УСПЕХИ ФИЗИЧЕСКИХ НАУК

О ФЕРРИМАГНЕТИЗМЕ НЕКОТОРЫХ СУЛЬФИДОВ И ОКИСЛОВ*) Ф. К. Лотгеринг

ВВЕДЕНИЕ

1. Постановка задачи

Гийо¹ в 1943 г. высказал предположение о том, что Mn₂Sb является ферримагнетиком. Кроме этого вещества, до 1951 г., когда было начато наше исследование, ферримагнетизм был обнаружен лишь у окислов. С другой стороны, были хорошо известны антиферромагнитные материалы, не относящиеся к группе окислов, именно MnS, MnSe и MnTe. Цель нашего исследования заключалась поэтому в том, чтобы установить, существуют ли ферримагнитные вещества, не являющиеся окислами, и если существуют, то изучить их свойства. В частности, были выбраны соединения серы, так как можно было предполагать, что эти вещества должны иметь ионный характер, что в значительной степени могло бы облегчить интерпретацию их магнитных свойств.

Известно, что спонтанную намагниченность проявляют только бинарные сульфиды $Cr_{1-\delta}S(,\approx0,16)$, $Fe_{1-\delta}S(,\approx0,12)$ и CoS_2 . Е. В. Гортер высказал мысль о возможности трактовать спонтанную намагниченность сульфидов хрома и железа как нескомпенсированный антиферромагнетизм. Применение этой гипотезы к сульфидам хрома, однако, усложнялось тем фактом, что в этой системе наблюдались некоторые различия в кристаллических структурах отдельных материалов, которые не были в достаточной степени исследованы. Этот вопрос был в последнее время изучен Желинеком². В то же время Берто, Неель и Бенуа опубликовали новые данные о системе Fe—S, которые экспериментально подтверждают гипотезу о ферримагнитных свойствах материалов этой системы. Некоторые свойства сульфидов железа, которые оставались неясными, были исследованы нами (глава 1).

Другую возможность для изучения ферримагнетизма представляет исследование сульфидных шпинелей. Некоторые сульфохромиты (MCr_2S_4) и сульфокобальтиды (MCo_2S_4) были известны давно, но никто не исследовал их магнитных свойств. Представляло интерес сравнить свойства этих материалов со свойствами соответствующих кислородных соединений MCr_2O_4 и MCo_2O_4 . Было известно, что кобальтиды $FeCo_2O_4$ и $NiCo_2O_4$ имеют спонтанную намагниченность при комнатной температуре. Хромиты MCr_2O_4 были исследованы в отношении их магнитных свойств Мак-Гайром

^{*)} F. K. Lotgering, Philips Research Reports 11, № 3, 190—249; № 4,337— 350 (1956). Перевод с английского А. С. Пахомова и Н. А. Смолькова.В переводе сохранен термин автора «ферримагнетизм», однако следует отметить, что он не получил в научной литературе общего признания (см. статью Я. Г. Дорфмана в Изв. АН СССР, сер. физич. 16, 4, 12 (1952)). (Примечание переводчиков.)

и др., и было обнаружено, что они имеют низкие температуры Кюри и невысокие значения намагниченности насыщения. К сожалению, оказалось невозможным произвести замещение кислорода серой в ферритах MFe₂O₄, которые являются наиболее важными магнитными шпинелями как в смысле технических применений, так и с чисто научной точки зрения. Хромиты и сульфохромиты будут рассмотрены нами в главе II. Магнитные свойства обсуждаются нами на основе теории ферримагнетизма. Кобальтиды и сульфокобальтиды будут рассмотрены в главе III. Их магнитные свойства значительно более сложны, чем магнитные свойства хромитов, и будут обсуждаться с учетом характера химической связи этих веществ.

2. Методы измерений

Парамагнитные восприимчивости исследованных материалов измерялись с помощью магнитных весов, сконструированных Фольгером³, которые использовались в области температур от — 180° до 800° С. Те материалы, которые при высоких температурах окислялись в воздухе, помещались перед измерениями в запаянные эвакуированные кварцевые сосуды. Применявшиеся магнитные поля были порядка 2000 эрстед. После каждой серии измерений приборы проверялись с псмощью соли Мора.

Намагниченность ферримагнитных материалов измерялась с помощью метода, описанного Ратенау и Снуком⁴. Поле можно было менять, и максимальное значение его составляло 9000 эрстед; температуры также можно было менять в пределах приблизительно от —190 до 600° С. Измерения температурной зависимости намагниченности проводились обычно в поле напряженностью 8000 эрстед. Окисляющиеся материалы также помещались предварительно в запаянные кварцевые сосуды.

Измерения зависимости намагниченности от поля (вплоть до 27 000 эрстед) при 77° К и 20,4° К были проведены Джонгенбургером, использовавшим метод, который будет в скором времени опубликован.

Нами используются следующие обозначения: H — внешнее магнитное поле в эрстедах, σ —удельная намагниченность в *гаусс см*³ *г*⁻¹, γ —удельная восприимчивость в *см*³ *г*⁻¹, *C*—константа Кюри в *см*³ *г*⁻¹ *град*, *C*_{ат} константа Кюри на грамм-атом (ион) магнитной компоненты (например, на $1/(1-\delta)$ моля Fe_{1- δ}S, на $1/_3$ моля FeCr₂O₄, на $1/_2$ моля ZnCr₂O₄).

Рентгенографические измерения были проделаны Брауном. Для идентификации фаз был использован дифрактометр Норелко старого типа; постоянные решеток были определены на дифрактометре Норелко высокой разрешающей силы.

I. СИСТЕМА ЖЕЛЕЗО-СЕРА

I. 1. Введение

После наблюдения П. Вейссом⁵ ферромагнетизма минерала пирротита (Fe₇S₈) было опубликовано много исследований по системе железо сера. Мы будем упоминать из них только те, которые имеют отношение к нашей работе.

Харальдсен ⁶ исследовал синтетические сульфиды железа $Fe_{1-\delta}S$. Он провел кристаллографические исследования и, используя метод магнитных весов, изучил магнитные свойства этих соединений. Он нашел серию однородных материалов с составами, у которых параметр δ менялся в пределах $0 < \delta < 0,125$ и которые имели структуру NiAs (рис. 1) ири $0,04 < \delta < 0,125$ и родственную структуру при $0 < \delta < 0,04$. Последняя фаза была стабильна только ниже 120°C и переходила при этой температуре в структуру NiAs («л-переход»). Структура FeS может быть описана с помощью понятия об увеличенной ячейке структуры NiAs (Хэгг и Саксдорф⁷), отличающейся от структуры NiAs малым смеще-

Рис. 1. Структура NiAs. Малые кружки — ионы железа, большие кружки — ионы серы. Стрелки указывают упорядочение спинов в двух подрешетках A и B. В сульфиде железа $c \approx 5.7$ Å, $a \approx 3.45$ Å; углы PSQ, PSP и RSQ равны соответственно приблизительно 90, 60 и 130°.

Рис. 2. Расположение вакансий в ячейке сверхструктуры, указанной Берто. Связь между элементарными ячейками сверхструктуры и структуры NiAs такова: a'=2a, c'==4c. Позиции вакансий спроектированы параллельно оси c', числа указывают координаты вакансий по оси c'.

нием атомов Fe (Берто⁸). Харальдсен вывел из данных о плотности и объеме элементарной ячейки, что при $\delta > 0$ не все позиции металла в структуре NiAs заняты и поэтому формулу можно символически записать так: $|Fe_{1-\delta} \bigsqcup_{\delta} | S$, где \square означает вакантное катионное место.

Рис. 3. Кривые $1/\chi = 1/\chi$ (*T*) для FeS (Бенуа ¹³) и Fe_{0,926}S, приготовленного по второму методу.

Согласно измерениям магнитных свойств, проделанным Харальдсеном, сульфиды могут быть разделены на три серии.

а) 0 < δ < ~0,07. На рис. З дана зависимость обратной величины восприимчивости FeS от температуры согласно измерениям Бенуа ¹³. Кривая имеет минимум около 340°С и при высоких температурах следует закону Кюри—Вейсса. Эта переходная точка также была установлена Харальдсеном на сульфидах с нестехиометрическим составом; он установил, что независимо от состава она лежит в области 330°С («β-переход»). Резкий скачок на кривой $1/\chi = 1/\chi(T)$ для FeS при 130°C вызван вышеуказанным «а-переходом».

б) $\sim 0.10 < \delta < \sim 0.125$. Сульфиды с высоким содержанием серы проявляют спонтанную намагниченность. Температура Кюри находится в области 300°С для Fe₇S₈ и уменьшается при уменьшении содержания серы.

в) $\sim 0.07 < \delta < \sim 0.10$. У соединений с промежуточным содержанием серы Харальдсен нашел аномальные магнитные свойства, а именно большой, резко выраженный пик в области 200°С на кривой температурной зависимости восприимчивости. Поскольку восприимчивость была очень высока и сильно зависела от внешнего поля, Харальдсен предположил, что материал становится ферромагнитным в узкой температурной области; он назвал переходную точку на низкотемпературной стороне этой области «температурой анти-Кюри». Этот пик недавно был снова установлен Бенуа¹⁴ и Хироне с сотрудниками⁹.

Берто¹⁰ нашел в лауэграммах монокристалла естественного пирротита ряд слабых сверхструктурных линий, по которым он сделал заключение о наличии упорядочения вакансий (рис. 2). В этой сверхструктуре вакансии распределены среди катионных позиций таким образом, что они находятся одна от другой возможно дальше для данной решетки и состава | Fe₇ [] | S₈.

Простое объяснение магнитных свойств обсуждаемых материалов было дано Неелем¹¹. Катионная решетка со структурой NiAs составлена из ряда гексагональных слоев, перпендикулярных оси с, и может быть разделена на две подрешетки A и B, образованные соответственно четными и нечетными слоями (рис. 1). Если антиферромагнитное взаимодействие между двумя соседями в смежных слоях существенно сильнее, чем взаимодействие между двумя соседями в том же самом слое, то может установиться такой порядок спинов, что две подрешетки будут намагничены в противоположных направлениях.

Порядок спинов, символически записанный AB, имеет место только тогда, когда взаимодействия AA и BB существенно слабее, чем взаимодействие AB. Это доказано Андерсоном¹² в его теории сверхобменного взаимодействия. Согласно теории, взаимодействие между спинами двух катионов происходит через промежуточный ион S²⁻ и оно будет тем сильнее, чем больше будет угол между линиями, связывающими ион S²⁻ с указанными катионами. Из рис. 1 видно, что взаимодействие RSQ (угол $\approx 130^{\circ}$) можно считать значительно более сильным, чем взаимодействия PSQ и RSP (углы $\approx 90^{\circ}$ и $\approx 60^{\circ}$).

В FeS подрешетки эквивалентны, и поэтому это соединение является антиферромагнетиком. Это объясняет кривую $1/\chi = 1/\chi(T)$ на рис. 3, которая имеет хорошо известную форму кривой для антиферромагнитного вещества с температурой Нееля $T_N \approx 340^{\circ}$ С. В Fe₇S₈ вакансии составляют сверхструктурную решетку Берто, которая имеет такую структуру, что все вакансии находятся в одной из двух подрешеток A или B. В результате наличия упорядоченности спинов и вакансий Fe₇S₈ является ферримагнетиком, и этот факт символически можно записать так: Fe₄ [Fe₃ \Box |S₈. Упорядочения вакансий можно ожидать и при несколько меньшей концентрации вакансий, чем в Fe₇S₈, но не при слишком малых концентрациях. Все сказанное объясняет ферримагнитное и антиферромагнитное поведение материалов с высоким и низким содержанием серы. Изложенные идеи были отправной точкой для нашей работы с синтетическими кристаллическими материалами. Нашей целью являлись следующие исследования:

1. Изучение аномального ферромагнитного поведения сульфидов с промежуточным содержанием серы, которое нельзя объяснить с помощью вышеупомянутой теории. Эксперименты, которые до сих пор были проведены, не дали существенной информации, так как измерения были проведены только с использованием метода магнитных весов, так что изменение намагниченности насыщения в зависимости от температуры не было известно.

2. Изучить аномальное парамагнитное поведение Fe₇S₈ выше точки Кюри (≈ 300°С), на которое было указано Бенуа ^{13, 14}. Приблизительно, при 560°С восприимчивость терпит внезапный скачок и становится в 5 или 6 раз меньще при дальнейшем увеличении температуры. Эта температура 560°С рассматривалась как точка упорядочения вакансий, но это предположение не было проконтролировано рентгенографически.

I.2. Приготовление материалов

Первый метод приготовления соединений Fe_{0,995}S, Fe_{0,926}S, Fe_{0,913}S, Fe_{0,902}S, Fe_{0,888}S, Fe_{0,876}S и Fe_{0,863}S заключается в нагревании порошка железа и серы в кварцевой трубке при 1000°C в вакууме. Охлаждение было проведено: а) быстро (закалка), б) медленно, в) медленно, с отжигом в течение одного месяца при 270°C.

Если пользоваться этим обычным методом, то в трубке будут, несомненно, присутствовать следы кислорода, и, следовательно, железный порошок всегда будет загрязнен окислом. Далее, хорошо известно, что из нагретых стенок стекловидного кварца будут освобождаться некоторые газы, содержащие кислород (СО₂, H₂O), и, более того, не-возможно, чтобы при 1000°С некоторая часть кислорода не диффундировала через кварцевые стенки. Чтобы уменьшить присутствие кислорода насколько это возможно, соединения Fe_{0,926}S, Fe_{0,902}S и Fe_{0,876}S были приготовлены с помощью второго метода. Железный порошок был нагрет при 600° С в кварцевой трубке в потоке очень чистого водорода: железо тогда становилось свежевосстановленным, и кварц тоже частично освобождался от кислорода. Затем после охлаждения была добавлена сера, причем в это время через трубку прогонялся аргон. Трубка затем откачивалась, запаивалась и нагревалась до 900° С в атмосфере аргона. Хотя окисление, возможно, и не было исключено полностью (вследствие выхода газов из кварцевых стенок), давление кислорода в трубке должно было быть значительно ниже, чем при использовании первого метода.

I.3. Кристаллографические свойства

Первая серия образцов была рентгенографически исследована на дифрактометре Норелко (*К*х-излучение Мо).

Рентгенограмма Fe_{0.995}S могла быть индексирована согласно ячейке, данной Хэггом и Сакдорфом⁷. Fe_{0.926}S и Fe_{0.913}S имели структуру чистого NiAs.

В рентгеновских спектрах Fe_{0,902}S и образцов с высоким содержанием серы имеется, помимо линий NiAs, несколько добавочных линий под малыми углами рассеяния, которые можно приписать вышеупомянутой сверхструктуре, найденной Берто. В частности, появляется линия 001, которая отсутствует в структуре NiAs.

251

Интенсивность линий 001 находится в достаточном согласии с теоретически вычисленной интенсивностью. Точное сравнение всех интенсивностей было невозможным из-за частичной предпочтительной ориентации кристаллов, которые были наклеены на стеклянную пластинку.

У $Fe_{0.875}S(Fe_7S_8)$ интенсивность I_{001} линии 001 была измерена как функция температуры. Рис. 6 показывает, что температура перехода T_v , при которой исчезает сверхструктура, лежит около 320°С и что T_v обнаруживает температурный гистерезис порядка 15°С. Если температура медленно увеличивается, то I_{001} остается постоянной вплоть до температур незначительно ниже T_v и затем быстро падает. Такое поведение больше похоже на переход первого рода, нежели на переход второго рода.

Во время перехода отношение осей изменяется: c/a = 1,646 и 1,636 при 307°С и 340°С соответственно, т. е. уменьшается приблизительно на 0,02% на один градус. Согласно Харальдсену⁶, тепловое уменьшение c/a в интервале от 0 до 300°С порядка 0,006% на один градус.

I.4. Магнитные свойства

Удельная намагниченность σ при H = 8000 эрстед и $1/\chi$ — обратная величина удельной восприимчивости были измерены в зависимости от температуры. Среди образцов, приготовленных по первому методу, только соединения, у которых $\delta \ge 0,098$, были ферромагнитными: нали-

Рис. 4. Кривые $\sigma = \sigma(T)$ и $1/\chi = 1/\chi(T)$ Fe_{0,876}S, приготовленного по первому методу. $-\bigcirc -\bigcirc -\bigcirc -\bigcirc$ медленно охлажденный образец, $-\times -\times -\times -$ образец, отжигавшийся в течение месяца при 270° С.

чие ферромагнетизма, таким образом, связано с присутствием на рентгенограмме линий 001. На рис. 4 и 5 изображены некоторые данные измерений.

Мы нашли кривые $1/\chi = 1/\chi(T)$ типа кривых, опубликованных Бенуа^{13, 14}. Выше 600° С имеет силу закон Кюри — Вейсса. Ниже 600° С кривые отклоняются от этого закона таким образом, что χ становится больше. В этой температурной области мы наблюдали следующие явления:

1. Кривая $1/\chi = 1/\chi(T)$ невоспроизводима. Большинство кривых обнаруживает наличие температурного гистерезиса. В некоторых случаях было найдено изменение γ при постоянной температуре.

чаях было найдено изменение χ при постоянной температуре. 2. χ зависит от H, и кривая $\chi = \chi(H)$ обнаруживает наличие гистерезиса. Эти факты можно объяснить присутствием в образцах весьма малых переменных количеств ферромагнитного вещества с точкой Кюри 550 – 600° С. Наиболее очевидным можно считать предположение о том, что в соединении присутствует небольшое количество Fe₃O₄, имеющего точку Кюри 585° С.

Своеобразная кривая $1/\chi = 1/\chi(T)$ закаленного Fe_{0,863}S (рис. 5) может быть объяснена следующим образом. Во время приготовления

Рис. 5. Кривые $[\sigma = \sigma(T)$ и $1/\chi = 1/\chi(T)$ для закаленных образцов $\operatorname{Fe}_{0,902}$ S, $Fe_{0,863}$ и $\operatorname{Fe}_{0,895}$, приготовленных по первому истоду.

при 1000° С образуются следы FeO, которые вполне возможны, так как давление диссоциации FeO очень низкое ($\approx 10^{-14}$ amm).

у Известно, что FeO диссоциирует на Fe и Fe₃O₄ ниже 580°C и что реакция может быть заторможена, если материал быстро охладить. Поэтому мы предположили, что наш закаленный образец содержит

Рис. 6. Температурная зависимость с, 1/х и интенсивности I₀₀₁ 001-отражений Fe_{0,878}S, приготовленного по второму методу.

следы антиферромагнетика FeO, который не оказывает видимого влияния на χ , Ттак что при 330°С наблюдается низкое значение χ . Однако при нагревании от 330 до 580°С скорость реакции 4FeO — Fe + Fe₃O₄ увеличивается. Fe будет нестабилен в присутствии сульфида железа и быстро переходит сам в сульфид. Следы Fe₃O₄ вызовут увеличение χ между 325 и 580°С. Чтобы подтвердить это предположение, мы

7 УФН, т. LXVI, вып. 2

приготовили $Fe_{0,926}S$, $Fe_{0.902}S$ и $Fe_{0.876}S$ с намного уменьшенным содержанием кислорода, пользуясь вторым методом (см. раздел 1.2). Из рис. 3, 6 и 7 видно, что у этих образцов аномалия в форме кривой $1/\chi = 1/\chi$ (*T*) значительно уменьшается: на рис. 7 она почти полностью исчезает, на рис. 3 и 6 она обнаруживается только в процессе измерения при увеличивающихся температурах. Во всех трех случаях закон

Рис. 7. Кривые $\sigma = \sigma(T)$ и $^{-1}/\chi = 1/\chi(T)$ Fe_{0,902}S, приготовленного по второму методу. Кривая P—медленно охлажденный образец; кривая Q—образец, отожженный при 220° С и закаленный до комнатной температуры.

Кюри — Вейсса сохраняет свое значение при температурах вплоть до 330°С, если материалы нагревались выше 600°С только один раз. Мы рассматриваем такое поведение как поведение чистого вещества.

Кажется трудным предотвратить окисление полностью, однако нужно отметить, что очень малые количества ферромагнитного вещества вполне можно наблюдать с помощью метода магнитных весов. Аномальный ход кривой на рис. 6 может быть вызван присутствием

Рис. 8. Объяснение наблюдаемых кривых $\sigma = \sigma(T)$ и $1/\chi = 1/\chi(T)$ с точки зрения нормального антиферромагнитного и ферримагнитного поведений, когда вакансии упорядочиваются при T_v кривая $1/\chi = 1/\chi(T)$ антиферромагнетика с температурой Несля T_V ; ----- кривые $1/\chi = 1/\chi(T)$ и $\sigma = \sigma(T)$ ферримагнетика с температурой Кюри T_K ; наблюдаемые типы кривых. Fe₃O₄, концентрация которого может быть менее 0,1%. Из рис. 4, 5 и 6 видно, что кривые $\sigma = \sigma(T)$ все обнаруживают температурный гистерезис, за исключением кривой для образца Fe_{0,876}S, отожженного при 270° С. Кривая $\sigma = \sigma(T)$ на рис. 7 будет обсуждена отдельно в разделах 1.7 и 1.8.

I.5. Обсуждение магнитных свойств

Кривая $1/\chi = 1/\chi (T)$ для Fe_{0.876}S следует (рис. 6) закону Кюри — Вейсса при уменьшении температуры вплоть до 340° С и затем ниже этой

температуры имеет резкий спад. Эта температура соответствует кристаллографической точке перехода T_{v} . (Обе кривые $1/\chi = 1/\chi$ (T) и $I_{001} = I_{001}(T)$ обнаруживают наличие температурного гистерезиса порядка 15°С.) Рост χ , столь же сильный, как и обнаруженный ниже 325°С, невозможен без упорядочения спинов. С другой стороны, выше 340°С выполняется закон Кюри — Вейсса. Следовательно, упорядочение спинов должно иметь место между 325 и 340°С, т. е. при той же температуре, которая была найдена для сульфидов с низким содержанием серы («3-переход» Харальдсена). Мы предполагаем, что

температура Нееля T_N приблизительно совпадает с T_v , хотя не исключено, что T_N незначительно выше, чем T_v . Для $Fe_{0,902}S$ (рис. 7) темпе-

ратура Нееля экспериментально определяется из минимума кривой $1/\chi = 1/\chi$ (T) при 330°С. Ферримагнитное поведение ниже $T_K =$ $= 260 - 265^{\circ}$ С возможно, только если при этой температуре вакансии уже упорядочены, так что температура T_v должна находиться между 265 и 330° С. Мы предполагаем, что $T_v = 295 - 305^{\circ}$ С, потому что ниже этой температуры кривая $1/\chi = 1/\chi$ (T) начинает отклоняться от кривой, характерной для антиферромагнетика. На рис. 8 схематически показано, как можно простым методом получить кривые $\sigma = \sigma(T)$ и $1/\chi = 1/\chi(T)$ наблюдаемого типа по известным температурам T_v , T_N и T_K , если предположить, что при $T > T_v$ наблюдается нормальное антиферромагнитное поведение, а при $T < T_v$ – нормальное ферриматнитное поведение.

Из рис. 6 видно, что спонтанные намагниченности $Fe_{0,876}S$, которые найдены при первоначальных измерениях на образце, меньше, чем значения намагниченностей, полученные после того, как образец подвергся нагреванию выше T_K . Такое поведение, обна-

Рис. 9. Кривые $\sigma = \sigma(H)$ при комнатной температуре. Fe0,876S (тот же образец, что и на рис. 6): кривая а-первая кривая, снятая непосредственно после приготовления образца; кривая b-кривая, снятая после нагревания образца выше точки Кюри и охлаждения в присутствии или при отсутствии внешнего поля *H*. Fe_{0,902}S (тот же образец, что и на рис. 7): кривая с-кривая, снятая непосредственно после приготовления образца; кривая d-кривая, снятая после нагревания выше точки Кюри и охлаждения в отсутствие поля; кривая е-та же кривая, что и d, но снятая при поле H = 8000 эрстед; кривая f-кривая, снятая после закалки образца от 220° С.

руженное у всех ферримагнитных образцов, мы объяснить не можем. В нашем представлении высокая спонтанная намагниченность означает более полную упорядоченность вакансий. Поскольку во время приготовления степень охлаждения была меньше, чем это было в момент измерений, то не имеется никаких оснований для объяснения того, почему в последнем случае упорядоченность вакансий должна быть более полной.

Еще одна разница между этими двумя случаями заключалась в наличии внешнего магнитного поля во время измерений. Однако, как доказано, внешнее поле не оказывает никакого влияния на магнитные свойства (рис. 9, кривая b).

7.*

4.6. Обсуждение наблюдаемых магнитных моментов

Рис. 10. Константа Кюри C_{aT} на $1/(1-\delta)$ моля $\operatorname{Fe}_{1-\delta}S$ и момент насыщения m_0 на молекулярную единицу $\operatorname{Fe}_{1-\delta}S$, вычисленные для четырех распределений (a), (b), (c) и (d) ионов Fe^{3+} (см. текст) в зависимости от состава δ .

 $1/\chi = 1/\chi$ (*T*), которая следует закону Кюри – были подсчитаны константы Кюри $C_{\rm ar}$ на $1/(1-\delta)$ моля Fc_{1- δ}S. На рис. 10 эти величины сравнены с $C_{\rm ar}$, вычисленными из «чисто спиновых» значений моментов ионов Fe²⁺ и Fe³⁺ для материала, имеющего состав Fe²⁺_{1-3 δ} Fe³⁺_{2 δ}S. Из кривых видно, что между экспериментальными и вычисленными величинами существует только весьма грубое согласие.

Верхние кривые $\sigma = \sigma(T)$ на рис. 4 и 6 весьма хорошо воспроизводятся, хотя и не вполне. Это понятно, потому что вакансии подвижны только выше 150°С, и при этой температуре большей частью они упорядочены, хотя еще и не полностью (см. следующий раздел). Поэтому небольшие изменения с могут быть отнесены за счет изменений скорости охлаждения. Из величины о_о были подсчитаны для Fe_{0.876}S и Fe_{0.902}S значения намагниченностей m₀ на одну молекулу Fe₁₋₈S. Эти величины сравниваются со значениями $m_{\rm o}$, вычисленными для ферримагнитного состояния на основе учета лишь спиновых магнитных моментов ионов. При этом сложность заключается в том, что m_0 сильно зависит от распределения ионов Fe^{3+}

по подрешеткам A и B. На рис. 10 кривые вычисленных значений m_0 даны для четырех возможных распределений, а именно:

а) Ионы Fe³⁺ находятся в подрешетке, содержащей вакансии:

$$\frac{\operatorname{Fe}_{1}^{2+}}{\frac{1}{2}} \left| \operatorname{Fe}_{\frac{1}{2}-3\delta}^{2+} \operatorname{Fe}_{2\delta}^{3+} \Box_{\delta} \right| \mathrm{S};$$

b) Ионы Fe³⁺ распределены беспорядочно:

$$\operatorname{Fe}_{\frac{1}{2}\frac{1-3\delta}{1-\delta}}^{2+} \operatorname{Fe}_{\frac{1}{2}\frac{2\delta}{1-\delta}}^{3+} \left| \operatorname{Fe}_{\left(\frac{1}{2}-\delta\right)\frac{1-3\delta}{1-\delta}}^{2+} \operatorname{Fe}_{\left(\frac{1}{2}-\delta\right)\frac{2\delta}{1-\delta}}^{3+} \Box_{\delta} \right| S;$$

с) Ионы Fe³⁺ распределены поровну между подрешетками A и B:

$$\operatorname{Fe}_{\frac{1}{2}-\delta}^{2+}\operatorname{Fe}_{\delta}^{3+} \left| \operatorname{Fe}_{\frac{1}{2}-2\delta}^{2+}\operatorname{Fe}_{\delta}^{3+} \square_{\delta} \right| \mathrm{S};$$

d) Ионы Fe³⁺ находятся в подрешетке, которая не содержит вакансий:

$$\operatorname{Fe}_{\frac{1}{2}-2\delta}^{2+}\operatorname{Fe}_{2\delta}^{3+}\left|\operatorname{Fe}_{\frac{1}{2}-\delta}^{2+}\Box_{\delta}\right| S.$$

Экспериментальные значения m_0 находятся в довольно хорошем согласии с распределением а), что было также найдено Бенуа¹⁴. Благодаря неопределенности катионных моментов (которые могут отклоняться от чисто спиновых значений) и степени упорядочения в образцах при низких температурах, это согласие не может подтверждать того, что структура, символически записанная в пункте а), соответствует реальной структуре. Существование распределения а) не согласуется с расчетами Берто¹⁵, который показал, что электростатическая энергия в случае распределения с) ниже, чем в случае распределений a, b и d.

I.7. Аномальные свойства Fe_{0.902}S (à = 0,098)

Мы нашли аномальную кривую $\sigma = \sigma(T)$ для $F_{0.902}S$, т. е. для сульфида с составом, лежащим в области составов, промежуточной между областями антиферромагнетиков и ферримагнетиков. Кривая $\sigma = \sigma(T)$ имеет ник, который обнаруживает температурный гистерезис (рис. 7). После отжига при 190°С (точка у основания пика) мы нашли, что материал лишь слабо ферримагнитен при 20°С ($\sigma = 1$ гаусс·см³ г). С другой стороны, после отжига при 220°С (точка на вершине пика) и последующей закалки до комнатной температуры мы нашли кривую $\sigma = \sigma(T)$ с высокими значениями σ . Нагревание в этом состоянии вызывает уменьшение σ выше 150°С, необратимое по своему характеру (σ также уменьшается при постоянной температуре), и образец практически становится неферромагнитным у основания пика (190°С).

Из кривых c, d, e и f на рис. 9 видно, что различия в значениях σ при H = 8000 эрстед, которые получены после различных температурных обработок образца, являются действительно различиями в спонтанной намагниченности.

Наиболее простой интерпретацией этих фактов является следующая. Когда температура уменьшается, спины упорядочиваются при 330° С = T_N . Затем при $T_v \simeq 300^{\circ}$ С вакансии начинают располагаться так, что материал превращается из антиферромагнитного в ферримагнитный с температурой Кюри $T_K = 265^{\circ}$ С. Однако при $T_H = 210^{\circ}$ С порядок вакансий исчезает, так что материал снова становится антиферромагнитным (температура «анти-Кюри»). Переход порядок – беспорядок в системе вакансий представляет собой процесс диффузии, который может быть подавлен закалкой от вершины пика: распределение вакансий при 220° С замораживается при закалке, и при низких температурах мы найдем кривую $\sigma = \sigma$ (T), которая является экстраполяцией кривой между T_K и T_H . Вышеупомянутое необратимое уменьшение σ при температуре выше 150° С показывает, что начавшийся от этой температуры процесс диффузии становится заметным во время измерений.

Согласно нашей интерпретации, рентгенограммы Fe_{0,902}S в двух состояниях с высоким и низким значениями с при 20°C должны обнаруживать соответственно сильные и слабые сверхструктурные линии. Это в самом деле имеет место. Однако указанные линии оказались так слабы, что отделить их от основного фона было почти невозможно и интенсивности их нельзя было сравнить количественно.

I.8. Фазовые переходы в Fe_{0.902}S

В этом разделе мы попытаемся дать ответ на вопрос: почему возможно то, что упорядочение вакансий, которое появляется при температуре T_n , может исчезнуть при более низкой температуре T_H ?

В сульфидах железа возможны как упорядоченность спинов, так и упорядоченность вакансий. Эти два процесса упорядочения не могут происходить независимо друг от друга. Теоретически наличия связи между ними можно ожидать по ряду причин. Так, например, упорядочение вакансий обусловливает изменение параметра решетки (раздел 1.3), поляризацию ионов серы и, вероятно, распределение ионов Fe^{2+} и Fe^{3+} (раздел 1.6), и эти изменения повлияют на обменное взаимодействие спинов. Это влияние является слишком сложным для того, чтобы его можно было понять теоретически, хотя бы качественно. Однако мы можем показать эмпирически, что такая связь между двумя явлениями упорядочения действительно существует. Для $Fe_{0.876}$ S температура, при которой спины начинают упорядочиваться, есть $T_N = 330 - 340^{\circ}$ С при беспорядочной расстановке вакансий, тогда как при упорядоченном распределении вакансий упорядочение спинов устанавливается при более низкой температуре, а именно при $T_K = 305^{\circ}$ С. Поскольку для антиферромагнитных и ферримагнитных веществ обменное взаимодействие соответственно пропорционально T_N и T_K , следует, что обменное взаимодействие больше в состоянии с беспорядочным распределением вакансий, чем в состоянии с упорядоченной расстановкой.

Из рис. 6 видно, что имеется температурная область (305 — 325° С), в которой существует упорядоченность вакансий, в то время как вещество не является ферримагнетиком, т. е. спины не упорядочены.

Объяснение существования аномальной кривой $\sigma = \sigma(T)$ может быть получено путем изучения вариации свободной энергии, вызываемой изменением в упорядоченности вакансий и спинов при изменяющихся температурах. Мы обсудим прежде всего температурную зависимость свободной энергии:

а) вакансий в пренебрежении наличием спинов (свободная энергия F_v^*), точка перехода T_v);

б) спинов при беспорядочном распределении вакансий (свободная энергия F_s , точка перехода T_N).

Проблема порядок — беспорядок а) в случае | Fe₇ [] | S₈ подобна проблеме бинарного сплава AB_n , где n=7: здесь имеется большое число распределений 7N атомов по 8N кристаллографическим идентичным позициям в решетке, обладающим различными энергиями, и одно специальное распределение (в нашем случае сверхструктура, указанная Берто), имеющее наинизшую энергию. Брэгг и Вильямс17 рассмотрели эту проблему теоретически и нашли, что фазовый переход имеет место при фиксированной температуре и что он является переходом первого рода при n > 1 и второго рода при n = 1. Таким образом, в нашем случае мы имеем дело с фазовым переходом первого рода, который означает, что производная $\frac{\partial F_v}{\partial T}$ свободной энергии по температуре является разрывной при $T = T_v$. Если F_0 есть свободная энергия при беспорядочном распределении, то $f_v = F_v - F_0$ выражает собой прирост свободной энергии благодаря упорядочению вакансий. Кривая $f_v = f_v(T)$ может быть схематически изображена так: $f_v = 0$ при $T > T_v^v$, $f_v^v < 0$ при $T < T_v$, и наклон кривой при $T = T_v$ является конечным; при T = 0имеет место распределение с минимальной энергией, т. е. с наинизшим значением ε_v функции f_v .

Однако хорошо известно, что процесс упорядочения спинов совершается при T_N как фазовый переход второго рода. Если мы также схематически изобразим кривую $f_s = f_s(T)$, где $f_s = F_s - F_0$, то увидим, что будет наблюдаться существенная разница по сравнению с кривой $f_v = f_v(T)$, заключающаяся в том, что кривая $f_s = f_s(T)$ является соприкасающейся с горизонтальной осью в точке $T = T_N$. Наинизшие значения ε_v и ε_s для f_v и f_s могут быть связаны друг с другом следующим грубым образом. Максимальные энергии упорядочения, приходящиеся соответственно на вакансию и на спин, равны kT_v и kT_N и, следовательно, также почти равны друг другу, так как T_v и T_N приблизительно одинаковы ($T_v \approx 580^\circ$ K, $T_N \approx 600^\circ$ K). Число спинов в 7 раз больше, чем число вакансий в $|Fe_7 \square |S_8$, таким образом, отношение $\varepsilon_v/\varepsilon_s$ будет равно приблизительно 1/2.

*) Индекс *о* относится к вакансии. Зависимость свободной энергии от объема и давления не учитывается, так что *F*_c можно читать и как «свободная энергия». и как «свободная энтальция».

١

На рис. 11 мы начертили кривые $f_v = f_v(T)$ и $f_s = f_s(T)$ для $Fe_{0,875}S$ и $Fe_{0,90}S$, полагая, что T_v/T_N имеет величину, очень мало отличающуюся от 1,00, как это установлено и экспериментально ($\text{Fe}_{7}\text{S}_{8}: T_{v}/T_{N} \approx$ $\approx 1,00;$ Fe_{0,902}S: $T_v/T_N \approx \frac{580}{600} = 0,97$). Тогда две кривые для Fe_{0,90}S имеют две точки пересечения P и Q (рис. 11, b). При температурах чуть выше точки Кюри Т_к имеется T_N≈T_V либо упорядоченность спинов, либо упорядоченность вакансий и состояние с наинизшей свободной энергией является ста-бильным. Если $T_P < T_K < T_Q$, 1/X то при уменьшении температуры 1/X имеют место следующие фазовые переходы. При Т_N устаb.Fe_{o,p}S a.Fe₇S₈ навливается упорядоченность спинов. При T_Q эта упорядочен-Ta $T_{K} = T_{N} \approx T_{V}$ Тн T_K TN ность исчезает и появляется a) b) упорядоченность вакансий. При $T = T_K$ имеет место ферримаг-Рис. 11. Объяснение появления «температуры анти-Кюри» Харальдсена на основе кривых нитное состояние, которое ознасвободной энергии. Все кривые вычерчены

чает, что снова устанавливается схематически. упорядоченность спинов, в то время как упорядоченность вакансий остается. Кривая свободной энергии f = f(T) для ферримагнитного состояния (пунктирная кривая) должна лежать ниже кривой $f_v = f_v(T)$ и должна касаться кривой $f_v = f_v(T)$ в точке $T = T_K$, потому что упорядоченность спинов есть фазовый пе-

Рис. 12. Увеличение свободной энергии вследствие упорядочения: a) вакансий при статистическом распределении спинов (кривая f_s); b) спинов при статистическом распределении вакансий (кривая f_v).

Следовательно, при T_H происходит фазовый переход первого рода из ферримагнитного в антиферромагнитное состояние. Вследствие монотонного уменьшения T_K в непрерывном ряду сульфидов с уменьшающимся содержанием серы при некотором составе должна наблюдаться аномальная кривая $\sigma = \sigma$ (T).

Чтобы проверить наше объяснение до некоторой степени коли-

чественно, мы численно рассчитали функции $f_v(T)$ и $f_s(T)$, используя соответственно приближения Брэгга — Вильямса и приближения теории молекулярного поля Вейсса (см. приложение I.9). Результаты приведены на рис. 12, где видно, что кривая $f_v = f_v(T)$ близка к прямой линии. Если мы начертим вычисленные кривые $f_n = f_v(T)$ и $f_s = f_s(T)$ для $\text{Fe}_{0.912}\text{S}$ при $T_N = 600^\circ \text{K}$ (327° C) и $T_v = 583^\circ \text{K}$ (310° C), то точка пересечения Pсоответствует $T = 533^\circ \text{K}$ (260° C). При некоторых более высоких значениях T_K наблюдается точка анти-Кюри. Видно, что относительные положения точек перехода T_N , T_v и T_K , при которых теоретически ожидается существование точки анти-Кюри, находятся в хорошем согласии с опытными данными (Fe_{0,902}S: $T_N \approx 330^\circ$ C, $T_v \approx 305^\circ$ C, $T_K \approx 265^\circ$ C). Бенуа¹⁴ обнаружил на кривой $\chi = \chi(T)$ сульфида железа с про-

Бенуа чоонаружил на кривои $\chi = \chi(T)$ сульфида железа с промежуточным содержанием серы пик. Почти одновременно с нами ¹⁶ он дал объяснение этому явлению, которое также базируется на предположении, что обменная энергия зависит от распределения вакансий. Скачок на кривой $1/\chi = 1/\chi(T)$, найденный им, он объяснил упорядочением вакансий, что, как нам кажется, не является правильным (раздел 1.4).

Хироне и др. ⁹ объяснили исчезнование спонтанной намагниченности ниже T_N также существованием антиферромагнитной структуры, вызванной наличием равного количества вакансий в подрешетках А и В. В противоположность нам они делают предположение о том, что вакансии упорядочены, но неизвестно, как именно. Однако это предположение не объясняет того, почему имеет место изменение в структуре кристалла при T_H. Помимо этого, не имеется никаких экспериментальных доказательств для объяснения существования такой сверхструктуры Q (Хироне), кроме сверхструктуры P (Берто). Поскольку у Fe_{0.90}S температура T_H должна была бы быть такой, при которой структура Q находится в равновесии со структурой Р, температура перехода, при которой структура Q находится в равновесии с разупорядоченной фазой, должна была бы быть выше, чем T_H . Тогда возможно, что у сульфидов с незначительно меньшим содержанием серы, чем у Fe_{0.90}S, у которого структура Р не встречается (что показано отсутствием ферримагнетизма), структура Q была бы стабильной при температурах в области T_H (приблизительно 200° С). Fe_{0,91}S, который не имеет фер-римагнитных свойств, однако, имеет чистую структуру NiAs, и его рентгенограмма не обнаруживает никаких сверхструктурных линий при комнатной температуре.

I.9. Приложение

I. 9.1. Вычисление свободной энергии вакансий без учета роли спинов (кривая $f_v = f_v(T)$ нарис. 12)

Мы упоминали, что сверхструктура, найденная Берто, может быть понята, если учесть наличие отталкивания между катионами.

Пренебрегая разницей между ионами Fe^{2+} и Fe^{3+} , мы подсчитали энергию, как функцию распределения катионов, в приближении Брэгга — Вильямса ¹⁷ для состава $Fe_{r-1+\varepsilon} \Box_{1-\varepsilon}S_r$ ($r=8, \varepsilon \ge 0$), который отличается от «идеального» состава $Fe_7 \Box S_8$. Катионная решетка разделена на подрешетку I, идентичную с решеткой вакансий, данной Берто (рис. 2), и подрешетку II, образованную оставшимися позициями.

В приближении Брэгга — Вильямса не рассматривается точное распределение катионов по атомным позициям: наличие вакансий принимается в расчет путем введения вероятности занятия позиций вакансией или катионом (отношение числа имеющихся вакансий или катионов к числу позиций). Средняя энергия находится путем расчета для каждой пары позиций в решетке энергии взаимодействия, которая берется равной энергии состояния, в котором заняты обе позиции, умноженной на произведение вероятностей занятия этих двух позиций.

На моль $\operatorname{Fe}_{r-1+\varepsilon}S_r$ имеется N позиций I и (r-1)N позиций II, по которым распределены $(1-\varepsilon)N$ вакансий и $(r-1+\varepsilon)N$ катионов. Распределение зафиксировано параметром x, который означает вероятность того, что позиции I заняты вакансиями. В состоянии упорядочения x = 1 - z, при статистическом распределении x = (1 - z)/r. Вероятности занятия позиций вакансиями или катионами для позиций I и позиций II даны в нижеследующей схеме:

I II
вакансия
$$x = \frac{1-\varepsilon-x}{r-1}$$

катион $1-x = \frac{r+\varepsilon-2+x}{r-1}$

Пусть V_L^K — потенциал сил отталкивания в позиции K, создаваемый катионами решетки L, которая полностью занята. При неполном занятии L этот потенциал равен произведению V_L^K на вероятность занятия позиций L.

Соотношение между изменением распределения катионов и вакансий dx и изменением энергии (если выбросить из расомотрения знак) таково:

$$\delta E = \left| \left(V_{\mathrm{II}}^{\mathrm{I}} - V_{\mathrm{I}}^{\mathrm{I}} \right) \left(1 - x \right) - \left(V_{\mathrm{I}}^{\mathrm{II}} - V_{\mathrm{II}}^{\mathrm{II}} \right) \frac{r + \varepsilon - 2 + x}{r - 1} \right| x.$$

При полной занятости позиций потенциал $V_{I}^{I} + V_{I}^{II}$ в позиции I равен потенциалу $V_{II}^{I} + V_{II}^{II}$ в позиции II. Из соотношения $V_{II}^{I} - V_{I}^{I} = V_{I}^{II} - V_{II}^{II}$ следует:

$$\frac{\partial E}{\partial x} = \frac{V_{\mathrm{II}}^{\mathrm{I}} - V_{\mathrm{I}}^{\mathrm{I}}}{r-1} (1 - \varepsilon - rx).$$

Вместо *x* мы введем параметр упорядочения *v*, который выберем таким образом, чтобы v = 0 при $x = (1 - \varepsilon)/r$ (беспорядочное распределение) и $v = 1 - \varepsilon$ при $x = 1 - \varepsilon$ (упорядоченное распределение):

$$x = \frac{r-1}{r} \left[v + \frac{1-\varepsilon}{r-1} \right]. \tag{1}$$

Далее, мы примем энергию при беспорядочном распределении (v = 0) за нулевой уровень *E*. Тогда путем интегрирования уравнения $\partial E/\partial x$ найдем

$$E(v) = -\frac{(V_{11}^1 - V_1^1)(r-1)}{2r}v^2 = -R\alpha v^2,$$
(2)

где R — газовая постоянная, а α — положительная константа, которая описывает взаимодействие вакансий.

Энтропия легко определяется как функция x из числа конфигураций атомных позиций с определенной энергией, т. е. с определенным x:

$$S = k \ln \frac{N! \{(r-1) N\}!}{\{xN\}! \{(1-x) N\}! \{(1-\varepsilon-x) N\}! \{(r+\varepsilon-2+x) N\}!} = -kN \left[f(x) + (r-1) f\left(\frac{1-\varepsilon-x}{r-1}\right) \right],$$

где $f(x) = x \ln x + (1-x) \ln (1-x)$.

Заменяя х на v по уравнению (1), получаем:

$$\frac{S(v)}{R} = -\left[f\left\{\frac{r-1+\varepsilon-(r-1)v}{r}\right\} + (r-1)f\left(\frac{1-\varepsilon-v}{r}\right)\right] = \frac{r-1}{r}\left[r\ln r + \frac{r}{r-1}\ln \frac{r}{r-1} - (1-\varepsilon-v)\ln(1-\varepsilon-v) - (r+\varepsilon-1+v)\ln(r+\varepsilon-1+v) - \left(1+\frac{\varepsilon}{r-1}-v\right)\ln\left(1+\frac{\varepsilon}{r-1}-v\right) - \left(\frac{1-\varepsilon}{\tau-1}+v\right)\ln\left(\frac{1-\varepsilon}{r-1}+v\right)\right].$$
(3)

Если в случае AB_{r-1} решетка разделена на r подобных подрешеток 1, 2, ..., r, то в упорядоченном состоянии подрешетка 1 занята ионами A, а подрешетки 2, 3, ..., r заняты ионами B. В этом случае вполне возможно, что подрешетки 2, 3, ..., r имеют равные потенциалы. Таким является, например, случай порядка 1:4 в гранецентрированной кубической решетке. В нашей задаче эти потенциалы не равны по причине низкой симметрии задачи. Лучшим приближением могло бы быть описание состояния при помощи семи параметров по одному параметру на каждую подрешетку 2, 3, ..., r. Однако это математически

Рис. 13. а) Определение значений v, при которых кривая F = F(v) имеет экстремум, по пересечению кривых $\varphi(v)$ и 2rav/(r-1) T(см. уравнение (4)); b) решения v, найденные на рис. 13, а, в зависимости от температуры; c) кривые F = F(T) при постоянной температуре T. Все кривые вычерчены схематически.

очень сложная задача, так что мы в нашей работе будем пользоваться средней величиной указанных семи параметров.

Максимумы и минимумы кривой F = F(v) определяются уравнением $\partial F/\partial v = \partial E/\partial v - T \frac{\partial S}{\partial v} = 0$, из которого при использовании уравнений (2) и (3) следует:

$$\frac{2r}{(r-1)} \frac{a}{T} v = -\frac{r}{r-1} \frac{\frac{\partial S}{R}}{\frac{\partial v}{\partial v}} =$$
$$= \ln \frac{(r+\varepsilon-1+v)\left(\frac{1-\varepsilon}{r-1}+v\right)}{(1-\varepsilon-v)\left(1+\frac{\varepsilon}{r-1}-v\right)} =$$
$$= \varphi(v). \quad (4)$$

Это уравнение можно решить графически, что мы покажем для случая $\varepsilon = 0$ и $0 \leqslant v \leqslant 1$. При каждом значении r (r = 2, 3 и т. д.) φ асимптотически приближается к прямой линии v = 1 при возрастании значений v, а производная $(\partial_{\varphi}/\partial v)_{v=0}$ является положительной. Мы рассмотрим только случай r > 3. Тогда производная

 $(\partial^2 \varphi / \partial v^2)_{v=0}$ является отрицательной и кривая $\varphi = \varphi(v)$ имеет точку перегиба при определенной величине v. Рис. 13, а показывает кривую $\varphi = \varphi(v)$ и прямую линию $\frac{2rav}{(r-1)T}$. Значения v, при которых $\partial F / \partial v = 0$, найдены по точкам пересечения этих двух кривых. Результаты решения отложены в функции T на рис. 13, b. Рис. 13, c, который схематически изображает кривые F = F(v) при постоянном T, может быть получен так. При T = 0 $F = E = -R \iota v^2$, т. е. парабола. При $0 < T < T_1$ наклон кривой F = F(v) равен нулю при v = 0 и при $v \neq 0$, как это видно из двух точек пересечения на рис. 13, a. Эта кривая F = F(v) превращается в параболу при $T \rightarrow 0$, что возможно только в том случае, если кривая имеет максимум при v = 0 и минимум при $v \neq 0$. При $T_1 < T < T_2$ могут быть найдены три точки пересечения F = F(v) имеет максимум при v_1 и v_3 . В области $T_1 < T < T_2$ существует величина $T < T_v$. При $T = T_v$.

становится стабильным упорядоченное состояние: T_v является температурой перехода. Рис. 13, *b* показывает, что *v* изменяется скачком при $T = T_v$. Такой переход называется фазовым переходом первого рода. На рис. 13, *a* T_v фиксируется тем условием, что площади II и III

на рис. 13, *а Г_v* фиксируется тем условием, что площади 11 и 111 равны, что видно из следующего:

$$S(v) = \int_{1}^{v} \frac{\partial S}{\partial v} dv = \frac{R(r-1)}{r} \int_{v}^{1} \varphi(v) dv,$$
$$\frac{E(v)}{T} = \frac{1}{T} \int_{0}^{v} \frac{\partial E}{\partial v} dv = \frac{R(r-1)}{r} \int_{v}^{0} \frac{2r}{r-1} \frac{\alpha}{T} v dv$$

Из условия равновесия

$$\frac{E(0) - E(v_3)}{T_v} = S(0) - S(v_3)$$

следует, что

$$\int_{0}^{v_3} \frac{2r}{r-1} \frac{\alpha}{T_v} v \, dv = \int_{0}^{v_3} \varphi \left(v \right) \, dv,$$

а это означает на рис. 13, а, что площадь I + площадь III = площадь I + + площадь II.

Используя уравнение (2), мы находим

$$\frac{F(v) - F(0)}{RT} = -\frac{\alpha}{T} v^2 + \frac{S(0) - S(v)}{R} .$$
 (5)

Величина v_3 , при которой F обнаруживает минимум, может быть численно подсчитана с помощью уравнения (4). Подставляя значение v_3 , которое известно как функция α/T , в уравнение (5), можно найти температуру перехода T_v из условия, что величина α/T удовлетворяет уравнению

$$-\frac{\alpha}{T}v_3 + \frac{S(0) - S(v_3)}{R} = 0.$$
 (6)

I.9.2. Вычисление свободной энергии спинов при произвольном распределении вакансий (кривая f_s = f_s (T) на рис. 12)

Для упрощения мы предиоложим, что имеем один сорт катионов, например ионы Fe^{3+} , характеризующиеся квантовым числом $j = \frac{5}{2}$. При $T < T_N$ спонтанные намагниченности обеих подрешеток A и B

При $T < T_N$ спонтанные намагниченности обеих подрешеток A и B равны I (на моль $Fe_{r+\epsilon-1}S_r$). В приближении теории молекулярного поля Вейсса состояние спинов описывается безразмерным параметром

$$s = \frac{I}{I_0} , \qquad [(7)$$

где I_0 есть максимальная величина I. Если M_0 есть максимальный момент грамм-иона, то мы имеем

$$I_{0} = \frac{1}{2} \left(r + e - 1 \right) M_{0}. \tag{8}$$

Вейссово поле h, действующее на ион A или B, пропорционально I:

$$h = \gamma I = \frac{1}{2} \left(\mathbf{r} + \mathbf{s} - 1 \right) M_0 \gamma s.$$
(9)

Намагниченность *I* системы спинов *j*, на которые действует поле Вейсса *h*, выражается уравнением

$$I(T) = I_0 B_j \left(\frac{M_0}{RT}h\right), \qquad (10)$$

где $B_j(z)$ — функция Бриллюэна. Из уравнений (7), (9) и (10) следует, что

$$s = B_j \left(\frac{M_0^2}{RT} \frac{1}{2} \gamma \left(r + \varepsilon - 1 \right) s \right) . \tag{11}$$

Поскольку $s \to 0$ при $T \to T_N$, мы можем разложить функцию Бриллюэна при температурах немного ниже температуры Нееля в ряд, и тогда получим из (11)

$$T_N = \frac{j+1}{3j} \frac{M_0^2}{R} \frac{1}{2} (r + \varepsilon - 1) \gamma.$$
 (12)

Из уравнений (11) и (12) следует

$$s = B_j \left(\frac{3j}{j+1} \frac{T_{\dot{v}}}{T} s \right).$$
⁽¹³⁾

Обменная энергия равна -hI, п, используя уравнения (8), (9) и (12), мы находим

$$E(s) = -\frac{3j}{j+1} RT_N \frac{1}{2} (r+\varepsilon - 1) s^2.$$
 (14)

В приближении теории молекулярного поля Вейсса все конфигурации спинов с равным *s* имеют равную энергию. Согласно соотношению Больцмана, энтропия определяется числом этих конфигураций, которое полностью определяется равнодействующей спинов и числом возможных ориентаций одного спина, т. е. величинами *s* и *j*. Тогда мы можем ввести молярную энтропию $S_j(s)$ магнитных ионов, которая может быть численно подсчитана как функция *s*, и энтропию, приходящуюся на моль Fe_{r+e-1}S_r и равную $(r + e - 1) S_j(s)$. Используя уравнение (14), мы найдем

$$F(s) = (r + \varepsilon - 1) \left[-\frac{1}{2} \frac{3j}{j+1} RT_N s^2 - TS_j(s) \right],$$

$$f(s) \equiv \frac{F(s) - F(0)}{RT_N} = (r + \varepsilon - 1) \left[-\frac{1}{2} \frac{3j}{j+1} s^2 + \frac{T}{T_N} \frac{S_j(0) - S_j(s)}{R} \right].$$
(15)

Используя уравнение (13), графически найдем *s* как функцию T/T_N ; из этой функции и уравнения (15) можно подсчитать f_s в зависимости от T/T_N (рис. 12), функция же $S_j(s)$ может быть найдена прямым вычислением:

$$\frac{S_{j}(s)}{R} = -\frac{3j}{j+1} \frac{T_{\rm V}}{T} s^2 + \ln \sum_{-j}^{+j} m_j \exp\left\{\frac{3}{j+1} \frac{T_{\rm V}}{T} sm_j\right\} \,.$$

II. ОКСИДНЫЕ И СУЛЬФИЛНЫЕ ШПИНЕЛИ, СОДЕРЖАЩИЕ ХРОМ (MCr₂O₄ и MCr₂S₄)

II. 1. Введение

Известен ряд соединений MCr_2O_4 со структурой шпинели¹⁸. Мак-Гайр и др. ^{19,20} исследовали магнитные свойства серий материалов с M = Mn, Co, Ni, Zn; их результаты будут обсуждены ниже.

264

Пассерини и Баккареда²¹ приготовили шпинели состава Mn-, Cdи ZnCr₂S₄. Соединение FeCr₂S₄ известно как минерал добреелит, и Лундквист²² показал, что оно имеет структуру шпинели. Хан²³ попытался завершить получение серий путем продолжительного нагрева в кварцевых трубках Cr₂S₃ + MS, где M = Mg, Mn, Fe, Co, Ni, Zn, Cd, Hg, и нашел, что шпинели образуются во всех случаях, за исключением случаев, когда M = Mg, Ni.

II.2. Приготовление материалов

Мы приготовили для исследования следующие материалы: $FeCr_2O_4$, $NiCr_2O_4$, $MnCr_2S_4$, $FeCr_2S_4$, $CoCr_2S_4$, $NiCr_2S_4$, $ZnCr_2S_4$. $FeCr_2O_4$ был приготовлен следующим образом. Смесь $3Cr_2O_3$ и Fe_2O_3 была прокалена при 1260° С для того, чтобы образовался твердый раствор $Fe_1Cr_3O_3$

со структурой корунда*).

Полученный материал был размолот, смешан с порошком железа в молярном соотношении $4 \operatorname{Fe}_1 \operatorname{Cr}_3 \operatorname{O}_3$ к 1Fe и прокален при 1000° С $\overline{2}$ $\overline{2}$

в эвакуированной кварцевой трубке. Материал был затем дважды гомогенизирован путем мелкого дробления, прессовки его в виде шарика и прокаливания при 1000° С в кварцевой трубке.

NiCr₂O₄ был приготовлен из раствора Ni в нитрате хрома. Раствор был выпарен, нитраты подверглись разложению при 500°C, и шарик, спрессованный из тщательно перемешанного материала, был прокален при 1300°C в атмосфере кислорода.

Сульфохромиты были изготовлены путем нагревания смеси двух металлических порошков и серы в эвакуированной кварцевой трубке. Поскольку металлические зерна обычно являются довольно грубыми, препарат после первого прокаливания не является однородным. Поэтому материал был прокален снова почти вдвое дольше, а затем был размолот и спрессован в форме шарика.

Методы изготовления и получаемые фазы (идентифицированные с помощью рентгенограмм) приведены в таблице І. В полном согласии

Таблица I

Исходные мате- риалы	Обжиг 1	Обжиг 2	Обжиг З	Фазы (по рентге- новским данным)
Mn+2Cr+4S	24 часа при 900° С	20 часов при 900° С	48 часов при 900° С	шпинель
Fe+2Cr+4S	12 часов при 900° С	24 часа при 1000° С	3 часа при 1000° С	шпинель
То же	24 часа при 700° С	24 часа при 1200° С	_	шпинель – малые неизвестные добавки

Приготовление MCr₂S₄

^{*)} Согласно Мишелю и др. 24 , Fe₂O₃ и Cr₂O₃ полностью смешиваемы. Однако из рассмотрения наших рентгенограмм оказалось невозможным подтвердить образование смешанных кристаллов, так как постоянные решеток Fe₂O₃ и Cr₂O₃ почти одинаковы.

Продолжение

Исходные мате- риалы	Обжиг і	Обжиг 2	Обжиг 2 Обжиг 3	
Co+2Cr+4S	12 часов при 900° С	12 часов при 900° С	48 часов при 900° С	шпинель
Ni+2Cr+4S	12 часов при 900° С	24 часа при 900° С	36 часов при 1000° С	не шпинель, а структура NiAs
Zn+2Cr+4S	50 часов при 750° С	12 часов при 900° С	24 часа при 1000°С	шпинель

с выводами Хана, мы не добились успеха в получении NiCr₂S₄. Все другие материалы, которые обнаружили исключительно структуру шпинели, были использованы для магнитных измерений.

В таблице II производится сравнение постоянных решеток наших материалов со значениями, известными из литературы.

Таблица II

Соединение Ссылка		По литературным данным	По нашим изме- рениям		
$\begin{array}{c} \operatorname{FeCr}_2O_4 \\ \operatorname{MnCr}_2S_4 \\ \operatorname{FeCr}_2S_4 \\ \operatorname{CoCr}_2S_4 \\ \operatorname{ZnCr}_2S_4 \end{array}$	a 8,344 kX b 8,35-8,40 kX c 10,5 kX d 9,97 \pm 0,01 Å d 9,91 \pm 0,01 Å e 9,92 kX		8,392 Å 10,129 Å 9,998 Å 9,934 Å 9,983 Å		
 a) C. W. Parmelee, A. E. Badger, G. A. Ballam, Univ. Ill. Bull. 29, № 84 (1932). b) O. Krause, W. Thiel, Ber. dtsch. Keram. Ges. 15, 101 (1934). c) L. Passerini, M. Baccaredda, R. C. Accad. Lincei 14, 33 (1931). d) H. Hahn, Z. anorg. Chem. 264, 184 (1951). e) G. Natta, L. Passerini, R. C. Accad. Lincei 14, 38 (1931) 					

Постоянные решеток FeCr₂O₄ и MCr₂S₄

II.3. Кристаллографические свойства

На рис. 14 изображена элементарная ячейка структуры шпинели. (Более детальное описание шпинели дано в работе Е. В. Гортера²⁵.) В идеальной структуре анионы образуют плотную кубическую упаковку, в которой катионы занимают частично «тетраэдрические» междоузлия А, а частично «октаэдрические» междоузлия В, что символически записывается в виде формулы $A[B_2]X_1$. Неидеальная структура образуется из идеальной решетки путем сдвига всех анионов в направлении пространственных диагоналей таким образом, что все расстояния A - Xостаются одинаковыми. Позиции анионов фиксируются тогда с помощью одного параметра *и*, введенного на рис. 14 (в случае идеальной решетки $u = {}^3/_8 = 0.375$). У шпинели состава MN_2X_4 два экстремальных распределения катионов по междоузлиям A и B M [N₂] X₄ и N [NM] X₄ называются соответственно «нормальным» и «обращенным» распределениями. Рентгенографическими исследованиями установлено, что MgCr₂O₄¹⁸,

 $ZnCr_2O_4^{18}$, $ZnCr_2S_4^{23}$, $CdCr_2S_4^{23}$, $FeCr_2S_4^{22}$ являются нормальными шпине-лями. Более того, имеются косвенные указания на то, что ионы Сг³⁺ имеют по сравнению со всеми двух- или трехвалентными ионами наибольшую склонность к преимущественному занятию междоузлий В в шпинелях. Из сравнения постоянных решеток алюминатов, ферритов и хромитов Вервей и Хейльман¹⁸ заключили, что все хромиты MCr₂O₄ являются нормальными шпинелями. Ромейн²⁶ объяснил отклонение от закона Вегарда у серии смешанных кристаллов Ni $[Cr_2] O_4 - Fe [NiCr] O_4$, исходя из предположения о том, что Cr³⁺ занимают исключительно междоузлия В, а Е. В. Гортер²⁵ исходил из того же предположения при интерпретации кристаллографических и магнитных свойств серии твердых растворов $\operatorname{Fe}\left[\operatorname{Li}_{\underline{1}}\operatorname{Fe}_{\underline{3}}\right]\operatorname{O}_{\underline{4}}\operatorname{--}\operatorname{Fe}_{\underline{1}}\operatorname{Li}_{\underline{1}}\left[\operatorname{Cr}_{\underline{2}}\right]\operatorname{O}_{\underline{4}}\operatorname{.}\operatorname{Teo-}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$

ретические обоснования склонности ионов Cr³⁺ к занятию позиций, окруженных октаэдром из анионов, были приведены в работах Ван-Сантена и Ван-Виерингена 26,37 и

Рис. 14. Элементарная ячейка структуры шпинели. Позиции анионов, указанные малыми черными кружками, фиксируются параметром и, т. е. высотой аниона 1 над базисной плоскостью (выраженной в долях а). Большие кружки – катионы, расположенные в тетраэлрических позициях А. Малыс кружки – катионы, расположен-ные в октаздрических позициях В. (Например, малый кружок 1 октаэдрически окружен анионами 1, 2, 3, 4, 5 и анионом, расположенным в смежной ячейке.) Подрешстки, обсуждаемые в разделе 11.5.2.1., обозначены на рисунке следующим образом: подрешетка $A_1 - 1$, 1', 1'' и т. д.; $A_2 - 2$, 2' и т. д.; $B'_1 - 1$, 1' и т. д.

Гудинафа и Лоба 33. В большинстве случаев, однако, трудно установить сколь-нибудь точно распределение катионов, так что невозможно исключить вероятности того, что распределение катионов в шпинели, которое считается нормальным, на самом деле отклоняется от нормального на несколько процентов.

II.4. Магнитные свойства

Удельная намагниченность σ при H=8000 эрстед и удельная восприимчивость у были измерены в зависимости от температуры для соединений FeCr₂O₄, MnCr₂S₄, FeCr₂S₄, CoCr₂S₂ и ZnCr₂S₄. Затем с была измерена в зависимости от H при 20,4° К. Результаты измерений приведены на рис. 15 – 19.

В случае ZnCr₂S₄ закон Кюри—Вейсса выполняется при температурах выше 100° К. Кривые $1/\chi = 1/\chi$ (*T*) для других соединений имеют форму, характерную для ферримагнитных веществ, и следуют закону Кюри-Вейсса при более высоких температурах.

В законе Кюри—Вейсса $1/\chi = (T - T_a)/C$ имеются две константы константа Кюри С и «асимптотическая температура Кюри» Т_а, — которые могут быть найдены из экспериментальных кривых $1/\chi = 1/\chi$ (T). Из экспериментального значения С была вычислена константа Сат, относящаяся к грамм-атому магнитных ионов. Та и Сат даны в таблице III

Таблица III

Ч Соедине- ние за	С _{ат,} вы- исленное по чисто пиновым начениям моментов ионов	Сат	т _а (°К)	<i>Т_К</i> (°К)	σ0	<i>m</i> 0	$r=T_K/ T_a $
$\begin{array}{c} \operatorname{MnCr}_{2}\operatorname{O}_{4}^{*})\\ \operatorname{FeCr}_{2}\operatorname{O}_{4}\\ \operatorname{CoCr}_{2}\operatorname{O}_{4}^{*})\\ \operatorname{NiCr}_{2}\operatorname{O}_{4}\\ \operatorname{ZnCr}_{2}\operatorname{O}_{4}^{*})\\ \operatorname{MnCr}_{2}\operatorname{S}_{4}\\ \operatorname{FeCr}_{2}\operatorname{S}_{4}\\ \operatorname{CoCr}_{2}\operatorname{S}_{4}\\ \operatorname{ZnCr}_{2}\operatorname{S}_{4} \end{array}$	2,71 2,25 1,87 1,58 1,87 2,71 2,25 1,87 1,87	$\begin{array}{c} 2,76\\ 2,29\pm0,05\\ 2,55\\ 2,20^*)\\ 1,85\\ 2,54\pm0,06\\ 2,22\pm0,05\\ 2,08\pm0,07\\ 1,67\pm0,03\\ \end{array}$	$\begin{array}{c}310 \\ -400 \pm 30 \\ -650 \\ -570^*) \\ -380 \\ -12 \pm 10 \\ -234 \pm 14 \\ -380 \pm 40 \\ -18 \pm 8 \end{array}$	$ \begin{array}{r} 55\\90\pm5\\100\\80\pm10\\95\pm10\\195\pm5\\240\pm5\\-\\20,\ 27\end{array} $	$ \begin{array}{r} 19,5\pm \\ \pm 5,5 \\ \hline 8\pm 1 \\ \hline 30\pm 1 \\ 49\pm 1 \\ - \end{array} $	$\begin{array}{c} 1,25\\ 0,8\pm0,2\\ \hline \\ 0,32\pm0,04\\ \hline \\ 2\\ 1,55\pm0,05\\ 2,55\pm0,06\\ \hline \\ \end{array}$	$0,180,23\pm0,030,150,14\pm0,02(0,14\pm0,12)^{-1}0,84\pm0,070,63\pm0,08$

(приведенные в таблице значения погрешностей определяются погрешностями измерений χ и T). Во втором столбце даны значения C_{ar} , вычисленные из суммы чисто спиновых моментов ионов.

Все вещества, за исключением ZnCr_2S_1 , являются ферримагнетиками и имеют точки Кюри T_K ниже комнатной температуры. Из формы кривой $\sigma = \sigma(T)$ при H = 8000 эрстед и

наклона кривой $\sigma = \sigma(H)$ при 20,4° К была оценена спонтанная намагни-

ченность σ_0 при T = 0, а намагничен-

ность m_0 , приходящаяся на одну молекулу (в магнетонах Бора μ_B),

 $m_0 = \frac{\text{молекулярный вес} \times \sigma_0}{\text{число Авогадро} \times \mu_{\text{B}}} =$

кривые $1/\chi = 1/\chi$ (*T*) для MnCr₂O₄, CoCr₂O₄, NiCr₂O₄ и ZnCr₂O₄. Из этих

кривых, которые в общем имели тот же вид, что и наши кривые, мы вычислили значения C, $C_{\rm ar}$ и T_a . Все

соединения, за исключением ZnCr₂O₄,

были ферримагнетиками, и авторы измерили кривые $\sigma = \sigma(T)^{20,27}$ вплоть

до 4° К. Их значения температур

молекулярный вес×оо

5585

измерили

была вычислена из соотношения

Мак-Гайр и др. 19

Рис. 15. FeCr₂O₄. Температурная зависимость удельной намагниченности σ при H = 8000 эрстед и обратной величины удельной восприимчивости $1/\chi$ и кривая $\sigma = \sigma$ (H) при 20,4° K. Пунктирная прямая указывает наклон кривой Кюри — Вейсса, соответствующей «чисто спиновым» состояниям обоих ионов.

Кюри для $MnCr_2O_4$ и $CoCr_2O_4$ и значение m_0 для $MnCr_2O_4$, у которого была обнаружена нормальная кривая $\sigma = \sigma(T)$, использованы в таблице III.

Кривая $1/\chi = 1/\chi$ (T) для NiCr₂O₄, найденная Мак-Гайром и др., имеет в районе 300° K изгиб (рис. 20). Дальнейшее исследование показало, что этот изгиб обусловлен фазовым переходом при 310° K. Браун нашел, что элементарная ячейка этого кристалла превращается из кубической (выше 310° K) в тетрагональную и что соотношение осей при комнатной температуре равно 1,025. Те же результаты были недавно опубликованы Делормом ³⁸.

Фольгер наблюдал аномальный рост удельной теплоемкости вблизи 300° K, используя метод, описанный ранее²⁸. Им было найдено, что удельная теплоемкость C_n выше 314° K монотонно возрастает с ростом

Рис. 16. $MnCr_2S_4$. Обозначения см. на рис. 15 (кривая $\sigma = \tau(T)$ измерена при H = 8400 эрстед). Вставка: часть кривой $\sigma = \sigma(T)$ при низких температурах, вплоть до 14° К.

Рис. 17. FeCr₂S₄. Удельное сопротивление постоянному току ρ (Ω·см) в зависимости от температуры. Смысл других обозначений см. на рис. 15.

температуры, и гладкая часть кривой $C_n = C_n(T)$ была экстраполирована к температурам ниже 314° К. Было предположено, что аномальная добавка ΔC к удельной теплоемкости представляет собой разность между C_n и наблюдаемым значением. Отношение $\Delta C/C_n$ в зависимости от температуры показано на рис. 20, откуда видно, что кривая имеет

Рис. 18. СоСг₂S₄. Смысл обозначений указан на рис. 15.

Рис. 19. ZnCr₂S₄. Смысл обозначений указан на рис. 15.

максимум при 309° К. Далее кривые $\sigma = \sigma(T)$ были сняты при трех значе ниях H (рис. 20). Эти кривые обнаружили аномальную кривизну при температурах, близких к 30° К. Эта аномалия уменьшается при возрастании поля, и мы полагаем, что кривая зависимости истинной намагниченности от температуры имеет нормальную форму.

Среди всех наших образцов только FeCr_2S_4 был достаточно хорошо сиечен для того, чтобы производить измерения его сопротивления р на постоянном токе. Рис. 17 показывает, что кривая $\rho = \rho(T)$ имеет 8 уфн. т. LXVI, вып. 2

аномалию, которая совпадает с точкой Кюри. Кривая $\ln \rho = f(1/T)$ (на рисунке не приведена) является прямой линией при $T > 200^{\circ}$ К и,

кажется (после изгиба между 200° К и 135° К), снова превращается в прямую с несколько большим наклоном при температурах ниже 135° К.

11.5. Обсуждение: сравнение теории с экспериментом

II.5.1. Введение

Мы попытались применить теорию ферримагнетизма к объяснению магнитных свойств шпинелей М [Cr₂] Х₄. Примеры некоторых качественных подтверждений теорий Нееля²⁹ и Яфета и Киттеля³⁰ были даны Е. В. Гортером²⁵. Однако количественное исследова-

Рис. 20. NiCr₂O₄. Температурная зависимость обратной величины удельной восприимчивости 1/χ (по Мак-Гайру и др. ¹⁹), удельной намагниченности σ при трех значениях внешнего поля *H* и отношения аномальной части Δ*C* к нормальной части *C*_n удельной теплоемкости.

ние в общем теоретически невозможно. В большинстве шиинелей два или более сортов ионов находятся в междоузлиях В, и в этом случае должны приниматься в расчет по крайней мере шесть видов взаимодействий. Например, в Fe[NiFe]O₄ имеют место взаимодействия Fe(A)-- Fe (A), Ni (B) - Fe (A), Fe (A) - Fe (B) и т. д. Помимо причин, обусловленных математическими трудностями, количественное исследование невозможно еще и потому, что из формы кривой $\sigma = \sigma(T)$ и нелинейной части кривой $1/\chi = 1/\chi(T)$ в области температур несколько выше точки Кюри должны быть определены шесть параметров. Поскольку приближение Вейсса, которое в этом случае используется, очень неточно в указанной области температур, такие вычисления не будут иметь большого значения. Если допустить, что шпинели A [Cr2] X4 являются нормальными, то имеют место только три вида взаимодействий АА, ВВ и АВ, что приводит к существенному упрощению. Мы будем исходить, однако, не из теории Нееля, а из модифицированного варианта теории, данного Яфетом и Киттелем³⁰. В строгой трактовке эта теория должна была бы включать в себя пять параметров взаимодействий. Однако мы покажем, что благодаря рассмотрению представлений о косвенном механизме взаимодействия для получения хорошего приближения достаточно введения трех параметров. Тогда становится возможным применение теории.

II.5.2. Теория Яфета и Киттеля для шпинелей, содержащих катионы двух сортов с нормальным расположением

Задача заключается в том, чтобы описать спиновую упорядоченность в шпинелях A [B₂] X₄ (где A — магнитный ион одного, а B — магнитный ион другого сорта) при отрицательном взаимодействии AB в соответствии с теорией Вейсса. Если взаимодействие AB велико по сравнению с отрицательными взаимодействиями AA и BB (или если эти последние взаимодействия положительны), то будет иметь место спиновая упорядоченность такого вида: \vec{A} [\vec{B}_2] X_4 , т. е. результирующие моменты спинов в решетках A и B будут антипараллельны. Эта модель двух подрешеток, введенная Неелем²⁹, не может быть достаточной, если взаимодействие AB мало по сравнению со взаимодействиями AAи BB. В предельном случае, т. е. если бы взаимодействия AB совсем не было, решетки A и B были бы независимы друг от друга и как внутри решетки A, так и внутри решетки B порядок спинов был бы антиферромагнитным. Поэтому Яфет и Киттель подразделяют решетку Aна эквивалентные подрешетки таким образом, что эти подрешетки соответствуют указанному выше антиферромагнитному порядку и решетка B делится аналогичным образом. Способ, которым должно быть проведено это подразделение, зависит от относительной силы имеющихся в решетке взаимодействий AA и BB. В следующем разделе мы покажем, что рассмотрение различных взаимодействий AA и BB приводит к разделению на две подрешетки A (A_1 и A_2) и на четыре подрешетки B (B'_1 , B'_2 , B'_3 , B'_4), что может быть символически записано в виде формулы A_1A_2 [$B'_1B'_2B'_3B'_4$] X_8 .

Результирующая спиновая намагниченность каждой из шести подрешеток является вектором. Как будет видно из последующих разделов, существенным пунктом теории Яфета и Киттеля является то, что должны быть рассмотрены все относительные ориентации векторов намагниченности. В приближении молекулярного поля Вейсса спины ионов данной подрешетки рассматриваются как система невзаимодействующих магнитных диполей, на которую действует гипотетическое магнитное поле, поле Вейсса этой подрешетки. Очевидно, что результирующий момент этих спинов должен ориентироваться в направлении поля Вейсса. Это условие, как мы увидим, ограничивает число а priori возможных векторных конфигураций.

Обозначим через \mathbf{a}_i и \mathbf{b}'_i векторы намагниченности подрешеток A_i и B'_i ; через \mathbf{A} и \mathbf{B} обозначим соответственно результирующие намагниченности решеток A и B ($\mathbf{A} = \sum \mathbf{a}_i$, $\mathbf{B} = \sum \mathbf{b}'_i$); \mathbf{h}_{A_i} и $\mathbf{h}B'_i$ — молекулярные поля Вейсса, действующие на ион в подрешетках A_i и B_i , а $n, na', na, n3', n\beta$ — константы Вейсса для взаимодействий $A_iB'_j$, $A_iA_i, A_iA_{j\neq i}$, $B'_iB'_i$ и $B'_iB'_{j\neq i}$ соответственно.

С использованием этих обозначений уравнения для шести молекулярных полей Вейсса будут иметь вид

$$\begin{aligned} \mathbf{h}_{A_{1}} &= -n \left[\alpha' \mathbf{a}_{1} + \alpha \mathbf{a}_{2} + \mathbf{b}_{1}' + \mathbf{b}_{2}' + \mathbf{b}_{3}' + \mathbf{b}_{4}' \right] = \\ &= -n \left[(\alpha' - \alpha) \mathbf{a}_{1} + \alpha \mathbf{A} + \mathbf{B} \right], \\ \mathbf{h}_{B_{1}'} &= -n \left[\mathbf{a}_{1} + \mathbf{a}_{2} + \beta' \mathbf{b}_{1}' + \beta \left(\mathbf{b}_{2}' + \mathbf{b}_{3}' + \mathbf{b}_{4}' \right) \right] = \\ &= -n \left[(\beta' - \beta) \mathbf{b}_{1}' + \mathbf{A} + \beta \mathbf{B} \right] \mathbf{H} \mathbf{T}. \mathbf{H}., \end{aligned}$$
(16)

где константы Вейсса положительны при отрицательных взаимодействиях. Подрешетки выбираются так, что α' < α и β' < β.

Так как вектор \mathbf{a}_1 должен быть параллелен вектору \mathbf{h}_{A_1} , из первого уравнения следует, что вектор $\alpha \mathbf{A} + \mathbf{B}$ параллелен или антипараллелен \mathbf{a}_1 . Аналогичным путем из уравнения для \mathbf{h}_{A_2} получается, что вектор $\alpha \mathbf{A} + \mathbf{B}$ параллелен или антипараллелен \mathbf{a}_2 . Следовательно, если \mathbf{a}_1 и \mathbf{a}_2 не параллельны, то

$$\alpha \mathbf{A} + \mathbf{B} = 0 \tag{17}$$

И

$$\mathbf{h}_{A_i} = n \left(\alpha - \alpha' \right) \mathbf{a}_i. \tag{18}$$

Уравнение (18) аналогично уравнению для молекулярного поля Вейсса ферромагнитного вещества. Следовательно, функции $a_1(T)$ 8* и $a_2(T)$ подобны кривой намагниченности обычного ферромагнитного вещества с константой Вейсса n(a-a'), и $a_1(T) = a_2(T)$.

Аналогичным путем можно получить, что

$$\mathbf{A} + \beta \mathbf{B} = 0 \tag{19}$$

a

$$\mathbf{h}_{b_i'} = n \left(\beta - \beta'\right) \mathbf{b}_i' \tag{20}$$

в случае, когда векторы b_i не параллельны.

Если два вектора \mathbf{a}_i и одновременно четыре вектора \mathbf{b}'_i не параллельны, то \mathbf{A} и \mathbf{B} должны удовлетворять как уравнению (17), так и уравнению (19), что возможно только, если $\alpha\beta = 1$. При произвольных α и β мы, следовательно, не нуждаемся в рассмотрении конфигураций, в которых встречаются произвольные углы между векторами \mathbf{a}_i и между векторами \mathbf{b}'_i одновременно.

В случае, когда векторы \mathbf{a}_i параллельны, а векторы \mathbf{b}'_i не параллельны, существует неопределенное количество конфигураций с теми же \mathbf{a}_i (и, следовательно, с одинаковыми A) и одинаковыми B, потому что направления четырех векторов \mathbf{b}'_i могут быть выбраны неопределенным количеством различных способов так, что их векторная сумма останется неизменной. Уравнения (16) и (20) показывают, что абсолютные значения h_{A_i} и $h_{B'_i}$ равны для всех этих конфигураций. Следовательно, обменная энергия не зависит от того способа, каким четыре вектора \mathbf{b}'_i складываются в данный вектор B, и то же самое справедливо для энтропии, которая определянется через a_i и b'_i . Тогда мы можем без ограничения общности положить $\mathbf{b}'_1 = \mathbf{b}'_3$, а $\mathbf{b}'_2 = \mathbf{b}'_4$ и заменить четыре вектора \mathbf{b}'_i двумя векторами $\mathbf{b}_1 = 2\mathbf{b}'_1 = 2\mathbf{b}'_3$ и $\mathbf{b}_2 = 2\mathbf{b}'_2 = 2\mathbf{b}'_4$.

II.5.2.1. Обменные взаимодействия

Представление о косвенном обменном взаимодействии заключается в том, что связь спинов двух катионов P и Q осуществляется через промежуточный анион X, что символически записывается в форме Р-Х-Q (Крамерс³¹). Такое взаимодействие возможно лишь тогда, когда волновые функции электронов Р и Q перекрываются с волновыми функциями Х. Следовательно, можно ожидать, что сила взаимодействия быстро убывает с ростом расстояний Р-Х и Q-Х. Согласно специальному механизму взаимодействия такого рода, «сверхобменному» взаимодействию, введенному Андерсоном³², взаимодействие зависит, кроме того, от угла РХО таким образом, что наиболее сильное и наиболее слабое взаимодействия имеют место соответственно при углах 180° и 90°. В таблице IV приведены углы РХQ и расстояния Р–Х и Q–Х для наиболее выгодных конфигураций А–Х–В, А–Х–А и В–Х–В. Так как нет количественных данных о том, как взаимодействие зависит от угла и расстояний между ионами, невозможно решить, является ли взаимодействие В1В2 (наименьшее межионное расстояние и наиболее невыгодный угол) более сильным или более слабым, чем взаимодействие В1В2, (одно наибольшее межионное расстояние, наиболее выгодный угол). Мы предполагаем, однако, что взаимодействие B₁B_{1'} значительно слабее, чем взаимодействие В₁В_{2'} (угол меньше, одно расстояние значительно менее выгодное). Далее мы полагаем, что взаимодействие A_1A_2 сильнее, чем $A_1A_{1'}$ (угол одинаково невыгоден, межионные расстояния значительно более невыгодны), но здесь это не так очевидно, как в случае ВВ. При возрастании межионных расстояний взаимодействия не могут уже сохранять прежний тип P — X — Q вследствие экранирующих эффектов окружающих ионов.

Таблица IV

Расстояния катион—анион и углы в случаях наисильнейших взаимодействий А—Х—В, А—Х—А и В—Х—В для идеальной структуры шпинели. Выделены кратчайшие расстояния (1/80/3 для А—Х и 1/40 для В—Х). Последний столбец содержит коэффициенты Вейсса, которые обусловлены данным взаимодействием

Взаимодействие (см. рис. 1)	A—X	B-X	Угол°	Коэффициент Вейсса
$\begin{array}{c} A_1 - X - B_1 \\ A_1 - X - B_2 \\ A_1 - X - B_3' \\ A_1 - X - B_4' \end{array}$	1 1 1,73	1 1,73 1,92 1,92	125 180 155 140	n n n n
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c}1;\ 1,92\\1,92;\ 1,92\\1;\ 2,52\\1;\ 3\end{array}$		70 118 132 141	a a' a' a
$\begin{array}{c} B_{1} - X - B_{2} \\ B_{1} - X - B_{2}' \\ B_{4} - X - B_{2}' \\ B_{1} - X - B_{1}' \end{array}$		1; 1 1; 1,73 1; 2,24 1; 2,24	90 125 154 117	3 3 8 8

С таким явлением мы встречаемся в случае взаимодействий $B_4B_{2'}$ и $B_1B_{1'}$. Из рис. 14 видно, что взаимодействие $B_{1'} - X_5 - B_1$ должно возмущаться анионом X_6 , который экранирует электроны $B_{1'}$ и X_5 друг от друга. Если взаимодействие между $B_{1'}$ и B_1 вообще существует, то оно должно, пожалуй, иметь другой механизм, типа P - X - X - Q, а не типа P - X - Q, как указал Неель²⁹.

Если разделение решеток А и В на подрешетки сделано так, как указано на рис. 14, то взаимодействия $A_1 - X - A_2$ и $A_1 - X - A_{2'}$ вносят вклад в обменную энергию, равный а; $A_1 - X - A_1' - \alpha'$; $B_1 - X - B_2$, $B_1 - X - B_{2'}$ и $B_4 - X - B_{2'} - \beta$; $B_1 - X - B_{1'} - \beta'$ (см. последний столбец в таблице IV). Все взаимодействия A - X - B дают вклад в обменную энергию, равный *n*. Мы можем сделать тенерь два предположения:

1. Взаимодействием $B_1 - X - B_1$, можно пренебречь по сравнению с взаимодействиями $B_1 - X - B_2$ и $B_2 - X - B_2$, что, как было указано, можно обосновать большой разницей в межионных расстояниях и различием в типах взаимодействия. Следовательно, мы будем полагать $\beta' = 0$.

2. Взаимодействие иона A с другими ионами A является более слабым, чем взаимодействие иона A с ионами B, т. е. $|\alpha + \alpha'| < 1$. Это предположение основано на сравнении межионных расстояний и углов для сильнейших взаимодействий A - X - A и A - X - B(см. таблицу IV).

Мы увидим ниже, что из предположения 2 следует, что экспериментальные данные абсолютно несовместимы с предположением о наличии угла между \mathbf{a}_1 и \mathbf{a}_2 . Следовательно, теория применима всегда лишь при \mathbf{a}_1 , параллельном \mathbf{a}_2 . В этом случае α и α' встречаются в уравнениях только в комбинации $\alpha + \alpha'$, так что формально имеется лишь один параметр взаимодействия АА, который мы назовем α . В последующих разделах возможность наличия угла между \mathbf{a}_1 и \mathbf{a}_2 рассматривается только из соображений симметрии.

11. 5.2.2. Конфигурации при T = 0

Полагая $\mathbf{b}_1 = 2\mathbf{b}_1' = 2\mathbf{b}_3'$, $\mathbf{b}_2 = 2\mathbf{b}_2' = 2\mathbf{b}_4'$ и $\alpha' = \beta' = 0$, преобразуем шесть уравнений (16) к следующим четырем:

$$\mathbf{h}_{A_1} = -n \left[\alpha \mathbf{a}_2 + \mathbf{b}_1 + \mathbf{b}_2 \right] = -n \left[-\alpha \mathbf{a}_1 + \alpha \mathbf{A} + \mathbf{B} \right],$$

$$\mathbf{h}_{B_1} = -n \left[\mathbf{a}_1 + \mathbf{a}_2 + \frac{1}{2} \beta \mathbf{b}_1 + \beta \mathbf{b}_2 \right] = -n \left[-\frac{1}{2} \beta \mathbf{b}_1 + \mathbf{A} + \beta \mathbf{B} \right] \mathbf{H} \mathbf{T}. \mathbf{A}.,$$
 (21)

т. е. к уравнениям молекулярных полей Вейсса для четырех подрешеток A_1 , A_2 , B_1 , B_2 с константами Вейсса 0, ал, $\frac{1}{2}\beta n$, βn , n для взаи-

модействий $A_i A_i$, $A_i A_{j \neq i}$, $B_i B_i$, $B_i B_{j \neq i}$ и $A_i B_j$ соответственно.

Обменная энергия имеет следующее выражение:

$$E = -\frac{1}{2} \left[a_1 h_{A_1} + a_2 h_{A_2} + b_1 h_{B_1} + b_2 h_{B_2} \right].$$
(22)

Как мы обсудили в разделе II.5.2, нам не нужно рассматривать те конфигурации, в которых одновременно встречаютия произвольные углы между векторами \mathbf{a}_i и \mathbf{b}_i . Далее, из уравнений (17) и (19) видно, что \mathbf{A} и \mathbf{B} антипараллельны в тех случаях, когда между векторами \mathbf{a}_i или \mathbf{b}_i существуют углы. Тогда нам придется рассмотреть лишь четыре конфигурации, изображенные на рис. 21 и обозначенные символами $\hat{\mathbf{b}}_i$, \triangleright , \triangleleft , \downarrow î.

Для конфигураций ⊳ мы нашли, что А + βВ = 0, откуда следует, что

$$\sin \psi = \frac{1}{\beta} \frac{a}{b}, \qquad (23)$$

Рис. 21. Четыре конфигурации векторов намагниченности подрешеток.

где $a = a_i$, $b = b_i$, а ϕ – угол, указанный на рис. 21. Согласно (23), конфигура-

ция > осуществляется только при $\beta > \frac{a}{b}$. Из (21) и (23) следует, что

$$h_{A_i} = n\left(\frac{2}{\beta} - \alpha\right), \ h_{B_i} = \frac{1}{2}n\beta b.$$
 (24)

Из (22) и (24) находим

$$E_{\triangleright} = -n \left[\left(\frac{2}{\beta} - \alpha \right) a^2 + \frac{1}{2} \beta b^2 \right].$$
(25)

Аналогичным путем мы находим для конфигураций 🔿

$$\sin \varphi = \frac{1}{a} \frac{b}{a}, \ h_{A_i} = n \alpha a, \ h_{B_i} = n \left(\frac{2}{a} - \frac{3}{2} \beta \right) b, \tag{26}$$

$$E_{\triangleright} = -n \left[aa^2 + \left(\frac{2}{a} - \frac{3}{2} \beta \right) b^2 \right].$$
 (27)

Следовательно, конфигурация < осуществляется лишь при α > b/a. Для конфигурации ↓↑ мы имеем:

$$h_{A_i} = n \left[-\alpha a + 2b \right], \quad h_{B_i} = n \left[2\alpha - \frac{3}{2}\beta b \right], \quad (28)$$

$$E_{\downarrow\uparrow} = -n \left[4ab - \alpha a^2 - \frac{3}{2} \beta b^2 \right], \qquad (29)$$

а для конфигурации []:

$$h_{A_i} = naa, \quad h_{B_i} = \frac{1}{2} n\beta b, \tag{30}$$

$$E_{\uparrow\uparrow} = -n \left[\alpha a^2 + \frac{1}{2} \beta b^2 \right].$$
(31)

При данных значениях a и b конфигурация с наинизшим значением E является устойчивой *). Из $E_{\triangleright} \ll E_{\uparrow\uparrow\uparrow}$, а также из $E_{\triangleleft} \ll E_{\uparrow\uparrow\uparrow}$ следует $a\beta < 1$; следовательно, при $a\beta < 1$ конфигурация \triangleleft и \triangleright являются более устойчивыми, чем конфигурация $\uparrow\uparrow$.

Из $E_{\triangleright} \leqslant E_{\downarrow\uparrow}$ следует, что $(\alpha/\sqrt{\beta} - \sqrt{\beta}b)^2 \gg 0$, и это верно всегда: при комбинациях α и β , при которых возможно образование конфигурации \triangleright (условие $\beta > a/b$), эта конфигурация является более устойчивой, чем $\downarrow\uparrow$. То же следует из соотношения $E_{\triangleleft} \leqslant E_{\downarrow\uparrow}$ для конфигурации \triangleleft .

цип (условае р 2 и/о), эта конфигурация явлется ослее устоп набол, чем $\downarrow\uparrow$. То же следует из соотношения $E_{\triangleleft} \leqslant E_{\downarrow\uparrow}$ для конфигурации \triangleleft . Значения a_0 и b_0 , а и b при T = 0 определяются из условия, что E имеет наинизшее возможное значение. Из (25), (27), (29) и (31) легко может быть показано, что для каждой конфигурации наинизшее значение E получается при максимальных значениях a и b. Если мы определяем a и b как значения, относящиеся к молю AB₂X₄, то тогда

$$a_{0} = \frac{1}{2} N \mu_{B} g j_{A} = \frac{1}{2} M_{A_{0}},$$

$$b_{0} = N \mu_{B} g j_{B} = M_{B_{0}},$$

$$(32)$$

где $g - \phi$ актор Ланде (который равен 2 для чисто спинового момента иона), j – квантовое число (для чисто спиновых состояний: $\operatorname{Cr}^{3+} - \frac{3}{2}$; $\operatorname{Mn}^{2+} - \frac{5}{2}$; $\operatorname{Fe}^{2+} - 2$ и т. д.), $\mu_{\rm B}$ – магнетон Бора, N – число Авогадро, а M_{A_0} и M_{B_0} – максимальные значения спонтанной намагниченности Nионов ($M_A = 2a$, $M_B = 6$ при температуре T).

Конфигурации при $\hat{T} = 0$ определяются с помощью а и β следующим образом:

конфигурация $\uparrow \uparrow$ устойчива при $\alpha\beta > 1$,

*	\triangleright	»	»	$lphaeta < 1$ if $\beta > a_0/b_0 = j_A/2j_B$,
*	\triangleleft	»	»	а $eta < 1$ и а $> b_{0}/a_{0} = 2j_B/j_A$,
»	$\downarrow\uparrow$	»	»	$a < b_0/a_0$ is $eta < a_0/b_0$.

Эти условия делят диаграмму ($\alpha - \beta$) на четыре области, в каждой из которых одна из четырех конфигураций устойчива при T = 0 (рис. 22).

Мы сравним теперь изложенную теорию с теорией Нееля, которая основана на предположении о том, что существуют только конфигурации ↓↑. В этом случае энергия выражается формулой (29):

$$E_N = -n \left[4ab - \alpha a^2 - \frac{3}{2} \beta b^2 \right].$$
 (33)

 $E_N = 0$ при a = b = 0; как следует из (33), порядок имеет место, лишь если $E_N < 0$, т. е. если $\alpha\beta < {}^8/_3$. Из (33) можно вычислить, что при $\alpha\beta < {}^8/_3$ и при $\alpha > \frac{2b_0}{a_0}$ наинизшее значение E_N получается при $b = b_0$ и a, меньшем,

^{*)} Конфигурация с наинизшим значением энергии имеет также и наинизшее значение свободной энергии, так как энтропия зависит только от *a* и *b* и не зависит от относительных ориентаций **a**_i и **b**_i (см. гл. I, приложение 1.9.1.)

чем максимальное значение a_0 ,затем, что при $a_3^3 < {}^8/_3$ и $\beta > 4a_0/3b_0$ наинизшее значение E_N получается при $a = a_0$ и $b < b_0$ и, наконец, что конфигурация $a = a_0$, $b = b_0$ является устойчивой при T = 0, при $a < 2b_0/a_0$ и $\beta < 4a_0/3b_0$.

Области, в которых указанные выше четыре конфигурации устойчивы при T = 0, отмечены на рис. 22. (Намагниченности, отличные от намагниченности насыщения $a < a_0$ и $b < b_0$, представлены пунктирными стрелками.) Согласно обеим теориям, ферримагнитные состояния устойчивы, если взаимодействия AA и BB достаточно малы по сравнению со взаимодействием AB, что выражается соответственно условиями $\alpha_3^3 < 1$ и $\alpha_3^3 < \frac{8}{3}$. По Яфету и Киттелю область ферримагнетизма меньше, чем по Неелю: это понятно, так как в первом случае конкурентом ферримагнитному состоянию является состояние антиферромаг-

Рис. 22. Диаграмма ($\alpha - \beta$) при T = 0, согласно теориям Яфета и Киттеля и Нееля, обе построены для одного и того же значения $b_0/a_0 = 1,25$.

нитное (энергия < 0), а во втором случае — состояние парамагнитное (энергия = 0).

В области устойчивости конфигурации $\downarrow\uparrow$, по Яфету и Киттелю, $E_N = E_{\downarrow\uparrow}$, вне этой области E_N больше, чем энергия по Яфету и Киттелю, что можно интерпретировать следующим образом. В случае, когда взаимодействие *BB* является сильным, а взаимодействие *AA* достаточно мало по сравнению со взаимодействием *AB*, ферримагнитный порядок спинов возможен только в том случае, если спины *B* не все параллельны. Согласно Неелю, это обусловлено хаотическим распределением части спинов *B*; по Яфету и Киттелю, однако, это обусловливается определенным упорядоченным распределением, именно таким, что все пары спинов с более слабой связью (B_1B_1) ориентируются наиболее невыгодно (т. е. параллельно), а все пары спинов с более сильной связью (B_1B_2) ориентируются наиболее выгодным способом (т. е. образуют некоторый угол друг с другом). При данном результирующем моменте спинов *B*, следовательно, при данной энергии взаимодействия *AB*, возрастание энергии за счет взаимодействий *BB* будет по теории Яфета и Киттеля значительно меньтим, чем в теории Нееля.

II.5.2.3. Температуры Кюри и Нееля

Намагниченность M_j системы N спинов (характеризующихся квантовым числом j), на которую действует поле Вейсса h и внешнее ноле H, выражается формулой

$$M_{j}(T) = M_{j_{0}}B_{j}\left(\frac{M_{j_{0}}}{RT}(h+H)\right), \qquad (34)$$

в которой $B_j(Z)$ — функция Бриллюэна. При $Z \ll 1$ мы можем разложить B_j в ряд и найти

$$M_{j} = \frac{j+1}{3j} \frac{M_{j_{0}}^{2}}{RT} (h+H) = \frac{C_{j}}{T} (h+H),$$
(35)

где С₁ — константы Кюри:

$$C_{j} = \frac{j+1}{3j} \frac{M_{j_{0}}^{2}}{R} = \frac{(N\mu_{\rm B})^{2}}{3R} g^{2} j (j+1).$$
(36)

Температура, при которой происходит переход из состояния $\downarrow\uparrow$ в парамагнитное состояние, мы назовем T_K . При температурах чуть ниже $T_K M_A$ и M_B малы, так что является применимым уравнение (35), в котором h выражается формулой (28). При H = 0 находим:

$$\left(\frac{T}{nC_A} + \frac{1}{2}\alpha\right)M_A - 2M_B = 0,$$

$$M_A - \left(\frac{T}{nC_B} + \frac{3}{2}\beta\right)M_B = 0.$$
(37)

Решение системы с конечными значениями M_A и M_B возможно только в том случае, если детерминант ес равен нулю, откуда получается, что

$$T_{K} = \frac{n}{4} \left[- (C_{A} \alpha + 3C_{B} \beta) + \{ (C_{A} \alpha - 3C_{B} \beta)^{2} + 32C_{A} C_{B} \}^{\frac{1}{2}} \right].$$
(38)

Покажем теперь, что переход из состояния \triangleright (или \triangleleft) в парамагнитное состояние невозможен. Из формулы поля Вейсса для состояния \triangleright (уравнение (24)) можно вычислить (используя уравнение (35)), что a(T)и b(T) являются похожими на кривые спонтанной намагниченности ферромагнетиков с температурами Кюри $\frac{1}{2}nC_A\left(\frac{2}{\beta}-a\right)$ и $\frac{1}{2}nC_B\beta$ соответственно. Если точка Кюри кривой a = a(T) выше, чем точка Кюри кривой b = b(T), то при температурах чуть ниже меньшей точки Кюри отношение a(T)/b(T) должно становиться бесконечно большим. Состояние \triangleright , однако, существует только в том случае, если $a/b < \beta$ (см. раздел II.5.2.2). Следовательно, при некоторой температуре ниже точки Кюри $a/b = \beta$. При этой температуре состояние \triangleright переходит в состояние \downarrow . Если температура Кюри кривой b = b(T) выше, чем температура Кюри кривой a = a(T), то состояние \triangleright исчезает при более низкой температуре, которую мы назовем T_{\triangleright} .

Используя уравнение (23) для угла ϕ , мы находим для результирующей удельной намагниченности σ_M на моль AB_2X_4 в состоянии \triangleright

$$\sigma_{M} = \left| 2M_{B} \sin \phi - M_{A} \right| = \left| M_{A} \left(T \right) \left(\frac{1}{\beta} - 1 \right) \right|. \tag{39}$$

В точке Кюри T_{\triangleright} кривой $a = a(T) \sigma_M = 0$ и $\sin \psi = 0$, в то время как $b \neq 0$. b(T) обращается в нуль в точке Кюри T_B кривой b = b(T). Следовательно, при $T_{\triangleright} < T < T_B$, где

$$T_{\triangleright} = \frac{nC_A}{23} \left(2 - \alpha_{\beta}^{\beta}\right), \qquad T_B = \frac{nC_B}{2} \beta, \tag{40}$$

имеется состояние, в котором существует антиферромагнитный порядок в системе спинов В, в то время как спины А находятся в парамагнитном состоянии. Это состояние мы символически обозначаем так *1. Высшая точка перехода T_B есть температура Нееля, а низшая точка перехода T_{\triangleleft} есть ферримагнитная температура Кюри. Подобным же образом находится, что выше температуры T_{\triangleleft} состояние \triangleleft может переходить в состояние, в котором существует антиферромагнитный порядок в системе спинов A, в то время как спины B находятся в парамагнитном состоянии (символическое обозначение такого состояния $\uparrow *$); при наивысшей температуре T_A это антиферромагнитное состояние переходит в парамагнитное состояние. Для T_{\triangleleft} и T_A находим, используя уравнения (26) и (35), выражения

$$T_{\triangleleft} = \frac{3nC_B}{2\alpha} \left(\frac{4}{3} - \alpha\beta\right), \qquad T_A = \frac{nC_A}{2}\alpha.$$
(41)

Если исходить из парамагнитного состояния, то при убывании температуры это состояние переходит в упорядоченное состояние с наивысшей точкой перехода, которая может быть либо T_K , либо T_A , либо T_B . Из уравнений (38), (40) и (41) мы находим:

$$T_{K} \gg T_{A}, \quad \text{если} \quad \beta \leqslant \frac{4}{3} \frac{1}{\alpha} - \frac{C_{A}}{3C_{B}} \alpha,$$

$$T_{K} \gg T_{B}, \quad \text{если} \quad \alpha \leqslant \frac{2}{\beta} - \frac{C_{B}}{C_{A}} \beta,$$

$$T_{A} \gg T_{B}, \quad \text{если} \quad C_{A} \alpha \gg C_{B} \beta.$$

$$(42)$$

Эти уравнения можно изобразить в виде кривых на диаграмме $(\alpha - \beta)$, которые пересекаются друг с другом в точке $\alpha = 1/\beta = (C_B/C_A)^{\frac{1}{2}}$ на кривой $\alpha\beta = 1$.

II.5.2.4. Аномальные формы кривых намагниченности $\sigma_M = \sigma_M(T)$

Неель²⁹ пришел к выводу, что при некоторых условиях кривые $\sigma_M = \sigma_M(T)$ для шпинелей, содержащих ионы одного сорта, имеют аномальную форму. Эти условия можно легко найти и в нашем случае (т. е. при наличии ионов двух сортов) следующим образом.

а) В состояным \downarrow и при температуре $T = \varepsilon$ чуть выше T = 0 $M_A(\varepsilon)$ и $M_B(\varepsilon)$ определяются уравнением (34) при больших значениях $Z = M_{j_0}h/R\varepsilon$.

В этом случае может быть использовано разложение функции Бриллюэна $B_j(z) = 1 - (1/j) e^{-z/j}$, и мы находим

$$\sigma_{M}(z) = 2M_{B} - M_{A} = \sigma_{M}(0) + \frac{M_{A_{0}}}{i_{A}} \exp\left\{-\frac{M_{A_{0}}h_{A_{0}}}{i_{A}Rz}\right\} - \frac{2M_{B_{0}}}{i_{B}} \exp\left\{-\frac{M_{B_{0}}h_{B_{0}}}{i_{B}Rz}\right\}.$$
Из этого уравнения следует, что

$$\sigma_{M}(z) \gg \sigma_{M}(0),$$

если

$$\ln \frac{M_{A_0}}{j_A} - \frac{M_{A_0}h_{A_0}}{j_A R_z} \ge \ln \frac{2M_{B_0}}{j_B} - \frac{M_{B_0}h_{B_0}}{j_B R_z}$$

В этом уравнении при є —> 0 можно пренебречь логарифмическим членом и, используя уравнения (28) и (32), получить

$$f(\alpha, \beta) = j_A(\alpha + 2) - j_B(3\beta + 4) \ge 0.$$
 (43)

Если $\sigma_M(z) > \sigma_M(0)$, то кривая $\sigma_M = \sigma_M(T)$ имеет максимум.

б) Для состояния $\downarrow \uparrow \cdot$ и температур чуть ниже T_K уравнение (37) можно записать в форме

$$\lim_{T\to T_K}\frac{2M_B}{M_A}=\frac{T_K}{nC_A}+\frac{1}{2}\alpha.$$

При $T_K/nC_A + \frac{1}{2} \alpha < 1$ и при температурах чуть ниже T_K мы имеем $2M_B < M_A$, т. е. результирующий момент σ_M ориентируется в направлении намагниченности подрешетки A. Если при температурах чуть ниже T_K мы имеем $2M_B < M_A$, а при абсолютном нуле $2M_{B_0} > M_{A_0}$, то при некоторой промежуточной температуре намагниченность σ_M должна обращаться в нуль, так как намагниченность σ_M ориентирована в направлении **В** при T = 0 и в направлении **A** при $T = T_K$.

Из $T_K/nC_A + \frac{1}{2} a \leq 1$ и уравнения (38) следует

$$g(\alpha, \beta) = C_A(\alpha - 2) - C_B(3\beta - 4) \le 0.$$
 (44)

Уравнения $f(\alpha, \beta) = 0$ и $g(\alpha, \beta) = 0$ могут быть изображены кривыми на диаграмме $(\alpha - \beta)$.

в) В состоянии \triangleright результирующая намагниченность выражается уравнением (39). Так как кривая $M_A = M_A(T)$ имеет нормальный вид (как мы обсудили выше), из уравнения (39) следует, что кривая $\sigma_M = \sigma_M(T)$ также имеет нормальный вид. Кривые $\sigma_M = \sigma_M(T)$ с аномальной формой возможны только в состоянии $\downarrow \uparrow$.

II.5.2.5. Парамагнитная восприимчивость выше температур Кюри и Нееля

Внешнее поле **H** создает упорядочение спинов в направлении **H**. При **a**_i и **b**_i, параллельных **H**, из уравнения (21) следует, что $h_A = = -n \left[\frac{1}{2} \alpha M_A + 2M_B \right]$ и $h_B = -n \left[M_A + \frac{3}{2} \beta M_B \right]$. Используя эти уравнения и два уравнения (35) для M_A и M_B , можно вычислить зависимость M_A и M_B от T и H, и тогда мы найдем для восприимчивости χ_{ar} на $\frac{1}{3}$ моля AB_2X_4 закон Нееля:

$$\frac{1}{\chi_{\mathrm{ar}}} = \frac{H}{\frac{1}{3}(M_{\mathrm{A}} + 2M_{\mathrm{B}})} = \frac{T - T_{a}}{C_{\mathrm{ar}}} - \frac{\tau}{T - \vartheta}, \qquad (45)$$

где $C_{ar} = \frac{1}{3} (C_A + 2C_B),$

$$T_{a} = -\frac{n}{C_{ar}} \left[\frac{1}{6} C_{A}^{2} \alpha + C_{B}^{2} \beta + \frac{4}{3} C_{A} C_{B} \right], \qquad (46)$$

$$\vartheta = \frac{C_A C_B n}{3 C_{ar}} \left[4 - \alpha - \frac{3}{2} \beta \right], \qquad (47)$$

$$\tau = \frac{2C_A C_B n^2}{9C_{ar}^3} \left[C_A \left(1 - \frac{1}{2} \alpha \right) - 2C_B \left(1 - \frac{3}{4} \beta \right) \right]^2.$$
(48)

Кривая $1/\chi_{ar} = 1/\chi_{ar}(T)$, согласно (45), состоит из прямой линии (закон Кюри — Вейсса) и гиперболы.

II.5.2.6. Фазовые переходы

На диаграмме (α – β) могут быть изображены:

1) Кривые, характеризующие состояния при T = 0, т. е. кривые $\alpha\beta = 1$, $\alpha = 2j_B/j_A$, $\beta = j_A/2j_B$, $\beta = 1$ ($\sigma_{M_0} = 0$, см. уравнение (39)) и $f(\alpha, \beta) = 0$ (выше этой кривой и при низких температурах σ_M возрастает с возрастанием температуры; см. раздел II.5.2.4).

2) Кривые, характеризующие состояния, которые встречаются чуть ниже наивысшей точки перехода, т. е. кривые $T_A = T_K$, $T_B = T_K$ (уравнения (42)) и $g(\alpha, \beta) = 0$ (уравнение (44)).

Это может быть сделано при произвольных значениях C_A и C_B . На рис. 23 приводится диаграмма для случая $C_A = C_B$. Диаграмма делится на области A, B, C, \ldots, M . В каждой области мы знаем конфигурацию при T = 0 и чуть ниже температур Нееля и Кюри. В рассматриваемой области эти конфигурации могут быть различными, следовательно, должны иметь место один или несколько фазовых переходов

Рис. 23. Диаграммы $(\alpha - \beta)$ при $C_A = C_B$ (СоСг₂X₄). Сплошные кривые соответствуют состояниям при T = 0: $\downarrow \uparrow + \triangleright$ и $\downarrow \uparrow + \triangleleft -$ пределы области $\downarrow \uparrow$ при T = 0; $\sigma_0 = 0$ – результирующий момент равен нулю при T = 0; $f(\alpha, \beta) = 0$ – предел области, в которой кривая $\sigma = \sigma(T)$ имеет максимум (уравнение (44)). Пунктирные кривые соответствуют соотношениям при $T = T_K : T_A = T_K$ и $T_B = T_K$ – граница области, в которой σ может менять знак при измененица области, в которой σ может менять знак при изменении температуры (уравнение (45)). В областях, ограниченных этими кривыми, схематически указаны формы кривых $\sigma = \sigma(T)$.

при $T < T_K$, T_A или T_B . Последовательность конфигураций, которые появляются при изменении температуры, может быть найдена, если использовать следующие условия:

1) При уменьшении температуры невозможен переход из парамагнитного состояния в состояние <\ или ▷; первое состояние, которое в этом случае появляется, есть одно из состояний ↓↑, *↓ или ↓* (см. раздел II.5.2.3).

2) Кривая $\sigma_M = \sigma_M(T)$ для состояния \triangleleft или \triangleright не может иметь аномальной формы (раздел II.5.2.4).

3) Диаграмма (24) действительна при произвольных температурах, если a_0/b_0 заменяется отношением a/b, которое зависит от T. Когда Tменяется, имеет место фазовый переход, при котором одна из кривых смещается через фиксированную точку (α , β), которая соответствует данному взаимодействию. Видно, что переходы имеют место только между конфигурациями $\downarrow \uparrow$ и \triangleleft или \triangleright ; переход \triangleleft в \triangleright невозможен. При температуре перехода угол φ или ψ равен 90°; σ изменяется с темпе ратурой непрерывно.

. Теперь кривые $\sigma = \sigma(T)$ могут быть схематически изображены в каждой области диаграммы ($\alpha - \beta$). Мы даем два примера (рис. 23).

1) В области *C* встречается аномальная кривая $\sigma = \sigma(T)$ с максимумом (выше кривой $f(\alpha, \beta) = 0$). При возрастающем α и постоянном β достигается линия $\uparrow\uparrow + \triangleleft$, которая означает, что при T = 0 состояние \triangleleft становится стабильным. Если температура перехода, при которой \triangleleft и $\downarrow\uparrow$ находятся в равновесии, является достаточно низкой, то кривая $\sigma_M = \sigma_M(T)$ должна обнаруживать заметный изгиб при этой температуре, потому что в состоянии $\triangleleft \sigma$ обычно уменьшается, а в состоянии $\downarrow\uparrow$ σ возрастает при возрастании температуры.

2) В области *H* состояние \triangleright имеет место при T = 0 и σ ориентирована в направлении **B** (выше линии $\sigma_0 = 0$). При температурах чуть ниже T_K появляется состояние $\downarrow \uparrow$ и σ ориентируется в направлении **A** (ниже линии $g(x, \beta) = 0$). Следовательно, в области температур между абсолютным нулем и T_K намагниченность σ должна испытывать изменение знака. Это возможно только в состоянии $\downarrow \uparrow$. При $\sigma_0 = 0$, т. е. на линии $\beta = 1$, из уравнения (39) следует, что $\sigma_0 = 0$ независимо от температуры. σ_0 остается равной нулю до тех пор, пока существует конфигуция \triangleright .

II.5.2.7. Отношение T_K/T_a

Наивысшая точка перехода T_t , которой могут быть T_A , T_B или T_K , не может быть равна нулю. Из уравнений (38), (40), (41) и (46) можно легко вычислить, что отношение $T_t/|T_a|$ не зависит от n и имеет наинизшее значение при значениях a и β , при которых $T_A = T_B = T_K$, т. е. в точке P на диаграммах $(\alpha - \beta)$. Следовательно, на диаграмме $(\alpha - \beta)$ кривые $T_t/|T_a| = \text{const}$ при изменяющихся значениях постоянной лежат концентрически вокруг точки P, в которой

$$\frac{T_t}{|T_a|} = \frac{C_A + 2C_B}{C_A + 8C_A C_B + 6C_B} \,. \tag{49}$$

Это отношение во всех наших случаях приблизительно равно 0,21 (0,211 для MnCr₂X₄; 0,205 для NiCr₂X₄).

В состоянии 1↑ температура Кюри убывает при возрастании α и β, потому что взаимодействия AA и BB действуют против ферромагнитного упорядочения спинов, но не уменьшается до нуля, так как вместо состояния 1↑ появляется антиферромагнитное состояние, которое стабилизируется взаимодействиями AA и BB, а температура Нееля возрастает с возрастанием α или β. Следовательно, температура, при которой наступает упорядочение спинов, имеет наинизшее значение.

Асимптотическая температура Кюри $|T_a|$ тем выше, чем сильнее взаимодействия AA и BB действуют против упорядочения спинов, вызываемого внешним полем. Следовательно, T_a возрастает с ростом aи β . Таким образом, очевидно, что $T_K/|T_a|$ (состояние 1) убывает при увеличении a и β . В состоянии $1 T_a$ и температура Нееля возрастают с ростом a и β . Поскольку T_a соответствует средним значениям a и β , а температура Нееля определяется наисильнейшим взаимодействием, последняя температура возрастает более сильно, так что $T_A/|T_a|$ или $T_B/|T_a|$ возрастают. Мы имеем здесь ту же ситуацию, которая встречается в теории антиферромагнетиков, развитой Андерсоном ³².

Из уравнений (40) и (41) и условия $\alpha\beta < 1$ при наличии ферримагнитного состояния видно, что ферримагнитные температуры Кюри Ть и Т ла треугольных состояний не могут равняться нулю при конечных значениях α и β.

II. 5.3. Применение теории к объяснению свойств шпинелей MCr₂X₄

Первым успехом теории Нееля было количественное объяснение величины спонтанной намагниченности при T=0 серии ферритов MFe₂O₄; эта величина совпала с разностью максимальных значений моментов решеток А и В (см. статью Гортера²⁵).

Однако для хромитов подобного совпадения не существует в тех случаях, когда экспериментальные величины моментов значительно больше или меньше*), чем величины, вычисленные теоретически для состояния ↓↑. Поскольку во многих случаях константы Кюри соответствуют значениям, обусловленным чисто спиновыми моментами ионов, указанные расхождения нельзя приписать отклонениям магнитных моментов ионов от чисто спиновых значений, а следует приписать отклонениям спинов от 11 конфигурации.

Наше применение теории к объяснению свойств шпинелей основано на следующих предположениях:

1) имеется структура нормальной шпинели у рассматриваемого образца (см. раздел II.3);

2) $|\alpha| < 1$, $\beta' = 0$ (см. раздел II. 5.2.1.);

3) n, α и β не зависят от T;

4) влияние кристаллической анизотропии на конфигурации спинов пренебрежимо мало. Если имеются преимущественные направления векторов намагниченности в кристалле, то, к примеру, состояние 11 будет стабильнее, чем состояние </ потому что в состоянии 11 все векторы могут быть ориентированы в преимущественном направлении, что невозможно в состоянии J. Влияние анизотропии, однако, является малым потому, что у материалов с температурой Кюри (или Нееля) выше 50° К обменная энергия приблизительно в 1000 раз больше, чем. энергия анизотропии.

Экспериментальные данные существуют для:

 значения C_{ат};
 отношения τ наблюдаемой температуры Кюри T_K, T_⊲ или T_⊳ к асимптотической температуре Кюри | T_a |;

3) значения $m_0 = \sigma_{M_0}/N\mu_{\rm B}$, т. е. молярной намагниченности при T = 0, выраженной в магнетонах Бора;

4) типа кривых $\sigma = \sigma(T)$, который является нормальным у всех материалов, за исключением MnCr₂S₄, укоторого кривая обнаруживает максимум.

Теперь мы можем видеть, согласуется ли теория с экспериментальными данными, если попробуем найти точку на диаграмме (α – β), которая описывает эти экспериментальные данные.

Если состояние ионов является чисто спиновым, то моменты при: T=0 равны

состояние
$$\triangleright$$
: $m_0 = \pm 2j_A (1 - 1/\beta),$ (50)

состояние
$$\triangleleft$$
: $m_0 = \pm 4 j_B (1 - 1/a),$ (51)

состояние
$$\downarrow\uparrow; \quad m_0 = 4j_B - 2j_A,$$
 (52)

^{*)} У шпинелей, содержащих катионы более чем двух сортов, меньшие мо-менты, обусловленные непараллельностью спиновых ориентаций, наблюдались часто (см., например, 25).

где должны быть выбраны знаки + или -, если момент подрешетки с параллельными спинами соответственно больше или меньше, чем результирующий момент подрешетки, в которой имеются углы между спинами. Если экспериментальное значение m_0 не согласуется с (52), то мы находим, используя (50) или (51), значения α или β , которые объясняют экспериментальное значение момента. По экспериментальному значению r мы находим кривую на диаграмме ($\alpha - \beta$), на которой должна лежать наша точка. Если точка (α , β) найдена из этих двух условий, то она должна лежать в области, в которой кривая $\sigma = \sigma(T)$ имеет

Рис. 24. Диаграммы ($\alpha - \beta$) при $j_A = 5/2$, $j_B = 3/2$ (MnCr₂X₄). Смысл обозначений указан на рис. 23. (В верхней правой части рисунка символ || можно было бы заменить на $\downarrow \uparrow$.)

форму, найденную экспериментально. Невозможно определить точку с большой точностью, потому что значения r и m_0 определяются на опыте с весьма большими ошибками и в большинстве случаев имеется также некоторая неопределенность в значениях C_A и C_B ; теория может быть, таким образом, проверена только грубо. Следовательно, мы должны ограничиться указанием области на диаграмме $(x - \beta)$, которая соответствует экспериментальным данным.

Мы обсудим серии хромитов на основе рис. 23, 24, 25 и таблицы III. FeCr₂O₄ (рис. 25). $C_{a\tau}$ совпадает, в пределах экспериментальной ошибки, со значением, вычисленным по чисто спиновым значениям ионных моментов. m_0 может быть оценено только грубо за счет большого наклона кривой $\sigma = \sigma$ (H) при 20° K, но является в любом случае заметно менее 2*). Таким образом, состояния $\downarrow \uparrow (m_0 = 2)$ и $\triangleleft (m_0 > 2)$ невозможны, и наблюдаемое значение m_0 может быть объяснено только наличием конфигурации \triangleright . Область G исключается из рассмотрения, так

^{*)} Не могут быть исключены из рассмотрения небольшие отклонения образдов от нормальной структуры шпинели. У MnCr₂X₄ и FeCr₂X₄ значения m₀, вычисленные для состояния ↓↑, возрастают с увеличением указанных отклонений. Этот эффект не может, следовательно, объяснить наблюдаемые значения m₀ для FeCr₂O₄ и FeCr₂S₄.

как экспериментальная кривая $\sigma = \sigma(T)$ является нормальной. Точка на линии $\beta = 1,25 \pm 0,08$ в области K объясняет нормальную кривую $\sigma = \sigma(T)$ и наблюдаемое значение $0,80 \pm 0,02$ для m_0 . Такая точка находится в хорошем согласии с низким значением r, равным $0,23 \pm 0,03$, которое является минимальным при $\beta = 1,27$ в точке P. Из обоих условий мы находим $\alpha = 0,30 \pm 0,10$.

 ${\rm FeCr}_{2}S_{4}$ (рис. 25). $C_{a\tau}$ соответствует чисто спиновому значению ионного момента. Подобно тому как и в случае ${\rm FeCr}_{2}O_{4}$, экспериментальное значение m_{0} меньше чем 2,00 и нормальная кривая $\sigma = \sigma(T)$

Рис. 25. Диаграмма ($\alpha - \beta$) при $j_A = 2$, $j_B = \frac{3}{2}$ (FeCr₂X₄). Смысл обозначений указан на рис. 23.

может быть объяснена точкой в области K. Из значения $m_0 = 1,55 \pm 0,05$ следует, что $\beta = 1,61 \pm 0,02$, а из значения r = 0,8 мы находим для а значение порядка -1,75.

Такое сильное положительное взаимодействие AA, однако, является весьма маловероятным. Мы получаем более вероятную интерпретацию, когда допускаем, что ионные моменты несколько отклоняются от чисто спиновых значений. Наличие малых откловений от чисто спинового состояния у иона Cr^{3+} , которое может быть приписано неполному подавлению орбитального момента, подтверждается тем фактом, что значение C_{ar} у ZnCr₂S₄ несколько меньше, чем значение, соответствующее чисто спиновому значению ионного момента. Тогда величина магнитного момента μ_{Cr} иона Cr также будет несколько отклоняться от чисто спинового значения gj = 2j. Если мы предположим, что константа Кюри $C_{пон}$ и магнитный момент $\mu_{пон} = gj$ иона, который не находится в чисто спиновом состоянии, могут быть описаны с помощью некоторого эффективного g-фактора, то мы можем исключить g из уравнений $\mu = gj$ и (36) и найти следующее соотношение между значениями эффективных величин $\mu_{ион}$ и $C_{нон}$:

$$\mu_{\text{HOH}} = \frac{1}{N\mu_B} \left\{ \frac{3Rj}{j+1} C_{\text{HOH}} \right\}^{\frac{1}{2}} = 2,83 \left\{ \frac{j}{j+1} C_{\text{HOH}} \right\}^{\frac{1}{2}}.$$
 (53)

Используя (53) и экспериментальное значение $C_{\text{пон}}$ для ZnCr_2S_4 1,67±0,03, мы найдем, что $\mu_{\text{Cr}} = 2,825 \pm 0,015$. Мы допустим теперь, что ионы Cr^{3+} в FeCr_2S_4 и в ZnCr_2S_4 находятся в одинаковом состоянии. Тогда для FeCr_2S_4 мы можем вычислить C_{Fe} из экспериментального значения $C_{\text{ar}} = 2,22 \pm 0,05$ и, допуская, что при T = 0 имеет место конфигурация $\downarrow\uparrow$, можем вычислить μ_{Fe} из экспериментального значения $m_0 = 1,55 \pm 0,05$. Таким путем мы найдем:

$$C_{\rm Fe} = 3,32 \pm 0,21, \qquad \mu_{\rm Fe} = 4,10 \pm 0,08.$$

(Эти значения удовлетворяют соотношению (53) весьма сносно.) Таким образом, используя эффективный момент Cr^{3^+} , несколько меньший чем 3 (как это найдено у $ZnCr_2S_4$), и эффективный момент иона Fe^{2^+} , несколько больший чем 4, можно объяснить, что в состоянии $\downarrow \uparrow$ при T = 0 наблюдается момент $m_0 = 1,55 \pm 0,05$. Далее мы видим из диаграммы, что наблюдаемая величина отношения r и нормальная форма кривой $\sigma = \sigma(T)$ описываются точкой в области C с координатами $0 < \alpha < 0,7$ и $-0,1 < \beta < 0,2$, что более близко к истине, чем значения, которые мы вычислили ранее, используя чисто спиновые значения моментов ионов.

У свободных ионов с менее или более чем пятью 3*d*-электронами результирующий момент является соответственно разностью или суммой спинового и орбитального моментов. Следовательно, вовсе не бессмысленно ожидать, что результирующий момент иона Cr³⁺ меньше, а результирующий момент иона Fe²⁺ больше, чем чисто спиновые значения моментов указанных ионов, если орбитальный момент не полностью подавлен.

 ${\rm MnCr_2S_4}$ (рис. 24). $C_{\rm ar}$ немного меньше, чем чисто спиновое 'значение, что может быть объяснено в основном отклонением от спинового значения $C_{\rm Cr}$ (вклад орбитального момента в случае ${\rm Mn}^{2+}$ можно предполагать малым, так как свободный ион не имеет результирующего орбитального момента). Используя $C_{\rm Cr} = 1,67 \pm 0,03$ (определенное для ${\rm ZnCr_2S_4}$) и чисто спиновое значение момента иона ${\rm Mn}^{2+}$, находим $C_{\rm ar} = 2,57 \pm 0,02$, что согласуется с экспериментальным значением 2,54 \pm 0,06. ${\rm MnCr_2S_4}$ имеет аномальное поведение в отношении двух свойств:

1) Кривая $\sigma = \sigma(T)$ обнаруживает максимум. Это возможно только при наличии состояния \downarrow [↑]. В состоянии \downarrow [↑] вычисленное значение m_0 есть 1,0 ($\sigma_0 = 19,5$ saycc cm³ s⁻¹), если пользоваться чисто спиновым значением момента Cr³⁺, 3, или $m_0 = 0,65 \pm 0,03$ ($\sigma_0 = 12,7 \pm \pm 0,5$ saycc cm³ s⁻¹), если пользоваться эффективным значением $\mu_{Cr} = 2,825 \pm 0,01$. Экспериментальные значения m_0 и σ_0 не могут быть оценены, так как невозможно экстраполировать кривую $\sigma = \sigma(T)$ к абсолютному нулю. Из вставки на рис. 16 видно, что σ_0 будет, всроятно, значительно меньше, чем 30 saycc cm³ s⁻¹, но будет ли σ_0 меньше 13 или даже меньше 20 saycc cm³ s⁻¹, сказать невозможно.

2) В то время как у всех ферримагнитных шпинелей величина T_a , очевидно, отрицательна, мы находим здесь, что $T_a \approx 0$. (Это возможно только при положительных взаимодействиях АА или BB*). $T_a = (0,14 \pm 0,12) T_K$, следовательно, наша точка должна лежать в зоне, расположенной вблизи кривых $T_a = 0$ и $T_a = 0,1 T_K$ (см. рис. 24).

^{*)} Вероятность положительного взаимодействия AB исключается, так как кривая $\sigma = \sigma(T)$ имеет максимум. Последнее же невозможно, если A и B цараллельны.

⁹ УФН, т. LXVI, вып. 2

Рис. 24 показывает, что основные состояния \triangleleft и \triangleright совместимы с $T_a \approx 0$ только при a > 1,2 или a < -2. Такие сильные положительные или отрицательные взаимодействия АА кажутся нам невероятными. Подходящее решение, следовательно, возможно только при основном состоянии \downarrow [↑]. Мы упоминали, что m_0 является, вероятно, бо́льшим, чем значение, вычисленное для состояния \downarrow [↑]. Это противоречие может быть отнесено за счет отклонения образца от нормальной структуры шпинели. (Для отклонения порядка 10% мы находим, что σ_0 равно приблизительно 20 и 27 гаусс см³ г⁻¹, если использовать значения 2,83 и 3,00 для μ_{Cr} соответственно.)

Аномальные магнитные свойства MnCr₂S₄ могут быть, таким образом, объяснены точкой в области *В* диаграммы ($\alpha - \beta$). Значение α , которое предполагается малым (предположение 2), не может быть точно указано, а для β мы находим $-4 < \beta < -1.7$ ($\beta = 1.7$ согласуется с $\alpha = 0$ и $T_a = -0.26T_K$).

СоСг₂S₄ (рис. 23). Поскольку $C_{a\tau}$ заметно больше, чем чисто спиновое значение, состояние иона Со, очевидно, сильно отклоняется от чисто спинового состояния и простое соотношение (53) не будет уже давать достаточно хорошего приближения для $\mu_{ион}$. Значит, M_{A_0} , M_{B_0} , C_A и C_B отклоняются от чисто спиновых значений на неопределенные величины. Диаграмма ($\alpha - \beta$), построенная на основании идеальных значений, является только грубым приближением для диаграммы, которая соответствует эффективным значениям.

Точки в областях *D* или *G* объясняют весьма приближенно величину $r = 0.63 \pm 0.08$, момент $m_0 = 2.55 \pm 0.06$ и нормальную форму кривой $\sigma = \sigma(T)$. Однако невозможно оценить α и β .

 $\dot{MnCr_2O_4}$ (рис. 24). Для $MnCr_2O_4$, так же как и для $ZnCr_2O_4$, значения C_{ar} совпадают с чисто спиновыми значениями. Таким образом, мы можем взять здесь для C_A и C_B идеальные значения.

мы можем взять здесь для C_A и C_B идеальные значения. Наблюдаемое значение $m_0 = 1,25$ может быть объяснено основными состояниями \triangleright при $\beta = 1,3$ или \triangleleft при a = 1,25. Последнее состояние исключается благодаря большому значению a. Основное состояние \triangleright и $\beta = 1,3$ находятся в областях L или M. В области L $0,18 < \frac{T \triangleleft}{|T_a|} < 0,24$ (0,18 и 0,24 — это значения в точках пересечения линии $\beta = 1,3$ с кривыми $\alpha\beta = 1$ и $T_A = T_K$ соответственно). В области M $T_K/|T_a| > 0,24$. Наблюдаемое значение r = 0,18 является, следовательно, возможным только в области L, если теория строго применима. Однако мы не уверены в том, что экспериментальные данные и теория являются достаточными для того, чтобы вынести решение в пользу области L или области M. Мы можем сказать лишь то, что наша точка должна лежать но соседству с P, т. е. с точкой $\beta \approx 1,3$ и $\alpha \approx 0,6$.

Если предположить, что основным состоянием является состояние $|\uparrow$, то наблюдаемый момент $m_0 = 1,25$ может быть объяснен отклонением образца от нормальной структуры шпинели порядка 6%, т. е. наличием следующего распределения ионов: $Mn_{0.94}Cr_{0.06}[Mn_{0.06}Cr_{1.94}]O_4$. Точка в области E соответствует нормальному ходу кривой $\sigma = \sigma(T)$. Однако значение r в этой области должно быть больше чем 0,18 (например, в точке $\alpha = 0,5$, $\beta = 0,1$ мы находим r = 0,95), так что указанная возможность исключается. Этот вывод находится в согласия с тем, что получено Гортером²⁵ при изучении намагниченностей насыщения в системе MnFe₂O₄ – MnCr₂O₄.

стеме MnFe₂O₄ — MnCr₂O₄. NiCr₂O₄. Отклонение C_{ат} от чисто спинового значения в этом случае еще больше, чсм в случае CoCr₂S₄, и, следовательно, применение диаграммы (*x* - β) не является допустимым. Значение $m_0 = 0.3$ заметно меньше, чем значение, вычисленное для состояния $\downarrow\uparrow$, и это расхождение уже велико для того, чтобы отнести его за счет отклонений моментов ионов от чисто спиновых значений, так что указанное значение m_0 может быть оправдано лишь наличием состояний \triangleright или \triangleleft .

Отношение r = 0,14 ниже, чем наинизшее теоретическое значение $T_K/|T_a|$ (т. е. 0,21). С теоретической точки зрения, наблюдаемое значение является вероятным только в случае $T_A > T_K$ или $T_B > T_K$, т. е. при наличии температуры Нееля более высокой, чем температура Кюри.

Фазовый переход при температуре выше температуры Кюри действительно обнаружен (см. раздел II.4 и рис. 20). Этот переход обнаруживает некоторые черты, которые согласуются с наличием температуры Нееля типа T_A или T_B :

1) Имеется область температур ниже точки перехода, в которой χ меньше, чем значения χ , найденные экстраполяцией закона Кюри—Вейсса (см. рис. 20). Это поведение аналогично тому, которое следовало бы ожидать при антиферромагнитном упорядочении спинов *A* или *B*.

2) Кривая $1/\chi = 1/\chi(T)$ в точке перехода непрерывна, что является весьма сильным указанием на наличие фазового перехода второго рода. При переходе первого рода следовало бы ожидать скачкообразного изменения χ в точке перехода. Как пример такого скачка на кривой $1/\chi = 1/\chi(T)$ мы можем указать а-переход в FeS при 130°C (см. раздел I.1 и рис. 3). Последний переход, который заключается лишь в малых смещениях атомов Fe из своих первоначальных положений, сопровождается заметным скачком χ . Если, однако, фазовый переход в NiCr₂O₄ является переходом второго рода, то это весьма твердо указывает на наличие явления упорядочения, и именно упорядочения спинов, так как другие явления упорядочения (ионов, атомов, вакансий или электронов) можно с уверенностью исключить.

3) Изменение удельной теплоемкости с температурой (рис. 20) является характерным для перехода беспорядок—порядок.

4) При температуре перехода удельная теплоемкость C обнаруживает скачок. Мы покажем, сейчас, что порядок величины этого скачка находится в согласии со значением, которого можно ожидать при антиферромагнитном упорядочении спинов. Согласно теории молекулярного поля Вейсса, скачок $\Delta C(T_i)$ величины C в точке перехода T_i (т. е. при температуре Нееля или Кюри) для одного моля спинов с квантовым числом j равен ³⁶

$$\Delta C(T_t) = \frac{5j(j+1)}{j^2 + (j+1)^2} R.$$

Порядок величины нормальной удельной теплоемкости C_n может быть вычислен по закону Дюлонга и Пти. Предполагая, что в точке перехода NiCr₂O₄ имеется антиферромагнитная упорядоченность спинов *B*, находим для моля NiCr₂O₄ при $j = \frac{3}{2}$

> $\Delta C(T_{i}) = 2 \cdot \frac{5 \times \frac{3}{2} \times \frac{5}{2}}{\left(\frac{3}{2}\right)^{2} + \left(\frac{5}{2}\right)^{2}} R = 4, 4R;$ $C_{n} = 3 \cdot 7R = 24R.$

Таким образом, $\Delta C(T_l)/C_n = 0,21$, что, учитывая введенные приближения, находится в согласии с наблюдаемым на опыте значением 0,11.

287

9*

С другой стороны, существует два экспериментальных факта, которые противоречат интерпретации точки перехода как температуры Несля:

1) Лупстра провел нейтронографическое исследование нашего образца NiCr₂O₄, который использовался при измерениях удельной теплоемкости. В пределах экспериментальной ошибки он не нашел разницы между нейтронограммами, сделанными при комнатной температуре и при температуре выше точки фазового перехода. Правда является сомнительным, может ли быть обнаружена упорядоченность спинов при температуре (295° K), столь близкой к температуре перехода (309° K).

2) Тетрагональное искажение решетки c/a = 1,025 при комнатной температуре (т. е. температуре только на 15° ниже точки перехода) больше, чем всегда наблюдающееся искажение антиферромагнитных веществ. Например, у CoO ³⁴ c/a = 1,003 при температуре на 15° ниже точки перехода (280° K).

Таким образом, мы видим, что по имеющимся в настоящее время данным нельзя заключить, является ли наблюдаемая температура фазового перехода температурой Нееля или нет. Если бы оказалось возможным доказать, что точка перехода является температурой Нееля, то это оказалось бы более сильным подтверждением теории Яфета и Киттеля, чем все, найденные до сих пор.

С другой стороны, если можно было бы доказать, что наблюдаемая точка перехода не вызывается упорядочением спинов, то это было бы интересно с другой точки зрения. В этом случае мы должны были бы предположить, что имеющийся переход относится к переходам того же рода, который найден у других шпинелей. Например, Mn₃O₄, ZnMn₂O₄, CuFe₂O₄ и CuCr₂O₄ обнаруживают тетрагональное искажение кубической структуры. Гудинаф и Лоб³³ предположили, что в тех веществах, у которых c/a > 1, искажение обусловлено образованием квадратных ковалентных связей между атомом В и четырьмя кислородными атомами из шести, окружающих атом В. Согласно указаниям этих авторов, трехвалентный ион Mn, двухвалентный ион Ni и двухвалентный ион Cu квадратные связи. Тетрагональное искажение могут образовывать в NiCr₂O₄ можно было бы объяснить таким образом, только если предположить, что это вещество имеет структуру обращенной шпинели. Однако такое предположение весьма маловероятно по причинам, упомянутым в разделе II.3. Кроме того, атомы Ni, которые образуют квадратные ковалентные связи, находятся в диамагнитном состоянии, так что следовало бы ожидать, что константа Кюри окажется меньше, чем в случае ионного состояния. Наблюдаемая же константа Кюри, однако, чем чисто спиновое значение. Следовательно, оказывается больше. затруднительным объяснить искажение решетки NiCr₂O₄ гипотезой Гудинафа и Лоба.

 $ZnCr_2O_4$ и $ZnCr_3S_4$. В этих материалах имеют место лишь взаимодействия *BB* и при *T* = 0 мы теоретически ожидаем антиферромагнитной упорядоченности спинов четырех подрешеток *B*'₁, *B*'₂, *B*'₃ и *B*'₄, так что **b**'₁ + **b**'₂ + **b**'₃ + **b**'₄ = 0.

Легко можно вычислить, что температура Нееля T_B при такой упорядоченности спинов не зависит от относительной ориентации векторов \mathbf{b}'_i . Мы находим

$$T_B = \frac{1}{2} C_B (\gamma - \gamma'), \quad T_a = \frac{1}{2} C_B (3\gamma + \gamma'), \tag{54}$$

где ү и ү' соответственно коэффициенты взаимодействий $B'_i B'_{j\neq i}$ и $B'_i B'_i$. $T_B / |T_a| = \frac{1}{3}$ при ү' = 0. Однако для $\operatorname{ZnCr}_2 O_4$ эксперимент дает $T_a =$ $= -380^{\circ}$ К, а $T_N = 14^{\circ}$ К³⁵. Если мы предположим, что $\gamma' \neq 0$, то из (54) и экспериментального значения отношения $T_N/|T_a|$ следует, что $\gamma'/\gamma = 0.9$. Это должно было бы означать, что обменное взаимодействие не убывает заметно при возрастании расстояний между ионами, что полностью противоречит косвенному характеру обменного взаимодействия. В случае ZnCr₂S₄ не существует затруднений: из $T_a \approx 0$ следует, что $\gamma \approx 0$, $\gamma' \approx 0$ и $T_B \approx 0$.

Мы ожидаем а priori, что взаимодействие $BB(n\beta)$ не изменяется заметно в материалах серий MCr_2O_4 и MCr_2S_4 . Мы видели, что магнитные свойства $FeCr_2S_4$, $CoCr_2S_4$ и $ZnCr_2S_4$ могут быть описаны с помощью $n\beta$ и $\gamma' \approx 0$; у $MnCr_2O_4$ и $FeCr_2O_4$ $n\beta$ может быть вычислено из α , β и экспериментальных значений T_a : мы нашли приблизительно значения 50 и 80 для $n\beta$ этих материалов, что находится в разумных пределах. Выводы

1) У FeCr₂S₄, MnCr₂S₄, CoCr₂S₄, ZnCr₂S₄, MnCr₂O₄ и FeCr₂O₄ можно найти параметры n, α и β , которые довольно хорошо описывают их магнитные свойства (см. табл. V).

Таблица V

Основные состояния и параметры взаимодействия, приведенные в разделе И.5.3

MnCr ₂ O ₄		β≈1,3	a≈0,6
FeCr ₂ O ₄		β≈1,3	a≈0,3
MnCr ₂ S ₄	↓↑	$-4 < \beta < -2$	-
FeCr ₂ S ₄	↓↑	-0,1< $\beta < -0,2$	$0 < \alpha < 0,7$
$\begin{array}{c} CoCr_2S_4\\ ZnCr_2S_4 \end{array}$	↓↑ <u></u>	- γ≈0	

Единственная заметная разница между оксидными и сульфидными шпинелями заключается в том, что взаимодействие *BB* у последних значительно слабее (за исключением MnCr₂S₄). У оксидных шпинелей взаимодействие *BB* того же порядка величины, что и взаимодействие *AB*.

2) MnCr₂S₄ отличается от всех других ферримагнитных шпинелей асимптотической температурой Кюри, близкой к нулю.

3) Теория не может объяснить низкого значения температуры Нееля у ZnCr₂O₄.

Мы хотим обратить внимание на тот факт, что эти выводы базируются на использовании приближения теории молекулярного поля Вейсса. Это может оказаться источником серьезных ошибок, так как хорошо известно, что теория молекулярного поля Вейсса дает хорошее приближение лишь при температурах, которые низки или высоки по сравнению с температурой Кюри. Следовательно, нельзя сказать, в какой мере данные коэффициенты Вейсса будут отвечать реальной картине взаимодействий.

III. ОКСИДНЫЕ И СУЛЬФИДНЫЕ ШПИНЕЛИ, СОДЕРЖАЩИЕ КОБАЛЬТ [(MCo₂O₄ И MCo₂S₄)]

III. 1. Введение

Холгерссон и Карлссон³⁹ изготовили ряд материалов с общей формулой MCo₂O₄, где M = Mg, Mn, Co, Ni, Cu, Zn, путем нагревания смеси нитратов двух металлов. Соединения имели структуру шпинели, и из них только NiCo₂O₄ был ферромагнитен при комнатной температуре. Робин и Бенард⁴⁰ провели кристаллографическое исследование серии твердых растворов $CoFe_2O_4 - Co_3O_4$. Смешанные кристаллы оксалатов Fe и Co были осаждёны оксалатом аммония из раствора нитрата кобальта и хлорида железа, затем оксалаты нагреванием при температуре, меняющейся от 400°C до 1000°C, были разложены и превращены в шпинели. Преимущество такого метода заключается в том, что два металла смешиваются в «атомном масштабе» в смешанных оксалатах так, что при этом могут быть получены наибольшая смешиваемость и более однородные продукты реакции, чем при нагревании «макроскопических» смесей окислов или нитратов. Робин и Бенард нашли, что вблизи 900°C существует непрерывный ряд твердых растворов CoFe₂O₄ и Co₃O₄, а при более низких температурах имеется двухфазная область: если однородно смешанный кристалл, приготовленный при 900°C, прокаливается при более низкой температуре, то вещество разлагается на две шпинельные фазы, одна из которых богаче кобальтом, другая – железом.

В дальнейшем Робин⁴¹ исследовал серию MCo_2O_4 (M = Mg, Ni Co и Zn), используя метод Холгерссона. Он нашел, что NiCo₂O₄ и ZnCo₂O₄ могут быть изготовлены только при температурах ниже 400° C: выше этой температуры NiCo₂O₄ разлагается на NiO и Co₃O₄, а ZnCo₂O₄ на ZnO и на фазу, более богатую кобальтом. В противоположность Холгерссону он не получил MgCo₂O₄. Co₃O₄ является стабильным при температурах ниже 900° C; выше 900° C он разлагается и дает CoO.

температурах нижо 900°С; выше 900°С он разлагается и дает СоО. Шпинель Со₃S₄, которая встречается в природе в виде минерала линнеита, была изучена и синтезирована многими исследователями ⁴²⁻⁴⁶. Выше 680°С она разлагается на СоЅ и СоS₂⁴⁵. Известно, что многие минералы могут быть получены из Со₃S₄ путем частичной замены Со на Fe, Ni и Cu: полидимит (Ni, Fe), карролит (Cu, Fe, Ni) и др. Де-Ионг и Хуг⁴⁷ нашли, что карролит с составом CuCo₂S₄ имеет структуру нормальной шпинели.

III. 2. Приготовление материалов

Мы попытались изготовить серию соединений MCo_2O_4 , где M = Mn, Fe, Co, Ni, Cu, Zn, используя оба вышеупомянутых метода.

При использовании первого метода растворы нитратов М и Со выпаривались и нагревались при 200°С или 300°С. Нитраты разлагались почти полностью, и была получена смесь окислов, которая превращалась в тонкий порошок, смешивалась, спрессовывалась в брикеты и нагревалась (таби. VI).

В качестве второго метода был выбран незначительно модифициро-Робина, поскольку смешанные оксалаты ванный вариант метода осаждаются неполностью, когда в раствор хлоридов добавляется оксалат аммония, так что отношение Со: М в смешанном оксалате отклоняется от первоначальной величины в используемом растворе. Мы установили, что оксалаты осаждаются почти полностью, если к раствору ацетатов М и Со добавляется кипящий концентрированный раствор щавелевой кислоты и затем смесь охлаждается. Таким путем можно легко получить требуемое отношение 2Со: 1М в смешанных оксалатах. Изготовление FeCo₂O₄ затруднено из-за окисления раствора ацетата железа (который может быть получен растворением порошка железа в уксусной кислоте) воздухом, так что при изготовлении FeCo₂O₄ необходимо было работать в атмосфере CO₂. Отношение Co: М в оксалатах было проверено аналитически, и для смешанных оксалатов Mn, Fe, Ni и Zn были найдены соответственно значения 1,97; 2,04; 2,00; 1,97. Указанные оксалаты

]	Первый метод (ч	ерез нитраты)	Второй метод (через оксалаты)			
Соединение	фазы (по рентгенографи- ческим данным)		тепловая обработна	фазы (по рентгенографи- ческим данным)		
MnCo ₂ O ₄	5 часов при 300° С в О ₂	шпинель, возможны сле- ды примесей	2 часа при 400°С в воздухе 2 часа при 500°С в воздухе	шпинель шпинель*		
FeCo ₂ O ₄	8 часов при 900° СвО2и закалка	шпинель (линии расщеп- ляются)	4 часа при 900° С в О ₂ 20 часов при 900° С и закалка 4 часа при 250° С в О ₂	шпинель* шпинель* шпинель (линии расщеп- ляются)		
Co ₃ O ₄	4 часа при 450°СвО ₂ 5 часов при 750°СвО ₂	шпинель шпинель*	=	-		
NiCo ₂ O ₄	5 часов при 300°С в О ₂	шпинель*, возможны следы NiO	2 часа при 250° С в О ₂ 2 часа при 400° С в воздухе 2 часа при 500° С в воздухе	шпинель+МО шпинель+МО шпинель+МО		
CuCO2O4	2 часа при 300° С в О ₂ 2 часа при 450° С в О ₂ 2 часа при 750° С в О ₂	шпинель+СиО шпинель+СиО шпинель+СиО	2 часа при 250° С в воздухе 2 часа при 400° С в воздухе 2 часа при 800° С в воздухе	тпинель+СиО тпинель+СиО тпинель+СиО		
ZnCo ₂ O ₄	2 часа при 250°С в О ₂ 2 часа при 350°С в О ₂	шпинель шпинель*	2 часа при 400°С в воздухе 2 часа при 800°С в воздухе	шпинель+МО шпинель+МО		

Изготовление МСо.О.	(при измерениях	использовались	образпы.	помеченные	звездочками)

291

Таблица VII 19

	_		· · · ·	_		
Соединение	Исходные материалы	Обжиг 1	Обжиг 2	Обжиг 3	Обжиг 4	Фазы (по рентгеногра- фическим данным)
MnCo ₂ S ₄	Mn+Co+4S	48 часов при 500° С 20 часов при 500° С	24 часа при 500°С 30 часов при 500°С	72 часа при 500° С 24 часа при 1000° С		шинель+MnS+CoS ₂ MnS+неизвестная фаза
FeCo ₂ S ₄	Fe+2CoS Fe+2Co+4S Fe+2Co+3S	12 часов при 500° С 12 часов при 500° С 12 часов при 500° С	48 часов при 500° С 48 часов при 500° С 4 часа при 1000° С	48 часов при 500° С 48 часов при 500° С 5 часов при 1000° С	— — +S, 48 часов при 500° С	шпинель + FeS ₂ + не- опред. фаза шпинель + FeS ₂ + не- опред. фаза FeS ₂ + неопределен. фаза
Co ₃ S ₄	3Co+4S	24 часа при 600°С	60 часов при 500° С	_		пнинель*
NiCo2S4	Ni+2Co+3S	10 часов при 500° С	4 часа при 1000°С	4 часа при 1000° С	+S, 48 часов при 500°С	ши ин ель *
CuCo ₂ S ₄	Cu+2Co+4S	12 часов при 500° С	48 часов при 500° С	48 часов при 500° С	_	шпинель+малое коли- чество примесей
$ZnCo_2S_4$	Zn+2Co+4S	48 часов при 500° С	24 часа при 500° С	72 часа при 500° С	-	шпинель+CoS ₂ +ZnS

Приготовление MnCo₂S₄ (образцы, использованные для измерений, помечены звездочками)

ŧ

были затем медленно нагреты и разложены при температурах, приведенных в таблице VI, где также указаны полученные при этом фазы. $MnCo_2O_4$ можно было изготовить, используя оба метода, $FeCo_2O_4$ используя лишь второй способ, а $NiCo_2O_4$ — используя только первый метод. Было подтверждено найденное Робином разложение $FeCo_2O_4$ на две шпинели. $CuCo_2O_4$ не удалось изготовить: во всех случаях образовывались CuO и шпинель с параметром решетки Co_3O_4 .

Сульфокобальтиды были изготовлены с помощью того же самого метода, который был использован для изготовления сульфохромитов (раздел II.2). Поскольку Co_3S_4 разлагается при 680° С, то не исключено, что другие соединения MCo_2S_4 разлагаются также при относительно низких температурах. Поэтому температура обжига была выбрана ниже 500° С. В двух случаях (FeCo₂S₄ и NiCo₂S₄) мы пытались получить шпинель, используя в качестве промежуточного материала твердые растворы $M_1 Co_2 S$ со структурой NiAs. Методы изготовления суль-

фокобальтидов и полученные фазы указаны в таблице VII, из которой видно, что только Co_3S_4 и $NiCo_2S_4$ существовали в чистом виде, а $CuCo_2S_4$ имел небольшую примесь. В остальных случаях только часть материала была превращена в обособленную шпинельную фазу (возможно, Co_3S_4).

Таблица VIII содержит сравнение параметров решеток наших образцов, измеренных нами, с величинами, взятыми из имеющейся литературы.

Таблица VIII

Соединение	Ссылка	а (по литературным данным)	а (по нашим изме рениям)
MnCo ₂ O ₄		_	8,153 Å
Fe _{0,99} Co _{2,01} O ₄	40	8,259 Å	8,254 Å**)
Co ₃ O ₄	39 40	8,108 kX; 8,070 Å	8,092 Å
NiCo ₂ O ₄	39 40	8,112 kX; 8,098 Å	8,121 Å*) ***)
CuCo ₂ O ₄	39	8,039 kX	
ZnCo ₂ O ₄	39 40	8,108 kX 8,085 Å	8,047 Å*)
Co_3S_4	42 44	9,36 kX 9,382 kX	9,416 Å
NiCo ₂ S ₄			9,392 Å
CuCo.S.	47	8,458 kX	9,482 Å ***)

Постоянные решеток МСг₂Х₄

***) Образец содержит следы второй фазы.

III.3. Магнитные свойства

Магнитные свойства были измерены на образцах $MnCo_2O_4$, $FeCo_2O_4$, $NiCo_2O_4$, Co_3O_4 , $ZuCo_2O_4$, Co_3S_4 и $NiCo_2S_4$ (образцы помечены звездочками в таблицах VI и VII).

 $MnCO_2O_4$. Форма кривой $1/\chi = 1/\chi(T)$ (рис. 26) подобна кривой ферримагнетика. Прямая часть соответствует значению $C_{a\tau} = 1,91$, которое значительно ниже, чем чисто спиновое значение (3,46 и 3,54 соответственно для $Mn^{2+} + 2Co^{3+}$ и для $Mn^{2+} + Co^{2+} + Co^{4+}$). Кривая $\sigma = \sigma(H)$ при 20° К представляет собой прямую линию; если наклон этой линии интерпретировать как восприимчивость истинной намагниченности, то эта восприимчивость будет аномально высокой.

Хорошо известно, что восприимчивость истинной намагниченности ферромагнетика при температуре T зависит от отношения T/T_K

Рис. 26. $MnCo_2O_4$. Температурная зависимость удельной намагниченности с при H = 8000 эрстед и обратной величины удельной восприимчивости $1/\chi$. Зависимость с от H при 20,4° К. Пунктирная линия указывает наклон кривой $1/\chi = 1/\chi$ (T), вычисленной на основе чисто спиновых состояний ионов.

и уменьшается при уменьшении температуры. У $MnCo_2O_4$ эта восприимчивость равна 1,9 · 10⁻⁴ при $T/T_{\rm K} = 0,1$ ($T = 20^{\circ}$ K, $T_K = 200^{\circ}$ K). У нормальных ферромагнетиков эта величина много меньше (2.10⁻⁵ для никеля; 0,5 · 10⁻⁵ для FeCr₂S₄).

 $FeCo_2O_4$. Это соединение нестабильно ниже 900° С. Однако разложение происходит медленно, так что кривая $1/\chi = 1/\chi$ (T) может быть измерена (рис. 27). Эта кривая имеет форму кривой $1/\chi =$ $= 1/\chi$ (T), характерной для ферримагнетика при температуре чуть выше точки Кюри. Вследствие разложения материала невозможно было наблюдать, становится ли при более высоких температурах кривая прямой линией (т. е. следует ли закону Кюри-Вейсса). Кривая $\sigma = \sigma$ (T) при H = 8000 эр-

стед имеет максимум при температуре, близкой к комнатной. Однако имеется сомнение в том, будет ли спонтанная намагниченность обнаруживать такой же максимум, поскольку мы нашли, что материал становится весьма магнитожестким при низких температурах. На рис. 28 приведены кривые гистерезиса при комнатной температуре и при 77° К.

Рис. 27. FeCo₂O₄. Смысл обозначений указан на рис. 26.

При⁷77° К была найдена высокая коэрцитивная сила, равная 13000 эрстед, и петля не была еще завершена прл внешнем поле 20000 эрстед. Однако при комнатной температуре петля гистерезиса является узкой и коэрцитивная сила составляет только 79 эрстед. Из рис. 28 видно, что коэрцитивная сила быстро уменьшается с увеличением температуры.

NiCo₂O₄. Хотя это вещество неустойчиво выше 400° C, кривая $1/\chi = 1/\chi$ (*T*) могла быть измерена вплоть до 800° C; рис. 29 показывает, что эта кривая относится к тому же типу, что и кривая для FeCo₂O₄.

Кривая $\sigma = \sigma(T)$ при H = 8000 эрстед (рис. 29); точка перегиба отсутствует и точка Кюри не может быть точно зафиксирована. Рис. 30 показывает, что значения коэрцитивной силы при 77° К и при комнатной температуре невелики и что практически при внешнем поле 8000 эрстед достигнуто насыщение.

Рис. 28. FeCo₂O₄ Кривые петель гистерезиса при 77° К и 293° К. Температурная зависимость коэрцитивной силы H_C.

форму аномальную имеет

Рис. 29. NiCo₂O₄. Смысл обозначений указан на рис. 26.

Таким образом, аномальная форма кривой $\sigma = \sigma(T)$ не может быть объяснена большой магнитной жесткостью материала, и кривая изменения спонтанной намагниченности в зависимости от температуры будет иметь приблизительно такую же форму.

 Co_3O_4 . Этот материал парамаг-нитен ниже 20° К. Кривая $1/\chi = 1/\chi(T)$ (рис. 31) незначительно отклоняется от прямой линии. Из невысоких значений восприимчивости следует, что атомные моменты атомов металлов

Рис. 30. NiCo₂O₄. Смысл обозначений указан на рис. 28.

Рис. 31. Со₃О₄ и ZnCo₂O₄. Смысл обозначений указан на рис. 26.

значительно меньше, чем моменты, найденные для ионов. Мы можем трубо оценить атомные моменты, если принять, что закон Кюри-Вейсса остается справедливым при температурах выше 600° K (это верно в пределах экспериментальных ошибок). Тогда мы найдем $C_{a\tau} \approx 1, 2,$ в то время как чисто спиновое значение Сат порядка 2,6.

 $ZnCo_2O_4$. Кривая $1/\chi = 1/\chi$ (*T*) следует закону Кюри-Вейсса вплоть до 100° К (рис. 31), и мы находим $C_{ar} = 0,21$, что также значительно

тельно равно 3. Co_3S_4 и Ni Co_2S_4 . Кривые $1/\chi = 1/\chi$ (*T*) (рис. 32) того же типа, что и у Co_3O_4 . Из не-

ниже, чем чисто спиновое значение Сат, которое приблизи-

типа, что и у Co_3O_4 . Из невысоких значений восприимчивости следует, что атомные моменты значительно ниже, чем чисто спиновые значения: при грубой оценке мы находим $C_{a\tau} \approx 0.7$ для Co_3S_4 и $C_{a\tau} \approx 0.3$. для NiCo₂S₄.

 Co_3S_4 и $ZnCo_2S_4$ являются нарамагнетиками при температурах вилоть до 20° К. Однако когда материалы не очень однородны, то возможно, что при низких температурах об-

5

Рис. 32. Со₃S₄, NiCo₂S₄ и Со₉S₈. Смысл обозначений указан на рис. 26.

наружатся слабые ферромагнитные свойства, вызванные следами CoS₂, который ферромагнитен и имеет точку Кюри 110° К⁴⁸.

III. 4. Обсуждение магнитных свойств

Магнитные свойства рассматриваемых соединений значительно более сложны, нежели свойства хромитов, и поэтому невозможно обсудить их на основе рассмотрения лишь взаимодействия и конфигурации спинов, как это было в случае хромитов. Мы в состоянии обсудить эти свойства только на основе учета характера химической связи в кобальтидах.

Из невысоких значений атомных моментов, найденных по кривым $1/\chi = 1/\chi(T)$, следует, что атомы металлов не находятся полностью в ионных состояниях. Отклонения от ионного характера химической связи согласуются с относительно малыми значениями параметров решеток сульфокобальтидов. Расстояние между ионами S — S значительно меньше, чем сумма гольдшмидтовских радиусов ионов S^{2—}. Для гипотетической шпинели, в которой ионы S^{2—} находятся в контакте между собой, длина ребра элементарной ячейки a = 9,85 Å, если же использовать гольдшмидтовские радиусы (1,74 Å) для указанных ионов, то для ионных сульфошпинелей придется допустить, что $a \ge 9,85$ Å. Для сульфохромитов a действительно несколько больше, чем 9,85 Å. Однако для Co₃S₄, NiCo₂S₄ и CuCo₂S₄ экспериментальные значения a равны соответственно 9,42; 9,39; 9,48 Å, а это указывает на то, что расстояние между атомами серы значительно меньше, чем соответствующая сумма ионных радиусов. Очевидно, что здесь нарушается простая картина размещения ионов.

Ребра элементарных ячеек кобальтидов меньше, чем ребра хромитов и ферритов, и приблизительно равны или незначительно больше, чем ребра ячеек алюминатов. Полагая, что радиус иона Co³⁺ равен или несколько больше, чем радиус иона Al³⁺, но меньше, чем радиус иона Cr³⁺, мы видим, что размеры элементарной ячейки не находятся в серьезном противоречии с ионным характером связи в кобальтидах. Хотя радиус иона Co³⁺ и неизвестен, мы считаем разумным следующий способего оценки. Из значений радиусов изоэлектронных ионов Mn²⁺ и Fe³⁺ (соответственно 0,91 и 0,67 Å), следует, что увеличение атомного заряда на единицу вызывает уменьшение радиуса приблизительно на 20%. Полагая, что подобное уменьшение радиуса иона имеет место, если заряд иона Fe^{2+} (радиус равен 0,83 Å) увеличится на единицу, можно сделать вывод о том, что радиус иона Co^{3+} должен быть равен приблизительно 0,60 Å, т. е. 'лишь немного больше, чем радиус иона Al^{3+} (0,57 Å), и меньше, чем радиус иона Cr^{3+} (0,65 Å). Поэтому мы думаем, что относительно малые размеры элементарных ячеек кобальтидов не указывают на наличие отклонения от ионного характера связи в них и что по размерам ячеек невозможно заключить также, является ли указанная химическая связь ионной или нет.

Тогда возникает вопрос, возможно ли указать подходящие ковалентные структуры, у которых атомный магнитный момент согласуется по величине со значением, оцененным по кривым $1/\chi = 1/\chi(T)$. Для Zn [Co₂] X₄ вероятная ковалентная структура может быть получена следующим образом. Ковалентная связь может быть образована между двумя атомами парой электронов, если каждый из атомов имеет в наличии одну пригодную для связи орбиту. Атом Со, который октаэдрически окружен шестью атомами X, может образовать очень сильные связи Co — X посредством шести гибридных связывающих орбит d^2sp^3 , а атом Zn, который тетраэдрически окружен четырьмя атомами X, может также образовать сильные связи Zn — X посредством гибридных связывающих орбит sp^3 . Атом X, окруженный одним атомом Zn и тремя атомами Co, может образовань одну связь X — Zn и три связи X — Co посредством одной s- и трех p-орбит. Таким образом, для образования связей могут быть использованы все орбиты L и M оболочек атомов кислорода и серы соответственно.

Распределение по орбитам электронов, которые используются и которые не используются для образования связей, может быть определено следующим образом. В ионной структуре Zn^{2+} [Co₂^{*+}] X_4^{2-} ион Zn^{2+} имеет конфигурацию $3d^{10}$, ион Co³⁺ — конфигурацию $3d^6$ и ион X^{2-} конфигурацию s²p⁶. Из этой структуры мы можем получить ковалентную структуру, используя восемь электронов иона Х²⁻ для образования одной X – Zn и трех X – Со связей. Число электронов, которые занимают орбиты Zn и Co, но не используются для образования связей, равно, таким образом, числу электронов у ионов Zn^{2+} и Co^{3+} соответственно. Zn имеет тепсрь диамагнитную конфигурацию $3d^{10}$, а Co имеет конфитурацию 3d⁶, которая также диамагнитна, потому что две из пяти орбит 3d использованы для образования связи, а оставшиеся три орбиты 3d заняты шестью электронами, объединенными в пары с антипараллельной ориентацией спинов. Ковалентная структура ZnCo₂X₄ является диамагнитной. Замещение ионов Zn ионами Ni или Co, которые имеют на 2 или 3 электрона меньше, чем ионы Zn, дает ковалентные структуры, в которых атомы А имеют соответственно конфигурации 3d⁸ и 3d⁷; мы

рассчитали, что $C_{a\tau} = 0.33$ для NiCo₂X₁ и $C_{a\tau} = 0.62$ для Co₃X₄. Экспериментальные значения $C_{a\tau}$ 0.3 для NiCo₂S₄ и 0.7 для Co₃S₄, полученные по кривым $1/\chi = 1/\chi$ (T) (см. раздел III. 3), находятся в сотласии с величинами 0.33 и 0.62, вычисленными для ковалентных структур. Такого согласия между опытом и теорией не существует для оксикобальтидов, и мы не в состоянии объяснить полученные для них опытные данные.

Имеется указание на то, что только часть сульфидов переходных металлов имеет ионные связи. В таблице IX сгруппированы все известные сульфиды Cr, Mn, Fe, Co и Ni и на основе исследования магнитных

Ф. К. ЛОТГЕРИНГ

Таблица IX

Сульфиды Сг, Мп, Fe, Со и Ni После формулы в скобках указаны: (1) кристаллическая структура; (2) отношение наблюдаемого расстояния S—S к сумме радиусов S²⁻; (3) тип связи согласно магнитному критерию (и.—ионная связь; н.и.—неионная связь). Структуры Ni₆S₅ и Ni₇S₆ неизвестны

Cr:	CrS ^(a)	(NiAs; 1,00; и.)	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Mn:	MnS	(NaCl; 1,06; и. ^(b))				
Fe:	FeS ^(a)	(NiAs; 0,99; и.)				
Co:	Co ₉ S ₈	(Co ₉ S ₈ ^(d) ; 1,01; н.и. ^(a))				
Ni:	Ni ₃ S ₂	(Ni ₃ S ₂ ^(e) ; 0,82;?)				
 (a) Наши измерения. (b) Н. Bizette, J. phys. et radium 12, 161 (1951). (c) R. Benoit, J. chim. phys. 52, 119 (1955). (d) D. Lundqvist, Ark. Remi. Min. Geol. 24, № 21 (1947). (e) A. Westgren, L. anorg. Chim. 239, 82 (1938). 						

и кристаллографических свойств рассмотрены отклонения их химической связи от ионного характера.

Для CrS, Cr₂S₃ и MnS, FeS, MnS₂ было найдено приблизительное согласие закона Кюри—Вейсса с числом ионных магнетонов, тогда как маг-

Рис. 33. Константы Кюри серий МS и ZnM₂O₄: а) наши измерения; b) H. Bizette, J. phys. et radium 12, 151 (1951); c) R. Benoit, J. chim. phys. 52, 119 (1955); d) T. R. Mc Guire, L. N. Howard, J. S. Smart, Ceramic Age 60, 22 (1952); e) F. C. Romeijn, J. H. Van Santon, частное сообщение; f) A. Arrot, J. E. Goldman, Bull. Amer. Phys. Soc. 30, 62 (1955).

нитные свойства FeS_2 , CoS , Co_3S_4 , NiS_2 , CoS_2 , \square NiS₂ показывают, что состояние атомов металлов в этих соединениях сильно отличается от чистоионного состояния.

Случай NiS₂ в значительной степени остается неясным. Низкое значение $\chi(1/\chi \approx 1500)$ удовлетворяет закону Кюри-Вейсса с C_{ат}~1 и $T_a \approx -1500^\circ$ K. C_{ar} cootbetctbyet наличию приблизительно двух электронов на ион Ni. Неель и Бенуа⁴⁸ в связи с изучением свойств MnS₂, FeS₂ и CoS₂ объяснили указанное число, считая структуру не ионной, однако число магнетонов на ион соответствует в то же время и ионной структуре. Наличие ионов Ni²⁺, однако, опровергается тем фактом, что закон Кюри – Вейсса выполняется вплоть до 90° К. Высокое значение |Та| показывает, что если предположить, что имеются ионы Ni²⁺, то взаимодействие должно было бы быть между ними весьма значительным и

следовало бы ожидать высокого значения температуры Нееля при гранецентрированной кубической расстановке ионов Ni²⁺ (теоретически ⁴⁹): $T_N > \frac{1}{5} |T_a| \approx 300^{\circ}$ K.

Для Co_9S_8 , Ni_8S_2 , Ni_6S_5 и Ni_7S_8 мы не нашли в литературе данных по магнитным измерениям.

В качестве кристаллографического критерия мы берем отношение наикратчайшего наблюдаемого расстояния S-S к сумме гольдшмидтовских радиусов (3,48 Å). Если это отношение больше единицы, то не имеется никаких указаний на тип связи; но если это отношение определенно меньше единицы, то это означает, что атомы серы приближены друг к другу значительно плотнее, чем можно ожидать в случае ионной связи (этот критерий не может быть использован для структуры пирита, в которой имеются ковалентно связанные элементы S_2). -

Из таблицы IX видно, что на основании обоих критериев все сульфиды Cr, Mn и Fe, исключая FeS₂, имеют ионные свойства, а все сульфиды Со и Ni, насколько позволяют судить проведенные измерения, обнаруживают отклонения от ионных свойств. Другим показателем разницы в типе связи между сульфидами Cr, Mn и Fe и сульфидами Со и Ni является существование сульфидов Со и Ni с содержанием серы меньше чем 50%, в то время как такого рода соединений не существует для Cr, Mn и Fe.

Поскольку расстояние S-S в Co₉S₈ не противоречит картине ионной связи, мы измерили восприимчивость (рис. 32) и установили закон Кюри—Вейсса с $C_{ar} = 0,44$ и $T_a = -50^{\circ}$ К.

По значениям констант Кюри серий MS и ZnM₂O₄, которые содержат один и тот же переходный металл, видно, что характер химической связи резко изменяется от существенно ионной связи для Cr, Mn и Fe к неионной для Со и Ni (рис. 33).

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- G. Guillaud, диссертация, Strasbourg, 1943.
 F. Jellinek, Proc. Acad. Sci. Amsterdam B58, 213 (1955).
 J. Volger, F. W. de Vrijer, C. J. Gorter, Physica 13, 621 (1947).
 G. W. Rathenau, J. L. Snoek, Philips Res. Rep. 1, 239 (1946).
 F. Weide, L. Bhys. (4005).

- a. J. Volger, F. W. de Vrijer, C. J. Gorter, Physica 13, 621 (1947).
 4. G. W. Rathenau, J. L. Snoek, Philips Res. Rep. 1, 239 (1946).
 5. P. Weiss, J. Phys. (4)4, 469 (1905).
 6. H. Haraldsen, Z. anorg. Chem. 231, 78 (1937); 246, 169 (1941).
 7. C. Hägg, I. Sucksdorff, Z. phys. Chem. 22(B), 446 (1933).
 8. F. Bertaut, J. phys. et radium 15, 77 (1954).
 9. T. Hirone, S. Maeda, N. Tsuya, J. phys. Soc. Japan 9, 736 (1954).
 10. F. Bertaut, Acta cryst. 6, 557 (1953).
 11. L. Neel, Rev. Mod. Phys. 25, 58, (1953).
 12. P. W. Anderson, Phys. Rev. 79, 350 (1950).
 13. R. Benoit, Comptes Rendus, 234, 2174 (1952).
 14. R. Benoit, J. Chim. Phys. 52, 119 (1955).
 15. F. Bertaut, J. Phys. et radium 13, 372 (1952).
 16. F. K. Lotgering, Z. phys. Chem. 4, 238 (1955).
 17. E. J. Williams, Proc. Roy. Soc. A 152, 231 (1935).
 18. E. J. W. Vervey, E. L. Heilmann, J. Chem. Phys. 15, 174 (1947).
 19. T. R. McGuire, L. N. Howard, J. S. Smart, Ceramic Age 60, 22 (1952).
 20. W. H. Schindler, T. R. McGuire, L. N. Howard, J. S. Smart, Phys. Rev. 86, 599 (1952).
 21. L. Passerini, M. Baccaredda, R. C. Acad. Lincei 14, 33 (1931).
 22. D. Lundqvist, Ark. Kemi. Min. Geol. 17 B, N 12, (1943).
 23. H. Hahn, Z. anorg. Chem. 264, 184 (1951).
 24. A. Michel, G. Chaudron, J. Bénard, J. phys. et radium 25, 189 (1951).
 25. E. W. Gorter, Philips Res. Rep. 9, 295, 321, 403 (1954) (ameercs pycckmi nepemogrems, WoH 57 (1955)).
 26. F. C. Romeijn, Philips Res. Rep. 7, 21 (1952).
 27. T. R. McGuire, J. S. Smart, vacrhoe coofigenne.
 28. J. Volger, Philips Res. Rep. 7, 290 (1952).
 29. L. Neél, Ann. Phys. 3, 137 (1948).
 30^{*} Y. Yafet, C. Kittel, Phys. Rev. 87, 290 (1952).
 31^{*} H. A. Kramers. Physica 1, 182 (1934).
 32^{*} P. W. Auderson, Phys. Rev. 79, 350, 705 (1950).
 33. J. B. Goodenough, A. L. Loeh,

- 34. S. Greenwald, Acta cryst. 6, 396 (1953).

35. L. M. Corliss, J. M. Hastings, сообщение на конференции по ферромагнетизму, октябрь 1954 г., в White Oak (Maryland, USA). 36. Е. С. Stoner, Magnetism and Matter, Methuen and Co., Lnd., 1937, p. 355.

37. J. H. van Santen, J. S. van Wieringen, Rec. trav. Chim. 71, 420 (1952). 38. C. Delorme, Comptes Rendus 241, 1588 (1955).

38. C. Delorme, Comptes Rendus 241, 1588 (1955).
 39. S. Holgersson, A. Karlsson, Z. anorg. Chem. 183, 384 (1929).
 40. J. Robin, C. Bénard, Comptes Rendus 232, 1830 (1951); 234, 734, 956 (1952); J. Robin, G. Generaus, Paris, (1953).
 41. J. Robin, Comptes Rendus 235, 1301 (1952).
 42. W. F. de Jong, H. W. V. Willems, Z. anorg. Chem. 161, 311 (1927).
 43. O. Hüllsman, W. Biltz, Z. anorg. Chem. 224, 73 (1935).
 44. D. Lundqvist, A. Westgren, Z. anorg. Chem. 239, 85 (1938).
 45. M. Heimbrecht, W. Biltz, K. Meisel, Z. anorg. Chem. 242, 229 (1939).
 46. T. Rosenqvist, J. Iron. St. Inst. 176, 37 (1954).
 47. W. F. de Jong, A. Hoog, Z. Krystallogr. 66, 168 (1928).
 48. L. Neél, R. Benoit, Comptes Rendus 237, 444 (1953).
 49. J. H. Van Vleck, J. phys. et radium 12, 262 (1951).

Звездочкой отмечены статьи, имеющиеся в русском переводе в сборнике «Антиферромагнетизм», ИЛ, 1956 г.