffusion equation. How-
ever, in some cases (in particular, close to the
real boundary of the contamination cloud), use
of the parabolic diffusion equation can lead to
significant errors. For example, smoke issuing
from a pipe of height h reaches the ground at
a distance from the pipe not less than uh/v,
where u is the wind velocity, v is the maxi-
mum velocity of the propagation of the smoke
along the vertical. In this same time, according
to the solution of the parabolic equation of diffu-
sion, the smoke is found at the surface of the
earth arbitrarily close to the pipe.

A method of calculation of the smoke propa-
gation from the pipe which is free from this lim-
itation was proposed by the Soviet scientist G.
Sheleikhovskif.?® This is based on the use of the
theory of free turbulent streaming. According to
the formula of Sheleikhovskil, the smoke issuing
from the pipe fills a cone whose axis lies in the
direction of the wind, and whose angle depends on
the intensity of the turbulence. Sheleikhovskil’s
formula permits one to determine only the mean
concentration in different transverse cross sec-
tions of the smoke flow.

More radical is the generalization of the diffu-
sion equation, which would give this equation a
hyperbolic character. Such a generalization was
proposed as early as 1926 by V. A. Fock, %! and
later by B. I. Davydov,?? E. S. Lyapin,®™2¢ 5. Gold-
stein,? R. Davies?® and A. S. Monin.2" 28 For the
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derivation of the one-dimensional hyperbolic equa-
tion of diffusion, we start out from the following
assumptions: (a) each individual diffusing particle
moves randomly; (b) the instantaneous velocity of
motion of the particle exists almost everywhere
and is bounded; (c) the coordinate of the particle
and the direction of its motion together form a
Markovian random process.

The equation of diffusion is obtained in the form

fAY vt ds
27157—}-5’:—%52, (18)

ds | 8

=0
where s = concentration of particles, S = turbu-
lent flow of particles, v = maximum velocity of
motion of the particles, a = characteristic fre-
quency of turbulent pulsations. Eliminating the
turbulent flow S, for concentrations of particles
s from (18), we can obtain the so-called teleg-
rapher’s equation. In the limit, as a — o,
v — w0, v&/2a —k, and the general parabolic
equation of diffusion is obtained from (18).

The solution of the hyperbolic equation of
vertical turbulent diffusion for the lower atmo-
sphere for neutral stratification (in the case of
a terrestrial instantaneous point source of con-
tamination of unit intensity) has the form:27~28
1 (A—z/hwt)s— !

s(z,1)=—

0 Mt
Bl (11 apog Tl 0 SO (19)

Here A =v/v, is a number close to unity, and

€ = A/2k. Use of the hyperbolic equation of diffu-
sion in place of Eq. (6) for the terrestrial concen-
tration of contamination in the presence at a height
h of a stationary point source leads to the formula

< . E- Y2 e ()
M@OJD=ﬁ1/$3ﬁg;%;9;E=%§>i (20)
(for & < 1, the sea level concentration is equal to
zero). The abscissa of the maximum of the sea
level concentration is proportional to the height of
the source h; the magnitude of the maximum is
proportional to h3/ 2,

8. Diffusion in the field of large-scale turbu-
lence. In the case in which the scale of turbulence
! is not small in comparison with the dimensions
of the contamination cloud, the rules of turbulent
diffusion are significantly different from the case
of molecular diffusion. For example, in contrast
with the case of molecular diffusion, the rate of
change of the distance L between the two indi-
vidual particles depends on the distance L itself:
this rate is in the mean small when L is small,
and becomes large when L. is large. The small-
scale motions change this distance slightly, but
large-scale motions, which affect both particles

simultaneously, transport them without any essen-
tial change in the distance between them. Thus an
increase in the dimensions of the contamination
cloud leads to an increase in the effective “diffu-
sion coefficient.”

L. Richardson® was the first to turn his atten-
tion to this phenomenon. He proposed to describe
this phenomenon with the help of the “distance
neighbor function” g (L, t) — the probability
density for the distance L between the two dif-
fusing particles. Richardson proposed to describe
the change in the function g(L, t) with time by a
parabolic diffusion equation with the diffusion co-
efficient k dependent on L. With the help of em-
pirical data, Richardson established the fact that
k(L) ~ LY3. This law is valid for phenomena of
very different scales.

The formulas of Sutton, in which it is taken
into account that the diffusion coefficient increases
with the diffusion time, take the Richardson effect
qualitatively into account. However, for diffusion
along the vertical in the lower atmosphere, the
effect described is possibly not essential, since
the vertical diffusion takes place primarily by
means of the small-scale turbulence. At the
same time, the turbulent motions from small to
very large scales take part in the horizontal mix-
ing of the air. For example, experiments on the
continuous recording of the wind direction, and
observations of the flow of smoke show that the
turbulent motions with scales in the hundreds of
meters and kilometers, leading to fluctuations of
the wind direction with periods of several minutes,
exhibit a significant effect on the diffusion of the
contaminations. Therefore, in the description of
horizontal mixing, it is necessary to take the
Richardson effect into account.

Richardson’s law k(L) ~ LY3 was explained
by A. M. Obukhov® as a result of the hypothesis of
similarity of A. N. Kolmogorov®! for turbulence at
very large Reynolds’ numbers. According to the
Kolmogorov hypothesis, there exists the so-called
inertial interval of scales of turbulent motion, in
which the statistical regime of these motions is
completely determined by the action of inertial
forces, leading to the transfer of energy from the
large-scale motion to motion of smaller scales
with a rate e that is constant in time. The quan-
tity €, equal to the rate of dissipation of turbulent
energy, is the only parameter, determining the
turbulent regime in the inertial interval. I the
diffusion takes place as a result of the effect of
the turbulent motion with a scale of the inertial
interval, then k(L) = ce'/? L¥3, where ¢ isa
number, i.e., Richardson’s law is obtained. Ap-
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plications of similarity theory to turbulent diffu-
sion were considered in the works of G. Batche-
lor,32-33

It is of practical importance to consider the
concentration of the contamination s in the case
of Richardson diffusion. Knowledge of the “dis-
tance neighbor function” g (L, t) for this is in-
sufficient, since s can be determined by g only
if the motion of the diffusing particles can be re-
garded as independent. The theory of similar-
ity34~% can give some indications of the concen-
tration s for the presence of various sources of
contamination. Thus, in the two-dimensional
case, the concentration distribution relative to
the center of the contamination could in the pres-
ence of an instantaneous source of strength Q
must have the form

s(r, t)=ﬂ—g;;fo<;r:§>’

r = distance from the center of the cloud, the di-
ameter of the cloud ~ t3/ 2, For a calculation of

the general form of the equation describing the
Richardson diffusion, we can take advantage of

that which in the system under consideration is
connected with the average motion of the medium,
the homogeneous and isotropic turbulence, in ad-
dition to the theory of similarity. In this system,
for an initial concentration s, (r), the concen-
tration at the time t is determined by formula3~3%

(1)

S(p, ) =a (e3p*31) s, (),

where the sign ~ denotes the Fourier transform
in r, p is the wave vector (p is its modulus);
a(0) is some dimensionless function, equal to
unity for 6 = 0 and monotonically decreasing to
zero as 0 — «. The choice of a concrete form of
the function a (0) leads to a definite diffusion
equation. For example, under the assumption that
changes in the concentration distribution with time
form a subgroup, we must set a(8) =e~¢0. Such
an approximation corresponds to a diffusion equa-
tion which is differential in time and integral in
the coordinate space; all the solutions of this equa-
tion are contained in the solution of the equation

a3s

0

Another approach to the description of the Rich-

ardson diffusion was suggested by A. M. Obukhov.
The diffusion equation is assumed to be written
down in six-dimensional coordinate and velocity
space, but with the additional requirements of in-
variance (the turbulence is locally homogeneous
and isotropic).

(22)

= cels,

(23)

9. Prospects for the development of the theory
of turbulent diffusion. The possibilities of a sta-
tistical theory of turbulent diffusion are still far
from exhausted. This theory will undoubtedly de-
velop vigorously in the coming years as a result
of the development of a statistical theory of turbu-
lence. Even now, there is interest in the use in
the theory of turbulent diffusion of a number of
methods which apply for the description of turbu-
lence. As an example, we shall point to the re-
cent work of P. Rober’cs,36 in which, with the aid
of the equations of hydrodynamics, equations were
obtained for the correlation moments of the con-
centration of contamination and the velocity field;
the hypothesis of M. D. Millionshchikov®’ was em-
ployed for completing these equations (i.e., fourth
moments are expressed in terms of the second by
formulas which are valid for multi-dimensional
normal distribution). The method of character-
istic functions put forth by E. Hopf is another ex-
ample .38

Finally, the development of methods of La-
grangian description of turbulent flow is an ex-
cellent prospect for the theory of turbulent diffu-
sion,
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