ФИЗИЧЕСКИЕ ЭКСПЕРИМЕНТЫ, ПРОИЗВЕДЁННЫЕ НА БЕТАТРОНЕ И СИНХРОТРОНЕ

Практическое осуществление мощных ускорителей для электронов бетатрона и синхротрона — дало физикам искусственный источник ү лучей большой энергии и сделало возможным постановку ряда физических экспериментов с фотонами больших энергий, которые мы могли до сих пор наблюдать лишь в космических дучах в ничтожных интенсивностях, несравнимых с получаемыми теперь в бетатроне или синхротроне.

наблюдать лишь в космических дучах в ничтожных интенсивностях, несравнимых с получаемыми теперь в бетатроне или синхротроне. Изучение ядерных реакций, вызываемых фотонами с энергией ~100 MeV, интересно в том отношении, что такая энергия достаточна для отщепления от ядра нескольких частиц, что приводит к большому разнообразию ядерных реакций при этих энергиях. И действительно, одна из первых работ, выполненных на бетатроне на 100 MeV компании «Дженерал Электрик»¹, привела к обнаружению наряду с ранее известными реакциями (γ, n), (γ, p) большого числа реакций типа (γ, pn), (γ, 2n), (γ, 2pn), (γ, 2pn), (γ, 3pn), (γ, an). Как в этой, так и в последующих работах, посвященных более тидательному изучению наблюдаемых реакций, применялось в основном два метода: фотографирование в камере Вильсона и измерение радиоактивности продуктов расщепления. Несколько работ посвящено изучению относительного выхода различных ядерных реакций в зависимости от бомбардируемого элемента и энергии γ-квантов^{2, 3, 4}. Для истолкования полученных результатов нужно знать спектральный состав рентгеновского излучения. Авторы работ принимали теоретический спектр тормозного излучения. В недавно опубликованной работе Лоусона⁵ указывается, что экспериментальные результаты согласуются с теоретическим.

Хронологически первой является работа Болдуина и Клайбера² по фотоделению ядер под действием ү-квантов от бетатрона на 100 MeV. Были сняты кривые зависимости числа случаев деления (на 1 рентген интенсивности излучения) от максимальной энергии ү-лучей. При этом акты деления регистрировались дифференциальной ионизационной камерой, а интенсивность рентгеновского излучения определялась стандартной «напёрстковой» камерой Victoreen, окружённой 3 мм свинца. Для U и Th выход быстро растёт до некоторой максимальной энергия (18 MeV для U и 20 MeV для fb), а затем медленно спадает.

Авторы рассчитали на основе полученных данных эффективное сечение для фотоделения U и Th, исходя из спектра тормозного излучения в тонких чишенях (по Гайтлеру). На основе такого спектра и упрощенной схемы образования вторичных частиц в свинце, окружающем «напёрстковую» камеру, была рассчитана эффективность камеры, знание которой необходимо для расчета эффективного сечения. Вычисленное сечение проходит через максимум (18 MeV для U и 20 для Th) и спадает практически до нуля при энергии > 30 MeV. Максимальное сечение ~ $5 \cdot 10^{-26}$ для U и 2,5 $\cdot 10^{-26}$ для Th.

Исследовались также Ві, Рb, Tl, Au, W, Sm, однако деление этих элементов не обнаружено, т. е. сечение фотоделения меньше 10-29.

Другая работа тех же авторов⁵ посвящена исследованию реакций С¹² (ү, n) С¹¹ и Си⁶³ (ү, n) Си⁶².

Определялась зависимость выхода реакции от максимальной энергии γ-лучей. Интенсивность γ-излучения измерялась, как и в предыдущей работе, а выход реакции определялся по радиоактивности продуктов реакций (образдами служили листок политена или медная фольга толщиной 0,075 мм) после облучения образцов в центре пучка γ-лучей в 170 см от бетатрона. Зависимость выхода от энергии имеет тот же характер, что и для фотоделения. Вычисленное эффективное сечение имеет максимум при 22 MeV для Си и 30 MeV для С и быстро спадает практически до нуля. Быстрое уменьшение сечения с ростом энергии в данных реакциях и при фотоделении авторы объясняют появлением конкурирующих реакций при этих энергия.

авторы объясняют появлением конкурирующих реакций при этих энергиях. Перльман и Фридляндер⁴ исследовали целый ряд ядерных реакций, подвергая облучению ү-лучами от бетатрона и синхротрона различные образцы при двух различных значениях энергии (50 MeV и 100 MeV). Выход реакции определялся измерением радиоактивности образцов после их облучения. Результаты опытов сведены в следующую таблицу (выход реакции N¹⁴ (7, n) N¹³ принят за 1). Обращает на себя внимание приблизительно одинаковая зависимость вы-

Обращает на себя внимание приблизительно одинаковая зависимость выхода реакций (γ , n) и (γ , p) от массового числа при обоих значениях энергии. Она также говорит в пользу вывода, сделанного в работах ^{2,5} о том, что эффективное сечение реакций (γ , p) и (γ , n) ничтожно мало для больших энергий Причина скачка в выходе реакции (γ , n) вблизи $A \approx 60$ авторам неясна.

Следует отметить ещё группу тщательных исследований с ү-излучением от бетатрона на 100 MeV, проведённых с целью подтвердить или опровергнуть результаты опытов Шейна, Гарцлера и Клайбера⁸, которые якобы обнаруживали реакцию (γ, µ).

Клайбер, Любке и Болдуин⁷ провели тщательные эксперименты с камерой Вильсона, помещённой в магнитное поле 1,2650 гаусса. Камера была разгорожена рядом алюминиевых фольг нарастающей толщины (от 0,1 до

Исходчый изотоп	Относительный выход		Maxon main	Относительный выход	
	100 MeV	'50 MeV	Изотоп	100 MeV	50 MeV
Реакция (ү, п)			Реакция (ү, р)		
C12 N14 O16 F19 A127 P81 C125 K89 Ni58 Cu68 Ga69 .Ga71 Pd110 Ag109 Sb121 Re187	$\begin{array}{c} 2,3\\ 1,0\\ 2,2\\ 2,7\\ 2,3\\ 7,2\\ 2,6\\ 6,3\\ 33\\ 42\\ 43\\ 33\\ 41\\ 42\\ 85\end{array}$	$2,3 \\ 1,0 \\ 2,4 \\ 2,8 \\ 3,1 \\ 7,1 \\ 2,4 \\ 2,6 \\ 6,0 \\ 35 \\ 44 \\ 44 \\ 39 \\ 46 \\ 46 \\ 86 $	S1 ³⁰ Fe ⁵⁷ Ni ⁶² Mo ⁶⁸ Ru ¹⁰² P ¹⁰ C ¹² F ¹⁹ P ³¹ Cu ⁶³ Pea	5,8 7,6 5,4 5,0 3,7 еакция $(\gamma,2n)$ 0,22 <0,1 (E 3,3 кция $(\gamma,2p)$ 0,15 0,20 -	$\begin{array}{c} 6,6\\ 7,6\\ 5,0\\ 3,1\\ 3,6\\ 0,1\\ = 80 \text{ MeV})\\ 2,5\\ 0,14\\ 0,15\\ 0,16\\ \end{array}$

2 мм). Измерялись импульс и энергия частип: импульс находился по кривизне трека в его начальной части, энергия — по номеру фольги, в которой остановилась частица. По импульсу и энергии можно определить массу частицы. Она оказалась во всех случаях равной массе протона. Только в двух случаях она оказывается меньше 1500 электронных масс, но эти случаи можно легко объяснить появлением кажушейся кривизны треков из-за многократного рассеяния. Специально поставленные авторами опыты⁸ с камерой Вильсона без включённого магнитного поля (на той же установке) полтвердили это объяснение: из 129 следов протонов 46 имеют кажущуюся кривизну, причём 21 след изогнут в одном направлении, а 25 — в противоположном.

Боннер, Фридляндер и др.⁹ показали отсутствие реакции (γ , μ) другим методом. Образование Zn⁶³ и Mg²⁷ при облучении медного и алюминиевого образование Zn⁶³ и Mg²⁷ при облучении медного и алюминиевого образование мезонов, так и цеакциями с участнем вторичных нейтронов и протонов. Cu⁶³ (p, n) Zn⁶³, Al²⁷ (γ , μ +) Mg²⁷, Conposoждающимися образованием мезонов, так и цеакциями с участнем вторичных нейтронов и протонов. Cu⁶³ (p, n) Zn⁶³, Al²⁷ (γ , μ +) Mg²⁷. Однако эксперименты однозначно показывают, что имеет место последний случай: 1) при уменьшении энергии со 100 MeV до 50 MeV реакция (γ , μ) должна прекратиться; опыт показывает, что Zn⁶³ и Mg²⁷ образуется и при энергии 50 MeV; 2) расщепление толстой мишени на несколько тонких, разделенных воздушными промежутками, не должно сказаться на выходе реакции типа (γ , μ), в то время как выход реакций (n, p), и (p, n) должен уменьшиться опыт показывает протона или нейтрона приходится на воздулять со въс выход реакций (n, p) и чело воздить на воздите сказаться на со во в 3,5-4 раза.

Таким образом, опыты опровергают данные о получении мезонов с помощью у-квантов с энергией 100 MeV.

Опубликована пока единственная работа 10, в которой используется неносредственно электронный пучок, выводнмый из бетатрона (на 22 MeV), а не тормозное ү-йзлучение в минена Царан направлялся на ряд тойких одинаковых фольг из Си⁶³, Ад¹⁰⁷ и Ад¹⁰⁹, вызывая в них ядерные расщепления Число расшеплений, вызываемых непосредственно электронами, всвсех фольгах одинаково, в то время как для фотонов оно линейно растет с номером фольги. Это позволяет отличить оба-вида расшепления и найти их эффективные сечения. Для электронов с энергией 16 MeV эффективные сечения равны 1,6-10⁻²⁸ для Си⁶⁸, 5,4-10⁻²⁸ для Ад¹⁰⁷ и 7,9-10⁻²⁸ для Ад¹⁰⁹. Для фоторасщепления сечение в 400 раз выше.

Э. Л. Бурштейн

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. G. K. Boldwin a. G. S. Klaiber, Phys. Rev. 70, 259-270 (1948). см. реферат Э. Шпольского, УФН 34, вып. 3 (1948).
- 2. G. K. Boldwin a. G. S. Klaiber, Phys. Rev. 71, 3-10 (1947).
- 3. G. K. Boldwin a. G. S. Klaiber, Phys. Rev. 73, 1156-1163 (1948).
- 4. M. L. Perlman a. G. Friedlander, Phys. Rev. 74, 442-448 (1948).
- 5. J. L. Lawson, Gen. El. Rev. 51, No. 10, 47-50 (1948).
- 6. M. Schein, A. J. Hartzler a. G. S. Klaiber, Phys. Rev. 70, 435. (1946).
- 7. G. S. Klaiber, E. A. Lubke a. G. C. Boldwin, Phys. Rev. 70, 789 (1946).
- 8. E. A. Lubke, G. S. Klaiber a. G. C. Boldwin, Phys. Rev. 71, 657-660 (1947).
- N. A. Bonner, G. Friedlander a. oth., Phys. Rev. 71, 511-520 (1947).
- 10. L. S. Skagge, T. S Laughlin a. oth., Phys. Rev. 73, 420 (1948).