1953 г. Октябрь Солования водоват ос

Warden au flagt schert och T. LI. Bun. 2.

УСПЕХИ ФИЗИЧЕСКИХ НАУК

ИЗ ТЕКУЩЕЙ ЛИТЕРАТУРЫ

ПОДРОБНЫЙ АНАЛИЗ РАСЩЕПЛЕНИЯ ЛЁГКИХ ЯДЕР НУКЛЕОНАМИ ВЫСОКОЙ ЭНЕРГИИ

Хотя в настоящее время хорошо известны сечения неупругих столкновений нуклеонов высокой энергии, но имеется довольно мало сведений о том, из каких именно ядерных реакций складывается общая картина таких столкновений. В этом году появились три работы, в которых проводится подробный анализ всех реакций взаимодействия нейтронов со средней энергией 90 *Мэв* с ядрами гелия¹ и углерода² и большинства продуктов расщепления протонами с энергией 330 *Мэв* ядер бериялия и углерода³.

Исследование взаимодействия нейтронов с ядрами гелия и углерода производилось с помощью камеры Вильсона, диаметром в 56 см, помещённой в импульсное магнитное поле с индукцией до 22 000 гаусс.

В работе¹ камера заполнялась 99-0/0 гелием до давления 815 *мм* рт. ст. и парами воды, так что соотношение количества ядер гелия и кислорода немецленно после расширения было 51,8. В работе² для заполнения камеры применялась смесь метана с водородом, и состав смеси после расширения был: 474,5 *мм* рт. ст. метана, 348,5 *мм* рт. ст. водорода и 17,5 *мм* рт. ст. водяного пара. При обработке результатов измерений вводились необходимые поправки на малую примень кислорода.

Нейтроны со средней энергией 90 *Мэв* получались при бомбардировке дейтеронами с энергией 190 *Мэв* бериллиевых мишеней, коллимировались отверстиями в толстых слоях бетона и свинца или меди и попадали в камеру через алюминиевое окошко толщиной 25 микрон.

Лёткие частицы — протоны, дейтероны, тритоны, Не³ и а-частицы идентифицировались по радиусу кривизны траекторий, по длине и плотности следа. В отдельных случаях задача идентификации упрощалась благодаря возможности наблюдения постепенного изменения радиуса кривизны вблизи конца траектории. Камера Вильсона не давала, однако, возможности точного определения массы «тяжёлых» осколков (ядер Li, Be, В и C), образующихся при расщеплении ядер углерода. Поэтому в работе² для уточнения природы продуктов взаимодействия нейтронов с ядрами углерода применялся также метод вращающегося диска, о котором будет сказано ниже.

При исследовании расщепления нейтронами ядер гелия на каждом снимке наблюдалось, в среднем, три двухлучевых звезды и столько же сильно ионизующих одиночных треков. Редко встречались звёзды с тремя и более лучами от расщепления ядер кислорода.

10 УФН, т. LI, вып. 2

Ниже перечислены все возможные реакции расщепления гелия:

1) $n + He^4 \rightarrow d + t$ (сокращённо обозначим как dt),

2) $n + He^4 \rightarrow p + t + n$ (pt),

3) $n + He^4 \rightarrow d + d + n (dd)$,

4) $n + He^4 \rightarrow p + d + 2n (pd)$,

5) $n + He^4 \rightarrow p + p + 3n$ (pp),

6) $n + He^4 \rightarrow He^3 + 2n$ (He³),

7) $n + He^4 \rightarrow He^4 + n$ (He⁴) (упругое рассеяние).

Первые пять реакций приводят к образованию двухлучевых звёзд, две последние — к появлению сильно понизующих одиночных частиц.

Поскольку в двухлучевых звёздах от распада ядер гелия могут быть лишь частицы с одиночным зарядом (p, d, t), удельная ионизация и кривизна траектории в магнитном поле однозначно определяли вид и энергию частиц. Некомпланарность двух треков с направлением первичных нейтронов отличала случаи 2—5 от прсцесса dt, что служило дополнительным фактором идентификации. Из 179 двухлучевых звёзд лишь в восьми случаях не удалось точно установить, каким реакциям соответствуют наблюдаемые звёзды.

Для реакций dt, pt и dd по величине энергии и импульсов вторичных заряженных частиц можно было определить, какова была энергия первичных нейтронов. Для реакции pd можно было сценить нижний предел этой энергии, в предположении, что два испускаемых нейтрона летят вместе, унося остаточный импульс. Лишь в случае pp энергию первичных нейтронов нельзя было оценить сколько-нибудь надёжно. При исследовании двух-лучевых звёзд учитывались лишь такие, в которых оба луча лежали в углах не более $\pm 30^{\circ}$ к горизонтальному направлению. Для определения полных сечений различных реакций автор вводил поэтому геометрическую поправ-ку, учитывающую долю от общего числа различных звёза, приходящую з на углы $\pm 30^{\circ}$. Правильность этой поправки была подтверждена прямым подсчётом полного числа звёзд во всех углах (без подробного анализа этих звёзд).

Двухлучевые звёзды не исчерпывают всех вариантов неупругого взаимодействия нейтронов с ядрами гелия. К такому взаимодействию относятся и однолучевые звёзды с образованием Не³. Между тем, точность методики в огромном большинстве случаев не позволяла различать следы Не³ и Не⁴. Для того чтобы оценить выход Не³, автор¹ принял, что соотношение сечений реакций Не³ и рt равно соотношению сечений пп- и пр-рассеяния, т. е. для 90 *Мэв* равно ¹/₃, если положить $\sigma_{nn} = \sigma_{pp}$. При этом для расчёта выхода Не³ автор учитывал не только чистый рt-случай, но и случай dt с вылетом дейтеронов вперёд, ибо при таком процессе захвата бомбардирующим нейтроном протона из ядра Не⁴ («pick-up») дейтерон образуется не в самый момент столкновения, так что первыя стация столкновения и здесь может рассматриваться, как образование n — p — t.

Итак, для выхода He³ было принято: $\sigma_{He^3} = \frac{1}{3} \left[\sigma_{pt} + \sigma_{dt} - вперед \right]$ Сумма данных о неупругом взаимодействии нейтронов с ядрами гелия приведена в таблице I. Появление нецелочисленных значений во второй строке этой таблицы связано с тем, что неидентифицированные восемь звёзд были распределены между разными случалми в том же соотношении, как идентифицированные (четыре звезды — между pt и pd, четыре — меж ду первыми пятью случаями).

Исправленные значения включают вышеупомянутую геометрическую поправку. Абсолютные значения сечений получены, исходя из того, что

	pt	đt	pd	đđ	pp	He ³	Bcero
Идентифицировано Не идентифицирован- но Сумма Исправленная сумма Сумма для нейтронов с энергией >40 Мэв Возможная ошиб- ка % Сечение (× 10 ²⁷ см ²) Возможная ошибка	88,0 5,1 93,1 212,6 209,1 7,3 42	33,0 0,8 33,8 75,5 66,5 12,3 13	31,0 1,7 32,7 76,3 76,3 12,1 15	17,0 0,4 17,4 37,0 35,2 16,8 17	2,0 2,0 3,8 3,8 48,0 0,8	 [83,5] [80,8] [16]	171,0 8,0 179,0 488,7 471,7 5,2 94

всего наблюдалось 472 случая неупругих столкновений и 484 акта упругого рассеяния, а полное сечение взаимодействия нейгронов со средней энергией 90 *Мэв* с ядрами гелия на основании интерполяции данных для H. D. Li и Be было принято равным 1,9.10⁻²⁵ см³.

Упругое рассеяние исследовалось по счёту окончаний треков He⁴ в камере и одиночных неоконченных треков, с взедением соответствующих геометрических поправок. Сечение упругого рассеяния п – He⁴ определено в¹ как 96 <u>+</u> 17.10⁻²⁷ см², причём сечения неупругого взаимодействия и упругого рассеяния оказались, как и для других ядер в этой области энергий нейтронов, очень близки.

В¹ приводится сравнение полученных сечений различных реакций п + He⁴ с предсказаниями теоретической работы ⁴. При нормировке полного сечения к величине 1,9·10⁻²⁵ см² теория даёт следующие сечения (в 10⁻²⁷ см²): упругое рассеяние — 125, pt — 46, dt — 12,5, pd — 1,5, dd — 0, pp — 0, He³ — 5. Таким образом для первых трёх случаев наблюдается хорошее согласие опыта и теории. Теория правильно предсказала также малую вероятность случая pp. Соотношение выхода He³ и pt в теории ⁴ оце-

нивалось как $\frac{\overline{4}}{\overline{4} \div \overline{3}} \left(\frac{V_{\text{синглет}}}{V_{\text{триплет}}} \right)^2 \cong \frac{1}{12}$, тогда как в¹ оно принимается

равным $\frac{\sigma_{nn}}{\sigma_{np}} \cong \frac{1}{3}$. В подтверждение своей оценки автор¹ ссылается на неопубликованные опыты В. Поуэлла по пd-взаимодействию при 90 *Мэв*. При таком взаимодействии сечение образования протонов малой энергии (<10 *Мэв*), соответствующее квазисвободному пп-рассеянию, равнялось 14,6 · 10⁻²⁷ см², тогда как сечение образования протонов большей энергии, соответствующее квазисвободному пр-рассеянию, равнялось 51,1 · 10⁻²⁷ см².

Для некоторых геакций расщепления гелия в¹ приведены данные о спектрах и угловом распределении продуктов. Эти результаты представлены на рисунках 17-4. Следует отметить, что хотя полное сечение процесса dt, найденное в¹, удовлетворительно согласуется с теорией⁴,

Таблица 1

303

Рис. 3. Спектры протонов, образующихся в реакциях $n + \text{He}^4 \rightarrow p + t + n$ и $n + \text{He}^4 \rightarrow p + d + 2n$, и спектр тритонов, образующихся в реакции $n + \text{He}^4 \rightarrow p + t + n$.

зывалось 1000:1. Заметный выход дейтеронов назад связан, видимо, с захватом бомбардирующим нейтроном дейтерона в ядре Не4, причём тритон вылетает вперёд, а второй дейтерон получает малый импульс назад.

101

В пользу существования такого процесса свидетельствует также наличие тритонов больших энергий (рис. 3) и направленность тритонов вперёд (рис. 4) в процессе pt. Воспроизведение спектра первичных нейтронов до энергиям вторичных частиц в случаях pt и pd дало спектр, близкий к истинному, что указывает на слабую зависимость сечений этих реакций от энергии нейтронов. В случае же dt воспроизведенный спектр оказался смещённым в сторону меньших энергий, что говорит о заметном убывании сечения этой реакции с ростом энергии нейтронов. Из детального ба-

ланса реакции $d + t \gtrsim n + He4$ можно определить на основании данных¹, что при энергии дейтеронов 90 *Мэв* σ ($d+t \rightarrow n + He4$)= = (3,85 ± 0,75) · 10⁻²⁷ см².

В связи с вопросом о применимости α-частичной модели лёгких ядер представляет интерес сопоставление приведённых данных с результатами бомбардировки нейтронами с энергией 90 Мэв ядер углерода С¹². Часть исследования ядерных реакций n + C¹² была выполнена с помощью камеры Вильсона. Абсолютизация сечений производилась путём сравнения выхода различных реакций с выходом пр-рассеяния. Однако, как уже упоминалось, в камере Вильсона нельзя было разлятяжёлых осколков. чить массы

Рис. 4. Угловое распределение протонов, образующихся в реакциях $n + He^4 \rightarrow p + t + n$ и $n + He^4 \rightarrow p + d + 2n$, и тритонов, образующихся в реакции $n + He^4 \rightarrow p + t + n$.

дополнительно использовался «метод вращающегося Поэтому ЛИска». Полиэтиленовый диск диаметром 53,5 см вращался с определённой скоростью перед коллимированным пучком нейтронов (диаметром 8,4 см), попадавших на периферию диска. При нейтронной бомбардировке углеобразовывались нижеперечисленные радиоактивные рода изотопы: He⁶ (β^- ; $T_{1/a} = 0.87$ cek.; $E^{\beta}_{Makc} = 3.7 \ M\partial B$); Li⁸ (β^- ; 0.89 cek.; 12,7 $M\partial B$); Li⁹ (β^- ; 0,168 cek.; 11 M₂B); Be⁷ (K; 52,93 cytok; 0,48 M₂B, γ); Ве¹⁰ (β⁻; 2,5.10⁶ лет; 0,56 Мэв); В⁸ (β⁺; 0,65 сек.; 13,7 Мэв); В¹² (β⁻; 0,025 сек.; 13,46 Мзв); С¹⁰ (β+; 19,1 сек.; 2,2 Мэв) и С¹¹ (β+; 20,5 мин.; 0.98 Мэв).

Одновременно с активацией производилось измерение скорости радиоактивного распада образующихся изотопов. Для этой цели против диска, под разными углами к месту вывода пучка нейтронов и под углом 180° друг относительно друга располагались две пары торцевых счётчиков, направленных на диск с обеих сторон. При вращении диска со скоростью ω *радиан/сек*, интервале углов, где происходит облучение, а радиан и расположении счётчиков под углом в радиан относительно места облучения (отсчитывая угол по направлению движения диска), активность изотопа с постоянной распада λ после того, как диск совершит *n* оборотов, очевидно, равняется

$$4 = k \cdot \frac{\left(1 - e^{-\alpha\lambda/\omega}\right)\left(1 - e^{-n \cdot 2\pi\lambda/\omega}\right)}{1 - e^{-2\pi\lambda/\omega}} \cdot e^{-\lambda\theta/\omega},$$

где $k = \Pi N \sigma \varepsilon$ (П в $cm^{-2} ce\kappa^{-1}$ — поток нейтронов, N — число ядер углерода на всей площади цучка, σ в cm^2 — сечение соответствующей реакции, ε — эффективность регистрации распада торцевым счётчиком).

Выходы всех изотопов сравнивались с выходом С¹¹, поскольку сечение реакции С¹² (п, 2n) С¹¹ при энергии нейтронов 90 *Мэв* известно: $\sigma = 22 \pm 4 \cdot 10^{-27}$ см². Для короткоживущих изотопов типа В¹² в приведённом выражении $\frac{\alpha\lambda}{\omega} \ll 1$ и $\frac{2\pi\lambda n}{\omega} = \lambda t \gg 1$ (t – время от начала облучения); для изотопа С¹¹: $\frac{\alpha\lambda}{\omega} \ll 1$ и $\frac{2\pi\lambda}{\omega} \ll 1$. Поэтому

 $\frac{A_{\mathrm{B}^{\mathrm{rd}}}(\theta)}{A_{\mathrm{C}^{\mathrm{rd}}}} = \frac{\sigma_{\mathrm{B}} \varepsilon_{\mathrm{B}}}{\sigma_{\mathrm{C}} \varepsilon_{\mathrm{C}}} \cdot \frac{\frac{\lambda_{\mathrm{B}}}{2\pi\omega} \cdot e^{-\lambda_{\mathrm{B}} \theta/\omega}}{(1-e^{-2\pi\lambda_{\mathrm{B}}/\omega})(1-e^{-\lambda_{\mathrm{C}} t})} *).$

Меняя толщину диска, скорость его вращения (от нуля до 6000 оборотов мин.) и толщину поглотителей, расположенных между диском и счётчиками, автор² определил сечения образования всех перечисленных выше изотопов. Основные результаты работы² приводятся в таблицах II и III. Автор² сделал попытку использовать данные, полученные с камерой Вильсона, для оценки выхода отдельных конкретных изотопов — в том числе и стабильных. Для таких оценок он использовал, в частности, сделанный им на осиосатавлия соосставления сечений облазования В13 (боз вы-

Автор² сделал попытку использовать данные, полученные с камерой Вильсона, для оценки выхода отдельных конкретных изотопов — в том числе и стабильных. Для таких оценок он использовал, в частности, сделанный им на основании сопоставления сечений образования В¹² (без вылета нейтрона) и других изотопов бора (с вылетом нейтронов), а также некоторых других данных, взвод, что в реакциях с испусканием заряженных частиц не более 10% случаев не сопровождается одновременным вылетом нейтронов. Однако эти оценки чрезвычайно грубы и в ряде случаев противоречат других цифрам, приводимым в²; и мы не будем на них останавливаться. Данные работы² удовлетворитель ю согласуются с результатами других исследований взаимодействия нейтронов с энергией 90 *М.в.в.* с ядрами углерода. Близки полученные в разных работах сечения упругого рассеяния и интегральные сечения перируих столкновений, а также сечения образования в разчых реакциях протонов с энергией более 20 *М.в.в.*, дейтеронов — более 27 *М.э.в.* и тритонов — более 33 *М.э.в.* (равные² соответственно 85,3 ± 9,2, 26,1 ± 3,4 и 3,9 ± 0,93 · 10⁻²⁷ см²). Сопоставление результатов взаимодействия нейтронов с ядрами гелия

Сопоставление результатов взаимодействия нейтронов с ядрами гелия и углерода указывает на невозможность простой интерпретации, основанной на α -частичной модели. В таблице IV сопоставляются относительные доли разных процессов (в обозначениях таблицы I) при взаимодействии $n + He^4$ и $n + C^{12}$ с образованием, кроме других продуктов, двух 2-частиц (т. е. как бы взаимодействия нейтрона с α -частицей внутри ядра C^{12}).

В таблице V приводятся относительные доли выходов p, d, t и He³ всех реакциях нейтронов с He⁴ и C¹².

Разлачие во взаимодействии нейтронов с ядрами гелия и углерода связано, видимо, с тем, что, в отличие от протонов и нейтронов, сложные частицы (He³, t н т. д.), образующиеся в ядре углерода, с большой вероят.юстью разваливаются вследствие новых столкновений в том же ядре. Поэтому выход р, п и d из ядра C¹² выше, чем из He⁴, а выход t и He³ — гораздо ниже. Аналогичные рассуж цения применимы и к квазисвободному рассеялию п + He⁴. В то время как, например, сечение квазисвободному рассеялию п + He⁴. В то время как, например, сечение квазисвободному рассеялия pp в ядрах лития втрое выше сечения свободного рассеяния, суммарное сечение реакций с испусканием α-частиц из ядер C¹² равняется всего 73,4·10⁻²⁷ см², т. е. меньше сечения упругого рассеяния п + He⁴ (96 · 10⁻²⁷ см²).

*) В тексте² в этой формуле множитель $(1 - e^{-\lambda_C t})$ ошибочно помещён в числителе.

Таблица II

	Число	Сечение	Число бы	обнаруже стрых част	нных гиц
	звёзд	(×10 ⁻⁷ см ²)	р>20 Мэв	d > 27 Мэв	t > 33 <i>Мэ</i> в
Двухлучевые: pB dB tB aBe LiLi неидентифициро-	$557 \\ 422 \\ 104 \\ 16 \\ 11 - 2 \\ 4 \pm 2$	$125 \pm 10 \\ 95 \pm 9 \\ 24 \pm 4 \\ 3,6 \pm 1,0 \\ 2,5 \pm 1,1 \\ 0,9 \pm 0,6 \\ \end{array}$	278 278 	66 66 	7
ванные aaa . aaa . $pALi$ $pALi$ pHa^3Li dLi dLi dLi dHa^3Li dHa^3Li dHa^3Li dHe^3Li dHe^3Li dHe^3Li dHe^3Li pBE $pdBe$ $pdBe$ $ddBe$ $ddBe$ $pdBe$ $pdBe$ $pdBe$ $pdBe$ $pdBe$ $pdBe$ $pdBe$ $pdHe^3a$ $pdHe^3a$ $ptHe^3a$ $ptHe^3a$ $ptHe^3a$ <t< td=""><td>$\begin{array}{c} 4\\ 318\\ 43\\ 5\\ 78\\ 7\\ 46\\ 2\\ 6\\ 4\\ 28\\ 43\\ 13\\ 25\\ 18\\ 151\\ 29\\ 2\\ 41\\ 1\\ 25\\ 8\\ 5\\ 15\\ 2\\ 1\\ 7\\ 5\\ 1\\ 7\\ 2\\ 7\\ 2\\ 1\\ 1\\ 3\\ 1033 \end{array}$</td><td>$\begin{array}{c} - & 9 \\ 71 \pm 9 \\ 9,8 \pm 1,7 \pm 2,6 \\ 1,1 \pm 1,2 \\ 0,6 \\ 0,4 \pm 1,2 \\ 0,3 \pm 1,2 \\ 0,4 \pm 1,2 \\ 0,4 \pm 1,4 \\ 0,4 \pm 1,4 \\ 0,4 \pm 1,4 \\ 0,4 \\ 0,2 \pm 1,4 \\ 0,4 \\ 0,2 \\ 1,6 \pm 1,4 \\ 0,4 \\ 0,2 \\$</td><td>$\begin{array}{c}$</td><td></td><td></td></t<>	$\begin{array}{c} 4\\ 318\\ 43\\ 5\\ 78\\ 7\\ 46\\ 2\\ 6\\ 4\\ 28\\ 43\\ 13\\ 25\\ 18\\ 151\\ 29\\ 2\\ 41\\ 1\\ 25\\ 8\\ 5\\ 15\\ 2\\ 1\\ 7\\ 5\\ 1\\ 7\\ 2\\ 7\\ 2\\ 1\\ 1\\ 3\\ 1033 \end{array}$	$\begin{array}{c} - & 9 \\ 71 \pm 9 \\ 9,8 \pm 1,7 \pm 2,6 \\ 1,1 \pm 1,2 \\ 0,6 \\ 0,4 \pm 1,2 \\ 0,3 \pm 1,2 \\ 0,4 \pm 1,2 \\ 0,4 \pm 1,4 \\ 0,4 \pm 1,4 \\ 0,4 \pm 1,4 \\ 0,4 \\ 0,2 \pm 1,4 \\ 0,4 \\ 0,2 \\ 1,6 \pm 1,4 \\ 0,4 \\ 0,2 \\ $	$ \begin{array}{c} $		

Сводка дачных о взаимодействии нейтронов с энергией 90 *Мэв* с ядрами С¹²

Таблица III: 😳

Сечения образования различных продуктов при бомбардировке ядер углерода нейтронами с энергией 90 Мэв

	· · · · · · · · · · · · · · · · · · ·	H1	H2		H3 -	He ³
Σσ Σνσ		160 ± 24 176 + 29	79 ± 18 93,6 + 22	3 22 2,4 22	$2,3 \pm 7,1$ 2,3 + 7,1	6,1+2,6 6,1+2,6
	He ⁴	Li	Be *)	В		C
Σσ	$73,4 \pm 16,8$ 121 ± 28	$38,5 \pm 9,0$ $39,4 \pm 9,9$	31, 3+7, 8 31, 3+7, 8	123 ± 14 123 + 14	[Упругос 2 С ¹² (п, 2	е рассеяние — 175 ± 50 n) С" — 22 ± 4
Данные метода вращаю- щегося диска	He ⁶ 2,54 + 0,96	$ \begin{array}{c} Li^{9} \\ < 1,0 \\ Li^{8} \\ 0,82 \pm 0,42 \end{array} $	$\begin{array}{c} \text{Be}^{7} \\ 8,8 \pm 4,6 \end{array}$	$ B^{12} 4,93+1,0 B^8 <1,0 $	0,	C^{10} 67 \pm 0,50

Сечения даны в единицах 10⁻²⁷ см². Значение ∑σ определяет сумму сечений всех реакций, в которых данный продукт образуется независимо от кратности образования. Значение ∑уσ определяет суммарное сечение образования данного продукта с учётом кратности выхода.

*) Без учёта выхода Ве⁸, дающего две а-частицы.

текущей литературы

ИЗ

Из приведённых в таблицах II и III данных можно оценить среднее число вторичных нейтронов, испускаемых в одном неупругом столкновении нейтрона с энергией 90 *Мав* с ядром углерода: $v \simeq 1,5 \pm 0,3$. Относительно подробные результаты работы² удалось получить благодаря сочетанию двух методов, позволивших регистрировать как вылетающие частицы, так и конечные ядра. Значительно менее определённые результаты дала работа³, в которой исследовались заряженные продукты расщепления ядер, углерода и бериллия протонами с энергией 330 *Мав*.

В этой работе в пучок протонов внутри камеры синхроциклотрона вводились мишени в виде лент из бериллия (8,7 мг/см²) и полистирода

(2,9 мг/см²) шириной 2 мм. Продукты расщепления заворачивались магнитным полем ускорителя, немного при этом опускаясь, и попадали на фотопластинки Ильфорд С-2, размещённые, как показано на рис. 5, в медной защитной стенке; вырезанные в последней каналы определяли направление регистрируемых частиц. Пластинки располагались на продолжении радиальной линии центр камеры—мишень, так что регистрируемые частицы описывали в магнитном поле дугу в 180°. Расстояние пластинок. от мишени было около 46, 61 и 88 см, что соответствовало при H=14 300 гауссов энергии протонов, вылетающих из мишени в прямом направлении.

Таблица IV

ч., т., т., т., т., т., т., т., т., т., т	pt	đt	pđ	dd	рр	He ³
$n + He^4$	44,7	13,8	16,1	7,5	0,8	17,1
$n + C^{12}$	12,2	6,5	33,3	20,4	23,6	

Таблица V

	p	d	t	He ³
$n + He^4$	34,2	24,3	32,2	9,3
$n + C^{12}$	59,0	31,6	7,4	2,0

Е, около 5, 10 и 20 Мэв, а энергии других частиц

$$E = E_{\rm p} \, \frac{z^2}{A} \, .$$

При таком интервале регистрируемых энергий протоны от свободного pp-рассеяния в полистироле не могли служить помехой. При анализе данных выбирались лишь треки, входившие в эмульсию под углами 180 ± 10° к исходному пучку. Идентификация частиц производилась по заранее построеаным для всех ожидавшихся продуктов графикам: кривизна траектории – пробег в эмульсии. Проверка этих графихов для многозарядных ионов производилась по характерным гаммер-трекам Li³ и B⁸ (Li⁸→Be⁸ → 2α; B⁸ → Be⁸ → 2α). водилась по карактерным гаммер-трекам Li³ и B⁸ (Li⁸→Be⁸ → 2α; B⁴ → B⁴)

Таким образом, было эмпирически установлено влияние захвата электронов на кривизну треков многозарядных ионов в конце пробега. В отдельных случаях (например, для различения H² и He³) производилось определение плотности зёрен. Вводилась геометрическая поправка для пе-

Таблица VI

	Продукты расщепле- ния Ве ⁹ в %				Продукты расщепле- ния С ¹² в %				
ę (CM)	2224	29,5-31,5	4345	BCELO	2224	29,5-31,5	4345	BCeLO	
Н1 H ² H ³ He ³ Li ⁶ , Be ⁷ Li ⁷ B ⁸ Неклассиф. про- дукты и фон Общее число слу- чаев	11,6 4,3 4,6 14,0 0,8 0,3	10,0 3,7 4,0 15,4 1,2 0,3 — — —	5,9 3,7 3,3 1,6 4,1 0,2 0,3	27,5 11,7 11,8 10,7 33,5 2,2 0,9 1,7 1082	13,1 2,5 1,7 3,5 17,1 0,9 0,8 	8,8 2,9 1,6 3,4 16,9 0,9 0,1 0,1 	6,7 3,5 1,8 2,2 6,2 0,1 0,8 	28,6 8,9 5,1 40,2 1,9 1,7 0,1 0,1 4,3 812	

рехода от наблюдённого числа треков на единицу площади и единицу азимутального угла к числу треков на единицу радиуса кривизны и единицу телесного угла. Результаты измерений приводятся в таблице VI.

Как уже было сказано, результаты работы³ являются значительно менее определёнными, чем результаты описанной выше работы². Не говоря уже о том, что выходы отдельных продуктов даются лишь в относительных единицах, укажем, что даже из абсолютных выходов различных продуктов нельзя сделать заключение о доле различных реакций в неупругом взаимодействии протонов высокой энергии с ядрами Ве⁹ и С¹².

Например, при образовании He⁴ в реакции p + Be⁹ могут появиться Зр, 3d, t + He³, d + He⁴ и т. п. Выбор тех или иных возможностей, на основании законов сохранения, затрудняется вариантами, когда образуются нейтроны. В результате становится практически невозможным вывести из известной доли различных продуктов долю различных реакций. Заметная погрешность связана, видимо, и с ограничением энергин регистрируемых частиц.

В таблице VII сопоставлены относительные выходы различных продуктов при бомбардировке углерода нейтронами с энергией 90 *Мэв*² и протонами с энергией 330 *Мэв*³.

Таблица VII

Относительный выход (в %)	р	đ	t	He³	He ⁴	He ⁶	Li	Be	В	C
Нейтроны 90 Мзв	27,8	14,8	3,5	6,9	19,0	0,4	6,0	4,8	19,3	3,4
Протоны 330 Мэв	28,6	8,9	5,1	9,1	40,2			3,8		

Основное различие результатов состоит в резком уменьшении во втором случае выхода тяжёлых осколксв и в увеличении выхода а-частиц. Это расхождение в сильной степени связано именно с ограничением энергии регистрируемых частиц во втором случае. В то время как а-частицы почти все попадали в интервал их регистрации 5—20 Мэв, большая часть лёгких частиц обладала более высокой энергией (например, как показано в², доля протонов с энергией более 20 Мэв составляет около 50% всех протонов, то же относится и к дейтеронам с энергией более 10 Мэв), а большая часть тяжёлых осколков обладала энергией ниже порога (равного, например, 12,5 Мэв для 5В-9). Поэтому результаты работы ³ не являются показаньыми для количественного определения относительных выходов разных продуктов и сечений различных реакций.

Г.И.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. P. Tannenwald, Phys. Rev. 89, 508 (1953).
- 2. D. Kellogg, Phys. Rev. 90, 224 (1953).
- .3. W. Barkas a H. Tyren, Hhys. Rev. 89, 1 (1953).
- 4. J. Heidmann, Phil. Mag. 41, 444 (1950).