
Abstract. This paper examines the Foldy±Wouthuysen and Feyn-
man±Gell-Mann representations of the Dirac equation. The anal-
ysis is conducted for electrons and positrons interacting with
electromagnetic fields. Versions of quantum electrodynamics are
considered both within the scope of perturbation theory and in the
nonperturbative case with strong electromagnetic fields. Mathe-
matical artifacts that contradict the physical premises of the
theory are identified in the studied representations of the Dirac
equation.Thesemathematical paradoxes are resolved if the theory
only employs amplitude states (real and virtual) with positive
energies.

Keywords: Dirac equation representations, quantum electro-
dynamics, fermion vacuum, positive and negative energy
states, mathematical paradoxes of the theory

1. Introduction

The Dirac equation with a bispinor wave function is used in
standard quantum electrodynamics (QED). The Dirac equa-
tion for an electron with mass m and electric charge e < 0,
interacting with an electromagnetic field A m�x; t�, can be
written in the form

p 0cD�x; t� � HD�x; t�cD�x; t� �
ÿ
a�pÿ eA�x; t��

� bm� eA 0�x; t��cD�x; t� : �1�

Here and below, the unit system �h � c � 1 is used;HD�x; t� is
the Dirac Hamiltonian; p m � i�q=qxm�, m � 0; 1; 2; 3; Am�x; t�
are the electromagnetic potentials; and a i, b are the four-
dimensional Dirac matrices. In the standard representation,

the matrices a i, b, S i, g 5, and g i have the form

a i � 0 s i

s i 0

� �
; b � g 0 � I 0

0 ÿI
� �

;

S i � s i 0
0 s i

� �
; g 5 � 0 I

I 0

� �
; g i � g 0a i : �2�

The bispinor cD�x; t� can be written as

cD�x; t� �
j�x; t�
w�x; t�

� �
: �3�

In a free case (without interaction), theDirac equation has
the following normalized solutions with positive and negative
energies e:

�cD� ���0 �x; t��
1

�2p�3=2
�
1� p 2ÿjE j �m�2

�ÿ1=2 US
rp

jE j �m
US

0@ 1A
� exp

ÿÿ i jE jt� i px
�
; e � jE j > 0 ;

�4�

�cD� �ÿ�0 �x; t��
1

�2p�3=2
�
1� p 2ÿjE j �m�2

�ÿ1=2 rp

jE j �m
US

US

0@ 1A
� exp

ÿ� i jE jtÿ i px
�
; e � ÿjE j < 0 :

Here, US are the normalized Pauli spinors �for Sz � 1=2,
US � �10�, and for Sz � ÿ1=2, US � �01��.

The Dirac equation also has solutions with positive and
negative energies for stationary states in the presence of static
electromagnetic fields.

On the one hand, the set of solutions with positive and
negative energies provides mathematical completeness. On
the other hand, the solutions with negative energies are not
directly the solutions of the Dirac equation for antiparticles.
The author of this equation, P.A.M. Dirac, understood this
well (see, e.g., [1]). Two interpretations of the solutions with
negative energy have become widely known.

(1) The physical vacuum of the Dirac equation is
described using the concept of fully occupied states with
negative energies (the Dirac sea). Holes in the Dirac sea are
interpreted as antiparticles [1].
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(2) In the Stuekelberg and Feynman positron theory
[2±4], positrons are electrons with negative energies that move
in opposite directions in spacetime.

In standard QED, the fermion vacuum is nonvoid; virtual
birth and annihilation of particles and antiparticles are
theoretically allowed in it.

There are versions of QED with a void fermion vacuum.
These versions are based on using certain representations of
the Dirac equation. They include the representation of Foldy
and Wouthuysen (FW) [5], the representation of Feynman
and Gell-Mann (FG) [6], and the representation with the
Klein±Gordon (KG)-type fermion equations [7, 8].

For these representations, in the framework of perturba-
tion theory, the formalisms (QED)FW [9, 10], (QED)FG [11],
and (QED)KG [12, 13] were developed, and some physical
effects have been calculated. The final physical results fully
agree with the respective results of standard QED with the
Dirac equation.

Closed equations for fermions in the FW and FG
representations were also formulated for nonperturbative
QED in strong electromagnetic fields [14, 15].

Using the aforementioned representations of the Dirac
equation, it is sufficient to consider solutions with positive
fermion energies when calculating physical effects. This
applies to both real and intermediate virtual fermion states.
In these cases, two separate equations are needed for fermions
and antifermions. These equations differ by the sign of
electric charge.

The use of these representation of the Dirac equation to
calculate QED effects revealed some contradictions between
the physical premises of the theory and its mathematical
results. All of these contradictions arise from the use of states
with negative energies of fermions in calculations.

This paper analyzes the cause of these mathematical
paradoxes.

It is organized as follows. Section 2 analyzes using
(QED)FW in the applicability domain of perturbation
theory. Section 3 presents an analysis for the representations
of nonperturbative QED with strong electromagnetic fields.
We consider the standard QED and the representations of
Foldy±Wouthuysen and Feynman±Gell-Mann. We discuss
the conclusions from our analysis in Section 4.

2. Perturbation theory
in Foldy±Wouthuysen representation

Two conditions should hold in the Foldy±Wouthuysen
representation (see, e.g., [16]):

(1) The Hamiltonian or the energy operators are diagonal
with respect to the upper and lower spinors of the wave
function cFW�x�, i.e., these operators do not mix the upper
and lower components of cFW�x�.

(2) The condition of wave function reduction holds under
the Foldy±Wouthuysen transformation. When the Dirac
Hamiltonian does not depend on time (the case of external
static fields), the condition of reduction can be written as 1

c ���D �x; t� � exp �ÿiet�A��� j�x�
w�x�

� �
! c ���FW �x; t�

�U
���
FW �x�c ���D �x; t��exp �ÿiet� j�x�

0

� �
; �5�

where e > 0, and

c �ÿ�D �x; t� � exp �ÿiet�A�ÿ� j�x�
w�x�

� �
! c �ÿ�FW �x; t�

�U
�ÿ�
FW �x�c �ÿ�D �x; t��exp �ÿiet� 0

w�x�
� �

; �6�

where e < 0.
In (5) and (6), A���, and A�ÿ� are the normalizing operators,

and U
���
FW and U

�ÿ�
FW are the FW transformation operators. The

operators A���, A�ÿ�,U
���
FW,U

�ÿ�
FW are not necessarily the same for

positive and negative energies.
In the FW representation, the Dirac equation for an

electron interacting with an electromagnetic field A m�x; t�
can be obtained as a series in powers of the electromagnetic
coupling constant by applying a series of unitary transforma-
tions to equation (1) (see [9]):

UFW � �1� ed1 � e 2d2 � e 3d3 � . . .�U 0
FW : �7�

Here, U�FW � Uÿ1FW.
As a result, we obtain the equation

ecFW � HFWcFW �
ÿ
bEp � eKFW

1 ��m;A m�
� e 2KFW

2 ��m;A m;A n�
� e3KFW

3 ��m;A m;A n;A g� � . . .
�
cFW : �8�

Here, Ep �
�����������������
m 2 � p 2

p
. The notation �m in KFW

n indicates
that the positive sign before bm is taken in equation (1).
Equation (8) does not contain terms with a negative sign
before the mass m. This follows from the structure of the
expressions for KFW

1 , KFW
2 . . . (see (39)±(41), (20), (21) in [9]).

In equation (8),

cFW � UFWcD : �9�
In the free case,

e�cFW�0 � bEp�cFW�0 ; �10�
where, for the positive energy e � jE j > 0,

�cFW� ���0 �x; t� � U 0
FW�cD� ���0

� 1

�2p�3=2
US

0

� �
exp �ÿijE jt� ipx� ; �11�

and for the negative energy e � ÿjE j < 0,

�cFW� �ÿ�0 �x; t� � U 0
FW�cD� �ÿ�0

� 1

�2p�3=2
0
US

� �
exp ��ijE jtÿ i px� : �12�

In the FW representation, equation (8) has a noncovar-
iant form, and the Hamiltonian HFW is nonlocal. Using
standard methods of second quantization in quantum field
theory is difficult in this case. However, the S-matrix
approach and the Feynman method of the propagator
function [2±4, 17] can be used instead. In this method, QED
processes are described by integral equations.

Equation (8) can be written for the four-dimensional x; y
in the form

cFW�x���cFW����0 �x��
�
d4ySFW�xÿy�KFW�y�cFW�y�; �13�

where KFW�y� �P1
n�1 e

nKFW
n �y� is the interaction

Hamiltonian in equation (8) and SFW�xÿ y� is the Feynman

1Wave functions are normalized by unit probability in a box with volume

V below. For brevity, multipliers 1=
����
V
p

are absent from our expressions.
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propagator in the Foldy±Wouthuysen representation,

SFW�xÿ y�� 1

�2p�4
�
d4p exp

ÿÿ ip�xÿy�� p 0�bE
p 2ÿm 2�ie : �14�

The elements of the S-matrix can be written as

Sfi � dfi ÿ ief

�
d4y

���cFW����0 �y�
�
f
KFW�y��cFW�y�

�
i
: �15�

Here, the bar over the function cFW denotes the Hermitian
conjugate, ef � �1 for the solution ���cFW����0 �y�� f and
ef � ÿ1 for the solution ���cFW��ÿ�0 �y�� f.

For standard QED, equations (13) and (15) were derived
in the works of R. Feynman [3, 4] and also, for example, in
monograph [17].

Additionally, we mention several important points.
(1) The Hamiltonians HFW in (8) and KFW�y� in (13) are

diagonal with respect to the mixing of the upper and lower
components of the bispinor cFW. Each of the equations (8)
and (13) includes two independent equations with the spinor
wave functions � US. One equation contains the states with
positive energies, and the other one contains the states with
negative energies. The elements of the S-matrix in (15) can be
calculated by using only the states with positive energies. In
this case, the states with negative energies are not used in
calculations of physical processes in the QED: they are only
needed for mathematical completeness in the expansion of
operators and wave functions.

(2) In standardQEDwith theDirac equation, positrons are
electrons with negative energies moving in opposite directions
in spacetime. In the Foldy±Wouthuysen representation, this
situation changes. If in (15) we use ���cFW� ���0 � f on the left-hand
side and ��cFW� �ÿ�0 �i on the right-hand side, then, due to the
structure of the bispinors (11), (12), the respective elements of
the S-matrix will be zero in all orders of perturbation theory.
Taking (11) and (12) into account, we can write*

1

�2p�3=2
exp �ijEf jtÿ ipf x� �US 0

ÿ �jMFWj 0
US

� �
1

�2p�3=2

� exp �ijEijtÿ ipi x�
�
� 0 :

Here, by definition,MFW is a diagonal operator.
A similar result is obtained when in (15) we use ���cFW��ÿ�0 � f

on the left-hand side and ��cFW����0 �i on the right-hand side.
Thus, positrons in the FW representation cannot be

described by electron states with negative energy. Positrons
in this representation should be described by positive energy
states of a special equation for positrons.

We have therefore obtained the first paradox. By
performing a unitary transformation of the Dirac equation in
the FW representation, we lost the interaction between the
states with positive and negative energies.

3. Nonperturbative quantum electrodynamics
and representations of Dirac equation

Consider the case of electrostatic fields of hydrogen-like ions.

3.1 Standard quantum electrodynamics in fields
of hydrogen-like ions with large charge number Z
Figure 1 shows the lower energy levels of a hydrogen-like ion
as a function of the charge number Z for the standard QED
with a fluctuating fermion vacuum. This figure is adapted
from monograph [18].

Consider the level 1s1=2. In the Coulomb field of a point
nucleus charge �Zjej, the level 1s1=2 disappears on reaching
Z � 137. If finite dimensions of atomic nuclei are considered
[19±22], the energy of the 1s1=2 state becomes negative for
Z > 146. ForZcr � 171, the level 1s1=2 becomes immersed in a
negative-energy continuum. Similarly, the energy of the level
2p1=2 becomes negative forZ > 168; forZcr � 184, level 2p1=2
becomes immersed in the negative-energy continuum.
According to theoretical predictions of standard QED,
when a level becomes immersed in the negative-energy
continuum, the neutral vacuum decays, emitting two elec-
tron±positron pairs [20, 21].

3.2 Representations of Feynman±Gell-Mann
and Foldy±Wouthuysen
We write the Dirac equation in an external electromagnetic
field in a covariant form:ÿ

g 0�p 0 ÿ eA 0� ÿ c�pÿ eA� ÿm
�
cD�x; t� � 0 : �16�

Wemultiply the left-hand side of (16) by the operator with
the changed sign of the fermion mass,ÿ

g 0�p 0 ÿ eA 0� ÿ c�pÿ eA� �m
�ÿ
g 0�p 0 ÿ eA 0�

ÿ c�pÿ eA� ÿm
�
c�x; t� � 0 : �17�

The result is a second order equation whose solutions are
degenerate with respect to the sign before the mass m:��p 0ÿeA 0�2ÿ�pÿeA�2ÿm 2 � eRHÿie aE�c�x; t� � 0: �18�

Here, H � rotA, and E � ÿ�qA=qt� ÿ HHA 0 are the
magnetic and electric fields, respectively.

We limit ourselves to the case of static electromagnetic
fields when p 0c � ec.

To transition to the FG representation, one needs to use
the Dirac matrices in the chiral representation in equation
(18). This is achieved by the unitary transformation

S � Sÿ1 � 1���
2
p I I

I ÿI
� �

; �19�

cFG�x; t� � Sc�x; t� � jFG�x�
wFG�x�

� �
exp �ÿiet� ; �20�

a i
c � Sa iSÿ1� s i 0

0 ÿs i

� �
; Sc � SS iSÿ1� s i 0

0 s i

� �
:

�21�

E

mc2

0

ÿmc2

50 100 137 Z

Zcr

2p3/2

1s1/2

2s1/2

2p1/2

States of continuous spectrum
with positive energy

States of continuous spectrum
with negative energy, occupied
by electrons

150 200

Figure 1. Lower energy levels of hydrogen-like ion as function of nuclear

charge number Z.
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In the FG representation, there is no mixing of the upper
and lower components of the bispinor cFG�x; t� in equation
(18). In the case of stationary states, equation (18) is reduced
to two separate equations for spinors jFG�x� and wFG�x�:��eÿeA 0�2ÿ�pÿeA�2ÿm 2 � erHÿierE�jFG�x��0; �22���eÿeA 0�2ÿ�pÿeA�2ÿm 2�erH�ierE�wFG�x��0: �23�

Analogous equations were considered earlier by Feynman
and Gell-Mann [6].

It is noteworthy that equations (22) and (23) are
connected with equations in the Foldy±Wouthuysen repre-
sentation [14, 15]. Equation (22) in the FW representation is
obtained for positive energies e � jE j > 0. In this case,
jFG�x� � A���jc�x�, where jc�x� is the upper spinor in the
Foldy±Wouthuysen representation,

c ���FW�x� �
jc�x�
0

� �
:

Equation (23) in the FW representation is obtained for
negative energies e � ÿjE j < 0. In this case, wFG�x� �
A�ÿ�wc�x�, where wc�x� is the lower spinor in the FW
representation,

c �ÿ�FW�x� � 0
wc�x�

� �
:

We write, in agreement with [14], certain equations for
electrons and positrons in the FG and FW representations.

(1) Equation for electrons with positive energies
(e � jE j > 0, e � ÿjej < 0),�ÿjE j � jejA 0

�2 ÿ p 2 ÿm 2 ÿ ijejrHHA 0
�
j e
FG � 0 : �24�

(2) Equation for electrons with negative energies
(e � ÿjE j < 0, e � ÿjej < 0),�ÿjE j ÿ jejA 0

�2 ÿ p 2 ÿm 2 � ijejrHHA 0
�
w e
FG � 0 : �25�

(3) Equation for positrons with positive energies
(e � jE j > 0, e � jej > 0),�ÿjE j ÿ jejA 0

�2 ÿ p 2 ÿm 2 � ijejrHHA 0
�
j p
FG � 0 : �26�

In equation (24), the spinor j e
FG�x� in the Feynman±Gell-

Mann representation is proportional to the upper spinor in
the Foldy±Wouthuysen representation:

j e
FG�x� � A e

���j
e
c �x�;

ÿ
c ���FW�x�

�e � j e
c �x�
0

� �
: �27�

In equation (25), the spinor w e
FG�x� in the Feynman±Gell-

Mann representation is proportional to the lower spinor
w e
c �x� in the Foldy±Wouthuysen representation:

w e
FG�x� � A e

�ÿ�w
e
c �x�;

ÿ
c �ÿ�FW�x�

�e � 0
w e
c �x�

� �
: �28�

In equation (26), the spinor j p
FG�x� in the Feynman±Gell-

Mann representation is proportional to the upper spinor
j p
c �x� in the Foldy±Wouthuysen representation:

j p
FG�x� � A p

���j
p
c �x�;

ÿ
c ���FW�x�

�p � j p
c �x�
0

� �
: �29�

Here,

A e
��� �

�
1� m 2ÿjE j � rp� jejA 0

�2 �ÿ1=2;
A e
�ÿ� �

�
1� m 2ÿjE j � rpÿ jejA 0

�2 �ÿ1=2;
A p
��� �

�
1� m 2ÿjE j � rpÿ jejA 0

�2 �ÿ1=2:
As a result, we see that equation (26) for positrons with

positive energies e > 0 coincides with equation (25) for
electrons with negative energies e < 0. This conclusion is
confirmed by separating the variables. The systems of
equations for the radial functions, derived from equations
(25) and (26), are fully consistent with each other.

In our case, the positrons are in a repulsive Coulomb field
of ionized nuclei. For them, an upper continuum exists with a
continuous energy spectrum e > m. However, stationary
bound states with e < m are absent in this case.

The equality of equations (25) and (26) assumes that
electrons with negative energies and positrons with positive
energies have an equivalent (up to the sign of energy) continuous
energy spectrum with the same stationary wave functions.
However, the spectrum of equation (25) contains the negative
energy level 1s1=2 in the intervalZS � 147ÿ170 and the negative
energy level 2p1=2 in the interval ZS � 169ÿ183 (see Fig. 1).

Simple physical considerations prohibit such bound states
for equation (26). Therefore, the existence of bound states
with negative energies is a mathematical artifact.

Since equations (24)±(26) are obtained through unitary
transformations of the Dirac equation, the conclusion that
there is no physical (and not mathematical) contribution of
bound states with negative energies in effects calculated in
QED is also valid for the original Dirac equation.

Note that equation (26) with a changed sign byA 0�x� (the
motion of a positron in an attractive Coulomb field) coincides
with equation (24) for electrons. As expected, discrete and
continuous energy spectra of electrons and positrons moving
in an attractive Coulomb field coincide with each other.

3.3 Dirac equation with nonrelativistic Hamiltonian
in Foldy±Wouthuysen representation
The conclusions in Section 3.2 are confirmed by analyzing the
nonrelativistic Hamiltonian in the FW representation, which
was already obtained in initial work on the Foldy±Wouthuy-
sen transformation (see [5]).

Consider nonrelativistic motion of electrons and posi-
trons in an external electrostatic field eA 0�x�. According to
[5], the nonrelativistic Hamiltonian HFW takes the form

HFW � b
�
m� p 2

2m

�
� eA 0 ÿ ie

8m 2
r rotE

ÿ e

4m 2
r �E� p� ÿ e

8m 2
divE : �30�

Here, E � ÿHHA 0 is the electric field.
The Dirac equation with the Hamiltonian HFW is written

in the form�
�eÿeA 0�ÿb

�
m� p 2

2m

�
� ie

8m 2
r rotE� e

4m 2
r �E� p�

� e

8m 2
divE

�
cFW�x; t� � 0 : �31�
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Here, for e > 0,

c ���FW�x; t� �
j�x�
0

� �
exp �ÿiet� ;

and, in this case,

bc ���FW�x; t� � c ���FW�x; t�;

for e < 0,

c �ÿ�FW�x; t� � 0
w�x�

� �
exp �ÿiet� ;

and, in this case, bc �ÿ�FW�x; t� � ÿc �ÿ�FW�x; t�.
Just as in Section 3.2, consider Eqn (31) for electrons and

positrons.
(1) The equation for electrons with positive energies

(e � jE j > 0, e � ÿjej < 0):�ÿjE j�jejA 0
�ÿ�m 2 � p 2

2m

�
ÿ ijej
8m 2

r rotE

ÿ jej
4m 2

r�E�p�ÿ jej
8m 2

divE

�
j e�x��0: �32�

(2) The equation for electrons with negative energies
(e � ÿjE j < 0, e � ÿjej < 0):�ÿjE jÿjejA 0

�ÿ�m 2 � p 2

2m

�
� ijej
8m 2

r rotE

� jej
4m 2

r�E�p�� jej
8m 2

divE

�
w e�x��0: �33�

(3) The equation for positrons with positive energies
(e � jE j > 0, e � jej > 0):�ÿjE jÿjejA 0

�ÿ�m 2 � p 2

2m

�
� ijej
8m 2

r rotE

� jej
4m 2

r�E�p�� jej
8m 2

divE

�
j p�x��0: �34�

It can be seen that equations (33) and (34) coincide, i.e.,
just as in the preceding sections, the equation for positrons
with e > 0 coincides with the equation for electrons with e < 0
in the Coulomb field of atomic nuclei.

However, in the nonrelativistic case with jE j ÿm5 1, the
coincidence of equations (33) and (34) does not lead to a
conflict with physical reality. Indeed, in this case, equation
(33) does not produce discrete levels with negative energies
(see Fig. 1).

Such levels arise mathematically in the domain of strong
electrostatic fields with Z > 146. This contradicts clear
physical arguments about the absence of discrete levels with
negative energies.

4. Conclusions

Certain paradoxes of the Dirac equation have been explained
in the FW representation earlier.

(1) In the Dirac equation without interaction, the velocity
of fermions is vD � ca [1]. In the FW representation, the
velocity of fermions takes the classical form vFW � cp=E [5].

(2) In the FW representation, the 'jitter' (Zitterbewegung)
of the fermion coordinates is absent [5]. See also [23, 24] on the
problem of Zitterbewegung.

(3) As many authors have mentioned, a positive aspect of
the FW representation is that the correspondence principle
between quantum-mechanical operators and analogous

classical quantities is explicitly observed in nonrelativistic
quantum mechanics. As can be seen, for example from pp. 1,
2, such a correspondence is often absent in the Dirac
representation.

These facts are related to the absence of virtual interaction
between fermions with positive and negative energies in the
Foldy±Wouthuysen representation.

The physical community has become accustomed to the
paradoxes of the Dirac equation, because they do not affect
the results of calculations of physical effects in QED.

Our analysis revealed two new paradoxes, whose solution
influences the physical effects of QED.

Paradox No. 1. After applying a unitary transforma-
tion to the Dirac equation in an external electromagnetic
field and transition to the FW representation, the elements
of the S-matrix lose the interaction between the states with
positive and negative energy. To restore the interaction, an
additional equation for positrons with positive energies needs
to be introduced into the theory.

Paradox No. 2. Contrary to a clear physical picture,
mathematical calculations of the energy spectrum for hydro-
gen-like ions with ZS � 147ÿ183 produce levels with
negative energies. 2

Both the paradoxes are related to negative-energy solu-
tions of the Dirac equation.

All paradoxes disappear when only states with positive
energies are used to calculate the physical effects of QED. The
states with negative energy should only be taken into account
to ensure completeness in the expansions of wave functions
and operators. In this case, in addition to the equation for
electrons with positive energies, an equation for positrons
with positive energies is introduced.

This approach applies for QEDFW, QEDKG, and also for
the standard QED with the Dirac equation (see [25]). Within
the domain of applicability of perturbation theory, the final
physical results coincide with those of standard QED.

In nonperturbative QED, one should consider the spec-
trum shown in Fig. 2 instead of the spectrum of hydrogen-like
ions with charges Zjej (see Fig. 1).

2 Discrete levels with negative energies appear in calculations that consider

the finite size of nuclei [19±22]. In calculations with the Coulomb field of

point nucleus charge �Zjej, such states are absent.
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Figure 2.Energy spectrumof (a) equation for electrons (24) and (b) equation

for positrons (25).
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In nonperturbative QED, the calculated spectrum shown
in Fig. 2a (without discrete and continuous spectra with
negative energies) can be confirmed experimentally. Refer-
ence [26] suggests performing a series of experiments on heavy
ion colliders to confirm this.

We note that Prof. Dirac, dissatisfied with the presence of
states with negative energies in his equation, already at the
end of his life turned to searching for a relativistic wave
equation with only positive energy solutions [27, 28].
However, he did not succeed in carrying his ideas to a logical
end. In this work, we continue the path to solving physical
problems of quantum electrodynamics caused by the presence
of fermion states with negative energies.
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