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1. IDEAL AND REAL APPARATUS

1 . Real spectral apparatus a re not, as is well
known, ideal harmonic analyzers of radiation i .e. ,
the distribution of energy over the spectrum ob-
tained with the help of real spectral apparatus dif-
fers from the "ideal" or " t rue" distribution, which
gives the Fourier expansion of the radiation being
investigated. In any real apparatus, the differences
of the observed distribution from the t rue (or as
we shall say, the distortion) resul t from many very
different reasons . The following classification of
the distorting factors by the nature of the d is tor-
tions produced by them is useful. In the first group
we list distortions produced in the investigation of
a spectrum of even comparatively crude s t ruc -
ture , i .e. , with slowly changing brightness, for ex-
ample in the investigation of a continuous spectrum.
Among such distortions a re the change with the
wavelength (a) of the solid angle of the exit pupil
of the filter, (b) of its dispersion, (c) of the angular
and linear magnification, (d) of the sensitivity of the
radiation detector, etc. In the majority of cases ,
these factors lead to a slow change in the scale
along the spectrogram or to a slow change of the
coefficient of proportionality between the i l lumi-
nation (or current ) measured and the t rue spec-
t ra l density of the radiation. We can also include
among these factors parasi t ic exposure of the
spectrogram, brought about by scattering of r ad i -
ation on par ts of the apparatus and leading as a
rule to an addition of some slowly changing quan-
tity to the true distribution. It is usually compar i -
tively easy to take these distortions into consider-
ation and at the present time there are workable
methods for such consideration (see, for example,
references 1,2). In what follows we shall not con-
sider these factors.

In the study of the fine s t ructure of a spectrum
(singlet, doublet, etc, spectral l ines, narrow bands,
and so forth), over the range of which one cannot
take into account distortions of the first group,
there are important distortions of another type,
which we shall place in a second group. These
distortions a re brought about by the fact that even
in monochromatic radiation a rea l spectral appa-

ra tus gives some distribution of energy over a
spectrogram of finite width. The form of this d i s -
tribution and its width a re determined by various
factors: diffraction on the diaphragms of the opti-
cal system of the spectral apparatus, its a b e r r a -
tions, the finite aperture widths, the t ime lag of
the recording instrument, scattering in the light-
sensitive photographic emulsion, etc. It is impor-
tant to emphasize that, independent of its nature,
the finite width of the distribution in a monochro-
matic radiation is common to all rea l spectral
apparatus and determines to a significant degree
the possibilities of investigation of fine details or
s t ructure of a spectrum.

In addition to distortions of a systematic char -
acter , brought about by factors of the first and
second groups, a difference between the " t rue"
and "observed" distributions is also caused by
factors that lead to random e r r o r s of measu re -
ment. We shall put these factors in a third group.
The appearance of random e r r o r s is connected
with the change of parameters of the optical s y s -
tem during the time of the experiment, by fluctu-
ation phenomena in the light detector, and for
similar reasons . In a number of cases , changes
in the brightness of the light source and fluctua-
tions of the liminous flux connected with the co r -
puscular character of. light also lead to random
measurement e r r o r s .

The demarcation for random and systematic
distortions is expedient because they are produced
by physically different causes and consequently r e -
quire for their reduction different (and sometimes
even contradictory) changes in the apparatus. How-
ever , 'the possibilities of the apparatus as a whole
a re limited by factors of the second and the third
groups taken together; in consideration of such
questions as the resolution, accuracy of measu re -
ment of the rea l energy distribution, etc. , it is
necessary to take their joint action into account.

2. Let us now consider a quantitative descr ip -
tion of the' distortions brought about by factors of
the second group. Let the t rue energy distribution
over the spectrum be described by the function
q> (x ) , while the distribution obtained by real ap-
paratus for monochromatic radiation be represented
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FIG. 1. For the derivation of Eq. (1).

by the function a ( x ) , which we shall call the appa-
ra tus function of the spectral equipment. The ob-
served distribution can be plotted in the following
way. Each monochromatic component cp(x)dx
of the t rue radiation is replaced by the apparatus
function, as a resul t of which, at some arb i t ra ry
point x ' , there is created an illumination (or
current ) a ( x ' - x ) cp (x) dx (see Fig. 1). Other
monochromatic components of the true distribution
also make a corresponding contribution to the il lu-
mination at the point x ' , and as a resul t the ob-
served distribution f (x') will be expressed by the
following- integral

f(x')= \ a (x' — x) <p (x) dx. (1)

The function a ( x ) , and consequently the for-
mula (1), take into account distortions both in the
optical and recording par ts of the apparatus. It is
easy to see that each of these par ts can be charac -
ter ized by its own apparatus function a4 (x) and
a2 (x ) . For example, the distribution of the i l lumi-
nation ft (x') in the focal plane of the objective of
the recorder is

L(x') = $ a1(x' — x)<f(x)dx. (2)

It is easy to show that the apparatus function of the
spectral equipment a ( x ) is expressed in t e rms of
aj (x) and a2(x) in the following way:

a(x)= ^ ax (x - y) a2 (y) dy. (3)

Applicability of Eqs. (1) - (3) can be limited by
the following ci rcumstances . In the derivation of
(1) it was assumed that the apparatus function was
the same at different wavelengths. It is easy to
see that the condition for invariance ought to be
satisfied essentially only in a comparatively small
region around the point x ' , where a ( x ' - x ) is
appreciably different from 0.

This condition is satisfied in the overwhelming
number of cases , although in regions of the spec-
trum at great distances from one another, the ap -
paratus function will change appreciably. For ex-

ample, if the apparatus function is almost completely
determined by di£|r-aetion on the aper ture diaphragm,
then its widtffis pr'Oipprtional to the wavelength and
it is doubled in the transition, say, from 5000 A to
10,000A. However, the apparatus function is e s -
sentially different from zero only in a region with
dimensions on the order of 2X/R, where R is the
Rayleigh resolving power, and where it is quite
clear that over the range of such a region we can
neglect the change in the apparatus function. Be-
sides, these conditions a re sometimes not observed,
and it is necessary at the same time to consider
factors of the first and second groups (for example,
see reference 3 ) . In what follows such cases will
not be considered.

It is appropriate to make some remarks of a
terminological character . Several names a r e given
in the l i terature for the function a ( x ) : ins t rumen-
tal contour, apparatus function, distortion function,
etc. In English and American l i terature on infra-
red spectroscopy the t e rm "sli t function" is used.
Everywhere in what follows we shall use the t e rm
"apparatus function* both for all apparatus as a
whole and for the description of part icular dis tor t -
ing factorsf the apparatus function of the slit, the
apparatus function of the diffraction, the apparatus
function of the photo layer, e tc . , where by apparatus
function of any'factor is meant the observed d i s t r i -
bution of illumination (cur ren t ) for monochromatic
radiation and for vanishingly small effects of the
remaining distorting factors.

Up to now we have spoken about the t rue and ob-
served energy distribution over the wavelengths,
consequently identifying the arguments x, x ' , y
with the wavelength. However, by x, y, etc. , we
can also understand the frequencies either of the
coordinate in the density spectrum or the coordi-
nate in the recorded spectrum, obtained by a m i -
crophotometer or by scanning of the spectrum by
some recording device.

This situation is evidently connected with the
fact that we a r e limiting ourselves to a considera-
tion only of distortion factors of the second group,
and of comparatively narrow spectral intervals ,
where the conversion coefficients (type of linear
dispersion) from the wavelength to the coordi-
nates or to the frequencies we can regard as con-
stant.

Finally, we note that the relations of type (1)
have been given quite a definite name in mathe-
matical l i tera ture , that i s , we say that the func-
tion f (x) expressed by Eq. (1) is the convolution
of a ( x ) and <p (x ) . In the physical l i tera ture ,
part icular names a r e sometimes used for the dif-
ferent special cases . For example, in the inves-
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tigation of the distorting action of a recording in-
strument alone, Eq. (1) is called the "general t ime
equation of the spectrometer" in reference 4. For
convolutions of two functions there exists a set of
mathematical theorems; in part icular , convolution
possesses the propert ies of commutation, assoc ia-
tion, and distribution,5 i .e.:

a(x-y)<?{y)dy = ^ <?(x — y) a (y)dy;
—CO

OO

g(x-y)dy ^ a(y-z)<f(z)dz

{y — z)g(z)dz;

a(z-y)[g(y) + <?(y)]dy

OO
= \ja(x-y)g(y)dy+ \a{x-y)<9(y)dy. (4).

—oo —oo
An important property of convolution consists

in the fact that i ts integral is equal to the product
of the integrals of the functions a (x) and cp (x ) :

OO CO
a(x-y)<?{y)dydx = ^ a(z)dz ^ <?(y)dy. (5)

Some other propert ies of the convolution will be
considered below.

It should be borne in mind that for the appropr i -
ate use of the concept of the t rue and the energy
distribution over the spectrum we need a definite
normalization of the apparatus function a (x ) . This
is connected with the dual role of the slit (or s l i t s )
in the spectral apparatus. The finite width of the
slit leads to a distortion of the spectral distribution
and consequently the slit ought to be infinitely n a r -
row in the ideal apparatus. On the other hand, for
an infinitely narrow slit, there is an infinitely small
current in the apparatus and it is not possible to
operate with rea l quantities. This difficulty can be
avoided if it is contrived that as we reduce the width
of the slit we increase the illumination of the spec-
t rum, so that the total energy coming into the appa-
ra tus remains unchanged. Mathematically, this
means that the apparatus function must be normal -
ized over the a rea , for example, in the following
way:*

\ a(x)dx=l. (6)

•For periodic apparatus functions of interference spectro-
scopes, the integration is carried out over a single period.

For such a normalization, the total energy of
the t rue distribution is equal to the total energy of
the observed distribution. Actually, by integrating
(1) over x ' , and taking (5) and (6) into account, we
obtain

= \ ?(y)dy. (7)f(x')dx' = \ a(z)dz

Thus, if we assume (6), then the presence of the
apparatus function leads only to a redistribution of
the energy over the spectrum, i .e. , to a change in
the shape of the line, the band, etc . This makes it
possible to isolate the problem of the distortion of
the shape of the distribution from problems con-
nected with the absolute value of the illumination,
light intensity, etc . For this purpose it suffices
to normalize the functions f (x) and cp (x) in a
manner s imilar to (6):

f(x)dx (8)

We emphasize that the relation (7) is the direct
consequence of the definition of an apparatus func-
tion which does not depend either on the form of
cp (x) or on the nature of a (x ) . Therefore, the
experimental verification of (7), obtained in r e f e r -
ence 6, shows only that the region of integration in
(7), always finite in the experiment, was taken suf-
ficiently large .

Normalization of (6) and (8) makes it possible
to use the theory of 5 -functions* for the desc r ip -
tion of limiting cases — monochromatic radiation
and ideal spectral apparatus. If a (x) = 5 (x)
then:7

f(x')=

i .e. , an instrument whose apparatus function is a
5 -function is an ideal non-distorting device. In the
other limiting case of monochromatic radiation, we
have

a{x' -x)l{x)dx =

•The 8 function is formally defined in the following way
(see, for example, reference 7):

In what follows we shall take for granted the following property
of the function:
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in correspondence with the definition of the appa-
ra tus function.

3. A relation of the type (1) connects the t rue
and observed quantities not only in the case of
spectroscopic measurements but also in many
other regions of physical measurement . The d i s -
tortion of signal presented to the input of an e l ec -
t r ica l l inear system is described by Eq. (1) (see,
for example, reference 8) while, by analogy, the
apparatus function is the response of the system
to an instantaneous pulse. The theory of the phos-
phoroscope and also of other apparatus with time
scanning of rapidly alternating processes can also
be reduced to Eq. (1). The methods of Michelson
for the determination of the s t ructure of spectral
lines and the s t ructure of astronomical objects9

are quantitatively described by Eq. (1). The meth-
ods of x-ray determination of the dimensions of
part ic les a re also described in t e rms of a relation
of the type (1) (see, for example, reference 10).
Equation (1) a r i ses in a number of problems of
astrophysics,1 1 the theory of broadening of spec-
t r a l l ines,1 1 '1 2 and in other regions. The d i s tor -
tions introduced by rea l optical apparatus and
radio telescopes a re described by the two-dimen-
sional analogue of Eq. (1):

a(x' — y, y'— , y)dxdy,

— OO —OO
where (x, y) physically means the distribution
of the measured quantity (intensity, current ,
brightness temperature) for a point source of
radiation.13

In all these and in many other cases we a re
dealing with a l inear integral relation between the
t rue distribution of some physical quantity <p (x)
with an a rb i t ra ry argument x and the exper imen-
tally determined distribution f (x ) , where the
kernel of the equation is character is t ic for the
given equipment or apparatus function a ( x ) . In
spite of the physical diversity of these quantities
and the manifold concrete forms of the function
a (x ) , the statement of the problems arising in
connection with Eq. (1), and the methods of mathe-
matical solution of these problems have a very gen-
era l and sometimes almost identical physical m e a s -
urement in completely different regions. Therefore,
many resul ts obtained in other regions can be u s e -
ful, and a r e sometimes used directly for the spec-
t ra l apparatus. This applies particularly to the
introduction into the theory of rea l apparatus the
so-called spectral approach or the method of Four-
ier analysis, which has , as is well-known, a very
general significance in the theory of l inear e lec-
t r ical systems and in many other cases .

The method of quantitative description of the
distorting action of a rea l spectral instrument set
forth above is not the only one possible. Actually,
we can construct the observed distribution by the
following, more general method. An arb i t ra ry t rue
distribution <p (x) is expanded into a sum of c e r -
tain standard distributions; the distortion of the
standard distribution by the rea l apparatus is taken
into account and then the distorted standard d i s t r i -
butions a r e combined forming the observed d i s -
tribution f ( x ) . In the mathematical technique
which was explained above, we used monochromatic
radiation as a standard distribution; the real ' appa-
ra tus corresponding to this was described by the
apparatus function. Such a form of the standard
distribution has a very clear physical meaning
and historically was first used for the analysis of
the propert ies of real optical and spectral equip-
ment. However, this by no means signifies that it
is impossible to make effective use of other stand-
ard distributions. For example, in the theory of
linear electrical sys tems, the step and harmonic
distributions a r e also employed.

The possibility and usefulness of the spectral
approach for rea l optical apparatus, i .e . , the use
in this case of the harmonic standard distribution
was first explicitly shown by Abbe in his theory
of the formation of the image of non-luminous
objects (see, for example, reference 14). Later ,
L. I. Mandel'shtam15 '16 and Rayleigh17 extended the
concept of Abbe to the case of partially coherent
and luminous objects. Another early application
of the spectral approach in optical measurements
was associated with the investigation of the hyper-
fine s t ructure of spectral l ines, car r ied out by
Michelson on his double-beam interferometer .
Evidently, he was also the first to construct the
harmonic analyzer for the analysis of spec t ro-
scopic data.9 However, widespread recognition
of the spectral approach in the region of interest
to us has come about only during the last 15 — 20
year s in connection with the development of infor-
mation theory and the application of i ts resul ts and
of the mathematical methods for spectral apparatus
(see, for example, references 18 — 22).

The fruitfulness of the spectral approach resul ts
from the following significant property of the h a r -
monic distribution of the intensity, a property, e s -
tablished by L. I. Mandel'shtam.16 If the t rue d i s -
tribution has the form

then the observed distribution will also be harmonic
with the same frequency a; but, generally speak-
ing, with a different amplitude and phase.16 Actu-
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ally, substitution of (9) in (1) quickly demonstrates
that

/ (x) = Acos (uix + p'), (10)

where the quantities A and /?' depend on w and
on the form of the apparatus function. It will be
shown below that this is correc t in the general
case of an arb i t ra ry rea l apparatus. The inverse
is also substantiated, that i s , only a harmonic d i s -
tribution p rese rves its form under the distorting
action of rea l apparatus.

In connection with the general method of the
construction of the observed distribution, let us
represent the t rue distribution in the form of a
superposition of harmonic distributions, i .e. , in
the form of a Fourier integral:23

~ (11)

Introducing this in (1), and changing the order of
integration, we obtain:

where

CM
= V a(x)e-iua dx

(12)

(13)

is the Fourier t ransform of the apparatus function.
It is easily seen from (12) that the Fourier t r a n s -
form of the observed distribution is

CO
= [ f(x)e-i'oxdx, (14)

i .e. , the amplitude of the harmonic component of
the observed distribution is equal to

F(u>) = A(u>)$(t>>). (15)

The meaning of the transformation of Eq. (1) to
Eqs. (12) and (15) is evidently as follows. Each
harmonic component of the t rue distribution with
frequency ui and amplitude $ (_) is changed over
by the rea l apparatus into the same harmonic com-
ponent of the observed distribution with the same
frequency but, in general, a different amplitude
F (CJ ), which is given by Eq. (15). The sum of all
the harmonics distorted by the apparatus gives the
observed distribution (12).

In the case of electr ical systems, a relation is
valid that is analogous to (15). This relation exists
between the amplitude of the harmonic signal at the
input of the system * (UJ), and at its output F (cu ).
The complex function A (w) is known as the phase-
frequency character is t ic of the system. In optical

apparatus generally *(in part icular in spectral ap -
paratus ), this function does not usually have a
simple physical meaning, except for the case when
the apparatus function is determined only by dif-
fraction, aberrat ions and s l i t s . In this case, as can
be shown, A (w) is determined by the amplitude of
the electromagnetic field in the plane of the aper -
ture diaphragm of the system, i .e. , by the first
(according to Abbe) image, and OJ is proportional
to the coordinate in this plane.24 In other cases it
is not possible to find such a physical interpretation.

From the mathematical point of view, Eqs. (1)
and (15) express a general theorem on convolution
and its Fourier t ransform. Thus, the Fourier
transform of the convolution of two functions is the
product of the Fourier t ransforms of these func-
tions. On the basis of the equation for the inver-
sion of a Fourier integral, we can also substantiate
the fact that the Fourier transform of the product
of two functions is the convolution of the Fourier
transform of these functions (see, for example,
reference 23).

Besides the methods of analysis of rea l ins t ru-
ments considered above, another method exists and
is rapidly being advanced. It is based on r ep resen -
tations and the mathematical techniques of informa-
tion theory (see, for example, references 19 — 22,
25 — 27). In the present review, however, this ap -
proach will not be considered.

4. As has been pointed out, the apparatus func-
tion of a rea l spectral instrument is determined by
many and varied factors. Depending on which of
these factors plays the decisive role , the apparatus
function will have one or another form and will have
a varying width. In the most refined instruments,
the apparatus function is almost completely de ter -
mined by diffraction at the aperture.2 8 '2 9 If, as is
usually the case with spectral instruments, the
aper ture is rectangular then, as is well-known:30

(16)

where s0 = Xf/D, X is the wavelength, D is the
width of the cross-sect ion of the beam at the exist
of the dispersing system and f is the focal length
of the objective. The Fourier transform of such
an apparatus function has the form

1 -
2* I

0
(16a)

In a number of instruments there is another
limiting case , namely, the apparatus function in
them is determined only by the widths of the s l i t s ,



250 S. G. R A U T I A N

and the diffraction, aberra t ions , etc . , can be neg-
lected. The apparatus function of such a spectro
graph has the form of a rectangle

0 \x\>-

and its Fourier transform is

sin sw/2
~^/2~ '

(17)

A(w) = - (17a)

The apparatus function of a monochromator,
taking into account only slit distortions, is the
faltung of two rectangular functions:31

0 (18)

where s2 is the exit width and Sj is the width of
the geometric image of the initial sl i t . In par t icu-
lar , for the most important case in pract ice , Sj =
s2 = s, Eq. (18) takes the form

. W - I T L ^ ] . I - K ' . ( 1 9 )

I 0, \x\>s,
that i s , a ( x ) has a tr iangular shape. The Fourier
transform of the functions determined by Eqs. (18)
and (19) can be written without carryout out direct
computations but on the basis of the theorem of the
Fourier transform of the convolution of two func-
tions mentioned above. Inasmuch as (18) is the
convolution of two rectangular apparatus functions,
then its Fourier transform is the product of two
functions of the form of (17a):

s>n*i<°/2 sin s2u)/2 (18a)

For the triangular apparatus function (19) we have

. , , r sin sw/21 a

' L »"»/2 J (19a)

Equations (16) — (19) ra re ly correspond to r e a l -
ity with a sufficient degree of accuracy and, begin-
ning with the researches of Schuster,32 many a t -
tempts were made at a simultaneous account of slit
and diffraction distort ions. If we consider the sl i t
to be self-luminous and assume, consequently, that
the light waves which form the diffraction image of
an infinitely narrow element of the sl i t do not in ter -
fere with the waves reaching the image from neigh-
boring elements, then the apparatus function is the
convolution of the diffraction and slit apparatus
functions. For a spectrograph, for example, we
have

-8/2
s\1)[7i(a —

A(m) =
0

(20)

The complicated character of these equations
makes difficult their practical use and forces us to
look for an approximate representation of the appa-
ratus function with the help of elementary functions.
For the case s » SQ, such approximate expressions
have been found both for the spectrograph33 '34 and
for the monochromator.35 Account of the partial
coherence of illumination of the slit in cases of
practical interest leads only to a comparatively
small correction to the width of the apparatus
function and scarcely changes its form at all.24 '36 '37

The situation is complicated somewhat by the
presence of any appreciable aberrat ions . The few
calculations made in recent t imes2 4 '3 8 '3 9 do not p e r -
mit us to draw any universal conclusions which a r e
valid for a wide class of instruments. Therefore,
one usually makes use of an experimentally m e a s -
ured apparatus function which is given either graph-
ically or in tabular form, or of approximate analy-
tic expressions of suitably simple form. In many
cases , when the diffraction and aberration d is tor -
tions a re not very large, the Gaussian curve is a
suitable approximation for the monochromator:24 '40

a(x) = -
_

y n a

expj 41n

(21)

For spectrographs of small , medium, and some-
t imes also of large dispersion, one uses the follow-
ing approximate representations:4 1 '4 2

a{x)=- (22)

The possibility of such an approximation is con-
nected with the fact that in the spectrographs men-
tioned the apparatus function is determined to a
significant degree by the scattering of light in the
emulsion. The apparatus function of the emulsion
is , according to references 43 —45, well described
by the experimental curve

1 + L T I H T J

. . In 2 f<*(*)=—exp j

T I H T

2 In 2 (23)

which in its "wings" is comparatively close to the
curve of the dispersion form with the same width



R E A L S P E C T R A L A P P A R A T U S 251

FIG. 2. Apparatus functions for various forms of
width a: 1) slit shaped (17); 2) diffraction (16);
3) Gaussian (21); 4) triangular (19); 5) dispersion
(22); 6) exponential (23).

Recently, a more complicated approximate ap -
paratus function has been employed in a number of
works.46"49 This function is obtained with the help
of the Voigt function, which is the convolution of
the dispersion and Gaussian functions

(24)

Graphs a re shown in Fig. 2 for the functions
under consideration. Their Fourier t ransforms
a r e shown in Fig. 3. For ease in comparison, all
the apparatus functions a re given for a single width
and for the same value at the maximum.

2xja

In the investigation of spectra of Rayleigh and
Raman scattering, additional distortions are con-
nected with the non-monochromatic character of
the resultant radiation. The observed shape of
the line is represented in the form of the convolu-
tion of the true line shape and of the observed line
shape of the scattering, which is obtained for mono-
chromatic excitation.50 '33 In a number of cases the
total apparatus function, which takes into account
the distortions just mentioned, virtually coincides
with the observed shape of the excitation line.51 '41

Apparatus functions of interference spec t ro-
scopes (the Fabry-Perot etalon, the Lummer-
Gehreke plate, the Michelson echelon) a r e widely
known (see, for example, references 2, 52, 53),
and we shall not give their expressions here . We

FIG. 3. Fourier transforms of apparatus functions.
The number of each curve corresponds to that of Fig. 2.
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note only that, in view of the relatively small num-
ber of interfering rays in these instruments, we
are sometimes obliged to take into consideration
the periodic character of their apparatus functions,
i .e . , to consider the superposition of the interfer-
ence bands of adjacent o rde r s .

The apparatus function of a recording ins t ru-
ment which is governed by its intert ia and the d i s -
tortions connected with it were considered in ref-
erences 6, 54 — 58. We shall not dwell on these
papers , inasmuch as the fundamental resul ts con-
tained in them were set forth in the review of ref-
erence 4. Moreover, as will be seen from what
follows (see Sec. 3), the recording conditions must
be so chosen that these distortions a re small in
comparison with the distortions brought about by
the apparatus function of the optical part of the in-
strument, and in comparison with the random e r -
r o r s of measurement . Therefore, we shall only
give a few resul ts obtained in reference 58 after
reference 4 was published.

A recording instrument equivalent to an RC
circuit is described, as is well-known, by the fol-
lowing apparatus function and its Fourier t r a n s -
form:

0, z < 0 ;

V * , x>0;

A ..-itan-'DT (25)

where T is a t ime constant and v is the speed
of scanning. For sufficiently slow scanning such
an apparatus function reduces to the displacement
of a spectrum of arbi t rary shape by a quantity
equal to

&x = ut. (26)

The condition of sufficient slowness of scanning
for the case, for example, of a single line means
that VT « <5, where 6 is the observed line width.
If we take into account the shift of the spectrum
just noted, then in slow scanning the relative e r r o r
of recording the illumination at an arb i t ra ry point
in the curve is given by the expression

p = k (vz)2, (26a)

where the coefficient k is determined by the s e c -
ond derivative of the observed distribution at the
point in which we are interested. For example,
for the maximum of a single line of Gaussian shape,
k = 4 In 2/S2 . On the basis of Eqs. (26) and (26a),
we can choose the proper conditions for scanning
the spectrum (see Sec. 3).

5. We now turn to a consideration of the d is tor t -
ing factors of the third kind, i .e. , factors which lead
to the appearance of random e r r o r s of measurement .
A formal generalization of the basic relation (1) of
the theory of rea l instruments , which takes into a c -
count the presence of random e r r o r s of measu re -
ment, evidently consists in the addition to the right
side of Eq. (1) of some random function which we
shall designate by £ (x):2 4

f(x)~ ^ a(x— x')<p(x')dx' (27)

Just as the value of the apparatus function a (x)
was necessary for the description of the total effect
of the distorting factors of the second group, so must
we, for the description of random e r r o r s , give s t a -
t ist ical mean character is t ics of the function | (x ) ,
which naturally depend on the origin of £ (x ) , that
i s , on those conditions that led to the random e r -
r o r s .

We shall not undertake to set forth the well-
known resul ts of the theory of e r r o r s nor give any
exhaustive analysis of e r r o r s for spectroscopic
measurements . This is partially connected with
the fact that these questions have been exhaustively
treated in the l i terature (see, for example, r e fe r -
ences 1, 8, 59 — 66). Another basic reason is the
circumstance that at the present t ime analysis of
Eq. (27) i .e. , the simultaneous consideration of both
systematic and random e r r o r s , has been car r ied
out in the l i terature only for a single type of func-
tion £ (x) , namely, for the case in which the mean
character is t ics of £ (x) do not depend on f ( x ) .
In part icular , such a situation is realized in con-
temporary infrared spectrophotometers, where the
random e r r o r s are almost entirely determined by
fluctuation processes in the radiation detector
(Johnson noise of the voltmeter, photo-resistance,
e tc . ) . In photographic recording, the random e r -
r o r s a re obviously proportional to the intensity on
the photographic plate,1 and the theory outlined be -
low is not applicable to this case .

Under the limitations outlined above, the mean
values of the e r r o r s is equal to zero , so that (6)
and (8) a re left unchanged by normalization. The
random function | (x) can be given, with complete-
ness that is sufficient for our purposes, by the cor -
relation function:8

<K| * - * ' ! ) = «(*)£(*'). (28)

which character izes the interdependence of random
e r r o r s in different parts of the spectrogram. For
x = x' , the correlation function is clearly equal to
the mean square e r r o r
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S2 = A/2. (29)

If the electr ical inertia of the radiation detector
is much less than the inert ia of the recording in-
strument, which is usually the case, then, as can
be shown,8 the correlation function # ( x ) is equal
to

cr2(x)ai(z + x) (30)

That i s , it is expressed by the apparatus function
of the recording instrument. The coefficient c is
proportional to the mean-square e r r o r of record-
ing and can be determined from the condition (29).
We recal l that the function f (x) satisfies the nor-
malization condition (8) and, consequently, for the
transition from | (x) to fluctuations in the record-
ing itself, it is necessary to multiply | (x) by the
integral of the directly recorded observed distr ibu-
tion, and to multiply the mean square combination
of the type (28) by the square of this integral.

We can see from Eq. (30) that the correlation
function is essentially different from zero in an in-
terval of the order of the t ime constant of the r e -
cording equipment. This means that the random
e r r o r s are essentially dependent only at points
which a re distant from each other by intervals of
the order of the time constant, which is physically
evident. At points at greater distances from each
other, the e r r o r s a re virtually statistically inde-
pendent.

In spectral language, the description of random
e r r o r s is given by the Fourier transform of the
correlation function

(31)

usually called the mean spectral density of the in-
tensity of the fluctuations.8 From the formula for
the inversion of the Fourier integral, we have

= - ^ \ (32)

Setting z equal to 0 in this equation, and taking
(29) into account, we obtain:

(33)

This equation has the following interpretation.
In a recording of the energy distribution over the
spectrum, in addition to the "useful signal" [the
first te rm in (27)] with the spectrum A (w ) * (w) ,
there are present fluctuations, the random e r r o r s
| (x ) , which can be represented in the form of a
set of random harmonics, the mean power of which
referred to a unit interval of frequency is ^ ( _ ) .

Consequently, we can consider ip(w)du) as the
mean fluctuation power which takes place in an in-
finitely narrow band of frequencies dw. The mean
square e r r o r of the recording is the sum of all
these harmonic fluctuations.

We shall now give the expression ip (w) in
te rms of the Fourier transform A2 (w) of the
apparatus function of the recording instrument,
i .e. , in t e rms of its frequency character is t ic .
Carrying out the Fourier transformation on the
left and right hand sides of Eq. (30), we obtain
the resul t that

111* / \ 1 A / \ \*> /O/t\
W (ui) = c I A2 (<u) p. (34)

This equation, as also Eq. (30), is valid only
when the inertia of the recording instrument far
exceeds the electr ical inertia of the radiation de-
tector. Such is usually the case for spectroscopic
measurements .

In the opposite case , it is necessary to multiply
the right hand side of (34) by the spectral density
of the fluctuation power in the radiation detector.
By virtue of the normalization (8), we have A2 (0)
= 1. Consequently, c is nothing else than the spec-
t ra l density of the intensity of the fluctuations at
_ = 0:

(35)

2. REDUCTION TO AN IDEAL INSTRUMENT

1. In the analysis of the general equation (27)
it is appropriate to consider the limiting case of
absolutely accurate measurements , which a re de -
scribed by Eq. (1). The present section is devoted
to precisely this case, while Sec. 3 will contain the
consequences which follow from the presence of
random e r r o r s .

Depending on circumstances, various problems
connected with Eq. (1) will be of interest , and in
correspondence with the physical arrangement of
the problem there will be different mathematical
problems. Historically, the first statement of the
problem was the following: -if the t rue distribution
consists of two monochromatic lines which are sep-
arated by a distance d, i.e.,

then for what value of d at the point x = x0 will
there be a minimum of intensity with a definite
amount of contrast? This problem is directly
connected with the resolution problem or the prob-
lem of the determination of the minimum resolved
interval of wavelengths, which will be considered
in Sec. 4, and is a special case of the more general
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FIG. 4. Relation between the width S of the convolution
f(x) of the functions cp(x) and a(x) with the widths y and a
for various forms of and a(x): 1) rectangular (a) and diffrac-
tion (y); 2) slit shaped (a) and dispersion (y); 3) Gaussian (a)
and Gaussian (y); 4) diffraction (a) and dispersion (y);
5) Gaussian (a) and dispersion (y); 6) triangular (a) and dis-
persion (y); 7) dispersion (a) and dispersion (y); 8) exponential
(a) and dispersion (y); 9) Gaussian (o$ and triangular (y).

problem of the calculation of the observed d i s t r i -
bution f ( x ) from the given true distribution cp (x)
and the apparatus function a (x ) . In spite of the
essential simplicity of the mathematical solution
of the problem, which reduces to the calculation
of the integral in (1), such calculations rare ly lead
to simple expressions f (x ) in t e rms of elemen-
tary functions. In the majority of cases , one has
to be satisfied with graphical or numerical resul t s .
Nonetheless, such mater ia l is useful in practical
r e sea rch . Therefore, we have plotted in Fig. 4
graphs giving the relation between the widths of
the t rue and observed distributions for various
forms of cp (x) and a ( x ) . In Fig. 5 there a re
given the dependences of the intensity at the maxi -
mum of the line. These paramete rs a re the most
used for all sor t s of es t imates .

The problem of establishing such distributions
cp (x ) , which a re transmitted with a rea l ins t ru-
ment without distortion or in the form of an iden-
tical distribution, i .e. , distributions for which the
following relation holds, is of the utmost impor-
tance:

f(x) = \<p(z). (36)

The solution of this problem, which was considered
by L. I. MandePshtam,16 consists in the fact that
only a sinusoidal distribution satisfies the condition
(36) in the general case. Actually the t rue d i s t r i -

0.2
FIG. 5. Maximum value of the convolution f (0) of the func-

tions cp(x) and a(x) in dependence on the ratio of the widths
a (8) of the functions a(x) and f(x). The identification of the
curves follows that of Fig. 4.

bution will not be distorted by a rea l instrument
only in that case in which all its harmonic compo-
nents will be diminished in amplitude by the same
amount, that i s , if

A (<o) = const. (37)

The analysis car r ied in Sec. 1 showed that the
Fourier t ransform of the apparatus functions of
rea l spectral instruments do not satisfy this con-
dition and therefore we can only talk about a suffi-
ciently small difference of f ( x ) and cp(x). How-
ever, we can establish a cri terion of smallness only
upon consideration of random e r r o r s of measu re -
ment.*

The most important practical problem of the
theory is the problem of the reduction to an ideal
instrument. By reduction to an ideal instrument
we mean the finding of the t rue distribution for a
given observed distribution f ( x ) and apparatus
function a ( x ) . f The part icular problem of reduc-
tion will be treated in Sees. 2 and 3.

2. As is seen from (1)., for absolutely accurate
measurements , the reduction leads to a solution of
the linear integral equation of first order with a
different kernel a (x—y) and the observed d i s -
tribution f (x) on the left hand side of the equa-

*For certain special forms of cp(x) and a (x), the condition
(36) will be satisfied (see reference 16 and reference 23, pages
389 and 441, respectively). However, such apparatus functions
are not possible in spectral instruments.

tSometimes other terminology is used, for example, "correc-
tion of experimental results for apparatus distortion," "elimina-
tion of the apparatus function," etc.
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tion. Many different methods of solution in this
equation a re described in the l i terature; these will
be described below. Here, for a clarification of
the connection between the various methods, their
advantages and disadvantages, it is appropriate to
adopt the point of view of the spectral approach.

A general solution of the problem of reduction
from the point of view of the spectral approach
consists in the following: each harmonic component
of the observed distribution is reduced, that i s ,
F (u>) is multiplied by l /A (w) , and all the r e -
duced harmonics a r e summed. Formally, this
reduces to a solution of Eq. (15) relative to * (w) ,
and the substitution of the resultant expression in
(II):2 3

(38)A (to)

Equation (38) gives the general solution of Eq.
(16) and, at the same t ime, the general solution of
the problem of reduction for absolutely accurate
measurements . However, in recent t imes , Eq. (38)
has ra re ly been used for direct t reatment of exper-
imental data. This is explained by the fact that the
spectral instrument does not measure F ( w ) but
ra ther the energy distribution f (x ) ,* and direct
use of (38) requires ra ther difficult prel iminary
conversion from f (x ) to F ( O J ) . However, with
the development of machine-computation technol-
ogy, this process will not be difficult and perhaps
the reduction will be car r ied out immediately from
(38). At the present t ime in most cases we attempt
to select for F ( w ) and A ( w ) simple analytic
expressions for which the integral in (38) is com-
puted in explicit form, or so to transform (38) that
it would be possible to car ry out direct operations
on f ( x ) leading to (p ( x ) . In connection with this ,
the different methods of reduction found in the l i t -
e ra ture lead to the following classification: (1) ana-
lytical methods that s tar t out from a given or an
approximate F ( w ) and A(u>) in t e rms of simple
functions which make possible the integration in
(38) in explicit form; (2) methods that reduce the
calculation of (38) to a succession of such opera-
tions on f (x) (differentiation, integration, e tc . ) ,
independent of the form f (x ) ; usually these meth-
ods a re graphical or numerical; (3) finally, there
a re mixed methods; thus there i s , for example, a

*An exception in this relation is the determination of the
structure of a line by means of a double beam interferometer,9

where |F(a>)| coincides with the "visibility curve," and the
treatment of the results consists of the harmonic analysis of
the "visibility curve." It should be noted that in references 67,
68 there are applied several improvements of the method, which
permit us to avoid the well-known indeterminacy which takes
place in the experiments of Michelson.69

variant of the method of successive approximations,
in which the zeroth approximation is the solution
obtained by an analytic method and the subsequent
approximations are graphical or numerical .

F i rs t we shall consider analytic methods. Ap-
proximations of F(co) and A ( w ) by expressions
of the form

e x p f - M H - p X } . (39)

have received widespread use. For example, if

/?((») —exp{-5 |(u|}; 4(u)) = exp{-a | (o |} , (40)

which corresponds to a description of the observed
distribution and the apparatus function in t e rms of
the dispersion curves of the form

then

= exp {— (S —a) |

(41)

(42)

that i s , the true distribution also has a dispersion
form in which its width 2y is equal to the differ-
ence in width of the observed distribution and the
apparatus function 2 y = 2 (6 — a). The approxima-
tions of (40) or (41) are often applied to the inves-
tigation of lines of emission spectra of atoms (see,
for example, reference 70), Rayleigh lines and
Raman scattering of light,33 '41 '51 '71 '72 in x-rays,1 0 '7 3 '7 4

astrophysics,1 1 '7 5 and in other cases . In these r e -
gions, and also in infrared spectroscopy there is
application of another special case of Eq.
(39):4,11,12,33,40,75,76

F(w) = exp{ — 8V/4}; A (w) = exp { - A 2 /4} , (42')

which corresponds to the approximation of the ob-
served distribution and apparatus function by Gaus-
sian curves

exp {- • - x * / a 2 } . (43)
y 71 s y 7c a

In t h i s c a s e t h e t r u e d i s t r i b u t i o n a l s o h a s a G a u s -

s i a n f o r m

« H = exp { - (o2 — a2) <»2/4};

1
 ; e x p { - a : 2 / ( a 2 - a 2 ) } , (44)

and its width is equal to

2y = 2 yl2-a2. (45)

Use of the complete expression (39), that i s ,
the approximation

F (<o) = exp { - Si | o) | — 5>2/4);

A((o) = exp{-a1loo| — a>2/4}, (46)
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leads to a s imilar form for 3> (w) and a r ep resen -
tation of the t rue distribution <p (x) by means of
the Voigt function

(47)

it y 7i (8i
i _ C exp{

-a») i ( z -

In spite of the ra ther rough expression for <p ( x ) ,
t reatment of the experimental data by this method
is comparatively simple, thanks to the excellent
tables of the Voigt function in reference 77. In
references 12, 47 — 49, and 75 methods a re worked
out in detail for the determination of the pa ram-
eters otu a2, 8it 62 from observed quantities;
these parameters a re necessary for the calcula-
tion of cp (x) by (47).

A character is t ic feature of the foregoing meth-
ods and of other methods (see references 51, 74,
78, 79) is the description of the initial curves by
relatively simple expressions that depend on one
or two pa ramete r s , wherein, in the introduction
of the second parameter , the calculations as a
rule become significantly more complicated. It
must be assumed that introduction of still another
parameter would not be appropriate. Moreover,,
in many cases the approximations considered a re
inadequate. In connection with this, more flexible
methods have been developed, directly connected
with the specific form of the observed distribution.

3. Consideration of approximate universal meth-
ods of reduction is properly begun with such a t r a n s -
formation of Eq. (38) that we isolate that par t which
is connected with a non-ideal instrument. The ap -
paratus function of an ideal instrument is a 8 -func-
tion, while its Fourier transform is equal to unity:

(48)

Therefore, it is natural to add and subtract unity
to A"1 (a;) under the integral sign in (38); we then
have

oo

± (49)

The second te rm in this equation is often a r e l a -
tively small correction which vanishes in an ideal
instrument, and the major par t of approximating
methods reduced to some part icular variation of
calculation of this t e rm .

It should be emphasized that A (a;) is charac-
ter is t ic for the function of the given instrument,
while both the energy distribution over the spec-

trum and, consequently, the function F ( w ) can
be extremely varied. In connection with these
methods, it is natural to base the reduction only
on assumptions concerning the propert ies of A (OJ) ,
but not of F (OJ ). Therefore, a majority of the ap -
proximate universal methods of solution of Eq. (1)
obtained with the help of the expansion of A"1 (oi)
- 1 in functional s e r i e s .

Let us first consider an expansion in a power
se r ies

(50)

We substitute this expression in (38) and change
the order of integration and summation:

n co
We can compute the resultant integrals by differen
tiating f ( x ) n t imes:

Consequently,

(51)

Thus, expansion of A"1 ( _ ) - 1 in a power
ser ies corresponds to the expression of <p(x) in
t e rms of f (x) and its derivatives, while the coef-
ficients a re determined only by the apparatus func-
tion. Solution in the form (51) was obtained by Ed-
dington,80 Hardy and Young,81 and other authors4 9 '8 2 '8 3

for certain specific forms of the apparatus func-
tions of spectral instruments. In reference 84 an
attempt was made to correc t the distortions in t ro-
duced by the inertia of the thermal light detector
with the aid of a differentiating network, which is
a customary method for high-frequency correction
in radio-electronics . It is easy to see that this cor-
responds to the calculation of the first t e rm of Eq.
(51).

Equation (51) takes an especially simple form
upon elimination of the apparatus function of a
photographic emulsion. According to (23), only
b2 differs from zero in this case, that is ,4 9

L I 2 ] d (52)
L 2 In 2 J dx* "

Transforming this resul t , we can set up the
problem of finding such an approximate function
for the apparatus function that the expansion (50)
contains two t e rms , i .e. , that all b n = 0 except,
for example, b2 and b4 . If the following expres -
sion is given for A (_ ):

(53)
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then the exact solution of Eq. (1) will have the form

?(*) = / (*) - («! + -4) £ + *\*l g • (54)
The apparatus function which corresponds to (53)
is (see, for example, reference 85)

(55)

A graph of this function, in contrast to (23), has an
extremum at the point x = 0, while the presence
of two parameters enables us to change the form
for " adjustment" in the apparatus function of real
instruments within certain limits.

The insufficiency of the solution of the form (51)
is that calculation of the derivatives according to
the curve measured experimentally, a curve obtained
with a certain error, is actually very difficult and
in essence reduces to the calculation of finite dif-
ferences. Below (Sec. 3), it will be seen that this
difficulty is not accidental but in principle takes
place in any method of reduction which can be shown
to be exact for some form of the apparatus function.

A natural generalization of the derivation of Eq.
(51) is the following. Let A"1 (w) - 1 be expanded
in a certain functional series

4- 1 (ш)-1= ~>пип(<п). (56)
71

Substituting (56) in (49), and changing the order of
summation and integration, we obtain

?(*) = , к± )F(
хш dm. (57)

In analogy to the case considered above, we can say
that the multiplication of the Fourier transform
F (a;) of the function f ( со ) by some functibn
u n (со) means a definite operation on the same
function f(x) . If u n (co)=co n , then this operation
is an n-fold differentiation; if un(co) = exp {-inaco } ,
then the corresponding operation consists in a shift
along the x axis by a distance na, etc. Of course,
multiplication of F (со) by A"1 (со) can also be
regarded as a certain operation. The meaning of
the approximate methods is also that the operator
А"1 (со) - 1 is replaced by a set of operators
u n (со), which define operations that are more suit-
able (in some fashion or other) than the operations
determined by the same operator A"1 (со) - 1.

We shall consider other methods of solution from
this point of view. Historically, the first method to
be developed was that of finite differences. This
method is obtained by the following expansion:

4 - i H - l — S e i s i n 7 1 ™ (58)

Calculating the first term of a series in (57),
со

^ \ s i n ^ F (ш) e~» dm
~ oo

oo

= _L С -L[ei<*+a/2)..>_ei(x-a/2)<u]/^(O)fl[(O

2i
aco

we conclude that multiplication F (со) by 2i sin —

corresponds to the operation of taking the finite dif-

ference of f(x) over the interval a, while multi-

plication by (2i ) n sin11 —— is an n -fold application

of this operation, i.e., the taking of the finite differ-
ence A^f(x) of order n in the interval a (see,
for example, reference 82). Thus we obtain the fol-
lowing expression for cp (x):

?(*)-/(з)+2- (59)

This method was advanced by Rayleigh in 187184

for the reduction of observed spectra for infinitesi-
mally narrow slits of a monochromator; there he
limited himself only to the first non-vanishing cor-
rection. Thereafter, the method was developed by
Paschen and Runge,87'88 who took into consideration
higher approximations. In subsequent investiga-
tions, the case was considered of a monochromator
with different widths of the input and exit slits,8 9

the change of the dispersion over the range of the
width of the slit90 was considered and, finally, a
generalization of the method of finite differences
for other "non-slit" apparatus functions was given.

The method of finite differences is applied at
present to a wide variety of cases. Widespread
use of this method of reduction is accounted for in
a significant degree by the extraordinary simplic-
ity of the calculation of corrections with the aid of
a geometrical construction also given by Rayleigh.
In reference 92, a correction was carried out ac-
cording to coefficients for a parabolic interpolation
of the observed distribution. This method, being
equivalent to the construction of Rayleigh, is sig-
nificantly less useful practically and is rarely
employed.

It is interesting to note that the parameter a
in Eqs. (58) and (59) was never specified and can
be chosen arbitrarily; in particular, for a — 0,
the method of finite differences transforms into
the method of Eddington. In the expressions ob-
tained by Paschen and Runge,87'88 the finite differ-
ence is taken over an interval equal to the width
of the slit s of the monochromator, while Ray-
leigh used an interval equal to s/VF.86 In Sec. 3
we shall see that this is arbitrarily removed in a

91
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reasonable manner only upon calculation of r a n -
dom e r r o r s of measurement. If we represent
A"1 (uj) — 1 in the form of a trigonometric se r ies

,1-1(0,)-1 = 2 ^ - ™ , (60)
n

then the solution of Eq. (1) has the following form:

n

inasmuch as u n (a;) = exp {- iana i} is the "d i s -
placement operator." Thus it is easy to see that
the lat ter two methods a r e quite related, since we

can express- s in n — in t e rms of multiple harmon-
ics , and go from (58) to (60). From the practical
point of view, these methods a r e different, since
they define different operations on the real d i s t r i -
bution f (x) in the calculation of a finite number
of t e rms : in (59) we shall limit ourselves to the
finite difference of a part icular order , say the s e c -
ond, while in (61) we shall limit ourselves to values
of the functions at points that a re a sufficiently
large distance from the point x, for example, ±2a.

We can achieve the solution in the form (61) by
different means. In many researches where such
a form has been advanced, the author s tar ted out
from the approximate substitution of the integral
equation (1) by a system of linear algebraic equa-
tions with the aid of various formulas of approxi-
mate integration; then this system was solved in
some fashion or other.93"95 In a number of papers
use has been made of tr igonometric expansions for
solution of Eq. (1). Such an expression can be ob-
tained if we write

<62>

then, obviously,

ax{x)= ^ a{x-y)a{y)dy;

For each part icular instrument the resolvent
can be calculated beforehand and the reduction
leads to calculation of the integral in (65). Special
integrators9 9 '1 0 2 have been prepared for computa-
tion of correct ions by the method of successive
approximations. These permitted rapid computa-
tion of integrals of the type (66).

In the practical employment of the method of
successive approximations, the following notes
can be useful. Under rea l conditions, the width
of the slit of a spectral apparatus is frequently

(63)

that i s , the expansion (62) corresponds to replacing
the integral (49) by a se r ies or, in practice, by a
sum of a finite number of t e r m s . This method is
usually applied in x-ray research,9 6 '9 7 and, as is
pointed out in reference 98, it can be suitable for
the investigation of spectral lines by the Fabry-
Perot etalon (by virtue of the periodicity of its
apparatus function.)

We shall now consider tjie method of successive
approximations put forth by Berger and van Cit-
tert,99 '100 and frequently applied in the reduction to
an ideal instrument in various cases.7 5 '8 2 '9 2 '9 8 This
method corresponds to an expansion of A"1 (w) - 1 ,
in a geometric progression:8 2 '9 3 '1 0 1

In contrast to the cases considered previously,
the operator is an integral operator. Actually, in
accordance with the theorem given above on the
representation of a function whose Fourier t r a n s -
form is equal to the derivative of the transform of
two other functions, we have, calculating for ex-
ample the first t e rm of the ser ies in (64),

oo
(x)- \a(x-y)i{y)dy.

If we can consider the n first t e rms of the ser ies
(52), then we can represent the solution in the form

= / (* )+ {« / (*) - \Un{x-y)f{y)dy], (65)

where the resolvent Un (x) is expressed in the
following fashion:

= ^ a(x-y)ak_1(y)dy.
(66)

changed in correspondence with the widths of the
lines and bands investigated, and for other reasons .
In order that it not be necessary to recompute the
resolvent for each value of the slit width, succes -
sive elimination of slit and non-slit distortions is
carr ied out. In many cases , we can consider the
former in t e rms of the simpler method of finite
differences of (59). A second remark is connected
with the fact that the roughness with which f (x)
and a (x) a re known gets worse in the higher
approximations, i .e. , for large n. Therefore, as
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the authors of the method point out, the solution
will be satisfactory if we can limit ourselves to
the first approximation.

In addition to the methods discussed above,
there is a se r ies of other methods of solution of
Eq. (1), which, however, have not found application
in spectroscopy. There a re methods consisting of
the simultaneous application of the operators of
displacement and differentiation,82 and also a method
(which is interesting from the mathematical point
of view) of expansion into the orthogonal polyno-
mials of Hermite and Bernoulli.103

We pause on the problem of the choice of zeroth
approximation. As was discussed above, in many
cases we have unity for the zeroth approximation
in the expansion of A"1 (w); in this connection,
the zeroth approximation for the solution of Eq. (1)
is the observed distribution f (x ) . The rational
form of the expansion of A"1 ( OJ ) is fundamentally
determined by the propert ies of the apparatus func-
tion. In a number of cases , however, when the
higher approximations have large values, it can be
shown to be appropriate to take into consideration
the character of the observed distribution. This
can be done in the following way. Let us represent

/(a:)-/o(aO + /i(z); a{x) = ae(x) + a1(z), (67)

where fo(x) and a o ( x ) a re certain functions,
given in analytical form, for which the solution
<po(x) of Eq. (1) is known, and which satisfactor-
ily reproduce the curve of the functions f (x) and
a (x ) , respectively, so that we can consider a t (x)
and f t (x ) to be small . For example, for f o(x)
and a0 (x ) , we can take the Gaussian or the d i s -
persion curve. We get the function <Po(x) as a
zeroth approximation. Substituting (67) in (1), we
get the following equation

(68)

relative to the function cpl (y) = cp (y) -<p0 (y ) .
We can now solve this equation by the methods
considered above; its solution will determine the
correction to the zeroth approximation.

5. In concluding this section, let us note some
special cases of reduction which a re not included
in the scheme set forth above. F i rs t , we have the
interesting reduction method advanced in reference
104 for the case of the Fabry-Perot etalon. The
apparatus function of the Fabry-Perot etalon, as
was shown in reference 104, can be represented
in the form of a superposition of equidistant con-
tours of the dispersion shape with identical inten-
s i t ies :

= 2 (x — m
1 , 1

ot = -=— In—
2% r(69)

It then follows that for the dispersion form of
the t rue distribution, the observed distribution is
also expressed in t e rms of a se r ies of dispersion
curves, s imilar to (69), which can, after some
transformations, lead to the following expression:

11 T\ _ coth i (70)

where y is the width of the t rue distribution. Thus,
determining the parameters 6 and a of the ob-
served distribution and the apparatus function, we
can compute the t rue line width. Equations (69)
and (70) take into consideration the superposition
of neighboring interference maxima and make
more precise the usual method,53 in which the ap-
paratus function of the etalon is approximated only
by a single dispersion curve. We note that the ex-
pansion (70) can also be shown to be useful in the
treatment of the almost periodic s t ructure of ro ta -
tional spectra.

A second special case re la tes to the m e a s u r e -
ment of absorption spectra. Here Eq. (1) connects
the t rue , <p(x), and the observed, f ( x ) , t r a n s -
mission. The character is t ic of the mater ia l is not
the t ransmission but the absorption coefficient,
which is determined according to Bouguer' s law
by the relation

k (x) = — In —— = -j . (71)

where d is the thickness of the absorbing speci-
men and D ( x ) is its optical density. Consequently,
the t rue form of the band absorption, which is de -
termined by the function 1 - <p (x) = 1 - e ~ ^ ( x ) ,
will not dpend on d only for small values of
d k ( x ) . In this connection, some authors have
considered an equation in which the unknown func-
tion is the optical density directly, i.e., the follow-
ing nonlinear integral equation:

Z)obs(z)= - I n

where D o b s (x) = In
f (x )

(72)

is the observed value

of the optical density35 '105 '106. Expansion of the right
hand side of the equation allows us to simplify this
expression to a certain degree, representing
D obs ( x ) i n the form of a power se r ies in the value
of the t rue absorption.35 '107 For example, for the
case of a single absorption line, (72) takes the fol-
lowing form
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where D m is the t rue density at the maximum of
the line, and the coefficients J j , ft,... must be
considered in t e rms of the known apparatus func-
tion of the monochromator and the curve k ( x )
of the t rue absorption coefficient, whose form is
also assumed to be known. If these data change
then, by numerical or graphical integration in (72)
or , what is s impler, use of the se r ies (73), we can
tabulate known values of the absorption and line
widths as functions of the observed function and
band width and the width of the apparatus function.
The resu l t s of detailed calculations of such a type
were given in references 35 and 107 for the case
of a triangle-shaped apparatus function and a d i s -
persion of the form k (x ) . In the general case, in
which the form of the case of the true absorption
coefficient is unknown and the problem consists in
finding this coefficient, use of Eqs. (72) and (73) do
not simplify but greatly complicates the calcula-
tions. Here it is more appropriate to solve Eq. (1)
relative to the t ransmission <p (x) by the univer-
sal methods previously considered, and to t r a n s -
form to the densities by taking the logarithm of
the lat ter .

All the methods described in the present section
refer to the determination of the total t rue dis tr ibu-
tion (p ( x ) . In a number of cases , especially for
macroscopic measurements for analytical purposes,
values of less than complete character is t ics of the
t rue spectrum are sufficient, for example the in te-
gral absorption coefficient, "effective width" of the
line, intensity at the maximum of the line, e tc . Not
going into details, we refer only to references 1,
24, 75, 105, and 107, where the methodology is con-
sidered and such "non-total" reduction is actually
carr ied out.

3. UNIQUENESS AND ACCURACY OF REDUCTION*
TO AN IDEAL INSTRUMENT

1. The problem of the uniqueness of the reduc-
tion is fundamental in the theory of reduction. The
importance of this problem is evident, inasmuch as
only its complete evaluation permits us to judge ob-
jectively the experimental data and to make them
the basis for any conclusions.

In the limiting case of absolutely accurate m e a s -
urements , the problem of the uniqueness of the r e -
duction reduces to a statement of the condition for
the uniqueness of the solution of Eq. (1). It has
been shown by Bracewell and Roberts101 and Torald©

*We remind the reader that the term "reduce" is used here
solely in the sense of "restore" or "bring back" rather than
"contract" or "decrease"-Tr.

di Francia that Eq. (1) does not have a unique solu-
tion if the Fourier transform A (u)) of the apparatus
function a ( x ) vanishes at certain points (or in a
certain region) . Actually, if the function A ( C J )
vanishes at the points w = wj, A (uij) = 0, then
<£(_) is indeterminate, since Eq. (15) is satisfied
not only by the function

but also by functions of the form

a,.S (a. - co.),

(74)

(75)

o>2

27 2 aiei<°iu + i $ df(°) ei"'xdu>-

where aj is an arbi t rary number. If A ( U J ) van-
ishes in a region of frequencies _j < a; < w2, then

®2 H = $i H + y, a,.S (co - to .) + b(o>)s (io);

[ I, to1<u)<u)a ; (76)
\ 0, (»L > cu; 0) > iu2,

where b (w) is an arbi t rary function. Taking the
inverse Fourier t ransform, we obtain the following
equation ( 1 0 1

(77)

Thus, if the Fourier transform $ (w) of the in-
vestigated distribution cp (x) contains harmonics
whose frequencies coincide with the zeroes of the
Fourier transform A (ui) of the apparatus func-
tion, then these harmonics do not affect the ob-
served distribution f ( x ) and, consequently, can
in no way be "recovered" from this distribution.

From this point of view let us consider specific
expressions for the apparatus functions given in
Sec. 2. If, for example, the apparatus function is
determined only by the finiteness of the slit width
[see (17) and (17a)], then its Fourier transform
vanishes at the point

Consequently,

~ ~
.2*. ,2K.

i .e. , q>2 (x) is determined with accuracy up to
periodic functions whose period is equal to the slit
width s and whose mean value is zero . However,
this indeterminacy is not i rremovable in principle.
Actually, changing the width of the slit, we can
change the period of the indeterminate t e rm in
<Pi (x) and thereby determine experimentally i ts
presence or absence. A similar situation holds
for the purely slit apparatus function (18) of the
monochromator.
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We now re turn to the other limiting case, when
the apparatus function is determined only by dif-
fraction. Unusually, we assume that the apparatus
function for a sli t-shaped aperture is given by Eq.
(16), while its Fourier transform is given by (16a).
Consequently, in this case,

2-Klso

— 2TC/SO os

— CO 'liZjSQ
In connection with such a situation, the conclu-

sion was reached in references 101 and 108 that
unique reduction to an ideal instrument is impos-
sible and, consequently, diffraction phenomena in
the apparatus lead to a limitation on its possibil i-
t ies as an instrument for the investigation even of
absolutely precise measurements in the limiting
case .

However, there is an inner contradiction in the
reasoning leading to this conclusion. The fact is
that Eq. (16a) for A (OJ), which is obtained in the
solution of the diffraction problem by the Kirchhoff
method, is an approximate expression which is
suitable only with a definite degree of accuracy.
Consequently, in the investigation of the limiting
case of the complete absence of random e r r o r s of
measurement , Eq. (16a) cannot be used, and must
be replaced by the exact expression. On the other
hand, it was shown in reference 109 that in the
st r ic t analysis of the diffraction problem the exact
Fourier transform of the apparatus function cannot
vanish over the whole frequency range (see also
reference 24). Thus, in contrast to the conclusions
of references 101 and 108, it should be emphasized
that the diffraction phenomena in a rea l apparatus
do not lead to non-unique reduction in the case of
absolutely accurate measurements .

2. However, the position is changed when we
take into account random e r r o r s of measurement
and, accordingly, we go from Eq. (1) to the more
complete expression (27). In these cases , phenom-
ena occur which a r e essentially equivalent to the
non-uniqueness of the reduction. Van de Hulst
noted in particular1 0 3 that as the accuracy of the
reduction method is increased, the reduced d i s t r i -
bution ceases to be "smooth," and "peaks" and
"troughs" connected with the measurement e r r o r s
appear. Van de Hulst calls this phenomenon the
"instability" of the solution, and emphasizes that it
is inherent in the integral equation and is not due
to any particular method of its solution. Unfortu-
nately, confirmation of the instability of the solu-
tion in reference 103 is treated as an empirical
fact to which no explanation or foundation is given.

The nature of the instability of the solution and
the relation of this phenomenon to the uniqueness
of the reduction can easily be clarified in the fol-
lowing manner.24 As was observed above (Sec. 2),
reduction to an ideal instrument is equivalent to
multiplication of the Fourier transform of the ob-
served distribution F ( w ) by A " 1 ^ ) , a quantity
that is the inverse of the Fourier transform of the
apparatus function. But this operation is unavoid-
ably connected with a randomly-fluctuating com-
ponent of F (a)), and each harmonic component of
the noise power * (w) will be multiplied by
| A"1 (u>) |2. Consequently, the e r r o r of the reduced
distribution will be

It is not difficult to see that this integral always
diverges. Actually, in accord with (34), the mean
spectral density of the power of the fluctuation
* (ui) is proportional to the square of the modulus
of the frequency character is t ic A2 (u>) of the r e -
cording instrument. On the other hand, this same
frequency character is t ic acts also on the observed
distribution, i.e., A ( w ) is the product of A 2 (w)
by the Fourier transform of an apparatus function
of optical origin [see (3)]. Denoting the latter quan-
tity by Aj (a;) , we have

(79)

Inasmuch as | Aj (w) | tends to zero upon increase
in w, the integral diverges.

It follows directly from what has been said above
that the question as to what sort of e r r o r Acp2 is to
be expected if the value of the e r r o r Af2 in the ob-
served distribution is given — a problem which is
common to a whole number of physical measu re -
ments — has, in the general case of reduction to
an ideal instrument, an unpleasant answer: the e r -
ro r can be arb i t ra ry . This means, furthermore,
that the presence of random e r r o r s leads essen-
tially to a non-unique reduction. Elimination of
this lack of uniqueness is possible only by gather-
ing additional evidence on the investigated d i s t r i -
bution, evidence obtained in an independent fashion.

In spectroscopic measurements (and in many
other c a se s ) , in addition to the evidence obtained
in experimental data in the form of recordings of
the observed distribution f (x ) , one frequently
assumes additional information on cp (x ) . For
example, the form of the true energy distribution
over the spectrum of cp (x) may be known (single
or double lines of Gaussian shapes — Doppler effect;
a single line of dispersion shape — natural and
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Lorentz damping, e tc . ) . Here it remains to de te r -
mine only the paramete rs of the t rue distribution
(the intensity at the maximum, line width and posi -
tion, distance between lines in the case of several
l ines, e t c . , ) , and not the whole distribution, and
we can speak about the accuracy of the m e a s u r e -
ment of these parameters in the usual sense. Math-
ematically, this is expressed by the fact that for a
previously known form of <p (x) we can determine
the integral in (1), and the reduction will be car r ied
not to a solution of the integral equation, but to a
solution of an algebraic or transcendental equation,
or of a system of equations relating the unknown
paramete rs of the t rue distributions.24 '27

In many cases we shall not assume sufficiently
detailed information on the t rue distribution so as
to impose so rigid an a pr ior i limitation on cp (x)
as the postulation of its shape. However, it is
shown that for "stabilization" of the solution, in
order that the reduction be unique and that we can
speak in the usual sense about the accuracy of
measurement of the reduced quantities, it suffices
to apply to cp (x) significantly less stringent r e -
quirements , namely an assumption on the behavior
of the Fourier t ransform of the t rue distribution
for large values of co.24 Actually, the integral (79)
diverges because of the high frequencies. Conse-
quently, the mean e r r o r of the reduced distribution
will be finite if the high-frequency harmonics of
the observed distribution a re not only not reduced
but on the contrary a r e significantly suppressed in
the process of reduction. But such a reduction will
be approximate and, consequently, will be justified
only when the Fourier t ransform $ (_ ) of the t rue
distribution does not contain high harmonics . Thus
a sufficient condition of the uniqueness of the reduc-
tion is a postulate on the smallness of the ampli-
tudes of the harmonics of the t rue distribution
which lie outside of a certain finite frequency in-
tegral . If such a postulate is taken into account,
then the problem of reduction to an ideal instrument
has a definite meaning: it is necessary to res to re
elements inside of this frequency range and to sup-
p re s s the harmonics outside of it as much as p o s -
sible or , in the limiting case , not to r es to re them.

We shall not consider here the problem of the
physical basis of the conditions just pointed out.
In actual cases these can be very different. For
example, the lower boundary of the width of a
single line and, consequently, the upper boundary
of the width of the Fourier t ransform of the t rue
distribution can be controlled by the Doppler effect.
For our purposes the problem of establishing the
postulate is not significant; of principal value is
the very necessity of such a form of the postulate.

3. The methods of reduction that a r e well known
in the l i tera ture (see Sec. 2) essentially reflect the
described state of affairs, i .e. , in all of them, the
reduction* is of importance only in some limited
frequency interval. For example, the expansion

A"1 (u>) - 1 in powers of sin — , which c o r r e -

sponds to the method of finite differences, is p e r i -
47T

odic with period — , as is not difficult to see .
a

Consequently, for a given value of the parameter
a it is not the whole Fourier transform of the ob-
served distribution that is generally reduced, but
only harmonics with low frequencies.82 '91 The
same considerations apply to the expansion (60).
In the expansion of the solution in a trigonometric
ser ies [see (63)] only a finite number of t e rms N
is used. This is equivalent to the fact that, in cor -
responding expansion (62) for A"1 ( u ) - 1, it is
assumed that b n = 0 for all n > N, that i s , once
again the high frequency harmonics a re not r e -
duced.96 So far as expansions in power ser ies and
the expression of <p (x) in t e rms of f (x ) and
dnf
T""ji a r e concerned, we should note that in practice
use is made of approximate values of the der iva-
t ives, and this is equivalent either to their rep lace-
ment by finite differences,91 or to the bounding of
the limits in the integrals J_nF (w) e i x w du>,84

that i s , in this case also the problem becomes that
of regular reduction in a finite frequency interval.
In this connection we have not included those meth-
ods of reduction in which the apparatus function is
approximated by analytical expressions. For ex-
ample, we can consider the approximation of the
t rue distribution of the apparatus function for Voigt
profiles as the expansion In A (u>) and In F (w)
in powers of u>,47 where the first two t e rms of the
expansion a re used; this is sufficient only at low
frequencies.

For a smooth representation of the considera-
tions given above it is appropriate to introduce a
graphical illustration. In Fig. 6 there a re shown
schematically the graphs of the Fourier t ransforms

FIG. 6
*See footnote on p. 260.



R E A L S P E C T R A L A P P A R A T U S 263

entering into the consideration of the functions:
* ( w ) , A ( w ) , F ( C J ) , A " ' ( w ) - 1 , and * ( _ ) /

| A2 (OJ) |2 . Fur thermore , the given curves c o r r e -
sponding to the f irs t t e rms of the expansion of
A"1 (w) — 1 in the methods of Rayleigh and of suc-

cessive approximations
. a w

sin — and 1 — A (w)
Li

From Fig. 6 it is seen first of all that in the reduc-
tion process the random e r r o r s of measurement
a re increased and that this increase is the more
significant the wider the frequency range in which
the observed distribution is reduced. Consequently,
decrease of systematic apparatus distortions is
achieved at the price of increase of random e r r o r s
in the reduced distribution in comparison with the
observed. Conversely, the tendency to transform
random e r r o r s insignificantly means a bad reduc-
tion and, consequently, a large departure of the
reduced distribution from the t rue , i .e. , large r e -
maining systematic e r r o r s .

From what we have said, the question naturally
a r i ses as to the estimate of such an "optimal"
method of reduction, by which we would minimize
the total mean-square deviation P 2 of the reduced
distribution from the t rue , made up of the remain-
ing systematic e r r o r s and the random e r r o r s a r i s -
ing in the reduction process . It is not difficult to
write down this condition mathematically. If we
denote by G (w) the approximate expression for
the Fourier t ransform of the apparatus function,
that which is obtained in the reduction, then P 2

has the form24

p2 =

\ [ l - (80)

The first t e rm of this expression is the random
e r r o r , the second — the remaining systematic
e r r o r . Consequently, estimating the optimal
method of reduction means such a selection of the
function G (w) for which the expression (80) has
a minimal value. In this case, as is seen from (80),
$ ( w ) , A ( w ) and '£(w) must be fixed, i .e. , the
object of investigation and the instrument must be
fixed.

Another statement of the problem is possible.
We can fix $ (w) and the method of reduction,
i .e. , the form of G (w), and concern ourselves
with the choice of the parameters of the instrument.
Such an arrangement of the problem is of practical
importance for the following reasons . In the first
place, different approximation methods of reduction,
as will be seen, lead to approximately identical va l -
ues of P 2 . On the other hand, in spectral ins t ru-

ments there a re parameters which have a signifi-
cant effect both on the apparatus function and on
the value of the random e r r o r s of measurement ,
and at the same time can easily be varied by the
experiment (widths of the s l i t s , ra te of scanning,
t ime constant, thickness of the absorption layer
e tc . ) . Therefore it is very important to know for
what values of these parameters we can carry out
measurements in order that P 2 would be minimal.

By way of an illustration, let us consider (fol-
lowing reference 58) a choice of a slit width s of
the monochromator, a t ime constant T, and a scan-
ning ra te v in the measurement of the intensity at
the maximum of a single line. For simplicity, we
assume that the reduction to the ideal instrument
is not car r ied out [ i .e . , G (w) = 1 ] , that the a p -
paratus function is determined only by the sl i ts of
the monochromator, and that s is much smaller
than the width of the line. For a recording ins t ru-
ment which is equivalent to an RC network, and for
slow scanning P 2 is expressed in the following
way:

The first t e rm in (81) describes the random e r r o r s
of measurement , while the second gives the sys te -
matic e r r o r connected with the apparatus functions
of the monochromator and the recording instrument.
The coefficients a, b, and c a re determined by
the shape, width, and brightness of the line and also
by the propert ies of the radiation detector. For a
line of Gaussian shape of width y and for approxi-
mation of the apparatus function by a Gaussian
curve of width a = s [see (21)] it is shown that

<z=l/2-f
2; 6 = (82)

The optimal values s = s m and r = r m , which
make P 2 a minimum, a re found from the condi-
tions 9P/9s = 0, 3 P / 3 T = 0, whence we easily ob-
tain the following expressions for s m , T m , and
p m i n :

(83)

On the right-hand sides of these expressions we
substitute the values of a and b from (82) for
functions of Gaussian shape.

As is easily seen from (81), the minimum of p
in the parameter v is obtained for v = 0, since
the e r r o r decreases monotonically with decrease
of the scanning ra te . Consequently, the choice of
v is determined only by the general t ime m e a s -
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urement T and the frequency interval scanned.
Inasmuch as this interval is obviously proportional
to y, then the ratio y /v is proportional to T and
in the same fashion turns out to be a given quantity
since T must be fixed for each part icular case .
Consequently, P m i n has the form

(84)

where P o is a coefficient of proportionality which
depends neither on the character is t ics of the in-
strument nor on the width and brightness of the
line. Thus P m u l depends on the rat io of "signal
to noise" M = y 2 /c for s = y T = 1 and on the
general time of measurement T, that i s , only on
such character is t ics of the object, apparatus and
other conditions of the experiment on which, s t a r t -
ing out from the same general considerations, we
usually expect the e r r o r s to depend for a reason-
able choice of the conditions of measurement.

From (81) and (83) we easily obtain the fact
that, under optical conditions, the systematic
e r r o r bv2r2 produced by the inertia of the r e -
cording instrument is four t imes smaller than
the distortion due to the apparatus function of the
monochromator. This important consequence is
directly connected with the fact that random e r r o r s
a r e proportional to l/s2^fr , that i s , that the ex-
ponent for s is four t imes larger than the expo-
nent for T. Fur thermore , inasmuch as s m and
Pmin a r e very weakly dependent on the scanning
ra te (as v1 '9 and v2 '8 , respectively) then it b e -
comes clear that the choice of T is not very c r i t -
ical, that i s , the difference of r and TV from
their optimal values does not lead to any mater ia l
increase in the e r r o r . From this it follows that
in practical measurements and for the analysis
of more complicated cases than the example con-
sidered (application of an exact or approximate
reduction e tc . , ) , we can assume that the inert ia
distortions must be negligibly small in comparison
with the systematic e r r o r s from the apparatus
function from the monochromator and we can
consider r as fixed.

The recommendations given above rare ly con-
tradict the resul ts obtained in the researches of
references 110 to 112, where such a problem of
the choice of the parameters of the arrangement
is discussed. This is connected with two c i rcum-
stances. In the first place, e r r o r s due to apparatus
function of the monochromator are not considered
in references 110 and 111. In the second place,
the paramete rs of the instrument a re chosen in
references 110 to 112 by start ing from a com-
pletely different cri terion, and this is very i m -

portant. In references 110 and 111, for example,
the requirement for minimizing the total mean-
square e r r o r does not apply here , and the random
and systematic e r r o r values a r e given independ-
ently. The operating conditions determined by
this cri terion a re of course not optimal from the
point of view of minimum P .

The scheme given above for the selection of
the parameters of the instrument can in principle
be applied in very different cases . At the present
t ime such calculations a r e still very infrequent;
however, they have already permitted us to make
a number of important conclusions.

The question of the choice of slit widths of the
monochromator and the thickness of the absorbing
layer for the reduction of optical density at the
maximum of a single line of Gaussian form has
already been considered in references 56 and 76.*
It was shown that the values of these parameters
ought to be different in the employment of differ-
ent methods of reduction. Fur thermore , it turned
out that for a typical infrared instrument, use of
the first correction in the Rayleigh method of r e -
duction (59) guarantees 1.5 — 2 t imes less accuracy
in comparison with those cases in which the form
of the line is known beforehand and the reduction
completely eliminates the systematic e r r o r s .

The latter resul t permits us to make an impor-
tant comparison of the various methods of reduc-
tion. Actually, if the first correction in the Ray-
leigh method leads to practically the same resul t
as the "exact" method of reduction, then we must
assume that all approximate methods will give
(approximately) the same resul t . Thus random
e r r o r s of measurement and their t ransforms in
the reduction process smooth out differences in
accuracy between the various reduction methods,
and the choice of the reduction method should be
based only on simplicity and ease of application.

It appears that this conclusion holds only for
the correct choice of the sl i t width and for the
other parameters of the system. Fur thermore ,
it is obtained for a definite apparatus and form
of the distribution under consideration. There -
fore the application of the above resul ts to other
cases requires additional justification.

A resume of the present paragraph can be made
in the following way. In the limiting case of abso-
lutely accurate measurements , reduction to an ideal
spectral instrument is unique, and in this sense,
the presence of only the apparatus function for the
real instrument does not lead to any limitation of

*The time constant is chosen fixed and the inertial distor-
tion is not considered. By virtue of the reasons set forth above,
this is entirely correct.
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its possibil i t ies. Actually, random e r r o r s a re
finite and this leads to the impossibility of a unique
calculation of the t rue distribution from the ob-
served distribution f ( x ) . Pract ical ly, this non-
uniqueness manifests itself in the fact that as the
accuracy of the method of solution of Eq. (27) in
the reduced distribution increases , there appears
a certain false s t ructure . To establish the non-
reality of this s t ructure , there is a paramount
need of additional information on the distribution
f (x) under consideration, a distribution which is
obtained independently of the method of the given
experiment. In many cases , the additional infor-
mation on cp (x) permits us to consider the r e -
duction to be unique and in the usual sense of the
word permits us to speak about the e r r o r of com-
putation of the t rue distribution.

It is important to emphasize that, with the ex-
ception of those cases in which the form of the true
distribution is reliably known and in which we deal
only with measurements of a finite number of pa-
r a m e t e r s — in all remaining cases , the presence
of random e r r o r s of measurements leads to a s i tu-
ation in which it is impossible to establish the
problem of obtaining data completely independent
of the apparatus, and we can only speak of the e s -
timation of such a method of reduction and such
conditions of measurement in which the difference
between the t rue and the reduced distributions is
minimal (for example, in the sense of the mean-
square deviation).

4. THE PROBLEM OF RESOLUTION

1. The resolution cri terion given by Rayleigh30

and the concept of the resolving power of a spectral
instrument which was introduced by him were first
applied only to the visual observation of two mono-
chromatic lines in instruments whose apparatus
function was determined only by the diffraction on
the rectangular aperture of the diaphragm, that i s ,

_1_ I" sin 7TX/SQ

S0 |_ 7TX/SO

as is well known, reduces to the following; two
monochromatic lines of different intensity a re con-
sidered resolved if the distance d between them
is not less than SQ = Ai/D. In this case the maxi -
mum of the intensity in the diffraction curve of one
line coincides with the first minimum in the diffrac-
tion curve of the other line, while the intensity of
the middle of the resulting curve is equal to 8/7^
3 0.81 of the maximum intensity.

Subsequently, there appeared a large number
of papers in which the problem was considered of
the development and the generalization of the Ray-

it has the form This cri terion,

leigh concept of resolving power. Generalizations
applied f irs t of all to the application of the reso lu-
tion cri terion to instruments whose apparatus func-
tion differed from the diffraction one. Schuster32 '113

considered the case of a spectroscope in which the
apparatus function was determined by the diffrac-
tion as a finite width of the sli t . As a cri terion of
resolution he kept the condition that the intensity
at the middle point of the total distribution of the
two lines should be 81% of the maximum intensity.

For the rat io A/AA, where AX is the minimal
resolved interval of wavelengths for finite slit of
the width, Schuster introduced the special name of
"purity" of the spectrum. However, this terminol-
ogy is ra re ly employed, and most authors apply the
te rm resolving power both in the case considered
above and in other cases when various forms of
the apparatus function a re employed. A similar
cri ter ion of resolution was applied for the charac -
ter i s t ics of the Fabry-Perot etaion,2 '53 '114 which
have the apparatus function (69). The small dif-
ference, which consists in the fact that the value
of the "gap" in the total distribution from two mono-
chromatic lines is taken here to be 20%, has no
practical significance.

Further development of the resolution cri terion
is connected with the fact that the eyes, the photo-
graphic plate and other radiation detectors a re
capable of observing much smaller changes in the
intensity than 20%, i.e., the change which is applied
on the basis of the Rayleigh criterion (see, for ex-
ample, reference 115). In connection with this fact,
several visual resolving cr i te r ia have been sug-
gested based on various p remises . The simplest
development is the postulation of a value of the gap
different from 20%, for example 5%. Such a c r i t e -
rion was considered in reference 116 in an appli-
cation to an apparatus function of the dispersion
form. In references 52 and 117, the minimum r e -
solving interval of wavelengths was assumed to be
equal to the width of the apparatus function. For
such a cri terion, in the case of various shapes of
the apparatus function, the value of the "gap" turns
out to be different. For example, for the d i sper -
sion shape it is equal to 17%, that is , it differs in-
significantly from the Rayleigh cri terion, while for
a diffraction distribution it has a gap of 2%, and in
correspondence with this the resolving power for
such a cri terion is 13% larger than the Rayleigh
value. We recal l , finally, the cr i ter ion of Spar-
row,118 who considered that two lines a re at the
limit of resolution if the distance between them
is such that the second derivative at the central
point of the total distribution of the intensity of the
two lines vanishes, that is , that the gap between
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Apparatus function

Diffraction*
Triangular .
Gaussian. .
Dispersion.

AAR.
a

1.13
1.20
1.13
1.05

AX

1.02
1.05
0.99
0.80

AXS

0.94
1.00**
0.85
0.58

•The quantities a, AAR, AXS in the calculation of dif-
fraction and finite slits were considered in references 24,
25, 32, 36, 118, and 121.

**For a triangular apparatus function, the second deriva-
tive at the central point of the total distribution is always
equal to zero. In the table, in line with the basic idea of
Sparrow, that value of AX$ is given for which the gap only
just vanishes, although in reference 25 the value of 1.156 a
is given.

the lines only just vanishes. This cri terion was
applied for various shapes of the apparatus func-
tion118~120>2S and, as an experimental investigation
has shown,118 very closely corresponds to visual
determination of the presence of a gap between
the l ines. A comparison is given in the table of
the resolving cr i te r ia stated above for the forms
of the apparatus function met most frequently in
pract ice . Here a is the width of the apparatus
function and AX.R, AX.g, and AX,5 denote the
minimal resolving intervals of wavelengths for
the Rayleigh cri terion, the Sparrow cri terion and
a cri ter ion in which the minimum value of the gap
is set equal to 5% of the maximum intensity, r e -
spectively.

In a number of researches there have been con-
sidered the dependence of the value of the gap on
such factors as the difference in the intensity of
two monochromatic lines,1 1 8 the finiteness of the
width of the line,25 the level of "background" of
constant intensity, etc. In these cases also, the
authors call the rat io A./AX. the resolving power,
where AX. is the minimum distance between still
resolved l ines. Consideration of these c i rcum-
stances is necessary in the analysis of concrete
real instruments, the experimental determination
of their limiting character is t ics , and in other p rob-
lems. However, analysis in these cases reduces
to the establishment of those cr i te r ia of resolution
which were considered above and do not lead in
principle to new ideas on the resolution problem.

It must be remarked that inclusion of the r a n -
dom e r r o r s of measurement in the resolution prob-
lem is very important on the one hand, but on the
other presents well known difficulties. Variation
of the depth of the gap for a constant apparatus
function cannot be considered a completely s a t i s -
factory rece iver . The complexity of the problem

lies in the fact that the value of the random e r r o r s
of measurement and the width of the apparatus
function a re not independent. For example, in an
expansion of the slit, the width of the line increase
and the value of the gap quickly decreases . How-
ever, the e r r o r s of measurement decrease s imul-
taneously and, consequently, a gap of given depth
is recorded with greater reliability. Therefore,
in the determination of the resolved intervals of
wavelengths, it is necessary to take into consider-
ation simultaneously both the random e r r o r s and
the apparatus function and their mutual interaction.
In application to visual methods of application and
for diffraction slit apparatus function, the analysis
of this important factor has been car r ied out qual-
itatively by Schuster32 '113 and van Cittert.36 For
photoelectric methods of recording, such an analy-
sis is generally lacking at the present t ime. The
first step in this direction was taken in reference
122 for the case of infrared absorption spectra .
Those values of the absorption and width of the
slits of the monochromator were computed for
which the ratio of the depth of the gap to the mean
square of measurement had a maximum value. In
this case a triangular shape was taken for the ap -
paratus function and a dispersion shape for the
absorption coefficient. Calculations lead to a
somewhat unexpected result . That i s , the width
of the slit, s m , for which the best resolution
(in the sense given above) takes place is almost
entirely determined by the distance between the
lines d from which it is shown that

for lines of practically any width.
2. The character is t ic feature of all the r e -

searches considered above on the resolving power
of spectral instruments is that in the examination
of the energy distribution of the two lines and in
the comparison of this distribution with that of a
single, strictly monochromatic, line, i.e., with an
apparatus function, all attention was devoted to the
single item of obtaining a distribution and to a s c e r -
taining whether it has a maximum or minimum.
Such an approach is quite natural: if the apparatus
function is a maximum at the middle point and the
observed distribution is the minimum, then it is
clear that this distribution is brought about by non-
monochromatic radiation. It is not difficult to see,
however, that the inverse confirmation is not valid.
In other words, such an approach assumes in p r in -
ciple that on the basis of the resolution cri terion
a certain qualitative difference should be established
between the observed distribution and the apparatus
function, a difference that is noted at f irst glance,
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without quantitative measurements of the entire en-
ergy distribution of the spectrum. Moreover, at
all points of the curve there will be some quanti-
tative difference which can be measured and used
for establishing the spectral composftion of the
radiation under consideration.123 Thus, the r e s o -
lution cr i ter ia considered above a re slanted p r i -
mari ly to qualitative observations and the magni-
tudes of the resolving powers obtained on the basis
of such c r i te r ia only determine the order of mag-
nitude of the distance between the lines which can
be achieved for a given real instrument.

As an illustration, let us consider the following
example. The observed distribution from two mon-
ochromatic lines for an absolutely accurate m e a s -
urement has the form

f1(x)=-- (81')

For the sake of simplicity, we shall assume that
the apparatus function is known with absolute a c -
curacy, while the observed distribution f ( x ) from
two monochromatic lines is measured with some
random roughness. This rea l recording is natu-
rally approximated by the function f i (x) and the
problem consequently reduces to the determination
of the four parameters Ij, Xj, I2, and x2. We
shall make a choice of these parameters by the
method of least squares , i .e. , we shall consider as
the most probable values of I1; xt, I2, x2, those
values for which the total mean square deviation
of the rea l signal f (x) from the approximating
function ft (x) has a minimum value,* that is ,

From the point of view of the resolution prob-
lem there is interest in the e r r o r of measurement
of the distance b = x2 - x t between the lines as a
function of the value of this distance and width of
the apparatus function. Simple calculations c a r -

ried out under the assumption of the Gaussian
form of the apparatus function [see (21)] and equal
intensities of the lines (I t = I2), lead to the follow-
ing expression for the mean square e r r o r in the
determination of d:

- exp

where Axf is the mean square e r r o r of the de te r -
mination of the position of the maximum of a single
line. If d » a, i .e., the lines are not super im-
posed, then, as is to be expected, Ad2 = 2Ax2. If
d « a, then (82') takes the form

<83'>
That i s , the e r r o r increases rapidly in the case of
small distances between the lines in comparison
with the width of the apparatus function. The gen-
era l form of the curve V Ad2/2Ax2 as a function
of -/Ad2 is given in Fig. 7. It can be seen that
the sharp increase of V Ad2 begins only for d <
a / 2 , when there is no sort of "gap" at the center
point of the observed distribution fj (x) (Fig. 8).

This smallest distance between lines, d m m ,
which can still be measured in the case under con-
sideration, is obtained from the condition VAd2 =
d m m . Employing Eq. (83'), we obtain:

j2
"min 2 In 2 U

(84')

For example, if the e r r o r in the determination of
the position of a single line amounts to one tenth
of the width of the apparatus function, that i s ,
VAx|7a!2 = yi()j then d m i n = 0.29 a, ' which is 3
or 4 t imes smaller than the smallest resolved

f.fx)

•Similar consideration for the case of a single line was
given in references 24 and 26.

FIG. 8. Total distribution for the intensity for two mono-
chromatic lines of equal intensity and for Gaussian shape of
the apparatus function of width a: 1) d = 0; 2) d = 0.5a;
3) d = 0.72a; 4) d = 0.96a; 5) d = 1.20a.
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interval determined by different cr i ter ia of r e s o -
lution (see the foregoing table). If the accuracy
of measurement is high, then the difference b e -
tween d m m and a will be still l a rger .

The example considered shows clearly that with
quantitative measurements and subsequent mathe-
matical treatment of the observed distribution the
possibilities of rea l instruments a re not limited
by what the Rayleigh cr i ter ion (or any other sort
of cri terion based on the analysis of the behavior
of the total distribution at a single points) gives,
but can be more fruitful if one takes into consider-
ation the difference between f ( x ) and a ( x ) at
all points of the curve.

The non-correspondence of the Rayleigh con-
cept of resolving power (and its modifications
considered above) to experiments with quantita-
tive measurements has lead in recent years to a
wide generalization of the concept of resolution,
which is directly connected with the application
in optical measurements of the modulation method.
We have in mind the researches of G. S. Gorelik
and his colleagues124"126 on the improvement of
accuracy of measurement in a different type of
interference experiments. His general considera-
tions can be applied without difficulty to spec t ro-
scopic measurements.1 2*

If in the papers referred to, the problem of r e s -
olution appears as a problem of finding in an ob-
served distribution some feature of the t rue d i s -
tribution — the extension of the light source, spl i t -
ting of a spectral line when a magnetic field is
applied to the light source, number of l ines, etc.
In other words, by resolving ability is meant the
capacity to note, on a rea l instrument, a differ-
ence between the observed distribution and the
apparatus function which a r i ses as a resul t of the
given difference of the true distributions from a
6 -function.

It should first of all be noted that in such an
approach we a re not talking about any qualitative
indication such as the absence of a minimum, but
about a quantitative difference of two distributions.
For example, if two spectral lines a r e considered,
then the limit of resolution corresponds to such a
distance between them that the departure of the
observed distribution from the" apparatus function
is equal, say, to the mean square e r r o r of m e a s -
urement.

Fur thermore , by the problem of resolution is
understood not only the possibility of establishing
the presence of two monochromatic lines of equal
intensity, but also many other problems connected
with finding in an observed distribution some indi-
cation of the true distribution. In such an approach,

it is especially clear that quantities of the type of
the resolving power a re not character is t ics of the
apparatus only but depend essentially on the d i s t r i -
bution being measured and determine the sensit iv-
ity of the instrument only in the measurement of a
given distribution, giving very little information as
to what the situation would be in another case.

In the approach to the resolution problem that
we have made, there is a special case of the gen-
era l problem of reduction to a rea l instrument con-
sidered in Sees. 2 and 3.* Actually, for known form
of the t rue distribution <p (x) , the reduction r e -
duces to the calculation of parameters charac te r -
izing q> (x) (the width of the line, its intensity,
distance between lines, e t c . ) , starting out from
the observed distribution f (x ) . As a resul t of
the crudeness of measurement, the parameters
of the t rue distribution a re made known with some
e r r o r ; this e r r o r is the greater the wider the aper -
ture function. For sufficiently gross measu re -
ments, or a sufficiently small value of the pa r am-
eter of interest to us, the e r ro r of its determina-
tion is shown to be equal to the magnitude itself.
This value of the measured parameter also char -
acter izes the resolving ability of a rea l instrument
in the investigation of a distribution of a given type.
Thus the magnitude of the resolving power (in the
sense considered) character izes the conditions of
the experiment (the apparatus and the object m e a s -
ured ) in which the reduction to an ideal instrument
no longer has meaning.

The connection shown between the problems of
reduction and resolution permit us to explain one
very widespread misunderstanding which amounts,
roughly speaking, to the following. It is frequently
desirable to make use of the value of the resolving
power as an explanation of the limiting possibilities
of an instrument in the case of differences of the
true distributions of different and, generally speak-
ing, unknown shapes. For example, one wants to
know for what conditions one can distinguish on the
given real instrument a set of three neighboring
lines from a single line of finite width, and so forth.

Such an arrangement of the problem means in
essence the use of the concept of the resolving
power beyond the limits of its applicability. Actu-
ally it was shown in Sec. 3 that for finite e r r o r s of
measurement the possibility of reduction to an ideal
instrument depends essentially on additional infor-
mation about the true distribution which was obtained
independently of the given experimental procedures .
It was explained in part icular that only for a p r e -
viously known form of the t rue distribution could

•The example considered at the beginning of the present
section is an excellent illustration of this.
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one completely eliminate systematic distortions
connected with the apparatus functions. In the case
of the absence of such detailed information, reduc-
tion does not permit us to obtain data completely
independent of the apparatus.

Everything pointed out of concerning reduction
refers (perhaps with still greater f i rmness) also
to the limiting possibilities of reduction and conse-
quently to the resolving power. The concept of
resolution under consideration re la tes exclusively
to that case in which the form of the true dis tr ibu-
tion is known beforehand, and where we are speak-
ing only about measurements of its pa ramete r s .
In the absence of such information, this concept
apparently loses its previous meaning and must
be redetermined in a corresponding fashion. This
redetermination will be different for information
of a different type. At the present t ime, however,
this question has not been discussed in the l i t e ra -
tu re .

3. In conclusion, let us consider briefly several
possibilities which the spectral approach opens up
in the resolution problem. F i r s t of all, we have in
mind the research of D. S. Rozhdestvenskii,115 in
which, for analysis of the quality of spectral ins t ru-
ments , use is made of a harmonic energy distr ibu-
tion over the spectrum. The advantage of this
method lies in the fact that it is comparatively
easy experimentally to obtain the harmonic d i s t r i -
bution by means of a combining of the spectral in-
strument with a double ray interferometer. In this
case, without consideration of the effect of d is tor-
tion factors of the first group (see Sec. 1), a point
harmonic distribution exis ts . At the same time,
employment of linear spectra for this purpose f r e -

quently becomes complicated (especially for in-
struments of comparatively high resolving power)
by virtue of the presence of hyperfine line s t ruc -
ture and other factors.

Essentially the Rozhdestvenskii method con-
sis ts of following the amplitude distribution while
increasing frequency of the harmonic distribution
(in practice, while increasing the difference of
path between the rays of the interferometer) until
frequencies a re reached when the "visibility" of
the interference picture vanishes. In other words,
making use of the terminology given here, we are
dealing with the discovery of the zeroes of the
Fourier transform A (w) of the apparatus func-
tion. For example, if the apparatus function is
determined by diffraction then, in accordance with
Eq. (16a), A ( U J ) = 0 for | _ | > 27r/so, that i s ,
beginning with the period of the harmonic d i s t r i -
bution equal to the Rayleigh minimum resolution
distance. If A (w) has no zeroes , then they ex-
tend to those frequencies in which the visibility
becomes equal to the e r r o r s of measurement.

The principle set forth as the basis of the
Rozhdestvenskii method is employed in many widely
different cases . A. I. Salishchev has car r ied out
several measurements by the Rozhdestvenskii
method with the purpose of explaining the effects
of defects of preparation of the instrument on its
resolving power.127 Rozhdestvenskii himself has
shown127 that his method coincides in principle with
the well-known method of Michelson9 of measu re -
ment of the angular dimensions" of s t a r s . In an
interesting paper128 on the foundation of the same
principle, the question was considered of the m e a s -
urement of spectral width of slits and the reso lv-
ing power of infrared spect rometers . The univer-
sally adopted method of measurement of resolving
power of photo objectives by means of periodic pat-
te rns (see, for example reference 129) is also
based on the method of Rozhdestvenskii. This is
connected with the fact that the effect of the appa-
ratus function is primari ly to decrease the ampli-
tudes of the higher harmonics of the Fourier t r a n s -
form of the t ransmission function of the pat terns.
Therefore an arbi t rary periodic pattern, with an
arbi t rary distribution of t ransmission over the
range of the period, will give in practice a h a r -
monic observed distribution of intensity at frequen-
cies close to the limit of resolution, while the s e c -
ond and higher harmonic play virtually no role at
all . Finally, it can be shown by the work of r e fe r -
ence 130 (in which the resolving power of the photo-
graphic emulsion was determined directly by means
of a harmonic distribution of illumination obtained
by interference from two point sources ) .
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An interesting application of the spectral ap -
proach to the problem of the resolution of two lines
was given by G. G. Pet rash . It is not difficult to
show that the Fourier transform F (w) of the ob-
served distribution of two lines of identical inten-
sity is

F (u>) = Fa(w) cos md/2, (85)

where Fo (ui) is the Fourier transform of the d i s -
tribution of a single line, d is the distance between
the l ines. As is easy to see, F (w) vanishes at the
points (Fig. 9).

.—=(2A —1)- * = i . 2 . (86)

while in the vicinity of the l ines, the values —^
"move away" in the direction of la rger and larger
frequencies. Thus, if harmonic analysis of the in-
tensity is car r ied out even when there is no "gap"
at the central point, then we can decide on the ex-
istence of two lines by the presence of a zero in
F (w) . Two circumstances prevent the zeroes of
the function F ( _ ) : decrease of the Fourier t r a n s -
form Fo (OJ) of a single line upon increase in f r e -
quency and the presence of random e r r o r s of m e a s -
urement. The limit of resolution corresponds to
such a closeness of the lines in which the first
maximum, after the frequency u>l = 7r/d, where
F (w) first goes to zero, becomes equal to the
e r r o r of the measurement . Consideration of con-
cre te examples shows that such a method of find-
ing two lines leads to a smaller resolved interval
than the Sparrow cri ter ion. For example, in the
case of a dispersion line shape we can easily d i s -
tinguish two lines if the distance d between them
is equal to one half of their width y, while the
"gap" at the central point of the observed d i s t r i -
bution vanishes for d = 0.58y ( see the table on
page 266).

We note that the Pet rash cri terion, as also the
Rayleigh, Sparrow, and other cr i te r ia , is based on
the observation of a single point, with only this dif-
ference, that in the latter cases this point is s e l ec -
ted in the observed distribution, while in the former
it is from its Fourier t ransform. However, the
Pe t rash cri ter ion possesses this important advan-
tage that upon infinite increase in the accuracy of
measurement, the minimum resolved interval tends
to zero while in the other c r i t e r ia this natural r e -
quirement is not satisfied.

It is interesting to note that the method of e s t i -
mation of the resolving power of a spectral ins t ru-
ment considered here is essentially the general i -
zation of that approach which is undertaken in the
analysis of the resolving power of the well-known
method of investigation of the line s t ructure by

means of a double beam interferometer employed
by Michelson and other authors.9 '6 7 '6 8 Actually, the
visibility curve V of the interference bands accord-
ing to which one judges the line s tructure is the
modulus of the Fourier transform of the energy
distribution over the spectrum. In the case of two
identical lines, consequently, the visibility curve
has the form

and the minimum observed difference of wave-
lengths AX is determined by the condition that
the visibility band beyond u; = 2fl/AX does not
exceed the random e r r o r s of measurement.
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