1955 г. Июль

УСПЕХИ ФИЗИЧЕСКИХ НАУК

ИЗ ТЕКУШЕЙ ЛИТЕРАТУРЫ

ПРЯМЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ВРЕМЕНИ ЖИЗНИ И НОВЫЙ СПОСОБ ОТБОРА ТЯЖЁЛЫХ НЕСТАБИЛЬНЫХ ЧАСТИЦ В КОСМИЧЕСКОМ ИЗЛУЧЕНИИ

Среднее время жизни нестабильной частицы нарялу с зарядом, массой, спинсм и схемой распада является её важнейшей характеристикой. В ядерном масштабе времени среднее время жизни известных в настоящее время тяжёлых нестабильных частиц чрезвычайно велико. Однако с точки зрения возможностей экспериментальной техники эти времена очень малы и до недавнего времени пролёта тяжёлых нестабильных частиц до распада в камерение времени пролёта тяжёлых нестабильных частиц до распада в камере Вильсона¹ или фотоэмульсиях². Усреднение наиболее достоверных значений средних времён жизни гиперонов (частицы с массой, большей массы нейтрона) и *К*-мезонов (частицы с массой между массой π -мезона и массой нейтрона), полученных этим методом различными исследователями, привело к следующим результатам^{1, 2}. Наиболее часто регистрируемая частица — нейтральный гиперон (Λ^0 -частица по новым и V_1^0 -частица по старым обозначениям) с массой 2181 ± 1 m_e, распадающийся на протон и π -мезон, имеет среднее время жизни, равное

$${\cal T}_{\Lambda^0} = \left(3,7^{+0,8}_{-0,6}\right) imes 10^{-10}$$
 сек.

Нейтральный K^{0} -мезон (ϑ^{0} -частица по новым, V_{2}^{0} — по старым обозначениям) имеет массу, блискую к 970 m_{e} , распадается на два заряженных π -мезона, встречается в 4—5 раз реже Λ^{0} -частицы и его среднее время жизни равно

$$T_{\mathfrak{H}^0} = (1, 7^{+1, 6}_{-0, 7}) \times 10^{-10}$$
 сек.

Средние , ремена жизни заряженных гиперонов также имеют порядок 10⁻¹⁰ сек. Они были оценены по времени пролёта этих частиц до распада в фотоэмульсионных камерах. Так, например, из анализа десяти распадов ² было получено следующее значение времени жизни заряженных гиперонов:

$$T_{\tilde{Y}} = (2,9^{+4,8}_{-1,1}) \times 10^{-10} \,\mathrm{cek}.$$

Приведённые значения средних времён жизни не могут быть измерены прямыми радиотехническими методами, подсбными тем, которые в своё время были использованы для измерения времени жизни и-мезонов, а позже, с появлением сцинтилляционных счётчиков, и *п*-мезонов. Действительно, даже при использовании наиболее быстрых электронных схем, разрешающее время быстрых сцинтилляционных и черенковских счётчиков, используемых в сочетании с обы иными фотоумножителями, имеет порядок 10⁻⁹ сек., что и является нижним пределом измеримых с помощью этих счётчиков времён жизни.

Среди тяжёлых нестабильных частиц имеется, однако, большая группа частиц, среднее время жизни которых приблизительно на два порядка больше среднего времени жизни гиперонов и ϑ^{\bullet} -частиц, и может быть поэтому измерено прямыми методами. К таким частицам принадлежат, повидимому, все или почти все разновидности заряженных *К*-мезонов, которые им перечислим.

Наиболее хорошо изученной частицей из этой группы является τ -мезон. Его масса равна 966 ± 1 m_{e} , он распадается на три π -мезона по схеме

$$\tau^{\pm} \to \pi^{\pm} + \pi^{+} + \pi^{-}. \tag{1}$$

Всего в фотоэмульсиях и фотоэмульсионных камерах удалось до настоящего времени наблюдать около 50 т-распадов. Во всех этих случаях распады происходили после остановки частиц, откуда следует, что среднее время жизни т-мезонов не может быть меньше полного времени их замедления, близкого к 10^{-8} сек.³. Известно также³, что существует конкурирующая ветвь т-распада: т-мезон может распадаться на заряженный и два нейтральных л-мезона

$$\tau^{\pm} \rightarrow \pi^{\pm} + \pi^{0} + \pi^{0} \tag{2}$$

и теория предсказывает ⁴, что такие распады должны составлять заметную / 1 1 \

часть $\left(\frac{1}{4} \div \frac{1}{2}\right)$ от распадов по основной ветви (1).

В работах А. И. Алиханяна и сотрудников было показано существование положительно и отрицательно заряженных частиц с массой около 950 m_e . Эти частицы наблюдались в протяжённом приборе, в котором длина траекторий была близка к 1,5 метрам, откуда следует, что среднее время жизни этих частиц не меньше чем $5 \cdot 10^{-9}$ сек.⁵.

Данные, полученные с помощью фотоэмульсий и фотоэмульсионных камер⁶, также говорят о том, что кроме τ -мезонов существуют *К*-мезоны с массой, близкой к 970 m_e , распадающиеся по схемам:

$$x^{\pm} \rightarrow \mu \pm + ? + ? \tag{3}$$

$$\gamma^{\pm} \rightarrow \pi^{\pm} + ? \tag{4}$$

Энергия µ-мезонов, возникающих при распаде x-мезонов на три частицы, распределены в широком интервале значений, тогда как от распада остановившихся χ -мезонов возникают монохроматические π -мезоны. Опыты с магнитными и многопластинными камерами Вильсона 7 подтвердили наличие мезонов с массой около 1000 m_e , распадающихся на µ- и π -мезоны, и дополнили наши сведения о таких распадах, показав, что среди нейтральных частиц, образующихся при распадах (3) и (4), имеются γ -кванты, возникающие либо непосредственно, либо при распаде π^0 -мезона:

$$x^{\pm} \rightarrow \mu^{\pm} + \gamma + ? \tag{3'}$$

 $\chi^{\pm} \rightarrow \pi^{\pm} + \pi^{0}$ (энергия π^{\pm} мезонов ~ 108 *Мэв*, пробег ~ 60 г/см²). (4')

Оценки времени жизни заряженных К-месонов, выполненные по измерению

их времени пролёта в камерах Вильсона, подтвердили, что средние времена жизни этих частиц велики, а именно, лежат в пределах $4\cdot 10^{-9} - 10^{-8}$ сек.¹.

Следует отметить, что в последнее время получены данные о том, что при распаде заряженных *K*-мезонов иногда возникают электроны⁸. При таких распадах, повидимому, возникают ещё 2 нейтральные частицы:

$$K \to e + ? + ? \tag{5}$$

Кроме того, французские физики ⁹, исследовавшие остановки тяжёлых мезонов в многопластинной камере Вильсона, над которой была расположена магнитная камера Вильсона, служившая для измерения импульса распадающихся частиц, пришли к выводу, что наблюдаемые ими распады вызваны частицами с массой около 920 m_e, распадающимися на µ-мезон и нейтрино:

$$K \to \mu + \nu, \tag{6}$$

и имеющими среднее время жизни, близкое к 10^{-8} сек.⁹. Из этого перечня возможных схем распадов *K*-частиц следует, что вся проблема распада *K*-частиц в настоящее время далека от ясности. Несмотря на это, все оценки средних времён жизни *K*-частиц показывают, что эти времена достаточно велики, чтобы их можно было пытаться измерить прямым методом. Основная трудность, возникающая при таких измерениях, заключается в том, что потоки этих частиц в космическом излучении чрезвычайно малы, а фон, вызванный всякого рода явлениями, имитирующими распад (например, флуктуациями начала импульса в счётчике, или сдвинутыми во времени частицами из воздушных ливней), чрезвычайно велик по сравнению с изучаемым эффектом. Кроме того, следует иметь в виду, что, поскольку схемы распада *K*-мезонов окончательно не установлены и даже не ясно, принадлежат ли приведённые выше схемы различным частицам или являются

конкурирующими схемами распада одной и той же частицы с массой около 970 m_e , при планировании и интерпретации таких опытов существует трудность, связанная с отнесением измеренного времени жизни к определённым частицам.

Первое прямое измерение времени жизни К-мезонов произведено в работе ¹⁰. Схема установки показана на рис. 1. Она состоит из жидкого сцинтилляционного счётчика S, двух счётчиков Черенкова C, трёх рядов гейгеровских счётчиков g_1, g_2, g_3 , включённых в годоскоп, и поглотителей из свинца и алюминия. В работе используются черенковские счётчики направленного действия, представляющие собой люцитовый сосуд, наполненный дестиллированной водой, зачернённый снизу и рассматриваемый сверху фотоумножителем У. Эффективность счёт-

чика равна 900/0 для быстрых и-мезонов, движущихся снизу вверх, т. е. к фотоумножителю, и 0,4% для частиц, движущихся сверху вниз.

Эта установка и связанная с ней радиотехническая схема выделяют явления следующего типа. Заряженная нестабильная частица, зародившаяся в ядерном взаимодействии большой энергии в верхнем «генерирующем» слое свинца, пересекает сцинтилляционный счётчик S и тормозится в одном из черенковских счётчиков C или вблизи него. Затем она распадается, и если вторичная частица испущена вверх и обладает скоростью, превосходящей пороговую скорость черенковского счётчика, она регистрируется им. При этом счётчик остаётся нечувствительным к ливневым частицам, пронизывающим его в обратном направлении, сверху вниз. Интервал времени между срабатыванием счётчиков S и C измерялся с помощью 17-канальной, схемы измерения времени типа «хронотрона»¹¹. Годоскопическая система счётчиков S₁, S₂, S₃ позволяла исключать из рассмотрения запаздывания, связанные с прохождением через установку ливневых частиц.

Пороговое значение скорости частицы, вызывающей срабатывание черенковского счётчика, проверено экспериментально: счётчик регистрируст частицы со скоростью $v_c \gg 0.76$ с, что отвечает электронам, и-мезонам и π -мезонам с энергиями, большими 250 кэв, 50 Мэв и 70, Мэв, соответственно.

При наличии такого порога система, очевидно, не будет регистрировать заряженные π -мезоны, возникающие при распаде т-мезонов (1) или (2), так как максимальная энергия этих мезонов близка к 50 *Мэв*, т. е. меньше пороговой энергии. Однако π^0 -мезоны, возникающие во второй ветви τ -распада, не успеют из-за своего короткого времени жизни (10^{-15} сек.) уйти далеко от места остановки τ -мезона и дадут γ -кванты, которые будут зарегистрированы черенковским счётчиком по вторичным электронам. Поэтому рассмотренная система, несомненно, чувствительна ко второму типу τ -распада, который по последним данным ³ составляет заметную часть от основной ветви. Что касается распадов *К*-частиц на μ - и π -мезоны или на электроны, то распады типа (4), (5) и (6) заведомо будут регистрироваться системой, а распады (3) булут регистрироваться в тех случаях, когда μ -мезон приобретает при распаде достаточно большую энергию.

Рис. 2.

Результаты измерений приведены на рис. 2, где показана полученная кривая распада. По оси абсцисс отложено время в 10^{-9} сек., по оси ординат число случаев распада, приходящихся на интервал времени в $3,1\cdot10^{-9}$ сек. «Колокольная» часть кривой, со спадами, простирающимися в область положительных и отрицательных сдвигов, отвечает случайным сдвигам, обусловленным флуктуациями во времени появления импульсов в счётчиках S и C и сдвигами от ливневых частиц. Эти сдвиги, образующие фон измерений, были промерены отдельно и соответствующие данные приведены на рис. 2 пунктиром. Прямой участок на рис. 2 соответствует экспоненциальному распаду. Анализируя этот участок распадной кривой в предположении единственного времени распада, авторы получили для среднего времени жизни К-частиц значение:

$$T_K = (8,7+1,0) \, 10^{-9} \, \text{сек.}$$

Во второй группе рассматриваемых работ 12 , 13 одновременно с измерением времени жизни заряженных *К*-частиц методом, близким к рассмотренному 13 , производилось фотографирование следов этих частиц в камере Вильсона 12 (высота 2850 *м*, Пик де Миди). Экспериментальная установка включала в себя (рис. 3; схема измерения времени на рисунке не

Рис. 3.

показана) многопластинную камеру Вильсона (6 свинцовых пластин толщиной по 1 см), в которой находился также черенковский счётчик C_2 с фотоумножителем. Система управляющих счётчиков, расположенных над камерой, состояла из черенковского счётчика C_1 , двух сцинтиляционных счётчиков (S_1 — раствор терфенила в ксилоле, S_2 — раствор терфенила в фенилциклогексане) и двух рядов гейгеровских счётчиков g. Черенковские счётчиков S_1 , S_2 , g, не сопровождавшиеся импульсом от черенковского счётчико S_1 , S_2 , g, не сопровождавшиеся импульсом от черенковского счётчика C_1 (совпадения $H = S_1 + S_2 + g - C_1$). Эти совпадения H, очевидно, вызывались тяжёлой частицей, прошедшей через всю систему и не создавшей (из-за своей малой скорости) сигнала в черенковском счётчике C_1 . Черенковский счётчик C_1 наполнялся дестиллированной водой. В работе ¹⁴ было показано, что критическая скорость для такого счётчика определяется соотношением M_0 $c^2 \ge 6,8 R_0 M 36$, где R_0 — толщина слоя вещества между C_1 и g_1 , выраженная в c/cM^2 . Частицы, масса которых меньше M_0 , проходя через оком счётчика C_1 и вызовут срабатывание счётчика C_1 . R_0 было выбрано таким, чтобы $M_0 \ge 300 m_e$. Таким образом, μ - и π -мезоны, проходящие через систему, вызывали срабатывание счётчика C_1 и не регистрировались системой, гогда как более тяжёлые частицы, если их скорость была меньше критической, счётчиком C_1 не отмечались и давали совпадения H.

Расширение камеры управлялось совпадением $H + C_2$, происходившим в пределах разрешающего времени $5 \cdot 10^{-6}$ сек. Критическая скорость для счётчика C_2 , наполненного смесью равных объёмов глицерина и воды, была равна 0,71с и он срабатывал от электронов и μ - и π -мезонов с энергиями, близкими к энергиям срабатывания счётчика в работе ¹¹. Таким образом, рассмотренная система была специально настроена на отбор одиночных, идущих без сопровождения другими частицами, медленных тяжёлых частиц с массой, большей 300 m_e , испускающих после остановки в многопластинной камере Вильсона быстрые заряженные частицы или продукты аннигиляции. Такой метод отбсра тяжёлых частиц при работе с камерой Вильсона представляет большой интерес, так как существовавшие до сих пор установки отбирали проникающие ливни, в составе которых находили тяжёлые нестабильные частицы. Единственным исключением в этом отношении являлся масс-спектрометр Алиханяна и его сотрудников, который также

Амплитуда сигнала от счётчика C_2 при совпадениях $H + C_2$ записывалась с помощью катодного осциллографа, и при известной длине пути заряженной частицы в C_2 могла быть мерой её скорости. Над всей установкой располагался не показанный на рис. З слой свинца (14,5 см) или парафина (80 см), служивший «генератором» тяжёлых мезонов. Основание генератороного слоя вещества отстояло от счётчика C_1 на 80 см, чтобы ливневые частицы успевали разойтись. Этим увеличивлаеть вероятность попадания в систему одиночной тяжёлой частицы, идущей без сопровождения.

Система отбора регистрировала 67 (H+C) совпадений в сутки. Так как время восстановления камеры равно 5 минутам, то число производимых снимков несколько меньше, а именно, равно 56 в сутки. При этом только 0,1 снимка в сутки отвечает искомому эффекту: остановке в одной из пластин камеры тяжёлой частицы и выходу из этой пластины быстрой вторичной частицы, проходящей через счётчик C_2 . Эскиз одного из таких случаев, представляющих собой типичные S-распады 7*), приведён на рис. 4. Таким

Рис. 4.

образом, $99,8^{0}/_{0}$ всех снимков представляют собой фон измерений, складывающийся из электронных ливней, не задевших счётчик C (19 снимков в сутки), медленных протонов, попадающих непосредственно на фотокатод или первый динод умножителя счётчика C_2 и вызывающих, таким образом, импульс на его выходе (3 в суткк), одиночных частиц, проходящих через систему и не вызывающих срабатывания счётчика C_1 из-за флуктуаций че-

*) Тяжёлые нестабильные частицы, останавливающиеся в пластинах камеры Вильсона и испускающие вторичную заряженную частицу, называют S-частицами (от слова stopped); распады такого типа — S-распадами. ренковского свечения (10 снимков); кроме того, 21 снимок в сутки не связан с прохождением заряженной частицы через C_2 , а объясняется наличием ү-лучей, сопровождающих ливни и создающих вторичные электроны в C_2 , и 3 снимка в сутки вызваны медленными протонами, останавливающимися в пластинах камеры и вызывающими появление ү-квантов из возбуждённых ядер.

Результаты этого опыта сводятся к следующему. Всего за 2000 часов работы наблюдалось 8 частиц, остановившихся в свинцовых пластинах в хорошо освещённой части камеры Вильсона и испустивших вторичные заряженные частицы, попавшие в счётчик C_2 . Вторичные частицы не размножаются и не рассеиваются заметным образом в свинцовых пластинах, откуда следует, что они не электроны. Не было обнаружено также и мягких электронных каскадов от γ -лучей, связанных с распадом, но малое число наблюдавшихся распадов не позволяет, разумеется, на этом основании отвергнуть возможные схемы распада (3) или (4). В трёх случаях пробег вторичных частиц оказался больше 60 $2/c^{3}$, т. е. больше пробега π -мезонов, возникающих при распаде по схеме (4').

В принципе, как уже указывалось, по величине сигнала и по длине пути частицы в C_2 можно определить её скорость. В действительности, такие измерения при статистически недостаточном материале имеют малую ценность из-за флуктуаций в величине сигнала в C_2 . Однако авторы считают возможным произвести на основании своих измерений оценку среднего импульса вторичных частиц, предположив предварительно, что все они представляют собой монохроматические и-мезоны, т. е. что распад происходил по схеме (6). Полученное ими значение $P_{\mu} = 275 \pm \frac{160}{60} M_{36}/c$ находится в согласии со сделанным предположением, так как импульс и-мезонов, возникающих при распаде частиц с массой около 970 m_e по схеме (6) должен быть равен ~ 240 M_{36}/c .

Представляет интерес сравнить поток K-частиц с потоком протонов. Авторы указывают, что на каждую K-частицу через их прибор проходит 1750 медленных протонов, останавливающихся в пластинах камеры. Если внести поправки, учитывающие малую геометрическую эффективность системы обнаружения вторичных заряженных частиц с помощью счётчика C_2 , то одна K-частица приходится на 300 протонов.

Описанная установка чувствительна к антипротонам, аннигилирующим в свинцовых пластинах и дающим релятивистские продукты аннигиляции, проходящие через C₂. Несмотря на то, что за 2000 часов работы установки через систему прошло 5.104 протонов, ни одного явления, похожего на аннигиляцию антипротона, зарегистрировано не было.

Как указывалось выше, в этом опыте производилось также измерение времени между моментами срабатывания счётчиков S_1 и C_2 для наблюдённых распадов ¹³. После введения соответствующих поправок на время пролёта первичной и вторичной частиц из 8 полученных времён жизни можно статистическим методом получить «наиболее правдоподобное» время жизни К-частиц, разумеется, в предположении, что это однородная группа частиц, распадающихся по одной экспоненте. Полученное таким образом значение равно:

$$T_K = (15, 8^{+8,7}_{-4,0}) \times 10^{-9}$$
 сек.

Если включить в рассмотрение пять дополнительных расладов, обнаруженных в плохо освещённых частях камеры, то получим:

$$T_{K} = (11, 0^{+4,0}_{-2,4}) \times 10^{-9}$$
 сек.

Оба эти значения в пределах погрешности измерений согласуются с результатом предшествующей работы ¹⁰ и со всеми приведёнными выше оценками среднего времени жизни *K*-частиц.

В заключение сравним выход К-мезонов при использованном авторами методе отбора частиц с выходом тяжёлых мезонов в других методах. По данным Фаулера в грамме фотоэмульсии, помещённом под 30 см свинца; на высоте 3000 м обнаруживается 3.10⁻³ тяжёлых мезонов в сутки. Бридж в своей многопластинной камере, управлявшейся проникающими ливнями, регистрировал 0,6·10⁻⁶ S-частиц в сутки на грамм поглотителя (высота-3000 м). В настоящей работе регистрировалось около 1,4.10⁻⁶ S-частиц на. грамм поглотителя в сутки, т. е., несмотря на то, что эти оценки носят весьма приближённый характер, видно, что новая система отбора оказалась значительно более эффективной, чем отбор по проникающим ливням. В то же время сравнение этих цифр с выходом нестабильных частиц в методефотоэмульсии говорит о возможности дальнейшего увеличения выхода тяжёлых нестабильных частиц при наблюдениях с камерами.

A. B.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. I. A. Newth, Nuovo Cimento 11, № 2, Suppl. 290 (1954).
- 2. Bonetti, Levi Setti, B. Lockatelli, Nuovo Cimento 12, № 2, Suppl. 292 (1954).
- 3. Е. Å maldì, Е. Fabri и др., Nuovo Cimento 12, № 2, Suppl. 419 (1954).
- 4. В. Б. Берестецкий, ДАН **92**, № 3, 519 (1953).
- 5. А. И. Алиханян, А. Т. Дадаян и Н. В. Шостакович, ДАН 92, № 5, 693 (1952). 6. М. Menon, С. O'Ceallaigh Bagneres Congr. 7. Н. Bridge, Н. Courant и др., Nouvo Cimento 12, № 1, 81 (1954).

- 8. С. Dahanayake, P. Francois и др., Phil Mag. 45, № 370, 1219 (1954). 9. R. Armenteros, B. Cregory и др., Nuovo Cimento 12, № 2, Suppl.,
- 324 (1954).
- 10. L. Mezzetti, J. Keuffel, Phys. Rev. 95, № 3, 858 (1954).
- 11. I. W. Keuffel, Rev. Sci. Istr. 20, 197 (1949).
- 12. P. Barker, D. Binnie и др., Phil. Mag. 46, 300 (1955).
- 13. Р. Barker, D. Binnie и др., Phil. Mag. 46, 307 (1955).
- 14. T. Duerden, B. Hyams, Phil. Mag. 40, 717 (1952).