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INTRODUCTION

THE study of the superfluidity of helium II gave
rise to the question of the properties of quantum
fluids, that is, of systems of interacting particles
in whose behavior quantum effects play a major
part. The theory of superflyidity given by L. D.
Landau was at the same time the first theory of a
quantum fluid. It described the properties of so-
called Bose fluids, i.e., quantum systems of in-
teracting particles for which the excitations obey
Bose statistics.

Besides such fluids, however, there also exist
others, forming a much more numerous class;
these are the so-called Fermi fluids, whose ex-
citations have spin 1/2 and obey Fermi statistics.
These include liquid helium 3, the electrons in
metals, and possibly heavy nuclei, although to be
sure this last case is a quite special one. Until
very recently there was no theory of the Fermi
fluid. The theoretical calculations were usually
confined to an approach analogous to that used for
Bose fluids; some sort of energy spectrum was
postulated, and this was then substituted into the
Fermi distribution formula.

In view of the fact that in metals the situation
was decidedly complicated by the anisotropy of
the spectra, it was hard to test the correctness
of such an approach. As for liquid helium 3 at low
temperatures, the experimental data made it very
clear that in this case such an approach could not
be completely successful.

A consistent theory of Fermi fluids was de-
veloped by L. D. Landau in 1956.! He showed that
the situtation is very different from that in Bose
fluids, since in Fermi fluids a very important
part is played by the interaction of the excitations,
so that the excitations in a Fermi fluid cannot
be regarded in all cases as an ideal gas.

In the present article we expound the theory of
the Fermi fluid in its application to the isotropic
model and show how the Landau theory provides
an explanation of the various properties of liquid
helium 3. In an appendix we present a recently
completed research of L, D. Landau, which shows
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how the basic propositions of the theory of the
Fermi liquid follow from a microscopic treatment
of the interaction, and we also present there the
theory of a rarefied Fermi gas. In this case one
can obtain the basic quantities of the theory of the
Fermi fluid by an actual calculation.

Before passing to the exposition of the theory,
we recall for convenience in later applications,
the main properties of liquid helium 3. The helium
isotope of atomic weight 3 liquefies at 3.2°K (criti-
cal point Tp =3.3°, pe =845 mm Hg), and remains
liquid down to the lowest temperatures at which it
has been studied (~ 0.2°K) and at pressures up to
30 atmos. The explanation is the same as in the
case of helium 4: the weakness of the interaction
between the atoms, and the smallness of the atomic
mass. Owing to the latter circumstance the de-
Broglie wavelength corresponding to the motion of
helium 3 atoms at low temperatures can be larger
than the distances between atoms; that is, the
liquid becomes a quantum fluid.

Down to the lowest temperatures that have been
used liquid helium 3 does not become a superfluid,
Since according to the Landau theory every Bose
liquid must possess superfluidity, while a Fermi
liquid does not have this property, helium 3 must
be regarded as a Fermi fluid. It must be stated that
this fact is not trivial and does not follow auto-
matically from the fact that helium 3 atoms have
spin 1/2, A system of such atoms might have ex-
clusively Bose excitations. Moreover, as we shall
see later, such excitations actually exist, although
they do not play any important part in determining
the properties of helium 3. It is only the absence
of superfluidity that enables us to conclude with
assurance that helium 3 is a genuine Fermi fluid.

1. THE ENERGY OF THE EXCITATIONS

The possibility of describing an excited state of
liquid helium 3 by means of a gas of quasi-particles
and a corresponding distribution function in the
energy scale is based on the fact that the interac-
tion of the particles of a Fermi gas decreases
rapidly as the temperature is lowered. In fact, it
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is clear from general considerations that the time
between collisions is proportional to the square of
the diffuseness of the Fermi distribution, that is,
to the mean square of the temperature. At the
same time the mean energy of the Fermi particles
in the diffuse part of the distribution (measured
from the limit energy) is itself proportional to the
first power of the temperature, and it is these
particles that determine the macroscopic proper-
ties of the system. Owing to this, the ‘‘energy un-
certainty’ arising from the collisions will, at low
enough temperatures, be small in comparison with
the mean energy itself, It can also be said that at
sufficiently low temperatures the damping of the
excitations, described by an imaginary term added
to their energy, will be small in comparison with
the excitation energy.

Two fundamental assumptions lie at the founda-
tion of the Landau theory. The first is that the
classification of the levels of the Fermi fluid cor-
responds to the classification of the levels of non-
interacting atoms. This means that as one gradu-
ally turns on the interaction the atoms gradually
go over into ‘‘quasi-particles’’, each of which has
a definite energy. Thus the number of quasi-par-
ticles is equal to the number of atoms.

The second assumption is that the interaction
of the quasi-particles can be taken into account
by means of a self-consistent field of the surround-
ing particles, which manifests itself in the fact that
the energy of the system is not the sum of the
energies of the quasi-particles, but instead is a
functional of their distribution function. The energy
of the quasi-particles must be defined as the vari-
ational derivation of the energy density in momen-
tum space, i.e.,

BE = g n de, (1.1)
where dT = 2dpydpydp, /(27 ). The factor 2 in dr
arises from the fact that the quasi-particles have
spin 1/2.

In some cases it is necessary to include a spin
dependence of the particle energy. Owing to the
fact that the spin is a quantum-mechanical quantity,
we must regard the distribution function in this
case as a statistical operator, and replace (1.1) by
a definition of € in the form

3E =+ Sp, S ¢ tn ds. (1.2)
The definition of the particle energy by Eq. (1.2)
has the consequence that the equilibrium distri-
bution function is in fact the Fermi function. To
prove this it is most convenient to use the expres-

sion for the entropy*

S=—55p {(rlnn+(t—m)ln(—n}ds, (13

since this formula is of purely combinatorial origin.
From the condition that the entropy be 2 maximum
for constant number of particles and constant
energy,

N = %Sp, S ndt=const, F = const

we can find the distribution function by taking the
variation with respect to n:

-

n(z)=np(e)=——F—

eT+1

(1.9

The energy €, being a functional of n, depends
on the temperature. This dependence can be put in
the following form. If we denote by €4 (p, 0) the
equilibrium energy of the quasi-particles for T =0,
then for a small departure from equilibrium or for
small values of T it will be given by the formula

e ==z, (p, 8) -+ 0z(p, 0)=2¢4(p, o)

1

! n ’ 7 ’ (1.5)
+ 5 Spar S f(p,o; p',a)dn(p’, ')de.

Here 6n=n -~ np (T = 0), and { is an operator
depending on the momenta and spin operators of
two particles. In view of its definition, as the
second variational derivative of E with respect to
O n, the function f must be symmetric under in-
terchange of p, 0 with p’, ¢’. The function f is a
very important quantity characterizing the Fermi
fluid. As was shown by Landau, it is related to the
forward scattering amplitude of two quasi-particles
(cf. Appendix 2).

2, THE EFFECTIVE MASS

Because we are concerned here with very low
temperatures, the energy €; in the absence of an
external field can be written in the form

g~ (0)=0v(p— p,), (2.1)

where py is the Fermi limiting momentum and v
is the velocity at the Fermi limit. This velocity
can be written in the form

- _Po (2.2)

V= —

m* ’

where m* is the effective mass. As has been shown
by Landau, there is a definite relation between m*

*Here and throughout we use energy units for the temperature,
ie, k=1,
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and f, which is a consequence of the Galilean prin-
ciple of relativity.

According to this principle the momentum per
unit volume must be equal to the mass flux of the
fluid. Because the velocity for the quasi-particles
can be defined as the derivative 9¢/0p, and the
number of quasi-particles is equal to the number
of atoms, we get:

1 4 8 2.3)
szgpnd Sp,Sm pnd
where m is the mass of an atom.

Let us take the variation of this relation with
respect to n:

%Sp, S pi‘md::%Sp, S mg—;énd:
—i—é Sp, Sps S Smn %j(p, e, p’,o’)in" dede’.

Interchanging p, ¢ and p’, ¢’ in the last term and
using the fact that on is arbitrary, we get:
an’

ope S by d“{2.4)
If the system is not in an external magnetic field,
the relation (2.4) does not lose its generality when
we take its trace with respect to the unprimed spin
variable (1/2 Spg) . In the case of equilibrium at
T = 0, € in Eq. (2.4) can be taken in the form
(2.1), and 9n/9p can be replaced by —6 (p—py) .
We then find:

1 1

m m*

, , Oz 1
—‘—)—:—————de '-1-5 S (j ndt' =———
m op 2 ep’ op 2

(2.5)

+ 5 SpaSpy {70 con a2,
where f(x) is the value of the function f for |p]|
= |p’| = py. Naturally, apart from a small cor-
rection, this relation also holds for temperatures
near T =0 and for small departures from equi-
librium.

3. THE HEAT CAPACITY AND ENTROPY

Here we shall assume no external magnetic field,
so that the quantities will not depend on the spin. A
knowledge of the energy spectrum makes it possible
to determine the heat capacity of the Fermi fluid.?

It can be found in the usual way, by differentiating
the energy with respect to the temperature for a pre-
scribed number of particles.

An important point here is that the change of the
energy density is given by Eq. (1.1); owing to this we
can write

%3 ()n >

C _( oL \ u( an \)N dt. (3.1)

In the present case the replacement of € by €, is
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justified by the fact that whereas the main term in
the heat capacity is linear in T the correction in
Eq. (1.5) gives only cubic terms.
In fact, the 6n in Eq. (1.5) can be put in the form
T
in=n(D)—n )=\ 3

]

T

i

* 9n E— ()-
:STK— T

RN

—_ ) dr.

4]

As is well known, at low temperatures the deriva-
tive of the Fermi function has the form

______[vz 6% (s —P)

Fa—ie- =

In view of this we have

be = \ jon' d<’ :%' Vi [£T<f %>]E'=H

r , (3.2)
“OS (=% )5 ). 4T

The derivative 8u/9T is equal to the entropy, which,
as we shall see, is linear in T. As for the term in
8e’/dT, its order of magnitude can be established by
Eg. (3.2). Differentiating this formula with respect
to T, we find without difficulty that 8€¢/8T is of the
first order in T, and consequently 6¢ is of the
second order.

Because of the replacement € by €; the energy
can be calculated simply from the integral

E= S gonds with V= K ndt=const,

o

where, again to within an error of cubic terms in T,
we can replace € by €, in the functions n appearing
in the integrals for E and N. After this the calcu-
lation of the integrals does not differ from that for
the usual case of a Fermi gas.

In this way we find:

9

Jo= (v )

Because of the linear dependence on the tempera-
ture the entropy is equal to the heat capacity.

By comparing Eq. (3.3) with the experimental
data on the entropy of liquid He® at low tempera-
tures we can find the parameter vy, and consequently
can also determine the effective mass. Unfortunate-
ly, at present the experimental curve has only been
found as far as the beginning of the linear part.?
From these data we can obtain only an approximate
value of vy, which turns out to be about 3 cal mole™!
deg—z. Because of the equality of the number of

C

2 / =z ™

BN (1 : (3 3)
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quasi~particles to the number of particles, we can
find the Fermi limit momentum from the density of
liquid He® (o = 0.078 g/cm®). In this way we get:

m* = 1.43myes, L =0.76.108 em™L (3.4

4, THE MAGNETIC SUSCEPTIBILITY

Because particles possessing spin necessarily
have a magnetic moment, the Fermi fluid must be
magnetic. In the isotropic case there are only two
possibilities. The fluid can be paramagnetic or
ferromagnetic. Antiferromagnetism in an iso-
tropic Fermi fluid is impossible. We present here
only the case of the paramagnetic Fermi liquid,
which corresponds to liquid Hed. A calculation of
the susceptibility of such a liquid was given by
Landau in reference 1 (cf. also reference 2),

When the system is in a magnetic field H,
the particles naturally have an additional energy
depending on their spins. If they were free par-
ticles, the change of the energy would be ~ 8 (o -H).
In the Fermi fluid, however, we have to take into
account also the fact that there is a change in the
distribution function. Thus we get

3= —B (o H) + 5 Spor { fon'ds'. (4.1)

In the present case the spin dependence of the
function f is important. This dependence can he
written in the general case in the form

f(p,o p',o")=7(p, p') + 8 (P P )oior.  (4.2)

It is natural to assume, however, that the spin in-
teraction is mainly of exchange origin. In this
case f takes the form

f(p,o; po')=/(p. p)+C(p p)os. (4.3)

The change of the distribution function appear-
ing in Eq. (4.1), 8n, is due only to the change of the
energy €, since the chemical potential changes
only in the second order in H. Because of this we
can set 6n = 3n/de &€ in Eq. (4.1). This gives

de= —B(eH)+45p (1 S awar. (44

This is the equation for 6€, which can be assumed
to have the form

de= —&(o-H). 4.5

Substituting this into Eq. (4.4), we get the equation
1 w0 4 ’ ’
E=B+z§% an, £'ds’.

In view of the fact that dn’/de’ =~ —§(e’ — p), the
integration is taken over the surface of the Fermi
sphere. We shall see below that only the value of £

(4.6)

taken on the surface of the Fermi sphere is of im-
portance for the magnetic susceptibility. In this
case both the arguments of ¢ (p, p’) have the abso-
lute value py, and ¢ depends only on the angle be-
tween them. Denoting [£(6) dQ/4r by &, we get
from Eq. (4.6):

4.7

"R,

The susceptibility is found from the formula

X=’é§ﬁ —;—Sp S n3ods.
The value of this expression is of course deter-
mined by just the spin-dependent change of n.

Thus we find:
pz de
=i

The quantity (37"/36)“ can be expressed in terms of
the coefficient v in the linear law of the heat capa-
city; this gives

4.8)

o (7 4m? 4.9
= <C+§{N . (4.9)

Equation (4.9) can be compared with the experi-
mental data on the magnetic susceptibility of He;!
this shows that ¢ is negative and is of magnitude
0.85 times the second term. Thus the exchange in-
teraction has a decided effect on the magnitude of
the magnetic susceptibility of liquid He®. The sign
of the effect is such that the exchange interaction
facilitates parallel orientation of the spins. It does
not lead to ferromagnetism, however, since the
Fermi tendency toward an antiparallel arrangement
of the spins prevails, It is possible that at higher
pressures the parameters change in such a way that
ferromagnetism becomes possible. There are no
experimental data up to the present, however, to
support such a conclusion,

kS
X

5. THE KINETIC EQUATION

The kinetic equation for the distribution function
in the absence of a magnetic field has the usual
form

on  Os on 9z

az o ar " Op (5.1)
where I(n) is the collision integral. Here, however,
we have to take into account the fact that the energy
€ is a functional of the distribution function, and
thus also depends on the coordinates. By means of
this kinetic equation Landau! obtained expressions
for the fluxes of energy and momentum.
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To find the momentum flux one must multiply
(5.1) by pi and integrate over the phase space.
Conservation of momentum in the collisions makes
the integral [ p;I(n)dT vanish, and we have the equa~
tion

a :
Y e+ (G o o

This expression in parentheses in the second in-
tegral can be written

O (BN 2,

6rk<n oo ) T o\ G >

Substituting this into the integral and integrating the
second term by parts, we get:

a 0= _ 0z 5
m S pla——Pknd;,—-*—Sn—a—dev

The last term can be put in the form

[/j on
Py S nzdv — S e

But in view of the fact that 6E = [edndr, the last
term here is equal to 8E/9x;. Thus we get the
equation

3 3HLk =0

o \ pinde+ R (5.2)

This equation expresses the law of conservation of

momentum. The tensor Iljk is the flux of momentum.

It is given by
' = Rpl

In a similar way we also get the law of conser-
vation of energy. To do this we multiply the kinetic
equation by € and integrate with respect to dr. Be-
cause of the conservation of energy in the collisions
the integral [eI(n)dT vanishes, and we get:

on n 0Os on 0=
(eqar{(GFH—aa)e=0
Writing the term in 9n/r in the form
[/] ds 8z 0s 023
6—1' S nsa—pdt—- S n‘ﬁa—p d‘:—- S nm€dt
and integrating by parts with respect to p in the

term in 8n/0p, we get the law of conservation of
energy

ndn-{—am[ Snsd:——E]. (5.3)

E:Sa%’j—dm: —divqQ,

at (5.4)
where the flux of energy is given by
Q= g neg—;dc. (5.5)

6. THE VISCOSITY

From (5.1) and the expressions (5.2) for the mo-
mentum flux and (5.5) for the energy flux we can
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determine the coefficients of viscosity and thermal
conductivity of the Fermi fluid.®

We begin by finding the viscosity. To do this,
suppose that there occurs a motion in the liquid with
a certain velocity u which is a slowly varying func-
tion of position. In this case the distribution func-
tion will differ only slightly from the equilibrium
value:

n= n0+ani (6.1)

where
1
fg—pell--p !

P +1

ny= |3n| < ny.

6.2)

The quantity én is found from the kinetic equation
(6.1). As usual, we must insert the function ny in the
left member of the kinetic equation. Furthermore
we shall assume that at the point considered u = 0,
Substituting Eq. (6.2) into (5.1) we find:

dn, 1 9ng 3 . 1 8n, O 1 &

a3 Pop iU (Pigy 5 Pigy S
Ou; | Bup 2 v Oup Y\ _ (6.3)
By, + dx; 3 Oir oz )— ().

We now transform 8ny/dt and show that this ex-
pression alsc does not depend on the term in f in
Eq. (1.5). According to Eq. (6.2) we can write

(6-0——09— _”%T—p-?zu> .

Since the derivative 8ny/9€y in Eq. (6.4) is different
from zero in a small neighborhood of the point

€= p, and is a rapidly changing function in this
region, we can suppose the quantities in the paren-
theses evaluated at that point (the error will be of
the relative order (T/p)?). The variations &€, and
o are arbitrary and are by no means equal to each
other. On the other hand, the distribution function
is normalized by the relation

(6.4)

n,
8, _ Oy
Sy = 5o

S nde= N,

where N is the number of atoms in unit volume.
Taking the variation of this relation, we find:

any (. N Ep—

oN = g T (oso—op—- 7
dz

P I:(oso——o:;—-p-l?ﬂl) P ]zozp’

since [(9ny/9¢€p)dey = —1, Comparing (6.5) and
(6.4), we get:

LNy - p-%u) d< ©.5)

- JOro [ dz
ot ot a: K dr )so:p..

The number of atoms N satisfies the equation
of continuity

aN

—at—-}—.ﬂ\v"divuzo.

(6.6)
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Thus the term in 9ng/8t gives an addition to the
term in div u, which as a result now takes the

form
a"" <— —2 ( - > u_u> div u.

Using Eq. (2.1) and the equality of the number of
excitations to the number of particles, which
makes py/h =(37r2N)1/ S, we find that the expression
just written vanishes. Thus apart from small
corrections of the order (T/u)? there are no terms
in div u in the left member of the kinetic equation.

The right member of Eq. (5.1) is the collision
integral

(6.7)

Ln)= = wlmm (1—n) (1= ) — (1= n) (1= m) nin]]

— Pl (egt < e/ dz,d< dp;. (6.8)

Here we must keep in mind that the 6 function of
the energies has as its arguments the actual ener-
gies, i. e,, the energies as given by Eq. (1.5).
Owing to this, substitution of the function ny(€p) in~
to the collision integral does not make it vanish,
The integral vanishes only when we substitute in it

X8(p -+ p.—

the true equilibrium function, i. e., ny(€). The total
distribution function can be written
n—no()-a—n"—gf&(zdr%—r)n. (6.9)
We introduce the notation
on = —ﬂ‘—(%,:fiv:i—:v. (6.10)

Substituting this in Eq. (6.9), we find that the term
added to the equilibrium distribution function also
has the form (6.10). Instead of ¥ however, it con-
tains the quantity

e=v+(£), 1o e

Substitution of Eq. (6.9) in the collision integral,
with neglect of terms quadratic in ¥, gives:

1 ’ ’ ’ r
I(n)= T g Wy Rgy (1 — ngy) (1 —ng) (91 + 92 — §; — ;)

(6.11)

X6 (Py+ Py — Py — Py) 8 (51 +ea — &y — ;) dupdridp,.  (6.12)
In general the collision probability w depends on
all four momenta. The momenta of importance
here, however, are those with magnitudes close to
the limit value on the Fermi surface. We can
therefore assume that w depends only on 6, the
angle between py and py, and ¢, the angle between
the planes (py, py) and ( py, py)-

Let us make use of the fact that the momenta of
the particles in the main region of the integration
differ little in magnitude from the limit momentum
. If we rotate the plane of the vectors (p{, py)

VN ]
FIG. 1

through the angle ¢ relative to the axis in the
direction p; + pg, so that this plane coincides with
the plane (p;, py), we get the diagram shown in
Fig. 1. It is clear that the vector f will be small

in magnitude and that the angles between all the
momenta and the axis p; + p; will be approximately

equal to 8/2 or — 6/2. Thus we get
4 / / & (6.13)

i i . B
1*’p1+fzcos +fr5ln2 y PN Py— —2_+er11177
where f, is the component of f along the axis
Py + Py and £, is the perpendicular component. We
get rid of the & function by integrating over dpy,
and replace the integral over dr{ by that over

df.df,d ¢, introducing a system of cylindrical co-
ordinates with axis along p; + ps:

f,cos

’ .6 1
d'tl = 2p0 sin '2—dfrdfzd:? (m . (6.14)
We now introduce the following notation:
T Tl el (BT
with the values of ¢; from Eq. (2.1). The change

from the variables fy. and f, to x and y is ac~
complished very easily by means of Eq. (6.13).
Then we get:

4t { dsyi (9= merasay (52 ) (5

’
8n4h8 cos (7 >

where we have denoted the angular differential
sin 6d6dg by d2, which invglves the arguments of
w(8, ¢). We note that because of the indistinguishi-
bility of the particles the angle ¢ varies only from
zero to .,

From considerations of symmetry-it is clear that
¥ must have the form (6.17)

_1 { 3 aul auk aum
‘_—fq( )<p1 aPh 3 P aPL Gip 31‘}; 3xl

ik aw
When this expression is substituted in the colli-
sion integral the second factor can be transformed
by means of the addition theorem for spherical
harmonics. After the integration over the angle
@9 only the first terms remain, i.e.,

(6.16)

Py (8, + 6,) — P, (8)) Py (B,), where Py (§) = % cos20—1,
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As the result we get from Eq. (6.3) the following
equation for q:
m*3T2 dQ c e
—2 {5 (| dyw 9
8=4hs cos ~- g im 5, _'\,
- Xty t—x

o () [1—ny (1)) =

< o () ng (@49 — ) [ — ny (@] [1 —ng () 1)

X lg@)+qx+y—0) L, (1) —q@) Py (") — q(y) Py (6))].

In view of the fact that in the range of tempera-
tures we are considering only values of X, y, and t
much smaller than k are of importance, we can
take the lower limit of the integration in Eq. (6.12)
to be — «, Under these conditions, assuming that
q is a symmetric function (as is confirmed by the
results) we easily verify that all the terms with
different q’s can be reduced to the same form as
regards the dependence on x and y. Thus the
bracketed expression takes the simple form

9(0) 4@ Lo () — Py (5) ~ Py (5],

The change from the angles Gi'and 8, to the angles

0 and ¢ is easily obtained from Fig. 1. Integrating
over the variable y, on which q no longer depends,
after some manipulation we get the following equa-
tion:

:z%:z%z w“"ﬂi),.[%(i—cos )2 sin @ —1)]
008—2—
=<3 <] t
“dralg{z+t)+q(x—1)] U dzzq(x) . _
X{\ = —|—25 =11 +de zq(z t)}
b b h)
g, 24 42
4208 ) 228 (6.19)

Ccos —é-
where the bar denotes averages over the solid
angle.

The equation that has been obtained is compli-
cated, but analysis shows that for arbitrary assump-
tions about the form of w(6, ¢) the error in the co-
efficient of viscosity will be smaller than 10 per-
cent if we simply assume that the values we need
satisfy t? « 7. Then q is a constant, given by

64w2hs w(y, ) . -t
q= 3”‘::37,2 [ ( 0"> (1 —cos f)2 sin? q:o] ©(6.20)
cos ?

The flux of momentum is given by (5.3). Insert-
ing in it n =ny + 6n and Eq. (6.10), and using the
fact that the energy is also a functional of the dis-
tribution function, we get:
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ta= § 5 52

in = 5§ 7 (b p)enis’ | ds
=0

i aph
8z (p) Bny [ de’ dg’
- S"“o;_p??[”“ S”Q; ):FH"E] de (6.21)
=§n Gl e

Thus it is seen that the expression for the momen-
tum flux involves the same function ¢ that appears
in the kinetic equation. Consequently, the function
f does not enter the expression for the momentum
flux, and it has the same form as for a Fermi gas
of particles with the mass m™ and the scattering
law described by the function w(4, ¢) . *

Substituting Eqs. (6.17) and (6.20) in Eq. (6.21)
and defining the coefficient of viscosity as the
proportionality coefficient between Ij; and
—(Buy/8xk +duk/0x; — 2/3 Buy/dxy 8ik) , we find

: wps [ w(s, . -1
g = 64 g EQ{JL?U —cos 0)? sin? Ug] . (6.22)

%5 m*d cos -

2

The viscosity is proportional to T~2 This depen-
dence was earlier predicted by Pomeranchuk® on
the basis of qualitative considerations. As for
the numerical values of the viscosity, they de-
pend on the definite form of the averaged func-
tion w(8, ¢)and therefore cannot be found pre-
cisely. But Eq. (6.22) makes it possible to de-~
termine the order of magnitude of . To do this
we make use of the fact, which will be proved in
Appendix 2, that the function f is of the order of
magnitude of the scattering amplitude of the
quasi-particles. Consequently w ~ (27/H) 2, and
the value of f can be determined from experi-
mental data on the speed of sound (cf. Sec. 8).
Using the numerical values of m* and p; from
Eq. (3.4), we get for He?

y,=7‘}(z~J_()-G<:-10~5poise; T 5°K)., (6.23)

This order of magnitude corresponds to the ex-
perimental results found by K. N, Zinov’eva.!
Because her measurements went down only to
0.35°K, it is indeed impossible to check the tem~
perature dependence. Nevertheless the experi-
mental results show an increase of the viscosity
with decreasing temperature,

As already noted early in this section, apart
from terms of order (T/4)2 there is no part pro-

*In reference 5 the second term in the formula (6.9) was not
included, and incorrect formulas were thus obtained for the vis-
cosity and thermal conductivity coefficients. The correct values
can be obtained by taking f = 0 in the expressions (26) and (30)
of reference 5.
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portional to div u on the left side of the kinetic
equation. This means that the coefficient of
second (dilatational) viscosity is smaller than 7
by a factor (T/w)? and plays no part in physical
effects (for example, the absorption of sound).

7. THE THERMAL CONDUCTIVITY

We now go on to the calculation of the thermal
conductivity.? Assuming a small temperature
gradiant, we get in the left side of the kinetic

equation:
Ong <50—P‘
T e, T

At the beginning the transformations of the col-
lision integral are the same as those made in the
preceding section [Egs. (6.8) to (6.16)]. In the
present case it is reasonable to try to find the
function ¢ in the form

b=q( eV

s) Z_f;. V. (7.1)

(7.2)

Instead of Eq. (6.8) we now get a similar equation,
but with cos € instead of P, (cos 6) in the collision
integral and the factor (€ — p) /T — s in the left

member. The presence of such a factor shows that
the unknown function must contain parts both sym-

metric and antisymmetric in t, namely:
(1) =9, (1) + 4, (). (7.3)

Substitution in the collision integral gives the two
equations

M O T

8nihé u, 2412
wih w( (.p)[qs t)-rc+

cos
2

e*—1

“,‘&? % [gs (1) + g (2 —1)]

0

°1°d .

—2{ Z2O_(doag, 1], (7.4)
8rnths (6, 1+z 6 e +t
,,LT;sng _ ¢) ( cos 8) [ R dp Zl9a( ex-1qa (z+1)]

COS—Z (7 5)
dz w (U, w) 1';2—}-!2

o ?
+2t§ ol +§dz-xqa (@—1) ]+ 4a (®)

COs —
z

In the present case, however, the kinetic equa~
tion does not completely determine the solution
of the problem. One must use along with it a
supplementary condition, which expresses the con-
servation of the flux of matter. This is

8 S n;p-d:: S Blz—f}(;—“d:+ S n, ai [ S /Bn’d:’]dr
:S ZJ [\n__, g/onfdt ] de=o. (7.6)

Here we have performed an integration by parts and
have replaced € by €, in the integrals that already
contain 6n. Substituting the expressions (6.10),
(6.11), and (7.2) in Eq. (7.6), we get

V(G ) awa=o

To find qg(t) we have only to solve (7.5) in a way
like that used in the treatment of the viscosity. The
situation is different for the even part qg'(t) . First,
we must note that qg = constant makes the right
member of Eq. (7.4) vanish identically. Therefore
the constant term qg(0) is to be determined not
from this equation, but from the condition (7.7).
Furthermore it is easy to show that the subsequent
terms in gg4(t) , namely a2t4 + a,‘t4 + ..., make no
contribution to the thermal conductivity. In fact,
the occurrence of such a term as amt‘zm, for ex-
ample, must change the constant term in gg(t) by a
quantity a&l which is such that

S‘”’“( ) [a,22" - a%] dr = V).

From this condition we get:

(7.7)

0
]{ z2ne-l l
”L—g ’L‘_‘ N (z.
0

ap = —a, 2m)!' R ;

To find the energy flux we have to calculate inte-
grals of the form

d 2
(B F () (@, 12" 4 aby) ds

:<Fd-‘f—

L‘) [am. (zm)!HHL+a'?‘l] :O
2 Jzo=n

Thus we get the result that to find the thermal
conductivity coefficient we need only solve (7.5)
and then choose the constant term so as to satisfy
the condition (7.7). As in the case of the visco-
sity, it is enough for practical purposes to find the
solution on the assumption t? « 7. We then get:

24m2h8 / 1\:21 m w(9,¢) (1—cos )
= m*372 \ ) ( A J (7.8)
COb~—~
2
The energy flux is given by Eq. (5.5). Substitut-
ing Eq. (6.1) in that formula, we have:
(7.9)

Q= S e, (p) Lo (®) 0(“) ondr-—g 2 (p )‘3“’(" S Sf&n’ ds’ ds.
Substituting Eqs. (6.10), (6.11), (7.2), and (7.8)

we find the value of the thermal conductivity co-
efficient
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8 n2h3p} w (b, ¢) (l—cos ) |1
= [ o ] . (7.10)
2

As in the case of the viscosity, the function f does
not appear in the coefficient .

The temperature dependence of the thermal con-
ductivity coefficient is given by the T™! law, which
also agrees with the qualitative prediction of
Pomeranchuk.

. Estimating the numerical value of k¥ for He?
the same way as we did that of the viscosity, we get

the relation
(7.11)

“1sec 1deg ; Tin °K).

z=—(§3~102+103 erg cm

In any case the expressions obtained for the
viscosity and thermal conductivity coefficients
cease to be valid for températures T ~ u. In addi-
tion to this, however, there is a limitation that
shifts the region of applicability of the theory
toward considerably lower temperatures. This is
that the range of excitation energies with which we
are concerned, of the order of T, must be much
larger than the quantum uncertainty in the energy
that arises owing to the collisions, i.e.,

h

=, (1.12)

where T is the time between collisions. We note that
the condition (7.12) is required not only for the cal-
culation of the kinetic coefficients as it was done
above, but also for the validity of the entire theory
of the Fermi fluid. For He3 the quantity T can be
determined from the experimental values of the
Viscosity7 [cf. Eq. (9.12)]. If we use the point at

the very lowest temperature, i.e., n = 4.8 X 1075
poise at T = 0.35°K, we get from Eq. (7.12)

T ¢ 0,35°K. (7.13)

It is clear, however, that this value is too high,
since at T = 0.35°K the viscosity is still not pro=
portional to T2, but follows a weaker law of varia~
tion.

8. THE PROPAGATION OF SOUND

The propagation of sound in a Fermi fluid has a
number of quite specific peculiarities. If we con-
sider sound of a prescribed frequency, then at not
too low temperatures its propagation takes place
according to the laws of ordinary hydrodynamics.
In this case the damping of the sound is propor-
tional to 7. When the temperature is lowered the
collision time will increase proportional to T2,
and finally, at temperatures such that wt ~ 1, the
sound ceases to be propagated at all. It turns out,

however, that when the temperature is lowered
still further the possibility of propagation of sound
reappears. The velocity will then be different, and
the sound is no longer simply a wave of compres-
sion and rarefaction. This phenomenon was also
predicted by Landau,® and was called by him the
“‘zeroth sound’’, Because only the relation between
w and T is essential in fixing the nature of the
sound, these two kinds of sound can be described
as low-frequency sound (wr « 1) and high-fre-
quency sound (wT > 1),

The speed of sound at low frequencies or not
too low temperatures, for which the condition
wT <« 1 holds, is determined by the compressibil-
ity in the usual way. It was shown by Landau!
that there is an important dependence of the speed
on the function f.

It is convenient to express the compressibility
in terms of the derivative OuuN, Here N is the
total number of particles. Using the fact that the
chemical potential p depends only on N/V, we find:

. N
e BV Vrap (8.1)
N N T AT

As is well known, the speed of sound is given by
the relation
Bp op 1 au

0p P mN )fn_L 5/7) : (8-2)
T—

The derivative 9p/9N is calculated in the following
way. Because u = € (pg), the change of p occurs

both on account of the change of py and also be-
cause of the change of the form of the function

€ (p):
angm ds' 4 °ap (8.3)

The changes 0N and 6p are connected by the re-
lation

A7 o v

oN =8=p Do (s - (8.4)
Since only changes 6n close to the Fermi limit are
important in the integral of Eq. (8.3), the integra-

tion over the absolute value of the momentum can
be performed. This gives

Sfondt ———SfdQ (8.5)
Substitution in Eq. (8.3) gives [cf. also Egs. (2.1)
and (2.2)):

ou _ (2nh)3
N mv X fd 4+ " (8.6)

T pim*V 7

Equation (2.5) enables us to express the effec-
tive mass m* appearing here in terms of the actual
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mass m of the atoms. Substituting the resulting
expression in Eq. (8.2), and using the fact that

8 p3V

N —

N= 3 (2rh)3
we find:

=P8 2 P

T 3m2 U 3m \_ 2k

>3 S f () (1 —cosy)d2. (8.7)

The formulas (2.5) and (8.7) make it possible
to get some information about the function f(x) . If
we introduce the notation
7/ d *

P =100 (G )o =100 2555 = D F Py (cosy), (8.8)
kR
the first coefficients of the expansion in Legendre

polynomials can be found from Egs. (2.5) and
(8.7). Indeed, it is not hard to get the relations

1

1 AN 2 3
— = (1+ Foosy), c-:<31r:fz . (8.9)

) 14+F
1+Fcosx
Substituting the values of the parameters for He?
from Eq. (3.4) and the value of the speed of sound,?
et g =183 m/sec, we find: d:

Fo=F =465 F,=3Fcosy=1.3. (8.10)

In view of the fact that the later coefficients can-
not be determined in such a simple way, here-
after we shall confine ourselves in specific cases
to the first two harmonic contributions to the
function F:

F=F + F,cosy. (8.11})

(13

We now go on to the study of the ‘‘zeroth sound’’,
i.e., the case inwhich wt » 1. The kinetic equa~
tion has the form (5.4). We substitute in it the dis-
tribution function in the form

(8.12)

»=ny+4un,

where the small deviation én ~ el(k-r —~wt), Here,
of course, we have to take into account the fact
that, according to Eq. (1.5), the energy of the ex-
citations also undergoes a change. Inasmuch as
the collision integral has the behavior I(n) ~ én/r
and wT > 1, we can neglect I (n).

Thus we find that

(ke v — w) 31 — ke v 20 { fomaz =0,

0z
From the form of this equation it follows that 6én
is proportional to 9ny/de. Writing 6n = 9ny/d¢ v,

we get:
(kv — o)y -tk ‘S By 2o, (8.13)

If we take k as the polar axis and introduce the
symbols u = w/k for the speed of propagation of

the wave and s = u/v, then Eq. (8.13) takes the
form:

(s —cos 6)v(f, ) =cos S F)v(, ¢) 52 (5.14)

From this we can determine v (6, ¢) and the char-
acteristic value s. In view of the fact that the
change of the distribution function, 6n, is pro-
portional to 9ny/0¢€, it is clear that the essential
point is the deformation of the Fermi surface.
The shape of this deformation is determined by the
function v, Equation (8.14) depends essentially on
the function F.

Let us consider first as an example the simplest
case, namely F = Fy = const, With this we get from
Eq. (8.14) (without the periodic exponential factor)

= constt-cosﬂ. (8.15)

s—cos 0

A displacement of the Fermi surface as a whole
(this corresponds to ordinary sound) would be
given by v ~ cos 8, Thus in the present case we
have to do with an anisotropic deformation of the
Fermi surface. As we shall see latter, s must
be larger than unity. Thus the Fermi surface is
stretched out in the direction of the motion,

Substituting Eq. (8.15) in Eq. (8.14) with F =
Fy, we find the equation for s. Carrying out the
elementary integration, we find:

s s+1 1
oIt _1’E' (8.16)

From this it can be seen that if s is real (which
corresponds to undamped waves) it must be larger
than 1, i.e.,

uw>v.

(8.17)

From Eq. (8.14) it can be seen that this condition
remains valid for any function F. Furthermore,
since the left member of Eq. (8.16) is always posi-
tive, it is clear that the condition for the existence
of zeroth sound is Fy > 0.

If the function Fy ‘is large, s is a}so large.
From Eq. (8.16) we get. s — (Fy/3)1/2 for Fy — o,
On the other hand, for Fy — 0 we have s — 1, i. e,
u — v. This is the case of an almost free Fermi
gas.

It is not hard to see that the conclusion that
s — 1 for F — 0 does not depend on the form of F.
In fact, it follows from Eq. (8.14) that for F — 0,

s — 1, and v is different from zero only for small
6. According to Eq. (8.7), in a weakly nonideal
Fermi gas ¢! » p(z,/3m, i.e., c = 371/2y, Thus the
speed of the zeroth sound will exceed the ordinary
speed of sound by a factor 31/2 .

Let us now consider the general case F(y) 10 we
represent this function as a sum of spherical har-
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monics as in Eq. (8.8). We substitute Eq. (8.8) in
Eq. (8.14) and use the addition theorem of Legendre
polynomials

Po()= 3 Pr(0) PR (1) em e+

m=--n

(n—|m|)!
W Fm

where Prr? = P;lm are the associated Legendre

polynomials, After the indicated substitution we get:

(n—|mp!

(COSB—S)V-{’COSQZ'W

Py (0) Fpeime
(8.18)
< S P8y v (), cp')e_im‘?'d—[?-i —0.

117

We introduce the notation
. (a—|m ! m o ps 'y e imer 8% .19
Fu T ) PR O 08 e = g (8.19)
and solve Eq. (8.18) for v»:

g _vosf S @, PI(6) eime. (8.20)

cos 0—s
Substituting this expression into Eq. (8.19) and
carrying out the integration over ¢ we get:
o {n—=|m| ! SR cos 6’ o dﬁ'
£ n=tm ) S 2- £ ( )('Os 0" - « i) 4r Dy

. . (8.21)
= Z (chmol: "
h

Thus we have obtained a system of homogeneous

equations for the quantities ®ykyy,. This system sepa-

rates into independent subsystems corresponding to
different values of m. From Eq. (8.21) it follows
that in the Fermi fluid at absolute zero vibrations
of several different types can be propagated, char-
acterized by different dependences of the amplitude
on the angles 6, ¢. The value m = 0 corresponds
to vibrations in which v is isotropic in the plane
perpendicular to k. For m # 0 the vibrations are
polarized in a definite way in this plane., The num-
ber of types of vibrations is determined by the
number of possible values of m (|m| < n). The
speeds of propagation of the vibrations are deter-
mined by the requirement that the determinants of
the corresponding subsystems of equations be equal
to zero:

|3 + FoQin (s)|=0 (N 2n, k=|m]) (8.22)
\ 2 (8 o PR )

m n—|m|)!
O 4) = T
Because Pp™ = P, the coefficients Q% do not
depend on the sign of m, so that vibrations that
differ only by the sign of m are propagated with
the same speed.

From Eq. (8.22) it can be seen that the equa-
tions for the speeds are transcendental equations.

M. KHALATNIKOV

In the general case they do not always have real
roots. Cases are also possible, however, in which
there are several real roots. Then.there are
several types of vibrations with the same polariza-
tion in the plane perpendicular to k.

As an example let us consider the case in which
the function F(x) contains only the zeroth and first
harmonics [the function (8.11)]. Here the coef-
ficients Q2 are given by

1
; 1 xdx s s4+1
yo __ b B L =
Qo= gx,‘_s 1 2 lns—-l @
A
1 ‘ d
D 2z
s)?(l:uglij\ s = — SW,
2
1 x3 dx 1 s
v a2
t-l“_?Q xT-—s 3 S
1
1 ¢ (1—2?) 11, 1
Q}I_ZS g ——?[(s"——i)w-——g

On substituting in the determinant (8.22) we get
for the speed of propagation of vibrations of type
m = 0 the equation

W= ot VLI
O P T F, By (8.23)
For the case m =1 we get the equation .
_ F,—6

This equation has one real root for F; > 6,

Let us now look at the application of our formu-
las to the case of liquid He3. According to Eq.
(8.10) there is one speed for the vibrations of
type m = 0 [the root of Eq. (8.23)]

w -
s=— =172,

. w=192 m/sec.

The vibrations of type m = 1 (and also all with

m > 1) are absent, It is of course possible that
this conclusion is a consequence of the crudeness
of the approximation we have taken for F(y), but
we see no reasons for thinking so.

In addition to the vibrations that have been con-
sidered, waves of an entirely different type can be
propagated in a Fermi fluid at absolute zero;
these can be called spin waves.? In the treatment
of these vibrations one must take into account the
spin part of the function f, which is given by Eq.
(4.3). We introduce a new symbol

- dz
0 =1 D(F ).

=F(1)+Z(z)es. (8.25)

The equation for zeroth sound now takes the form
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(s~cosﬁ)v=cose%spc,z%gqwdg'. (8.26)
If we assume that v does not depend on the spin,

this goes over into Eq. (8.14). It is also possible,

however, to assume a different form for the func-
tion v, namely to take

v=pv.o (8.27)
For this function we get the equation
A

(s —cosf)vy=cosb Szv Tem - (8.28)

Thus we have for the components of the vector »
an equation that differs from Eq. (8.14) only by
the replacement of F by Z/4. Therefore all the
further developments must be the same as those
carried out above.

According to the results of Sec. 4, for the case
of He® the quantity Z, is approximately — 3.4, that
is, a negative quantity. Although it is of course
impossible to draw any rigorous conclusions from
this, still it is most probable that no spin waves
can be propagated in He3,

The possibility of the propagation of sound waves
at T = 0 means that the Fermi fluid has a Bose
branch of the energy spectrum, in the form of
phonons with energy € = up. But the contributions
from this branch to the thermodynamic quantities
involve higher powers of T (heat capacity ~ T%),
which were not included in the approximate theory
that has been considered.

9, THE DISPERSION AND ABSORPTION OF SOUND

In the preceding section we considered the two
limiting cases wT <1 and w7 >» 1, Let us now
examine how the transition occurs from ordinary
sound to zeroth sound, i.e., let us consider the
dispersion of sound.!’ Because the region of the
dispersion, wt ~ 1, is at the same time the region
of strong absorption, our treatment will also enable
us to deal with the problem of the absorption of
sound.

In the present case we have to find the solution
of the kinetic equation, including the collision in-
tegral. Because the interaction law of the excita-
tions is still unknown, however, we shall simplify
the form of the collision integral.

For this purpose we could introduce a certain
effective time 7 and replace the collision integral
Iin Eq. (5.1) by the expression —én/r. With this
replacement, however, the kinetic equation will not
yield any conservation laws for the number of ex-
citations, the momentum, and the energy, and this
makes the transition to hydrodynamics impossible.
Since both the second (dilatational) viscosity and

the effects of thermal conductivity (see.below) are
negligibly small in our case, the collision integral
contains no terms in the zeroth and first spherical
harmonics. We therefore replace the collision
integral by the following expression:*

I(n)— —=<1@r—on—3encoshcosh). (9.1)

It is easy to see that the integration over drp
makes this expression go to zero. It also goes to
zero after multiplication by € or by p cos # and in-
tegration over d‘rp.’r Thus the equations for the
conservation of the number of particles, the mo-
mentum, and the energy are automatically satis-
fied. According to Egs.(8.14) and (9.1) the basic
kinetic equation now takes the following form:

(kvcosf— o) v+ kvcos b S Fy i(,)
(9.2)

= —i}: (v —v—3vcus f-cos ).

Having in mind the application of the results to
He®, in order not to complicate the problem we
shall write the function F in the two-term form
of Eq. (8.11).

We introduce the notation

iwz-—1

l

V=g dvecosB=v; o= ~izkv; : . (9.3)

ithe
after which we get without difficulty from Eq. (9.2):
(9.4)
(cosb—£&)v4-cosb <F0v0 —{—% Fivy cos f/)« = id (Vg + vy cos B).
We now solve the equation for v and calculate

v .= vyand ¥V cos 6 = v /3. We thus find two equa-
tions for the two quantities v, and vy:

1 o i 5
Vo= Fovgw + = wFl"l"é‘ dﬁ:* — o, (9.5)
1 171 . w W
Sy = A S 2P , v s
3= Fonfw—g{ 5=t “’)’”1 sV TS (9.6)

£E+1
T

From the condition for compatibility of (9.5) and
(9.6) we get an equation for the complex speed of
sound

(1+&) (+5)-e{(13)(r-%)

B <F1_%> . <1+%>} =0.

This is the desired equation for the frequency

where w :% In 1.

(9.7)

*Here and in what follows the bar denotes averaging over
the angles,

tIn this integration only the range of values of momentum
close to p, is of importance, since the function 6n contains a
S-function singularity for e = p.
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dependence of the speed of sound or, in other words,
for the dispersion of sound in the Fermi fluid. We
first consider two extreme cases.

a) Low frequencies, wT « 1, Here we have
og—0, 00—~ 1, and ¢ — », Expansion of w in
powers of 1/£ gives

Y=5m T

and after simple manipulations Eq. (9.7) takes the

form
(148 =3 (145) (7=8)

i 1 3
+m(1+5) (Fi-g
Recalling the relations (9.3), we have:
1+5\? w \?2
(===
From Eqs. (9.8) and (9.3) we find in first order in
iwT

(9.8)

o \2 1 o , F 4 . Fi ™

H) =§(1+1«0)<1-1—T’ — g o <1+T‘). (9.9)
The first term corresponds to the speed of ordinary
sound in the Fermi fluid. The absorption of sound in
the region wr « 1 is found by the elementary rule
from Eq. (9.9) as the imaginary part of the wave

vector:
(1 +%>

In view of the fact that the present case corre-
sponds to ordinary sound, we can use instead of
Eq. (9.10) the more precise ordinary formula

v chd{( 1"‘”C)“Lc,[,< 1>}

Noting that ¢ « 7 and also that K/cp, which is
a quantity of the order of 7, is multiplied by the
small factor (cp/cy) — 1[it is not hard to verify
that it is of the order (T/w)?%], we find:

2w2
1= 3pcd %-

Y_Imk—zw o

i (9.10)

(9.11)

Comparing this expression with Eq. (9.10), we can
determine the time 7 from experimental data:

=1 2<1+"~F>

From the data of K, N, Zinov’eva on the vis-
cosity7 we get

(9.12)

llZ

2.3.10712.7 2 sec (T in°K) (9.13)

The corresponding value for the absorption coef-
ficient is

g~ 1107 () em™ (9.14)
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b) We now consider the second extreme case,
that of high frequencies and low temperatures,
wT > 1, In this case

¢—> 00} &o— o0;

E=s+41it", |E |<<~5‘

Equation (9.7) takes the form
(14‘ 3> w(S){(i-—*>1' —Ls’l’} —=0. (9.15)

This equation agrees exactly with the equation
(8.23) that determines the speed of the zeroth
sound.

As for the absorption of the zeroth sound, to
calculate it we must find the imaginary part &'of
the speed of sound, From Eq. (9.9) we get the

equation
— 2sw(s) Fl}

e (8 (G -7)
(9.16)

{(14—>(1—1—w(3))+W(5)s (3— 1«1)} 0.

By means of Eq. (9.3) we find the absorption co-
efficient

w&’
ste

y=Imk= i* (9.17)
If we substitute here the values of the parameters
for He® (s =1.84, v = 1.13 x 10* cm/sec), we get:

P15

g =
wr

y~3.10°.T2em ™! (9.18)
Thus the absorption of the zeroth sound does not
depend on the frequency and increases with in-
creasing temperature as 1/7, i.e., proportional to
T2,

In this calculation the speed of sound has been
treated classically, The validity of this treatment
depends on the inequality iw « T. For the case
Aw 2 T it is necessary to treat the problem by
quantum theory. The decrease of the number of
sound quanta per unit time, due to the collisions
of the Fermi particles, is given by

S winn, (1 —n) (1—n)—nn (1--n) (1—ny)}

x6(p +py—p,—p: — k) (9.19)
Y03 ey — 5 —ey— hw) dx, d=, d=] dp,.

The function w, which depends on the four mo-
menta, is unknown. It is possible, however, to
carry out the calculation in such a way that the
absorption coefficient is expressed in terms of
its classical value (9.17); this has been done in a
paper by Landau.?

Making use of the fact that in the region in which

the Fermi distribution falls off (which is the impor-
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tant one for the problem) the only rapidly varying
function is the occupation number n(€), we can
assume that the angular integrals give a certain
constant, which does not change as we go from the
classical regionfiw « T to the quantum region

Hw > T. There then remains only the integral over
the energies

/= g ingny,(1—n))(1—n)—n/n, (1— ny) (1 —ny)
(9.20)
X8 (3 ey — 2y — gy — h00) ds, dz, de) de,.
Substituting the Fermi function for n and ex-
tending the integration from — <« to « (this is per-
missible because of the rapid convergence of the

integrals), after a rather lengthy calculation we get

=2 ) 2
1=% [ 1+ (o )] (9.21)
The absorption coefficient is proportional to the
integral I. From the classical limiting case we can
determine the proportionality factor. Since the
classical value of y must be obtained for hiw « T,
we have in the general case

v=Yel [1+ (55 ) |

where v, is given by Eq. (9.17). In view of the
fact that vy, is proportional to T2, in the quantum
limiting case iw > T the absorption coefficient

v must be proportional to w?.

(9.22)

10. THE SCATTERING OF LIGHT (FLUCTUA-
TIONS OF THE DISTRIBUTION FUNCTION)

According to the foregoing, a particular condi-
tion for the possibility of the propagation of
‘‘zeroth sound’’ is the inequality

Wsound7 > 1, (10.1)

where T is the time between collisions. For He3
this is of the order of 10 '2T™2 sec. If we take even
a temperature ~ 0.01°K, a frequency higher than
10% cps is required for the direct observation of
zeroth sound, and this makes the performance of
such an experiment very difficult.

Besides the direct experiment, an indirect
method can be proposed, which consists of the
observation of the Rayleigh scattering of light in
liquid He?.* As is well known, in Rayleigh scat-
tering there appear, in addition to the main line,
satellites that differ from it in frequency by

uwinﬂ
c @S 27

where u is the speed of sound and ¢ is the scatter-

*The idea of using the Rayleigh scattering was first pro-
posed by S. P. Kapitza.

ing angle. The speed of the zeroth sound in He? is
of the order of 2 X 10* cm/sec, that is, Aw ~ 108 w,
Thus the observation of the frequency distribution
of the scattered light provides in principle a pos-
sibility for measuring the speed of the zeroth
sound. The condition (10.1) can be satisfied owing
to the high frequency of visible light.

In addition to this side of the matter, the scatter-
ing of light in a Fermi fluid at sufficiently low tem-
peratures has a number of specific features which
give interest to the theoretical study of this phenom-
enon, in particular the frequency distribution of
the intensity.*

As is well known, the frequency and angular dis-
tributions for the Rayleigh scattering of unpolarized

light are given by the formula!?}
(10.2)

Ir

~ et 2nV

3 dQ
dh T (1 4-cos? ) e dAw,

SaDm (r) e=iwrdy

where w is the frequency of the incident light, 6 is
the scattering angle, q is the change of the wave
vector of the light, of magnitude (2w/c) sin (8/2),
and 6DAgw is the Fourier component of the fluctua-
tion 6D(t) of the dielectric constant:

to

1 ¢ .
— t¥4) (l) ez.&rul d,:’
Vi §

(10.3)

where ty is a certain large value, which will be let
go to infinity in the final formula.

The bar in Eq. (10.2) means averaging over the
fluctuations. Hereafter we shall for simplicity take
the volume of the system to be unity.

Because of the very small polarizability of
helium atoms we can assume that the change of the
dielectric constant occurs as a result of density
fluctuations, i.e., 8D = (8D/ON)SN, where N is the
number of particles in unit volume. But according
to the general theory of the Fermi fluid the number
of excitations is equal to the number of atoms in
the fluid. Thus we can write

(oD, (1) eioeay = 28 | ¥, 50 (B ds,,  (10.9)

where énq, A w(p)is the Fourier component with
respect to r and t [the latter in the sense of Eq.
(10.3)] of the fluctuation of the distribution func-
tion of the excitations,

Before going on to further calculations, let us

*We note that in the case of high temperatures, for which
Wsound K 1, the scattering of light will be described by the
usual formulas (cf, reference 12).

tHete dh is the so-called differential extinction coefficient.
The integral of dh with respect to d) and dAw gives the total
extinction coefficient h, which is the damping decrement of the
photon flux density in the medium,
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note one important fact. In Eq, (10.2) the averag-
ing is taken over all possible fluctuations. In the
range of temperatures and frequencies in which
hAw > T we must take account of quantum effects
in carrying out this averaging. For this, however,
(cf. reference 12) it is enough to know the result

for the purely classical case, that is, for T >» hAw,

and then introduce a certain correction factor. For
scattering with increase of the frequency by the
amount A w (anti-Stokes scattering) we must in-
troduce the factor (hAw/T)N(Aw), and for scatter-
ing with decrease of the frequency by Aw ( Stokes
scattering) the factor is (hAw/T)[N(Aw) + 1],
where N(A w) is the Bose distribution function. If
we use negative values of A w for the description of
the Stokes scattering, then owing to the relation
N{(—Aw) +1 = —N(A w)-it turns out that the cor-
rection factor for both cases has the form

hAe hAw

e C T ] (10.5)

Thus we shall take T > fAw. To find the fluctua-
tions of the distribution function we shall use the
method proposed by Rytov'® and by Landau and
Lifshitz 4 for calculating fluctuations in electro-
dynamics and hydrodynamics.* By this method we
find the fluctuation of the ‘‘random force’’ appear-
ing in the kinetic equation; then by solving this
equation we can also get the fluctuation of the dis-
tribution function.

For the case of the Fermi fluid we shall start

with the kinetic equation, which we write in the form

ddn | Bn 0 any OB (p)
?T—I_E'_'B_p—gisf(p’ ) or d'p’
(10.6)
=I@n)+y(p, 1 1)

Except for the “random force’’ y(r, p, t) this
equation is an approximation to the kinetic equation
{5.1) that is linear in én.

In what follows we shall be concerned only with
the case of frequencies and temperatures satisfy-
ing the relation (10.1), i.e., with the case in which
the collisions can be neglected. The detailed form
of the collision integral is then of no importance,
since it plays the part of an auxiliary quantity in
the calculations and can be set equal to zero in
the final result, In view of this we set

I(Gn)= (10.7)

where 7 is a large quantity. We have also to find
the rate of change of the entropy. Recalling that

*The writers express their gratitude to L. P. Gor’kov, L E,
Dzyaloshinskii, and L. P. Pitaevskii, who called attention to
the possibility of applying this method to the kinetic equation.
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the number of particles and the total energy are
prescribed, and using the relation

3 ()= 1 (p 00 (p') dsp, (10.8)

we find:
_ 8n 1 (8n) +-y]
S = { S —a——"ds dV

ny (1—ny)

(10.9)
7§ 1 PR =1 anl (3n') du, AV dsp aV” |

Noting that ng (1 — ny) & T (¢ — p), where p is the
chemical potential, we readily see that én(p) must
have the form

3n.(p) = (6, 9) -3 (s— w), (10.10)

where 6 and ¢ are the polar angles of the vector p.
This formula means that the fluctuations of the dis-
tribution function occur only in the neighborhood of
the Fermi surface,

It is natural to take a similar form for y, i.e.,

y(P)=y"(0,¢)3(c—p).
We now introduce the notation

Fa=[1emF]

where y is the angle between p and p’, and ex-
pand én, y, and F in spherical harmonics

(10.11)

Z 2 AR PY (cos B) eime,

n=0 m=-n

y* (5, <p)-=2 2 ynPT (cos 6) gime,
n=0 m=-n

v(8, ) =

(10.12)

F()= 3 F,P,(cos)

Since v and y€ are real quantities, we have
AT =42, ym=(ya ")
Using the expression (10.7) for the collision in-

tegral, we get the following formula for the rate of
change of the entropy:

~§ ()t 3 3 ()

(10.13)
1 (n+lm] )' L . m —m
<z (Gt ) w4
Let us now introduce the notation
= AR Ly, (10.14)

Then in order for the expression (10.13) to take
the form (cf. reference 14)
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we must take as the generalized forces X; the ex-
pressions

= (%) (et O G 4

In the expression (10.14) the quantity yT' plays the
role of the ‘‘random force.”” Writing this relation
in the form

= — 5 UMD G RTAN

where 'the coefficients y can be determined without

difficulty from Eq. (10.15), we have according to the

general theory of fluctuations:

ym (e, O ym (0, )= (i st — 1) s (r—17)

2, X
== On, ndm, —ma (r—1r') o (1—2")

X [TCI >e—» <2n+1+ )zw?ﬁffﬂ'ﬁ);]ﬂ

Finally, using Eq. (10.12) and the relation

(10.16)

D (2n+ 1) P, (cosy) = 28(cosy, — 1),

we get after some transformations the general re-
lation

Y LDy, F, D)= e (r—r)3(t—¢) (10.17)

< {(_?f;i)ag(p_p')a(s-u)ﬁ(s—P)B(s'_”)<%>s=v

FpPy( FnPy (cosy)
1 f Fp/2n+1°

XZ

By means of this formula and the kinetic equa-
tion {10.16) we can calculate the fluctuations of
the distribution function, with which we are con-
cerned here. Since in the general case of an arbi-
trary function f this is a rather complicated task,
we confine ourselves to the case f = const.

Making use of the fact that the fluctuations occur
only at the Fermi surface, and referring to Eq.
(10.6), we express q, Awl(f, @) in terms of the
corresponding Fourier component of y€ (8, ¢).
This gives

d9
qu A (6 CP) 4rt
(10.18)
q Au)(6 “P)

N Q dQ

Yg, » 9 '41:_ i i(qv) —

o B ),
—iu>+7+iqv —ilo4 —+igv

where v = (9¢/9p) ¢ - ©. Averaging the square of
the magnitude of this expression by means of Eq.
(10.17)[here we have to remember that the Fourier

(10.15)

components with respect to t are taken according
to Eq. (10.3)}, we find:

(10.19)
du 2 dr
v w9 [ =2(55) s
‘8 q,Au)( d’rp e—=u T [ qrz— +TL 2
. +1
Fy 1 ( da OQ _ gquzdz 2
BEEN AP +3 ) i
qLa:—w-l—— qzx-u)-|-

RH

We are interested in the limit of the value of this
expression tor T — <. In the case in which qv >
|A w|, the denominator does not have any poles, and
the important quantity is the residue in the integral
in the numerator. We get as the result:

%lvq.w(p)dW:T(‘%’>%{[HFOQ

2 7K 2 ~1
] ()
In the opposite case, i.e., for qv <« A w, the pole
in the denominator of the expression (10,19) is im-
portant. It is not hard to see that such a pole occurs.
if Fy > 0 and is given by A w = £ sqv, Where s
satisfies the equatior.

1+F, [1—5n( )] =

This equation is identical with Eq. (8.16), which de-
termines the speed of the zeroth sound. Using the
relation

(10.20)

(10.21)

1 4.
— lim

o o—wprree

—‘”o)r
we get without difficulty-

dt (s2—1
=T » (s2—1)
( >E—9F0 (4 + Fy—s2)

(10.22)

1{c 5 ., F
52| | 1. a0 (P) s,

X [8 (Ao — 5qu) + 4 (Aw 4 sqv)].

Thus the distribution of the scattered light in direc-
tion and frequency has the form [we have also in-
troduced the quantum factor (10.5)]:

4::4< ) <d%> (14 cos?8). ,‘AZATQ)_1

[ 1p, (1 S
‘ _ 0.23
+<F§Aq(:n>2}+ﬁ“o (1s—2i—F:—sz) [8 (Ao — sqv) (10-23)

+8 (Ao squ)] | = ddo,

where

j1y>0,
l0y<oO.

This result has a simple physical meaning. As

b(y) =
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can easily be seen, the frequency spectrum con-
sists of a central part — qv < Aw < qv and two
narrow lines at Aw = * sqv. The central part cor-
responds to the Doppler broadening of the main
line, Comparison of Eq. (10.21) with Eq. (8.16)
shows that the side lines are the satellites of the
Rayleigh scattering, which appear because of the
possibility of the propagation of zeroth sound
{sv = u). The ratio between the intensities of the
central part and the satellites in general depends
on the scattering angle. In the two extreme cases,
however, of high temperatures (T >» Hwu/c) and
low temperatures (T « hwu/c) this ratio does not
depend on the angle. One can carry out numerical
computations for Hed, using unknown (sic) param-
eters. It then turns out that for the high-tempera-
ture case about 20 percent of the whole intensity
is in the central part, and about 40 percent in
each of the side lines. In the low-temperature case,
owing to the quantum factor, the distribution is cut
off on the side of positive Aw. In particular, the
only one of the two satellites left is the Stokes line
with Aw = —uq, which gets 90 percent of the in-
tensity. In this case the central part receives only
10 percent of the whole intensity.

The total scattered intensity is obtained by in-
tegrating Eq. (10.23) over dAw and dQ. For the
high-temperature case

(T > hdn ~ ko —E—}
it is
_ T 2 /de
= Gret <01V D> J” (10.24)

where J; is a numerical integral, which in the case
of He® is about 0.5. In the quantum limiting case
(T « Hwu/c) we have:

(10.25)

hoSv 7 6D \ 7 dzp
=Gz (o ) (@)

=

Here J, is a numerical integral, which in the case
of He® is about 0.2. To carry out quantitative cal-
culations from these expressions for the case of
Hea, we need to know the value of 8D/8N;. There
are no measurements of this quantity; theréfore we
take D — 1 to be proportional to N, and use the
proportionality factor as given by the data on liquid

e!. For wavelength A = 5461 A the index of re-
fraction of liquid He! is 1.027. This gives 8D/3N
=2.5x 10~%, Substitution in Eqs. (10.24) and
(10.25) gives (T in °K):

i (He®) 10-00047 em™ for ¢ 2-10YT sec”l,

I (He?) 10787w? em™ for o> 2.10v7 sec”!,

It must be remembered that the frequency must
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satisfy the relation (10.1) i.e., Aw > 1/7, or
o > 101872 sec L.

If this condition is not fulfilled, the line width
will be too large. Thus in the visible range of fre-
quencies we need temperatures below 0.05°K, It
is not hard to see that at temperatures of the order
of 0.01° and frequencies in the visible region we
have h(He®) ~ 10 %cm™!, which is of course too
small for the effect to be measurable * But owing
to the fact that w occurs raised to a high power in
the expression for h, it is possible that one may be
able to measure the scattering in the ultraviolet
region.

APPENDICES
MICROSCOPIC THEORY OF THE FERMI FLUID

A 1, The Rarefied Fermi Gas

In this section we consider the properties of a
non-ideal Fermi gas in which the dimensions of the
particles are small in comparison with the mean
free path.'® This model, a number of whose prop-
erties have been examined recently by Yang and
Huang,” and also by Yang and Lee,!® was called by
those writers the hard-sphere model. In reality
it possesses a more general character, and cor-
responds to a system of Fermi particles with
arbitrary short-range forces having a radius of
action small in comparison with the mean wave-
length.

Such a model makes it possible to obtain expres-
sions for the various quantities describing the
Fermi fluid, for example the energy, the effective
mass, and the function f, in the form of expan~
sions in powers of (a/Xx) (a is the radius and X
is the wavelength). We shall carry out the cal-
culation to within terms of the order (a/x)?. By a
procedure similar in principle one could deter-
mine also terms of several higher orders, but
this is of no special interest. We begin with the
calculation of the energy.

We use perturbation theory to take into ac-
count the interaction energy of the particles,
which we write in the form (with the volume of
the gas taken as unity for simplicity)

= + +
V=2U Sﬁ a"‘1a“L2""2a”1'
n.‘TLZm mz

nTy

(A1.1)

where a‘{ and aj are creation and annihilation

*For liquid He* in the visible region h ~ 10~ % cm™' ¢'*
(about the same value should hold for He® for Awr « 1). Al-
though measurements of h for He* have been carried out, they
are at the limit of what is experimentally possible.
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operators for the particles. The summation is
taken with the restriction that the total momentum
is conserved; furthermore the spin component for
the state m; is equal to that for the state ny, and
similarly for my and ny. The position of U out-
side the sign of summation corresponds to the
fact that the interaction between all pairs of par-
ticles is the same, and the scattering amplitude
does not depend on the angle. In first approxima-
tion the quantity U is connected with this ampli-
tfude by the relation

- 4rah?
T m

4 (A1.2)

(a is the scattering amplitude) .
The first-order correction to the energy is the

diagonal matrix element of V:
Ep =20 Y Ny N Qo n s

2
n<n,

(A1.3)

where the Nj are occupation numbers.

The factor Qjk in Eq. (Al1.3) takes account of
the fact that Fermi particles with a scattering
amplitude independent of the angle do not interact
in the case of parallel spins. Thus we shall take

Qik=-}:—mh (Al.4)
(o is the spin operator of the i-th particle).

Substituting Eqs. (Al1.2) and (Al.4) in Eq.
(A1.3), we get

E = (2rah?[m) N2/2. (Al1.5)

To find the second-order correction we use the
expression from perturbation theory

En = D | Vam PH(En—Ep).

m=£n

(Al.8)
Substituting the expression (Al,1) in this formula,
we get the following sum:
Np N, (1—Np)) (1 —N) Qnyn
B e e Yy oy

1™ ™My
ny<ny

" (A1.7%)

where Nj are the equilibrium occupation numbers
and E; the energies of the particles,

Because our purpose is to get the expansion of
the energy in powers of a, we have to take into
account the fact that the relation (A1.2) hetween U
and the scattering amplitude is not exact, but is
valid only to first order. When second-order
terms are included we get instead of (A1.2) the
following relations:

2 +4U% D) Quyny/(Eny + Eny— Emy — E)) =

m M

8rah?
m

.(A1.2")

If we get from this the expression of U in terms of

a and substitute it in Eq. (A1.3), the resulting ex-
pression for E() contains terms proportional to a,
which must naturally be assigned to the second-

order correction. Taking this into account, we get
the following value of the second-order correction

to the energy:

E® —202 2 {N"1N"2(1_‘le) (1—Nm,} Qn,Qn,
En 'f'Enz“‘Eml—Em2
nn,mm, 1

(A1,7)

ananinnZ }
E'n1 + Enz—“Eml‘—Emz '

In view of the fact that the expression in brackets
is symmetric in ny and ny, we replace the re-
striction ny > ny by the factor 1/2.

The meaning of the operation just performed
lies in the fact that in actuality an expansion in
powers of U is not what is used. The existence of
a constant U would simply lead to an infinity in the
energy, as can be seen directly from the formula
(A1.7). Inthe present case the essential point is
that the scattering amplitude a has a finite, and
moreover a small, value, which makes possible an
expansion in powers of this quantity.

In the first term of the expression (A1l.7) the’
term with the product of four Nj’s is equal to
zero because of the fact that the denominator is
antisymmetric under the interchange nyny == mq m,,
while its numerator is symmetric, and all the
ranges of summation are identical. The two sur-
viving terms with products of three Nj’s are
identical. Thus we get finally:

N No,Nm Qnin
P I e e

MMMy

(A1.8)

This is the expression for the energy that is valid
on the basic assumption (a/A) « 1.

Our purpose is to obtain the characteristics of
the degenerate Fermi gas. From the expression
(A1.8) we find the energy of the ground state A1.9)
il Lon fan o St mnn)

[Py 1<pgi 18, 1<D; | By <py; (PY+PR— PE—PE) o —
where py is the limiting momentum.

According to Sec. 1 the energy of the excitations
is given by the relation

E@ —

3E

Ei=w. (Al.lO)

Variation of the expressions (1.3) and (1.8) with
respect to Nj gives

2 UN 202
€ (P)=§7+ T*‘(—ZT‘T)Q S dpy S dp, gdl’a (Al.11)

[ 3(Pr+Po—p—Pps) o b(PL+P—Pa—Pps) ]
(p*+ p3—pi—p3)/2m " (p®+pi—pi —pi)/2m
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Thus the problem of calculating the energy of the
ground state and the effective mass of the excita-
tions reduces to the calculation of the integrals
(A1.9) and (A1.11). The integration is rather
cumbersome because of the high multiplicity of
the integrals and the awkwardness of the regions
of integration.

Instead of this we can use a simpler method,
based on the introduction of the function f, If we
introduce this function

fin= 2B /AN BN, (A1.12)

then according to Egs. (2.5) and.(8.7) we can deter-
mine the effective mass and the speed of low-fre-
quency sound. By a suitable integration we can find
the energy of the ground state from the speed of
sound.

Thus the problem reduces to the determination
of the quantity f. Taking the variations of the ex-
pressions (AlL3) and (Al.8) with respect to Ny,
and then with réspect to Ny, we find the following
expression:

8U2
~gp |\

I'py I<py

_o(p+p’—p1—Ps)
o (p*+ p'2—pi—pi)/2m

t=20Q,

x[@ (A1.13)

+_ A(p+pi—p —p2) 1 3P +p—p—p) ]
4 (p2+pi—p?—p/2m” L (P +pi—pr—pd)/em |-

In the calculation we shall at once set [p| = | p |
= pp. The integration in the second term of f is
considerably simpler than those in Egs. (Al.9) and

(A1.11), We get as the result:
14 sin -k
)= 2mah? 2( \am’ 0 S0SX_ 2
2sin & 1—sin %
2 2
Snaﬁ

X .
sin — 1+ sin =
2 2
(o192) | 142 a1v3(1— . )ln .
”[ < > 2 t—sinl
(A1.14)

A peculiarity of this expression deserves atten-
tion. For angles x close to 7 the function f has a
logarithmic singularity,

1
alc,> In P——

rw~ (-

It is clear that in this case the approximation we
have used is, strictly speaking, not legitimate. The
singularity of the function f at ¥ = m is a manifes-
tation of the singularity in the scattering amplitude
of excitations colliding at the angle w. The corre-
sponding expression, obtained by summing the main
terms of the perturbation theory, is proportional to

(A1.15)
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1oy
3 3 = 2 ]
[1+2<?) mvdm%] ' (A1.16)

where € = p? + p’? — Zpﬁ.

In the case of positive a this expression goes to
zero for p? = p’® = pf,

If, however, a < 0 (this is possible for Fermi
systems), the scattering amplitude has a pole near
the Fermi surface. This corresponds to the pos-
sibility of the formation of bound pairs of excitations
with opposite momenta, which was pointed out by
Cooper!? and is the main cause of the phenomenon of
superconductivity in metals 20

Thus the expression found for f is not valid for
angles close to 7. But in view of the fact that the
singularity is only logarithmic, it manifests itself
only in the immediate neighborhood of the singular
point. And since only integrals of f together with
regular functions occur in the expressions with
which we are concerned, the logarithmic singularity
of the function f is of no importance.

Substituting Eq. (A1.4) in Eq. (2.5), we find the
value of the effective mass

2
3

mfi* = 1— (815)(3/=)° (T1a 2 — ) a2N3.  (A1.,17)

We note that if we insert here the value m*= 1,43 m,
which corresponds to liquid He?, the resulting value
of a is 1.6 X 1078; that is, it is of the order of mag-
nitude of the gas-kinetic value of the diameter of the
helium atom. Such a comparision of course has no
meaning in a strict sense. The model under con-
sideration cannot describe liquid He®, This can al-
ready be seen from the fact that the quantity (m*~
m)/m*, which in the theory should be a quantity of
second order in a, is 1/3 for Hed,

Substituting the formula for f in the expression

for the speed of sound, we get:
(Al1.18)

= [+1a< > N3(11-—21n2)]

From the value of ¢? just found it is not hard to ob-
tain the energy of the ground state of the Fermi
fluid., To do this we use the relation (8.2), c?

= N/m(8u/8N). This gives:

PO

TL na
mr 2

c?=

N

wl-:
@

. (A1.19)

2 3 3
E:S,»dN:EW’—{-TE—h—N? [1+i<i> an® (11—21[\2)] .
m ES AN

Equation (Al1.2) agrees with the result of Lee and
Yang.15

The same result can also be obtained by direct
integration in Eq. (A1.,9). To calculate the integral
in Eq. (Al.9) it is convenient to introduce new
variables
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FIG. 2

S=pi+P2=p3; + Ps-

P=P1—P2; 9=P3—Py;

In these variables E(z) takes the form
mU? 1
P =gy ) % {9 ) e

where the region of integration for the vector s is
0 < [s] < 2py, and the regions of values for the
vectors p and q are shown in Fig. 2. If we intro-
duce the variables xq = cos (q, s) and xp =

cos (p, ), E®@ s given by

8mU? s P ! ) Lo 1

m T —_

ro= g \ e N { o (o Coan g,
0 0 o 2y 0

where z(x) satisfies the relation
224 225w+ 2 =4 p}.
By a series of transformations and integrations by
parts with respect to dxp and dxq we then find:
1+s 1-s

7 ! : .
sts[ S pdp 3 q*dq
9

0 [

t+s 1-3
\ pdp(l —p*—sh) S qdg(1—q®—s?) ]
Vil IR
Proceeding further to integrate by parts with re-
spect to ds and then performing the remaining in-

tegration, we get:

1
o

+ 5
4s?

1 1
E® =(6/35) (3/n)% (11—21n 2) aN3ED,

Here we have inserted the expression (A1.2) for U
and have set py = E(3mN)"/3, This result is identi-
cal with the second-order term in Eq. (A1.19),

A.2, Microscopic Theory of the Fermi Fluid for
T=20

Here we present the general microscopic theory
of the Fermi fluid at T =0, as developed recently
by Landau;'® this theory is valid for arbitrary inter-
actions. As we shall see, this treatment provides
a basis for the phenomenological theory and an un-
derstanding of the physical meaning of the function f
that appears in it.

The microscopic treatment is based on methods
taken from the quantum theory of fields. As is well
known, in quantum field theory one works with

vacuum expectation values of chronological products
of field operators (i.e., products of operators taken
in the order of succession of their times). These
quantities are the so-called Green’s functions. In
our case, instead of vacuum expectation values we
shall consider expectation values for the ground
state of the system. It is not hard to verify that
such expectation values have the same properties
as the Green’s functions of the field theory, and in
particular that in principle they can be calculated
by means of the Feynman-diagram technique.

For definiteness we shall first give the name of
Green’s function to the quantity

Gy, o=—i(T i), (A2.1)

where the brackets < > denote the expectation value
for the ground state, ¥ and y* are the field opera-
tors of the Fermi particles, the indices 1, 2 denote
sets of space, time, and spin coordinates, and T, as
usual, denotes the time-ordered product with change
of sign when ¥; and z/)-; are interchanged. In the
absence of external fields the Green’s function de-
pends only on the differences of the coordinates and
the times. As for the spin indices, if the interaction
of the particles does not depend on their spins, then
G’aﬁ’ ~ ‘Saﬁ

We denote the Fourier transform of the Green’s
function with respect to the coordinate and time
differences by G(p) 6“3 [here p is the four-dimen-
sional vector (p, €)}. The poles of G(p) determine
the energies of the quasi-particles. If the magnitude
of p is close to py and € is close to the limiting
energy K, then G(p) has the form

. a
CP= e T - (A2.2)

Here a is a positive constant, and 6 is a small
quantity which agrees in sign with the sign of € — p,
or, close to a pole, with the sign of p — py (0 is
introduced to fix the rule for going around the
poles, so that it will correspond to taking the T-
product in the X, t representation).

Let us now introduce the expectation value of the
time-ordered product of four operators

Do, 30 =T (Prdabi bi ). (A2.3)

We give the name of vertex part I'yy,3 to the quan-
tity defined by the following relation:

Dy, 3==GC13 Gy ,—Gy; Ga 3

(A2.4)
+i 3

G4+ Gy 90 Gy 0, G r
1, 2530, g DU T2 TR T

1°27,8747-

The Fourier transform of the vertex part has
the form
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(2nh)s P,3, v3 (P1P2; Psp) B (p+ py —Ps—Py)-

It is clear that the function Tgg 45 (P1Py, P3Py)
changes sign on the interchange ap; *= fp;. As in
the quantum field theory, the function T with a
_definite relation between the components of each
of the vectors P [for example, near the Fermi
surface € ~u = v(p — py)], multiplied by a?, plays
the role of the scattering amplitude of the quasi-
particles,

Let us consider T' in the case in which p; is
close to py, and consequently p, is close to p;, and
introduce the definition

T'(ppzy P+ K pa—K)=T (PP, K),
where K = (k, w) is a small four-vector.

If it were possible to calculate such a vertex
part by perturbation theory, then in first order one

would have to take the diagrams shown in Figs. 3, I,

The corresponding expressions contain integrals of
products of two Green’s functions. Whereas for
diagrams (a) and (b) the case K = 0 is not in any
way singled out, in case (c) the poles of the two
Green’s functions approach each other for K =0,
which, as we shall see, leads to the appearance of a
singularity of T,

If we denote by 1) the set of all possible dia-
grams for T that do not have ‘‘singular elements’’
[i.e., integrals of G(p)G(p) +K)], it is not hard to
see that the total T is obtained by summation of
the ‘“ladders’ shown in Fig, 3, II. This can be ac-
complished by solving the integral equation

Tz, 15 (PrPa; K)=r51‘3), 1 (PyP

(A2.5)

—zrm § T (PO QI G(Q+ KD Ty 1 (0P K) Q.
Here, in view of the fact that I‘(i) has no singularity
at K = 0, we simply set K = 0 everywhere in 1"(‘).

Let us now examine the product in the integrand.
The integral over Q will consist of the principal
value and a term arising from the passage around
the poles. Because the arguments of the two G
functions are nearly equal, we can assume that all
the other parts of the integral have the same values
at these poles. The passage around the poles then
gives a contribution only in the case in which the
detours are on opposite sides of the real axis. This
means either q < py, |q + k| > py, or vice versa.
Because of the smallness of k it is not hard to see
that here q s~ py and €q N M. Thus in the part of
the integral over Q which comes from the passage
around the poles the product G(Q)G(Q +K) can be
replaced by A 8(€ — p)d (@ — py).

The coefficient A can be found by integrating
G(Q)G(Q + K), and is found to be (2wia*k cos6)/
(w — vk cos 8), where 6 is the angle between q

éh

:P, . Py
(7] P-K
U\
’
&x 3 P
b) .
P s, >TTT
c)
1 i
FIG. 3

and k. Thus the product G(Q)G(Q + K) can be

written in the form (A2.6)

(s~ )3 (g— po) + ¢ (Q),

kcos

G QG (Q+ K)=2mia? —————0

where ¢ corresponds to the principal value of the
integral and has no singularities (therefare one puts
K = 0 in this term).

If we consider the expression (A2.6) in the limit
K = 0, then it makes a great difference how this
limit is taken, i.e., what the ratio of w and k
approaches. The same is true about I' in the limit
w— 0,k — 0,

First of all let us consider I in the limit k — 0,
(k/w) — 0. For this limit, which we denote by T' %,
we get from Egs. (A2.5) and (A2.6):

I‘;‘,%, Y5 (P1P2)=I‘fz1r5), 13 (P, Py)

(A2.7)
— Gy | T (P @2 (@ T (), (0P .

It is not hard to eliminate I'‘D) from the two
equations (A2.5) and (A2.7). Using Eq. (A2.6), we
find after simple transformations

Toa, 13 (PrPes K) =T o (P112)

(A2.8)
a*p§ T e . kcosl
Tnp Y Ve (P2 O T, o0 QP K) i .

+

Let us now take the other limit, namely K — 0,
(w/k) — 0. This limiting value, multiplied by a?,
corresponds physically to the forward scattering
amplitude for quasi-particles with energy on the
Fermi surface. We denote this quantity by rk,
From Eq. (A2.8) we find the relation between a?TK
and a?T'¥W

a1, (3 (PyPy)= a2y

© o (PiP2)

(A2.9)
p% 2 TUD R
T v (2nh) S @’ T, 42 (P, Q) a®ly o5 (QP2) dQ.

Let us now study the poles of the function
T' (P, Py; K). Just as the poles of the function G(P)
give the relation between the energies and momenta
of the Fermi excitations, the poles of the function T
characterize the ‘‘two-particle’’ excitations, in
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other words the Bose excitations. In view of the
fact that in the neighborhood of a pole I'(Py Py; K)
» T¥MP, P,), we can neglect the term I'“ in the
right member. Furthermore it must be noted that
the variable P,, and also the indices B and 6 play
the part of parameters in the equation. The function
T can be represented in the form of a product
X op(P1;K) x g5 (Pp), and X (Pp) cancels on the two
sides of the equation. If we also introduce the nota-
tion

n-k
u)—ln

. (n)=-— kX“A P;; K),
where n is the unit vector in the direction of Py,

we get for vy, the equation
2y (B)=Dek (pi’”) S

Comparing this equation with Eqgs. (8.14) and
(10.4), we see without difficulty that it is the same
as the equation for the zeroth sound and the spin
waves, with the quantity alTw playing the role of
the function f. This confirms the equation for the
zeroth sound obtained in the phenomenological
theory, and thus confirms the hypothesis made in
that theory about the functional dependence of the
energy of the excitations on the distribution func-
tion. On the other hand, owing to Eq. (A2.9), we
have established a connection between the function
f and the scattering amplitude of the quasi-par-
ticles at the angle 0° .

Let us examine this relation in greater detail.
Denoting the amplitude multiplied by (d7/de€)¢ — i
by A(ny-0y,n45 -05), we get:

(o —rnek)y Iy ye(o, v (a2 (A2.10)

Aoy, nye3)=®(nye0;, nyes,)

(A2.11)

a9

/1 4 ’ ’
— Spa'S D (njesy,n’e3")A (e 3', nye3,) e

As regards their spin dependence, & and A each
contain two terms: one independent of the spins,
and one proportional to gy -0y. If we write

A(n,4931, B 09) =B (0yo0)+¢149,:C (0, n,), (A2.12)

B and C satisfy the equations

L(ny, ny)=/F(n,, ny)— S F{ny, n ) B, ng)'—;%_, (A2.13)
'}

[5 =7 -
(ny, my)=Z (0, B.) - =

I S Z (n;,n")C(n’, n,)

Being scalars, the quantities B and C, and also
F and Z, can depend only on cos x. I we introduce
expansions in spherical harmonics, B(x) = ZBjPj
(cos X), and so on, then we can easily get relations
between the coefficients B; and Fj, and between
C7 and Zj:

o Zy
2 i P ST e e
! 7 : Cl '
1+ STIT L+ T

(A2.14)

For example, let us find the scattering amplitude
of the excitations for a rarefied Fermi gas. From
Egs. (A1.16) and (A2.13) we get:

KR
J

A(Xw’1’°2)=8(?>.u\ (—/— 4,1-5,,> (AZ.].S)

4
1 4-sin v
)

1
Loy <
3N3 2
16 [<%> m\y..x] [_,l_ Capay (05/ n
* 8 sin = 1--sin (

© sinl X % \
sin{ -5 I+ sin
) ,M:(l_ Lz >1 (% >}

tv[* l\,]»

2 I —sin { K)

We note that in the case of parallel spins this ex-
pression goes to zero for X = 0, as it must accord-
ing to the Pauli principle (for f this does not occur).
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