
S O V I E T P H Y S I C S U S P E K H I V O L . 6 6 ( 1 ) , N O . 1 S E P T E MB E R - О С T O B E R , 1 9 5 8

THEORY OF THE FERMI FLUID

(The Properties of Liquid He3 at Low Temperatures)

A. A. ABRIKOSOV AND I. M. KHALATNIKOV

Usp. Fiz . Nauk 56, 177-212 (October, 1958)

INTRODUCTION

.HE study of the superfluidity of helium П gave
r i se to the question of the propert ies of quantum
fluids, that is, of systems of interacting part ic les
in whose behavior quantum effects play a major
par t . The theory of superfluidity given by L. D.
Landau was at the same time the first theory of a
quantum fluid. It described the propert ies of so-
called Bose fluids, i.e., quantum systems of in-
teracting part icles for which the excitations obey
Bose s tat i s t ics .

Besides such fluids, however, there also exist
others, forming a much more numerous c lass;
these are the so-called F e r m i fluids, whose ex-
citations have spin l/2 and obey F e r m i s tat i s t ics .
These include liquid helium 3, the e lectrons in
metals, and possibly heavy nuclei, although to be
sure this last case is a quite special one. Until
very recently there was no theory of the F e r m i
fluid. The theoretical calculations were usually
confined to an approach analogous to that used for
Bose fluids; some sort of energy spectrum was
postulated, and this was then substituted into the
F e r m i distribution formula.

In view of the fact that in metals the situation
was decidedly complicated by the anisotropy of
the spectra, it was hard to test the correc tness
of such an approach. As for liquid helium 3 at low
temperatures , the experimental data made it very
clear that in this case such an approach could not
be completely successful.

A consistent theory of F e r m i fluids was de-
veloped by L. D. Landau in 1956.1 He showed that
the situtation is very different from that in Bose
fluids, since in F e r m i fluids a very important
part is played by the interaction of the excitations,
so that the excitations in a F e r m i fluid cannot
be regarded in all cases as an ideal gas.

In the present art ic le we expound the theory of
the F e r m i fluid in its application to the isotropic
model and show how the Landau theory provides
an explanation of the various propert ies of liquid
helium 3. In an appendix we present a recently
completed r e s e a r c h of L. D. Landau, which shows

how the basic propositions of the theory of the
F e r m i liquid follow from a microscopic treatment
of the interaction, and we also present there the
theory of a rarefied F e r m i gas. In this case one
can obtain the basic quantities of the theory of the
F e r m i fluid by an actual calculation.

Before passing to the exposition of the theory,
we recal l for convenience in later applications,
the main propert ies of liquid helium 3. The helium
isotope of atomic weight 3 liquefies at 3.2°K (cr i t i -
cal point T c =3.3°, p c =845 mm Hg), and remains
liquid down to the lowest temperatures at which it
has been studied (~ 0.2°K) and at p r e s s u r e s up to
30 atmos. The explanation is the same as in the
case of helium 4: the weakness of the interaction
between the atoms, and the smallness of the atomic
m a s s . Owing to the la t ter circumstance the de-
Broglie wavelength corresponding to the motion of
helium 3 atoms at low temperatures can be larger
than the distances between atoms; that is, the
liquid becomes a quantum fluid.

Down to the lowest temperatures that have been
used liquid helium 3 does not become a superfluid.
Since according to the Landau theory every Bose
liquid must possess superfluidity, while a F e r m i
liquid does not have this property, helium 3 must
be regarded as a F e r m i fluid. It must be stated that
this fact is not trivial and does not follow auto-
matically from the fact that helium 3 atoms have
spin 1/2. A system of such atoms might have ex-
clusively Bose excitations. Moreover, as we shall
see later, such excitations actually exist, although
they do not play any important part in determining
the propert ies of helium 3. It is only the absence
of superfluidity that enables us to conclude with
assurance that helium 3 is a genuine F e r m i fluid.

1. THE ENERGY OF THE EXCITATIONS

The possibility of describing an excited state of
liquid helium 3 by means of a gas of quasi-particles
and a corresponding distribution function in the
energy scale is based on the fact that the interac-
tion of the part icles of a F e r m i gas decreases
rapidly a s the temperature is lowered. In fact, it
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is c lear from general considerations that the time
between collisions is proportional to the square of
the diffuseness of the Fe rmi distribution, that is,
to the mean square of the tempera ture . At the
same time the mean energy of the Fe rmi part icles
in the diffuse part of the distribution (measured
from the limit energy) is itself proportional to the
first power of the temperature , and it is these
part ic les that determine the macroscopic proper -
ties of the sys tem. Owing to this, the "energy un-
cer ta inty" ar is ing from the collisions will, at low
enough temperatures , be small in comparison with
the mean energy itself. It can also be said that at
sufficiently low tempera tures the damping of the
excitations, described by an imaginary te rm added
to their energy, will be small in comparison with
the excitation energy.

Two fundamental assumptions lie at the founda-
tion of the Landau theory. The first is that the
classification of the levels of the Fermi fluid c o r -
responds to the classification of the levels of non-
interacting a toms. This means that as one gradu-
ally turns on the interaction the atoms gradually
go over into "quas i -pa r t i c l e s " , each of which has
a definite energy. Thus the number of quas i -par -
t icles is equal to the number of a toms.

The second assumption is that the interaction
of the quasi-par t ic les can be taken into account
by means of a self-consistent field of the surround-
ing par t ic les , which manifests itself in the fact that
the energy of the system is not the sum of the
energies of the quasi-par t ic les , but instead is a
functional of their distribution function. The energy
of the quasi-part ic les must be defined as the v a r i -
ational derivation of the energy density in momen-
tum space, i.e.,

= C s8 dt, (1.1)

where dT = 2dpxdpydpz/(27rh)3. The factor 2 in dT
a r i s e s from the fact that the quasi-part ic les have
spin 1/2.

In some cases it is necessary to include a spin
dependence of the particle energy. Owing to the
fact that the spin is a quantum-mechanical quantity,
we must regard the distribution function in this
case as a statist ical operator, and replace (1.1) by
a definition of e in the form

a£ = 4 ; e ondz. (1.2)

The definition of the particle energy by Eq. (1.2)
has the consequence that the equilibrium d i s t r i -
bution function is in fact the Fermi function. To
prove this it is most convenient to use the expres -

s ion for the en t ropy*

o = — y Sp

s ince th i s f o r m u l a i s of p u r e l y c o m b i n a t o r i a l o r i g i n .
F r o m the condi t ion tha t the e n t r o p y be a m a x i m u m
for cons tan t n u m b e r of p a r t i c l e s and c o n s t a n t
e n e r g y ,

N: 1 C•• y Sp3 \ n dz = const, E = const

we can find the d i s t r i b u t i o n function by tak ing the
v a r i a t i o n wi th r e s p e c t to n :

n (=) = nF (3) = - — (1.4)

The e n e r g y e, be ing a funct ional of n, d e p e n d s
on the t e m p e r a t u r e . T h i s dependence c a n be put in
the following f o r m . If we denote by € 0 ( p , cr) the
e q u i l i b r i u m e n e r g y of the q u a s i - p a r t i c l e s for T = 0,
then for a s m a l l d e p a r t u r e f rom e q u i l i b r i u m o r for
s m a l l v a l u e s of T it wi l l be g iven by the f o r m u l a

/ ( P .
(1.5)

H e r e 6n = n - n p (T = 0), and f is an o p e r a t o r
depending on the m o m e n t a and sp in o p e r a t o r s of
two p a r t i c l e s . In v i ew of i t s defini t ion, a s the
second v a r i a t i o n a l d e r i v a t i v e of E wi th r e s p e c t to
5 n, the function f m u s t be s y m m e t r i c u n d e r i n -
t e r c h a n g e of p, or wi th p ' , CT\ The function f is a
v e r y i m p o r t a n t quant i ty c h a r a c t e r i z i n g the F e r m i
fluid. As w a s shown by Landau, it i s r e l a t e d to the
f o r w a r d s c a t t e r i n g amp l i t ude of two q u a s i - p a r t i c l e s
(cf. Appendix 2 ) .

2 . THE E F F E C T I V E MASS

B e c a u s e we a r e c o n c e r n e d h e r e wi th v e r y low
t e m p e r a t u r e s , the e n e r g y e0 in the a b s e n c e of an
e x t e r n a l field c a n be w r i t t e n in the fo rm

so~ ( i(°) = w ( / ' — Pa)' (2.1)

w h e r e po is the F e r m i l imi t ing m o m e n t u m and v
is the ve loc i ty at t he F e r m i l i m i t . Th i s ve loc i t y
can be w r i t t e n in the f o r m

v = - (2.2)

w h e r e m * i s the effect ive m a s s . As h a s been shown
by Landau , t h e r e i s a def ini te r e l a t i o n be tween m *

*Here and throughout we use energy units for the temperature,
i.e., k = 1.
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and f, which is a consequence of the Galilean p r in -
ciple of relativity.

According to this principle the momentum per
unit volume must be equal to the mass flux of the
fluid. Because the velocity for the quasi -par t ic les
can be defined as the derivative 3e/3p, and the
number of quasi-part ic les is equal to the number
of atoms, we get:

1 t, f > 1 c f ds , (2.3)
--bp, ^ pndt = --Spa ^ iw-^-wdt, v '

where m is the mass of an atom.
Let us take the variation of this relation with

respect to n:

-rj- Sp, \ pore dz = — Sp, \ m~an d-

— Sp,Sp3- ^ \mn -fy ' dzdx'.

Interchanging p, cr and p ' , ar' in the last te rm and
using the fact that <5n is a rb i t ra ry , we get:

—-
m

1 o C df , , , di 1 „ f ,Ai' ,
—• Spa' \ r-T «' di = — Sp,' \ / ; d~.
2 r* J cp op 2 r J op' -2If the system is not in an external magnetic field,

the relation (2.4) does not lose its generality when
we take its t race with respect to the unprimed spin
variable (1/2 SpCT) . In the case of equilibrium at
T = 0, e in Eq. (2.4) can be taken in the form
(2.1), and 9n/9p can be replaced by - 6 (p-po) .
We then find:

i = ^ + T i £ V S p ' S p - ' \ /<Z)coHZrf-, (2.5)

where f(x) is the value of the function f for | p |
= Ip'l = Po- Naturally, apart from a small co r -
rection, this relation also holds for temperatures
near T = 0 and for small depar tures from equi-
librium.

3. THE HEAT CAPACITY AND ENTROPY

Here we shall assume no external magnetic field,
so that the quantities will not depend on the spin. A
knowledge of the energy spectrum makes it possible
to determine the heat capacity of the Fe rmi fluid.2

It can be found in the usual way, by differentiating
the energy with respect to the temperature for a p r e -
scribed number of par t ic les .

An important point here is that the change of the
energy density is given by Eq. ( I . I ) ; owing to this we
can write

justified by the fact that whereas the main te rm in
the heat capacity is l inear in T the correct ion in
Eq. (1.5) gives only cubic t e r m s .

In fact, the Sn in Eq. (1.5) can be put in the form

7
(• dn f 5 —n di d}i \

As is well known, at low temperatures the der iva-
tive of the Fe rmi function has the form

g-

In view of this we have

os= \ ion dz =—r- / " V7 / ~rr-
.1 6 L oc V' dz J J i'=1i

di — Hit ̂  _.' 1 rir
if itTjd-:' Js'-,,i.

(3.2)

The derivative 3fi/3T is equal to the entropy, which,
as we shall see, is linear in T. As for the t e rm in
3e'/3T, its o rder of magnitude can be established by
Eq. (3.2). Differentiating this formula with respect
to T, we find without difficulty that 3e/3T is of the
first order in T, and consequently 6e is of the
second order .

Because of the replacement € by e0 the energy
can be calculated simrjly from the integral

E= \ zondz with A'= \ ndx = const,

where, again to within an e r r o r of cubic t e rms in T,
we can replace e by e0 in the functions n appearing
in the integrals for E and N. After this the calcu-
lation of the integrals does not differ from that for
the usual case of a Fe rmi gas .

In this way we find:

In the present case the replacement of e by e0 is

Because of the linear dependence on the t empera-
ture the entropy is equal to the heat capacity.

By comparing Eq. (3.3) with the experimental
data on the entropy of liquid He3 at low tempera-
tures we can find the parameter y, and consequently
can also determine the effective m a s s . Unfortunate-
ly, at present the experimental curve has only been
found as far as the beginning of the linear part .3

From these data we can obtain only an approximate
value of y , which turns out to be about 3 cal mole"1

deg~2. Because of the equality of the number of
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quasi-par t ic les to the number of par t ic les , we can
find the F e r m i limit momentum from the density of
liquid He3 (p = 0.078 g /cm 3 ) . In this way we get:

= 1.43mHe», ^ = 0.76.10" cm

4 . THE MAGNETIC SUSCEPTIBILITY

-1 (3.4)

Because par t ic les possessing spin necessar i ly
have a magnetic moment, the Fe rmi fluid must be
magnetic. In the isotropic case there are only two
possibi l i t ies . The fluid can be paramagnetic or
ferromagnetic. Antiferromagnetism in an i so -
tropic Fe rmi fluid is impossible. We present here
only the case of the paramagnetic Fe rmi liquid,
which corresponds to liquid He3. A calculation of
the susceptibility of such a liquid was given by
Landau in reference 1 (cf. also reference 2).

When the system is in a magnetic field H,
the par t ic les naturally have an additional energy
depending on their spins. If they were free p a r -
t icles, the change of the energy would be - /3(or-H).
In the Fe rmi fluid, however, we have to take into
account also the fact that there is a change in the
distribution function. Thus we get

In the present case the spin dependence of the
function f is important. This dependence can be
written in the general case in the form

/(P, »; P ' . O = /(P, p') + Cife (p, p') °A. (4.2)

It is natural to assume, however, that the spin in-
teraction is mainly of exchange origin. In this
case f takes the form

/ (p, «,; p ' , a') = / (p, p') + C (p, p') a-*'. (4.3)

The change of the distribution function appear-
ing in Eq. (4.1), 6n, is due only to the change of the
energy e, since the chemical potential changes
only in the second order in H. Because of this we
can set 6n = 9n/8e 6e in Eq. (4.1). This gives

This is the equation for 6e, which can be assumed
to have the form

5 s = - S ( s « H ) . (4.5)

Substituting this into Eq. (4.4), we get the equation

In view of the fact that dn'/de' s - 6 ( e ' - (x), the
integration is taken over the surface of the Fe rmi
sphere. We shall see below that only the value of |

taken on the surface of the Fe rmi sphere is of im-
portance for the magnetic susceptibility. In this
case both the arguments of f (p, p') have the abso-
lute value po, and f depends only on the angle be -
tween them. Denoting Jf(0) dfl/47T by £, we get
from Eq. (4.6):

(4.7)

The susceptibility is found from the formula

The value of this expression is of course de te r -
mined by just the spin-dependent change of n.
Thus we find:

X = T .
(4.8)

The quantity (dT/de)^ can be expressed in t e rms of
the coefficient y in the linear law of the heat capa-
city; this gives

, 4 * \ (4.9)

Equation (4.9) can be compared with the exper i -
mental data on the magnetic susceptibility of He3;*
this shows that f is negative and is of magnitude
0.85 t imes the second t e r m . Thus the exchange in-
teraction has a decided effect on the magnitude of
the magnetic susceptibility of liquid He3. The sign
of the effect is such that the exchange interaction
facilitates paral le l orientation of the spins. It does
not lead to ferromagnetism, however, since the
Fermi tendency toward an antiparallel arrangement
of the spins prevai ls . It is possible that at higher
p re s su re s the pa ramete r s change in such a way that
ferromagnetism becomes possible. There a re no
experimental data up to the present, however, to
support such a conclusion,

5. THE KINETIC EQUATION

The kinetic equation for the distribution function
in the absence of a magnetic field has the usual
form

dn dn ds dn ds T ( \
(5.1)

where I(n) is the collision integral. Here, however,
we have to take into account the fact that the energy
e is a functional of the distribution function, and
thus also depends on the coordinates. By means of
this kinetic equation Landau1 obtained expressions
for the fluxes of energy and momentum.
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To find the momentum flux one must multiply
(5.1) by pi and integrate over the phase space.
Conservation of momentum in the collisions makes
the integral /pjI(n)dT vanish, and we have the equa-
tion

d r , , r / dn ds dn dt \ , „
-—- \ pindz 4- \ p;( -5 a 3 3— ax = 0.

This expression in parentheses in the second in-
tegral can be written

dph

Substituting this into the integral and integrating the
second term by par ts , we get:

dxh

The last term can be put in the form

-3— \ nzdz— \ e ——dz.dxi J I dxi

But in view of the fact that 6E = /efindT, the last
te rm here is equal to 9E/9xj . Thus we get the
equation

(5.2)

This equation expresses the law of conservation of
momentum. The tensor IIik is the flux of momentum.
It is given by

zdz-E~j . (5.3)

In a s imilar way we also get the law of conse r -
vation of energy. To do this we multiply the kinetic
equation by e and integrate with respect to d r . Be -
cause of the conservation of energy in the collisions
the integral / e I(n)dT vanishes, and we get:

W r i t i n g t h e t e r m i n 9 n / 8 r i n t h e f o r m

d f ds , f dt ds , C" 92s ,
dr j 9p J dr 9p J 9r 9p

and i n t e g r a t i n g b y p a r t s w i t h r e s p e c t t o p i n t h e

t e r m i n 9 n / 9 p , w e g e t t h e l a w of c o n s e r v a t i o n of

e n e r g y

= — d i v Q ,
dt J at

where the flux of energy is given by

Q= C ne — dz.

(5.4)

(5.5)

6. THE VISCOSITY

From (5.1) and the expressions (5.2) for the m o -
mentum flux and (5.5) for the energy flux we can

determine the coefficients of viscosity and thermal
conductivity of the Fe rmi fluid.5

We begin by finding the viscosity. To do this,
suppose that there occurs a motion in the liquid with
a certain velocity u which is a slowly varying func-
tion of position. In this case the distribution func-
tion will differ only slightly from the equilibrium
value:

n = na + on,

where

nn.

(6.1)

(6.2)

The quantity 6n is found from the kinetic equation
(5.1). As usual, we must insert the function ng in the
left member of the kinetic equation. Fur thermore
we shall assume that at the point considered u = 0.
Substituting Eq. (6.2) into (5.1) we find:

du-t duh

+
(6.3)

We now transform 9no/9t and show that this ex-
pression also does not depend on the te rm in f in
Eq. (1.5). According to Eq. (6.2) we can write

(6.4)

Since the derivative 9no/9eo in Eq. (6.4) is different
from zero in a small neighborhood of the point
e0 = pi, and is a rapidly changing function in this
region, we can suppose the quantities in the paren-
theses evaluated at that point (the e r r o r will be of
the relative order (T/M) 2 ) . The variations 6e0 and
5 H a re a rb i t r a ry and a r e by no means equal to each
other. On the other hand, the distribution function
is normalized by the relation

\ nodz = N,

where N is the number of atoms in unit volume.
Taking the variation of this relation, we find:

(6.5)

since /(9no/9€(|) de0 = - 1 . Comparing (6.5) and
(6.4), we get:

dn0 _
~W

d/V

The number of atoms N satisfies the equation
of continuity

dN
dt • N div u = 0. (6.6)
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Thus the t e rm in 9no/9t gives an addition to the
te rm in div u, which as a resul t now takes the
form

dn0
ds

330
dp

_ W -2- divu.

Using Eq. (2.1) and the equality of the number of
excitations to the number of par t ic les , which
makes po/h = (3ir2N)1 's,we find that the expression
just writ ten vanishes. Thus apart from small
correct ions of the order (T/JH)2 there are no t e rms
in div u in the left member of the kinetic equation.

The right member of Eq. (5.1) is the collision
integral

(n) = w [ - n[z) - (1 - Wl) (1 - n2) n[n'2]

X 3 (Pi + p2 - pi - p;) 6 (El + s3 . (6.8)

Here we must keep in mind that the 8 function of
the energies has a s i ts arguments the actual ene r -
gies, i. e., the energies as given by Eq. (1.5).
Owing to this, substitution of the function no(€j) in-
to the collision integral does not make it vanish.
The integral vanishes only when we substitute in it
the true equilibrium function, i. e., no (e). The total
distribution function can be written

n = na (£) - - ^ r \ f <>

We introduce the notation

(6.9)

(6.10)

Substituting this in Eq. (6.9), we find that the t e rm
added to the equilibrium distribution function also
has the form (6.10). Instead of v however, it con-
tains the quantity

dQ_
in

(6.11)

= Y-<\j wn01n0

Substitution of Eq. (6.9) in the collision integral,
with neglect of t e rms quadratic in ip, gives:

- n'ol) (1 - n'J (\ + \ - <K - <K)

31 + ea-E;-a;)dx2dx; (fp;. (6.12)

In general the collision probability w depends on
all four momenta. The momenta of importance
here , however, a r e those with magnitudes close to
the limit value on the F e r m i surface. We can
therefore assume that w depends only on 6, the
angle between pj and P2, and cp, the angle between
the planes (pj, ft) and ( p j , P2).

Let us make use of the fact that the momenta of
the part icles in the main region of the integration
differ little in magnitude from the limit momentum
PQ. If we rotate the plane of the vectors ( p j , ft')

P'2

Pi*Pi

FIG. 1

through the angle <p relative to the axis in the
direction pj + ft, so that this plane coincides with
the plane ( p j , p2), we get the diagram shown in
Fig. 1. It is clear that the vector f will be small
in magnitude and that the angles between all the
momenta and the axis Pi + ft will be approximately
equal to 0/2 or - 0/2 . Thus we get

(6.13)

Pi - fzcos Y

where fz is the component of f along the axis
Pt + ft and fr is the perpendicular component. We
get rid of the 6 function by integrating over dft',
and replace the integral over d^' by that over
dfrdfzd(p, introducing a system of cylindrical co -
ordinates with axis along pi + ft:

(6.14)

We now introduce the following notation:

T '
; (6.15)

with the values of €j from Eq. (2.1). The change
from the variables fr and fz to x and y is a c -
complished very easily by means of Eq. (6.13).
Then we get:

dz[\ dx2o(s)= (6.16)

where we have denoted the angular differential
sin 0d0d<p by dfl, which involves the arguments of
w(0, <p). We note that because of the indistinguishi-
bility of the par t ic les the angle <p va r ies only from
zero to 7T.

From considerations of symmet ry it is c lear that
;/» must have the form /g j 7y

When this expression is substituted in the col l i -
sion integral the second factor can be transformed
by means of the addition theorem for spherical
harmonics . After the integration over the angle
q>2 only the first t e rms remain, i . e . ,

Pi ih + ea) - * P% (6i) Pi (^2). where P2 (6) = ~ cos2 6 — 1.
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As the result we get from Eq. (6.3) the following
equation for q:

M o r i - « „ ( < ) ] = • T^- \ dx \ rfz/i^) (0, o)

y n , ( ! ) « , ( i + y - ( ) [ f - « 0 ( i ) ] [ l - n 0 ( y ) ] ( 6 ° 1 8 )

X [q (I) + q (x + y - 1 ) P., (I,) - q (x) P., (')') - q (y) Pa (%)}.

In v iew of the fact tha t in the r a n g e of t e m p e r a -
t u r e s we a r e c o n s i d e r i n g only v a l u e s of x, y , and t
m u c h s m a l l e r than K a r e of i m p o r t a n c e , we c a n
take the l ower l im i t of the i n t e g r a t i o n in E q . (6.12)
to be — —. Under t h e s e cond i t ions , a s s u m i n g that
q i s a s y m m e t r i c function (as i s con f i rmed by the
r e s u l t s ) we e a s i l y ve r i fy tha t a l l the t e r m s wi th
di f ferent q ' s c a n be r e d u c e d to the s a m e f o r m a s
r e g a r d s t h e dependence on x and y . T h u s the
b r a c k e t e d e x p r e s s i o n t a k e s the s i m p l e fo rm

q (t) + q (x) [P., (0) - Pa {%) - P2 (%)].

The change f rom the a n g l e s fl/and 02' to the a n g l e s
0 and cp i s e a s i l y obta ined f rom F i g . 1. I n t e g r a t i n g
o v e r the v a r i a b l e y, on which q no l onge r d e p e n d s ,
a f t e r s o m e m a n ipu l a t i on we get the following e q u a -
t ion:

COS —

H (6.19)

where the bar denotes averages over the solid
angle.

The equation that has been obtained is compli-
cated, but analysis shows that for a rb i t ra ry assump-
tions about the form of w(0, q>) the e r r o r in the co-
efficient of viscosity will be smal ler than 10 p e r -
cent if we simply assume that the values we need
satisfy t2 « TT2. Then q is a constant, given by

( " •
( 1 — c o s f))z s i n

T

( 6 . 2 0 )

T h e f l u x o f m o m e n t u m i s g i v e n b y ( 5 . 3 ) . I n s e r t -

i n g i n i t n = n o + 5 n a n d E q . ( 6 . 1 0 ) , a n d u s i n g t h e

f a c t t h a t t h e e n e r g y i s a l s o a f u n c t i o n a l o f t h e d i s -

t r i b u t i o n f u n c t i o n , w e g e t :

T h u s i t i s s e e n t h a t t h e e x p r e s s i o n f o r t h e m o m e n -

t u m f l u x i n v o l v e s t h e s a m e f u n c t i o n i\> t h a t a p p e a r s

i n t h e k i n e t i c e q u a t i o n . C o n s e q u e n t l y , t h e f u n c t i o n

f d o e s n o t e n t e r t h e e x p r e s s i o n f o r t h e m o m e n t u m

f l u x , a n d i t h a s t h e s a m e f o r m a s f o r a F e r m i g a s

o f p a r t i c l e s w i t h t h e m a s s m * a n d t h e s c a t t e r i n g

l a w d e s c r i b e d b y t h e f u n c t i o n w ( 0 , cp) .*

S u b s t i t u t i n g E q s . ( 6 . 1 7 ) a n d ( 6 . 2 0 ) i n E q . ( 6 . 2 1 )

a n d d e f i n i n g t h e c o e f f i c i e n t o f v i s c o s i t y a s t h e

p r o p o r t i o n a l i t y c o e f f i c i e n t b e t w e e n n ^ a n d

— ( a u i / a x k + a u k / S x j - 2 / 3 8 u z / a x j 6 i k ) , w e f i n d

COS y

. ( 6 . 2 2 )

~ 2T h e v i s c o s i t y i s p r o p o r t i o n a l t o T ~ 2 . T h i s d e p e n -

d e n c e w a s e a r l i e r p r e d i c t e d b y P o m e r a n c h u k 6 o n

t h e b a s i s o f q u a l i t a t i v e c o n s i d e r a t i o n s . A s f o r

t h e n u m e r i c a l v a l u e s o f t h e v i s c o s i t y , t h e y d e -

p e n d o n t h e d e f i n i t e f o r m o f t h e a v e r a g e d f u n c -

t i o n w ( 0 , c p ) a n d t h e r e f o r e c a n n o t b e f o u n d p r e -

c i s e l y . B u t E q . ( 6 . 2 2 ) m a k e s i t p o s s i b l e t o d e -

t e r m i n e t h e o r d e r o f m a g n i t u d e o f T J . T O d o t h i s

w e m a k e u s e o f t h e f a c t , w h i c h w i l l b e p r o v e d i n

A p p e n d i x 2 , t h a t t h e f u n c t i o n f i s o f t h e o r d e r o f

m a g n i t u d e o f t h e s c a t t e r i n g a m p l i t u d e o f t h e

q u a s i - p a r t i c l e s . C o n s e q u e n t l y w ~ ( 2 7 r / f i ) f 2 , a n d

t h e v a l u e o f f c a n b e d e t e r m i n e d f r o m e x p e r i -

m e n t a l d a t a o n t h e s p e e d o f s o u n d ( c f . S e c . 8 ) .

U s i n g t h e n u m e r i c a l v a l u e s o f m * a n d p 0 f r o m

E q . ( 3 . 4 ) , w e g e t f o r H e 3

T1 = ^ r ( a ' ^ l ( ) - " - : - 1 0 " 3 p o i s e ; 7 ' u ° K ) . ( 6 . 2 3 )

T h i s o r d e r o f m a g n i t u d e c o r r e s p o n d s t o t h e e x -

p e r i m e n t a l r e s u l t s f o u n d b y K . N . Z i n o v ' e v a . T

B e c a u s e h e r m e a s u r e m e n t s w e n t d o w n o n l y t o

0 . 3 5 ° K , i t i s i n d e e d i m p o s s i b l e t o c h e c k t h e t e m -

p e r a t u r e d e p e n d e n c e . N e v e r t h e l e s s t h e e x p e r i -

m e n t a l r e s u l t s s h o w a n i n c r e a s e o f t h e v i s c o s i t y

w i t h d e c r e a s i n g t e m p e r a t u r e .

A s a l r e a d y n o t e d e a r l y i n t h i s s e c t i o n , a p a r t

f r o m t e r m s o f o r d e r ( T / j t ) 2 t h e r e i s n o p a r t p r o -

* I n r e f e r e n c e 5 t h e s e c o n d t e r m i n t h e f o r m u l a ( 6 . 9 ) w a s n o t

i n c l u d e d , a n d i n c o r r e c t f o r m u l a s w e r e t h u s o b t a i n e d f o r t h e v i s -

c o s i t y a n d t h e r m a l c o n d u c t i v i t y c o e f f i c i e n t s . T h e c o r r e c t v a l u e s

c a n b e o b t a i n e d b y t a k i n g f = 0 i n t h e e x p r e s s i o n s ( 2 6 ) a n d ( 3 0 )

o f r e f e r e n c e 5 .
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portional to div u on the left side of the kinetic
equation. This means that the coefficient of
second (dilatational) viscosity is smal ler than r\
by a factor (T/JU)2 and plays no part in physical
effects (for example, the absorption of sound).

7. THE THERMAL CONDUCTIVITY

We now go on to the calculation of the thermal
conductivity.5 Assuming a small temperature
gradiant, we get in the left side of the kinetic
equation:

At the beginning the transformations of the col-
lision integral are the same as those made in the
preceding section [Eqs. (6.8) to (6.16)]. In the
present case it is reasonable to t ry to find the
function ty in the form

Instead of Eq. (6.8) we now get a s imilar equation,
but with cos 9 instead of P2 (cos 6) in the collision
integral and the factor (€0 - n) / T - s in the left
member . The presence of such a factor shows that
the unknown function must contain par ts both sym-
metr ic and antisymmetric in t, namely:

9 (0 = 9,(0 + qa (0- (7.3)

Substitution in the collision integral gives the two
equations

COS —•

l t 2 + ( 2

ex—l

{7A}

6, tp) 2cos6)
6

cos-^-

r C

( 7 . 5 )

c o s —

In the present case, however, the kinetic equa-
tion does not completely determine the solution
of the problem. One must use along with it a
supplementary condition, which expresses the con-
servation of the flux of mat te r . This is

* - • •

( 7 - 6 )

Here we have performed an integration by par ts and
have replaced e by e0 in the integrals that already
contain 6n. Substituting the expressions (6.10),
(6.11), and (7.2) in Eq. (7.6), we get

J ^ £ 0

( 7 . 7 )

T o f i n d q a ( t ) w e h a v e o n l y t o s o l v e ( 7 . 5 ) i n a w a y

l i k e t h a t u s e d i n t h e t r e a t m e n t o f t h e v i s c o s i t y . T h e

s i t u a t i o n i s d i f f e r e n t f o r t h e e v e n p a r t q s ' ( t ) . F i r s t ,

w e m u s t n o t e t h a t q s = c o n s t a n t m a k e s t h e r i g h t

m e m b e r o f E q . ( 7 . 4 ) v a n i s h i d e n t i c a l l y . T h e r e f o r e

t h e c o n s t a n t t e r m q s ( 0 ) i s t o b e d e t e r m i n e d n o t

f r o m t h i s e q u a t i o n , b u t f r o m t h e c o n d i t i o n ( 7 . 7 ) .

F u r t h e r m o r e i t i s e a s y t o s h o w t h a t t h e s u b s e q u e n t

t e r m s i n q s ( t ) , n a m e l y a 2 t 4 + a 4 t 4 + . . „ , m a k e n o

c o n t r i b u t i o n t o t h e t h e r m a l c o n d u c t i v i t y . I n f a c t ,

t h e o c c u r r e n c e o f s u c h a t e r m a s a m t 2 m , f o r e x -

a m p l e , m u s t c h a n g e t h e c o n s t a n t t e r m i n q § ( t ) b y a

q u a n t i t y a m w h i c h i s s u c h t h a t

a * . V ^ )

- f l ^ J r f x - O .

F r o m t h i s c o n d i t i o n w e g e t :

« ° - - - a m ( 2 m ) ! / ? 1 H ; J i i a = ^ ^ { , d z .

T o f i n d t h e e n e r g y f l u x w e h a v e t o c a l c u l a t e i n t e -

g r a l s o f t h e f o r m

T h u s w e g e t t h e r e s u l t t h a t t o f i n d t h e t h e r m a l

c o n d u c t i v i t y c o e f f i c i e n t w e n e e d o n l y s o l v e ( 7 . 5 )

a n d t h e n c h o o s e t h e c o n s t a n t t e r m s o a s t o s a t i s f y

t h e c o n d i t i o n ( 7 . 7 ) . A s i n t h e c a s e o f t h e v i s c o -

s i t y , i t i s e n o u g h f o r p r a c t i c a l p u r p o s e s t o f i n d t h e

s o l u t i o n o n t h e a s s u m p t i o n t 2 « 7 T 2 . W e t h e n g e t :

p i

w ( 0 , v ) ( 1 — c o s

0

c o s —

( 7 . 8 )

T h e e n e r g y f l u x i s g i v e n b y E q . ( 5 . 5 ) . S u b s t i t u t -

i n g E q o ( 6 . 1 ) i n t h a t f o r m u l a , w e h a v e :

( 7 . 9 )

S u b s t i t u t i n g E q s . ( 6 . 1 0 ) , ( 6 . 1 1 ) , ( 7 . 2 ) , a n d ( 7 . 8 )

w e f i n d t h e v a l u e o f t h e t h e r m a l c o n d u c t i v i t y c o -

e f f i c i e n t
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8 r t ' f j f
~ 3 m * 4 r ' L

. (6, <f)(l-cos

As in the case of the viscosity, the function f does
not appear in the coefficient K .

The temperature dependence of the thermal con-
ductivity coefficient is given by the T"1 law, which
also agrees with the qualitative prediction of
Pomeranchuk.

Estimating the numerical value of K for He3 in
the same way as we did that of the viscosity, we get
the relation

(7.11)

| 1 1 1 ; T i n °K).

In any case the expressions obtained for the
viscosity and thermal conductivity coefficients
cease to be valid for temperatures T ~ /z. In addi-
tion to this, however, there is a limitation that
shifts the region of applicability of the theory
toward considerably lower tempera tures . This is
that the range of excitation energies with which we
are concerned, of the order of T, must be much
larger than the quantum uncertainty in the energy
that a r i s e s owing to the collisions, i . e . ,

~ (7.12)

where T is the time between collisions. We note that
the condition (7.12) is required not only for the ca l -
culation of the kinetic coefficients as it was done
above, but also for the validity of the entire theory
of the Fermi fluid. For He3 the quantity T can be
determined from the experimental values of the
viscosity7 [cf. Eq. (9.12)]. If we use the point at
the very lowest temperature , i . e . , 17 = 4.8 x 10
poise at T = 0.358K, we get from Eq. (7.12)

r < 0 , 3 5 o K . (7.13)

It is clear, however, that this value is too high,
since at T = 0.35°K the viscosity is still not p r o -
portional to T~2, but follows a weaker law of v a r i a -
tion.

8. THE PROPAGATION OF SOUND

The propagation of sound in a Fe rmi fluid has a
number of quite specific peculiar i t ies . If we con-
sider sound of a prescr ibed frequency, then at not
too low temperatures its propagation takes place
according to the laws of ordinary hydrodynamics.
In this case the damping of the sound is propor-
tional to T. When the temperature is lowered the
collision time will increase proportional to T~2,
and finally, at temperatures such that WT ~ 1, the
sound ceases to be propagated at a l l . It turns out,

however, that when the temperature is lowered
still further the possibility of propagation of sound
reappears . The velocity will then be different, and
the sound is no longer simply a wave of compres -
sion and rarefaction. This phenomenon was also
predicted by Landau,8 and was called by him the
"zero th sound". Because only the relation between
_ and T is essential in fixing the nature of the
sound, these two kinds of sound can be described
as low-frequency sound (wr « 1) and high-fre-
quency sound (WT » 1) .

The speed of sound at low frequencies or not
too low temperatures , for which the condition
O)T « 1 holds, is determined by the compressibi l -
ity in the usual way. It was shown by Landau1

that there is an important dependence of the speed
on the function f.

It is convenient to express the compressibility
in t e rms of the derivative fyt^N. Here N is the
total number of par t ic les . Using the fact that the
chemical potential \i. depends only on N/V, we find:

dN

r—£
N

V* dj (8.1)

As is well known, the speed of sound is given by
the relation

2 dp dp
w mN

1 / jyj. d<x \
~ ~^ I i V dN J (8.2)

The derivative dyi/dN is calculated in the following
way. Because ju = e(po), the change of \x occurs
both on account of the change of po and also be -
cause of the change of the form of the function
e(p):

k\Wd-'+'£lPi, (8.3)

The changes SN and Sp are connected by the r e -
lation

f.N = ^ " « W - (8.4)

Since only changes <5n close to the Fermi limit a re
important in the integral of Eq. (8.3), the integra-
tion over the absolute value of the momentum can
be performed. This gives

on'dx' =~[fdQ. (8.5)

Substitution in Eq. (8.3) gives [cf. also Eqs. (2.1)
and (2.2)]:

Equation (2.5) enables us to express the effec-
tive mass m* appearing here in t e rms of the actual
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mass m of the a toms. Substituting the resulting
expression in Eq. (8.2), and using the fact that

3 (2it/i)» '

we find:

- ( 8-7 )

The formulas (2.5) and (8.7) make it possible
to get some information about the function f(x) . If
we introduce the notation

the first coefficients of the expansion in Legendre
polynomials can be found from Eqs. (2.5) and
(8.7). Indeed, it is not hard to get the relations

(8.9)

Substituting the values of the paramete rs for He3

from Eq. (3.4) and the value of the speed of sound,9

c T=0 = 1 8 3 m / s e c , we find: d:

/--0 = F=4 .65 , F1 = 3/'1cosx = 1.3. (8.10)

In view of the fact that the later coefficients can-
not be determined in such a simple way, h e r e -
after we shall confine ourselves in specific cases
to the first two harmonic contributions to the
function F:

cos x- (8.11)

W e n o w g o o n t o t h e s t u d y o f t h e " z e r o t h s o u n d " ,

i . e . , t h e c a s e i n w h i c h COT » 1 . T h e k i n e t i c e q u a -

t i o n h a s t h e f o r m ( 5 . 4 ) . W e s u b s t i t u t e i n i t t h e d i s -

t r i b u t i o n f u n c t i o n i n t h e f o r m

M - n o + i n , ( 8 . 1 2 )

w h e r e t h e s m a l l d e v i a t i o n 6 n ~ e * ( k > r ~ w t ) . H e r e ,

o f c o u r s e , w e h a v e t o t a k e i n t o a c c o u n t t h e f a c t

t h a t , a c c o r d i n g t o E q . ( 1 . 5 ) , t h e e n e r g y o f t h e e x -

c i t a t i o n s a l s o u n d e r g o e s a c h a n g e . I n a s m u c h a s

t h e c o l l i s i o n i n t e g r a l h a s t h e b e h a v i o r I ( n ) ~ S n / T ,

a n d COT » 1 , w e c a n n e g l e c t I ( n ) .

T h u s w e f i n d t h a t

(k« v — u>) ire — k . v - ~ \ / o n ' &-' = 0 .

F r o m t h e f o r m o f t h i s e q u a t i o n i t f o l l o w s t h a t 6 n

i s p r o p o r t i o n a l t o dr^/de. W r i t i n g S n = 9 n < , / 9 e v ,

w e g e t :

(k-v-co)v-j-k.v \ i V - ^ - = 0. (8.13)

If we take k as the polar axis and introduce the
symbols u = co/k for the speed of propagation of

the w a v e and s = u/v, then E q . (8.13) takes the

form:

(s-cos6)v(9, 9 ) = O', 9 ' ) ~ . (8.14)

From this we can determine v (6, cp) and the cha r -
acteris t ic value s . In view of the fact that the
change of the distribution function, 5n, is p r o -
portional to 3no/9e, it is c lear that the essential
point is the deformation of the Fe rmi surface.
The shape of this deformation is determined by the
function v. Equation (8.14) depends essentially on
the function F .

Let us consider first as an example the simplest
case, namely F = Fo = const. With this we get from
Eq. (8.14) (without the periodic exponential factor)

const i-cos 6
" =

 S - c o s 9 • < 8 - 1 5 >

A d i s p l a c e m e n t o f t h e F e r m i s u r f a c e a s a w h o l e

( t h i s c o r r e s p o n d s t o o r d i n a r y s o u n d ) w o u l d b e

g i v e n b y v ~ c o s 6. T h u s i n t h e p r e s e n t c a s e w e

h a v e t o d o w i t h a n a n i s o t r o p i c d e f o r m a t i o n o f t h e

F e r m i s u r f a c e . A s w e s h a l l s e e l a t t e r , s m u s t

b e l a r g e r t h a n u n i t y . T h u s t h e F e r m i s u r f a c e i s

s t r e t c h e d o u t i n t h e d i r e c t i o n o f t h e m o t i o n .

S u b s t i t u t i n g E q . ( 8 . 1 5 ) i n E q . ( 8 . 1 4 ) w i t h F =

F o , w e f i n d t h e e q u a t i o n f o r s . C a r r y i n g o u t t h e

e l e m e n t a r y i n t e g r a t i o n , w e f i n d :

i - S f - ' - i
( 8 . 1 6 )

F r o m t h i s i t c a n b e s e e n t h a t i f s i s r e a l ( w h i c h

c o r r e s p o n d s t o u n d a m p e d w a v e s ) i t m u s t b e l a r g e r

t h a n 1 , i . e . ,

u > v. ( 8 . 1 7 )

F r o m E q . ( 8 . 1 4 ) i t c a n b e s e e n t h a t t h i s c o n d i t i o n

r e m a i n s v a l i d f o r a n y f u n c t i o n F . F u r t h e r m o r e ,

s i n c e t h e l e f t m e m b e r o f E q . ( 8 . 1 6 ) i s a l w a y s p o s i -

t i v e , i t i s c l e a r t h a t t h e c o n d i t i o n f o r t h e e x i s t e n c e

o f z e r o t h s o u n d i s F o > 0 .

I f t h e f u n c t i o n F o i s l a r g e , s i s a l s o l a r g e .

F r o m E q . ( 8 . 1 6 ) w e g e t . s — ( F o / 3 ) 1 / 2 f o r F o — ~ .

O n t h e o t h e r h a n d , f o r F o - • 0 w e h a v e s — 1 , i . e . ,

u — v . T h i s i s t h e c a s e o f a n a l m o s t f r e e F e r m i

g a s .

I t i s n o t h a r d t o s e e t h a t t h e c o n c l u s i o n t h a t

s — 1 f o r F - * 0 d o e s n o t d e p e n d o n t h e f o r m o f F .

I n f a c t , i t f o l l o w s f r o m E q . ( 8 . 1 4 ) t h a t f o r F — 0 ,

s - » 1 , a n d v i s d i f f e r e n t f r o m z e r o o n l y f o r s m a l l

B, A c c o r d i n g t o E q . ( 8 . 7 ) , i n a w e a k l y n o n i d e a l

F e r m i g a s c 2 PS p Q / 3 m , i . e . , c s 3 " V 2 u . T h u s t h e

s p e e d o f t h e z e r o t h s o u n d w i l l e x c e e d t h e o r d i n a r y

s p e e d o f s o u n d b y a f a c t o r 3 1 ' 2 .

L e t u s n o w c o n s i d e r t h e g e n e r a l c a s e F ( x ) . 1 0 W e

r e p r e s e n t t h i s f u n c t i o n a s a s u m o f s p h e r i c a l h a r -
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monies as in Eq. (8.8). We substitute Eq. (8.8) in
Eq. (8.14) and use the addition theorem of Legendre
polynomials

are the associated Legendre
. ~ m _ ~ m

w h e r e P n = P n

p o l y n o m i a l s . A f t e r t h e i n d i c a t e d s u b s t i t u t i o n w e g e t :

( c o s 9 - S) v-f- c o s H y . - I " - ! " ' ! , ' Pn ( 9 ) F n c ' » *

K (8') v (6',

We introduce the notation

e~imf'^- = 0.

a n d s o l v e E q . ( 8 . 1 8 ) f o r v .

••os 0 — » —J

(8.18)

( 8 a 9 )

( 8 . 2 0 )

S u b s t i t u t i n g t h i s e x p r e s s i o n i n t o E q . ( 8 . 1 9 ) a n d

c a r r y i n g o u t t h e i n t e g r a t i o n o v e r cp w e g e t :

j . (n — \ m \ ) \ r y ^ , , 1 ^ , c u s 6 ' />>'• if,>\d-' ,-p

'' . . ( 8 - 2 1 )

Thus we have obtained a system of homogeneous
equations for the quantities <J>km. This system sepa-
ra tes into independent subsystems corresponding to
different values of m . From Eq. (8.21) it follows
that in the Fermi fluid at absolute zero vibrations
of several different types can be propagated, cha r -
acterized by different dependences of the amplitude
on the angles 0, <p. The value m = 0 corresponds
to vibrations in which v is isotropic in the plane
perpendicular to k. For m ^ 0 the vibrations a re
polarized in a definite way in this plane. The num-
ber of types of vibrations is determined by the
number of possible values of m ( |m| ^ n). The
speeds of propagation of the vibrations a re de te r -
mined by the requirement that the determinants of
the corresponding subsystems of equations be equal
to zero:

k

rfQ'

(8.22)

Because P n
m = P m , the coefficients fij^ do not

depend on the sign of m, so that vibrations that
differ only by the sign of m a re propagated with
the same speed.

From Eq. (8.22) it can be seen that the equa-
tions for the speeds a re transcendental equations.

In the general case they do not always have real
roots . Cases a re also possible, however, in which
there a re several real roots . Then.there a re
several types of vibrations with the same polar iza-
tion in the plane perpendicular to k.

As an example let us consider the case in which
the function F(x) contains only the zeroth and first
harmonics [the function (8.11)]. Here the coef-
ficients n£n are given by

h i t
2 s— 1

= — W,

I f x3 rlx 1
-t

Q , i r ( i - ^ ) rf l r ( s 2 _ _ 1 ) w _ * 1 ,
1 1 4 J x — s 2 L v ' 3 J

- i

O n s u b s t i t u t i n g i n t h e d e t e r m i n a n t ( 8 . 2 2 ) w e g e t

f o r t h e s p e e d o f p r o p a g a t i o n o f v i b r a t i o n s o f t y p e

m = 0 t h e e q u a t i o n

1 + A . / 3

w-—

For the case m = 1 we get the equation

w = •
{**-!)•

( 8 . 2 3 )

( 8 . 2 4 )

T h i s e q u a t i o n h a s o n e r e a l r o o t f o r F j > 6 .

L e t u s n o w l o o k a t t h e a p p l i c a t i o n o f o u r f o r m u -

l a s t o t h e c a s e o f l i q u i d H e 3 . A c c o r d i n g t o E q .

( 8 . 1 0 ) t h e r e i s o n e s p e e d f o r t h e v i b r a t i o n s o f

t y p e m = 0 [ t h e r o o t o f E q . ( 8 . 2 3 ) ]

s - ~ - 1 . 7 2 . u = 1 9 2 m / s e c .

T h e v i b r a t i o n s o f t y p e m = 1 ( a n d a l s o a l l w i t h

m > 1 ) a r e a b s e n t . I t i s o f c o u r s e p o s s i b l e t h a t

t h i s c o n c l u s i o n i s a c o n s e q u e n c e o f t h e c r u d e n e s s

o f t h e a p p r o x i m a t i o n w e h a v e t a k e n f o r F ( x ) . b u t

w e s e e n o r e a s o n s f o r t h i n k i n g s o .

I n a d d i t i o n t o t h e v i b r a t i o n s t h a t h a v e b e e n c o n -

s i d e r e d , w a v e s o f a n e n t i r e l y d i f f e r e n t t y p e c a n b e

p r o p a g a t e d i n a F e r m i f l u i d a t a b s o l u t e z e r o ;

t h e s e c a n b e c a l l e d s p i n w a v e s . 8 I n t h e t r e a t m e n t

o f t h e s e v i b r a t i o n s o n e m u s t t a k e i n t o a c c o u n t t h e

s p i n p a r t o f t h e f u n c t i o n f , w h i c h i s g i v e n b y E q .

( 4 . 3 ) . W e i n t r o d u c e a n e w s y m b o l

- ( 8 . 2 5 )

T h e e q u a t i o n f o r z e r o t h s o u n d n o w t a k e s t h e f o r m
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(8.26)

If we assume that v does not depend on the spin,
this goes over into Eq. (8.14). It is also possible,
however, to assume a different form for the func-
tion v, namely to take

For this function we get the equation

(s-cosO)v =

(8.27)

(8.28)

Thus we have for the components of the vector V
an equation that differs from Eq. (8.14) only by
the replacement of F by Z /4 . Therefore all the
further developments must be the same as those
car r ied out above.

According to the resul ts of Sec. 4, for the case
of He3 the quantity Zo is approximately - 3 . 4 , that
is, a negative quantity. Although it is of course
impossible to draw any rigorous conclusions from
this, still it is most probable that no spin waves
can be propagated in He3.

The possibility of the propagation of sound waves
at T = 0 means that the Fe rmi fluid has a Bose
branch of the energy spectrum, in the form of
phonons with energy e = up. But the contributions
from this branch to the thermodynamic quantities
involve higher powers of T (heat capacity ~ T 3 ) ,
which were not included in the approximate theory
that has been considered.

the effects of thermal conductivity (see-below) are
negligibly small in our case, the collision integral
contains no t e rms in the zeroth and first spherical
harmonics. We therefore replace the collision
integral by the following expression:*

I -. ,-1 (an — un — 3 on cos 0 cos 0). (9.1)

It is easy to see that the integration over dTp
makes this expression go to zero . It also goes to
zero after multiplication by e or by p cos 9 and in-
tegration over dTp.f Thus the equations for the
conservation of the number of part icles, the mo-
mentum, and the energy are automatically sa t i s -
fied. According to Eqs.(8.14) and (9.1) the basic
kinetic equation now takes the following form:

(kv cos 8 — <o) M + kv cos 6 \ F-t' ~

(9.2)
= —— (v — v — 3vcos 0-cos 0).

9. THE DISPERSION AND ABSORPTION OF SOUND w

In the preceding section we considered the two
limiting cases WT « 1 and UT » 1. Let us now
examine how the transition occurs from ordinary
sound to zeroth sound, i . e . , let us consider the
dispersion of sound.10 Because the region of the
dispersion, CJT~ 1, is at the same time the region
of strong absorption, our treatment will also enable
us to deal with the problem of the absorption of
sound.

In the present case we have to find the solution
of the kinetic equation, including the collision in-
tegra l . Because the interaction law of the exci ta-
tions is still unknown, however, we shall simplify
the form of the collision integral.

For this purpose we could introduce a cer tain
effective t ime T and replace the collision integral
I in Eq. (5.1) by the expression -6n /T . With this
replacement, however, the kinetic equation will not
yield any conservation laws for the number of ex-
citations, the momentum, and the energy, and this
makes the transit ion to hydrodynamics impossible.
Since both the second (dilatational) viscosity and

Having in mind the application of the resul ts to
He3, in order not to complicate the problem we
shall write the function F in the two-term form
of Eq. (8.11).

We introduce the notation

v = v0; 37cos~6 = v1; o= - i-.kv; ; = l~j^f , (9.3)

after which we get without difficulty from Eq. (9.2):

l i ( 9 # 4 )

(cos 6 — c) v + cos 6 ( Fova + —- F-p. cos 6 j = — (v0 -f v, cos 6).
We now solve the equation for v and calculate
y%= I'D and v cos 6 = vx/3. We thus find two equa-
tions for the two quantities v$ and v^:

1 UI+ I

1 1 /' 1 >V 71 4-,,
M ^̂  11 \t tTOI I —- h^TCi I A Ĵ M

3 1 0 0 -1 \ '1 ^ / I 1 0 Mi

(9.5)

(9.6)

where w =— In * - 1 .
2 t, 1

From the condition for compatibility of (9.5) and
(9.6) we get an equation for the complex speed of
sound

( 9 ' 7 >

This is the desired equation for the frequency

•Here and in what follows the bar denotes averaging over
the angles.

tin this integration only the range of values of momentum
close to p0 is of importance, since the function Sn contains a
5-function singularity for e = \i.
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dependence of the speed of sound or, in other words,
for the dispersion of sound in the Fermi fluid. We
first consider two extreme cases .

a) Low frequencies, _ T « 1. Here we have
<T - • 0, £<T— - 1, and | -* —. Expansion of w in
powers of 1 / | gives

.—-
3"

and after simple manipulations Eq. (9.7) takes the
form

(9.8)

Recalling the relations (9.3), we have:

V

From Eqs. (9.8) and (9.3) we find in first order in

£ > (9.9)

The first term corresponds to the speed of ordinary
sound in the Fermi fluid. The absorption of sound in
the region WT « 1 is found by the elementary rule
from Eq. (9.9) as the imaginary part of the wave
vector:

* g L ( £ ) (9.10)

In view of the fact that the present case c o r r e -
sponds to ordinary sound, we can use instead of
Eq. (9.10) the more precise ordinary formula

Noting that f « TJ and a l s o that « / c p , which i s
a quant i ty of the o r d e r of TJ, is mul t ip l i ed by the
s m a l l f a c to r ( C p / c v ) - 1 [it i s not h a r d to ve r i fy
tha t it is of the o r d e r (T/fi)2], we find:

9u,2

C o m p a r i n g t h i s e x p r e s s i o n wi th E q . (9 .10 ) , we c a n
d e t e r m i n e the t i m e r f r o m e x p e r i m e n t a l da t a :

F r o m the da ta of K. N . Z inov ' eva on the v i s -
cos i ty 7 we ge t

1 2-7 ' "- s e c (7 ' in °K) (9.13)

The c o r r e s p o n d i n g va lue for the a b s o r p t i o n coef-
f icient i s

T' , 1 .10- ( ^ cm ! (9.14)

b) We now consider the second extreme case,
that of high frequencies and low temperatures ,
_ T » 1. In this case

o—>oo; —>oo; k =

Equation (9.7) takes the form

1 + ^ ) - w (s) { ( 1 + ^ ) /'„ + s^\] - 0. (9.15)

This equation agrees exactly with the equation
(8.23) that determines the speed of the zeroth
sound.

As for the absorption of the zeroth sound, to
calculate it we must find the imaginary part £ ' of
the speed of sound. From Eq. (9.9) we get the
equation

(9.16)

By means of Eq. (9.3) we find the absorption co-
efficient

v = Im k = —•
1 STi'

(9.17)

If we subs t i tu t e h e r e the v a l u e s of the p a r a m e t e r s
for He3 ( s = 1.84, v = 1.13 x 104 c m / s e c ) , we get :

i ' = ~ , Y - ^ . l O ' . r ' c m - 1 . (9.18)

Thus the a b s o r p t i o n of the z e r o t h sound does not
depend on the f requency and i n c r e a s e s wi th i n -
c r e a s i n g t e m p e r a t u r e a s 1 /T , i . e . , p r o p o r t i o n a l to
T 2 .

In t h i s ca l cu la t ion the speed of sound h a s been
t r e a t e d c l a s s i c a l l y . The va l id i ty of th i s t r e a t m e n t
depends on the inequal i ty fiw « T . F o r the c a s e
fia> > T it is n e c e s s a r y to t r e a t the p r o b l e m by
quantum t h e o r y . The d e c r e a s e of the n u m b e r of
sound quanta p e r uni t t i m e , due to the co l l i s i ons
of the F e r m i p a r t i c l e s , i s g iven by

w {/(l«2 (1 - n[) (1 - «2') - «;«„' (1 - nL)

(9.19)

X I U[ + £j — Sj — eg — feu) rf-j d-..2 d'[ dp!,.

The function w, wh ich depends on the four m o -
m e n t a , is unknown. It is p o s s i b l e , however , to
c a r r y out the ca l cu l a t i on in such a way tha t t he
a b s o r p t i o n coeff icient is e x p r e s s e d in t e r m s of
i t s c l a s s i c a l v a l u e (9.17); t h i s h a s been done in a
p a p e r by Landau. 8

Making use of the fact that in the r e g i o n in which
the F e r m i d i s t r i b u t i o n fa l l s off (which i s the i m p o r -
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tant one for the problem) the only rapidly varying
function is the occupation number n(e), we can
assume that the angular integrals give a certain
constant, which does not change as we go from the
classical regionKco « T to the quantum region
nw » T. There then remains only the integral over
the energies

= \ K) (! - O ~

X 0 (;,' + s': — ;x —
(9.20)

Substituting the Fe rmi function for n and ex-
tending the integration from - » t o " (this is p e r -
missible because of the rapid convergence of the
integrals) , after a rather lengthy calculation we get

(9.21)

The absorption coefficient is proportional to the
integral I. From the classical limiting case we can
determine the proportionality factor. Since the
classical value of y must be obtained for Rw « T,
we have in the general case

0.22)

where y c i is given by Eq. (9.17). In view of the
fact that y c i is proportional to T2, in the quantum
limiting case Rw » T the absorption coefficient
y must be proportional to o>2.

10. THE SCATTERING OF LIGHT (FLUCTUA-
TIONS OF THE DISTRIBUTION FUNCTION)

According to the foregoing, a part icular condi-
tion for the possibility of the propagation of
"zero th sound" is the inequality

a j s o u n d T » l . (10-D

where T is the time between collisions. For He3

this is of the order of 10~12T~2 sec . If we take even
a temperature ~ 0.01°K, a frequency higher than
108 cps is required for the direct observation of
zeroth sound, and this makes the performance of
such an experiment very difficult.

Besides the direct experiment, an indirect
method can be proposed, which consists of the
observation of the Rayleigh scattering of light in
liquid He3. * As is well known, in Rayleigh sca t -
tering there appear, in addition to the main line,
satell i tes that differ from it in frequency by

Au) = 4-2— <o sin -n-,
-1- c I

where u is the speed of sound and 9 is the sca t t e r -

*The idea of using the Rayleigh scattering was first pro-
posed by S. P. Kapitza.

ing angle. The speed of the zeroth sound in He3 is
of the order of 2 x 10* c m / s e c , that is, A w ~ 10~6 w.
Thus the observation of the frequency distribution
of the scattered light provides in principle a pos -
sibility for measuring the speed of the zeroth
sound. The condition (10.1) can be satisfied owing
to the high frequency of visible light.

In addition to this side of the mat ter , the sca t t e r -
ing of light in a Fe rmi fluid at sufficiently low t em-
pera tures has a number of specific features which
give interest to the theoretical study of this phenom-
enon, in part icular the frequency distribution of
the intensity.*

As is well known, the frequency and angular d i s -
tributions for the Rayleigh scattering of unpolarized
light a re given by the formula121

(10.2)

where w is the frequency of the incident light, 6 is
the scattering angle, q is the change of the wave
vector of the light, of magnitude (2CJ/C) sin (9/2),
and 6 D ^ C J is the Four ie r component of the fluctua-
tion 6D(t) of the dielectric constant:

?
= -^= ^ W (t) (10.3)

where to is a certain large value, which will be let
go to infinity in the final formula.

The bar in Eq. (10.2) means averaging over the
fluctuations. Hereafter we shall for simplicity take
the volume of the system to be unity.

Because of the very small polarizability of
helium atoms we can assume that the change of the
dielectric constant occurs as a result of density
fluctuations, i . e . , 6D = (8D/9N)6N, where N is the
number of par t ic les in unit volume. But according
to the general theory of the Fe rmi fluid the number
of excitations is equal to the number of atoms in
the fluid. Thus we can write

) (r) ~ (p) d v (10.4)

where 8n» Aco(p) is the Fourier component with
respect to r and t [the latter in the sense of Eq.
(10.3)] of the fluctuation of the distribution func-
tion of the excitations.

Before going on to further calculations, let us

*We note that in the case of high temperatures, for which
•"sound "^ li the scattering of light will be described by the
usual formulas (cf. reference 12).

tHere dh is the so-called differential extinction coefficient.
The integral of dh with respect to dO and dAca gives the total
extinction coefficient h, which is the damping decrement of the
photon flux density in the medium.
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n o t e o n e i m p o r t a n t f a c t . I n E q . ( 1 0 . 2 ) t h e a v e r a g -

i n g i s t a k e n o v e r a l l p o s s i b l e f l u c t u a t i o n s . I n t h e

r a n g e o f t e m p e r a t u r e s a n d f r e q u e n c i e s i n w h i c h

R A w > T w e m u s t t a k e a c c o u n t o f q u a n t u m e f f e c t s

i n c a r r y i n g o u t t h i s a v e r a g i n g . F o r t h i s , h o w e v e r ,

( c f . r e f e r e n c e 1 2 ) i t i s e n o u g h t o k n o w t h e r e s u l t

f o r t h e p u r e l y c l a s s i c a l c a s e , t h a t i s , f o r T » n " A w ,

a n d t h e n i n t r o d u c e a c e r t a i n c o r r e c t i o n f a c t o r . F o r

s c a t t e r i n g w i t h i n c r e a s e o f t h e f r e q u e n c y b y t h e

a m o u n t A w ( a n t i - S t o k e s s c a t t e r i n g ) w e m u s t i n -

t r o d u c e t h e f a c t o r ( h A w / T ) N ( A w ) , a n d f o r s c a t t e r -

i n g w i t h d e c r e a s e o f t h e f r e q u e n c y b y A w ( S t o k e s

s c a t t e r i n g ) t h e f a c t o r i s ( h A w / T ) [ N ( A w ) + 1 ] ,

w h e r e N ( A w ) i s t h e B o s e d i s t r i b u t i o n f u n c t i o n . I f

w e u s e n e g a t i v e v a l u e s o f A w f o r t h e d e s c r i p t i o n o f

t h e S t o k e s s c a t t e r i n g , t h e n o w i n g t o t h e r e l a t i o n

N ( — A w ) + 1 = - N ( A w ) - i t t u r n s o u t t h a t t h e c o r -

r e c t i o n f a c t o r f o r b o t h c a s e s h a s t h e f o r m

^ [ . r r - i j - i . ( 1 0 . 5 )

T h u s w e s h a l l t a k e T » R w . T o f i n d t h e f l u c t u a -

t i o n s o f t h e d i s t r i b u t i o n f u n c t i o n w e s h a l l u s e t h e

m e t h o d p r o p o s e d b y R y t o v 1 3 a n d b y L a n d a u a n d

L i f s h i t z 1 4 f o r c a l c u l a t i n g f l u c t u a t i o n s i n e l e c t r o -

d y n a m i c s a n d h y d r o d y n a m i c s . * B y t h i s m e t h o d w e

f i n d t h e f l u c t u a t i o n o f t h e " r a n d o m f o r c e " a p p e a r -

i n g i n t h e k i n e t i c e q u a t i o n ; t h e n b y s o l v i n g t h i s

e q u a t i o n w e c a n a l s o g e t t h e f l u c t u a t i o n o f t h e d i s -

t r i b u t i o n f u n c t i o n .

F o r t h e c a s e o f t h e F e r m i f l u i d w e s h a l l s t a r t

w i t h t h e k i n e t i c e q u a t i o n , w h i c h w e w r i t e i n t h e f o r m

din , dtn 3s dn0 C , din (p') ^
- I T - t f V

(10.6)

Except for the "random f o r c e " y ( r , p, t) this
equation is an approximation to the kinetic equation
(5.1) that is l inear in 6n.

In what follows we shall be concerned only with
the case of frequencies and temperatures satisfy-
ing the relation (10.1), i .e . , with the case in which
the collisions can be neglected. The detailed form
of the collision integral is then of no importance,
since it plays the part of an auxiliary quantity in
the calculations and can be set equal to zero in
the final resul t . In view of this we set

/ / > \ on(on)= - _ , (10.7)

where T is a large quantity. We have also to find
the rate of change of the entropy. Recalling that

•The writers express their gratitude to L. P. Gor'kov, I. E.
Dzyaloshinskii, and L. P. Pitaevskii, who called attention to
the possibility of applying this method to the kinetic equation.

the number of part icles and the total energy are
prescribed, and using the relation

" • ( p ) = $ / ( P . p ' ) » » ( p ' ) d v . (10.8)

we find:

(10.9)

Noting that n^ (1 - no) « T3(e - ^ ) , where ju is the
chemical potential, we readily see that 6n(p) must
have the form

We now introduce the notation

where 6 and <p a re the polar angles of the vector p .
This formula means that the fluctuations of the d i s -
tribution function occur only in the neighborhood of
the Fermi surface.

It is natural to take a similar form for y, i.e.,

(10.11)

w h e r e \ i s t h e a n g l e b e t w e e n p a n d p ' , a n d e x -

p a n d 6 n , y , a n d F i n s p h e r i c a l h a r m o n i c s

(10.12)

Since v and y e a re real quantities, we have

•fin — (-nln I i yn — \i)n ) •

U s i n g t h e e x p r e s s i o n ( 1 0 . 7 ) f o r t h e c o l l i s i o n i n -

t e g r a l , w e g e t t h e f o l l o w i n g f o r m u l a f o r t h e r a t e o f

c h a n g e o f t h e e n t r o p y :

v ( 9 , 9 )

F(X) =

OO

= 2 o

oo

2
n = 0 «

n = 0

n

2
m = —

n

J L

V .

n

« ( c

( c o s y j .

( c o s

o s 8]

X ;

( 1 0 . 1 3 )

L e t u s n o w i n t r o d u c e t h e n o t a t i o n

—. ^"" -i- iim

— "t Jfn-
( 1 0 . 1 4 )

T h e n i n o r d e r f o r t h e e x p r e s s i o n ( 1 0 . 1 3 ) t o t a k e

t h e f o r m ( c f . r e f e r e n c e 1 4 )
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we must take as the generalized forces Xj the ex- components with respect to t a re taken according
pressions (10.15) to Eq. (10.3)], we find;

Fn , A ~\ 1 {n + \m\)l A-m _ l
(10.19)

: + l ~ ,/2re+l (re-|m|)! n '

In the expression (10.14) the quantity y™ plays the
role of the "random fo rce . " Writing this relation
in the form

a'a;

z— a) -j

dx

Xn = — 2
n'm'

qvx dx

— m-\

where'the coefficients y can be determined without
We a re interested in the limit of the value of this

expression for r — —. In the case in which qv >
difficulty from Eq. (10.15), we have according to the 7.r i ,, , , ' , " ~ ~ , .^ ,

/ , „ | A _ | f the denominator does not have any poles, and
general theory of fluctuations: ,. , , ... . ,. . , . ,, . , ,
b the important quantity is the residue in the integral

(r, 0 y% ( r \ t') = T^';n
m) 8 (i - «') o ( r - r')

, - m ' j ( r—r ' ) a (/—«') (10.16)

X K - ! ] "

Finally, using Eq. (10.12) and the relation

we get after some transformations the general r e -
lation

r, 0 ( r - r ' (10.17)

n=0
By means of this formula and the kinetic equa-

tion (10.16) we can calculate the fluctuations of
the distribution function, with which we are con-
cerned he re . Since in the general case of an a r b i -
t r a ry function f this is a ra ther complicated task,
we confine ourselves to the case f = const.

Making use of the fact that the fluctuations occur
only at the F e r m i surface, and referring to Eq.
(10.6), we express Vn Ao>(('>cP) i n t e rms of the
corresponding Fourier component of y e (6, cp).
This gives

(10.18)

where v = ( 9 e / 3 p ) e = „ Averaging the square of
the magnitude of this expression by means of Eq.
(10.17)[here we have to remember that the Four ier

in the numerator . We get a s the result :

'Iqv r -2qv ~~qv — -
In the opposite case, i .e . , for qv « Aw, the pole

in the denominator of the expression (10.19) is im-
portant. It is not hard to see that such a pole occurs,
if Fo > 0 and is given by A u> = ± sqv, where s
satisfies the equatior.

This equation is identical with Eq. (8.16), which d e -
termines the speed of the zeroth sound. Using the
relation

— lim
»—«>o)2 + i

- = 3 (to — i

we get without difficulty:

2~7t fo

(10 22)
X[8(A(o— sqv) + fj(^ia + sgv)]. ' '

Thus the distribution of the scattered light in d i r e c -
tion and frequency has the form [we have also in-
troduced the quantum factor (10.5)]:

X
— | Au>|
2qv

'Iqv J - [8 (Aco — sqv)
(10.23)

where

This result has a simple physical meaning. As
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can easily be seen, the frequency spectrum con-
s is ts of a central part - qv < Aw < qv and two
narrow lines at Aco = ± sqv. The central part co r -
responds to the Doppler broadening of the main
line. Comparison of Eq. (10.21) with Eq. (8.16)
shows that the side lines are the satellites of the
Rayleigh scattering, which appear because of the
possibility of the propagation of zeroth sound
(sv = u). The ratio between the intensities of the
central part and the satell i tes in general depends
on the scattering angle. In the two extreme cases ,
however, of high temperatures (T » K_u/c) and
low temperatures (T « fiwu/c) this ratio does not
depend on the angle. One can ca r ry out numerical
computations for He3, using unknown (sic) pa ram-
e t e r s . It then turns out that for the high-tempera-
ture case about 20 percent of the whole intensity
is in the central part , and about 40 percent in
each of the side l ines. In the low-temperature case,
owing to the quantum factor, the distribution is cut
off on the side of positive Aw. In particular, the
only one of the two satell i tes left is the Stokes line
with A w = - uq, which gets 90 percent of the in-
tensity. In this case the central part receives only
10 percent of the whole intensity.

The total scattered intensity is obtained by in-
tegrating Eq. (10.23) over dAw and d£2. For the
high-temperature case

it is

(10.24)

where J t is a numerical integral, which in the case
of He3 is about 0.5. In the quantum limiting case
(T « fiwu/c) we have:

( 1 0 2 5 )

Here J2 is a numerical integral, which in the case
of He3 is about 0.2. To ca r ry out quantitative ca l -
culations from these expressions for the case of
He3, we need to know the value of 8D/9N0. There
are no measurements of this quantity; therefore we
take D — 1 to be proportional to N, and use the
proportionality factor as given by the data on liquid
He*. For wavelength X = 5461 A the index of r e -
fraction of liquid He4 is 1.027. This gives 9D/8N
= 2.5 x 1O"24. Substitution in Eqs. (10.24) and
(10.25) gives (T in°K):

-1/.(Ho3)10"°V7' cm ' for 2-1017?' sec -1

"1h (He3) 1Q-S7(o= cm"1 for i« > 2 • 10177' s e c " 1 .

It must be remembered that the frequency must

satisfy the relation (10.1) i . e . , i u » 1 /T, or

oj » 1018r2 sec"1.

If this condition is not fulfilled, the line width
will be too large. Thus in the visible rang§ of f r e -
quencies we need temperatures below 0.05"K. It
is not hard to see that at temperatures of the order
of 0.01° and frequencies in the visible region we
have h(He3) ~ 10 cm" 1 , which is of course too
small for the effect to be measurable * But owing
to the fact that a> occurs raised to a high power in
the expression for h, it is possible that one may be
able to measure the scattering in the ultraviolet
region.

APPENDICES

MICROSCOPIC THEORY OF THE FERMI FLUID

A 1. The Rarefied Fe rmi Gas

In this section we consider the propert ies of a
non-ideal Fe rmi gas in which the dimensions of the
part icles a re small in comparison with the mean
free path.16 This model, a number of whose prop-
er t ies have been examined recently by Yang and
Huang,17 and also by Yang and Lee,18 was called by
those wr i te r s the hard-sphere model. In reality
it possesses a more general character , and c o r -
responds to a system of Fermi part icles with
arb i t ra ry short-range forces having a radius of
action small in comparison with the mean wave-
length.

Such a model makes it possible to obtain expres -
sions for the various quantities describing the
Fermi fluid, for example the energy, the effective
mass , and the function f, in the form of expan-
sions in powers of (a/X) (a is the radius and X
is the wavelength). We shall ca r ry out the ca l -
culation to within t e rms of the order (a/X)2. By a
procedure s imilar in principle one could de te r -
mine also t e rms of several higher orders , but
this is of no special interest . We begin with the
calculation of the energy.

We use perturbation theory to take into a c -
count the interaction energy of the par t ic les ,
which we write in the form (with the volume of
the gas taken as unity for simplicity)

n.nmm I i 2 l K-n-X.l)

where a+ and aj a re creation and annihilation

*For liquid He4 in' the visible region h ~ lO"8 cm"1 xjj"
(about the same value should hold for He3 for Atur « 1). Al-
though measurements of h for He4 have been carried out, they
are at the limit of what is experimentally possible.
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operators for the par t ic les . The summation is
taken with the res t r ic t ion that the total momentum
is conserved; furthermore the spin component for
the state m t is equal to that for the state n t , and
similarly for m2 and n2. The position of U out-
side the sign of summation corresponds to the
fact that the interaction between all pai rs of p a r -
t icles is the same, and the scattering amplitude
does not depend on the angle. In first approxima-
tion the quantity U is connected with this ampl i -
tude by the relation

«7 —- (A1.2)

(a is the scattering amplitude) .
The f i r s t -order correction to the energy is the

diagonal matrix element of V:

n,<n.
(A1.3)

where the Nj a re occupation numbers .
The factor Qik in Eq. (A1.3) takes account of

the fact that Fermi part icles with a scattering
amplitude independent of the angle do not interact
in the case of parallel spins. Thus we shall take

(A1.4)

(ffi is the spin operator of the i-th part icle) .
Substituting Eqs . (A1.2) and (A1.4) in Eq.

(A1.3), we get

(A1.5)

To find the second-order correction we use the
expression from perturbation theory

En — 2. I Vnm \2l(En — Em). /^j gv

Substituting the expression (Al.l) in this formula,
we get the following sum:

where Nj are the equilibrium occupation numbers
and Ej the energies of the par t ic les .

Because our purpose is to get the expansion of
the energy in powers of a, we have to take into
account the fact that the relation (A1.2) between U
and the scattering amplitude is not exact, but is
valid only to first o rder . When second-order
t e rms a re included we get instead of (A1.2) the
following relations:

mim2
If we get from this the expression of U in t e rms of

a and substitute it in Eq. (A1.3), the resulting ex-
pression for E ' 1 ' contains t e rms proportional to a2,
which must naturally be assigned to the second-
order correction. Taking this into account, we get
the following value of the second-order correct ion
to the energy:

2 — —nij — •

— m 2)

(A1.7)

In view of the fact that the expression in brackets
is symmetric in nj and n2, we replace the r e -
striction nt > n2 by the factor 1/2.

The meaning of the operation just performed
lies in the fact that in actuality an expansion in
powers of U is not what is used. The existence of
a constant U would simply lead to an infinity in the
energy, a s can be seen directly from the formula
(A1.7). In the present case the essential point is
that the scattering amplitude a has a finite, and
moreover a smal l , value, which makes possible an
expansion in powers of this quantity.

In the first te rm of the expression (A1.7) the'
te rm with the product of four Nj's is equal to
zero because of the fact that the denominator is
antisymmetric under the interchange njnj a- m^ m2,
while its numerator is symmetr ic , and all the
ranges of summation a re identical. The two s u r -
viving t e rms with products of three Nj's a re
identical. Thus we get finally:

(A1.8)

This is the expression for the energy that is valid
on the basic assumption (a/X) « 1.

Our purpose is to obtain the character is t ics of
the degenerate Fe rmi gas . From the expression
fA1.8) we find the energy of the ground state

(A1.9)

i g \ $ ^
1P1KP0; IP8I<P0. |P ;KP

where pj is the limiting momentum.
According to Sec. 1 the energy of the excitations

is given by the relation
IE

n= INi ' (A1.10)

Variation of the expressions (1.3) and (1.8) with
respect to Nj gives

i + Pa — P—Pa) 2 S(Pl + p—Pa — Pa) 1
Pi-pf-pl)/2m (p2 + p!-Pl-p|)/2mJ
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Thus the problem of calculating the energy of the
ground state and the effective mass of the exci ta-
tions reduces to the calculation of the integrals
(A1.9) and (Al . l l ) . The integration is rather
cumbersome because of the high multiplicity of
the integrals and the awkwardness of the regions
of integration.

Instead of this we can use a s impler method,
based on the introduction of the function f. If we
introduce this function

tih = VE/ZN$Nh, (A1.12)

then according to Eqs . (2.5) and.(8.7) we can deter-
mine the effective mass and the speed of low-fre-
quency sound. By a suitable integration we can find
the energy of the ground state from the speed of
sound.

Thus the problem reduces to the determination
of the quantity f. Taking the variations of the ex -
pressions (A1.3) and (A1.8) with respect to Nj,
and then with respect to N^, we find the following
expression:

5
I Pi KP0

'~Pi—Pa) (A1.13)

1
4 (

—p' —p2) — P—P2)

In the calculation we shall at once set | p | = | pt |
= p0 . The integration in the second term of f is
considerably simpler than those in Eqs . (A1.9) and
(Al . l l ) . We get as the result :

Ht) =

A peculiarity of this expression deserves at ten-
tion. For angles x close to TT the function f has a
logarithmic singularity,

(A1.15)

It is c lear that in this case the approximation we
have used is , str ict ly speaking, not legit imate. The
singularity of the function f at x = T is a manifes-
tation of the singularity in the scattering amplitude
of excitations colliding at the angle 7r. The c o r r e -
sponding expression, obtained by summing the main
te rms of the perturbation theory, is proportional to

[ i + 2 f i ;
L v *

aN1 In —a- -l (A1.16)

where e = - 2pjj.

In the case of positive a this expression goes to
zero for p2 = p ' 2 = p2,.

If, however, a < 0 (this is possible for Fermi
systems), the scattering amplitude has a pole near
the Fermi surface. This corresponds to the pos-
sibility of the formation of bound pairs of excitations
with opposite momenta, which was pointed out by
Cooper19 and is the main cause of the phenomenon of
superconductivity in metals.2 0

Thus the expression found for f is not valid for
angles close to TT . But in view of the fact that the
singularity is only logarithmic, it manifests itself
only in the immediate neighborhood of the singular
point. And since only integrals of f together with
regular functions occur in the expressions with
which we a re concerned, the logarithmic singularity
of the function f is of no importance.

Substituting Eq. (A1.4) in Eq. (2.5), we find the
value of the effective mass

m/m*= 1 — (8/J5) (3/n)8 (7 In 2 - 1) a2A'a (A1.17)

We note that if we insert here the value m* = 1.43 m,
which corresponds to liquid He3, the resulting value
of a is 1.6 x 10"8; that is, it is of the order of mag-
nitude of the gas-kinetic value of the diameter of the
helium atom. Such a comparision of course has no
meaning in a s t r ic t sense. The model under con-
sideration cannot describe liquid He3. This can a l -
ready be seen from the fact that the quantity (m*-
m)/m*, which in the theory should be a quantity of
second order in a, is 1/3 for He3.

Substituting the formula for f in the expression
for the speed of sound, we get:

(A1.18)
I 2

^-y a /V3"(ll-21n2)j .

From the value of c2 just found it is not hard to ob-
tain the energy of the ground state of the Fe rmi
fluid. To do this we use the relation (8.2), c2

= N/m(fyi/9N). This gives:

E= *\ |JI<W —£<°' + ——-iV* f 1 + ^ ( —^ «iV3 (11— 2 In 2) 1 .
J tn L 30 \_ TT j J

Equation (A1.2) agrees with the result of Lee and
Yang.15

The same result can also be obtained by direct
integration in Eq. (A1.9). To calculate the integral
in Eq. (A1.9) it is convenient to introduce new
variables
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FIG. 2

p = Pi —p2; q = p3 — p4; s=p! + p2

(2)In these var iables E takes the form

where the region of integration for the vector s is
0 < [ s] < 2po, and the regions of values for the
vectors p and q are shown in Fig. 2. If we in t ro-
duce the variables xq = cos (q, s) and x p =
cos (p, s), E ' 2 ' is given by

0 0 6

where z(x) satisfies the relation

By a se r ies of transformations and integrations by
par ts with respect to dxp and dx~ we then find:

l+s

Proceeding further to integrate by par ts with r e -
spect to ds and then performing the remaining in-
tegration, we get:

i i
f (11 —2 In 2) aN3E(1Kfii2> = (6/35) (3/nf (11 —2 In 2) aN3E(

Here we have inserted the expression (Al.2) for U
and have set Po = fi^Ti^N)1'3. This result is identi-
cal with the second-order term in Eq. (A1.19).

A. 2. Microscopic Theory of the Fermi Fluid for
T = 0

Here we present the general microscopic theory
of the Fermi fluid at T = 0, as developed recently
by Landau;18 this theory is valid for a rb i t ra ry in ter-
act ions. As we shall see, this t reatment provides
a basis for the phenomenological theory and an un-
derstanding of the physical meaning of the function f
that appears in it.

The microscopic treatment is based on methods
taken from the quantum theory of fields. As is well
known, in quantum field theory one works with

vacuum expectation values of chronological products
of field operators (i.e., products of operators taken
in the order of succession of their t imes). These
quantities are the so-called Green 's functions. In
our case, instead of vacuum expectation values we
shall consider expectation values for the ground
state of the system. It is not hard to verify that
such expectation values have the same propert ies
as the Green 's functions of the field theory, and in
part icular that in principle they can be calculated
by means of the Feynman-diagram technique.

For definite ness we shall f irst give the name of
Green 's function to the quantity

G l ,2= — (A2.1)

where the brackets < > denote the expectation value
for the ground state, ip and ip+ a re the field opera -
tors of the Fermi par t ic les , the indices 1, 2 denote
sets of space, time, and spin coordinates, and T, as
usual, denotes the t ime-ordered product with change
of sign when tpi and ip2 a re interchanged. In the
absence of external fields the Green 's function de -
pends only on the differences of the coordinates and
the t imes . As for the spin indices, if the interaction
of the part icles does not depend on their spins, then

We denote the Four ie r transform of the Green 's
function with respect to the coordinate and time
differences by G(p) 8ao [here p is the four-dimen-
sional vector (p, e ) ] . The poles of G(p) determine
the energies of the quas i -par t ic les . If the magnitude
of p is close to po and e is close to the limiting
energy JH, then G(p) has the form

7S- (A 2-2)s — v. — v (p— i

Here a is a positive constant, and 6 is a small
quantity which agrees in sign with the sign of e — \i,
or, close to a pole, with the sign of p - po (6 is
introduced to fix the rule for going around the
poles, so that it will correspond to taking the T-
product in the x, t representa t ion) .

Let us now introduce the expectation value of the
t ime-ordered product of four operators

I'W)>. (A2.3)

We give the name of vertex part r12>34 to the quan-
tity defined by the following relation:

*12, 34 = G2,4~G1,4 G2,3

(A2.4)

The Fourier transform of the vertex part has
the form



88 A . A . A B R I K O S O V a n d I . M . K H A L A T N I K O V

(2itA)« ra

It i s c lear that the function Tap yg (P1P2. P3P4)
changes sign on the interchange apj 1~ /?p2. As in
the quantum field theory, the function F with a
definite relation between the components of each
of the vectors P [for example, near the Fe rmi
surface e - \>. = v(p - po)l, multiplied by a2, plays
the role of the scattering amplitude of the quas i -
par t ic les .

Let us consider F in the case in which p1 is
close to P3, and consequently P2 is close to p4, and
introduce the definition

where K = (k, w) is a small four-vector.
If it were possible to calculate such a vertex

part by perturbation theojy, then in first o rder one
would have to take the diagrams shown in Figs . 3, I.
The corresponding expressions contain integrals of
products of two Green 's functions. Whereas for
diagrams (a) and (b) the case K = 0 is not in any
way singled out, in case (c) the poles of the two
Green 's functions approach each other for K =0,
which, as we shall see, leads to the appearance of a
singularity of F .

If we denote by r ' 1 ) the set of all possible dia-
grams for r that do not have "s ingular e l emen t s "
[i.e., integrals of G(p)G(p) +K)], it is not hard to
see that the total r is obtained by summation of
the " l a d d e r s " shown in Fig. 3, II. This can be a c -
complished by solving the integral equation

rB,>T, (i>1p1;jc)=t<yiT()(p1i>
(A2.5)

Here, in view of the fact that T^-' has no singularity
at K = 0, we simply set K = 0 everywhere in r ' 1 ' .

Let us now examine the product in the integrand.
The integral over Q will consist of the principal
value and a term arising from the passage around
the poles. Because the arguments of the two G
functions are nearly equal, we can assume that all
the other parts of the integral have the same values
at these poles. The passage around the poles then
gives a contribution only in the case in which the
detours a r e on opposite sides of the rea l ax i s . This
means either q < po, |q + k| > Po, or vice ve r sa .
Because of the smallness of k it is not hard to see
that here q and €q w jx. Thus in the part of

h i h f h
q

the integral over Q which comes from the passage
around the poles the product G(Q)G(Q + K) can be
replaced by A 6 (6 - ^ ) 6 (q - p o ) .

The coefficient A can be found by integrating
G(Q)G(Q + K), and is found to be (2iria2k c o s 6 ) /
(o> — vk cos0) , where 6 is the angle between q

FIG. 3

and k. Thus the product G(Q)G(Q + K) can be
written in the form

G {Q)G (Q + - ) = 2

Q\

where cp corresponds to the principal value of the
integral and has no singularities (therefore one puts
K = 0 in this t e rm) .

If we consider the expression (A2.6) in the limit
K = 0, then it makes a great difference how this
limit is taken, i . e . , what the ratio of u> and k
approaches. The same is true about F in the limit
_ — 0, k — 0.

F i r s t of all let us consider F in the limit k — 0,
(k/w) -» 0. For this limit, which we denote by F w ,
we get from Eqs. (A2.5) and (A2.6):

l'a3.T«(PlP») = r^.T8(PlP«) {A2J)

— -fzr-tWt \ r<«V,-i'. (p> Q)f(Q)v'"?as (Qpi)dlQ-

It i s not hard to eliminate r ' 1 ' from the two
equations (A2.5) and (A2.7). Using Eq. (A2.6), we
find after simple transformations

; A') =
(A2.8)

DS, K) -——£-- rfQ.

Let us now take the other limit, namely K — 0,
(w/k) — 0. This limiting value, multiplied by a2,
corresponds physically to the forward scattering
amplitude for quasi-part ic les with energy on the
Fermi surface. We denote this quantity by F*.
From Eq. (A2.8) we find the relation between a 2 F k

a n d a 2 F w

(A2.9)

- Q) aK. s3 (Q
p.)

Let us now study the poles of the function
F(Pj P2; K). Just as the poles of the function G(P)
give the relation between the energies and momenta
of the Fe rmi excitations, the poles of the function F
characterize the " two-par t i c l e" excitations, in



T H E O R Y O F T H E F E R M I F L U I D 89

other words the Bose excitations. In view of the
fact that in the neighborhood of a pole Г(Р 4 Р 2 ; К)
» ГШ(Р! Р2), we can neglect the term Г ш in the
right member . Fur thermore it must be noted that
the variable P 2 , and also the indices /3 and б play
the part of p a r a m e t e r s in the equation. The function
Г can be represented in the form of a product
X o;0(Pi; K) x /3 б (рг)> a n d * (рг) cancels on the two
sides of the equation. If we also introduce the nota-
tion

where n is the unit vector in the direction of P
we get for vay the equation

.u

Q. (A2.10)

Comparing this equation with Eqs. (8.14) and
(10.4), we see without difficulty that it is the same
as the equation for the zeroth sound and the spin
waves, with the quantity а Г а playing the role of
the function f. This confirms the equation for the
zeroth sound obtained in the phenomenological
theory, and thus confirms the hypothesis made in
that theory about the functional dependence of the
energy of the excitations on the distribution func-
tion. On the other hand, owing to Eq. (A2.9), we
have established a connection between the function
f and the scattering amplitude of the quasi-par-
ticles at the angle 0° .

Let us examine this relation in greater detail .
Denoting the amplitude multiplied by (dr/de) e _ „
by A(nj • Oj, n 2 • cr2), we get:

A (u, (A2.ll)
d°

<S(n, .3 i ,n ' . i')A (n' . з ' , п 2 . г 2 ) ~ .

As regards their spin dependence, Ф and A each
contain two t e r m s : one independent of the spins,
and one proportional to <j\ -ст2. If we write

K, n2). • 12)

В and С satisfy the equations

i> n 2 ) - - '>*<"'•" '>£• (A2.13)

С (П,, П;>)=/ И<n.;)-T \ Z(n,,n')6'(n', H.,)'-
Being sca lars , the quantities В and C, and also

F and Z, can depend only on cos x- If w e introduce
expansions in spherical harmonics, B(x) = — B J P J
(cos X), and so on, then we can easily get relations
between the coefficients Bj and Fj, and between
С i and Zj:

l-'i
C.= - ' — — . (A2.14)

•Л + 1
1 +

' 4(21 + 1)

F o r e x a m p l e , l e t u s f i n d t h e s c a t t e r i n g a m p l i t u d e

of t h e e x c i t a t i o n s f o r a r a r e f i e d F e r m i g a s . F r o m

E q s . ( A 1 . 1 6 ) a n d ( A 2 . 1 3 ) w e g e t :

We n o t e t h a t i n t h e c a s e of p a r a l l e l s p i n s t h i s e x -

p r e s s i o n g o e s t o z e r o f o r X = 0, a s i t m u s t a c c o r d -

i n g t o t h e P a u l i p r i n c i p l e ( f o r f t h i s d o e s n o t o c c u r ) .

! L . D . L a n d a u , J . E x p t l . T h e o r e t . P h y s . ( U . S . S . R . )

3 0 , 1 0 5 8 ( 1 9 5 6 ) , S o v i e t P h y s . J E T P 3 , 9 2 0 ( 1 9 5 6 ) .
2 1 . M . K h a l a t n i k o v a n d A . A . A b r i k o s o v , J . E x p t l .

T h e o r e t . P h y s . ( U . S . S . R . ) 3 2 , 9 1 5 ( 1 9 5 7 ) , S o v i e t

P h y s . J E T P 5, 7 4 5 ( 1 9 5 7 ) .
3 A b r a h a m , O s b o r n e , a n d W e i n s t o c k , P h y s . R e v .

9 8 , 5 5 1 ( 1 9 5 5 ) .
4 F a i r b a n k , A r d , a n d W a l t e r s , P h y s . R e v . 9 5 , 5 6 7

( 1 9 5 4 ) .
5 A . A . A b r i k o s o v a n d I. M . K h a l a t n i k o v , J . E x p t l .

T h e o r e t . P h y s . ( U . S . S . R . ) 3 2 , 1 0 8 3 ( 1 9 5 7 ) , S o v i e t

P h y s . J E T P 5, 8 8 7 ( 1 9 5 7 ) .
6 I . l a . P o m e r a n c h u k , J . E x p t l . T h e o r e t . P h y s .

( U . S S . R . ) 2 0 , 9 1 9 ( 1 9 5 0 ) .
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