Результаты оныта: при энергии протонов 80 *Мэв* галлия не обнаружено совсем, при 100 *Мэв* обнаружены следы радиоактивного галлия, при 150 и 180 *Мэв* галлия уже достаточно для его количественного определения; сечение реакции при этих энергиях — около $10^{-32}c_{\mathcal{M}^3}$.

5. Барий. Теоретический порог для Ва¹³⁷ (р. 20n 13 с) Ga⁶⁶ – 370 Мэв, для Ва¹³⁷ + р \rightarrow Ga⁶⁶ + Fe⁶⁰ + 12n, соответственно, 150 Мэв. Опыт похазывает, что оба радиоактивных изотопа Ga⁶⁶ и Ga⁷³ образуются уже при бомбардиров ва¹³⁷ протонами с энергией 335 Мэв (сечение реакции 10⁻³¹ см³).

Понижение порога энергий бомбардирующих частиц против его теоретического значения могло бы быть вызвано не только реакцией деления, но и распадом при бомбардировке ядер различных примесей. Поэтому во всех случаях был проведён тщательный анализ содержания примесей и их возможной роли, и на основании этого анализа авторы заключают, что наблюдавшиеся ими весьма низкие пороги реакций посторонними примесями объяснены быть не могут и со всей определённостью указывают на существование реакций деления.

В качестве вывода из своей работы авторы высказывают мнение, что при соответствующих энергиях возбуждения реакции деления происходят в ядрах всех элементов.

М. Гинцбург

ЭФФЕКТИВНЫЕ ЯДЕРНЫЕ СЕЧЕНИЯ ДЛЯ НЕЙТРОНОВ ВЫСОКИХ ЭНЕРГИЙ

За последние годы появился ряд работ, посвящённых определению эффективных ядерных сечений для нейтронов высоких энергий.

Источником нейтронов высоких энергий служили две реакции расщепление дейтеронов при бомбардировке различных мишеней и обмелное взанмодействие протонов с нейтронами в ядрах бомбардируемых мишеней.

В первой из указанных реакций возникают нейтроны со средней энергией, равной половине энергии дейтеронов. Во второй реакции возникают нейтроны с весьма широким энергетическим спектром, максимум которого лежит несколько ниже энергии исходных протонов.

Согласно теории ¹ полные эффективные ядерные сечения для нейтронов высоких энергий слагаются из сечений упругого (диффракционного) рассеяния σ_d и сечений неупругих столкновений σ_a , причём при относительно малых энергиях $\sigma_a = \sigma_d = \pi R^3$ и полное сечение $\sigma_t = 2\pi R^2$, где R — радиус ядра. На основании опытов по определению полных сечений для нейтронов с энергией 14 — 25 Мэв было выведено³ прибли-

жённое соотношение $R = \left(1, 3 + 1, 37 A^{\frac{1}{3}}\right) \cdot 10^{-13}$ см. Энергетическая

11 УФН, т. XLV, вын. 3

Ядро	E_n (M38) $2\pi R^3$	398	429	64,58	8410	9511	978	100-10511	110-12012
1	2	3	4	5	6	7	8	9	10
H* D* Li Be		0,223	0,203 0,289 0,684 0,853	0,125 	0,083 0,117 0,314 0,431	0,073 0,104 	0,074		
D C #	1,10	1 100	1 0,900	0 784	0.550	0 108	0 508	0.48	
N*	1,24	1,100	1 220	0,104	0,000	0,490	0,508	0,40	_
0*	1,63		1,358		0.765	0.663			
F*	1,61		1,603						
Na*	1,69		1,67						
Mg	1,75		1,723			-	·~ .		·
- A1	1,84		1,782		1,12	0,993			0,733
S *	2,01		1,974						- [
C1*	2,12	-	2,11			1,28			
Ca	2,25	-	2,210				•		
Fe	2,67	-	2,441						-
Ni	2,10		2,310		2 22	2 00		1 02	1 40
	2,00		2,040		2,22	2,00		1,92	1,49
Br*	3.25	_	2,93		_				
Sr*	3,43	_	2,99						
Mo	3.60	[3.11						
Ag	3,83		3,229						
Sn	4,04		3,251		3,28	3,18			
I*]	4,22		3,51						- 1
Ba*	4,41	-	3,57	-					
Ta	5,14	-	4,20	- ([- [
W	5,19		4,31	~	-		-		
Hg	5,44	-	4,51	-			-		2 71
Pb	5,56	-	4,44		4,53	4,48]	0,11
B1	5,60		4,58	-			-	-	_
	5,92 6.02		5 19	-	5.03	1 02			
U	0,02		0,14		0,00	−1 , J∠			

Полные эффективные ядерные сечения

Таблица I

для неитронов различных энергии

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14512	1568	16012	18012	19012	22012	24012	2606	27013	28014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	-12^{-12}	13	14	$-\frac{15}{15}$	16	17	18	19	20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	12 0,0464 0,330 - - - - - - - - - - - - - - - - - -			15 0,291 0,310 	16 0,041 		18	19 0,038 0,057 0,029 0,288 0,372 - 0,555 - 1,145 - 1,145 - 1,87 - 2,61	20 0,033 0,049 0,164 0,225
	····· ,				2,85 3,28	2,99 	2,88		2,84 3,29	2,80 2,89 3,14

467

ядерных сечений для нейтронов высозависимость эффективных кой энергии была рассмотрена теоретически в, причём был сделан вывод, что полные сечения и, особенно, сечения неупругих столкновений должны довольно быстро падать с энергией. Такой вывод был получен на основе предположения о росте «прозрачности» ядер для нейтронов высокой энергии, следовавшего из опытов, показавших довольно сильное падение сечения пр-рассеяния с ростом энергии нейтронов 4, 5, 6. Однако исследования сечения pp-рассеяния при разных энергиях протонов показали, что это сечение остаётся практически постоянным в широком интервале энергий: от 120 до 340 Мэв 7. Таким образом было серьёзно поколеблено основное предположение о «прозрачности», лежавшее в основе теоретических предсказаний об энергетической зави-

Таблица II

Соотношения сечений неупругих столкновений и полных эффективных

ядерных сечений $\left(\frac{\sigma_a}{\sigma_t}\right)$ для нейтронов различных энергий

	<u> </u>								
Ядро	8415	9511	27013						
С		0,45	0,505						
Al	0,38	0,42							
Cu	0,36	0,39	0,50						
Рb	0,38	0,40	0,50						

симости эффективных ядерных сечений для нейтронов высокой энергии.

Опыты по определению этих сечений подтвердили расхождение с теоретическими предсказаниями. Оказалось, что сечения взаимодействия нейтронов высокой энергии с ядрами довольно быстро падают с ростом энергии нейтронов до 150 — 180 Мэв, но при более высоких энергиях меняются весьма мало. Сводка всех данных приводится в таблицах I и II. Определение подных сечений проводилось при размещении детектора вдали от поглотителя нейтронов, когда любые столановения выводили нейтроны из пучка. Определение сечений неупругих столкновений проводилось при размещении детектора вплотную за поглотителем, когда

упругие столкновения не выводили нейтроны из пучка. Для ряда элементов сечения определялись по разностному эффекту ослабления пучка соединениями, в состав которых входили атомы данных элементов. Такие элементы отмечены в таблице звёздочками. Сечения и величины $2\pi R^3$ даны в единицах, равных 10^{-24} см². Величины $2\pi R^3$ рассчитаны

по приведённой выше формуле $R = f\left(A^{\frac{1}{3}}\right)$.

Г. И.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. А. И. Ахиезер и И. Я. Померанчук, Некоторые вопросы теории ядра, Гостехиздат, 1948.

 - рип ядра, гостехнадат, гото. 2. R. Shert, Phys. Rev. **61**, 734 (1942). 3. S. Fernbach, R. Serber, T. Taylor, Phys. Rev. **75**, 1352 (1949). 4. J. Hadley, E. Kelly и др. Phys. Rev. **75**, 351 (1949). 5. A. Taylor, T. Pickavance и др., Phil. Mag. **42**, 20 (1951). 6. E. Kelly, C. Leith и др., Phys. Rev. **79**, 96 (1950). 7. Ochoarbarlar E. Sagraf, C. Wiagraf, Phys. Rev. **81**, 281
- 7. O. Chamberlain, E. Segré, C. Wiegand, Phys. Rev. 81, 284 (1951).

- 8. T. Pickavance, I. Cassels, T. Randle, Phil. Mag. 42, 328 (1951).
- 9. R. Hildebrand a. C. Leith, Phys. Rev. 80, 842 (1950).
- 9. к. Писеблана а. С. Lентн, Phys. Rev. 80, 842 (1950)
 10. L. Cooc, E. McMillan и др., Phys. Rev. 75, 7 (1949).
 11. J. De Juren a. N. Knable, Phys. Rev. 77, 606 (1950).
 12. J. De Juren a. B. Moyer, Phys. Rev. 81, 919 (1951).
 13. J. De Juren, Phys. Rev. 80, 27 (1950).
 14. R. Fox, C. Leith и др., Phys. Rev. 80, 23 (1950).
 15. A. Bratonahl S. Fornbach и по Phys. Rev. 77, 507

- 15. A. Bratenahl, S. Fernbach и др., Phys. Rev. 77, 597, (1950).

ЗВЁЗДЫ, ОБРАЗОВАННЫЕ ФОТОНАМИ высокой энергии

В большом числе работ исследовалось образование звёзд под действием частиц высокой эпергии (в космическом излучении или искусственно ускоренных). Однако образование звёзд под действием фотонов высокой энергии до педавнего времени не было изучено. На основании работ по фотоядерным реакциям можно было только заключить, что сечение образования звёзд под действием фотонов должно быть значительно мельше, чем под действием частиц высокой энергии.

В последние месяцы появились три работы, посвящённые образованию под действием у-квантов высокой элергии звёзд в фотоэмульсиях (Ильфорд С-2). Исследовалось распределение звёзд по числу лучей энергетическое распределение лучей, а также оценивалось среднее сечение звездообразования на суммарцый состав эмульсии (исключая атомы водорода).

В таблице І приведено лучевое распределение звёзд, образованных тормозным излучением с максимальной энергией 300 Мэв¹, а также

1	Ċа	б	л	И	ц	а	1	
---	----	---	---	---	---	---	---	--

Число	лучей						•							2	3	4	5	6	7
Число	звёзд												•	103	61	57	24	4	1
Отно	сительн	06	•	1	н	a	фс	т	эна	ax		•	•	160	100	89	38	6,4	1,6
чис	ло звёз	ŗ		Ĵ	н	a	М€	230	эн	ax				180	100	51	12		

данное в статье¹ для сравнения лучевое распределение звёзд, образованных л-мезонами.

Энергетическое распределение лучей иллюстрируется 1 таблицей II.

	Таблица II
Энергия лучей в Мэв <0,2 0,2—2	2-10 10-30 30-60
Число лучей 67 181	427 109 39

Сечение образования звёзд составляет несколько единиц 10 - 27 см³ и довольно быстро возрастает с ростом максимальной энергии спектра тормозного излучения, как это можно видеть 2 из таблицы III.

				Τασ	лица III
Е _{їмакс} в Мэв .	•	150	200	250	300
с _{звезд} ^у 1027 с.и ² .		1,95 <u>+</u> 0,18	2,55 <u>+</u> 0,19	$5,63\pm0,56$	6,04 <u>+</u> 0,41