УСПЕХИ ФИЗИЧЕСКИХ НАУК

ИЗ ТЕКУЩЕЙ ЛИТЕРАТУРЫ

МАССЫ АТОМНЫХ ЯДЕР И ВОПРОС О ЯДЕРНЫХ ОБОЛОЧКАХ

В последние годы для объяснения ряда свойств атомных ядер получила широкое распространение модель так называемых ядерных оболочек, согласно которой при наличии в ядрах 2, 8, 20 (28), 50, 82 и 126 протонов или нейтронов имеет место заполнение протонных или нейтронных оболочек.

Первые указания на особую устойчивость и распространённость ядер, в составе которых имеется по 20, 50 и 82 протона или нейтрона, были даны ещё в 1933 г. в работе советского учёного И. П. Селинова 1. В 1948 г. было предложено и теоретическое объяснение последовательности заполнения ядерных оболочек, основанное на предположении о влиянии спинорбитального взаимодействия при заполнении уровней нуклеонов в ядрах 2.

Вопросу о ядерных оболочках было посвящено большое число ра-

бот ряда советских физиков.

Роль ядерных оболочек весьма ярко проявляется при сопоставлении точных значений масс разных ядер в связи с тем, что энергия связи нуклеона, присоединение которого знаменует заполнение оболочки, заметно выше, чем средняя энергия связи. Напротив, энергия связи нуклеона присоединяемого к ядру с заполненной соответствующей оболочкой, ниже средней энергии связи. Для сопоставления энергии связи нуклеонов в разных ядрах в 1950—1952 гг. было выполнено много работ по масс-спектрографическому определению точных значений масс ряда ядер от кремния до урана. В таблице приводятся соответствующие данные, полученные группами Дакворта 8—10, Нира 11,12 и Гаудсмита 13,14. При этом массы ядер, приводимые в таблице на основании 11,12, пересчитаны из упаковочных коэффициентов, а данные других работ приводятся без каких-либо пересчётов.

Материалы, приведённые в таблице, представляют самостоятельный интерес для расчётов тепловых эффектов различных ядерных реакций или порогов таких реакций. В этом смысле таблица является дополнением к справочным таблицам масс лёгких ядер (обычно — до железа), приводи-

мых в ряде курсов ядерной физики.

Однако, помимо этого, сопоставление масс разных ядер может быть использовано для исследования вопроса о ядерных оболочках. Именно

такое сопоставление и было выполнено в 15.

На рисунке (стр. 480), заимствованном из 15 , приводится зависимость средней энергии связи (на один нуклеон) от массового числа ядер для 115 стабильных ядер элементов с Z>21. Помимо масс-спектроскопических данных работ $^{8-10}$, использованы данные о тепловых эффектах ряда ядерных превращений и о поглощении микроволн.

Массы атомных ядер

Z	Элемент	A	Масса и погрешность	Источник
1	2	3	4	5
14 14 14 16 17 19 22 22 22 22 22 22 22 22 22 22 22 24 24	SISIS CIKTITITITIV CCCCCCCMFeeONNINCUUUDOGGGESSBBKKKKKRBBrrrKONNNCCCCZGGGESBBKKKKKRBBrrrKO	28 29 30 32 35 41 46 47 48 48 49 50 50 52 53 54 55 54 56 65 65 67 72 74 76 77 77 79 81 82 84 88 88 89 94	27, 99581±0,00008 28,98567±0,00014 29,98290±0,00015 31,983±0,001 34,9805±0,0005 40,975±0,002 45,96697±0,00005 46,96668±0,00009 47,96314±0,00005 47,96319±0,00005 49,96073±0,00005 50,96033±0,00005 50,96033±0,00005 51,95710±0,00005 51,95710±0,00010 52,95771±0,00010 52,95771±0,00010 53,95631±0,00027 53,95631±0,00027 53,95631±0,00027 55,95285±0,00016 58,95029± 57,95354±0,00019 62,94840±0,00030 63,94733±0,00019 62,94862±0,00020 64,94749±0,00021 64,9484±0,00032 63,94852±0,00019 69,9447±0,0006 71,9430±0,0006 73,9436±0,0009 74,9432±0,0010 73,9438±0,0009 74,9432±0,0010 73,9438±0,0009 74,9432±0,0010 73,9438±0,0009 74,9432±0,0010 73,9439±0,0009 78,944±0,001 80,943*+0,001 81,93843±0,00029 83,93850±0,00020 85,93533±0,00043 87,93374±0,00063 93,9343±0,0008	66 5 13 13 13 13 11 11 11 11 11 11 11 11 11

Продолжение

				
7 Z	Элемент	A	Масса и погрешность	Источник
1	2	3	4	5
42 446 468 488 450 500 500 500 500 500 500 500 500 500	Mo Mo Mo Pd Pd Cd Cd Sn Sn Sn Sn Sn Te Te I Xee Xee Xee Xee Xee Xee Xee Nd	96 98 100 104 108 110 112 116 115 116 117 117 118 119 120 120 122 124 126 128 130 127 127 124 126 128 130 131 131 132 132 132 134 136 137 138 130 131 131 131 132 132 134 136 137 138 139 130 131 131 131 132 132 134 136 137 138 139 130 131 131 131 132 132 134 136 137 138 139 130 131 131 131 132 132 134 136 137 138 139 130 130 131 131 131 132 132 134 136 137 138 139 130 130 131 131 131 132 132 134 136 137 138 139 130 131 131 131 131 132 132 134 134 136 137 138 139 130 131 131 131 132 132 134 134 136 137 138 139 130 130 131 131 132 132 134 134 136 137 138 139 130 130 130 131 131 134 136 137 138 138 140 140 141 141 141 141 141 141	95,93597±0,00039 97,93610±0,00040 99,93860±0,00040 103,93635±0,00052 107,93682±0,00043 109,94060±0,00077 109,93873±0,00066 111,93997±0,00045 115,94200±0,00035 115,93910± 115,93794±0,00028 116,94208±0,00017 117,93982±0,00035 118,94121±0,00024 119,94060±0,00036 119,94012±0,00072 121,94254±0,00037 123,94482±0,00025 125,9427±0,0010 127,9471±0,0010 127,9471±0,0010 127,9471±0,0010 129,9467±0,00025 125,94481±0,00025 125,94481±0,00025 125,94481±0,00025 125,94481±0,00025 127,94445±0,00013 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 128,94508±0,00026 131,9461±0,00027 133,94801±0,00027 133,94801±0,00027 133,94801±0,00027 133,94801±0,00027 133,94801±0,00027 133,94801±0,00027 135,95050±0,00010 136,9502±0,0010 137,9498±0,0009 141,9537±0,0009 141,9537±0,0009 141,9537±0,0009 141,9537±0,0009 141,9537±0,0009 141,9537±0,0009	57 54 44 66 66 66 12 12 12 12 12 12 12 13 12 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18

Продолжение

Z	Элемент	Α	Масса и погрешность	Источник
1	2	3	4	5
60	Nd	150	$149,9687 \pm 0,0008$	8
72	Hf	176	$175,9923 \pm 0,0011$	
72	Hf	178	$177,9936 \pm 0,0013$	8 8 8 8 8 8 7 4 7
$7\overline{2}$	Hf	180	180.0029 ± 0.0007	. 8
73	Ta	181	$+$ 181,0031 \pm 0,0013	8
74	w	182	$182,0033 \pm 0.0011$	8
74	w	183	$183,0059 \mp 0,0013$	8
74	ÿ	184	184.0052 ± 0.0011	8
78	Pt	194	194.0256 ± 0.0014	7
78	Pt	195	195.02652 ± 0.00078	4
78	Pt	196	196.02744 ± 0.00060	7
82	Pb	208	208.0422 ± 0.0015	7
82	Pb	208	$+$ 208,0416 \pm 0,0010	9
82	Pb	208	208.0416 ± 0.0015	14
83	Bi	209	209.0466 + 0.0015	14
90	Th	232	$232,1093 \pm 0.0010$	9
92	Ü	$\frac{234}{234}$	234.1129 ± 0.0010	9
$9\overline{2}$	บ บั	$\frac{235}{235}$	235.1156 + 0.0010	9
92	Ŭ	238	$238,1241 \pm 0,0010$	9

Из рисунка очевидно наличие ряда изломов плавной зависимости средней энергии связи от массовых чисел, связанных с заполнением ядерных оболочек. В области самых тяжёлых ядер излом в сторону повышения

средней энергии связи соответствует ядру $_{82}{\rm Pb}_{126}^{208}$. Это ядро характеризуется заполнением как протонных (82 протона), так и нейтронных (126 нейтронов) оболочек.

(126 нейтронов) оболочек. Заполнению нейтронных оболочек (82 нейтрона) отвечает излом кривой в точке, соответствующей ядру $_{58}\mathrm{Ce}_{82}^{140}$. Оболочки, содержащие по 50

протонов или нейтронов, заполняются в ядрах $_{50}\mathrm{Sn}_{70}^{120}$ и $_{38}\mathrm{Sr}_{50}^{88}$, что также отвечает изломам кривой энергии связи нуклеонов. Наконец, пик кривой для ядра 28NI₃₄ соответствует заполнению оболочки при 20 протонах. Таким образом, систематическое исследование масс ряда ядер в широком интервале массовых чисел подтвердило основные положения представлений о ядерных оболочках. Представляет интерес исследование масс ядер в интервалах массовых чисел, пока ещё мало изученных, а также более подробное рассмотрение суммы уже полученных данных с целью уточнения последовательности заполнения уровней нуклеонов в ядрах.

Г. И.

ШИТИРОВАННАЯ ЛИТЕРАТУРА

И. П. Селинов, ЖЭТФ, 4, 666 (1934) (доложено 16 апреля 1933 г.).

- 1. И. П. Селинов, ж51Ф, 4, 600 (1954) (доложено то апреля 2. М. G. Маует, Phys. Rev., 74, 235 (1948).
 3. Н. Duckworth a. Н. Johnson, Phys. Rev., 78, 179 (1950).
 4. Н. Duckworth и др., Phys. Rev., 78, 479 (1950).
 5. Н. Duckworth и др., Phys. Rev., 79, 188 (1950).
 6. Н. Duckworth a. R. Preston, Phys. Rev., 79, 402 (1950).
 7. Н. Duckworth a. R. Preston, Phys. Rev., 82, 468 (1951).

- 8. H. Duckworth и др., Pnys. Rev., 83, 1114 (1951). 9. G. Stanford, H. Duckworth и др., Phys. Rev., 85, 1039 (1952).
- 10. C. Kegley a. H. Duckworth, Nature, 167, 1025 (1951).
- 11. A. Nier и др., Phys. Rev., **85**, 726, L 12 (1952). 12. R. Halsted, Phys. Rev, **85**, 726, L 13 (1952).
- 13. S. Goudsmit и др., Phys. Rev., 84, 824 (1951). 14. S. Goudsmit и др., Phys. Rev., 85, 630 (1952). 15. H. Duckworth, Nature, 170, 158 (1952).