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I. INTRODUCTION

AS is well known, oscillations induced in a solid
are damped out rapidly even in the absence of ex-
ternal resistance. It is customary to explain such
damping by the presence of ‘‘internal friction
forces’’ or simply ‘‘internal friction’’ within the
solid itself. This term must be taken to mean the
ability of the solid to convert, in an irreversible
way, the energy of mechanical oscillations into
heat. These ‘“forces of internal friction’’ amount
up to 70% (or more) of all the resistive forces that
act on a vibrating solid in an actual situation.

The magnitude of internal friction may be de-
fined in various ways. In the simplest and most
direct way it may be expressed by means of a
quantity 6 defined, if the internal friction is not
great, as the ratio

(1)

where AU is the energy dissipated per cycle,
while U is the energy of the oscillations.

At room temperature for materials with low
internal friction 6 ~ 107", while for materials
with high internal friction the values of § may
reach 0.1 or more. The value of & is determined
not only by the nature of the materials, but de-
peunds also, as we shall see later, on many other
factors and above all on the amplitude of the os-
cillations. In the case of well tempered metals
and of alloys, an amplitude dependence of the mag-
nitude of internal friction determined, for exam-
ple, by the method of low frequency rotational
oscillations, can be observed for angles of twist
exceeding 107° radian. The appreciable depend-
ence of the magnitude of § on the amplitude of
oscillation should be taken into account in com-
paring the results of measurements obtained by
different investigators. A direct measurement
of 0, possible only in the case when & = 0.1,
has been carried out by Hopkinson1 and Fiippl.2

Since in the deformation of a real solid one al-
ways observes a phase lag of the deformation be-
hind the stress, i.e., mechanical hysteresis is
present, it is also possible to adopt as a measure
of internal friction the phase shift angle ¢.%%558
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A direct determination of ¢ is possible only when
tan ¢ is greater than 0.1.1¢

Most frequently'l'32 the magnitude of internal
friction is determined from the damping of free
vibrations of a sample, since for metals and alloys
tan ¢ < 0.1, To do this experimentally one obtains
(if the frequency of vibrations exceeds 2 cps) a
time display of the free oscillations of the sample
{Fig. 1a), and from it one computes the logarithmic
decrement of the damped vibrations 6 (taken to
be a measure of internal friction), which by defini-
tion is equal to

a,
ff=In—" .
Ayt

(2)

Here a, and ap,; are the amplitudes of os-
cillations in the n-th and (n + 1)-th cycles.

Usually, to increase the accuracy of the deter-
mination of 8 (particularly in the case of visual
observations, which are possible only when the
frequency of the free vibrations does not exceed
2 cps), one employs the formula

ay,
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which gives the mean value of the logarithmic
decrement for the portion of the time display
bounded by the n-th and m-th cycles (N =m — n).
If within this interval the value of the decrement
varies slowly as the amplitude decreases, for-
mula (3) introduces negligible errors. But if this
formula is applied to the whole time display

(m =N, n =0), the calculated value of ¢ may
differ appreciably from the mean values of the
logarithmic decrement for a small portion of the
time display, in view of its possible dependence on
the amplitude of the oscillations.

Logarithmic decrements lower than 107 cannot
be measured, since the losses in the apparatus,
even in vacuo, are of the same order of magnitude.
It is also impossible to measure the internal fric-
tion by this method when 6 = 0.3, for at these
values of @ the motion of the sample becomes
aperiodic.

The next metho of measuring internal fric-
tion consists of observing the amplitude of forced
oscillations while the frequency of the external ex-

d34—38
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citing force is slowly varied and its amplitude is
kept constant. The amplitude of the oscillation of
the sample (Fig. 1b) reaches a maximum when the
frequency of the external force is equal to the res-
onance frequency v, of the sample, and falls off
sharply if the frequency of the external force is
either greater or less than this frequency. Asa
measure of internal friction in this method we
adopt the quantity

p=2, (4)
K]
where Av is the half-width of the resonance peak.

This method gives good results when the inter-
nal friction determined by the quantity B is not
smaller than 1075, since it is difficult to obtain
resonance curves when the internal friction is very
small, owing to the great sharpness of resonance.

The internal friction can also be measured by
other methods (cf. a review of these methods in
references 3, 4, 49-52, 87, 250, and 251), but they
are not often used.

The quantities indicated above as measures of
internal friction are interrelated by simple equa-
tions, which are valid when the internal friction
does not depend on the amplitude and when the
magnitude of the internal friction, defined for ex-
ample as tan ¢, does not exceed 0.1, Since in the
preponderant majority of known cases the internal
friction in metals and alloys does not exceed 0.1,
these relations between &, tan ¢, 6, and B do have
a practical meaning: they enable us to compare
results of investigations obtained by different
methods. In references 3, 4, 5, and 51 the follow-~
ing relations between the measures of internal
friction have been obtained:

% B

6
tan g = -
When the internal friction is large, the relations
between these different measures of internal fric~
tion depend on the mechanism of internal friction
and must be derived separately for each case.’?

We note that in the theory of oscillatory circuits
the quantity v3/B is usually referred to as the
figure of merit and is denoted by Q. Therefore
many authors use the symbol Q™! for the magni-
tude of internal friction.

In conclusion we should say a few words about
the earlier work (approximately prior to 1930) on
internal friction. In these invest:igations54"’6 quite
rough static and dynamic methods were used to
find the coefficient of viscosity, which was used to
characterize internal friction in materials. How~
ever, as Pines'' has correctly noted, this should

a

%

Amplitude of free oscillations

Amplitude of forced oscillations

a7

y

FIG. 1. Methods of determining internal friction: (a) by time
display of free oscillations, (b) by width of the amplitude res-
onance peak.

not be done, since the coefficient of viscosity and
the internal friction are by no means the same,
Therefore, unfortunately, it does not appear to be
possible to make use of the results of most of the
earlier research on internal friction,

Recently there has been a sharp increase in
interest in the study of the dependence of internal
friction on various factors, particularly with a
view toward studying various problems of physical
and chemical kinetics. Special attention has been
devoted to the temperature dependence of internal
friction, and the present review is devoted to this
topic.

II. EXPERIMENTAL RESULTS

1. Pure Metals

Figures 2 and 3 show the temperature depend-
ence, obtained by high frequency methods, of in-
ternal friction in tin,1%2% lead,ao’“,82 alumi-
num,1:83,24% gjlyer 80,81 gng colz)pex‘%’m:s“’85 at low
temperatures. The maximum friction in tin is as-
sociated with the transition of tin into the super-
conducting state?® 2% at 3,73°K. A similar maxi-
mum occurs in the case of lead.?’! The peak of
internal friction in the case of lead, aluminum (at
approximately 105°K), and silver is explained
largely by the motion of dislocations in the stress
field. The peak for aluminum at approximately
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FIG. 2. Internal friction in polycrystalline lead (I1—99.9%
Pb), aluminum (II, III — 99.99% Al), silver (IV —99.5% Ag), and
in a single crystal of tin (V — > 99.99% Sn) at low temperatures.

Frequency of oscillations I, II, IV ~ 10* cps, HI~10° cps, V~ 107

cps.

235°K is explained by the motion of single va-
cancies.?® Near room temperature, the internal
friction of all metals investigated so far increases
monotonically. If is of interest to note the good
agreement between the results of investigations by
different authors®®® in the case of single crystals
of copper, shown in Fig. 3 by the curves III’ and
III”, which enables us to join the two branches into
a single curve (dotted line in Fig. 3).

Figures 4 to 9 give the temperature dependence,
obtained by various methods, of internal friction in
tin, %8 1ead,®® zinc,?® magnesium,'®'*" alumi-
num, 1540934 gi1ver, 9% 5014, %9100 copper® 97,121
nickel, 1937108 5opa1t103,104,107 5. 103,104,108,109 ¢
nium, 02104 platinum,%’m

zirconium, 12 molyb-
denurn,m’104 tantalum,

100,112 and tungstenIOB’lu at

Internal friction (Q™x 10%)
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FIG. 4. Temperature dependence of internal friction in
single-crystal and polycrystalline tin (I, II —99.99% Sn, v~ 300
cps), polycrystalline lead (IIl — 99.9% Pb, v~ 950 cps), and
zinc (IV —99.6% Zn, v~ 180 cps).
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FIG. 3. Internal friction in single crystals of tin (I—99.93%
Sn, v~ 1.5 x 10° cps), copper (III' —99.9% Cu, v~4 x 10* cps,
11" — 99.86% Cu, v~3.9 x 10° cps) and in polycrystalline lead
(I1 -99.9% Pb, v~ 10* cps), copper IV —99.9% Cu, v~ 3 x 10*
cps) at low temperatures.

temperatures above room temperature. The tem-
perature dependence of internal friction of tin,
lead, zinc, silver, and copper was measured at
frequencies from 180 to 800 cps; in the case of
aluminum, magnesium, and cobalt the frequency
range was 1355 to 8 X 10* cps; in the case of mag-
nesium, aluminum, gold, copper, nickel, cobalt,
iron, titanium, platinum, zirconium, molybdenum,
tantalum, and tungsten the frequency was on the
order of 1 cps. All the metals were in polycrys-
talline form. Tin, aluminum, gold, copper, and
iron were also used in single-crystal form. All
the metals were annealed at high temperatures
for a time long enough to remove internal stresses
and to obtain a more or less equilibrium state.

It is seen from the figures that the internal fric-
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FIG. 5. Temperature dependence of internal friction in
aluminum-—single crystal (I1-99.99% Al, v~4 x 10* cps; III —
99,5% Al, v~ 1 cps) and polycrystalline (I —99.99% Al, v~ 10*
cps; IV —99.991% Al, 1 cps; V -99.98% Al,v~1 cps; VI—
99.99% Al, v~5 x 10° cps),
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FIG. 6. Temperature dependence of internal friction in poly-

crystalline magnesium (I — 99.97% Mg, v~ 1 cps; 11=99.99% Mg,
v~5 x 10° cps), copper (IIl — 99.999% Cu, v~ 1 cps; IV —99.999%
Cu, very large crystals, v~1 cps), and silver (V- 99.99% Ag,
v~1 cps).
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tion of single crystals of metals increases mono-
tonically with increasing temperature, without
giving any maxima. On the other hand, the internal
friction of polycrystalline metals (tin, lead, mag-
nesium, aluminum, silver, gold, copper, nickel,
iron, and zirconium) shows a maximum at tem-
peratures (with the exception of tin and lead) equal
to approximately (0.4 to 0.6) T, ;- Maxima in
the internal friction of tin and lead are observed at
temperatures ~(0.7 to 0.8) T, ;. A shift of the
maximum towards comparatively higher tempera-
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FIG. 8. Temperature dependence of internal friction in poly-
crystalline nickel (1 —99.99% Ni), cobalt (I' —heating, n-
cooling, 99.98% Co), iron (III, IV —99.95% Fe, VI very large
grains), molybdenum (IV 99.92% Mo), and tungsten (V —99.61%
W). Frequency of oscillation v~1 cps.
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FIG. 7. Temperature dependence of interal friction in poly-
crystalline and single-crystal gold (I, II —99.9998% Au, v~1
cps), polycrystalline platinum (III —99.97% Pt, v~ 1 cps) and
titanium (IV —99.81% Ti, v~1 cps; V—-99.81% Ti, very large
grains, v~ 1 cps).

tures is associated with an increase in the fre-
quency of oscillations of the sample. The internal
friction of titanium, molybdenum, tantalum, and
tungsten does not have a maximum in the tempera-
ture region above 0.4 T,,.¢. For these not very
pure metals the only characteristic feature is the
existence of an inflection point in the curve Q"( T).
In Figs. 8 and 9 the inflection points for molyb-
denum, tantalum, and tungsten are not shown, since
they lie above 800°C. The curve of Q'i(T) for
tantalum in the low temperature region (~0.14 to
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FIG. 9. Temperature dependence of internal friction in poly-
crystalline tantalum (I1—-99.76% Ta + 0.17% Al, enriched by
carbon, oxygen and nitrogen; II, IIl', III" — 99.9% Ta, enriched
by carbon, oxygen and nitrogen) and zirconium (IV —97.5%

Zr + 2.4% Hf; V —the same sample, saturated with oxygen).
Frequency of oscillation v~ 1 cps.
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FIG. 10. Temperature dependence of solid solutions Cu — Bi
(I —technical copper + 0.01% Bi, v~ 10* cps), Pb—Sn (Il —-
99.9998% Pb + 0.058% Sn, v~3 x 10* cps), Pb - 3i (III -
99.9998% Pb + 0.053 Bi, v~3 x 10* cps).

0.19 Tyeit) shows two sharply pronounced max-
ima, whose nature, as we shall see, differs from
the nature of the maxima encountered at higher
temperatures. Metals like cobalt and zirconium
exhibit a very interesting dependence of internal
friction on the temperature. For example, in the
case of cobalt the internal friction rises rapidly
with increasing temperature until it reaches a
maximum of 450°C. In the neighborhood of this
temperature (if the sample is maintained at con-
stant temperature) the internal friction decreases
rapidly and attains a certain stable value within
approximately 30 minutes. As the temperature is
280
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FIG. 12, Temperature dependence of Armco-iron (I) and of
solid solutions Fe-Si (Il — Armco-Fe + 4% Si), Fe — C (III -
Armco—Fe + 0.84% C) and Fe—Co—Cr (IV’, IV" Armco—Fe +
40% Co, 10% Cr; IV’ heating, IV” cooling). Frequency of
oscillation v~5 x 10° cps.
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FIG. 11. Temperature dependence of solid solutions Al - Mg
(1-99.99% Al + 21.18% Ag, v~13 x 10° cps) and Cu—Zn (II-
99.9% Cu + 28% Zn, v~5x10 cps; Il —Cu + 30% Zn, v~800
cps; IV -Cu + 30% Zn, v»~600 cps, single crystal; V—Cu +45%
Zn, v~21 x 10° cps, single crystal).

increased further the internal friction continues
to increase without showing any further peculi-
arities. On cooling, the internal friction decreases
to 400° C, after which it begins to grow rapidly,
reaching a maximum at 320°C. Isothermal condi-
tioning (during 30 minutes) at this temperature
leads to a rapid decrease in internal friction to a
stable value. A further decrease in temperature
leads to a smooth decrease in internal friction to
~20 % 107* at 20°C. In the temperature range
from 300 to 450° a kind of ““hysteresis’’ occurs

in the temperature variation of internal friction.

Internal friction (Q™1x 104)

0 g mo w0 2 W0 360 a0 4)917 o7 6%
Temperature 3 °c
FIG. 13. Temperature dependence of internal friction in
solid solutions Fe —Ni (I — Armco-Fe + 9.88% Ni + 0.67% Mn;
II —Fe + 28.84% Ni + 0.38% Mn; IIl — Fe + 40% Ni; IV — Fe + 60%
Ni, V —Fe + 80% Ni, VI —technical nickel). Frequency of
oscillation v~ 10’ cps.
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FIG. 14. Temperature dependence of internal friction in
solid solutions Al —Cu (I1-99.991% Al + 0.5% Cu; II — Al+4%
Cu), Al-Ag (II1 -99.99% Al + 20.1% Ag) and Ag—Zn (IV ~
99.99% Al + 30.2% Zn; V — Al + 15.8% Zn). Frequency of oscil-
lation v~ 1 cps.

Consequently, within a certain temperature range
the internal friction in cobalt depends not only on
the temperature, but also on the duration of the
experiment. Zirconium behaves in a similar man-
ner in the temperature range from 800 to 900°C.
As is well known, these metals undergo transitions
from one allotropic modification into another within
these temperature ranges. The internal friction of
titanium above 840°C should behave in a manner
similar to that of cobalt and zirconium, but there
are no experimental data.

The following conclusions can be drawn from
the results of measurements shown in Figs, 4 to 9:

1. Well annealed metal samples exhibit tem-
perature dependence of internal friction that is
constant in time (reproducible in repeated meas-
urements, if the oxidation of the samples is held
down to a minimum).

2. The temperature dependence of internal fric-
tion of annealed single-crystal metal samples does
not exhibit any maxima. The magnitude of the in-
ternal friction of single crystal samples is always
less than the magnitude of the internal friction of
corresponding polycrystalline samples.

3. Each polycrystalline metal (at a constant fre-
quency of free vibrations) shows at least one maxi-
mum or inflection point on the curve of the temper-
ature dependence of internal friction, provided no
allotropic transitions take place on heating,

4. The internal friction of metals which may
undergo allotropic changes on heating (for example,
cobalt or zirconium), is not constant in time in the
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FIG. 15. Temperature dependence of internal friction in
solid solutions Cu~ Be (1 ~99.992% Cu + 1.9% Be), Cu~2Zn
(11, III — cathode copper + 29.86% Zn; III — single crystal),
Cu~Si (IV-99.999% Cu + 0.1% Si), Cu— Al (V -99.999%
Cu + 0.1% Al) and Cu—Sn (VI-99.9993% Cu + 6% Sn). Fre-
quency of oscillation v~1 cps.

temperature range in which an allotropic change
occurs. An ‘“‘hysteresis’’ of internal friction is
observed within this temperature range.

5. The maximum (or inflection point} of in-
ternal friction lies for the most part in the tem-
perature range of recrystallization of the metal.
Its position for a given metal, as shown by ex-
periment, depends on the magnitude of the pre-
ceding plastic deformation: an increase in the
degree of plastic deformation shifts the maximum
towards lower temperatures. For different metals
subjected to the same degree of plastic deforma-
tion, the position of the maximum (or inflection
point) of internal friction is determined to some
extent by the melting point of the metal: for metals
of higher melting points the maximum of internal
friction occurs at higher temperatures. The posi-
tion of the maximum is also influenced by the fre-
quency of oscillations: as the frequency of oscilla-
tions of the sample is increased the maximum is
observed at increasingly higher temperatures.

6. At a given temperature metals of higher
melting point exhibit a lower value of internal fric~
tion compared to that for metals of lower melting
point. This difference increases as the tempera-
ture increases.

7. The magnitude of internal friction depends
also on the preceding deformation. As a rule, the
internal frietion is considerably greater in the
plastically deformed metals than well annealed
ones.
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FI75. 16, Temperature dependence of internal friction in
solid solutions Cu ~ Zn (I —spectral purity Cu + 1.17% Zn;
11 —8.01% Zn; 11 —32.1% Zn) and Cu—Ga (IV -0.97.% Ga;
V —16.2% Ga). Frequency of oscillation v~ 1 cps.

2. Alloys

Figures 10 to 13 present results of investiga-
tions of the temperature dependence of internal
friction of binary alloys Pb-Sn,% Pb-Bi,? Al-Ag,*
Cu-Bi,* Cu-2zn,'"* 11" Fe-8i,"8 Fe-C,' 11819 apd
Fe—Ni,le'121 and of the ternary alloy Fe-Co-Cr'¥!
at temperatures above room temperature, obtained
by different methods at frequencies from 600 to
3 x 104 cps.

Figures 14 to 23 present the temperature de-
pendence of the internal friction of the following
binary alloys: Al-Zn,'® Al-Mg,!24 125 A1-Ag, 126,127
Al-Cu,'2818 0u_Ga,122 Cu-Sn,»® Cu-Zn, 22,130,131
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FIG. 18. Temperature dependence of internal friction in
solid solutions Cu -~ Zn (I —spectrally pure Cu + 5% Zn; II — 10%,
I - 15%, IV — 20%, V —25%, V1 —=30% Zn; I and II very large
grains). Frequency of oscillation v~1 cps.
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. FIG. 17. Temperature dependence of internal friction in
solid solutions Cu ~ Ge (I —spectral purity Cu + 1.02% Ge; 1I',
11" - 4.94% Ge; II — very large grains), Cu— As (11 — 3.93% As)
and Cu—-Si (IV —0.9% Si; V—-9.0% Si), Frequency of oscillation
v~1cps.

Cu—Al,132 Cu—As,122 Cu—Ge,122 Cu—Si,m’132

Cu-Be, 13135 Ay-Ni,136 Nj-C,108:105,108 1jj_p 187
Ni-Be,'*" Ni-Mn,®" Ni-Fe,’® Ni-Ti,*7 Ni-Cr,!37:168
Ni-Zr,% Ni-Nb,'*? Ni-Mo,"¥? Ni-w,®" Fe-B,!38
and Fe-W,® and of the complex alloys: kovar, 137,139
nichrome,!¥? alloy No. 2,97 elinvar,!® elgiloy,137
Nimo alloy,'®"!¥ nimonik-80,'*" alloy 38KhMYuA,'%
Fe-Gr-Ni alloy,14=1~144 and austenite steel 25-20,14%
The measurements have been carried out over a
wide range of temperatures by various low-fre-
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FIG. 15. Temperature dependence of internal friction in
solid solutions Au—Ni (I-99.98% Au + 30% Ni, sample is
quenched in oil at 800°C; II — the sample is heated at 400° and
is rapidly cooled in vacuo; III — the sample is kept at 400° for
240 hours, and is then slowly cooled), and Ni - C (IV —99.99%
Ni + 0.21% C). The frequency of oscillation is v~1 cps.
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FIG. 20. Temperature dependence of internal friction in
solid solutions Ni—B (I -99.99% Ni + 0.25% B), Fe -8 (Il -
Armco-Fe + 0.006% B), Ni —Fe (III - 99.99% Ni+ 2.6% Fe),

Ni—Zr (IV~99.99% Ni + 5.5% Zr) and Ni—~Nb (V —99.99%
Ni + 1.76% Nb. Frequency of oscillation v~ 1 cps.

guency methods. All the alloys, with a few excep-
tions (cf. Figs. 14, 15, and 17), were investigated
in their polycrystalline state.

We also note that within a narrow temperature
range (from 20 to 300 or 400°) investigations have
been carried out for the pure metals zinc,29'49
silver,“‘9 copper,m’149 and nicl«:el,35 and also for

the following alloys: Sb-Bi,!’® Al-Cu,!%! Al-Cu-si,!¥

Al-Cu-Mg,'®! Al-Mg-8i,'®! Al-Cu-Mg-si,!®
Ag-Cd,186 Ag—Zn,lse Au-Cd,187 Au—Zn,186 Au-—Cu,185

Cu-Zn, 185188 Mn_Cu,® Fe-B,1% Fe-C 153-184,217,247,248

Fe-N,193:155-159 g _Nji,165 105-Kh-12 steel,l®
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FIG. 22. Temperature dependence of internal friction in
pure nickel (I1-99,99% Ni), kovar (II), technical nichrome (III),
alloy No. 2 (IV), elinvar (V), elgiloy (VI —alloy K = 40). Fre-
nquency of oscillation v~1 cps.
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FIG. 21. Temperature dependence of internal friction in
solid solutions Ni—~3e (I, Il -2.9% 3e; I - slowly cooled,
II — quenched in water from 950°C), Ni - Ti (IIl - 1.04% Ti),
Ni~Mn (IV —22.8% Mn), Ni~Cr (V-1.19% Cr), Ni—-Mo
(VI-0.86% Mo) and Ni-W (VII - 1.54% W) based on 99.99%
nickel. Frequency of oscillation v~ 1 cps.

Pd-H,'®" Pd-Cu,'®® and Pt-Cu.!®® The investiga-
tions were carried out by different methods, pri-
marily in order to find out the behavior of the ele-
ment dissolved in the alloy.

The measurements of the temperature depend-
ence of internal friction of the pure metals and
alloys enumerated above lead to the following
conclusions:

1. The internal friction of alloys increases
with increasing temperature (over a wide range

T g e S S A S ]

Internal friction (Q™*x 104

K 1
0 @ o 0 320 W0 98 T a0 70 500
Temperature °C

FIG. 23. Temperature dependence of internal friction in
alloy ZVKhMYuA (I), austenite steel 18-18 (Il), austenite steel
25-20 (111 ~ containing 0.3% C, sample quenched in water from
1230°C), Nimo alloy (IV), and alloy nimonik-80 (V). Frequency
of oscillation v~ 1 cps.
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of temperatures) much more slowly than the inter-
nal friction of those pure metals of which the alloys
are formed.

2. The magnitude of internal friction, particu-
larly at high temperatures, is less for the alloys
than for the pure metals.

3. At high temperatures the magnitude of in-
ternal friction turns out to be related to the stabil-
ity of the alloy at the same temperatures. In all
the investigations, the magnitude of internal fric-
tion was found to be lower for the less refractory
alloys.

4, All the binary alloys investigated exhibit at
a certain temperature one maximum or inflection
point in the curve of Q! (T). More complex al-
loys may have several such points.

5. Just as in the case of pure metals, the max-
ima of internal friction in the case of an alloy are
displaced towards higher temperatures (or else
disappear entirely) as the frequency of oscillations
of the sample is increased.

6. As a rule, at higher temperatures deformed
alloys have a greater internal friction the same
samples when previously well annealed.

IlI. THE THEORY OF INTERNAL FRICTION

Any atomic system taken out of the state of
equilibrium and left to itself must either return to
the initial state or go over into a new equilibrium
state, if several stable states correspond to the
given conditions., The transition of a system from
one equilibrium state to another is characterized,
as is well known, by a relaxation time (one or
several). If a periodic force is applied to the sys-
tem, there will be observed a dissipation of elastic
energy which depends on the frequency of the ap-
plied force. This dissipation of elastic energy of
the oscillations is determined by the totality of all
the relaxation phenomena called into play when the
atomic system is subjected to a periodic deforma-
tion, and therefore cannot as yet be determined in
general form. In the first approximation (when the
relaxation phenomena occur independently of one
another) we can assume that the total internal fric-
tion, which characterizes the dissipation of the en-
ergy of the oscillations, is determined by the sum
of the contributions made by the different relaxa-
tion phenomena.m’%’m"

Let us consider the basic relaxation phenomena
which occur in a solid when it is deformed.

1. The General Thermodynamic Theory of Internal
Friction

We consider a homogeneous isotropic solid. For
small deformations, for small temperature changes,
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and for small deviations from the equilibrium state
the stress tensor oy is determined by the follow-
ing equation:!#917

N 1. 5
o= Koy +2P“<5ik _geu"m>w‘1K (T —T,) 6

[Cia)]
s

V1

i ’ 1. ’
[sik (¢ )—jau"tn] dt (6)
Lowen

e T g, ()3, 4.

s

+=
In the case of isothermal pure shear (for example,
small torsional oscillations of a rod undergoing
relaxation) €1 = 0, AT = 0, and therefore
2n : gt
s = 2z, + 20 (e Fie, @ ar.
-1

-0

(7
If the deformation is a periodic function of the time,

(8

slfg)eimi

Sik =

and the generalized Hocke’s law can be written

O =1 2, (9)
where the complex shear modulus is given by
* __ ]
B =t e (10)

On multiplying the numerator and denominator of
the second term in the right hand side of (10) by
(1 — iwTy) we shall obtain

fon Wy

+ 1+ w22 ;1- : (11)

(071)® 1y
1+ w?tds,

ph=p+

For the dynamic modulus one usually takes the real
part of the complex modulus, i.e.,

(wo1)? 7
Bo= -+ T”F;—L?“Tl . (12)
From the last expression we obtain
- "
Poo =425, (13)
o = B+

Taking (12) and (13) into account, we obtain the
shear-modulus decrement that defines the degree
of relaxation:

A L ot Aq

o = ——————— =

o 1+ o’

(14)
where

A — Poo ™ Po

0 =
Yo

is the maximum value in the decrement of the shear

modulus. For the measure of internal friction one
usually takes®451:52:78 g ¢, which is equal to the
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ratio of the imaginary part of the complex modulus
to its real part. By taking this ratio from (11) we
obtain

Jp07y

o (15)
|+ — o1
*o

0t (w)=

Expressions (14) and (15) agree [up to a factor

Ko /Mo in the denominator of (15)] with the ex-
pressions obtained by Zener,3 where Mo denotes
the “unrelaxed’’ while py denotes the ‘“‘relaxed”’
modulus. A similar result was recently obtained
by V. T. Shmatov.23

Figure 24 shows the variation in the internal
friction Q! (w7T) and of the ratio of the dynamic
modulus By, to the unrelaxed modulus p, as
functions of the parameter w7 in the case when
Mo/ Be =0.6. It can be seen that the magnitude of
the internal friction attains a maximum (whose
value depends on Ay and on the ratio p. /uy for
the given material) at wT = Vpo/peo =~ 1, i.e., when
the frequency w of the oscillations of the sample
approximately coincides with the reciprocal value
of the relaxation time 7T for the process. The ratio
Pw /B at the point where Q~!(wT) is a maximum
has the greatest rate of variation with respect to
the parameter wT.

For wr> 107! the internal friction is insignifi-
cant, and the variation of the modulus is practically
equal to zero, i.e., the dynamic modulus is prac-
tically equal to the ‘‘unrelaxed’’ modulus p .
Consequently, in this frequency range [w > (107 y
there is practically no relaxation, and therefore
there is no appreciable dissipation of the elastic
energy of oscillations. For wTt < 107}, the dynamic
modulus is practically equal to the ‘‘relaxed’’ modu-
lus pg, while the internal friction is again very
small. In the intermediate frequency range we have
a partial relaxation of the dynamic modulus and a
considerable internal friction, which reaches a max-
imum at wT = 1.

Thus, according to the thermodynamic theory, in
the case of a homogeneous isotropic solid, an ap-
preciable dissipation of elastic energy accompany-
ing the periodic deformation occurs whenever the
reciprocal value of the relaxation time of the re-
laxation process under consideration coincides in
order of magnitude with the frequency of oscillation
of the samples. Phenomena, with one or several
relaxation times may be atomic diffusion, relaxa-
tion of magnetic flux, heat conductivity, interaction
of phonons with the conduction electrons, etc. Thus,
by varying the frequency of oscillation of the sample
from very low values (~ 1010 cps in the case of
atomic diffusion) up to very high ones (~10'° cps

POSTNIKOV

in the case of interaction of phonons with conduction
electrons) one can obtain a discrete relaxation
spectrum even for a homogeneous isotropic solid.
Real solids, as a rule, are neither homogeneous
nor isotropic. Therefore in the case of each of
these phenomena we may find for these solids not
one relaxation time, but a whole set, and in the
general case of a continuous spectrum. If several
relaxation processes are taking place in the solid
simultaneously, each of which can be characterized
by its cwn particular relaxation time 7, then the
internal friction in such a solid is defined by the

expre3810n3’4’78’93’1°3’1°4’ 137

T
)
Ao o Aien

G

The frequency dependence of the internal friction of
such a solid may have not a single maximum, but
several, or, if the relaxation times Ti are grouped
around some one mean value T__, then it may have
a single maximum which is considerably
“smeared.”’® 193104131 g 0 «‘smeared’” maxima
can be observed in the case of a curve of the tem-
perature dependence of internal friction of poly-
crystalline metals. To explain such maxima, the
idea of a ‘‘two component system’’ was intro-
duced.? 180:181,133 hig jdea consists of assuming
that the solid comprises two phases, one amorphous
and the other perfectly elastic. In such a solid the
stress relaxes with a relaxation time

Q1 (w)= (16)

T =

==

, (17)

where 7 is the coefficient of viscosity of the
amorphous phase, and p is the shear modulus of
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the elastic phase. This relaxation time will depend
on the physical nature of the amorphous region, and
also on its dimensions and shape. It may be easily
shown that if the amorphous region has a width c
and a length I, the coefficient of viscosity of this
region is related to the relaxation time by the fol-

lowing equation!®
& catation -y (18)

from which it can be seen that the relaxation time
depends on the dimensions of the amorphous re-
gion (and on its shape).

If amorphous regions are embedded into an
elastic matrix which is the base of the solid, then
each such region will relax the stress according to
its own relaxation time T7j. The behavior of such a
solid will thus be determined by the totality of all
the relaxation times 7;. This is what causes the
‘‘smearing’’ of the maxima.

Experiments show that the role of amorphous
regions can be played by slip bands or by grain
boundaries.

Finally, in the case of a continuous distribution
of relaxation constants 7, the internal friction is

given by the expression®’?’
Q' (0) = Q + d(In=), (19)
S ! %2 ws)?
1T<Po /av( )

where ¥(7) is an unknown distribution function,
and difficult to determine experimentally. It can be
found from the condition

(Sav="\ $()d(n =), (20)

where (AO)av is the experimentally-known mean
decrement in the modulus; this requires the in-
version of the integral, which introduces a con-
siderable inaccuracy into the final result.

In the case of relaxation phenomena associated
with the diffusion displacement of atoms in the
stress field, the relaxation time depends on the
femperature, as is shown by numerous experi-
ments, in accordance with the following law

S @1)

where H is the heat of activation of the process
under investigation. Since the internal friction

Q! depends on the frequency and on the relaxa-
tion time through the parameter wT, we may
leave the frequency w unchanged, and vary the
relaxation time 7 by varying the temperature:

at a certain temperature T we obtain the equality
wT = 1 at which we observe the maximum internal

friction due to the existence of the relaxation phe-
nomenon under consideration. Thus it becomes
possible to understand why at a certain temperature
(for a given frequency w) a maximum appears on
the curve of the temperature dependence of internal
friction. It also becomes possible to understand the
shift of the maximum as the frequency of oscillation
of the sample is increased.

The heat of activation H is determined in the
following manner. Suppose that we have two curves
of the dependence of internal friction on the tem-
perature, one obtained at a constant frequency »y
and the other at a constant frequency v,. If we
select on these two curves two points corresponding
to the maxima of internal friction, this will mean
that

Vit = YT
or, according to relation (21),

v ellRTy — «_pHl/RT2
v, € P=get i,

By taking logarithms of both sides of the above
equation we obtain, after a simple rearrangement,

"= R%_l_ffﬁ I 22)

As we shall see below, everything said with re-
spect to the determination of H applies also to
the case when the relaxation process is character-
ized not by a single relaxation time, but by a whole
set of relaxation times grouped around some mean
value T,y. In this case we obtain H,, for the
complex process under consideration. The quan-
tity Ay is determined experimentally?®®2% or is
calculated from expression (15) in terms of known
values of T, peo/H o @, and Qr—rjlax- In certain
cases, as we shall see below, 7 and A; can be
estimated theoretically.

We now consider individual processes which
give rise to internal friction, and start with proc-
esses whose relaxation times at room temperature
are very large (of the order of 10! sec and
greater).

2. Internal Friction Due to the Ordering of Atoms
under Stress

(a) Substitution Alloys. In annealed substitution
solutions not undergoing ordering, the dissolved
atoms are distributed isotropically in the lattice of
the solvent. If a stress is applied to such an alloy,
a certain amount of ordering in the distribution of
the dissolved atoms is introduced.* The relaxation
time T associated with ordering under stress must
be simply related to the mean frequency of atomic
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transitions, since the mechanism of ordering is the
same as in the case of volume diffusion. Therefore
the relaxation time of the ordering process may be

estimated by means of the following formula®?

5 = g eHIRT

23)

where H is the activation energy for diffusion.
A noticeable maximum of internal friction in such
solutions, due to a change of order in the distribu-
tion of the dissolved atoms under the influence of
an alternating stress, can be observed only at
comparatively high concentrations (of the order of
10 atomic per cent and higher) of the dissolved
component and at comparatively high temperatures,
when the reciprocal of the relaxation time 7 1 s
comparable with the frequency of variation of the
applied stress. Ordinarily low-frequency methods
(v ~ 1 cycle/sec) are used in such cases. The
internal friction in substitution alloys due to order-
ing under stress was first observed by Zener''¢ in
the case of single crystals of a-brass at ~600 cps.
Later K& and Nowick!31:182:238 onhfirmed the exist-
ence of such a peak in @-brass and in the Ag-Zn ~
alloy at lower frequencies. In a detailed paper?38
Nowick studied the dependence of the internal
friction of the Ag-Zn alloys on composition and on
temperature.

Zener?3 gave an explanation of the above effect,
based on the violation of cubic symmetry by a
pair of different atoms forming the solid solution.
Under the action of the applied stress, these pairs
of atoms take up a preferred orientation. The tend-
ency of a lattice containing such pairs to go over to
a new equilibrium state is what gives rise to the
appearance of internal friction when it is periodic-
ally deformed. The degree of relaxation in this

case can be determined by means of the formula??
g: \2 1
AO = nET a_np) m-n ’ (24)

where n is the number of atom pairs per unit vol-
ume, ET is the ‘‘isothermal’’ modulus of elastic-
ity, € is the tension strain, and

e~ WIRT

ny="n 1 4 ewlkT

is the number of pairs oriented along the new di-

rection of p under the action of the applied stress.

If in the absence of stresses a certain degree of
long range order exists in the solid solution, then
the applied stress will give rise to a change in the
degree of ordering. Relaxation processes of such
type were first considered by V. S. Gorskiil® 8 jn
the case of the Cu-Au alloy.

The degree of relaxation for alloys undergoing
ordering may be approximately defined® by

%=Es (52 ) (552 )
where Eg is the ‘‘adiabatic’’ modulus of elasticity,
Sc is the entropy of displacement, T, is the tem-
perature equal to the derivative (9H/8S;) o &
constant stress o, H is the heat content per unit
volume, and € is the tension strain, The relaxa-
tion time is estimated by means of formula (23) .

In constrast to the case discussed above in which
the solid solution is not ordered in the absence of
stresses, we can obtain here a characteristic peak
of internal friction considered only as a function of
frequency (at T = const), but not as a function of
temperature (for w = const), because the degree of
ordering in the absence of stresses is itself a
function of the temperature. It is therefore diffi-
cult to explain the results of experiments in which
a dependence of internal friction on the tempera-
ture has been obtained 185187 1, thege experi-
ments, carried out using alloys undergoing order-
ing, it was shown that the internal friction increases
appreciably near the Curie point for long-range
order and continues to grow as we go to the tem-
perature of disordering, reaching very large values.
The explanation of relaxation phenomena in substi-
tution alloys in terms of the reorientation of pairs
of dissolved atoms has met objections on the part
of Nowick? who, however, did not advance any seri-
ous arguments against the admissibility of such an
explanation. In essence all his remarks reduced to
certain improvements of the relaxation mechanism
proposed by Zener. According to Nowick?* the re-
laxation time is equal to

(25)

T = aFA‘,

(26)

where T', is the mean frequency of atomic transi-

tions of the less mobile atoms of type A in the solu-

tion A-B, and « is a coefficient of proportionality.
The value of T'p depends on the temperature ac-
cording to the formula

T =Tye-HIET, @7)

where H is the activation energy of volume diffu-
sion. This energe depends strongly on the concen-
tration of atoms of type A in the solution,?,123,128
The degree of relaxation 4, was not determined
by Nowick, but it can be estimated approximately
by using formula (30).

(b) Interstitial Solutions. In an interstitial solid
solution free of stress the distribution of dissolved
atoms is isotropic with respect to each atom of the
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basic lattice. This means that the nearest dissolved
atom has the same probability of being situated
along any one of the-possible crystallographic di-
rections. For example, in a2 body-centered cubic
lattice the interstitial atoms are mostly found not
at points with the greatest free volume, but in posi~
tions of the type (%, 0, 0) (i.e., in the middle of the
edges of the cell) or in the centers of the faces

(*, Y%, 0) which are equivalent to the former po-
sitions. The interstitial atoms situated at such
points deform the lattice, giving rise to deforma-
tions having tetragonal symmetry. The greatest
deformations occur in the direction between two
nearest atoms of the solvent, i.e., along one of the
principal axes (1, 0, 0). In the absence of stresses
all three types of interstitial positions are occu-
pied in a disordered way, and therefore each type
of these interstitial positions is associated with
one-third the total number of interstitial atoms.

If tension stress is applied, for example, along the
z axis, the isotropic distribution of atoms will be
violated; the equilibrium distribution now will be
such that the greater number of the dissolved atoms
is found in positions with the tetragonal axis z.

" The transition to-the new equilibrium situation
is characterized by a certain relaxation time T
comparable with the lifetime of the interstitial atom
in the interstitial position:4’181

) LeH/RT
e s

28)

where v, is the frequency of oscillation of the in-
terstitial atom in the interstitial position, H is
the heat of activation of a mol of interstitial atoms,
which depends on the type of interstitial position
and on the nature of both the interstitial atoms and
the atoms of the solvent.

The following expression has been proposed4 for
the degree of relaxation of this process

E \n

3= g Eoyy -

1]

(29)

ol e

Here A =08¢/3p; p is an internal parameter, equal
in our case to ny — n/3, n is the total number of
interstitial atoms per unit volume, n, is the num-
ber of atoms in position z, k is the Boltzmann
constant, E_, is the unrelaxed modulus of elastic-
ity, and T is the absolute temperature. The in-
ternal friction due to the rearrangement of inter-
stitial atoms under stress was first observed?3?
and explained"®® in the case of a-iron. Later the
same phenomenon was observed also in the case

of other solid interstitial solutions having a cubic
body centered lattice similar to solutions in
a-iron. Thus, Ké investigated relaxation effects

associated with the presence of carbon, oxygen,111

and nitrogen112 in tantalum. The behavior of carbon
in niobium has been investigated by Wert. Com-
paratively recently, papers have appeared on the
study of relaxation phenomena associated with the
behavior of interstitial atoms in face centered cubic
lattices,105,106,141-144,241

In considering relaxation phenomena in solid
solutions we have assumed that.the dissolved atoms
form a homogeneous solid solution at the tempera-
ture at which the investigations were made. How-
ever, certain metals that are completely soluble in
each other at high temperatures no longer mix be-
low a certain critical temperature. In such a case
the degree of relaxation, which is defined in the
general case by means of 3:83/184

_ 0:N\2  / 0%F
AO—EQQ<5E/JU. »50—2>c’

(Ew is the unrelaxed modulus of elasticity, c¢ is
the atomic concentration of the dissolved component,
and F is the free energy per unit volume) may be
either anomalously small or very large, depending
on the extent of the region of solubility, and on the
temperature at which the measurement is made.

The curvature (82F/<':)c2 )g 1is always anoma-
lously large in those phases which have a narrow
range of solubility. Consequently, in such phases
the relaxation effects associated with atomic diffu-
sion under stress are anomalously small. Con-
versely, in the case of a wide range of solubility
the curvature at a certain value of concentration,
particularly near the critical temperature, is close
to zero, and the degree of relaxation is anoma-
lously large.

(30)

3. Internal Friction Due to Ferromagnetism

Because of the well-known connection between
magnetic and mechanical phenomena, all types of
magnetic relaxation lead to additional appreciable
dissipation of elastic energy of oscillation. It is
customary!™17 to divide “magnetic’’ losses into:

(1) losses due to macroscopic eddy currents;

(2) losses due to microscopic eddy currents;

(3) losses associated with magnetomechanical
hysteresis.

Losses of the first type are due to the relaxation
of magnetic flux caused by the appearance of eddy
currents produced by the change in the induction in
the sample as a whole as a result of its periodic
deformation. The relaxation time is determined in
this case by the following formula®

T

le

5. (31)
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where d is the transverse dimension of the sam-
ple, D is the coefficient of magnetic diffusion

given by the following expression®

108

D= 0. 4nky

(32)
k is the specific electric conductivity, and p is
the magnetic permeability.

The degree of relaxation due to the diffusion of
magnetic flux is determined by the following ex-
pression3

A, = brp 1 12, (33)

where A = 9¢/9H is the tension strain produced
by a change in the intensity of the field. As Becker
and D’cSring”'7 have shown, the degree of relaxation
A¢ has its maximum value at a magnetization that
is close in magnitude to the remanent magnetiza-
tion; in this case
EOO
(3g)max == 0.3 %, R (34)
where Ag is the tension strain, which corresponds
to a change in magnetization from zero to satura-
tion, while oj is a measure of the remaining mi-
crostresses which may be due to previous plastic
deformations or to the presence of impurity atoms.
Losses of the second kind are due to the fact that
each domain reacts to the deformation produced by
the oscillation of the sample, and consequently local
variations of magnetic flux and local eddy currents.
The third type of losses arises when the defor-
mations produce an irreversible displacement of
domain boundaries. The relaxation times have not
been determined for the second and third types of
losses. For the second type of losses it has been
found that!?1-178

C1 42.6 1272252
O = (35)
where [ is the periodicity of the distribution of
internal stresses o0y, Jg is the limiting magneti-
zation, v is the oscillation frequency, o is the

applied stress, and p is the density. In the case

of magnetomechanical hystere sis'®
4bsE,
0t =—, (36)
where
1
p = GEN

d3

The losses of elastic energy accompanying os~
cillations of a ferromagnetic rod may be divided
into their component parts fairly simply. Indeed,

the first type of losses is excluded if the material
is in a demagnetized state. In order to separate
losses of the second and the third type one can
make use of their different dependence on the os-
cillation frequency.!™

4. Internal Friction Due to Heat Conductivity

Thermal conductivity gives rise the best known
relaxation mechanism in metals and alloys, first
investigated in detail by Zener.? According to
Zener, the degree of relaxation for a homogeneous
isotropic solid is given by

A 37

where Eg is the ‘‘adiabatic’” modulus of elasticity,
T is the absolute temperature, « is the coefficient
of linear thermal expansion, c¢,, is the specific heat
at constant pressure, and p is the density.

The relaxation time for attaining temperature
equilibrium is given by the formula

©

d

l

where d is the distance (usually the size of the
sample), comparable in magnitude with the distance
that must be traversed by the heat flux in order to
establish temperature equilibrium, and x is the
coefficient of temperature conductivity given by

the formula

*
X_ﬂ‘_v

fep

(39)

where Kk is the coefficient of heat conductivity,
Cp and p have the same meaning as before.
Zener has also investigated® the case when the
sample is not isotropic microscopically, i.e.,
when it consists of separate randomly-oriented
individual crystallites whose average linear
dimension is d. In this case a macroscopically
homogeneous stress applied to the sample will
result in a microscopic inhomogeneity of the
stress from one crystal to the next. This will
lead to a change of temperature in the crystals
and will consequently (owing to the temperature
gradient in the grains) produce thermal fluxes.
The relaxation time will also be given in this case
by expression (38), if we take d to mean the av-
erage linear dimension of the grain. The degree
of relaxation may be estimated!™ by means of for-
mula (37), multiplied by the correction factor

R=ED T (40)

)

which determines the relative value of the mean




TEMPERATURE DEPENDENCE OF INTERNAL FRICTION OF METALS 43

square deviation of the modulus of elasticity of
neighboring crystallites. The factor R shows that
the degree of relaxation (and the maximum of in-
ternal friction) will increase as the elastic ani-
sotropy of individual crystallites increases.

In going over to anisotropic solids Zener, as
was first correctly noted by Isakovich,2* makes
a large simplification by taking into account only
the equalization of temperatures within the bound-
aries of each individual crystallite and not taking
into account heat exchange between them. Such a
simplification leads to a change in the nature of the
dependence of internal friction on frequency.

From problems of damping of oscillations of
finite bodies investigated by Zener we can go over
to an investigation of the absorption of sound in an
unbounded medium. The physical problems asso-
ciated with this, and the asymptotic estimates of
the damping coefficient for sound in anisotropic
unbounded media have been investigated by Landau
and Lifshitz,!™ and later by Lessen?® in a form
which is more compact and tractable than Zener’s
treatment.

In conclusion we note that internal friction due
to thermal conductivity is as a rule of small mag-~
nitude, since the degree of relaxation Ag, for ex-
ample, in the case of a-brass'™ amounts to only
0.0036, while relaxation due to atomic diffusion in
the case of the same alloy is ~0.5.

5. Internal Friction Due to the Interaction of the

Acoustic Field with Phonons and Conduction
Electrons

In the absence of an acoustic field the numbers
of phonons and of electrons in any arbitrary state
are determined respectively by the Planck and the
Fermi distribution functions. When an acoustic
field is imposed, for example, by exciting free
vibrations of the sample, the distribution functions
are altered because of the interaction of the sound
waves with the phonons and the electrons. As a
result of such interactions, the energy of acoustic
vibrations is gradually distributed among all the
phonons and all the electrons. The amount of the
energy of sound vibrations that is dissipated de-
pends above all on the ratio of the wavelength of
sound to the mean free path of the phonons or for
electrons.1%8

The scattering of sound by phonons when the
wavelength of sound is considerably greater than
the phonon mean free path was first investigated in
references 188 to 191, For experiments carried
out at temperatures above the characteristic tem-
perature, the internal friction turned out to be
proportional to the frequency of sound vibrations

v and to the temperature T. The second part of
reference 190 treats the scattering of sound due to
the interaction not only with phonons but also with”
conduction electrons. It was under the same con-
ditions found that Q'1~ vT. If the temperature.at
which the experiment is carried out is T < 8,
then Q! ~ v/T5,

Comparsatively recently the question of the dis-
sipation of energy of sound vibrations as a result
of the interaction with conduction electrons, which
are assumed to be free, has been again considered
in reference 253, For the case of longitudinal
waves it was found that

= SN
Here N is the number of electrons per unit vol-
ume, m is the electron mass, p is the density of
the metal, w is the circular frequency of the
sound, k is the wave number, while T and ! are
the mean collision time and the mean free path for
the electron, respectively. In the case of trans-
verse waves the magnitude of internal friction is
given by

_ 2Nm1—g
=" (42)
where
. " K22 -1
g=3 <2k 12 e =T > . (43)

In the case of low frequencies, when A >> [ and
kl « 1, we obtain from (41) and (42):

8Nmuge 44
Ort = 159L) ’ (44)

Q_INZvaF,m;
T Sewr (45)

where Vg4 is the electron velocity, while v; and
vy are the velocities of the longitudinal and the
transverse waves respectively.

In the case of high frequencies, when A = [

and k]l = 1,

_ 2nNmo,
Q' = “69'3“’ (46)
and
-1, 16Nme
Qe 5ot (€5

The last condition is fulfilled in the region of ultra-
high frequencies (v ~10% cps) at very low tem-
peratures, when the electron mean free path be-
comes comparatively large. Experimental
work?0:251 5p the dissipation of ultrasound in pure
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metals at very low temperatures (Figs. 2 and 3)

is in satisfactory agreement with the theory. How-
ever, Pippard’s theory?® does not explain the sharp
falling off in the absorption sound when the metal
goes over into the superconducting state (Fig. 2,
curve V). An attempt to treat this interesting
problem was made by Mason,2%

At very high frequencies (¥ ~ 10% cps) the
interaction of phonons with conduction electrons
plays an essential role. This interaction has been
taken into account by Paranjape,'® who found for
the case of longitudinal waves:

2

1 —
o4 B §vln2n§e2 ds |
Q"= 6 k. oT’

here v is the velocity of sound, n is the number
of electrons in an atom, ny is the number of atoms
per unit volume, e is the electronic charge, k is
the wave number, and o is the specific electric

resistance. In this case, too, the dissipation of en-
ergy turns out not to depend on the frequency. It is
not possible to check this theory since experiments
at such frequencies have not yet been performed.

(48)

6. Internal Friction Due fo the Migration of Atoms
in a Stress Field

An essential role may also be played by irre-
versible processes other than relaxation. Some of
these have been considered in the preceding sec-
tion, In Secs. 6 and 7 we shall extend our inves-
tigation of the dissipation of energy due to various
irreversible processes.

As is well known, the crystal lattice of a real
crystal may possess various types of imperfec-
tions (defects). These imperfections appear either
during crystallization from a melt, or as the re-
sult of a preceding plastic deformation, and also of
thermal motion of atoms.!® The presence of de-
fects produces continuous displacements of atoms
in the crystalline lattice. Each transition of an
atom is associated with overcoming a certain po-
tential barrier u;, whose magnitude depends on
the type of the transition and on the state of the
sample as a whole. The probabilities o} individual
transitions are proportional'® to e~Ui

On considering various transitions of atoms
within the lattice of the sample we find!®? that the
total number of different transitions per unit time

per unit volume is
w = woe'“”‘T.

(49)

In an unstressed state such transitions occur at
random and in such a way that the mean thermal

energy of the crystal at constant temperature re-
mains constant. This means that there is no
spontaneous dissipation of energy by a crystal
which is in thermal equilibrium with the sur-
roundings.

In a deformed sample each volume element of
the sample will experience a shearing stress
0 (t) (for example, in torsional oscillations). In
this case the number of irreversible transitions
leading to the dissipation of elastic energy will be
determined by the difference between the total num-
ber of transitions in the presence of the stress
field and the number of transitions which are
caused by thermal fluctuations in the absence of
the field,

Therefore, the number of irreversible transi-~
tions per unit time due to the presence of the stress
field is equal to

” u Bﬁ B u
Aw=w (TT" W)‘w (’w‘)

where B9 is the average change in the potential
barrier u caused by the shearing stress 6. Since
these stresses are small we have B6 <« kT, and
the parameter 80 /kT will be small compared with
unity. On expanding w” into a Taylor’s series in
powers of the small parameter B6/kT, and on re-
stricting ourselves to first-order terms, we obtain

(50)

bwez B wye-uinr, (51)

Introducing the mean ‘‘activation’’ energy H per
mole, we obtain

Aw o= %woe‘H/RT. (52)
The above expression for Aw may be easily related
to the magnitude of the internal friction Q! for
this process., Indeed, the relative energy AU/U
dissipated per cycle of oscillations is equal to
(a2 - a%,1) /af,1 where a, and ap,; are two
successive amplitudes separated by a time interval
equal to one period. The energy dissipated per unit
time will be larger by a factor v. Assuming that
this energy is proportional to the number of irre-
versible transitions Aw, we obtain

a}—ad.

=aAw.
n
an
Ing—
On taking account of the fact that Q7! =___r_1_ﬂ_,_
T

we obtain

A == (1 — e=2°7),

Since Q'1 < 0.1, we can expand the exponential
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within the brackets of the preceding expression into
a series in powers of 27 Q™! and restrict our-
selves to the first two terms of the expansion.
Taking (52) into account, we then obtain?3.137

Q1= f‘_ﬁ%‘% e—HIRT.
(0]

(83)

From this expression for Q—1 it can be seen that
internal friction is inversely proportional to the
frequency w and directly proportional to the av-
erage value of the external shearing stress 0.
Moreover, internal friction will decrease as the
‘‘activation energy’’ H, characterizing the pos-
sibility of various types of atomic transitions within
the lattice, increases. The internal friction deter-
mined by (563) increases with increasing tempera-
ture, reaching a maximum at a temperature

H
T‘m = R (54)
whose magnitude depends on the value of H.

7. Internal Friction Due to Static Hysteresis

In contrast to dynamic hysteresis53 which occurs
in an oscillating sample when the deformation is not
a single valued function of the stress, hysteresis
can also occur in several solids when they are
statically stressed. Such a possibility arises only
in that case when there remains after the removal
of the stress a constant remanent deformation that
can be reduced to zero only by applying a stress in
the opposite direction. When the stress is varied
between the limits =0 the result is a static hys-
teresis loop whose area characterizes the energy
losses (similar to the magnetomechanical hysteresis
discussed earlier).

Static hysteresis is possible principally *® in the
case of stresses that lead to plastic deformation.
Therefore the latter are of importance in the study
of fatigue and are not very important in the study of
internal friction at small amplitudes., However, it
has been shown?4197 comparatively recently that the
damping of oscillations in single crystals at defor-
mations on the order of 10'7, a damping that can be
ascribed to the motion of dislocations, is also ac-
companied by static hysteresis. Thus, static hys-
teresis is possible also in the case of very small
amplitudes as a result of a particular kind of atomic
rearrangement (or of magnetic rearrangement in
the case of magnetoelastic hysteresis). The speed
of such rearrangements is of the order of the speed
of sound, and they can therefore be considered to be
practically ‘‘instantaneocus’’ in the case of low-fre~
quency measurements of internal friction. In con-

196

trast to the relaxation type of internal friction,
static hysteresis shows a noticeable amplitude de-
pendence even at small amplitudes.

In the case of static hysteresis the internal fric-
tion is given by the following formula%%

O =22 (A=) + F (4 —a) oy + 3 (4 —a) o+ |,
(55)

where E_ is the unrelaxed modulus of elasticity,
Ay, Ay, Ay are the coefficients in the expansion of
de”/ds = F(0) (as the load is applied) into a power
series, ag, a4, ag are the coefficients in the expan-
sion of de” /do =f(0) (as the load is removed)
into a power series; €” is the inelastic part of the
total deformation €; o =0 cos wt is the periodic-
ally varying stress which appears in the sample
when the load is applied, and o is the amplitude
of this stress.

In the case of a loop which has the form of a
parallelogram in which F and f are constant,
the magnitude of the internal friction Q™! will not
depend on the stress amplitude o¢j. In general, if
there are no grounds for assuming such a shape
for the loop, the existence of static hysteresis is
closely related to the amplitude-dependent dissipa-
tion of energy even at very small amplitudes. This
characteristic amplitude dependence of Q1
together with its independence of the frequency in
the case of static hysteresis, makes it possible to
distinguish relaxation phenomena from phenomena
belonging to this class.

8. Internal Friction and Dislocations

The internal friction of a well annealed material
is usually of the order 1075, although its magnitude
depends on the purity of the metal and on the am-
plitude of the oscillations, However, this minimum
of internal friction also depends strongly on the ex-
perimental conditions, particularly in the case of
single crystals. In references 42, 199, and 200 it
was reported that internal friction increases
strongly as a result of weak shocks, and even as a
result of different manipulations of the crystal.
Moreover, single crystals prepared from the same
material and by the same method differ sometimes
by more than a factor ten with respect to their in-
ternal friction.?"»22 Even different parts of the
same crystal have unequal internal friction.!¥T An
even greater scattering of the values of internal
friction is observed in the case of materials that
had been previously deformed 24,32,38,42,85,%,54,96, 98,
100,101,108,114,118,128,199,200,202-225

The amplitude dependence of internal friction
observed in the case of annealed materials and of
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‘‘cold worked’’ materials is difficult to explain
within the framework of the relaxation theory of
internal friction. In connection with this, attempts
have been made recently to utilize the theory of
dislocations to explain the phenomena mentioned
above,24,80,84,147,198,214,216,222,22T-232 Tpo dislocation
theory of internal friction is based on Koehler’s
model.?® According to this model the dissipation
of energy is due to the oscillations under the in-
fluence of a periodic external force of the disloca-
tion loop associated with impurities.

It is assumed that the pure single crystal con-
tains a network of dislocations prior to the defor-
mation. When an external stress is applied a
deformation due to dislocations takes place in
addition to the elastic deformation, and is called
a deformation dislocation. The qualitative be-~
havior of a dislocation under the influence of an
increasing external force is shown®3? in Fig. 25,
In the case of zero stress the length Ly of the
dislocation is linked by impurity particles
(Fig. 25, A). For very small stresses (B) the
loops L, sag and continue to sag until the dis-
ruptive stress has been reached (C-D). As the
stress is increased further the total length of the
dislocation increases (D-F), until finally a closed
dislocation loop (G) is formed. Because of this
process, the dislocation deformation must be ir-
reversible and can therefore be classed as a plastic
deformation,

A consistent examination of this mechanism
leads to the conclusion that losses may be of two
types: those that depend on the frequency of os-
cillation of the sample, and those that do not, In
case of losses of the first type the internal fric-
tion can be represented by the formula?%?

1 Mg AL Q
17 2D Q2 1
(19384 Dz

where A is the total length of the moving disloca-
tion lines, L is the length of the dislocation loop,

(56)

2
A 8ua

0= 7% !
¢ is the shear modulus, a is Burgers’ vector,

©B g
A 2= wy ?

D=

wy is the resonance frequency, and w is the fre-
quency of oscillation of the sample. The quantities
A, B, and C are the coefficients in the equation of
motion of bound dislocations:

%
ay?

9%

A e

3
+BE_

= ag,

Low level stress field

High level stress field

£ F 4

~— Stress

FIG. 25. Schematic diagram of the formation of dislocation
loops in a stress field.

where £ (x, y,t) is the displacement of an element
of the dislocation loop from its equilibrium position,
y is the coordinate of this element; o is the
stress.

In the case of losses of the second type the in-
ternal friction is given by

2 r
G- (4[5 -1])
where I =Lpo/L,, Ly is the length of the dislo-
cation, ¢ = 0y cos (wt — kx) is the stress, and the
remaining quantities have their previous meaning.
The theory presented briefly above does not ap-
ply to high-temperature regions. The first attempt
to solve the problem of high-temperature internal
friction from the point of view of dislocation theory
was made by Weertman.?® His calculation is based
on the results of the theory of microcreep?* % and
of the theory of quenching.244 Assuming that a low
amplitude stress causes the dislocations to move in
the glide plane Weertman obtains for the internal
friction an approximate equation of the following
form:

(87)

0t = Qe mn,

where the factor in front of the exponential is given
by

(58)

- 3apbSNv,
Q= ; 59
0 o413 kPt 52/3 <1n %)213 (59)
and the heat of activation is given by
1 2 2
H= 42/33 b2t (In - )P, (60)
™
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The last two expressions contain the following
quantities: o is a constant equal to Y%g, p is the
shear modulus, b is the distance between nearest
neighboring atoms, N is the density of disloca-
tions, Vg is the frequency of oscillation of a dis-
location line in its potential well, v is the fre-
quency of the oscillation of the sample, ¢ is the
impurity concentration, and g = (1/a) (da/de)
where a is the lattice constant of the alloy. A
displacement of a dislocation in the stress field
created by the external periodic force may take
place not only in the glide plane.

By examining other possibilities for the dis-
placement of dislocations in a stress field, Weert-
man obtains another expression for the magnitude
of internal friction at high temperatures:

H*-ST
o1 apbSEN 5

2 T 2mvkT € !

(61)

where V;)k is the frequency of oscillation of a va-
cancy, H* is the activation energy for self diffu-
sion, and S is the activation entropy for self
diffusion. The other symbols remain the same.

The second mechanism proposed by Weertman
can also be applied to low-frequency oscillations,
but again only for small amplitudes, ~ 1077, It is
well known that all the low frequency methods
(v ~1 cps) utilize oscillation amplitudes ~ 10-5
and greater, which excludes the possibility of ap-
plying Weertman’s theory to the numerous experi-
mental results obtained by these methods.

A comparison of the theory with the experimental
results obtained by high-frequency methods leads,
for example in the case of aluminum, to the follow-
ing results.

The theory yields H =11,000 cal/g at., Ay =270;
while calculations based on two points of the ex-
perimental curve give H =12,900 cal/g at.,

Ay =100, The agreement between theory and ex-
periment in this case is thus quite satisfactory.
The degree of success in explaining internal
friction by means of the theory of dislocations has
so far not been very great, because internal fric-
tion of deformed samples is a very complicated
phenomenon that depends on many factors: on the
degree and nature of preceding deformation, on the
time of aging, on the presence of impurities in the
sample, on the frequency of oscillations, on the
temperature at which measurements are carried
out, etc. To attain a greater degree of success it
is necessary to carry out systematic investigations,
taking into account many parameters that affect in-
ternal friction, particularly at low frequencies,
when static hysteresis is observed.

IV. APPLICATION OF THE THEORY TO THE
EXPLANATION OF THE TEMPERATURE
DEPENDENCE OF INTERNAL FRICTION
OF METALS AND ALLOYS

From a survey of experimental data it is easily
seen that the problem of temperature dependence of
internal friction has been studied mostly at temper-
atures above 0°C and largely by low-frequency
methods,

We shall therefore utilize the theoretical picture
of internal friction developed above to explain the
temperature dependence Q1 (T) of pure metals
and alloys in the case of low-frequency oscillations
(v ~1 cps). Of the pure metals we shall select for
this purpose aluminum, the metal most investigated
in all respects, and of the alloys we shall take, for
example, Ni-Fe. Earlier we have said that if the
total internal friction does not depend on the time
and is small (Q™! <0.1), then it can be expressed
as the sum of contributions made by the different
dissipative mechanisms acting independently of one
another. In computing the total value of internal
friction it is necessary to take into account the con-
stant contribution due to the various losses in the
apparatus. This part of the losses depends on the
construction of the apparatus and on the method of
measurement, However, it does not exceed the
value ~ 1x 1074, Thus

n

Q=0+ 0,

i=1
where Q{" are the contributions made by the
various dissipation mechanisms. Let us make an
estimate of the magnitude of the various contribu-
tions for the case of low frequency torsional oscil-
lations of an aluminum sample. In references 93
and 137 such an estimate has been made for various
pure metals. In particular, in the case of a single
crystal of pure aluminum (99.98% Al), an estimate
of the contributions of the various dissipative mech-
anisms discussed above yields temperature depend-
ence of internal friction in the form

(62)

Q3 =1.1-10"44.5.107%¢, (63)

where t is the temperature in °C at which the
measurements were made.

In Fig. 26 this quantity is represented by the
straight line III which coincides with the experi-
metal curve I for the internal friction of a single
crystal aluminum sample only up to 240°C. The
reason for the discrepancy, as we shall see later,
is the imperfection of real single crystals. From
the same diagram it can also be seen that the in-
ternal friction of polycrystalline aluminum (II)
differs from the internal friction of single-crystal
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aluminum (I). The appearance of a maximum on
curve II may be explained on the basis of the con-
cept of a ‘‘two-component system’’ discussed
earlier. In the present case one of the components
will be the grain (assumed to be elastic), while the
other component will be the grain boundary (as-
sumed to be viscous). When such a system under-
goes periodic deformation, displacements along

the grain boundaries take place and lead to dissi~
pation of energy. This mechanism in the case of
aluminum was discussed in detail for the first time
in reference 15 and again in references 93, 137, and
224. Using the known values of Ay and T for
polycrystalline aluminum, an evaluation was made,
with the aid of formula (15), of the contribution to
the internal friction due to the shift in the grain
boundaries, on the assumption that this mechanism
can be described by one relaxation time 7 and one
heat of activation H.'The calculations gave the
curve IV shown in Fig. 26, which differs strongly
from the experimental curve II. This discrepancy
can be partially eliminated by assuming that a
displacement along the grain boundaries corres-
ponds to a spectrum of relaxation times and to a
set of heats of activation with the maximum density
in the neighborhood of a certain mean value. By
making a suitable choice of 7; in the neighborhood
of Tays Of (Moo /Mo)ays and of H__ it is possible
to obtain the curve V. This curve taken together
with the straight line III still does not give a com-
plete description of the experimental curve II,
particularly at high temperatures. But at high
temperatures the dissipation mechanism associated
with migration of atoms in the stress field becomes
important. Its contribution is described by for-
mula (57). In references 93 and 137 the following
value for this contribution was obtained

8,900
1.1:;;104 o~RT

(64)

-1

1 1
which is shown in Fig. 26 by the curve VI, Now the
sum of all the contributions given by the curve VII
agrees well with the experimental curve II.
Returning to the internal friction of single-
crystal aluminum, we can explain the discrepancy
between the experimental curve of internal friction
(I) with the straight line for the internal friction
(III) by the fact that the dissipation of energy due
to various transitions of atoms in the lattice in the
stress field takes place also in the single-crystal
state of the material. The internal friction in the
case of this mechanism is given by93'137

13,800
72108 S

07 =112 (65)
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FIG. 26. Temperature dependence of internal friction in

aluminum: I and II are experimental curves; III — VII are theo-
retical curves.

By comparing the quantity Q! for polycrystalline
aluminum [formula (64)] with the value of internal
friction Q' for single-crystal aluminum [for-
mula (65)], we see that the parameter H is con-
siderably larger for the single-crystal state of
aluminum than for the polycrystalline state. Such
a result does not contradict the modern concept of
the single-crystal state of the metal as being a
more perfect state (in the sense of the degree of
order in the position of the particles), than the
polycrystalline state. A similar satisfactory result
was obtained® ¥ for the internal friction Q'1 (T)
of copper, nickel, iron, and cobalt (at high temper-
atures, since at intermediate temperatures QE;

is not constant because of the allotropic transitions
COB = C()a ). )

In our earlier considerations of the temperature
dependence of internal friction of alloys we arrived
at the conclusion that, firstly, the internal friction
of alloys is considerably smaller than the internal
friction of pure metals of which the alloy is com-
posed almost over the whole range of temperatures;
secondly, the maximum in the internal friction due
to viscous flow along grain boundaries often degen-
erates into an inflection point as the concentration
of dissolved atoms is increased; thirdly, in the low
temperature region there appear maxima which are
absent in the case of pure metals. Since the na-
ture of the internal friction of alloys changes grad-
ually as the concentration of the dissolved atoms
increases,93:104:137 g6 can say that the internal
friction of alloys can also be represented (with a
few exceptions®®) as a sum of contributions Q.

By analyzing the different contributions Qi'1 ,
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FIG. 27. Temperature dependence of internal friction in
nickel (I) and in a solid solution of iron (2.6% Fe) in nickel.

I and II are experimental curves; IIl — VI ate theoretical curves.

for example, for Ni-Fe!®? in a manner similar to
that employed in the case of pure metals, and by
representing the results in graphical form, we ob-
tain Fig, 27. In this diagram curve I represents
the temperature dependence of internal friction of
pure nickel (99.99% Ni), and curve II represents
the temperature dependence of internal friction of
a solid solution of iron in nickel. The straight
line III represents the internal friction associated
with all the processes that give a linear dependence
of Q! on the temperature:

Qi1 =8.5-10"4 42271075 (66)

Curve IV represents that part of the internal fric-
tion which is due to the viscous slipping along the
grain boundaries, and which is determined by for-
mula (16); the mean heat of activation for such a
process is ~ 60,000 cal/mole. Curve V repre-
sents the contribution due to the migration of atoms
in the stress field; its value is
12,000
R

Q\-/1= 28,2-103 ¢  RT (67)

T

Finally, curve VI gives the sum of all these contri-
butions and, as can be seen, it quite satisfactorily
reproduces the shape of the experimental curve II.
For pure nickel the mean heat of activation of the
process of relaxation of stress along the grain
boundaries is 63,000 cal/mole, while the value of
the maximum for this contribution is ~ 165 x 1074,
The contribution due to the migration of atoms is
given by

_ 276100~

Qi = =F— . (68)

On intercomparing the results obtained above for
the internal friction of pure nickel and of the solid
solution of iron in nickel (similar results have also
been obtained for many other metals and alloysm")
we see that a reduction in the internal friction of
alloys in comparison with pure metals is due to the
decrease, in the first instance, of the magnitude of
the contributions associated with viscous slipping
along grain boundaries, and with the migration of
atoms in the stress field (through an increase in
the average ‘‘activation’’ energy H for the various
types of transitions of the atoms in the alloy
lattice).

The low temperature maxima occurring in the
case of alloys and of certain not quite pure metals
(iron, tantalum, and others), are associated with
the presence of foreign atoms (such as hydrogen,
carbon, nitrogen, boron, oxygen, etc.), and are due
primarily to the preferential distribution of the
atoms in the stress field,!52-166

CONC LUSION

The material presented above enables us to say
that the physical picture of the dissipation of elastic
energy in oscillating samples is sufficiently clear.
The existing theories describe (qualitatively, and in
certain cases, also quantitatively) in a satisfactory
manner the temperature dependence of internal
friction of well-annealed metals and alloys which
do not undergo phase transitions on heating. First
attempts have been made to describe the behavior
of internal friction of plastically deformed metals
and alloys. However, the theory of internal fric-
tion, in view of the complexity of the phenomenon
of energy dissipation itself, and of the small num-
ber of reliable systematic investigations (particu-
larly of plastically deformed metals and alloys),
which take into account the fact that internal fric-
tion always depends on many factors, is still far
from complete. There are very few investigations
(either theoretical or experimental) of internal
friction at high temperatures. And yet investiga-
tions of internal friction at high temperatures
provide us with still another possibility of gain-
ing an understanding of the problem of the behavior
of alloys at high temperatures which should not be
neglected.
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