НОВЫЕ ТЯЖЁЛЫЕ ЯДРА

Число искусственно приготовленных радиоактивных ядер в области тяжёлых элементов продолжает расти. В последнее время опубликованы две работы, в которых описано несколько вновь полученных тяжёлых ядер с недостаточным, по сравнению с ядрами естественной последовательности, числом нейтронов. В первой из реферируемых работ ¹ описывается искусственный побочный радиоактивный ряд с родоначальным ядром U²²⁷. Этот ряд принадлежит к актиниевому семейству с массов лми числами, выражаемыми формулой 4n + 3, и приводит в конце концов к устойчивому изотопу свинца Pb²⁰⁷. Основные данные представлены в таблице I.

Таблица I

Изотоп	Тип превра- щения	Период полураспада	Энергия а-частицы (<i>Мэв</i>)	Энергия ∝-распада (<i>Мэв</i>)
U227 Th ²²³ Ra ²¹⁹ Em ³¹⁵ Po ²¹¹	a a a a	$1,3 \pm 0,3$ мин. ~ 10^{-1} сек. (предск.) ~ 10^{-3} сек. (предск.) ~ 10^{-6} сек. (предск.) 0,52 сек.	$6,8 \pm 0,1 7,55 \pm 0,10 8,0 \pm 0,1 8,6 \pm 0,1 7,434$	$6,9 \pm 0,1 7,7 \pm 0,1 7,15 \pm 0,10 8,8 \pm 0,1 -$
РЬ207	и устойчив			_

Радиоактивные свойства побочного радиоактивного ряда U227

Получение U²³⁷ было осуществлено бомбардировкой порошка азотнокислого тория гелиевыми ионами, ускоренными в 181-дюймовом циклотроне. Исключительно малый период полураспада U²³⁷ привёл к необходимости ускорить все операции. В частности, несмотря на то, что расстояние от циклотрона до химической лаборатории было всего около 100 *м*, была построена «пневматическая почта» — труба, по которой образец доставлялся сжатым воздухом, так, что через 12 — 15 сек. после окончания облучения образец был уже в химической лаборатории. Химическое выделение урана из образца было настолько ускорено, что через 1,4 минуты после окончания облучения можно было приступать к анализу спектра альфачастиц. Для ускорения счёта альфа-частиц циферблат механического счётчика, регистрирующего альфа-частицы в спектроскопе, фотографировался на киноплёнку. Кривые составлялись уже позже, по произведённым снимкам.

Так как получить достаточное количество конечного продукта распада не удавалось, идентификация изотопов произведена по энергиям альфараспадов и периодам полураспадов с использованием альфа-систематики (см. ²). Периоды полураспада короткоживущих изотопов тория, радии и эманации не удалось определить экспериментально. Величина их периодов полураспада была оценена по энергиям альфа-распада, базируясь на альфа-систематике (см. ²).

Вторая из реферируемых работ³ описывает получение нейтроннонедостаточных ядер эманации, франция и радия со специальной целью получить ядра этих элементов со 126 или меньшим числом нейтронов. Эти ядра дают возможность изучения эффекта образования в ядрах замкнутой нейтронной оболочки из 126 нейтронов. Наибольший успех достигнут в получении нейтронно-недостаточных изотопов эманации. В таблице II приведены данные полученных и изученных ядер новых изотопов эманации и франция.

Таблица II

Изотоп	Отношение	Период	Энергия	Энергия
	разветвле-	полурас-	α-частицы	α-распада
	ния (<i>E</i> /а)	пада	(Мэв)	(<i>Мэв</i>)
Em ²⁰⁰ Em ²¹⁰ Em ²¹¹ Em ²¹² Fr ²¹²	$ \begin{array}{c} 4-6 \\ \sim 0,1 \\ 2,8 \\ < 0,01 \end{array} $	31 мин. 2,7 часа 16 час. 23 мин.	$6,02 \pm 0,02 6,02 \pm 0,02 5,82 \pm 0,02 6,23 \pm 0,02 6,36 \pm 0,02$	$6,14 \pm 0,02 \\6,14 \pm 0,02 \\5,93 \pm 0,02 \\6,35 \pm 0,02 \\6,48 \pm 0,02$

Данные новых изотопов эманации и франция

Изотопы эманации были получены бомбардировкой тория протонами, ускоренными в циклотроне до энергии 340 *Мъв.* Атомы эманации ионизовались в тлеющем разряде, ионы ускорялись в электрическом поле до нескольких сотен вольт и направлялись на платиновую пластинку, поглощавшую их. Такие образцы из платины с поглощённой эманацией можно было изучать как обычные твёрдые образцы.

Изотоп Fr ²¹² был идентифицирован с помощью масс-спектроскопа нового типа, основанного на сравнении времени полёта ионов в магнитном поле.

Делались попытки получить также изотопы радия с массовыми числами менее 214. По альфа-систематике² можно предположить, что, например, Ra²³ будет иметь период полураспада около 2 мин., поэтому наблюдение этого изотопа пока не удалось. Для получения нейтронно-недостаточных изотопов радия был применён также метод облучения свинца шестикратно ионизованными атомами углерода. Этот метод как будто бы является более удобным для получения лёгких изотопов радия, но пока и он не дал результатов. Влияние оболочки из 126 нейтронов на величину энергии альфа-распада представлено на графике, изображающем зависимость энергии альфараспада от числа нейтронов в ядре. Резкий скачок энергии альфа-распада при N > 126 виден ясно. Следует лишь отметить, что этот скачок посте-

пенно уменьшается с увеличением порядкового номера элемента Z. Скачок наибольший у изотопов полония и убывает последовательно к эманации. Форма кривой сохраняется у всех элементов одинаковой.

B. K.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- W. Meinke, A. Ghiorso and G. Seaborg, Phys. Rev. 85, 429 (1952).
- 2. И. Перлман, А. Гиорсо и Г. Сиборг, УФН 42, 220 (1950).
- 3. F. Momyer, E. Hyde, A. Ghiorso and W. Glenn, Phys. Rev. 86, 805 (1952).

11