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1. INTRODUCTION

i H E discovery of parity nonconservation in 1956
is one of the most surprising occurrences in the
history of physics. The experiment of Wu (Fl) with
polarized cobalt, which has already become a c l a s -
sic , could without doubt have been done long before
that t ime, and the only reason it had not actually
been done was the deep conviction of physicists of
the absurdity of the very thought that parity might
not be conserved. Only the riddle of the decay of
the K meson, which decayed as an even part icle
into two pions and as an odd particle into three
pions gave r i s e to the question: what experimen-
tal foundations a re there for such a deep convic-
tion of the existence of such a general law? And
suddenly it turned out that such foundations exist
only for the strongly interacting part icles — nu-
cleons, for which processes that do not conserve
parity have been shown to be nonexistent to an a c -
curacy of 10~6 to 10~7. In the case of the weak
interactions, on the other hand, there were no
such data on this point, and Lee and Yang ad-
vanced the bold hypothesis that parity is not con-
served at all in such processes . One of the ex-
periments they proposed was at once carr ied out
by Wu, and about the end of the year 1956 parity
conservation was struck out of the list of the
basic laws of the physical world.

Further events developed very rapidly. At the
end of this same year Landau (B6) and Salam (B7),
and a few weeks later also Lee and Yang (B8) de -
veloped a new theory of the neutrino. At the same
time Landau (B5) stated the bold hypothesis of the
conservation of combined parity — a hypothesis
that allows the retention of our ideas about the
symmetry of space-t ime.

Right after Wu's experiments there appeared
notes about measurements of the longitudinal po-
larization of electrons (El—6), the magnitude of
which was in agreement with the predictions of
the theory.

The further experimental developments in 1957
went through a stage full of contradictions. The
confusion that arose after the publication of ex-
periments by Allen and others (Cll) on the cor -
relation in the positron decay of Cl34 was so
great that there were even doubts as to whether
positron and electron decays obey the same laws.
Subsequently it was found that the root of the con-
tradictions lay in the insufficiently careful analy-
sis of the resul ts of the experiments on the cor -
relation in the decay of He6.

The end of 1957 and the year 1958 saw gradual
elimination of the contradictions and the emergence
of an organized picture of the phenomena.

A new direction was given to research by papers
of Sudarshan and Marshak (B41) and Gell-Mann and
Feynman (B40) which presented very interesting
ideas about the universal character of the weak
interactions.

These papers formulated the hypothesis of the
V-A type of interaction, which was at once con-
firmed by many experiments. The study of He6,
which contradicted the proposed theory, was de -
clared by these theorists to be unreliable, and ex-
per imenters later agreed with this view* (C16).

*The only experimental result remaining not in accordance
with the scheme was then the absence of decay of the n meson
into an electron and a neutrino.

Even Gell-Mann and Feynman were afraid to doubt this re-
sult. But evidently this last obstacle was also an illusory one.
At the conference in Geneva in September 1958 an account was
given of the discovery of such a decay [Fazzini, Fidecaro,
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From that time on there has been a new quan-
tum number in physics, chirality; conservation of
chirality has been found to be a fundamental feature
of /3-decay processes .

After this work the /3 -decay theory fitted very
well into the general scheme of a universal in ter-
action, which had as another case the decay of the
tx meson.

At this same time Goldhaber, Grodzins, and
Sunyar (D5) made a direct measurement of the
chirality of the neutrino, which confirmed all the
postulates of the theory.

Finally, as early as the Geneva Conference in
the summer of 1958 Telegdi and his coworkers (F7)
announced the resul ts of experiments with po la r -
ized neutrons which demonstrated the correctness
of the theory in t e rms of a more elementary ex-
ample and made it possible to determine the r e l a -
tive sign in Fermi and Gamow-Teller transit ions.
At this same time the measurement of the funda-
mental constants was completed. Finally, the ex-
periments of Spivak and his group led to the de te r -
mination of the lifetime of the neutron with adequate
accuracy. In the summer of 1958 we for the first
t ime found it possible to write the /3 -decay Hamil-
tonian with the numerical values of all the constants
contained in it.

The only question remaining completely unset-
tled was that of the conservation of the combined
parity; the experiments on this a re not yet finished.

Prel iminary resul ts of experiments of Clark
and others (F8) on the e-v correlation in the de-
cay of polarized neutrons gave a first confirmation
of the Landau hypothesis (though still with very
low accuracy) .

The conservation of combined parity is favored
by the negative resul t of experiments seeking to
detect a dipole moment of the n meson (H3).

Thus a new picture of the /? interaction has
come into being. But the accuracy of the exper i -
ments performed recently is still not great enough.
Strictly speaking, there still remains the question:
do there perhaps exist new effects (they may be
concealed in the 10 to 15-percent range of the ex-
perimental e r r o r s ) that will show that the new
picture gives only an approximate description of
the phenomena? Is the neutrino a precisely lon-
gitudinal part icle ? Does the electron behave in a
strict ly two-component way? This must be an-
Merrison, Paul, and Tollestrup, Phys. Rev. Letters 1, 247
(1958)].

The ratio of the number of it -» e + v to the number of n -»
li + v decays was > 4 x 10~5. A similar value (~ 10"4) was also
obtained by an American group [Impeduglia, Piano, Prodell,
Samios, Schwartz, and Steinberger, Phys. Rev. Letters 1, 249
(1958)].

swered by further experiments.
With this reservation, it is now useful to gather

together the existing theoretical arguments and
experimental resul t s , and discuss them from a
single (if not yet definitively proved) point of
view.

This task is undertaken in the present survey.
In it an attempt is made to give a systematic ex-
position of the theory of allowed fi decays on the
basis of the model of the two-component neutrino.
Since the main task of the survey is not to give
formulas for the concrete analysis of experimental
data, but only to give the physical picture, only the
clearest cases a re considered; attention is given
to all sor ts of complications (forbidden t r ans i -
tions, the Coulomb field) only to the extent that
they affect the qualitative aspect of the phenomena.

The survey does not include problems connected
with parity nonconservation in fx -meson and K-
meson decays, nor the problem of the universal
weak interaction. It is confined to problems r e -
lating to the j8 decay of nuclei.

2. THE DIRAC EQUATION

We begin with a brief summary of the proper-
ties of Dirac 's equations. As is well known, in
the absence of external fields the equation of a
relativistic particle with spin § and nonvanishing
res t mass has the form*

( —W + ap + P")t|> = 0, (2.1)

where W is the energy of the particle (including
the r e s t mass); p = — iV is the momentum opera-
tor; and a and /3 are matr ices which can be ex-
pressed in t e rms of the four two-rowed Pauli
matr ices crx, oy, crz, and 1:

(2.2)

This way of writing them presupposes that each
element in an ar ray is a two-rowed matr ix.

The solution of Eq. (2.1) is written in the form
of a plane wave multiplied by a four-component
quantity (bispinor):

<j> = aexpipr (2.3)

Moreover, it is convenient to represent u in
te rms of two two-component quantities <p and x-

(2.4)

Then from Eq. (2.1) we get for cp and x the alge-
braic equations

*In units with "h = c = 1.
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W<p = spy -f mtp,

W/_ = aptp — my, (2.5)

where p is now an ordinary vector, and not an
operator. Using the second of the equations (2.5)
we can express x in t e rms of (p:

X = WT7^?- (2-6)

To get a normalized function, we shall suppose that
the two-component quantity <p is normalized:

For the normalization of u we require

Noting that (op)2 = p2 , we now get

W + m ^2
j

op (2.7)

T h e D i r a c e q u a t i o n i s a l s o o f t e n w r i t t e n i n a

m o r e s y m m e t r i c a l f o r m . L e t u s c h a n g e t h e s i g n

o f t h e s e c o n d o f t h e e q u a t i o n s ( 2 . 5 ) a n d m u l t i p l y

b o t h t h e s e e q u a t i o n s b y i . T h e n i t i s e a s y t o s e e

t h a t t h e y c a n b e w r i t t e n i n t h e f o r m

o r i n t h e f o u r - d i m e n s i o n a l f o r m

T h e f o u r - r o w e d m a t r i c e s

u = I" 'Ph.) •

a r e g i v e n b y

(2.8)

(2.9)

T h e s i g n i f i c a n c e o f t h e m u l t i p l i c a t i o n b y i i s t h a t

t h u s w e m a k e a l l f o u r y m a t r i c e s H e r m i t i a n .

T h e m a t r i c e s y ^ ( k - 1 , - 2 , 3 , 4 ) h a v e o b v i o u s

p r o p e r t i e s : t h e y a n t i c o m m u t e w i t h e a c h o t h e r , a n d

t h e i r s q u a r e s a r e e q u a l t o u n i t y ,

YtYh + YnYi = 2 ' i d ( 2 . 1 1 )

T h e p r o d u c t o f a l l f o u r o f t h e y j i s d e n o t e d b y y$:

o l
Ya = Y1Y2Y3Y4 = - V 1 0 ) ''

y 5 a n t i - c o m m u t e s w i t h a l l t h e o t h e r y ^ :

Ys,'* + Y»Y5 = 0 .

I t i s e a s y t o s e e t h a t y | = 1 a n d

( 2 . 1 2 )

T o s e t u p t h e i n t e r a c t i o n H a m i l t o n i a n w e h a v e

t o f o r m b i l i n e a r e x p r e s s i o n s f r o m t h e q u a n t i t i e s

ipfa a n d J/IO ( a , j3 = l , 2 , 3 , 4 ) . I n n o n r e l a t i v i s t i c

m e c h a n i c s t h e r e e x i s t s o n l y o n e s u c h q u a n t i t y

( a t h r e e - d i m e n s i o n a l s c a l a r ) , t h e p r o b a b i l i t y

d e n s i t y >p*ip. S i n c e f o r a p a r t i c l e w i t h s p i n g i n

r e l a t i v i s t i c m e c h a n i c s t h e r e a r e f o u r q u a n t i t i e s

ip^, a n d f o u r q u a n t i t i e s ipo, w e c a n f o r m i n a l l

1 6 p r o d u c t s $%$p. I t i s c o n v e n i e n t t o i n t r o d u c e

i n s t e a d o f t h e s e 1 6 q u a n t i t i e s 1 6 l i n e a r c o m b i n a -

t i o n s f o r m e d f r o m t h e m , w h i c h a r e t o h a v e e x p l i c -

i t l y e x p r e s s e d t e n s o r p r o p e r t i e s .

I t i s o b v i o u s t h a t i n r e l a t i v i s t i c m e c h a n i c s t h e

p r o b a b i l i t y d e n s i t y i s t h e f o u r t h c o m p o n e n t o f t h e

c u r r e n t - d e n s i t y f o u r - v e c t o r . W e h a v e n o r m a l i z e d

t h e f u n c t i o n ip s o t h a t \ip\z = l . T h e n W | ip | 2

c a n b e r e g a r d e d a s t h e f o u r t h c o m p o n e n t o f a f o u r -

v e c t o r . I n t h i s c a s e t h e o t h e r t h r e e ( s p a t i a l ) c o m -

p o n e n t s m u s t b e e q u a l t o t h e m o m e n t u m p o f t h e

p a r t i c l e . I t i s n o t h a r d t o s e e t h a t t h e y w i l l b e t h e

v e c t o r

L e t u s i n s e r t i n s t e a d o f t h e f u n c t i o n tp i t s r e p r e -

s e n t a t i o n - i n t e r m s o f t h e t w o - c o m p o n e n t f u n c t i o n s ;

t h e n , u s i n g E q . ( 2 . 1 4 ) , w e g e t :

W (0-*ai>) = - i (W + m) [x*acp -; <j.*»/J

= 4 ? * [ ( * P ) 0 + « ( s p ) ] ? - ( 2 . 1 5 )

U s i n g t h e p r o p e r t i e s o f t h e P a u l i m a t r i c e s , w e g e t

f r o m E q . ( 2 . 1 5 )

«<!>)= P-

T h u s t h e f o u r q u a n t i t i e s

( 2 . 1 6 )

( 2 . 1 7 )

a r e p r o p o r t i o n a l t o t h e c o m p o n e n t s o f a f o u r -

v e c t o r .

T h e m e a n i n g o f t h e f a c t o r W c a n b e u n d e r s t o o d

i f w e u s e t h e f a c t t h a t ip*ip i s t h e p r o b a b i l i t y r e -

f e r r e d t o t h e m o m e n t u m i n t e r v a l d p x d p y d p z . T h e

p r o d u c t d p x d p y d p z i s n o t i n v a r i a n t w i t h r e s p e c t

t o L o r e n t z t r a n s f o r m a t i o n s ; t h e e x p r e s s i o n

W - 1 d p x d p y d p z i s a n i n v a r i a n t . T h e r e f o r e t h e

c o m p o n e n t s ( 2 . 1 7 ) f o r m a f o u r - v e c t o r o n l y a f t e r

m u l t i p l i c a t i o n b y W . T h e o t h e r q u a n t i t i e s i n t r o -

d u c e d i n t h e t h e o r y h a v e s i m i l a r m e a n i n g s .

T h e q u a n t i t i e s ( 2 . 1 7 ) c a n b e w r i t t e n m o r e s y m -

m e t r i c a l l y a s

w h e r e

*In s o m e p a p e r s t h i s p r o d u c t i s d e n o t e d by i y 5 .

( 2 . 1 8 )

( 2 . 1 9 )
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T h e c o m p o n e n t s ( 2 . 1 8 ) f o r m a v e c t o r i n t h e M i n -

k o w s k i r e p r e s e n t a t i o n ( w i t h i m a g i n a r y f o u r t h c o m -

p o n e n t ) .

T h u s w e h a v e f o u n d f o u r b i l i n e a r c o m b i n a t i o n s

o u t o f t h e 1 6 . N o w b y u s i n g t h e D i r a c e q u a t i o n

( 2 . 1 9 ) , w h i c h c a n b e w r i t t e n

i l h P h ~
 i m

) <1> = 0 ( 2 . 2 0 )

( s u m m a t i o n o v e r k f r o m 1 t o 4 ) , w e c a n o b t a i n

a l s o t h e o t h e r 1 2 q u a n t i t i e s . T o d o t h i s w e m u l -

t i p l y E q . ( 2 . 2 0 ) b y ij> o n t h e l e f t . S i n c e

i s a s c a l a r ( t h e f o u r - d i m e n s i o n a l p r o d u c t o f t w o

v e c t o r s ) , t h e s e c o n d t e r m i m i p i p w i l l a l s o b e a

s c a l a r , a n d c o n s e q u e n t l y t h e q u a n t i t y

S = 4 4 ( 2 . 2 1 )

( b y w h i c h t h e s c a l a r m i s m u l t i p l i e d ) i s a s c a l a r .

W e n o w m u l t i p l y E q . ( 2 . 2 0 ) b y I p y ^ o n t h e l e f t . A r -

g u i n g i n t h e s a m e w a y , w e f i n d t h a t i ( i j i

i s a v e c t o r , a n d c o n s e q u e n t l y t h e q u a n t i t y

T = (2.22)

or

is an antisymmetric tensor.*
Multiplying Eq. (2.20) on the left by

we further find that

( m # Z # k )

or

(2.23)

i s a n a n t i s y m m e t r i c t e n s o r o f t h e t h i r d r a n k — a

p s e u d o v e c t o r . F i n a l l y , m u l t i p l y i n g E q . ( 2 . 2 0 ) o n

t h e l e f t b y $ y m y n ' k > w e ^ ~ ™ - ( ^ o r t n e i n d i c e s a l l

d i f f e r e n t ) t h a t

P = tyYity ( 2 . 2 4 )

i s a p s e u d o s c a l a r .

M u l t i p l i c a t i o n o f E q . ( 2 . 2 0 ) b y l j r y 5 n o w g i v e s

n o t h i n g n e w , s i n c e ^ y 5 y 4 i / ' r e d u c e s t o t h e c o m p o -

n e n t s o f t h e p s e u d o v e c t o r . ( T h e r e c a n n o t b e m o r e

t h a n f o u r y m a t r i c e s i n a p r o d u c t ) . I t i s n o t h a r d

t o s e e t h a t w e h a v e e x h a u s t e d a l l t h e p o s s i b i l i t i e s .

I n f a c t ,

S h a s 1 c o m p o n e n t ,

V h a s 4 c o m p o n e n t s ,

T h a s 6 c o m p o n e n t s ,

* T h e c o e f f i c i e n t i i s i n t r o d u c e d i n o r d e r t o m a k e t h e m a -

t r i x i y i y i c H e r m i t i a n : ( i y i y k ) + = -

A has 4 components,
P has 1 component,

which is 16 components in all.
If we express the components of these quanti-

t ies in t e rms of the matr ices try^ and y5, we get
the following table:

scalar S: <J>*Y4<{>;
vector V: !])*<!>;

4>*Y*0Ys'-i>;tensor T: <
pseudovector A:
and pseudoscalar P: 4)*YIY5T>- (2.25)

The tensor consists of two vectors , one com-
posed of the components i, k (i, k = 1, 2, 3) ,
and the other of the components i4.

From the formulas (2.25) we see that the scalar
differs from the pseudoscalar by the replacement
of ij) by y$. The components of the vector and
the pseudovector differ by a s imilar replacement.
Finally, the two vectors that form the tensor go
over into each other by this replacement.

This property of the matr ix y5 means that it
has a pseudoscalar character , i .e. , that multipli-
cation of a wave function by y5 changes the parity
of the wave function.

We call attention to the fact that ( - y5) acting
on a wave function interchanges its two pai rs of
components:

- < : ) - ( ; ) •

( 2 . 2 6 )

T h i s m e a n s t h a t <p a n d x h a v e o p p o s i t e p a r i t y ,

a s a l s o f o l l o w s f r o m t h e p s e u d o s c a l a r c h a r a c t e r

o f t h e s c a l a r p r o d u c t o p i n E q . ( 2 . 7 ) .

F o r a p a r t i c l e w i t h m a s s z e r o ( a n e u t r i n o ) t h e

a c t i o n o f t h e m a t r i x ( - y 5 ) i s e q u i v a l e n t t o m u l t i -

p l i c a t i o n o f t h e w a v e f u n c t i o n b y a v , w h e r e v i s

t h e u n i t v e c t o r i n t h e d i r e c t i o n o f t h e n e u t r i n o ' s

m o m e n t u m ,

( 2 . 2 7 )

T h i s f o l l o w s f r o m t h e f a c t t h a t ( < r u ) 2 = 1 a n d

( 2 . 2 8 )

T h e r e r e m a i n s f o r u s t o s a y a f e w w o r d s a b o u t

t h e i n c l u s i o n o f C o u l o m b - f i e l d e f f e c t s . I n t h e g e n -

e r a l c a s e t h i s l e a d s t o c u m b e r s o m e c a l c u l a t i o n s

( c f . r e f e r e n c e B 2 5 ) .

I f w e c a n s u p p o s e t h a t Z e V p « 1 ( l i g h t n u c l e i

a n d f a s t e l e c t r o n s ) , t h e e f f e c t o f t h e C o u l o m b f i e l d

r e d u c e s j u s t t o a c h a n g e o f t h e p h a s e r e l a t i o n b e -

t w e e n t h e t w o c o m p o n e n t s <p a n d x ° f t h e w a v e

f u n c t i o n . N a m e l y , t h e w a v e f u n c t i o n f o r a n e l e c -
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tron can be written in the form

W+m
J W + m

(2.29)

(For a positron the sign of the te rm in e2 is r e -
versed. ) This function is normalized to unity up
to the order (Ze 2 /p) 2 . Hereafter we shall not, as
a rule, introduce corrections for the Coulomb
field. The effect of the Coulomb field is treated
in detail in references B25, B27, B37, B38, to
which we refer the reader .

3. THE TWO-COMPONENT NEUTRINO

For many yea r s the question remained open as
to whether the mass of the neutrino is exactly zero
or simply very small .* It was not clear whether
there might be some sort of difference in principle
between the two possibil i t ies. It was only at the
end of 1956 that Salam (B7), Landau (B5), and
Yang and Lee (B8) showed that the exact vanish-
ing of the neutrino mass together with refusal to
assign a definite sign of intrinsic parity to the
neutrino leads to a new model of the neutrino —
to the two-component or longitudinal neutrino, t

We go back to the Dirac equation, in which we
set the mass m = 0:

I n s t e a d

t w o n e w

w x =

o f t h e f u n c t i o n s

f u n c t i o n s

= ( » !

= ( f f j

< P
a n d

X

( 3

( 3

w e i n t r o d u c e

• 1 )

. 2 )

< l > _ = 2 -
1 / 2

( ( ? - * ) . ( 3 - 3 )

N o t i n g t h a t ( i n o u r c h o s e n r e p r e s e n t a t i o n o f t h e

m a t r i c e s ) a c c o r d i n g t o E q . ( 2 . 2 6 ) i n t e r c h a n g e o f

< p a n d x i s e q u i v a l e n t t o m u l t i p l i c a t i o n b y t h e

m a t r i x ( - y 5 ) , w e c a n a l s o w r i t e

$ + = - 2 - 1 / ' ( l - T 5 ) - { . ,

< j . _ = 2 -
I /

' ( l + Y » ) < ! ' - ( 3 - 4 )

T h e f u n c t i o n s ( 3 . 4 ) a r e e i g e n f u n c t i o n s o f t h e m a t r i x

- Y 5 ) * • = '

(3.5)

* W e r e c a l l t h a t i n e l e c t r o d y n a m i c s t h e v a n i s h i n g o f t h e

r e s t m a s s o f t h e p h o t o n i s a c o n s e q u e n c e o f t h e g a u g e i n v a -

r i a n c e o f t h e t h e o r y .

t W e r e m a r k t h a t i t i s n o t e n t i r e l y c o n s i s t e n t t o c a l l t h e

t w o - c o m p o n e n t n e u t r i n o a l o n g i t u d i n a l p a r t i c l e . T h e p h o t o n ,

f o r w h i c h t h e a n g u l a r - m o m e n t u m c o m p o n e n t i n t h e d i r e c t i o n o f

t h e m o m e n t u m i s ± 1 ( l e f t a n d r i g h t c i r c u l a r l y p o l a r i z e d p h o -

t o n s ) i s u s u a l l y c a l l e d t r a n s v e r s e ( f r o m t h e d i r e c t i o n o f t h e

v e c t o r p o t e n t i a l ) .

T h e e i g e n v a l u e s o f t h i s m a t r i x a r e c a l l e d t h e

" h e l i c i t y " o r " c h i r a l i t y . " T h e r e p l a c e m e n t

t p — " ± y 5 i p i n t h e D i r a c e q u a t i o n c h a n g e s t h e s i g n

o f t h e m a s s ; t h i s c a n b e s e e n f r o m E q . ( 2 . 2 0 ) a n d

t h e f a c t t h a t y 5 a n t i c o m m u t e s w i t h t h e o t h e r y ' s .

T h e r e f o r e t h e i n t e r a c t i o n i s i n v a r i a n t w i t h r e s p e c t

t o t h i s r e p l a c e m e n t o n l y i f t h e m a s s o f t h e p a r t i c l e

i s z e r o . C o n v e r s e l y , t h e r e q u i r e m e n t o f i n v a r i -

a n c e w i t h r e s p e c t t o t h e t r a n s f o r m a t i o n i p — ± y 5 ^

( d e f i n i t e c h i r a l i t y o f t h e p a r t i c l e ) l e a d s t o t h e

v a n i s h i n g o f t h e m a s s o f t h e p a r t i c l e ( c f . r e f e r -

e n c e s B 4 1 , B 4 2 ) . E a c h o f t h e f u n c t i o n s 4 > + a n d

i / > _ h a s o n l y t w o i n d e p e n d e n t c o m p o n e n t s ; t h e s e

f u n c t i o n s c a n b e w r i t t e n i n t h e f o r m o f t h e c o l -

u m n s

J / ( 1 — o v ) T \

- 2 ^ - ( l - o v ) c p ) '
( 3 . 6 )

w h e r e V i s t h e u n i t v e c t o r i n t h e d i r e c t i o n o f t h e

m o m e n t u m o f t h e p a r t i c l e a n d < p i s t h e t w o - c o m -

p o n e n t P a u l i s p i n f u n c t i o n . T h e f u n c t i o n s i p + , i p _

i n t h e f o r m ( 3 . 6 ) a r e n o r m a l i z e d t o u n i t y . I n f a c t ,

( 3 . 7 )

H e r e w e h a v e u s e d t h e f a c t t h a t ( o r ) 2 = 1 a n d

h a v e s e t

< P * < J V ? = 0 .

T h i s m e a n s t h a t w e t a k e t h e a v e r a g e v a l u e o f t h e

s p i n c o m p o n e n t i n t h e s t a t e c p ( b u t n o t i p + ) t o b e

z e r o .

T h u s m u l t i p l i c a t i o n o f i p b y t h e m a t r i x ( l ± y 5 )

m a k e s i p i n t o t h e w a v e f u n c t i o n o f t h e t w o - c o m -

p o n e n t n e u t r i n o .

I n t h e o r i g i n a l p a p e r o f L e e a n d Y a n g ( B 8 ) a

s o m e w h a t d i f f e r e n t r e p r e s e n t a t i o n o f t h e n e u t r i n o

w a v e f u n c t i o n i s c h o s e n . I n s t e a d o f E q . ( 3 . 6 ) t h e y

s e t

, _ 1 , ' l + o v "

l f 1 — s v

V 0

( 3 . 8 )

T h i s o f c o u r s e d o e s n o t c h a n g e a n y o f t h e r e s u l t s .

W e s h a l l u s e t h e r e p r e s e n t a t i o n ( 3 . 6 ) .

T h e w a v e f u n c t i o n s i p +
 a n

d $ _ s a t i s f y t h e

e q u a t i o n s

< ! > - - - o v < I ) _ , ( 3 . 9 )

w h i c h f o l l o w d i r e c t l y f r o m E q . ( 3 . 1 ) .

T h e e q u a t i o n s ( 3 . 9 ) s h o w t h a t i p + c o r r e s p o n d s

t o a s t a t e w i t h t h e s p i n c o m p o n e n t i n t h e d i r e c t i o n

o f t h e m o m e n t u m e q u a l t o + | , a n d i p _ c o r r e -
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sponds to a state with the spin component in that
direction equal to - 1 . In the language of the vec -
tor model such a state corresponds to strong
coupling between the spin and the momentum. In
this state the spin precesses around the momen-
tum of the par t ic le .

We note an obvious fact: when the signs of all
the spatial coordinates a re changed the functions
4>+ and >p_ interchange their ro les . In fact, under
such a transformation the components of the vec-
tor v change sign, but the components of a
(a pseudovector) remain unchanged. Conse-
quently the product av changes its sign also.
A change of the sign of the t ime, on the other
hand, does not change the sign of the product av,
since under this transformation both the momen-
tum components and the spin components change
sign (the spin t ransforms like an angular velocity)

The functions >p+ and if- describe part icles
completely polarized respectively with and against
the direction of motion. This property does not
depend on the coordinate system, and is therefore
relativistically invariant. It is not hard to see
that such states can be real ized in an obvious way
only for extreme relativistic part icles (m = 0 ) .

If the res t mass of a part icle is not equal to
zero one can always go over to a coordinate s y s -
tem in which the particle is at res t ; in this system
the momentum is zero, and the spin has an a rb i -
t r a ry direction. Now going back again to a moving
system, one can get arbi t rary relative directions
of the spin and momentum. Therefore the exis t -
ence of longitudinal polarization of the par t ic les
is a consequence of the nonexistence of a res t
system for such a par t ic le .

As is well known, an analogous situation exists
also for photons. The absence of a res t mass of
the photon is directly connected with the fact that
there a re only two polarizations of a photon: the
angular momentum of a photon can be directed
either along its wave vector (left-circularly po-
larized photon) or else in the opposite direction
(r ight-circular ly polarized photon).

The representation of the neutrino wave func-
tion by means of the operators 1 ± y5 is not the
only way of choosing a two-component r ep resen-
tation, if we renounce the postulate that the neu-
trino mass is identically zero. We shall not con-
sider the other representations in detail, and refer
the reader to the original papers ( see the papers
of Case (B22) and Pauli (B19)).

The wave equation of a free neutrino (with
zero mass and charge) is obviously invariant
under the two transformations

and

4)->Ys!f>> (3.10)

where ip° is the wave function of the charge-con-
jugate particle (the antineutrino).

Therefore the state of a free neutrino is a de -
generate state. This means that an arbi t rary lin-
ear combination

a6 + hi/0-j- CY5<]> + d-[b<f (3.11)

can describe the state of a free neutrino.* The r e -
quirement that the wave functions of neutrino and
antineutrino must be eigenfunctions of the operator
( - y 5 ) is a step which destroys this ambiguity.

A different approach was suggested by Major-
ana, who proposed a theory based on the idea that
the neutrino and antineutrino are identical.

Such a theory corresponds to the choice of the
neutrino wave function in the form

t - * 4 (3.12)

In this scheme ip is an eigenfunction of the charge-
conjugation operator, and the neutrino on the ave r -
age has no longitudinal polarization.

The Majorana theory is obviously not compat-
ible with the principle of conservation of leptonic
charge (the impossibility of conversion of neu-
trino into antineutrino) and describes a purely
neutral par t ic le . The theory of the longitudinal
neutrino represents the other limiting case of
completely polarized neutrinos and antineutrinos
that cannot be converted into each other. Fur ther-
more in the Majorana theory a mass of the neu-
trino can appear as a result of virtual neutrino-
antineutrino transit ions, whereas the mass of the
longitudinal neutrino is identically equal to zero
because of the rigorous exclusion of such t r ans i -
tions .

It is obvious that one may construct any in ter-
mediate scheme, in which the neutrino would be
partially polarized (B19, 20).

Although strictly speaking at the present time
the longitudinal character of the neutrino has not
been rigorously proved (the experimental e r r o r s
amount to 15 to 20 percent ) , still this scheme is
so attractive from the theoretical point of view
that we shall not consider the other possibilities
here .

*We agree to say that the equation of the neutrino is inva-
riant with respect to the Pauli transformations:

t, (I)
(ID

where |a|2 + |/S|2 = |a|a + |b|2 = 1 (cf. LudersB13).
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Thus the hypothesis that now appears most
probable is that the neutrino and antineutrino are
completely longitudinally polarized. The exper i -
ment of Goldhaber, Grodzins, and Sunyar (D5),
who measured the c i rcular polarization of the y -
ray quanta that follow the process of electron cap-
ture in Eu (cf. Sec. 10) has shown that the neu-
trino is polarized opposite to its direction of
motion. The antineutrino must then be polarized
in the direction of motion. Thus the neutrino has
the symmetry of a left-handed screw (left ch i ra l -
i ty) , and the antineutrino the symmetry of a r ight-
handed screw (right chiral i ty) .* Hereafter we
shall simple speak of left-handed and right-handed
par t ic les .

Let us consider some more formulas.
Firs t of all we turn our attention to the prop-

er t ies of the matr ices ( l - y 5 ) and ( l + y 5 ) .
It is obvious that

(1+Ys) (* —Ys) = (1 — Ys) (1 +Ys) = °- (3-13)
By means of these matr ices we can resolve any
wave function into two components,

j , = 1 (1 -•/,) <]> + 1 ( 1 4-Y5) (i). (3.14)

In the case of a particle with mass zero this co r -
responds to separating the states into the two lon-
gitudinal states ij)+ and ij>_. Moreover, since y5

anticommutes with each of the four matr ices y^,
if we denote by y B (B = S, V, T, A, P ) the s ix-
teen matr ices that can be made from the yj, we
can write the commutation rules for (1 ± y5) with
the y f i :

Let us introduce the adjoint functions for the
longitudinal par t ic les . Since ip = <p*yit we have

From this we get

^+ = 'M1+Y6). (3.15)

^- = * a - Y . ) - (3.16)

It can be seen from Eqs. (3.15) and (3.16) that for
the longitudinal part icles we can construct only
the vector and the pseudovector, and

s'K = t-YBt- = 0 {B = P). (3.17)

*We note that in optics left-circularly polarized light is
the name given to light having the symmetry of a right-handed
screw; this is due to the use of a different system of coordi-
nates (the observer looks in the direction opposite to the wave
vector).

From these equations it follows in part icular that
the two-component neutrino cannot have a mag-
netic moment.*

The impossibility of forming a scalar for the
longitudinal neutrino corresponds to the fact that
its mass is zero. The impossibility of forming a
pseudoscalar for it is due to the same fact, since
for a part icle with given chirality ip-y^ty = ±lpip.

It is curious to note that nothing prevents such
a neutrino's having a charge, because the current
vector lp+y]}l>+ is different from zero.

As we have already said, for a particle with
nonvanishing mass one cannot introduce invariant
states with longitudinal polarization. Neverthe-
less it is useful to examine the resul ts of the a c -
tion of the matr ices (1 — jc,) and (1 + y5) on
the wave functions of such par t ic les .

Using the wave function (2.8), we can write in
analogy with Eq. (3.5)

Let us introduce the vector e = p /p (the unit vec -
tor along the momentum of the electron) . It is ob-
vious that an electron with complete longitudinal
polarization must be described by one of the func-
tions

(polarization along the momentum), or

(3.19)

(3.20)

(polarization opposite to the momentum).
Let us resolve the operator that appears in

Eq. (3.18) into two operators

It is obvious that the squares of the quantities

<3-22>

determine the respective fractions of electrons
with polarizations along and opposite to the mo-
mentum, and

„ a2 — 62

(3.23)

i s , by definition, the average polarization of the
electrons in the state (3.18).

From Eq. (3.22) we have

*It has been established experimentally that in any case
the magnetic moment of the neutrino is smaller than 10"' Bohr
magnetons (cf. Sec. 10).
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a- + b2 = W

a2 — b2 =

from which we have

W + m '

W-t-m '

= -P--\

(3.24)

(3.25)

(the speed of the electron in units of the speed of
light) . Thus an electron in the state (3.18) has the
average polarization (3 in the direction of its mo-
mentum. Analogously an electron in the state

(3.26)

will have the polarization - / 3 .
For /3 —• 1 the electron becomes a longitudi-

nally polarized part icle.*
We remark for completeness that the Dirac

equation for the electron can be written in two-
component form if we go over to the second-order
equation (Gell-Mann and Feynman (B40)). Namely,
if we write the Dirac equations including an e lec -
tromagnetic field for the functions ip* and ;/)",
from Eq. (2.9)

and eliminate one of these functions, we get for the
other one the equation

(Vk - ieAkf 6± (3.28)

where ayj, = ( - i / 2 ) (ykyl - YTYk), and Fk Z is the
electromagnetic field tensor. For further d iscus-
sion see the paper of Feynman and Gell-Mann (B40).

4. PARITY

In order to describe the production and absorp-
tion of par t ic les , one ca r r i e s out a second quanti-
zation. Its meaning is that the state of the system
is described by the occupation numbers (the num-
be r s of par t ic les in given s t a tes ) , and the wave
function ipa is regarded as an operator that r e -
duces the number of part icles in the state a by
unity (absorption opera tor ) . The production of
a part icle in the state a is described by the op-
era tor ipa.- The operator !/>a also describes the
production of an antiparticle in a certain state a',
and the operator ^ a the absorption of an ant ipar-
ticle from that same state a' . Here the state a'

*It is interesting to note that this sort of representation of
a relativistic electron was used by Yennie, Ravenhall, and
Wilson for calculations of the scattering of electrons in a
Coulomb field [Yennie, Ravenhall, and Wilson, Phys. Rev. 95,
500 (1954)].

differs from the state a by the reversa l of the
direction of the par t ic le 's spin ( see below).

The operators ?/»a anticommute with each
other, i .e. , the interchange of two operators
changes the sign of the expression in question.

Productions and destructions of part icles obey
the quantum-mechanical conservation laws. As
is well known, the conservation laws are associ -
ated with definite symmetry propert ies of space;
they impose definite limitations on the form of
the interaction Hamiltonian.

Let us examine the propert ies of the Hamil-
tonian with respect to reflections. Usually three
types of reflections a re considered:

1) m i r r o r reflection ( P ) — change of the
signs of all spatial coordinates and momenta;

2) time reflection (T) — change of sign of
the t ime and interchange of absorption and emis -
sion;

3) charge reflection (C) — change of the
signs of all charges, or interchange of part icles
and antiparticles.

The invariance of the Hamiltonian with r e -
spect to these operations leads to the well known
laws of conservation of spatial parity, time parity,
and charge parity, respectively.

Let us examine how the wave functions of p a r -
t icles with spin g and the corresponding operators
transform under the reflections.

These transformations can be defined in the
following forms:

(4.1)

Of these three operations only the m i r r o r ref lec-
tion is represented by the matr ix y4. The other
two reflections involve a change from ty to !p;
this is a nonlinear operation, which cannot be ex-
pressed in te rms of the mat r ices y^ in a way in-
dependent of the choice of the representation of
the y ' s . The matr ices C and T are defined by
their commutation relations with the y ' s :

T^T-^-ii ( i= 1,2,3), (4.2)

C Y i C
- 1 = - T F (£ = 1,2,3,4), (4.3)

where y T is the matr ix obtained by transposing
the matr ix y.

To get an understanding of the meaning of the
transformations (4.1) we write down the Dirac
equations for a particle in an electromagnetic
field,
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['[h (Vh — ieAk)-\- m] cj) = 0, (4.4)
[fh (v^ + ieAh) — m] <{> = 0, (4.5)

where Eq. (4.5) is obtained from Eq. (4.4) if we
note that y? = y •"• because of the Hermitian char -
acter of the matr ices yj.

Using the commutation relations of y4 with
the other y 's we easily see that y^ satisfies
the equation

[Y* (V4 - ) - Y -A) + m] = 0. (4.6)

But this equation is on the other hand obtained from
Eq. (4.4) if we make the replacements Xj — — XJ,
Aj —• - Aj (i = 1, 2, 3) , that i s , if we change the
signs of all the spatial coordinates.

Using the propert ies of the matr ix T [Eq. (4.2)],
we also find that Tip satisfies the equation (ob-
tained from Eq. (4.5) by multiplication by T) :

[~!i(
v
i-ieAi) + -((V~ieA) + m}T^=0. (4.7)

This equation differs from Eq. (4.4) by the replace-
ments x4 —• — x4, A4 — — A4, i .e., by reversa l of
the t ime.

Finally, by means of Eq. (4.3) we find that Clp
satisfies the equation

[Yft (vh + ieAh) + ,n] (Ccj>) = 0. . (4.8)

This equation differs from Eq. (4.4) by change of
the sign of the charge of all par t ic les .

With regard to the operation of time reversa l
we must make some r emarks . In the very defini-
tion of such an operation there is an arbi t rary fea-
ture , which lies in whether or not we include in
this operation passage from emission to absorp-
tion (passage to ip). In the unquantized theory
one can define the time reversa l by the formula
ip —• y{Y2ys4>-* With this definition of the reversa l
we note in part icular that the sign of the momen-
tum of a particle is not changed. This definition
is less suitable, and we shall not use it.

An important conclusion follows from the r e -
lations (4.1). If we now consider the simultane-
ous reflection of all four coordinates, the operation
PT (strong reflection), we see that is can obvi-
ously be written in the form

PT-.-^yJb. (4.9)

By means of Eq. (4.2) we easily get the commu-
tation relations of ( P T ) with the y ' s . We have

•-i/> = -ff (i=\, 2, 3, 4). (4.10)

*The operation of time reversal was defined in this form
by Racah [G. Racah, Nuovo Cimento 14, 322 (1937)]. The de-
finition presented in the text was introduced by Wigner [E. P.
Wigner, Gott. Nachr, Phys. Math. Klasse, p. 549 (1932)].

The right member of Eq. (4.10) differs from that
of Eq. (4.3) by the sign. Therefore the commuta-
tion rules of PT will be the same as those for the
operator y5C. This means that apart from an im-
mater ia l phase factor we can wri te:

PT = ibC (4.11)

or

:"s- (4.12)

This formula was found by Pauli (B15) and is a
special case of a theorem which we shall discuss
later .

Let us now determine the concrete forms of
the matr ices T and C for the case of y mat -
r ices chosen in the form (2.10).

It can be seen from Eq. (2.10) that out of the
four y matr ices two, yx and y3, a re composed
of purely imaginary elements, and two, y2 and
y4, of rea l elements. Therefore in this r e p r e -
sentation

T
Yl,3 = " Yl.3,

Then it follows from Eq. (4.2) that

* = l , 3, 4),

(4.13)

(4.14)

From this we have
2n = YiY3l4- (4.15)

In just the same way we find from Eq. (4.3)

We emphasize once again that with a different
choice of the y' s the forms of T and C would
be different; only the commutation relations (4.2)
and (4.3) are invariant.

For completeness we also give the commuta-
tion relations that a re obtained from the formulas
given above:

PT = TP; PC=-CP; TC=—CT. (4.17)

It follows from this, in part icular , that for p a r -
t icles with spin \ the spatial and time pari t ies of
particle and antiparticle are opposite.

Let us now go back to Eq. (4.12). It is not hard
to see that since replacement of ip by y5^ in the
Dirac equation is a passage to part icles of the op-
posite parity, if one makes this replacement for
all the part icles in nature this will not affect any
phenomena, since the relative pari t ies of the p a r -
ticles a re not changed. This conclusion, which is
an obvious one for free part icles and for part icles
in the electromagnetic field, turns out to be a very
general property of the physical world.
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Pauli (B15), Luders (B14, B21), and Zumino
(B16) (also Schwinger (B17, B18) and Jost (B57)
have proved a theorem according to which the
product of all three operations PCT commutes
with any Hamiltonian, and therefore invariance
under PCT does not impose any new limitations
on an interaction. We can i l lustrate the physical
meaning of this assert ion by the following argu-
ment. Suppose ip^ describes the absorption of a
part icle from the state a with positive longitudi-
nal polarization. Then P takes this operator over
into the operator tp^ for absorption of a part icle
with negative longitudinal polarization:

The operation T converts ty^ into the oper-
ator for production of a par t ic le , T ^ ~* ^a> an (*
accordingly P T ^ — ./£. Thus from the one op-
era tor ^a w e have obtained four operators:

<l>a, <i>a, ?a. fa-

Finally, the charge reflection C leads to the ap -
pearance of four more operators describing the
production and absorption of antiparticles:

All told there a re obtained 8 operators , and 8
corresponding operations, by means of which
these operators can be obtained from a single
one, for example ipa:

1
P, PC,
C, PT,
T, TC, PCT. (4.18)

The invariance of the Hamiltonian under ref lec-
tions is invariance under the operations (4.18).
But not all of these operations a r e independent.
Quantum mechanics leads to the resul t that ab-
sorption of a part icle in a state of negative energy
and production of an antiparticle in a state of p o s -
itive energy (and the opposite spin direction) a r e
one and the same process . Therefore there must
be a relation between the operators for production
of the part icle and absorption of the antiparticle.
This requirement has the result that only 4 of the
8 operators (4.18) are independent, and if, for ex-
ample, we require invariance of the Hamiltonian
with respect to P and C, then it is automatic-
ally invariant with respect to T.

Thus there remains to be considered the ques-
tion of the invariance of the interaction with r e -
spect to the two reflections P and C. Lee and

Yang* were the first to note that whereas in
strong interactions parity is conserved there is
no experimental basis for such an assert ion about
the weak interactions. As the result of a great
se r ies of experiments (begun by the classic ex-
periment of Wu (Fl) it has been proved that
neither spatial nor charge parity is conserved in
the weak interactions.

Parity noneonservation leads to fundamental
conclusions about the propert ies of space.

At first glance it would seem that in the new
situation it is impossible to regard the world as
symmetrical and that, on the contrary, the d i s -
tinction between right and left has an absolute
character . But Landau (B5) and Yang and Lee (B8)t
pointed out that this conclusion is not a necessary
consequence of the noneonservation of the spatial
and charge par i t ies .

If we assume that the laws of nature a r e in-
variant with respect to the combined reflection
PC (or the time reversa l T ) , the symmetry of
the world is preserved.

In this case there is no way to distinguish b e -
tween the right-hand direction in the world and
the left-hand direction in an antiworld, and the
perceived asymmetry of the directions is due
to the asymmetry of the charges in our world,
which consists of positively charged nuclei and
negatively charged electrons. In this case a truly
neutral system would also be symmetrical with
respect to the two directions of rotation.

In such a world with invariance under PC it
i s obvious that the operation P and the opera-
tion C lead to the same resu l t s . This means
that passage from part icles to antiparticles is
change of the sign of the chirality.

The law of conservation of the combined parity
has not as yet been experimentally confirmed with
adequate accuracy, although the existing exper i -
ments indicate that it is apparently valid (cf. Sees.
9 , 1 0 ) . It is obvious that an experimental check
of the conservation of combined parity will give
us information about one of the most fundamental
proper t ies of nature.

An interesting example of the difference be -
tween worlds with different parity propert ies is
the question of the existence of dipole moments
of elementary part icles (B5) and of asymmetry in
the decay of polarized par t ic les . The average di -
pole moment of a particle in a stationary state
must be paral lel to its spin

*See the discussion at the Sixth Rochester Conference
(Reports of Wigner, Feynman, Yang).

tCf. also Wigner, Revs. Modern Phys. 29, 255 (1957).
Russian transl. Usp. Fiz. Nauk 65, No. 2 (1958).
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[d]av=a[o]a (4.19)

An asymmetry in the decay of a polarized p a r -
ticle can be characterized by the fact that the av-
erage value of the momentum of an emerging p a r -
ticle is not zero, but is given by an equation of the
type

[p]av=6[a]a (4.20)

where p is the momentum of the emerging particle
and a and b a r e sca la r s . These two equations
cannot be correct it spatial parity is conserved,
since they connect quantities of different symme-
t r i e s . Fur thermore , Eq. (4.19) is noninvariant
with respect to the time reversa l T, since this
changes the sign of v but not that of d. On the
other hand Eq. (4.20) is not invariant under PT =
C: the inversion P changes the sign of p but
not that of a. Therefore the dipole moment can
exist in a world that is noninvariant with respect
to P and T, and the asymmetry can exist only
in a world that is noninvariant with respect to P
and C. In part icular , if the hypothesis about the
combined parity is correct , elementary part icles
cannot have dipole moments. In a world invar i -
ant under C the dipole moment could exist, but
there would be no asymmetry. Finally, both ef-
fects could exist only in a completely asymmet-
r ica l world.

The propert ies of the interaction with respect
to time reversa l enable us to reach qualitative
conclusions not only about the propert ies of the
stationary states of a system, but also about the
propert ies of react ions.

On time reversa l the roles of the initial and
final states of the system are interchanged.
Therefore such invariance imposes limitations
on propert ies of the system in two cases : for the
stationary states and for the elastic scattering of
par t ic les .

If we have some sor t of nuclear reaction or
decay process in which the par t ic les present in
the final state a re not the same as in the initial
state, then in the s t r ic t sense t ime- reversa l in-
variance does not lead to any limitations on the
propert ies of either of these s ta tes . This invar i -
ance imposes only certain restr ic t ions on the
relations between the direct and inverse r e a c -
tions, for example on the relations between the
polarizations in these reactions.*

We get much more information if the effect in
question is described in f i rs t -order perturbation

*We note that the reversibility of all reactions is assured
by the Hermitian nature of the Hamiltonian — the reality of the
eigenvalues of the energy of the system.

theory, so that the initial and final wave functions
of the part icles a re plane waves (Born approxi-
mation ). In this case the transition amplitude is
proportional to the matr ix element of the Her-
mitian interaction Hamiltonian, and this leads to
useful new relations.

From general theory it is known that time r e -
versa l means that in the scat ter ing-matr ix e le -
ment the initial and final states are interchanged
and the signs of the spins and momenta are r e -
versed for all the par t ic les of the system:

T:(k, a\S\k', _ k , - o ) (4.21)

Symbolically this transformation can be written in
the form

(4.22)

In the f i rs t -order perturbation expression S
is proportional to the interaction Hamiltonian and
the interchange of the initial and final states in
the labels of the matr ix element (transposition)
is equivalent to complex conjugation and does not
change the transition probability.* Therefore in
this case the propert ies of the system a re not
changed by this interchange. This in turn, t o -
gether with Eq. (4.21), means that in the first ap-
proximation of perturbation theory time reversa l
is equivalent to the changes:

-approx - - k , a — er. (4.23)

The transformation (4.23) affects only the separate
states , and according to our argument is valid when
the interaction can be neglected in the final state.
In the case of fi decay this means that the t r a n s -
formation (4.23) is equivalent to time reversa l if
we can neglect the Coulomb interaction for the
light par t ic les , i .e. , if their energy is high enough
or if the nuclear charge is small .

We shall make use of the transformation (4.23)
later on; here we shall consider as an example the
problem of the polarization of the products of a r e -
action.

Let us consider a reaction with two part icles in
the initial state and two in the final state:

The part icles on the left and right can be the
same (scat ter ing) or different ( react ion) . The
plane of the scattering is defined by the two vec-
tors k and k' (in the center-of-mass sys tem) .

Let us see whether there can be polarization
normal to the plane of the reaction, if the initial

*If in addition the matrix element does not depend on the
velocities, the matrix element is in general real.
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part ic les were not polarized and if the interaction
is invariant under time reversa l . This is con-
nected with whether there can exist a relation of
the type

[a]av = a k x k \ (4.24)

where a is a scalar .
Under the exact time reversa l (4.22) both sides

of the equation transform in the same way.
Equation (4.24) expresses , for example, the

well known propert ies of the polarization in nu-
cleon-nucleon scattering, for which the interaction
conserves the time parity.

It is easy to see, however, that Eq. (4.24) is not
invariant with respect to the transformation (4.23).
This means that there is no normal polarization
in the Born approximation, provided time parity
is conserved.

We see that the normal polarization of an e l ec -
tron a r i ses either because of nonconservation of
the time parity or on account of the Coulomb in-
teraction. For light nuclei and relativist ic e lec-
trons it is small .

5. THE TYPES OF j3 INTERACTION

In order to write the expression for the in ter-
action we require that: (1) the interaction energy
density (Hamiltonian) must be a scalar for p r o c -
esses with parity conservation or a pseudoscalar
for processes involving change of parity, and
(2) derivatives of the wave functions of the p a r -
ticles shall not occur in the interaction expres -
sion. The introduction of derivatives is equivalent
to the assumption that the interaction depends on
the energies and momenta. Since the light p a r -
t icles a re relat ivist ic , there is no basis for a r e -
striction to just a linear dependence (first der iv-
atives ). The introduction of a completely a rb i -
t r a ry dependence on the momenta, on the other
hand, leaves the theory without content. As is
well known, experiment confirms the lack of
energy-dependence of the theory in ordinary /3
decays.

For definiteness we begin with the process of
/3 decay of the neutron.

For greater symmetry the /3 decay of the
neutron (or of a nucleus ) is usually written not
in the form

but in the formally equivalent form

(5.1)

(5.2)

sion of an antineutrino we shall speak of the ab-
sorption of a neutrino.* Furthermore the basic
assumption is made that P decay cannot occur
with the emission of a neutrino, i .e. , the neutrino
and antineutrino a re different part icles and can
never go over into each other. This means, for
example, that the process N + v •— P + e~ is im-
possible. This fact is called the law of conserva-
tion of light par t ic les , or the conservation of the
neutrino charge (A4).

We introduce the notations:

P is the operator for absorption of a proton;
N is the operator for absorption of a neutron;
e is the operator for absorption of an e lec -

tron (negative);
v is the operator for absorption of a neutrino.

In the usual way of writing formulas the part icles
in the final state are represented in the Hamilto-
nian by the adjoint of the wave function (it c o r r e -
sponds to the production of a particle ). The t e rms
in the Hamiltonian that describe this decay must
have the form

= C(PN) (ev). (5.3)

Here C is a certain matr ix with four indices
such that H is a scalar or a pseudoscalar. The
usual procedure for finding an explicit expression
for H is as follows: one forms all possible tensor
expressions from the two pai rs of wave functions,
and then multiplies scalar by scalar , vector by
vector, and so on. This gives the scalar part of
the Hamiltonian. By multiplying scalar by pseudo-
scalar , vector by pseudovector, and so on, we find
the pseudoscalar part of the Hamiltonian.

There still remains an arbi t rar iness in the
choice of the pa i r s of functions. Obviously the
choice can be made in three ways, which can be
schematically represented in the forms

(AT3) (ev); (Ne)(Pv); (Nv)(Pe).

Following the usually accepted course, we
group the heavy part icles in one pair , the light in
the other, and multiply together the like expres-
sions (cf. end of Sec. 10).

Since the Hamiltonian must be Hermitian we
must also add to the expressions formed so far
their Hermitian adjoints. Then by using the for-
mulas (2.25) we get (introducing convenient nu-
merical factors ) five scalar expressions

This means that instead of speaking of the e m i s -
*Equations (5.1) and (5.2) are to be regarded as the defini-

tion of the neutrino and antineutrino.
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77S = ( /^ /V) (e*Y4v) + 3pM. coup., Herm. adj.

Hv = {P*WiN) (e*uw) + Herm. adj.

= (P*N) (e*v) - {P*°YoN) (e*=Y3v) + H e r m . adj.

U7 = \{P*-iiPihN) (e*Y4°iftv)+ Herm. adj.

Herm. adj.

HA =

HP =

YiY5v) + Herm. adj.

Y5A
T) (e*Y5*')+ Herm. adj.

+ Herm. adj.

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

stants C and C *
For the longitudinal neutrino the constants C

and C are obviously not independent. If the
neutrino is polarized along i ts momentum its
wave function has the form (1 — y5) v. Then
Cj = - Cj, (i = 1, . . . 5 ), but if the neutrino is
polarized opposite to its momentum we have
C^ = C^. It can be regarded as established by
the direct experiments of Goldhaber, Grodzins,
and Sunyar (D5) and also by the totality of other
data that the neutrino has spin component - \
in the direction of its momentum. Therefore we
set

According to general ru les , the operator for p r o -
duction of a particle also describes the absorption
of the antiparticle. Therefore each of the expres -
sions written describes not only /3" decay but
quite a number of different decays (in which either
a neutron is converted into a proton or an antipro -
ton is converted into an antineutron*) (here a bar
over a let ter denotes the antiparticle ):

7>-± ~N + e' + v,

iV + e*—>/>+~,
A" + v —» P f e ~ and so on.

The Hermitian adjoint te rms not written out in
Eq. (5.4) describe inverse processes in which a

proton is converted into a neutron or an antineu-
tron into an antiproton, or , finally, N + P annihila-
t i O n : p

-^N + e* and so on

The Hamiltonians (5.4) — (5.8) a re spoken of as
the types ( sca lar , vector, and so on) of in te rac-
tion. If in all these expressions we replace the
neutrino wave function <p by - y5cp, we get five
new expressions Hg, Hy, Hfp, H^, and H'-p
which a re pseudoscalars .

The general form of the interaction leading to
j3 decay will be a linear combination of all 10
types. The general form of the /3 interaction
is written:

(5.9)

Thus in the general case the jS interaction is
characterized by 10 complex (or 20 r e a l ) con-

*In addition the same matrix element describes the annihi-
lation process N + P •* e" + v.

in the Hamiltonian.
In what follows we shall maintain this a s s e r -

tion and assume that the neutrino is a left-handed
part icle .

It is convenient to introduce interaction con-
stants
trino

g- such that for the two-component neu-

(5.10)

With this choice the old numerical value of g is
not changed. We still have to determine what va l -
ues of the constants g^ will correspond to the
process of positron decay. This is most simply
done by constructing the Hamiltonian from the
wave functions of the positron and the neutrino.
Then we would get the same five quantities g.-,
the only difference being that the sign of V and
T relative to S, A, and P would be opposite
to that for the case of (T decay.1

This can also be proved in the following way
from the Hamiltonian written out above.

The positron decay is described by the Her-
mitian adjoint t e rms not written out explicitly.
The general form of such a t e rm is

(5.11)

In order for it to describe the emission of a pos i -
t ron and the absorption of a neutrino [ cf. Eq.
(5.2)] we must replace v—'v'C~i and e — C e ' ,
where v' and e' a re the operators for the anti-
part icles and C is the charge-conjugation oper-
ator. The nucleon factor does not need to be
changed, for it describes what we want, produc-
tion of a neutron and disappearance of a proton.
Since we can show from Eq. (4.3) that

*We note that if the neutrino charge were not conserved
the number of constants would be twice as large.

t Physically this means that with the same mass and spin
the signs of the current and magnetic moment are reserved.
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+ fl for S, A, P)

-fB for V, T),
(5.12)

we get a change of sign for the vector and tensor
t e rms (the index T, for transposition, disappears
if we shift e ' to the first place and v' to the
l a s t ) .

Therefore all calculations for positron decay
can be made with the same Hamiltonian, but with
the signs of gy and g_ changed and the wave
function of the neutrino replaced by that of the
antineutrino according to the scheme:

Electron decay Positron decay

It was assumed above that the constants gj a re
complex. If the combined (or the t ime) parity
is conserved, these constants must be rea l . In
the ease of conservation of charge parity all the
constants C must be real and the constants C
imaginary. In this case obviously there can be
no two-component neutrino (since we cannot at
the same time have C. = ± C^).

Let us verify this assert ion. We write out
the general term of the scalar and pseudoscalar
par t s of the Hamiltonian, together with their Her-
mitian adjoints:

C'3(P^BN)

(5.13)

(5.14)

Under the inversions <p —• T^ and ip—~Cip the two
te rms a re interchanged. Since in Eq. (5.13) each
te rm consists of two identically formed factors, a
change of the order of the operators al ters nothing
and the condition of invariance for the two inver-
sions reduces to C B = Cg, or the reality of these
constants (we ordinarily set a common phase fac-
tor equal to unity ).*

In the case of the t e rms (5.14) there is an extra
factor y5 in the brackets describing the light p a r -
t ic les . Therefore the conditions for invariance a re
determined by the commutation relations of this
factor with T and C.

From Eqs. (4.2) and (4.3) one can get

(5.15)
(5-16)

T =(We note that in our representation y T = y5 . )
It follows from Eq. (5.15) that there is no

change of sign on time reversa l and the condition

*It is not hard to see that in processes of first order in the
weak interaction it is impossible to determine a common phase
factor.

for invariance is Cg = + Cg*, i .e. , that the con-
stants be rea l . For charge conjugation there is a
change of sign and the condition for invariance is
Cg = — Cg*, or that the constants be imaginary.

We summarize all these types in a table.

Table of possible types (as to parities) of /3-inter-
action theories (with conservation of neutrino charge)

Hamiltonian invariant
with respect to

P, C, T

C, PT

T, PC

The same with lon-
gitudinal neutrino

P, TC

PCT

The same with lon-
gitudinal neutrino

Condition on the
constants

Cfc = 0, Ck real

Ck real, C'k imag.

Ck, Ck real

c k = o

None

C
k = C k

Number of
independ-
ent real
constants

5

10

10

5

10

20

10

Possibi-
lity of lon-
gitudinal
neutrino

No

No

Yes

-

No

Yes

-

Let us now return to the Hamiltonian. Inserting
the neutrino function in the form (1 + y5) v into
Eqs. (5.4) — (5.8), we can rewri te the five in terac-
tion types for the $ decay of the neutron:

adj. (5.13')

(5.14'). adj.

HT = 2-

+ Herm. adj. (5.15')

HA = 2~'hgA [ _ (P*^N) (e* (1 + Y.) v)

. adj. (5.16')

HP = 2- 1,N) (e*Yl (

Herm. adj. (5.17')

Summing over all the neutrons in a nucleus, one
can get from this the expression for the Hamilto-
hian H for decay of the nucleus.

We call attention to the fact that with the lon-
gitudinal neutrino all the t e rms a re naturally
grouped by twos. The types S and P differ
only in the matrix elements of the heavy part icles
and go over into each other by the replacement
N — y5N. The same can be said of the types V
and A. This replacement does not affect the ten-
sor type.

Let us consider the factor that relates to the
nucleons. Since in 0 decay the nucleons can to
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first approximation be regarded as nonrelativistic
par t ic les , we can neglect the last two components
of their wave functions and regard the wave func-
tions as Pauli two-component functions. Then for
the decay of the neutron we set

{P*^N) = {P*N) = {1), (5.18)
(/>*Y4sA<) = (P**N) = (a). (5.19)

In this approximation the other matr ix elements
a re equal to zero .

We have introduced the notations < 1 > and
< c r > , which a re easily generalized to the case
of j3 decay of nuclei.* Introducing the operator
T\, which turns the i-th nucleon in the nucleus
into a proton, if it has formerly been a neutron,
we can write

(a) = W* 2 xV

(5.20)

(5.21)

where the summation is extended over all the nu-
cleons in the nucleus, and $ and * a r e the wave
functions of the nucleus before and after the decay.
The matr ix elements < 1 > and < a > a re rea l .
This follows from the fact that the states of the
nucleus have definite parity and are invariant
under time reversa l . In fact, these matr ix e le -
ments a r e calculated between two stationary states
of the nucleus. The wave functions of such states
can be made real by a simple choice of their phase
factors. This last follows from the fact that ip
and ip* in this case describe the same state
( there is no degeneracy). These functions are
not affected by the replacement k —- - k , a —- -a
( there is no favored direction). According to a
general theorem about time reversa l it follows
from this that the mat r ix elements taken between
two stationary states are not altered by interchange
of the initial and final s ta tes ; since such in ter -
change quite generally changes the matr ix elements
of Hermitian operators into their complex conju-
gates, it follows that they must be rea l .

The calculation of these matr ix elements and
the comparison with experiment have been carr ied
out, for example, in reference A3, a survey of the
P decays of light nuclei.

If we now replace the factor exp ipr in the
wave functions of the light part icles by 1 ( i ts value
at r = 0) , we can write down the expressions for
all the types of /3 -decay interaction, in the form
they take for allowed transit ions:

*Other notations are often used in the literature:

= MGT =

Us = 2-Vsgg (1) (e*Yl (1 -i- T
HP=0,

+ Herm. adj. (5.22)
(5-23)

Herm. adj. (5.24)
HA = 2-v°-gA(a)e*a{l + TS)T + Herm. adj. (5.25)
/ /T = 2-1/2gr7.(3)e*Y4(j(i + T 5 ) v + H e r m . adj. (5.26)

where e* and v now do not depend on the coor-
dinates .

Thus the general form for the j3 -decay Hamil-
tonian can be written

H = 2-v.(l> [e* (gs-u -+ gv) (1 + v5) v]

+ <«>[*• ten*+ &0 o(i +YsM- (5.27)

The physical difference between the various
types of j8 -decay interaction can be clearly seen
from this expression. If we resolve the wave func-
tion of the electron into two par t s , e* = \ (1 + y5) e*
+ I (1 - 75) e*> then by using the commutation rule
7475 = ~ 7574 we find that in the types S, T only
the par t (1 - y5) e* remains , and in the types V
and A only the par t (1 + y 5 ) e * . This shows that
the te rms of types S and T describe processes
in which the polarizations of the emitted electron
and antineutrino a re the same,* and V and A,
processes in which the polarizations of the emitted
electron and antineutrino are different.

Let us now introduce instead of the electron
wave function its expression in te rms of the two-
component function:

_ /
W+m

U V 2WV 2W

cp*crp = crTp<p*.

(5.28)

where cp*crp = (jTp<p*. And an analogous expres -
sion is used for the neutrino wave function.

Let us substitute these in Eq. (5.22):

+ Herm. ad j . j . (5.29)

We may remark for completeness that if the
neutrino were not a longitudinal particle we would
have to add to this expression a s imilar one con-

*More precisely it follows that the polarizations of the
emitted electron and the absorbed neutrino are different, which
is the same thing.
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taining different constants g and with the sign
of av changed.

Equation (5.24) can be written in a more com
pact and symmetrical form

J ! L
W + m

— OV)V

(5.30)

We recal l once more that <<r> is a matr ix
element relating to the nucleus, and a is a m a -
tr ix acting on the light-particle functions.

We shall study the propert ies of this Hamilto-
nian in the following section. According to the
foregoing, we get for positron decay instead of
the expression (5.27)

+ (a) e*(- Herm. adj.] (5.31)

and an analogous formula instead of Eq. (5.29).
Although we shall not deal with forbidden t r an -

sitions in what follows, we shall point out here
their main proper t ies .

From Eqs. (5.27) and (5.28) it can be seen that
in allowed transitions the t e rms S and V do not
involve the change of spin or parity of a nucleon;
the matr ix element is < 1 > . * This means that
the two light part icles do not car ry away any an-
gular momentum. The t e rms T and A can give
reversa l of the spin of a nucleon — the matr ix
element involved for them is < C T > . For the
decay of a nucleus this means that the spin can
change by ±1 or 0 (but the transition 0 — 0 is
forbidden). The parity of the nuclear state does
not change.

In the discussion of allowed transit ions three
approximations have been made:

(1) The nuclear dimensions have been taken to
be zero and the light-particle wave functions have
been replaced by their values at the origin.

(2) The matr ix elements for the nucleons have
been calculated in nonrelativistic approximation;
i .e. , we have set y4N = N and y5N = 0.

(3) The Coulomb field has been neglected.
The first of these approximations amounts to

an expansion in powers of the ratio of the nucleon
wavelength (s ic ) to the dimensions of the nucleus.
For the decay of a nucleon (of dimensions in any
case < 10~13 cm) this approximation holds with

*Since the parity of a nuclear level is determined by nuclear
forces, which come from strong interaction, it has a definite
meaning.

high accuracy.
For nuclei, however, and transitions with spin

change larger than 1, the decay probability is de-
termined by the subsequent t e rms of the expansion.
It is obvious that including them leads to the ap-
pearance of powers of the coordinates in the nu-
clear matrix elements and changes the selection
ru les .

Neglect of the relativistic t e rms for the nucle-
ons can be incorrect for heavy nuclei. As we
know, inclusion of the other two components leads
to the appearance of the operator op in the m a -
t r ix elements (<x and p a re the spin and momen-
tum of the nucleon). This operator describes the
coupling of the spin of a nucleon in the nucleus
with its orbit. Since it changes its sign on space
inversion, it changes the parity selection ru les .
Inclusion of effects of the Coulomb field also
leads to the appearance of new matrix elements,
which play an important par t in the decay of heavy
nuclei. A detailed account of forbidden transitions
can be found in references B25, B26, B27, and B38.

6. THE SPECTRUM OF ALLOWED TRANSITIONS
AND THE ELECTRON-NEUTRINO CORRELA-
TION

According to the general rules of perturbation
theory the probability of /? decay is given by

W = 2K\H\2
?E. (6.1)

We find the density of states of the electron-
antineutrino system by the usual rules* (we shall
sum explicitly over the spins, and therefore shall
not include a factor for their statistical weight in

PE>:

.dV\r Wl
(2K) (6.2)

W, p a re the energy and momentum of the e lec-
tron, Wj; is the energy of the neutrino, and dfiv ,
d B e a re the respective solid angles.

Introducing the magnitude Wo of the decay en-
ergy (the limit of the (8 -ray spectrum plus the
mass of the electron) and setting Wv = ( W o - W ) ,
we get

rf3By = 7_Lj /7|2(W/2_m2 )l / a

5

X {W0-W)2WdWdQydQe.
(6.3)

We shall retain only two variables: the energy of
the electron and the angle £ between the momenta
of the electron and neutrino:

The momentum of the recoil nucleus is fixed by the selec-
tion rules. We neglect the recoil energy.
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\Hff{W), (6.4)
d cos HdW (2TC)3

where f (W) is the so-called Fermi function,

/ (W) = ( I F 2 - m2)1'* (Wa-Wf IF. (6.5)

We shall now calculate | H |2 .
In this calculation we encounter expressions of

the type | e*Ov |2, where O is some matr ix .
This expression is put in the following form:

| e*O'i j2 = (e*Ov) (y*O*e). (6.6)

Summing over the two components of v and using
the normalization of v, we get

Let us apply this rule to Eq. (5.29). For an unpo-
larized nucleus the product < 1 > <Ccx> averaged
over the spin of the nucleus vanishes. Therefore
we can consider the two te rms separately:

(a)//0 (6.9)

(6.10)

and for an unpolarized nucleus

\e*Oi (6.7)

The right member is the average value of the
operator OO+ calculated for the state of the emit -
ted electron described by the Pauli two-component
function e.

Thus, denoting the average by square brackets ,
we get the basic formula

spin of V
(6.8)

(the nuclear matrix elements a re r e a l ) .
If we do not as yet concern ourselves with the

polarization, we must sum the value of | H |2 ca l -
culated by the formula (6.8) over the two spin
states of the electron. Since on this summation
expressions in which the matrix a occurs linearly
vanish, and the averages of expressions not con-
taining a do not depend on the state of the e lec-
tron, the summation reduces to omission of t e rms
linear in the spin and multiplication of the result
by 2.

The further steps a re obvious. For the square
of the absolute value of the matrix element H1(

summed over the spin states of the electron, we
find:

W + m
2W~

For the further calculation we need two formulas:

(6.11)

1 4-
W + m

W + mJ~W + m' (6.12)
2W " ' a---), (6.13)

where e is the unit vector in the direction of the
electron momentum, and fi is the speed of the
electron.*

Then we get from Eq. (6.11), after summation
over the spin of the electron

^ (6.14)

Here we have used the formula

[(oe)(ffv)]av=ev = cos». (6.15)

We must now fix the meaning of the direction v.

The Hamiltonian contains the wave operator for
the absorption of a neutrino, and we have to use
the momentum of the emitted antineutrino. We
have already said, however, that the operator for
absorption of v also describes the emission of v
with the same momentum and the opposite d i r ec -
tion of the spin. Therefore we can regard v as
the unit vector along the direction of emission of
the P.

This decision can be checked by examining, for
example, the t e rm corresponding to the scalar in-
teraction type in Eq. (5.29). Setting the speed of
the electron equal to 1 for simplicity, we rewri te
the factor describing the light part icles in the
form

e*(l + cro)(l — (6.16)

•Equation (6.12) means that the two two-component electron
functions are not orthogonal. They become orthogonal only for
m/W -» 0. At the same time the four-component functions
(1 + ys)i// are of course orthogonal.

The electron-antineutrino pair does not carry
away any angular momentum; therefore the two
part ic les cannot emerge in one direction (their
chiralit ies are the s ame) .

On the other hand, the expression (6.16) goes
to zero for e = v; thus it is verified that v is
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the direction of emission of the antineutrino.*
The calculation of | HCT |2 is only a little bit

longer. We denote by a l the component of the
electron spin in the direction of polarization of
the nucleus. Then IH^I2 , summed over the
polarization of the electron, is given by

W + m

(6.17)

Working out the products, we get

X [(«ie)(al)M(ol)]av (6.18)

The formula for (3* decay is obtained from
Eq. (6.20) by changing the sign of the last t e rm
(change of sign of g j ) .

Thus we find for the /? -decay probability

) f(W)
- = 1ST ( I gS I gv |2) r <=>>2 (| gT |* + | gA

(6.21)

where f (W) is defined by Eq. (6.5), and <cr>'2 -
<<7>\

It can be seen from Eq. (6.26) that in the decay
of unpolarized nuclei there is interference only b e -
tween the decay types S and V, and between T
and A. Therefore there a r e three cases in which
there a r e no interference t e rms in the spectrum:
(1) the products g s g y and g - g ^ a r e purely
imaginary — in this case the combined parity is
not conserved; (2) the interaction is a sum of the
scalar and tensor types — then the electron is
polarized like an antineutrino; (3) the interaction
is a sum of vector and pseudovector types — then
the electron is polarized like a neutrino.

In the last two cases Eq. (6.21) can be rewrit ten
in the form

(6.22)

*Arguing quite formally we can say: the momentum changes
sign on space inversion and on time reversal; consequently, in
virtue of the PCT theorem, it does not change sign on charge
conjugation.

To calculate the fourfold product we resolve the
unit vector 1 into two components: 1|| along v
and lj^ perpendicular to V. Then <jl\\ commutes
with (TV, and t r l^ anticommutes with it; so

(6.19)

Averaging over the directions of 1 and noting
that

we find that the average value of the brackets in
Eq. (6.19) is - % .

Substituting in Eq. (6.18), we have

where

and

—i —̂

(6.20)

(6.23)

(6.24)

The total probability of /3 decay is obtained
from Eq. (6.22) and the formula

/ =

x '
Tables commonly give the half-life

We get for the interaction types (S, T ) and (V, A)

1 A
/*»/.= j (6.26)

Good tables of values of ftj/2 have been compiled
by Feingold (A7); other information about j8 - rad io-
active nuclei is given in the tables of King (A8).

7. THE POLARIZATION OP THE ELECTRONS

As we have seen, the correlation between the
momenta of the electron and neutrino, considered
in the preceding section, enables us to distinguish
between the types of decay interaction, but gives
no information about parity nonconservation. Such
information is given only by the polarization phe-
nomena of /? decay. Since the polarization vector
transforms under reflections differently from the
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momentum vector, the correlation between the
directions of the spins and momenta of the p a r -
t icles depends on the invariance propert ies of the
system with respect to reflections.

If we consider the decay of a stationary nucleus,
then in virtue of the law of conservation of momen-
tum the decay pattern is determined by two momenta
(for definiteness, the momentum p e of the e lec-
tron and the momentum p,, of the antineutrino )
and four spins. The spin of the neutrino is always
directed along its momentum, so that the inde-
pendent polarizations are those of the nuclei ( in i -
tial and final) and that of the electron.

Thus we have at our disposal five vectors . Ac-
cordingly the expression for the transition ampli-
tude contains sca la rs and pseudoscalars formed
from these vectors , and the coefficients of these
quantities (functions of the electron energy) de -
termine the various distribution functions that a re
experimentally measurable. Without the use of
the spins one can construct only three sca la r s ,
p e , p?,, and eu. The corresponding par ts of the
transition amplitude determine the spectra of the
electrons and neutrinos (recoil nuclei)* and the
electron-neutrino correlation. This clearly ex-
hausts all the independent quantities that can be
formed without considering the spins.

We now include in the treatment the spin of the
electron, without as yet fixing the spins of the in i -
tial and final nuclei.

In this section we shall deal with the co r re la -
tion between the direction of the election spin and
the momenta of the electron and neutrino — with
the pseudoscalars ere, <rv, and cr(exv). For
unpolarized nuclei this clearly exhausts the list
of quantities characterizing the p r o c e s s . ! In the
following sections we shall discuss the effects a s -
sociated with polarization of the nucleus.

Let us introduce a right-handed rectangular
coordinate system convenient for our purposes in
the following way. We take one of the axes along
the momentum of the electron (unit vector e ) ;
we take the second axis normal to the plane of the
decay, in the direction of the vector product exv
(unit vector n ) . We locate the third axis in the
plane of the decay (the plane determined by the
vectors e and v, since the vector of the recoil
nucleus lies in this same plane) perpendicular to
e and paral lel to the vector product n x e (unit
vector m ) . It is obvious that e x m = n and
m x n = e.

In general the average polarization of the e lec -
tron can have components along all three axes:

(o) - Pee-\-Pmm-\-Pnn. (7-1)

It is not hard to see that the three unit vectors on
the right transform differently under reflections.
Let us examine how the t e rms in Eq. (7.1) t r a n s -
form under the reflections P and T. Since we
are neglecting the Coulomb interaction, the oper-
ation of time reversa l will be understood in the
sense of the f i rs t -order perturbation theory
(change of the signs of momenta and spins, cf.
Sec. 4 ) ; We shall denote this operation by Tt,
to distinguish it from the exact transformation T.
Later we shall also consider the effect of the Cou-
lomb field. Under either the spatial or the time
reflection (P or T^) the momenta change sign.
Therefore the signs of the unit vectors e and m
change under these reflections.

On the other hand, the polarization <<r> does
not change on the reflection P and has its sign
changed by either T or T t (it t ransforms like
an angular velocity). It can be seen from the
table that if parity is conserved, i .e. , if the p rop-
er t ies of the system remain unchanged under all

Transformations
under

reflections

\ ^ flec-
NUon

Vector N̂

e

n

m

<»>

P

—

+

—

+

—

+
j

—

*It is obvious that the spectra of the electrons and neu-
trinos are connected by the law of conservation of energy.

t Since a2 = 3, e2 = 1, and v2 = 1, these vectors can occur
in the amplitude only linearly.

reflections, to the first order of the perturbation
theory the polarization cannot have a component
along any of the axes, since a t ransforms differ-
ently from any of the unit vectors . Pari ty noncon-
servation is necessary if there is to be a nonvan-
ishing polarization.

If spatial parity is not conserved but time p a r -
ity i s , components of the electron's polarization
appear along the unit vector e (longitudinal po-
larization) and along the unit vector m. There
can still be no polarization along the unit vector
n (compare signs in the Tj column). In this
case the polarization of the electron lies in the
plane of the decay. If the time parity is also not
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conserved, the polarization of the electron can
have a component along the unit vector n.

We note that if we average over all directions
of the vector (we shall not regis ter the direction
of the recoil nucleus ), the only preferred d i r ec -
tion will be the vector e, and the polarization
vector will be along it, independently of the con-
servation of P or T. Since the nonconservation
of the time parity is to be detected from the com-
plex character of the constants of the interaction
(or , more precisely, from the phase differences
of the various interaction types ), it can manifest
itself only in phenomena associated with the in ter-
ference of the various types. Therefore for pure
interaction types the polarization always lies in
the plane of the decay.

We shall now derive formulas for the polar iza-
tion of the electrons.

We begin with the scalar interaction. The prob-
ability for production of an electron is given by
Eq. (6.10), not averaged over the spin. This p rob -
ability is proportional to

In our further calculations we shall usually omit
common numerical factors, since we shall not be
interested in the absolute values of the decay p rob-
abili t ies, which have been computed ear l ie r . The
operator between e* and e determines the p rob-
abilities of production of an electron with various
values of the spin component. If we bring this op-
erator into a form proportional to

1 + <*P, (7.2)

then the probability of production of an electron
with spin component + § in the direction of the
vector P will be

and the corresponding value for the spin component
- g will be

-_ = 1 - | P | ,

so that P i s , by definition, the polarization of
the electron:

(7.3)

Let us transform the operator in Eq. (7.1'). For
the calculation we resolve V into two vectors in
the directions of e and m. We get:

(ev) (ue) + (mv) (u (7.4)

Noting that the different components of cr anticom-
mute, we get for the operator in Eq. (7.1)

Expanding the products and discarding a common
factor, we get

)ev--^(mv)(c.rD) (7.6)

and, dividing by 1 -fi&v, we find:

pet W 1 — (levam. (7.7)

Comparing this with Eq. (7.2), we see that for the
scalar interaction the polarization of the electron
has two components:*

longitudinal

n / m P v̂
1 — jJev

and t ransverse

W 1 — fsev '

(7.8)

(7.9)

The vector interaction type differs from the scalar
in that, in Eq. (7.1) and correspondingly also in
Eq. (7.5), we must change the sign of op; this r e -
duces effectively to a change of the sign of /3,
which leads to the following formulas for the
polarization:

(7.10)

(7.11)P (V)= — —

In the cases of the tensor and pseudovector types
we must consider instead of the operator (7.1) the
operator

where the upper sign refers to the tensor and the
lower to the pseudovector type, and where 1 is
the vector in the direction of the spin of the nu-
cleus, over which we have to average.

The average value (in the sense of averaging
over the directions of 1) of the t r iple product
(erl) (<rv) ((76) has been calculated in Section 6;
it is equal to - (<ru)/3. After the averaging the
expression (7.12) becomes

W + m
(7.13)

Comparing this with the expression (7.2) we see
that the polarization for the tensor interaction

•This is in agreement with the fact that for the scalar in-
teraction the polarization lies in the plane of the decay.
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type i s obta ined f rom tha t for the s c a l a r type by
the replacement v —• -v/2. This same change
in the expression for the polarization for the vec-
tor type gives that for the pseudovector type.

Thus for the tensor interaction we have

l

P m = - — — , (7.14)
-r-=- Bev

and for the pseudovector type

p

3 '

m mv

(7.15)

(7.16)

(7.17)

We shall also write out the formulas for the com-
bined types (S, T) and (V, A) . Since it is the
transition amplitudes, not the polarizations, that
a re added, we find that if we write the probability
for emission of an electron in the form

ay~ / • (» ) - ! G(&)ae + -^/ / (»)(ffm), (7.18)

the p o l a r i z a t i o n of the e l e c t r o n i s given by the f o r -
m u l a s

Pm-

For type (S, T )

/ • ( » ) =

G ( » ) =

/ / ( » ) =

a n d f o r t y p e ( A , V )

/ • (» )= l + pc

G(»)= -P-+

/ 4
TT I ft \ / J J

<

- / • ( » ) •

m H ( » )

1 — Bev + A f \

3 — ev + 4̂ ($

~2— 1 1 mv,

il

1 1 1 1 V ,

+ _

1

, 3 e v

e v

) .

J

) .

( 7 -

( 7 .

( 7 .

( 7

1 9 )

2 0 )

2 1 )

2 2

To obta in a f o r m u l a inc luding a l l four t y p e s , we
m u s t subs t i t u t e in Eq. (7.21) the s u m of the r e -
spec t i ve t e r m s of (7.21) and (7.22), mu l t ip l i ed by
| go v |2 < 1 > 2 , r e s p e c t i v e l y . We h a v e a l s o to
add on the t e r m s tha t a r i s e f r o m i n t e r f e r e n c e of
(S , V ) and ( T , A ) ( t h e o t h e r combina t ions do

not i n t e r f e r e in the c a s e of an unpo la r i zed n u -
c l eus ). We sha l l not w r i t e t h e s e t e r m s out in
de t a i l , but sha l l j u s t b r i e f ly ind ica te t h e i r p r o p -
e r t i e s . In o r d e r to find the i n t e r f e r e n c e of S
and V, we obviously have to r e p l a c e the o p e r a t o r
in Eq. (7.3) by the o p e r a t o r obta ined by c r o s s -
mul t ip ly ing H s and H y

gsgvi 1 +
W+m

1 - -
op

c o m p . c o n j . (7.23)

T r a n s f o r m i n g t h e o p e r a t o r s a n d d r o p p i n g ( a s

b e f o r e ) a f a c t o r 2 W / ( W + m ) , w e g e t

2 R e £ ^ ~ [ 1 + ( v e ) ( T C ) ] + 2 3 R o ^ , g ^ ( m v ) ( a m )

- 2 I m g J g ? . ( n e ) ( ( 7 n ) . ( 7 . 2 4 )

T h e i n t e r f e r e n c e b e t w e e n T a n d A g i v e s a n a l o -

g o u s t e r m s , i n w h i c h w e m u s t m a k e t h e r e p l a c e -

m e n t s

I D

I n a c c o r d a n c e w i t h t h e s t a t e m e n t m a d e e a r l i e r ,

t h e i n t e r f e r e n c e t e r m s l e a d t o t h e a p p e a r a n c e o f

a c o m p o n e n t o f t h e p o l a r i z a t i o n a l o n g t h e t h i r d

u n i t v e c t o r n . I n t h e p e r t u r b a t i o n t h e o r y a p o l a r -

i z a t i o n i n t h i s d i r e c t i o n a r i s e s w h e n t h e i n t e r a c -

t i o n c o n s t a n t s a r e c o m p l e x ( m o r e e x a c t l y , w h e n

t h e p h a s e s o f g g a n d g T o r o f g g a n d g y a r e

d i f f e r e n t ) . T h i s c a n o c c u r o n l y i f t h e r e i s n o n c o n -

s e r v a t i o n o f t i m e p a r i t y .

T h i s s o r t o f e f f e c t i s a l s o p r o d u c e d b y t h e C o u -

l o m b i n t e r a c t i o n w h e n t h e r e i s n o n c o n s e r v a t i o n o f

t i m e p a r i t y . I n f a c t , i n t h i s c a s e t h e t e r m i n o p

i s m u l t i p l i e d b y t h e c o m p l e x f a c t o r ( f o r s m a l l Z )

a = 1 + i Z e V h v . T h e n

W
a * ° P

i n s t ead of 2 m / W (for Z = 0 ) . This l eads to the
a p p e a r a n c e of a p o l a r i z a t i o n in the d i r ec t i on n
for a l l the types ( even without i n t e r f e r e n c e of the
dif ferent types ). In the i n t e r f e r e n c e t e r m s th i s
p o l a r i z a t i o n , a s s o c i a t e d wi th t h e Coulomb i n t e r -
ac t ion , wi l l b e p r o p o r t i o n a l to Re g g g y and
Re g T g t . w h e r e a s the p o l a r i z a t i o n a s s o c i a t e d
with nonconse rva t i on of t i m e p a r i t y i s p r o p o r t i o n a l
to the i m a g i n a r y p a r t s of t h e s e p r o d u c t s . This
f e a t u r e i s obviously due to the fact tha t on t i m e
re f l ec t ion g - * g * , i . e . , Re g g g y and Re ^
do not change s ign , but Im g g g y and Im T

do . T h e r e f o r e only the l a t t e r t e r m s v io la te t i m e -
re f l ec t ion i n v a r i a n c e .

We can d r a w a g e n e r a l conc lus ion f rom Eq.
(7.25) about the p r o p e r t i e s of the Coulomb i n t e r -
ac t ion . Namely , it can be s e e n f rom th is f o r m u l a
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that the polarization oe that a r i se s from the
Coulomb interaction is shifted in phase by w/2
(a factor i ) relative to the other t e r m s of the
same kind. Therefore the Coulomb interference
will always be displaced in phase from the non-
Coulomb interference. From what has been said
about time parity it is c lear , furthermore, that if
the effect in question is not invariant with respect
to the approximate (Born-approximation) version
of t ime reflection, then without the Coulomb in te r -
action t e rms appear involving the imaginary par ts
of products of the decay constants, and the Cou-
lomb interaction gives t e rms proportional to their
rea l pa r t s . On the other hand, in effects that a r e
invariant under the approximate time reflection,
the non-Coulomb t e rms will be proportional to
the rea l par t s of products of the constants, and
the Coulomb te rms to the imaginary par t s . These
considerations a re useful for understanding the
st ructure of the various formulas.

8. THE DECAY OF POLARIZED NUCLEI

In the preceding sections we have dealt with all
the effects that a r e not associated with polar iza-
tion of the nucleus in its initial or final s tate . Let
us now consider the decay of a polarized nucleus.
In this case the distribution of the electrons among
the various directions is no longer isotropic; there
is a correlation between the momentum of the e lec -
tron and the direction of the nuclear spin. The ex-
perimental demonstration of this effect by the work
of Wu was the first confirmation of the ideas of
Yang and Lee. If we at first do not take into a c -
count the polarization of the nucleus after the decay,
then there a r e three new effects not connected with
the spin of the electron: (1) a correlation of the
momentum of the electron with the polarization of
the nucleus — the pseudoscalar e l (1 is the unit
vector in the direction of the polarization); (2) a
correlation of the momentum of the neutrino with
the polarization of the nucleus — the pseudoscalar
vl; and (3) an effect of the polarization of the nu-
cleus on the electron-neutrino correlation — the

sca lars l ( e x v ) and Qik ( e i "k + e k " i ) ' w ^ e r e

Qik is the (quadrupole) polarization tensor of
the nucleus.

It is not hard to see that the correlations el
and vl involve nonconservation of spatial parity
(they a re sca la rs with respect to Tj) , and
1 (e x v) involves nonconservation of t ime parity
(a scalar with respect to P ). The tensor effect
does not change the par i t ies . In allowed t r a n s i -
tions these effects a re absent for types S and V,
since for these types the matr ix elements do not
depend on the spin of the nucleus. Thus an aniso-

tropy of the electron distribution will be due to
contributions from types T and A. Only in
transit ions without change of spin and parity
(j — j transit ions ) will there also be a contr i-
bution from t e rms coming from types S and V,
owing to their interference with the main t e r m s .
Since no averaging is car r ied out over the spin of
the nucleus, the arguments used ear l ie r do not
apply, and in the absence of the Coulomb field S
interferes with T and V with A ( there is in te r -
ference between types with the same chiral i ty) .
We note, however, that if I —• I transitions occur
that a r e not between m i r r o r nuclei, they a re a c -
companied by a change of the isotopic spin of the
nucleus. Then the Fermi matr ix element <C 1 >
is commonly very small , and the interference
te rms a r e practically nonexistent (in the approx-
imation of charge invariance they are zero ).

We begin with the transitions in types T and A;
we shall examine the interference te rms later .

Let us go back to Eq. (7.12). This formula de -
scr ibes the distribution of the light part icles for
prescr ibed spin states of the nuclei, defined by
the vector 1. The vector 1 came from the matr ix
element calculated by using the wave functions of
the initial and final nuclear s ta tes . It can be wr i t -
ten in the form

M = ( I >f in2> )1> ini t , (8-1)
i

where the summation is extended over all the neu-
trons in the nucleus, if for definiteness we again
take the case of electron /? decay. This matr ix
element depends on the nuclear spin components
in the initial and final s ta tes . The square of the
vector (8.1) is proportional to the quantity <<r> 2 ,
which was introduced ear l ie r . We write Eq. (8.1)
in the form

= (o)a(7, M\ (8.2)

separating off the angular (vector ) factor of the
mat r ix element M as the unit vector a ( a x , ay, a z ) .
The quantities ax , ay, a z depend on the spin of
the nucleus and its component in the initial (I, M)
and final ( I ' , M ' ) states (they a re proportional
to Clebsch-Gordan coefficients); by definition

K I 2 + K P + K I 2 = 1 - (8.3)

It follows from the normalization that M2 = <<r> 2 ,
and the probability of a transition with a given
change of the spin and the spin component is p r o -
portional to the square of the absolute value of
the corresponding coefficient a^.

In allowed transit ions the nuclear spin compo-
nent can change by 0 or ± 1 . Obviously this means
that the light part icles (electron and neutrino)
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car ry away a ( total) spin component of 0, ± 1 , r e -
spectively, so that the spin component of the whole
system does not change.

In the old picture, in which the light part icles
did not have the spin coupled to the momentum,
this led to a dependence of their polarizations on
the direction of emission, but did not affect the
angular distribution. In the two-component-neu-
trino picture the momentum of the antineutrino
follows its spin, and therefore the anisotropy of
the spin orientation leads to an anisotropy in the
direction of emission as well.

Let us consider a nucleus with prescr ibed spin
component Mo and a transition with a prescr ibed
change of the nuclear spin, I — I ' .

The transition amplitude will be proportional to

(8.4)

We note that

[ u e o i a f t ] a v = i e i x k , (8 .6 )

w h e r e t h e t h i r d u n i t v e c t o r i s d e n o t e d b y i x k .

T h e n

w~~l ± i p ( a x a * ) e . (8 .7 )

I n t r o d u c i n g i n s t e a d of a x a n d a y t h e c o m p o n e n t s

a + a n d a _ ,

± ia (8.8)

corresponding to the change | AM | = 1, and taking
as the axis of quantization the polarization axis of
the nucleus, 1, we get

wr 3 (el) (a; • (8 .9)

w h e r e t h e s i g n s + a n d — r e f e r t o t h e t y p e s T a n d

A r e s p e c t i v e l y . S q u a r i n g t h i s a n d a v e r a g i n g o v e r

t h e s p i n of t h e e l e c t r o n a n d t h e d i r e c t i o n of e m i s -

s i o n of t h e n e u t r i n o ( l e a v i n g o u t of a c c o u n t f o r t h e

t i m e b e i n g t h e e l e c t r o n - n e u t r i n o c o r r e l a t i o n ) , w e

g e t f o r t h e d e c a y p r o b a b i l i t y

2 a-fit [(1 ± [tee) o i 5 l J B2
i.ft

(8.5)

I t c a n b e s e e n f r o m E q . (8 .1 ) t h a t t h e c o e f f i c i e n t s

a + a n d a_ a r i s e f r o m t h e c o m p o u n d i n g of t h e s p i n

I of t h e i n i t i a l n u c l e u s w i t h t h e s p i n I ' of t h e f i n a l

n u c l e u s ( I ' = I ± 1 o r I ) , w h i c h g i v e s t h e v e c t o r 1.

A c c o r d i n g t o t h e g e n e r a l r u l e s t h e y a r e p r o p o r t i o n a l

t o t h e C l e b s c h - G o r d a n c o e f f i c i e n t s c o r r e s p o n d i n g

t o t h e c o m p o s i t i o n s c h e m e 1 + 1 = 1 ' .

W e g i v e h e r e a t a b l e of t h e C l e b s c h - G o r d a n c o -

e f f i c i e n t s w e s h a l l r e q u i r e .

Spin of
final

nucleus

AM =0

a0 -

&M = - 1

Sum of squares of
coefficients

for
given M

for
given Mo

, (74 M)(I +M +\) 1

\ (27-,-l)(27-t2) )

)
M

d .

- c -

— M)(i— M+\) y / 2

M)(IM + \)
2 / ( 2 / + l ) ) / ( 2 / + 2/(^7 +

"2/ + 1

27 — 1
2 7 + 1

T h e C l e b s c h - G o r d a n c o e f f i c i e n t s a r e u s u a l l y r o w s a r e e q u a l t o 1 . T h i s n o r m a l i z a t i o n c o r r e -

n o r m a l i z e d s o t h a t t h e s u m s of s q u a r e s a c r o s s t h e s p o n d s t o s u m m a t i o n w i t h a c o n s t a n t v a l u e of t h e
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nuclear spin component M' in the final s tate . We
need coefficients a^ normalized for a prescr ibed
initial-state spin component Mo. We therefore set
M = Mo + 1 in the first column, M = Mo in the
second, and M = Mo - 1 in the third, and find that
the sums of squares of the coefficients for fixed
Mo along the rows have the values shown in the
last column. One must divide the squares of the
Clebsch-Gordan coefficients by these numbers in
order to get a2 and a.1.. Simple calculations from
the table then lead to the following values:

r

2 _ o )
+ - — I — —•

M o

f o r t h e t r a n s i t i o n ^ —> / + 1 ,

f o r t h e t r a n s i t i o n / _ > / ,

f o r t h e t r a n s i t i o n / - ^ / — I .

( 8 . 1 0 )

L e t u s a v e r a g e t h e s e v a l u e s o v e r a l l t h e n u c l e i i n

t h e t a r g e t . S i n c e

• ^ = i> (8.11)

i s the p o l a r i z a t i o n of the n u c l e u s , we f inal ly ge t
the angu la r d i s t r i b u t i o n s for types T and A:

where

(8.12)
(8.13)

for the t r a n s i t i o n /

for the t r a n s i t i o n /
-r *

— 1 for the t r a n s i t i o n /

1,

r - l . (8.14)

The formulas (8.12) and (8.13) describe the effect
for transit ions with change of the spin. For the
transition I — I we still have to calculate the in-
terference te rm. The interference of the vector
and pseudovector types is described by the ex-
pression

Averaging over v and removing the factor
2W/(W+ m ) , we ar r ive at the expression

(8.16)

Equation (8.16), unlike (8.7), contains only the
first power of 1. Averaging over the spin of the

electron, we bring Eq. (8.16) to the form

(8.17)

Substituting the value of a0 from the table,
M

a (8

averaging over the spins in the target , and in t ro-
ducing the polarization P of the nuclei, we now
bring Eq. (8.17) to the form

(8.19)

We get the expression for the interference of
types S and T from Eq. (8.16) by the replace-
ment p — - p . Since this change does not affect
the result (because of the averaging over the
electron spin) , we get for the interference term:

-f2p/>Reg sg*( (8.20)

Now we can w r i t e the e x p r e s s i o n for the d i s t r i b u -
t ion of the e l e c t r o n s f rom the t r a n s i t i o n I — I.
In t roducing the n u c l e a r m a t r i x e l e m e n t s < 1 >
and O > and combin ing E q s . (8.19) and (8.12),
we ge t for the A, V type

B

where

w(VA)= 1 -

A —gv

(8.21)

(8.22)

For the S, T type we get by a s imilar procedure

l + ? i+*A\Ad)p- (8.24)

( 8 ' 2 6 )

For positron decays there a re two changes in
the formulas. Firs t , the sign of j3 is changed
(opposite sign of the polarization of the posi tron) ,
and second, because of the change of sign of the
V and T interaction constants, the interference
te rm changes sign. The resul t is that in the for-
mulas we must change the sign of fi, and for the
I — I transition we must also change the sign of
the interference te rm. A combined treatment of
all four types does not introduce anything essen-
tially new, since V and A do not interfere with
T, and S does not interfere with V and A, if
we neglect the Coulomb interaction. An interfer-
ence does a r i se , however, if we include this in ter -
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action. Fur thermore , this effect will be propor-
tional to the imaginary par ts of the products of
constants that come in (Im gggy> e t c > ) and will
therefore exist only if there is nonconservation
of time parity and if the types (V, A) and (S, T)
a re present together. Since we have agreed to
confine ourselves in the main to the possibilities
V, A and S, T, we shall not concern ourselves
with this point in any more detail.

Let us now examine the correlation between the
direction of emission of the antineutrino and the
spin of the nucleus. Since in the V, A type the
chirality of the antineutrino is opposite to that of
the electron, and its speed is the speed of light,
in the formulas obtained for the electron in type
V, A we can simply make the formal changes

e—>v, P = - l . (8.27)

It can be shown, moreover , that the sign of the in-
terference t e rm remains unchanged. Thus we get
for the antineutrino with right-handed chirality:

i

1-

{I~>I±1), (8.28)
h Re A

• vLP

(8.29)

The formulas for the neutrino a re obtained by
changing the signs of the second te rm and of Re A.

A case of the greatest interest is that of the
decay of polarized neutrons (Telegdi et al. (F7)).
In this case the nuclear matr ix elements are
known: < 1 > = 1 , < C T > = 31 /2 .

Denoting the absolute value of the ratio of the
Fermi and Gamow-Teller constants by

X = ^ or -?-, (8.30)

we get from Eqs. (8.21) — (8.23) for the correlation
between the electron and the neutron spin direction
(type V, A): , ,

± el

and for the antineutrino

~ ttel

+ — i '• r-
vl.

(8.31)

(8.32)

Let us now calculate the effect of polarization of
the nucleus on the correlation. We return to Eq.
(8.4). If in going from this to Eq. (8.5) one does
not average over the direction of emission of the
neutrino, but averages only over the electron spin,
there a re added to Eq. (8.5) the t e rms

t, ft
JftJav

(8.33)

The e-p correlation is described by just the s ec -
ond te rm

P l i ) i )
i. ft

The first t e rm obviously describes the correlation
between the momentum of the neutrino and the po-
larization of the nucleus.

Using the formula

(<JA)(<JB) = A B - M O ( A X B ) . (8.35)

where A and B a re any vectors , we reduce
Eq. (8.34) to the form

+ P2«i«ft(eivh + V i -S i f c ev ) . (8.36)
i, h

Separating out the te rm that describes the c o r r e -
lation independent of the polarization of the nucleus,

4 ev) - T •37)

and averaging over the various nuclei, we see that
the effect of the polarization of the nucleus is de -
scribed by the sum

Equation (8.38) can be rewritten in the form

where the tensor

(8.38)

(8.39)

(8-40)

is proportional to the quadrupolarization tensor of
the target . From this it follows that a tensor c o r -
relation can exist only for nuclei with spin greater
than g.

If now we take as our coordinate system the
principal axes of the symmetric tensor Rj^, this
tensor will have only three components, with their
sum equal to zero . Introducing the components

a± , we find

(8.41)

Substituting in Eq. (8.36) and using the value of a|,
we get
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> 1(1+1)- 'A. ._. , „
(8.42)

where [ M 2 ] a v is the mean square value of the
spin component. The factor in square brackets
vanishes when all values of M2 a re equally p rob-
able (absence of quadrupolarization).

f - - for the transition / —> / + 1,

T)=-

t-l 1-3
1 for the transition /—>/,

for the transition / — > / - ! . (8.43)
(2/-1)

The expression (8.39) must be added to ± (/3/3 )ev
= ± (yS/3 ) cos i?, the corresponding expressions
for the correlation in types T and A (Eq. (6.22)).

The formula remains the same for the c o r r e -
lation in positron decays.

There remain to be considered the interference
te rms that, appear in I — I transi t ions.

These t e rms lead to a correlation of the vector
type. From Eq. (8.15) we find in a s imilar way
that the correlation is described by the additional
t e rms

- R e g s g r
+ Re gvgl

X6[(se)(5v)(<jl)]avao. (8.44)

The average value of the product is i (e x v) 1, and
therefore the whole expression becomes

-f 21m gsgr
x p / ' l c x v ) ! ^

1/2
(8.45)

In this case the effect exists only for nonconserva-
tion of the combined parity, in agreement with the
statement made ear l ie r .

The expressions (8.45) obviously change sign
when we go over to the positron decay.

The decay of polarized nuclei gives r i s e to a
complicated pattern of electron polarization.

If in Eq. (8.4) we do not average over the spin,
several t e rms proportional to or occur. These
te rms will be of two types, which differ in that
those of the first type give a polarization propor-
tional to the polarization of the nuclei, and the
others give a polarization proportional to the
quadrupolarization. The former t e rms determine
components of the electron polarization

<<O = X <*.A (8.46)

as linear functions of the components of the polar -
ization of the nuclei, while the latter give a con-
nection of the type

<°i> = SPi*Ai - (8.47)

The coefficients a fa and fifa a re formed from
the vectors e and V. The propert ies of these co -

efficients with respect to reflections can be studied
by just the same methods as used for previous
cases .

In Eq. (8.46) the components of the polarizations
of the nucleus and electron transform in the same
way. Therefore it is obvious that if any parity is
conserved the coefficients a fa must remain un-
changed under the corresponding reflection. If we
choose the coordinate system e, n, m that we
used in Sec. 7, we can use the table on page 19 to
write down the coefficients for the transformation
of binary products of the unit vectors , which will
obviously also be the transformation coefficients
for the quantities ( a fa)

ee, mi, mm
en
em \
nm

i
p

+

—
+
—

T,

—
-r
—

We see that invariance under P brings with it
vanishing of the components em and nm (effect
of the polarization of the nucleus along n on the
longitudinal polarization of the electron, and so
on).

In an analogous way one can also study the
propert ies of the coefficients 13 fa. We shall not
present the detailed and ra ther cumbersome for-
mulas here .

9. THE POLARIZATION OF THE NUCLEUS
AFTER THE DECAY. THE )3-y CORRE-
LATION

Let us now bring into our discussion the last
of the parameters — the polarization of the nucleus
after the decay.

If an unpplarized nucleus decays, then owing to
the fact that the electron and neutrino car ry away
angular momentum the nucleus is polarized after
the decay.

If we do not record the direction of emission of
the neutrino and average over the directions of the
electron spin, then the axis of polarization in a l -
lowed decays can only be the momentum of the
electron. In allowed transitions the light par t ic les
car ry away an angular momentum not larger than
unity, and therefore in the decay the degree of po-
larization of the nucleus can change only by unity
— an unpolarized nucleus becomes linearly polar -
ized nucleus becomes quadrupolarized, etc. This
too, however, can occur only if parity is not con-
served; with parity conservation a polarization
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obviously cannot be proportional to a momentum.
The final polarization of the nucleus is usually

measured by the angular distribution of y -ray
quanta or their c ircular polarization.*

It is not hard to see that since the electromag-
netic interaction conserves parity, the angular
distribution of the y - rays cannot depend on a
linear polarization (nor, in general, on any odd-
degree polarization) of the target . In fact, in
virtue of parity conservation a target with the
polarization P radiates just like one with the
polarization — P. But the sum of the two targets
is an unpolarized target , which radiates isotropic-
ally. Therefore the angular distribution of the y
rays is determined only by the quadrupolarization
of the target (by the even polarizations ). A for-
mal expression of this fact is the requirement
that the wave vector of the y -ray quantum must
always occur in the amplitude raised to an even
power.

The effect of interest to us , the polarization
of the nucleus, can be determined from the c i rcu-
lar polarization of the y rays .

A left-circularly polar ized! quantum ca r r i e s
away an angular-momentum component unity; such
quanta a re emitted by a completely polarized t a r -
get in the direction paral lel to its polarization.
Therefore the degree of ( lef t -c i rcular) po lar i -
zation of a quantum emitted by a target with de -
gree of polarization P is given by

r = P cos (9.1)

General formulas for the angular distribution and
polarization of y - ray quanta emitted by polarized
nuclei can be found in, for example, the book edited
by Siegbahn (A2).

Since the direction of the polarization arising
from the /3 decay of an unpolarized nucleus is
paral lel to the momentum of the electron, the
angle d- in Eq. (9.1) is at the same time the angle
between the directions of emission of the electron
and the y - r a y quantum. Therefore the co r re la -
tion between the polarization of the final nucleus
and the polarization of the y -ray quantum is called
/3-y -polarization correlation.

The calculation of the polarization of the nucleus
after j3 decay is worked out from the same for-
mulas as for the decay of polarized nuclei.

According to Eqs. (8.9), (8.18), and (8.19) the

•An interesting case is the decay of C17. The N" nucleus
resulting from the decay emits a polarized neutron, whose po-
larization can, in principle, be measured.

t According to the optical terminology this is a quantum
with angular-momentum component along the wave vector m = 1,
corresponding to a right-handed screw.

probability of decay of a nucleus, not averaged
over the polarizations of the nucleus in the initial
and final s tates , is given for I — I ± 1 transitions
by the relation

w - (0.2)

We have set the scalar product e l equal to unity,
choosing the axis of quantization in the direction
of emission of the electron. For I — I t r ans i -
tions we have also to include the interference ef-
fect, which according to Eqs. (8.18) and (8.20) is
proportional to

— Re gsg
- Re gvg*A

(9.3)

The coefficients of a+ — a i and a0 determine
the relative probabilities of transitions into a final
state with a prescr ibed value of M from various
initial s ta tes . In order for the total transition
probability to be normalized to unity, as in Eq.
(9.2), it is necessary to have a+ + oL + a§ = 1
for a specified final M. This corresponds to the
usual normalization of the Clebsch-Gordan coeffi-
cients . By means of the table on page 23 we can
write Eq. (9.2) in the form

where

I
B{M)—[

M
7+1
M

$B (M),

for the transition /

for the transition

(9.4)

[ — — for the transition / - > / - ! • (9-5)

The polarization of the nucleus in the final state is
equal to the average value of M divided by the
spin of the nucleus in the final state:

i

P'= TU2FTW 2 B(M)M. (9.6)
M=—/'

The first t e r m in Eq. (9.4) makes no contribution
to (9.6). As the result we get for the polarization
in I —• I ± 1 transit ions, for types T and A:

for the transition /—> / + 1,
i :-s / -+- [

P'(T)= JL for the transition / _> / _ l
3

P'(A) =

For the I
a0:

for the transition / ~-> / + 1,

for the transition 7-̂ > /— 1.

(9.7)

(9.8)

I transition we also need the value of
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M
*°-v

for the transition / —» / . (9.9)

Introducing the nuclear matr ix elements, we get
for the types (T , S) and (V, A):

6P'(T, S)= - | -
-^- + 2t/~ReA ,

1 ' ' 4 = •
? r

(9.10)

It may be pointed out that the signs of the t e rms in
Re A in the formulas for P ' a re opposite to the
signs of these t e rms in the formulas for the Wu
effect, Eqs. (8.21) — (8.26). Therefore the two ef-
fects a re not proportional to each other, and m e a s -
urements of both on the same nucleus can be used
to get additional information about the nucleus
(about the spin or the value of A) . Just as before,
the resul ts for the positron decay a re obtained by
the changes

?->—[* A->-A. (9.12)

It is not hard to get also the general formula for
an arbi t rary combination of the four types. We
shall not do this here , however. Remarks on this
point a re given after Eq..(8.26).

One can study in the same way more compli-
cated effects, which involve all five of the vectors
belonging to the system. The formulas one gets
a r e , however, ra ther cumbersome, and no physic-
ally new resul ts apppear (at least for allowed
transi t ions) . Therefore we shall only deal briefly
with the qualitative pattern of one of these effects
— the e-y correlation in polarized nuclei. This
effect is interesting because it provides a poss i -
bility of checking the conservation of the combined
parity (B30, B32). The angular distribution for
the electron momentum contains a te rm depending
on the direction q of emission of the y - ray quan-
tum and the vector 1 that defines the direction of
polarization of the nucleus.

We a re interested in a relation of the form
e - l x q , (9.13)

which is noninvariant with respect to the approxi-
mate t ime reflection (the left side changes sign,
the right side does not) . Since, however, the
y -ray quantum conserves parity, q must appear
to an even power.* Therefore the lowest power of
1 that can appear in the term we require is the
second. Accordingly Eq. (9.13) must contain a

•This corresponds to the fact already mentioned, that an
asymmetry of the angular distribution of the quanta is caused
only by even polarizations of the final nucleus.

scalar coefficient proportional to an odd power
of q, i .e. , an odd power of the scalar product lq.

Thus the connection between e, 1, and q will
be given (along with t e rms that conserve the time
pari ty) by t e rms of the type

x q (lq)2 (9.14)

The power of q is associated with the multipole
radiation. Obviously the effect consists of an
asymmetry of the electron distribution relative
to the plane defined by the axis of polarization of
the nucleus and the direction of emission of the
quantum. *

As with the other effects, such an asymmetry
occurs even without t ime-pari ty nonconservation,
on account of the Coulomb interaction. Up to now
only one experiment has been done [ cf. Sec. 11 (i)],
with polarized Co58; the resul ts a re not in contra-
diction with the conservation of the combined
parity.

10. THE V-A INTERACTION

The experimental data are now coming into
better and better agreement with the pattern given
by an interaction consisting of a linear combina-
tion of V and A. Marshak and Sudarshan (B41)
and Gell-Mann and Feynman (B40) have called
attention to the interesting propert ies of this in-
teraction and have pointed out its attractiveness
from the theoretical point of view. The starting
point of these arguments was the fact that if one
writes the Hamiltonian for the n -meson decay,
H~ —- e~ + v + v in the same form as for the p
decay of the neutron with types V and A and
sets gy — — g^ — gju :

—V = 2-1/'gll[y;.(l + Y.) ^ 7 . ( 1 + y5) v
-], (10.1)

then this Hamiltonian correctly describes the
spectrum of the electrons, and the constant g^
determined from the lifetime of the \x meson
agrees to within experimental e r r o r s (1 to 2 p e r -
cent ) with the vector /3 -decay constant.

This way of writing the Hamiltonian presupposes
that all fermions enter into the weak interactions
as two-component part icles with definite chirality;
only the strong interactions can change the ch i ra l -
ity of part icles — convert them into four-compo-
nent par t ic les .

It is obvious, furthermore, that such a Hamil-
tonian conserves the combined parity (the phase
difference between gy and gA is ir /2).

These arguments have served as the basis for

*1 and q must not be perpendicular; if they are, according
to Eq. (9.14) the effect vanishes.
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the hypothesis that for the (3 decay also one must
write this same type of interaction, with equal con-
stants gA and gy. Actually, however, /3 decay
is described not by the Hamiltonian (10.1), but by

H} = 2-Vs (1 + AT5) A"] [e-!a (1 +v s) (10.2)

with A equal not to unity, but to about 1.2 (cf. Sec.
11). It is natural to explain the difference between
the pseudovector constants in the ix decay and the
/3 decay by saying that owing to the presence of the
strong interaction of the nucleons with the vacuum
(TT mesons, K mesons) there is a renormalization
of the decay constants and the nucleons cease to
have a definite chirality. The natural question then
a r i s e s : why does the strong interaction lead to r e -
normalization of only the pseudovector constant,
while the vector constant remains unchanged? A
possible answer to this lies in an analogy with the
electromagnetic interaction. [Cf. S. S. GershteTn
and Ya. B. Zel'dovich, J. Exptl. Theoret. Phys.
(U.S.S.R.) 29, 698 (1955), Soviet Phys. JETP 2,
576 (1956)].

The electr ic charges of all part icles — strongly
interacting and weakly interacting — are the same,
despite the polarization of the vacuum. In this
case the constancy of the charge is guaranteed,
as is well known, by the conservation of electric
charge. Evidently also in the case of the vector
interaction there must exist a conserved quantity.

In order to see what form such a conservation
law can have, let us compare the electromagnetic
interaction of a system of par t ic les with the vec-
tor P -decay interaction.

If we introduce the matr ices T + , T_, and TQ
for the isotopic spin of the nucleon,* the e lec t ro-
magnetic interaction of the nucleon can be wr i t -
ten in the form

Hel = e/aAa. (10.3)

The four-vector current j a can be written in the
form (n is the wave function)

i —
h—-2nl« (1 + i<>)n-\-]\ (meson) (10.4)

where the second term is due to the mesons s u r -
rounding the nucleon (the meson cloud). The
factor ? ( 1 + TQ) vanishes for the "bare" neutron.
The current ) a can be written in the form of two
t e r m s : an isotopic scalar

and the third component of an isotopic vector

l -/£3) = T nl«xon + /« (meson) (10.6)

*% multiplies the proton by + 1 and the neutron by — 1,

For each of these currents one can write a con-
servation law:

d.r
= 0. (10.7)

The vector interaction for (3 decay can be written
in a form like Eq. (10.3):

where*

and

n[

(10.8)

(10.9)

(10.10)

We see that BQ> plays a role analogous to that of
the electromagnetic potential, and ka a role anal-
ogous to that of the isotopic vector current (10.6).

If we assume that for a rea l nucleon the in ter-
action must contain not the expression (10.9) but
the first component of the isotopic vector whose
third component is the expression (10.6), then in
virtue of the isotopic invariance of the strong in-
teraction it follows from the conservation of the
current [Eq. (10.7)] that the current (10.9) is also
conserved (apart from radiative corrections ):

3-̂
ox

(10.11)

Thus a current a r i ses that is at the same time a
vector in the isotopic space

J = Y + J (meson) (10.12)

For the nucleon surrounded by the TT -meson cloud

j = ±,7oY™o + - x - ^ , (10.13)

where n is the wave function of the n meson
(a vector in the isotopic space) . Possibly we
should include in the current (10.13) a contribu-
tion from the K mesons and perhaps some other
interactions (cf. discussion in reference B63).

A paper by Gell-Mann (B43) discusses possible
methods for testing experimentally the nature of
the vector interaction (cf. references B54, B55,
B62).

The basic idea of such a test is that certain
nuclear matr ix elements that affect the propert ies
of /3 decay have a form analogus to the matrix
elements of the electromagnetic interaction. Then
it follows from the analogy between the vector in-
teraction in /3 decay and the electromagnetic in-
teraction that these elements must be identical.
This fact should be confirmed by experiment.

T+ turns neutron into proton, and T. turns proton into neutron. (TX + i Ty).
•The coefficient 2Vi comes from the normalization T ± =2"
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Gell-Mann considers the matr ix elements that
give the f i rs t -order corrections that appear in the
formulas if one does not replace the neutrino wave
function by unity, but keeps the t e rm of f irs t order
in the coordinate ( i k r ) .

In this case it can be shown that the c o r r e c -
tions to the shape of the spectrum and the [1-v
correlation will be determined by a nuclear m a -
t r ix element analogous to the nuclear matr ix e l e -
ment that determines a magnetic dipole transition.
(Gell-Mann calls this phenomenon weak magne-
t i sm. )

In the case of the /T transition B12 — C12

and the /3+ transition N12 — C12 this matr ix
element can be evaluated from the y -ray t r a n -
sition from the isotopically s imilar level C12*
- C 1 2 .

In this way a value of the order of 20 percent
is obtained for the correction to the spectrum,
which can be measured.

Another effect of a s imilar kind can be ob-
tained by considering the correlation between
the p ray and the y - ray polarization in allowed
transit ions, in which it can occur only owing to
the effect of the change of the wave function over
the volume of the nucleus. The value of this ef-
fect also can be estimated from isotopically s imi -
lar electromagnetic transi t ions.

Prel iminary experimental resul ts a re not in
contradiction with such estimates (cf. references
G16, G18).

The theory of the V-A interaction also makes
it possible to make a number of predictions about
weak-interaction decays of other par t ic les , in p a r -
ticular hyperons; in these cases also there a re
evidently no contradictions with existing exper i -
mental information. These problems, however,
a re beyond the scope of this survey.

The idea of the universal interaction leads to
the possibility in principle of two new effects (in
first order in g2) — the scattering of neutrinos
by electrons and parity nonconservation in the
scattering of neutrons by protons.

Unfortunately, the accuracy of experiments is
at present insufficient for the detection of these
effects (cf. the report by Roberts (B59) and the
work on measuring ionization losses of neutrinos
(D7)).

11. THE EXPERIMENTAL DATA ON THE FORM
OF THE 0 -DECAY INTERACTION

This section contains a brief survey of the
main data bearing on the choice of the form of
the /8 -decay interaction Hamiltonian.

(a) The Absence of Interference Terms

The data on /3 decays with 1 = 0 — 1 = 0
(without change of parity ) make possible an e s -
timate of the possible size of the Fermi interfer-
ence te rms (S, V). Such an analysis was carr ied
out by Gerhart (C4) (cf. reference C19). From
the spectra of O14, A26*, and Cl34 he found for
the relative magnitude of the interference te rm

; = 0.00 + 0.12. (11.1)bF =

The best estimate of the interference between T
and A has been made by Sherr and Miller (C5)
from the ratio of the probabilities of K capture
and positron decay of Na22 (the interference
te rms occur in different ways in the two p roc -
esses ). Their resul t is

bGT= - 0 . 0 1 ±0.02. (11.2)

Several other papers (C6 — 9) give various values
of bQT i n t n e range 0.015 < b g - < 0.093. If the
imaginary par t corresponding to Eq. (11.1) is also
zero (conservation of combined par i ty) , it then
follows that the choice is between the combina-
tions (ST) and (VA).

(b) The e-v Correlation

The choice between the combinations (ST) and
(VA) can be made on the basis of measurements
of the electron-neutrino correlation.

The old experiments on the decay of He6 (C10),
on the basis of which the conclusion favoring the
tensor interaction was drawn, have now been r e -
futed. The experiments of Allen and others (Cll)
on the decay Cl34 — A34 agree only with the com-
bination (V, A) . This choice is also not contra-
dicted by the data on the decay of Ne19 (C12 —13),
which agree with both possibili t ies, and on Na24

and Ne23 (C14a).
The exact values of the correlation coefficients

depend on the nuclear matr ix elements, and we
shall not discuss them here . The resul ts of ex-
periments with He6 (C16) and Li8 (C17, 20) agree
with the combination (V, A) .

(c) The Magnitudes of the Decay Constants

If there are no interference t e rms , then inde-
pendently of the choice between the combinations
(ST) or (VA) the probability of j3 decay is d e -
termined by two constants gp and gQT o r the
two constants A and R that appear in the for-
mula for ftjA (cf. Sec. 6)
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/*'/2-< 1 > a + i ,<J>s- (H.3)

The constant A is determined from the decay of
O14 (0 — 0 transit ion) (C16)

A = 6550 + 150 sec; (H-4)

in the latest paper (C4) a somewhat smaller value*

± (20 sec (H-4')

is obtained from an analysis of the data on the de -
cay of three m i r r o r nuclei O14, Al26*, and Cl34.
The decay of the neutron has been most carefully
studied by Sosnovskit, Spivak, Prokof'ev, Kutikov,
and Dobrynin (C3). Their resul t is

Uh= 11.7 +0 ,3 sec .

This gives the result

(11-5)

(11.6)

From this and Eq. (11.4') we get

fl= 1.52 +0.08. (11.7)

If we adopt the value (1.1.4), then

R= 1.42 ±0.08.

The interaction constants are found to have the
values (C18)

gF= 1.400 + 0.009 erg cm3 ^2.9-10-12(m<

gGr= 1.7 + 0.05 erg cm3 ^3.5-10-12(mc2

(11.8)

(d) Conservation of the Neutrino Charge

It has been shown experimentally that different
neutral part icles a re emitted in /?" and j3+ decays.
This follows from the absence of the react ion!
v + Cl37 -—A37 + e" (Dl) (an experiment suggested
by Pontecorvo ) under bombardment by the ant i -
neutrinos coming from a pile. Furthermore the
reaction inverse to neutron decay, v + p —* n + e+ ,
has definitely been established (D2, D l l ) .

The same conclusion follows from the absence
of the neutrinoless double /? decay Ca48 — Ti48 +
e~ + e" (see reference A4).

(e) The Chirality of the Neutrino

The chirality of the neutrino has been de te r -
mined by the direct experiments of Goldhaber,

*The decrease of the value of A is associated with a
new value of the limit of the /3-ray spectrum of O14 (D. A.
Bromley, unpublished work cited in reference C4).

tData on the existence of this reaction that appeared in
1957 have been found to be incorrect.

Grodzins, and Sunyar (D5), on the polarization*
of the nucleus produced by K capture from the
nucleus Eu1 5 2 m . Since in the K-capture process
the polarization of the recoil nucleus is the same
as that of the emitted neutrino, this is the most
direct experiment for measuring the chirality of
the neutrino. Their experiments showed that the
chirality of the neutrino is — 1.

The two-component property of the neutrino
can be verified from the ratio between the decay
of the neutron and the inverse reaction p + p —•
n + e + . If the antineutrino is completely polarized
(a two-component par t ic le) the ratio of the prob-
abilities

-JD("A —> p -f-e -|-v)

will be twice as large as for a four-component
neutrino (for the same energies of the part icles ).
Formally this is due to the fact that the statistical
weight for the decay of the neutron has been r e -
duced by a factor two ( there is no summation over
the spins of the antineutrino). Then from the ratio
between the direct and inverse processes

(11.9)
!••< P i

i t f o l l o w s t h a t t h e p r o b a b i l i t y o f t h e i n v e r s e p r o c -

e s s i s i n c r e a s e d b y a f a c t o r t w o .

S u c h e x p e r i m e n t s h a v e b e e n p e r f o r m e d b y

R e i n e s a n d C o w a n ( A 6 , D l l ) . T h e e x p e r i m e n t a l

v a l u e o f t h e c r o s s - s e c t i o n , r e f e r r e d t o a s i n g l e

n e u t r i n o i n t h e f l u x f r o m t h e r e a c t o r w a s f o u n d t o

b e

G = 1 1 + 4 - 1 0 " " c m 2 / y ,

o r r e f e r r e d t o a s i n g l e a c t o f f i s s i o n , o n t h e a s -

s u m p t i o n t h a t e a c h f i s s i o n i n t h e r e a c t o r p r o d u c e s

6 . 1 n e u t r i n o s ,

c = 67 + 24 • 10 •« cmVfission.

The main difficulty in the theoretical treatment
of the data lies in the determination of the energy
spectrum of the neutrinos. A very careful de ter -
mination was made by Carter and others (D12).
(Cf. also reference D6). In the same paper the
theoretical value of the cross-sect ion for the lon-
gitudinal neutrino was found on the basis of these
measurements to be

a = 60 + 10 • 10-44 cmVfission,

which is in good agreement with experiment. It
may be noted that the number of neutrinos with

*The polarization of the nucleus was measured through the
polarization of the subsequent y ray.
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enough energy for the reaction (threshold 1.804
Mev ) was found to be 2.0 ± 0.2 ^/fission. This
gives for the cross-sect ion per neutrino with en-
ergy greater than 1.8 Mev the value ( 3 1 ± 4 ) x
10"44 c m 2 A .

Besides the data on the propert ies of the neu-
trino that have been mentioned we may add refer -
ences to est imates of the upper limit on the mass
of the neutrino ( m v < 1/500 electron mass (D9,
D10); cf. reference A7 ) and of the upper limit on
its magnetic moment (nv < 10~9 electron Bohr
magneton (D7)).

(f) The Chirality of the Electrons

If the electron has a definite chirality, then in
all allowed transitions and in many forbidden t r an -
sitions it must be longitudinally polarized and the
value of the polarization must be - /S ( - v /c ). The
corresponding polarization for positrons must be
+ /3. Although there have been papers in which
other values of the polarization were found, they
were later shown to be incorrect , and at present
all existing experiments confirm these values of
the polarization for electrons and posi trons. The
e r r o r s in all the experiments a re , however, com-
paratively large (say 15 to 20 percent ) , and it is
of great importance that more accurate results
be obtained. Since no new information besides
the chirality can be obtained from the existing
data, we shall not present the numerical data
here , and refer the reader to the original papers
(Section E of the list of l i terature ).

(g) The Decay of Polarized Nuclei

Information about the chirality of the electron
is also given by measurements of the angular d i s -
tribution of the electrons from the decay of polar -
ized nuclei — the Wu effect. These experiments
have been performed with three cobalt isotopes:
Co60, Co58, and Co56. The transitions in Co58

and Co56 a r e of the type I — I, so that the
amount of polarization of the electrons from these
transitions must depend on the interference of the
V and A te rms - Eqs. (8.21) - (8.23). For Co58

(1 = 2) the value of the coefficient B in Eq.
(8.23) has been found to be about %, which can
agree with theory only if it is assumed that there
is no interference te rm. (In this case B =
1/(1 + 1)..) A s imilar resul t is found for Co56

( 1 = 4 ) . The experimental value is B = 0.222 ±
0.021, which is again in good agreement with the
theoretical value, B = % .

For the transition I — I - 1 — the case of
Co60 (1 = 5) — experiment also confirms the
theoretical value, B = 1.

The absence of the interference te rms gave
r i se to the idea of nonconservation of time parity.
In this case, assuming that gy = ig^ , we could
explain the absence of interference.

The actual situation, however, turned out to be
simpler. Measurement of the ratio of matr ix e le -
ments < l > / < c r > from the angular distribution
of the y rays from polarized cobalt has shown
that this ratio is extremely small , and it is this
that is the cause of the observed effect. For the
square of the ratio of these elements in the case
of the Co58 decay experiment gave the value
-0 .003 ±0.005 (F5) instead of the previously
assumed value 0.12.

The small value of < 1 > is explained by the
great difference between the s tructures of the ini-
tial and final nuclei in the decays of Co56 and
Co58, since in these nuclei the neutrons and p r o -
tons are in different shells . Thus on the shell
model and the assumption of isotopic invariance
the matr ix element < 1 > should be equal to zero .

The study of this effect for polarized neutrons
is of the greatest interest . Although the first ex-
periments (F6) were in evident contradiction with
other data on the chirality of the electron, later
improvements eliminated the disagreement.

It follows from Eqs. (8.31) and (8.32) that for
real \ the correlation coefficients for the e lec-
tron and neutrino should be equal; for | X | =1 .2
we have: for the electron - 1.00 (X > 0) or
- 0 . 0 9 (X < 0) , and for the antineutrino +0.09
(X > 0) or +1.00 (X < 0) . Experiment (F7) gave
for these two quantities the values — 0.11 ± 0.02
(electron) and 0.88 ± 0.15 (antineutrino)* which
agrees with the (V, A) interaction and rea l nega-
tive A..

If the rea l character of X (the conservation
of the combined pari ty) is confirmed by experi-
ment, then all the constants for /3 decay a re
known.

If we go back to the four-dimensional way of
writing the Hamiltonian, we get for the (V, A)
interaction

. adj. (11.10)

(A > 0 ), we have the

P^i (1 + —Ys) A'] [iyt (1 + Ya) v]

+ Herm. adj. (U-H)

introduced in the theory of Feynman and Gell-Mann
(Eq. (10.2)).

With the notation
Hamiltonian

H = 2

"Values given at the Geneva conference in July 1958.
These values are somewhat different from those given in re-
ference F7.
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(h) The Correlation between the Electron and the
Polarization of the y Ray

In principle the e-y -polarization correlation
gives the same information as the Wu effect. For
allowed transitions (the only ones we shall con-
sider ) the same picture is obtained. For Co60

( 5 — 4 transit ion) (G6) experiment gives - 0 . 4 1 ±
0.08 as the value of the asymmetry coefficient. The
theoretical value, from Eq. (9.2), is 0.33. The most
complete paper (G5) deals with a number of (I — I)
transi t ions. For the nuclei Na24 (4+ — 4+/3~ ) and
Co58 (2+ — 2+/3+) there is agreement between ex-
periment and theory if we assume that the in ter -
ference te rm is small . In this case the theoret-
ical asymmetry coefficient, by Eq. (9.1), is ±1/3.
Experiment gives for Na24 +0.07± 0.04 and for

24 8Co58 - 0 . 1 4 ±0 .07 . For both Na24 and Co58 the
small value of the interference effect is due to the
smallness of the matr ix element < 1 > . It is in-
terest ing that for the nuclei Sc44, Sc46, and V48

there is considerable interference effect. It is
estimated (G5) that in these decays the ratio of
matr ix elements < 1 > / O > is ~0.45 for Sc46,
~ % for Sc44, and ~ % for V48. This fact is in
agreement with other data which indicate that
after the nucleus Ca40 the f5/2 shell is filled up
in a regular way, so that the decays of all three
of these nuclei occur without change of the num-
ber of nucleons in the shell, which means that the
matr ix element < 1 > is ra ther large. Consid-
erable interference effects a re also observed in
the decays of Mn52 (G6, G7) and Zr95 (G8).

(1) The Conservation of the Combined Parity

In principle the conservation of the combined
parity has perhaps been verified in two ways. One
way consists of measurements of energy-depend-
ences of the effects. When interference t e rms a re
present this makes it possible to determine the
imaginary or rea l par t s of products, expressions
such as Re g v g ^ < 1 > # < ( j > . Since the nuclear
matr ix elements a re rea l , one can thus find the
relative phase of g v and g . . Up to now the a c -
curacy of the measurements is still insufficient
for such an analysis. The second method is a s s o -
ciated with the asymmetry of emission that appears
in the Born approximation when there is violation
of symmetry with respect to the t ime. These ef-
fects a re always masked by the Coulomb in terac-
tion, and to study them one must use light nuclei
and fast electrons, unlike the conditions of the
former method, which is obviously more sensitive
for low-energy electrons and large nuclear charges.
The first experiment made was that with polarized

Co58 (F4). In this experiment measurements were
made of the asymmetry of the emission of the e lec-
tron relative to the plane defined by the direction
1 of polarization of the nucleus and the direction q
of emission of the y - r a y quantum (the angle be -
tween 1 and q was 37°, cf. Sec. 9) . The observed
asymmetry did not exceed the possible effect of
the Coulomb interaction.

In another experiment, with polarized Mn52

(G7), the result was also not in contradiction with
conservation of the combined parity.

As we have already stated (Sec. 4) the con-
servation of the combined parity is incompatible
with the existence of electric dipole moments of
elementary par t ic les .

There have been attempts to detect dipole mo-
ments of neutrons and of ju mesons (H3); the r e -
sults were negative: the values of the electric
dipole moment (in units eK/2mc) were found to
be < 2.5 x 10~9 for the neutron and < 10~2 for the
H meson.

The experiment cleanest in principle was that
of Clark and others (F8), who measured the e-v
correlation for polarized neutrons (the pseudo-
vector effect, cf. Sec. 8) . In this experiment the
authors did not detect any appreciable pseudovec-
tor effect, and thus also did not find nonconserva-
tion of the combined parity. But the accuracy of
these experiments is also still very low. This
effect has been studied with higher accuracy by
Burgy, Krohn, Novey, and others (F9), who found
that the ratio of the constants has a phase differ-
ing from IT by not more than 8°.

An interesting possibility for checking the con-
servation of the combined parity is provided by a
study of the spectrum and polarization of RaE
(Alikhanov and others (E2)). A theoretical anal-
ysis (B64) shows that the parity nonconservation
does not exceed 10 percent. A study of other
effects in RaE would be of much interest .
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