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Abstract. This article is dedicated to the 60th anniversary of the
Landau Institute for Theoretical Physics and presents a review
of normal and superconducting properties of toroidal, altermag-
netic, and noncentrosymmetric metals. Metals with toroidal
order are compounds not possessing symmetry in respect of
space and time inversion but are symmetric in respect of the
product of these operations. An electric current propagating
through samples of such a material causes its magnetization.
Superconducting states in toroidal metals are a mixture of
singlet and triplet states. Superconductivity is gapless even in
ideal crystals without impurities. Altermagnets are antiferro-
magnetic metals that have a specific spin splitting of electron
bands determined by time inversion in combinations with rota-
tions and reflections of a crystal lattice. Similar splitting takes
place in metals whose symmetry does not have a spatial inver-
sion operation. Both of these types of materials have an anom-
alous Hall effect. A current propagating through a
noncentrosymmetric metal causes magnetization, but this is
not the case in altermagnets. On the other hand, in altermag-
nets, there is a specific piezomagnetic Hall effect. Supercon-
ducting pairing in noncentrosymmetric metals occurs between
electrons occupying states in one zone, whereas, in altermag-
nets, we are dealing with interband pairing, which is unfavorable
for the formation of a superconducting state.
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1. Introduction

Piezomagnetism and the magnetoelectric effect in dielectric
antiferromagnetic materials are well-known phenomena
closely related to magnetic symmetry [1]. New interest in
these phenomena has arisen recently in connection with the
discovery of the first examples of metallic compounds with
the same magnetic symmetry, but possessing new, sometimes
unexpected, physical properties. And, as is typical of the
modern commercial style of writing scientific papers, a new
sonorous terminology has appeared, designed to emphasize
the significance of the authors’ achievements. Thus, magneto-
electric metals began to be called metals with a toroidal order.
In turn, piezomagnetic metals were called altermagnets.
Somewhat earlier, the first metallic compounds were discov-
ered whose symmetry does not contain the space inversion
operation. They were called noncentrosymmetric metals. This
article presents an overview of the normal and superconduct-
ing properties of these three types of materials.

2. Metals with toroid order

Substances with crystal symmetry which do not contain the
operation of time reversal R or space inversion [ but are
invariant with respect to their product /R are called magneto-
electrics. Landau and Lifshitz [1] showed that, if a crystal with
such symmetry is placed in a constant magnetic (or electric)
field, an electric (or magnetic) moment proportional to the
field is produced in the crystal. I.E. Dzyaloshinskii [2] gave the
first example of magnetoelectric antiferromagnetic Cr,0s3. It
has the point symmetry group

D3(D3) = (E, C3,C3,3u2,304R, 2S6R, IR) (1)
containing the product of time and space inversion, but does

not include these operations separately. The corresponding
thermodynamic potential invariant with respect to operations
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()is

Pe = —0y (EvHy + E,H,) — oy E-H. . (2)

So, this material in an external electric field acquires
magnetization
0Pep

M, =—
! 0H,

= OCJ_EV . (3)

The magnetoelectric effect in the antiferromagnet Cr,O;
was discovered by D.N. Astrov [3]. Despite the absence of a
magnetic moment, this material exhibits the magneto-electric
Kerr effect, that is, rotation of polarization of light reflected
from a crystal with respect to incident light polarization. This
birefringence has the opposite sign for magnetic domains
related to each other by time reversal and can be used to
observe antiferromagnetic domains. The corresponding
symmetry considerations were developed in the elegant
paper by W.F. Brown et al [4], although the microscopic
theory of this phenomenon [5] and complete phenomenolo-
gical treatment [6] had already appeared after the effect was
discovered experimentally [7].

2.1 Electron spectrum

Cr,03 is an antiferromagnetic dielectric. A metal with the
same symmetry as Cr,Os also possesses magnetoelectric
properties. The electron spectrum of such a metal invariant
with respect to all operations of the group Ds,(D3),

ef = f(k2+ k2 k2), (4)

yo vz

ep = 13k ke — k7)), (5)

v — o€ .0
ek =& + &,

consists of two parts, even and odd regarding its argument k.
This is a general property of a metal with a symmetry that
does not include the operations of time inversion R or space
inversion [ separately, but is invariant with respect to its
product IR. They are called metals with toroidal order or
simply foroids. There is a vast amount of literature devoted to
substances with toroidal order (see, for instance, [8, 9]).
Normal properties and superconducting states in toroids
were discussed in article [10].

Recently, the metallic compound Mn,Au with toroidal
magnetic order was discovered [11]. Mn;Au is a collinear
antiferromagnet with a Néel vector parallel or antiparallel to
the [110] or [110] directions. In Fig. 1 is shown the magnetic
structure of the antiferromagnetic domain of this compound
with the Néel vector parallel to the [110] direction.

Its symmetry group is

D2, (Cyy) = (E, Uyy, 04, 05, RUy5, ROy, RCo., RI) . (6)

Here, the operations (E, Uyy, 0, 0x5) forming group C,, are
the operation of rotation at an angle © around the axis [110]
and reflections in the planes passing through it and perpendi-
cular to each other. The electron spectrum invariant vis-a-vis
all operations of the group D, (Cy,) is

ek=¢ +e&, & :f(kx2 + k‘z7 k2, (7)
60 = (ke + k). (8)
The Fermi surface determined by the equation

&k = €F (9)

is asymmetrical, because g # & k.

z || [001]

v | [010]

x || [100] G

Figure 1. Magnetic structure of Mn,Au showing order and orientation
of Mn ion magnetic moments (see text). Dots/circles correspond to
gold sites.

2.2 Kramers degeneracy

The Hamiltonian in the Schrodinger equation for an electron
in such a metal commutes with the product of time and space
inversion operations RI. This means that two spinor
eigenfunctions ¥, (r) and RNy, (r) correspond to each energy
&x. They are orthogonal to each other. Indeed, the operation
of the time reversal is R,p = —io;};KO, where O';}; is the Pauli
matrix, Kj is the operation of complex conjugation, and

7 [ @ e R o)

- J &r [y (0) (=)o (1))
_ _J &r [y 0o ()]

- 71 &r (Y50 IRp, (1)) = ~T . (10)

Thus, Z = 0. Hence, Kramers degeneracy of each energy level
takes place.

2.3 Current in thermodynamic equilibrium

Due to the asymmetry of the energy spectrum, toroid metals
possess nonzero electric current in thermodynamic equili-
brium,

j= ZeJ &k aﬂ
(2n)3 ok

where f (&) = [exp ((ex — )/ T) 4 1] " is the Fermi distribu-
tion function. These currents are reminiscent of dissipation-
less diamagnetic currents flowing in metals in a magnetic
field. A similar property is also present in noncentrosym-
metric metals supporting dissipationless spin currents in
thermodynamic equilibrium. We will discuss this phenom-
enon later. In real specimens with many antiferromagnetic

(k) » (11)
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domains, the currents and corresponding magnetic moment
space distribution acquire a complex structure.

2.4 Zero-field current induced Hall effect

Toroid metals are magnetoelectrics. An electric field applied
to such a metal induces magnetization. For example, in the
case of mono-domain antiferromagnet Mn,Au with the
structure shown in Fig. 1, the thermodynamic potential
invariant with respect to all operations enumerated in (6) is

Dery = 7“(EX}7HZ + E:H\'jf) . (12)

An electric field directed along the z-axis causes magnetiza-
tion parallel or antiparallel to the direction of the Néel vector:

MU’ = O(Ez. (13)

One can also say that an electric current j, = p; ' E. along the
z-axis causes magnetization

fo = Otp_,jz . (14)

As a result, an electric field arises in such a sample that is
perpendicular to both the current and the induced magnetic
moment:

1 .
Exy = (xp:]zz . (15)

nec
This is the current induced Hall effect in a zero magnetic field.
In multi-domain specimens, the current induced magnetiza-
tion will have complex space distribution.

The effect of bulk magnetization induced by an electric
current has been observed in semiconducting tellurium [12] and
then in the antiferromagnetic metallic compound UNiyB [13,
14], where the zero-field Hall effect was also registered [14].

3. Superconducting states in toroid metals

3.1 Order parameter

Superconducting compounds with toroid symmetry are
currently unknown. The theory of superconductivity for this
type of substance will be presented here with the hope that
possible applications will appear in the future. In the absence
of symmetry in relation to space inversion, the superconduct-
ing order parameters in toroid metals consist of the sum of
singlet and triplet parts:

Ao = ADyp(K) = A[Pyioy, + (y05) i07,] - (16)
Here, 4 is the coordinate dependent complex amplitude, and
6 = (6%,67,67) are the Pauli spin matrices. The functions ¢},
and @, correspond to representations of the symmetry group
of concrete toroidal metals. For instance, in the case of a
single domain antiferromagnet with symmetry group (6), the
functions of irreducible representations I' = 4, B, C, D are
presented in the table.

3.2 Bardeen—Cooper—Schrieffer theory
The Bardeen—Cooper—Schrieffer (BCS) Hamiltonian has the
standard form

H=Hy+ Hiny = Z(fk + &)y,
3

1
+3 Z Vap, (K K )aty ayans a0,
KK/

Table

N b
ap (kA\ + k})z + a21€:2 ias (k:{ - kA\)f

A

B| bk +ky)k.
cl ek —k)k.
D | dy(k+ k) (ky— Ky)

iby (K p — K, %)

iy (k4 k) (% + 9)+ ic3 (o — Ky ) (% — §) +ieak.2
idy (ky + k)2

Here, k., k,, k. are components of unit vector of momentum k = k/|k|,
and X, , Z are unit vectors of directions in spin space.

with the only difference being that the kinetic energy now has
even

k=g — 1 (18)

and odd g with respect to momentum parts. In the pairing
interaction

Vaﬁ,/l,u(kak/) = _Vl"(pzx[f(k)(piﬂ(k,)v (19)

only the term related to irreducible representation I' corre-
sponding to the superconducting state with maximal critical

temperature was left. After the usual mean field transforma-
tion, the Hamiltonian acquires the following form:

1 1
H= EZ(fk +e)ay ay, — EZ(@]‘ e,
k k

1 1 ,
+ 5; Akﬁa/;al:;(ljkﬁ + 3 ; Ag‘“ﬁ(l,kaakﬁ

1 1
+§Z(é—k + &%) +52Ak,aﬁFka/;w (20)
ko k
where the matrix of the order parameter
Ak, up = — Z Vpo, i (K, k) (@i (21)
kl
is expressed through the ‘anomalous average’:
Fk‘aﬁ = (akaa,w) . (22)

Here, (...) means subsequent quantum mechanical and
thermal averaging.
A more compact form of Eqn (20) is

1
H = EXk: Sk,i/AltiAkv./

1 1
+§Z(5k - &) +§Zl‘kmﬁFk+,ﬁa- (23)
ko k
Here, the operators
+ + ke
A= @), A= () (24)
—ka
and
Sk + & )0up Ay, op
&k, ij = (G ?k) / 10‘ : (25)
Ak ap (—Ck +8)0up
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Diagonalizing the Hamiltonian by means the Bogoliubov
transformation,

bry
Ay, = U;jBx j, By ;= (bf ) )
—ko

U, Uk,
U= 5 (26)
Uk,ap  Uk,of
bt B
Uk, ap = k 12( 5aﬁ 5 (27)
(S +EQ)" + Ai
A5k
Uk, o = XB( )2 ) (28)
VGt B+ &
: [
Ef = \J& A+ A5 M=5 My, (29)
we obtain
1 1
Eggk‘ijAltiAk,j = zzk: Ex,ijBy By j (30)
where
(e + EX)Oup 0
E. .. — . 1
w ( 0 (& — E{)dup e
Thus, the energy of excitations is
Ex =¢ + E . (32)
The corresponding density of states is
d’k
N(E) = zJ - S(E— Ey). (33)
(2m)

We see that, near the surface determined by the equation
&x = 0, there is a vast region where Ex < 0; hence, a super-
conducting state is proved to be gapless:

N(E=0)#£0.

This property of superconducting states in superconductors
with toroidal order, in particular, has a nonzero specific heat
ratio (C(T')/T)y_o # 0 in completely pure metal without
impurities and crystal imperfections.

The order parameter is determined by Eqn (21). By
applying to this expression the Bogoliubov transformation,
we obtain

&k’ 1 —fe —fx
A op = — | —= Vouiu(k K') —2= A
Kk, of J(2n)3 Vg iu( ) 2, k',

d’k’

=— | —= Vi su(k, Kk’

J(2n)3 o, 2 (K, K)
tanh (Ey /2T tanh (E_,/ /2T
% an ( k/ )4—2‘6‘11’1 ( 7k/ )Ak’.j,’u- (34)
kl

Here, we used the commutation rules of the operators by, by,
and the symmetry property

(35)

Vk, o = —U—k, fu

and expressed the average (b, bxg) = fkd,p through the Fermi
distribution function

Sk = f(Ex) 1

T exp (80 + EQ)/T) +1°

At T — T. one can neglect Aﬁ in E; in Eqn (34).
Estimating the integral with logarithmic accuracy, we come
to the expression for critical temperature similar to the usual
BCS formula,

1
T, =~ gy exp (_1\7 V)’
ovr

where g is the cut-off for energy of pairing interaction and N
is the normal density of states averaged over the Fermi surface
with a weight corresponding to the angular dependent
functions of a given irreducible representation.

(36)

(37)

3.3 Free energy linear in order parameter gradients

Let us now discuss a possible peculiar property of the
inhomogeneous state in superconductors with toroidal
symmetry. The expression for the superconducting current

2e 2e
i=—"—K|A*| —i — A |4 .C.
j 7 [ ( 1V+hc > +cc}

changes its sign under the time reversal R as well under the
space inversion [, but it is invariant with respect to the
product of this operations /R. Thus, the current has toroidal
symmetry. Hence, one can expect, as has been pointed out by
various authors (see, for instance, [8]), the existence of a term
linear in gradients

(38)

Fy = Cij; (39)
in the superconducting free energy density for metals with
toroid symmetry. The direction of vector C is determined by
the direction of the Néel vector of the toroid antiferromagnet.
To verify this property, let us consider the superconduct-
ing free energy quadratic in terms of the order parameter:

1 (dq T d’q [ &’k
f*ﬁj any Y WA =72 J (2n)3J (2n)°

< A op@6( K+ 50, )6 (k4 S 0, ) nla). (@0)

where
1

o) =0, e w

(41)
is the normal state electron Green’s function, and
w, =2nT(n+ 1/2) is the Matsubara frequency. Omitting
simple but cumbersome calculations, we only indicate that,
after performing summation over frequencies followed by
decomposing the sub-integral expression in powers of
(0¢x/0k)q and (0¢?/0k)q, the integral over angles of
momentum k of the part linear in q turns out to be equal to
zero. This means that term (39) vanishes identically.

4. Altermagnetic and noncentrosymmetric metals

There is another type of magnetic structure in which the
magnetic symmetry group does not contain the time reversal
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R by itself, but this operation enters only in combination with
rotations or reflections or else is not present at all. Conse-
quently, such substances in general, are capable of possessing
piezomagnetic properties [1, 15, 16]. Piezomagnetism was
discovered in antiferromagnetic fluorides of cobalt CoF,
and manganese MnF, by A.S. Borovik-Romanov [17].
These substances have a simple tetragonal lattice and the
symmetry of space group D}é. In their unit cell, there are two
metallic ions in positions (000) and (%,%,%) The magnetic
structure has been determined neutronographically by
R.A. Erickson [18] (Fig. 2).
The symmetry group of CoF; and MnF; is

Dy, (Dy;) = (E, C2,2Ust, 04, 20,1, 1,

2C4.R1,2U3R, 26, R, 2Cy40,R1) . (42)
Here, we use the same notations for the operations of
rotations and reflections as in textbook [19]. For example,
2U}R—rotations at angle m around the [110] or [110] axis
accompanied by operation of time reversal R. The crystal
symmetry of these substances is nonsymmorphic and some
of the operations enumerated in (42) are accompanied by a
shift at half period =1/, = (a,a,c)/2 along the prism
diagonal.

On a large scale, in comparison with interatomic
distances, the operation ¢-shift plays no role and the
essential symmetry is only with respect to rotations and
reflections in combination with time reversal R. The
piezomagnetic thermodynamic potential invariant for all
these operations is

(ppm = 7)”1 (a.\‘zl—ly + G_VZH\‘) - AZO-xyHZ ) (43)

and corresponding additional magnetization arising with the
application of shear stress o, is

(44)

This effect was measured and reported in [17].

Both CoF; and MnF, are dielectric antiferromagnets.
The same crystallographic structure and antiferromagnetic
order has metallic compound RuO, determined by Z.H. Zhu
et al. [20] by means of resonant X-ray scattering. The energy
of an electron as a function of momentum in a metal with a
structure symmetric with respect to all the operations in
Eqn (42) has the following form:

Eup = Ek0up + Y Oup » (45)
i = 71 sin (k-b) [sin (kya)% + sin (kca)7]
+ y, sin (kya) sin (kya)z, (46)

where ¢ = ¢(k) is the translation invariant even function
with symmetry Da4;(D2;) and 6 = (dy,0,,0.) are the Pauli
matrices. Here, we have taken into account that the shift
n(1/a,1/a,1/b) on the half basis vector in the reciprocal
space corresponds to the operation ¢y, in coordinate
space. Equation (46) defining the vector vy, is the simplest
possible expression that has the necessary symmetry
properties.

In general, the electron spectrum of a metal such that its
group of symmetry G (magnetic class) contains the operation
of time reversal only in combination with rotations or

my

Figure 2. Magnetic structure of MnF, showing order and orientation
of Mn ion magnetic moments. Dots/circles correspond to fluorine
sites.

reflections has the form of Eqn (45) invariant regarding all
operations of the group G. There is a subclass of these types of
metals such that the angular average

dQy
kﬁ“—“

(47)
These types of metals that look like antiferromagnets in
reciprocal space are called altermagnets. The electron spin
ordering in altermagnets determined by exchange interaction
is in general noncollinear.

In some cases, one must take into account interband spin-
orbit interaction and work with a more general 4 x 4 matrix
electron spectrum:

& _ (e +70)(t0 + )
k- 2

. &k + 6)(Tog — 7T
+1r2(pkc+(2k “{zkz)(o 3)

(48)

Here, 19, 71, 72, 73 are the band Pauli matrices. This form of
spectrum is important in the study of the anomalous Hall
effect in altermagnets (see below).

4.1 Electronic states
In the subsequent text, we will work with a simple 2 x 2
matrix spectrum (45) which has the same form as in
noncentrosymmetric metals:
é(k) = exa0 + 740 (49)
(See for example [21] and references therein.) Thus, all the
calculations for these different types of metals look identical,
but one must remember that, in altermagnets, vector y_, = vy
is an even function of k, whereas in noncentrosymmetric
metals, it is odd: y_, = —vy. The scalar part of spectrum
&k = &_x 1S even in both cases.
The eigenvalues of matrix (49) are

k) =e+y, e (k)=e—7, (50)
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where 7y = |y, |. The corresponding eigenfunctions are given
by

v (k) méf)(gﬂ)
0= o)

where 7, =y, £iy, and ¢} = —y, /,/7,7_. The eigenfunc-
tions obey the orthogonality conditions

(51)

VIR (k) =055, i)W (K) = 0. (52)
Here, a summation over the repeating spin « =1, | or band
A =+, — indices is implied.

In altermagnets, as in noncentrosymmetric metals, the
eigenfunctions from different bands transform into each
other by an operation of time inversion,

—i(0,),5Ko ¥y (k) < ¥, (K),

where K is the operation of complex conjugation. Thus, the
Kramers degeneracy is lifted.

There are two Fermi surfaces with different Fermi
momenta kgy. They are determined by the equations

er(k) = p, (53)

and the Fermi velocities are given by the derivatives

ok

VF+ = (54)

k=kg+

4.2 Spin current in thermodynamic equilibrium
The density of spin current is

. &’k dep (k)
-] (n) ™ ok,

e (K, ) . (55)
The matrix of the equilibrium electron distribution function is

ny +n_
2

ny —n_
2y

Nyp = Oap + ¥6.5 (56)
where n; = [exp ((e; — )/ T) + 1] is the Fermi distribution
function.

The integral (55) in altermagnets is equal to zero.
However, in noncentrosymmetric metals, there is nonzero

spin current density in thermodynamic equilibrium [22, 23]:

. d*k [0y e Y
Mﬂwwhwm“”+%“”“H

(57)
The presence of dissipationless spin currents is a property of
noncentrosymmetric metals similar to the presence of electric
currents in thermodynamic equilibrium in a metal with toroid
order given by Eqn (11).

4.3 Spin susceptibility

The spin quantization axis is given by the unit vector
¥ = v/|y]- The projections of the electron spins in two bands
in the ¥ direction have opposite signs:

(T0sp) P (k) = £¥,°(K). (58)

In an external magnetic field, the matrix of the electron
energy is

é(k) = ekop + v 6 — ho. (59)

The field is written here as h = pugH. The band energies are
now given by

e,n(k) =e+ Ay —h[, A==, (60)

Along with the changes in band energies, the spin quantiza-
tion axis also deviates from its zero field direction:

Yk —h

Y — k) = ——. 61
k h( ) ka _ h| ( )
The magnetic moment is written as
&k,
M = g 2n) (k) [n(en(k)) —n(e—n(k))],  (62)

where n(¢;)= [exp (¢, — p)/T)+1]"" is the Fermi distri-

bution function. Taking the term of the first order in
the magnetic field, we obtain for the magnetic suscept-
ibility
d*k on(ey) On(e)
= — 2 A,A, +
Xi‘/ MBJ(ZE)3 {YIY/|: 68+ + Je_ :|

e ”(8‘)} |

(63)

The first term under the sign of integration contains the
derivatives of the jumps in the Fermi distributions
On(eyr)/0er = —0(ex — u). The second one originates
from the deviation in the spin quantization direction for
the quasiparticles filling the states between the Fermi
surfaces of two bands. Thus, the magnetic moment
arising in altermagnets in an external magnetic field is
determined by the same formula as in noncentrosym-
metric metals [24].

4.4 Kinetic equation
In the band representation, the equilibrium distribution
function (56) is given by the diagonal matrix

= W00 = ("G 0) e

The Hermitian matrices of the nonequilibrium distribu-
tion functions in the band and spin representations are related
by

Fun(k) = V3 (K) fus ¥ (k). (65)

The kinetic equation for the electron distribution
function in noncentrosymmetric metals was obtained in
[25] from the general matrix quasi-classic kinetic equation
derived by V.P. Silin [26]. In presence of an electric field E,
the linearized matrix kinetic equation for the Fourier
amplitudes of deviation of the distribution function from
equilibrium

8iila (kv CO) :fll/lz (k) = Mis
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on
(v E) T+ (wE)(n —ny)
+
e
on_
E —n_ _E) —
WeE)(n, —n) (v E) o
0 i(e- — 8+)g:t(k)> 7
+ 1. =1 66
(1<e+ e )ge(K) 0 (66)
Here, we put, for brevity, n(e;) =ny,n(e-) =n_. The
quantities
v, (k
wal) = () Ll
0 Oy y- 0+
=t (- T Vel 67
Zy( ok 34y ok (67)

are the interband Berry connections,

_ *
W = —W}.

Unlike group velocities v, v_, the dimensionality of the Berry
connections wy and w. is 1/k.

[ is the matrix integral of scattering. In the Born
approximation, the collision integral I, ;, for electron scatter-
ing on impurities (see Appendix A in paper [25]) is

371

; d’k 2
I, (k :2nnij—Vk—k’
i]/.z( ) (27_[)3’ ( )|

{02 (0. W) g () 0y, (' )

- 0"H(k,7 k)gu7-z (k)} 5(8‘,, - 8/12)
+ [Oil"(kvk,)gvu(k/)

~ 2 (K) 04 (k. k)] O, (K K)O(e), — 22,) } - (68)
Here, we introduced the notations ¢;, = ¢, (k), ¢, = e.(k’),
etc.,

0,5,k k") = P/ (k) P2 (k') (69)

such that

0,k k') =07

Jady (kl7 k) .
The expression for the collision integral for electro-electron
scattering can be found in Appendix B in paper [25].

4.5 Conductivity
If the energy of band splitting exceeds the electron-impurity
scattering rate

1
vp(kp- — kpy) > g (70)

1
one can disregard the collision integrals in the off-diagonal
terms of matrix kinetic equation (66) and use the collisionless
solution for the off-diagonal terms of the matrix distribution
function:

e(weE)(n_ —ny)

g+ =e(w.E) = T P— (71)
g = e(w) = LD ) (72)
i(ex —e)

It has been shown that, in the stationary case, this type of off-
diagonal term does not make a contribution to the electric
current [25]. On the other hand, substituting these expressions
into the diagonal parts of collision-integral matrices (68)
allows us to ignore them in all the terms containing off-
diagonal elements of the distribution function. These terms
are vgp(kp- —kgpy)t; > 1 times smaller than those with
diagonal elements.
Then, the system Eqn (66) for

g+(k) 0 )
«p(K) = 73
= (9" ). 73)
acquires the following form:
on(e.) i
(v,E) as: =1, (74)
one-)
(v-E) =—=1", (75)
where
; &k >
1+ = 4nniJﬁ ’V(k — k’)‘

X {0++(kk/)0++(k/k) [g+(k') - g+(k)]5(8‘," — &)

+ 0, (kKO- (K'K)[g-(K)) — g (K)]o(" —2.)}, (76)
S -

x {0,,(kk’)0,,(k’k) [e (k') —g (K)]o(e" —e)

+ 0 (kKO (K'K) [g4 (K)) — g-(K)]o(eL =) | . (77)

[i = 47rni J

Thus, we come to a system of two equations coupled through
the collision integrals containing intraband as well as
interband electron scattering terms. We can search for the
solution of Eqns (76), (77) in the following form:

ony on_

- _ ~—*(v.E _=—e1_ —(v_E 78
g+ et 6§+(v+ ), & et aé_(" )s (78)
where the scattering times 7., t_ are even functions of the
wave vector. They should be found as the solution of
equations (76), (77).

The electric current density is

d*k de,p(k)
J (2n)® Ok

gpa(k ). (79)

Transforming it into the band representation, we obtain

. &k ep(k)

X W (K)gys (k, ) P (K)

+ (Wi €250 }gm, (k), (80)

where [...,...] is the commutator. Performing matrix multi-
plication, we obtain

3
ji= eJW [Vigy +v g + (Wegs — Wegs)(e — 8+()§1-)
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Ignoring off-diagonal terms of the distribution function and
substituting solutions (78), we obtain the expression

j= _32Jd3k[ On.,

= ) (i o, \ (82)

on_
(B e v (B

determining the conductivity due to electron scattering on
impurities. The corresponding derivation of conductivity
determined by joint processes of scattering on impurities
and electron—electron scattering is derived in paper [27].

4.6 Magnetoelectric effect
Altermagnets are invariant with respect to space inversion;
hence, the external electric field does not cause magnetization
to appear in them. On the contrary, noncentrosymmetric
metals placed in an electric field are magnetized. In semi-
conductors, this effect was predicted long ago by
E.L. Ivchenko and G.E. Pikus [28] and was reviewed in the
recently published paper [29]. The magnetoelecricity in a 2D
metal with the Rashba spin-orbit interaction was considered
first by V.M. Edelstein [30]. A more general treatment has
been developed recently in paper [31].
The density of magnetization
d’k d’k
= J(zn)z Copgpn = JW 6,128y (83)
is determined by the integral from the product of the
distribution function and Pauli matrices in the band repre-
sentation. When disregarding off-diagonal terms of the
distribution function, we obtain

d3k ’Yk :|
M= — —-g ). 84
J(zn)3{y(g+ ¢) (34)
Substituting Eqn (78), we obtain
d’k yk{ on. on_
M=—¢|—5— |t — (v:E)—17_ — (v_E)| . (85
T R

Thus, an application of an electric field to a noncentrosym-
metric metal causes the appearance of specimen magnetiza-
tion.

4.7 Anomalous Hall effect
The Hall conductivity is the antisymmetric nondissipative
part of the conductivity tensor ¢;; = —0oj;, which determines
the relationship between the current and the Hall electric field
arising in a magnetic field in a direction perpendicular to both
the current and the magnetic field:
]v = O'X}'EF . (86)
The anomalous Hall effect arises because, in general, electron
states adapt to the presence of an electric field, and the

velocity of an electron in a state with momentum k acquires
an additional term [32, 33]

n_lasl’f+£

=gk T Yt

(87)
where Q' is the Berry curvature tensor of the nth band with
energy ;. The corresponding Hall conductivity is

e? 3
ij —_Zj(d—k en) 2 (88)

h 2n)°

Here, n(e,) = {exp (e, — u)/T) 4+ 1} " is the Fermi-Dirac
distribution function.

The antisymmetric tensor of Berry curvature for the band
A=+1s

oV ow ow rovr
QF =i z £ 2 . 89
i 1( ok, ok, ok, ok ) (89)
The corresponding Berry curvature for the band A = — is
Q; = —Q;; hence, the Hall conductivity is
e2 [ d’k
oij=— | ——=[n(er) —n(e_)|Q;t. 90
=5 | o) = nte )2 (%0)

Let us calculate the Berry curvature for an altermagnet
with spectrum (46) in the presence of a magnetic field along
the Z-direction such that

i = 71 sin (k-b) [sin (kya)% + sin (ka)7]

+ (7 sin (kya) sin (kya) — pgH)Z . (1)

Substituting eigenfunctions (51) into equation (89) and
performing differentiation, we obtain
+ yia’®

o= cos (kya) cos (kya)

X [y, sin (kya) sin (kya) — pgH| . (92)

Substitution of this expression into Eqn (90) yields the
anomalous Hall conductivity,

e2uanla?
d’k cos (kya) cos (kya)

w |22 —n(e. : (93

j(W [n(e.) - n(e_)] = (93)

A similar expression for the Hall conductivity can also be
found for noncentrosymmetric metals where vector vy, is an
odd function of the wave vector.

The field independent part of Q! vanishes with integra-
tion and does not contribute to the Hall conductivity. This is
also true for the Hall conductivity determined by the
interband Berry curvature considered in paper [34]. How-
ever, in general, one can expect the existence of the Hall
conductivity even in the absence of a magnetic field. The
possibility of the Hall effect in noncollinear antiferromagnetic
materials in the absence of an external magnetic field was
predicted for MnsIrabout a decade ago [35, 36]. Recently, the
existence of the same phenomenon in the collinear antiferro-
magnet RuO, was pointed out [37]. Numerical estimates of
the Hall conductivity in [35, 36] as well as in [37] were made
using first-principles calculations of the electronic structure.
At the moment, the corresponding phenomenological deriva-
tion is absent. One can only assume that this is achievable by
making use of the 4 x 4 phenomenological spectrum given by
Eqn (48).

4.8 Piezomagnetic Hall effect

Altermagnets possess piezomagnetism. For instance, under
stress along the diagonal xy-direction, an altermagnet with
symmetry (42) acquires magnetization along the z-axis:

M: = j'20—)@' . (94)
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Hence, an electric current in the basal plane of such an
altermagnet in the presence of oy, stress will induce the
appearance of an electric field in the direction perpendicular
to the current,

Jx = O—\HE\ » (95)
where the Hall conductivity
ugyia’
O'/\lj, = 277; /“20-,\‘}’
d’k cos (kya) cos (kya)
X | ——=|n(ey) —n(e_ - - 96
J oy ) —nte ] S (96)

is proportional to the stress.

5. Superconducting states in altermagnets

The BCS Hamiltonian for singlet pairing in the spinor
representation has the following form:

H=">"(6x0u + T — 102p)a] g

kofs
1 .
+23 N VKK ) (i0y),5(00) s @l garnaios . (97)
kk' offyo
Here,
V(k,k') = ~TVoo! (K)o * (k") (98)

is the paring potential decomposed over the basis of even
ol (k) = @l (—k) functions of a given irreducible representa-
tion I' of the crystal symmetry group. For example, for an
altermagnet with symmetry group Dg4,(Dy;) consisting of
operations enumerated in Eqn (42), the function transform-
ing according to the unit representation is
(k) oci(ky — k7). (99)
Here, léx, kAJ,. are the components of unit vector k/kp.
Transforming into the band representation

ey = PH(K)exs s (100)

we obtain
Sy

1
+_Z Z Viviaisia (K, k) C ki Cljiack’hc k7 - (101)

KK’ 21 /ania

(’k/ Ck,

Here,

Viiiaiaig (kvk/) = V(k7 k/)t?»z (k)l‘L (k/)ajiigai2).4 ) (102)

and #;(k) = —4y_/,/y7_ is the phase factor.

It is obvious from this expression that pairing in alter-
magnets is the pairing of electrons from different bands. This
distinguishes them from noncentrosymmetric metals where

Viiainz (R K') = V(k k')t (k)lL (k")05,1,057, » (103)

and the pairing mostly occurs between electrons from the
same band [21].

The situation in altermagnets is reminiscent of pairing in
conventional superconductors with singlet pairing in a
magnetic field, which splits the Fermi surfaces for electrons
with opposite spins. That leads to paramagnetic suppression
of superconductivity. In altermagnets, the same effect takes
place in the absence of a field, which leads to an effective
reduction in the temperature of transition to the super-
conducting state or even to complete suppression of super-
conductivity. Thus, the possibility of the existence of super-
conducting altermagnets raises doubts. Nevertheless, for
completeness, we present here the theoretical description of
superconductivity in altermagnets.

The Gor’kov equations are

iwé)l/n - H}.lﬂz
T
7A/L|)

A/L])z
iwé;ﬂl;\z -+ HZIAZ

GA _FZ -
x ~ZTA3 ) =6 <(1) (1)) ’ (104)
_szig =Gy »
where
~ o — e + 0
I(U52112 - H/lliz = ( @ f; K io4+ e — ﬂ) ) (105)

and the phase factor is absorbed in the expressions for the
order parameter and the Gor’kov function:

Alliz(k) L, (k)A/Mz(k) (106)
A1 (K) = (01),,,4(k), (107)
?Ll).z(kvwn) = ( ) v (k (D,,), (108)

where w, = nT(2n + 1) is the Matsubara frequency. The self-
consistency equation is

2‘21/12 (k)
T -
- Ez Z vk, k/)(g«\‘)),z,ll (O-.\‘)}\3,14Fi3)~4 (kla wy), (109)
n Kk’

where

F/l]).z (k7 wﬂ)

4 0 Gl (k,w,)G_(k, —w,)
a G"(k,0,)G(k, —w,) 0
(110)
is the matrix Gor’kov function and
iwn +er— U
G:(k,w,) = — ; (111)
W+ (ex — )’ + 4
1
Gi(k,w,) = (112)

i, — e+ + 1

are the band Green’s functions in the superconducting and
normal state, respectively. The order parameters in the spin
and band representations are related to each other as

Ayp(k) = (iay)a/;ll(k)- (113)
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