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Abstract. Attenuation of surface waves due to viscous dissipa-
tion is accompanied by the excitation of slow vortex currents
due to the conservation of total momentum. We present a
theoretical model for small-amplitude waves that explains ex-
periments on vortex flow generation by crossing waves. Special
attention is paid to the effect of surface contaminants, which is
accounted for within the framework of a model of a thin elastic
liquid film, leading to enhanced wave dissipation and intensified
vortex currents. As the amplitude of the currents increases, their
interaction with the waves must be considered. A theoretical
framework is proposed to describe this interaction, demonstrat-
ing its applicability to classical problems: Guyon waves, the
propagation of short waves against a current, and Langmuir
circulation. Finally, experimental data on the turbulent regime
of flow generation, which occurs at sufficiently large wave
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amplitudes, are described, and open questions in this field are
outlined.

Keywords: waves on liquid surface, surface film, vortex flow, mass
current, Stokes drift, virtual wave stress, vortex force, wave
scattering and refraction

1. Introduction

A mass transfer in a horizontal direction beneath a surface of
a liquid under excited wave motion has long been a subject of
both theoretical research and practical interest. The first
attempt to explain this phenomenon was the classic study by
G.G. Stokes [1]. This work examined mass transfer in a
traveling wave in an ideal fluid, so that the flow remains
potential everywhere. It was shown that the motion of
Lagrangian particles, averaged over the wave oscillation
period, is characterized by a drift velocity that is quadratic
in the wave amplitude. Later, M. Longuet-Higgins discovered
that fluid viscosity disrupts the potential approximation not
only in the linear order of the wave amplitude within the
viscous sublayer near the surface but also in the quadratic
order, significantly altering the time-averaged mass transport
velocity [2].

The influence of fluid viscosity on mass transport can be
explained as follows. A traveling surface wave possesses
momentum directed along its direction of propagation. The
surface density of this momentum is proportional to the
square of the wave amplitude. It coincides with the vertically
integrated mass flux in the form of Stokes drift. Viscous
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dissipation leads to a weakening of the wave amplitude as it
propagates. The momentum associated with the wave motion
also decreases. However, due to the law of conservation of
momentum, the missing momentum is transferred to the
fluid. This transfer occurs through the action of a virtual
force applied in a thin surface layer that includes wave crests
and troughs, as well as the viscous sublayer. This force — the
virtual wave shear stress—is proportional to the fluid
viscosity and the square of the wave amplitude [3, 4]. The
action of this force leads to the generation of a slow shear
flow, which then propagates into the bulk of the fluid through
viscous diffusion. If the generated current is weak, such that it
is not turbulent, then its amplitude in the steady state does not
depend on the fluid viscosity, although the viscosity serves as
the origin for the current. Subsequent work on this topic has
been aimed at reformulating the problem in a Lagrangian
description and adapting the main result for oceanogra-
phy —investigating the nonstationary case and the influence
of Coriolis forces [5-10]. From a methodological point of
view, [I1] is also of interest, as it compares different
mathematical approaches to describing the phenomenon.

In the 2010s, interest in the generation of flows by waves
arose again, but in a more complex formulation: how would
the mass transport be arranged if two crossing waves [12—16],
a geometrically more complex wave pattern [17-20], or
chaotic wave motion [21-25] was excited on the surface of
the liquid? The theoretical analysis for a liquid with a clean
free surface, on which two standing orthogonal waves are
excited, showed that the lattice of near-surface vortices with
the period determined by the wavelength was formed in the
stationary/steady-state regime [12]. In the vortices, the
vertical velocity component is zero. Therefore, they are
completely characterized by the vertical component of
vorticity, the distribution of which in the space forms a
‘chessboard.” The theory developed in [12] explained many
qualitative peculiarities of the excited flow, in particular, its
spatial structure and the proportionality of the flow ampli-
tude to the product of amplitudes of the waves and the sine of
the phase difference between them. However, numerical
agreement was not achieved: in the experiment, the flow
amplitude turned out to be an order of magnitude higher
than the theoretical predictions.

The reason was that the water surface under real
conditions is always covered by a thin film, which leads to a
change in the boundary conditions on the liquid surface. In
particular, this change causes a sharp increase in the wave
damping rate, while barely altering its dispersion relation.
The role of the surface film in wave dynamics has been
investigated in a number of theoretical studies (see the work
by V.G. Levich [26-28] and other authors [29, 30]), as well as
in experimental work [31, 32]. Among other things, the
increased dissipation of waves on the water surface due to
the presence of a film prevents the experimental observation
of the inverse cascade in weak turbulence of gravity waves
[33]. In one of the early studies [34] on this topic, it was noted
that the wave damping rate can change over time. This means
that the surface film is a result of the adsorption process of
surfactant molecules from the flow-bounding surfaces or
from the air, which are captured by the water due to its high
dielectric constant.

The influence of a surface film on wave-induced current
generation was investigated in detail only recently in [35-37].
The initial idea was that, since the presence of a film increases
the wave attenuation, the virtual wave shear stress should

increase correspondingly. Initially, the analysis was carried
out for the case of an almost incompressible film [35], but a
more thorough analysis of experimental data later showed
that the horizontal component of the velocity in a wave on a
liquid surface does not vanish [37]. This observation indicated
that the water surface is covered by a compressible film.

The properties of the film are unknown a priori since the
process of its formation is uncontrolled. In a general case, its
rheological properties can be described by four coefficients,
assuming a weak degree of film deformation: elastic dilation
modulus, second viscosity (determining the film’s dissipative
response to dilation/compression), elastic shear modulus, and
first (shear) viscosity [38]. In [36, 37], we assumed that
dissipation due to the film’s internal viscosity is small
compared to the viscous dissipation in the bulk fluid, and,
on this basis, we disregarded both of the film’s viscosities.
Furthermore, we assumed the film to be liquid, meaning it
offers no resistance to shear deformations. The criterion for
this approximation is the experimental fact of the excitation
of vortex flows [37]. A counterexample is the experimental
study [39], where a specially prepared film possessed shear
elasticity, and therefore horizontal vortex flows were sup-
pressed. Finally, we considered that the film is formed by
insoluble molecules, so the mass of the film (the amount of
substance in it) is conserved. As a result, the film’s properties
in our model were described by only one parameter — the
elastic dilation modulus [36]. Although this model is simpli-
fied and does not cover all possible cases, it was shown in [37]
to describe the experimental results sufficiently well.

When the amplitude of orthogonal surface waves
increases, along with the ‘chessboard’ of vortices, a large-
scale flow with the size of the entire experimental cell is
developed in the system at long times [13, 37]. In the
mentioned studies, the waves were excited by oscillating
plungers installed along the walls of a rectangular basin.
Since the plungers were 2—3 cm short of the edges of the basin,
they also excited low-amplitude oblique waves propagating at
a small angle to the basin walls due to the edge effects [17].
The nonlinear interaction between waves propagating strictly
parallel to the walls of the basin and the oblique waves results
in the generation of a large-scale flow with an amplitude
inversely proportional to the sine of half the angle between the
wave propagation directions [40]. Hence, the small amplitude
of the oblique waves is compensated by the smallness of the
angle. The proposed mechanism was specifically investigated
in experimental study [41].

The phenomenon we are discussing— the generation of
vortex flows by waves in an initially quiescent fluid —is
representative of a general class of flows that arise at the
second order in the amplitude of some oscillatory forcing due
to the existence of a viscous boundary layer [42]. Other
examples of this class are:

e acoustic flows excited in a low-viscosity liquid by
acoustic waves [43, 44] (see also [45, § 80]),

e vortical geostrophic flows, driven by inertial waves [46,
47],

o flows generated by surface waves in a viscous boundary
layer near the bottom [2],

e flows caused by a solid body rapidly oscillating in a
liquid [48, 49].

o flows associated with bending vibrations of freely
suspended films [50-52].

In all cases, the slow flow results from the averaging of the
Reynolds tensor in a viscous boundary layer near a solid
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boundary or a free surface. A characteristic property of
steady-state acoustic flows and viscous flows excited in a
viscous boundary layer near a solid wall or a free surface
without a film is the independence of their amplitude from
viscosity. The case of a contaminated surface covered with a
film under consideration violates this rule: the intensity of
steady-state slow flows is inversely proportional to the root of
the viscosity, provided the elastic compression modulus of the
film is sufficiently large.

Increasing the amplitude of surface waves allows reaching
a turbulent regime in surface currents. For example, in [21-
25], wave motion was excited via the Faraday instability,
while in [53], waves in a square cell were excited by two
plungers located on adjacent sides. Note also that, under
certain conditions, nonlinear four-wave interaction in such a
system can lead to the excitation of waves with other
frequencies [54]. It is noteworthy that the statistical proper-
ties of slow near-surface flows in such systems show a number
of features characteristic of two-dimensional turbulence [55],
and this holds true even for experiments in deep water. In
particular, the energy spectrum of the surface flow is o< k ~5/3,
the third-order velocity structure function depends linearly
on the distance between points and has the sign correspond-
ing to an inverse energy cascade, and, with a decrease in the
cell size, the formation of a large-scale coherent vortex is
observed [22]. Recent experiments [24, 25], which were aimed
at studying the penetration of surface flows into the interior,
confirm that the energy of the horizontal flows decreases
rapidly with depth and is localized in the vertical direction on
a scale of about half the wavelength. At the same time, the
divergence of the horizontal velocity is not zero, i.e., the
surface interacts with the bulk due to the formation of vertical
jets. Currently, there is no consistent theoretical picture
explaining all these results.

This theory must also account for the fact that, as the
amplitude of the vortex flow increases, its interaction with the
fast surface waves can no longer be neglected. The criterion
for the relative insignificance of this interaction is the
smallness of the vorticity amplitude of the vortex flow
compared to the wave damping rate. Otherwise, one must
consider the bulk force [56], known as the vortex force [57],
which acts from the waves on the vortex flow and arises due to
the weak distortion of the wave field by the slow current. On
the other hand, the surface waves themselves are refracted
and scattered by the spatially inhomogeneous vortex flow.
Currently, the role played by the wave-current interaction in
experiments [13, 17, 21 -25, 53, 54] remains unexplored. Our
estimates, provided in this review, show that this interaction,
in order of magnitude, is comparable to, or even exceeds, the
effect of virtual surface stress. Thus, when constructing a
statistical theory of inverse cascade phenomena in the surface
layer in the presence of surface waves, it appears impossible to
avoid accounting for the interaction between these two
subsystems.

To provide a theoretical foundation for future research on
this issue, we present an analytical framework developed in
recent paper [58]. This framework allows a general descrip-
tion of the mutual influence between waves and the surface
current in the limit where the vortex flow can be considered
slow, i.e., its rate of change and spatial gradient are small
compared to the wave frequency. It is important to emphasize
that the framework does not employ any additional simplifi-
cations. It adopts a physically justified mathematical picture:
the wave velocity field on the background of the slow current

is still described by a potential in the zeroth order of
interaction; however, a weak vortical correction, unrelated
to changes in the surface shape, is added in the first order.
Since the framework is new, we find it necessary to
demonstrate the technique of its application to already
known classical problems, which were solved using other,
less universal mathematical formalisms. First, we apply this
framework to describe Guyon waves [59], which are studied in
terms of the flow function within the perturbation theory [60].
Second, we show how our scheme is reduced to a wave
equation when describing the refraction of wave rays in the
short-wave limit [61, 62]. We apply the obtained wave
equation to study the problem of wave propagation against
an enhancing current [63, 64]. As is known, such a current can
stop waves. The obtained wave equation completely describes
the behavior of a wave near the stopping point, which is not
possible when using previous approaches [64]. Third, we
describe the result of applying the framework to the problem
of Langmuir instability, which arises against the background
of a traveling wave and a co-directed shear flow. Previously,
the mechanism of Langmuir instability was explained in
terms of the concept of a vortex force [65]. It was shown in
[58] that consideration of the wave scattering on the
Langmuir circulation expanded the structure of the unstable
mode by including the scattered wave. The increment of
instability of this mode turns out to be greater than that
determined in [65]. As a result, we demonstrate the univer-
sality of our theoretical framework through these examples.

Our review is organized as follows. In Section 2, we
examine the generation of slow flows in the simplest case of
a traveling gravity wave. Then, in Section 3, we generalize the
analysis to the case of arbitrary wave motion and take into
account possible contamination of the surface because of the
formation of a thin film. Section 4 focuses on a description of
the interaction between slow flows and surface waves.
Finally, in Section 5, we discuss the statistical properties of
slow flows in the turbulent regime and list a number of open
questions in this regard. In the Conclusions, we briefly
formulate the main results and also point out research areas
where they may be in demand.

2. Generation of current by progressive wave

In this section, we will consider the generation of slow current
by a plane traveling gravity wave. Our goal is to reveal the
nature of this phenomenon and relate it to the law of
momentum conservation by considering the simplest exam-
ple. First, we will recall how gravity waves are described in an
ideal fluid and how their momentum is determined. Then, we
will discuss how the viscous attenuation of surface waves
results in the generation of slow currents. At the end of the
section, we will turn to a description of the motion of passive
particles that are used in experiments to record the velocity
field. We will see that the drift of these particles includes an
additional contribution, the Stokes drift [1], which is not
directly related to the generated slow flow but is associated
only with the wave motion. In conclusion, we will briefly
discuss the case of nonmonochromatic waves (wave packets)
and analyze the nonlinear potential contribution to the slow
current that arises in this case.

2.1 Waves in ideal fluid
Let us consider an irrotational gravity wave in an ideal fluid of
infinite depth. The velocity field is potential, u = V¢, and
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incompressible,
Ap =0, (1)

and the velocity potential ¢ satisfies the Bernoulli equation
inside the fluid [66],

Vol P _
6,¢+T+E—O. (2)

Here, p is the density of the fluid, and P is the modified
pressure, which includes the gravitational term. Further, we
assume that the z-axis is directed vertically, opposite to the
gravitational acceleration g, the liquid surface is determined
by the equation z = A(¢, x,y), and at rest it coincides with the
plane z = 0. Then, the modified pressure is P = p + pgz,
where p is the internal pressure.

The dynamic equation (2) must be supplemented with
boundary conditions on the fluid surface. First, there is the
kinematic boundary condition, which means that the fluid
surface moves with the fluid velocity u = V¢, i.e.,

0h = u. — u,0,h. (3)

Here and hereafter, Greek indices take the values x and y, and
summation over repeated indices is implied. Second, there is
the dynamic boundary condition, which means the equality of
the pressure on the fluid surface to the atmospheric pressure
(assumed to be zero) in the absence of capillary forces,

P—pgh=0. (4)

We emphasize that expressions (1)—(4) together with
[V¢p| — 0 as z — —oo form a closed system of nonlinear
equations describing irrotational flow of an ideal fluid.

Next, we assume that a gravity wave of small steepness,
|Vh| <1, is excited on the fluid surface. In the linear
approximation, this refers to a wave characterized by the
dispersion relation w? = gk, where k > 0 is the wavenumber
and o is the wave frequency. For a wave propagating along
the x direction, one finds

cos (kx — wt)

P = pw?Hexp (kz) 3 , (5)
(e

¢(U::(yliexp(kz)ﬁglgii——ggz, (6)

WV = Hcos (kx — 1), (7)

where H is the wave amplitude, and the superscript (1)
denotes the linear approximation.

As we will see below, the momentum associated with
the wave motion is quadratic in the wave amplitude H.
Therefore, to calculate it, we need to find the second-order
corrections, which are determined by the following system
of equations:

pQ (1y2
Vip® =0, 6,¢(2>+—:—(u ) : (8)
P 2
0, — 4@ = 62”;(1)|Z:0h(1> _ u,f.”\_,:o och,(9)
PO|_, —pgh® = —o.PM|_ n" (10)

Using expressions (5)—(7) and performing straightforward
calculations, we obtain
2kz)
PO — _ 0t H? exp (
p 5
g2 08 (2kx — 2wt)
— 5

, o@D =0, (11)

h? =k (12)

We are now ready to introduce the physical quantities of
interest using the simplest example of the traveling gravity
wave in an ideal fluid. The surface density of momentum is
defined as 7, = p(j’_hOO dzu,) and describes the mass trans-
port through a cross section of the wave. Here and hereafter,
the angle brackets denote averaging over rapid wave oscilla-
tions. Up to the second order in the wave amplitude, we
obtain

h 2
H
nx2p<J dzuA\(_')> :pcuz . (13)

—00

Note that the integral accumulates near the surface in a thin
layer that includes wave crests and troughs.

Next, we introduce the momentum flux density tensor
Iy = pdix + pujug, which is the ith component of the
momentum transferring along the kth axis [45]. Accord-
ingly, the surface density =, of the flux of the x-component
of momentum in the direction of the x-axis, associated solely
with the wave motion, is

h 0
Ty = <J dZH\\+ng dZZ>.

The surface density of the momentum flux is also called
radiation stress. In (14), the last term is necessary to subtract
the contribution associated with gravity for the unperturbed

surface. Up to the second order in the wave amplitude, we
find

0 2
nzj az {p(ull) + PO
—00

M h® 2172
H
+<J dzP(”—ng dzz>:pU;k . (15)

—00 0

(14)

This result corresponds to the transport of the surface
momentum density 7, at the group velocity ¢, = w/(2k),
1.e., Ty = cgmy [67]. The generalization of these considera-
tions to the case of gravity-capillary waves is given in [68].

2.2 Conservation of momentum
under conditions of attenuation of surface waves
The viscosity of the liquid results in the attenuation, or
damping, of surface waves. We will assume that the kine-
matic viscosity of the fluid v is small, so that the dimensionless
parameter y = /vk2/w < 1. In laboratory experiments,
waves are typically excited by periodic forcing at the
boundary, and, in the steady state, their amplitude decays in
space, H = Hyexp (—4y2kx). It can be shown that, for a
weakly viscous fluid, the expressions for the surface density of
momentum (13) and its flux (15) remain the same, except now
the spatial attenuation of the wave amplitude must be taken
into account.

If the influence of the vertical walls is neglected, the
horizontal projection of the total momentum of the wave
system should be conserved. Therefore, the decrease in the
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N

(ty + Omy) dx

: T () : Txy (X + dx)

Figure 1. Change in horizontal component of wave motion’s momentum
generates surface force t, (virtual wave stress), which excites slow flow.

momentum of the wave motion associated with the reduction
in wave amplitude must be compensated. Physically, this
compensation occurs in a thin viscous sublayer near the free
surface with a thickness of 6 ~ y/k. In this layer, the wave
motion ceases to be potential due to the viscosity of the
medium. We will examine the structure of the velocity field
within the viscous sublayer in detail in the next section, but,
for now, for simplicity, we will assume that the thickness of
this layer can be disregarded. In this approximation, a shear
stress 7, must be applied to the fluid surface, ensuring the
conservation of total momentum:

Ty = =0Ty — OyTlyy = 2pva)(kH)2 . (16)
This expression is illustrated in Fig. 1. The first term on the
right-hand side of (16) corresponds to the temporal damping
of surface waves [3], which is possible in the general case but
absent in our example, and the second term accounts for the
spatial attenuation of waves [4]. We emphasize that the
imbalance on the right-hand side of (16) leads only to the
emergence of a surface force, since, in the bulk, i.e., outside
the viscous sublayer, the flow associated with the wave
motion remains potential, and therefore the action of
nonlinearity cannot generate a slow vortical flow.

The virtual wave stress 7, transfers momentum from the
fast waves to the slow current V, which propagates into the
bulk of the fluid because of viscous diffusion. In the initial
stage, while the amplitude of the flow V is small, this process is
described by the Navier—Stokes equation

vPp

6[V+(VV)V:77+VV2V7 (17)

divvV =0, (18)
where P is the pressure associated with the slow flow,
ensuring the incompressibility condition (18) is satisfied.
These equations must be supplemented by boundary condi-
tions on the surface,

::0207

pvaz Vx’::(): Ty, V. (19)
which assume that the slow flow leaves the surface of the
liquid flat. Note that, in this approximation, we do not
account for the contribution to the Navier—Stokes equation
associated with the Craik—Leibovich vortex force [56], which
we will discuss in more detail in Section 4.

As an illustration, let us determine the steady slow flow in
a fluid layer of thickness d. We assume that this thickness is
large compared to the wavelength A = 2nt/k (the deep-water
condition for surface waves), but small compared to the

propagation length /, = 1/(4y2k). Then, to the leading order
in d/l, < 1, we can solve the equations under the assumption
that the force applied to the fluid surface is constant and that
the system under consideration is homogeneous along the
x-axis. Over a long time, the slow flow will penetrate to the
full depth, so we must additionally require that the velocity
vanish at the bottom:

\4 =0.

z=—d (20)
We will also assume that, in the steady state, there is no net
mass transport in the horizontal direction,

JO Vi()dz =0, (21)

which is ensured by a corresponding increase in the mean
fluid level towards increasing x coordinate. Looking ahead,
we note that the correction to this expression due to Stokes
drift can be neglected, since d > 1/k.

Now let us proceed with the calculations. The incompres-
sibility condition (18) leads to 0.V, = 0, and, together with
the boundary condition (20), this implies that V, = 0. Next,
the z-component of equation (17) reduces to 0.P =0,
indicating that the pressure is constant in the vertical
direction. Considering the x-component of equation (17)
together with the boundary conditions (19), (20) and relation
(21), we find

2
Vi(z) = wlkH)d <322 i 1> . (22)

2 \a&* ' d
The obtained answer coincides with the result of [2,
Eqn (305)]. Note that, in the limit v — 0, the answer remains
finite and independent of viscosity, even though the surface

force (16) that excites the slow flow is of viscous origin and
proportional to it.

2.3 Stokes drift

So far, we have used the Eulerian description of motion,
focusing on the structure of the flow velocity field at various
points in space. In practice, the velocity of infinitesimal fluid
elements, the Lagrangian velocity, is often of greater interest.
Inlaboratory experiments, small particles passively carried by
the flow are often added, and their motion is recorded to
measure the velocity field. Note that this method imposes a
number of constraints on the properties of the particles used.
In particular, the particles must accurately follow the fluid
motion, must not affect the properties of the flow and the
fluid itself, and must not merge in clusters. In the presence of
waves, the average Lagrangian velocity differs from the
average Eulerian velocity of the flow, even though, at any
given moment in time and at any point, these velocities
coincide. The difference between these velocities is called the
Stokes drift. This phenomenon was first described in the
classical study [1], and review [69] can be recommended as
modern literature on the subject.

Let us consider the motion of a fluid element along a
Lagrangian trajectory when a wave propagates along the
surface. The motion of the element is described by the
nonlinear equation

dR

E = V(l,R),

(23)
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where the vector R(7) describes the position of the Lagrangian
particle, and v(¢,r) is the Eulerian flow velocity. In a general
case, v=u -+ V, where u describes the fast wave motion, and
V corresponds to the slow flow.

Suppose that, at the initial moment of time, the Lagran-
gian particle was located at the point R(#y) = ry. The velocity
field in the vicinity of this point can be expanded in a Taylor
series

vilt,x) = vi(t, x0) + Gij(£,%0) (rj — roj) + ..., (24)

where Gy;(t,x9) = 0;v;(¢,19) is the velocity gradient tensor,

Latin indices take the values x, y, z, and we sum over repeated

indices. Substituting this expansion into equation (23), we

find the particle displacement 6R = 6R; 4 0R», accurate to

the second order in the wave amplitude,
t

SR, (1) J ' V(' ko), (25)

to

t

8 R (1) = J dr’ Gt x0) SRy (1)

Iy

(26)

and, to compute 6R;, it is sufficient to retain only terms linear
in the wave amplitude in 6R; and G;;. Averaging over the
rapid wave oscillations, we find the average Lagrangian
velocity of the passive particle:

VE=Vi+(Gi(t,r0) 3Ry;(1)) . (27)
The last term in expression (27) is called the Stokes drift and is
denoted by US.

Using expression (6) for the velocity potential of a
traveling gravity wave in an ideal fluid, we find

US = (wkH?exp (2kz),0,0) . (28)
In the linear approximation, the Lagrangian trajectories in
the field of a gravity wave in deep water are circular. Taking
into account the second-order terms causes these circles to
become open, and the particle slowly drifts in the direction of
wave propagation (Fig. 2). The Stokes drift US responds
almost instantaneously to changes in the wave amplitude; the
corresponding response time can be estimated as the wave
oscillation period.

Expression (28) for the Stokes drift remains valid for a
weakly viscous fluid outside the viscous sublayer near the
surface, since the viscosity has a negligible effect on the
potential component of the wave motion velocity. The
situation inside the viscous sublayer requires separate con-
sideration, which we will undertake in Section 3. We also note
that the mass transport of the fluid through a cross section of
the wave can be found by integrating the Stokes drift

—)l/
m Trajectories = US
of particles >
b
(¢10)) )
l

Figure 2. Stokes drift for wave traveling on surface of deep water.

vertically. The result remains the same:

_ pwH?

0
nx:pj dzUS = 3 (29)

(compare with expression (13)). Later, in Section 3.4, we will
generalize expressions (28) and (29) to the case of an arbitrary
wave field with a narrow spectral width.

Measuring Stokes drift is a challenging experimental task,
because all types of wave-induced Eulerian flows must be
eliminated or accounted for. Surprisingly, this problem
remains relevant to this day [70]. For example, in recent
studies [71, 72], the authors analyzed the trajectories of
Lagrangian particles during the passage of a wave packet to
measure Stokes drift. The wave field in the form of a wave
packet limited in time and space was chosen in order to
exclude the excitation of the mean vortical current considered
above in Section 2.2. In the case of nonmonochromatic
waves, hydrodynamic nonlinearity leads to the emergence of
an additional potential contribution to the slow flow, which
must be taken into account when processing experimental
data. We discuss this contribution in the next section. Its
origin is in no way related to the viscosity of the fluid, and it
should be distinguished from the slow vortical flow, which is
the subject of this review.

2.4 Slow potential flow induced by motion of wave packets
In a weakly nonmonochromatic wave, the surface densities of
momentum 7, (13) and its flux m,, (15) vary slowly with
coordinate and time even in an ideal fluid. This leads to the
emergence of a large-scale slow potential flow component
[68], whose velocity we hereafter denote as (u). Although this
flow is not the primary subject of interest in this review, we
present here the main properties of such slow flows in order to
compare them to and distinguish them from the large-scale
vortical flows generated by waves in a weakly viscous fluid.

If the spectral width of the wave packet is Aw < w, then
the spatial scale of the slow potential flows is / ~ ¢, /Aw and
thus significantly exceeds the wavelength. The velocity of the
slow flow is estimated as (u) ~ kH?Awexp (z/1) if the fluid
depth d exceeds the characteristic flow scale, d > [ [72].
Therefore, these flows are weak not only due to the small
wave steepness kH < 1 but also due to the small relative
spectral width Aw/w < 1. It is important to note that the
potential nature of these flows implies that the amplitudes of
the vertical and horizontal velocities are of the same order of
magnitude, (u.) ~ (uy). If the fluid depth still satisfies kd > 1
but is less than the horizontal size of the wave packet, [ > d,
then the velocity estimates are {(u,) ~ wH?/d and (u.) ~
kH?Aw(1 + z/d) [71]. The horizontal velocity of the flows is
directed opposite to the Stokes drift. Near the fluid surface,
these flows are weaker by the parameter Aw/w than the
Stokes drift, but they penetrate deep into the fluid bulk and, at
sufficient depth, can cause Lagrangian particles to drift in the
opposite direction compared to particles near the surface. We
also note that a detailed mathematical description of wave
packet motion is given, for example, in [73], and a discussion
of the geometric picture of slow velocity distribution around a
spatially localized wave packet can be found in review [74]
and monograph [62]. Consideration of the inverse effect of
slow flows on a wave is discussed in [75].

For completeness, we mention that the result of the slow
potential response to the nonlinear interaction of two waves
with a small frequency difference Aw, propagating in
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arbitrary directions with wave vectors k; and k,, was
considered in [76]. An estimate for the velocity of the slow
potential flow in the limiting case d > 1/|Ak|is (u) ~ kH?>Aw,
which coincides with the estimate given above for the velocity
of the slow flow induced by plane wave packets. Further in
this review, we do not examine the slow potential flow in
detail, since its amplitude near the surface is relatively small,
and we concentrate on the slow vortical flow and the Stokes
drift.

3. Generation of flows by crossing waves
on contaminated surface

This section focuses on the analysis of the generation of slow
vortex flows when the liquid surface is covered with a thin
liquid film. First, we will analyze how the presence of the film
changes the velocity field of wave motion and how this
velocity field is arranged near the liquid surface inside a thin
viscous sublayer. Then, we will trace how the nonlinear term
in the Navier—Stokes equation leads to the emergence of a
virtual wave stress that excites a slow flow. A theory will be
built for an arbitrary form of deviation of the liquid surface
from equilibrium. In conclusion, we will briefly review recent
experimental studies and discuss their results in the context of
the developed theory.

3.1 Equations of motion and boundary conditions

Let us formulate equations that describe the flow of an
incompressible fluid, the surface of which is covered with a
thin liquid film. In the bulk, the velocity field satisfies the
Navier—Stokes equation and the incompressibility condition

Ov+ (vV)v = (30)

(1)

Recall that the Z-axis is directed vertically upwards, and the
modified pressure P includes a gravitational term, i.e.,
P = p + pgz, where p is the internal pressure. In comparison
with the description of the motion of an ideal liquid, we took
into account the viscous term that contains second-order
spatial derivates of the velocity field and increases the order of
the equation. Accordingly, the Navier—Stokes equation
requires an additional boundary condition.

Let, as before, the deviation of the surface from the
equilibrium position z =0 be described by the function
h(t,x,y), which is assumed to be a single-valued function of
the coordinates, i.e., we do not consider processes related to
the breaking of waves. On the liquid surface z = A(¢, x, y), we
must require the fulfillment of kinematic and dynamic
boundary conditions. The kinematic boundary condition
coincides with condition (3) written earlier for a purely
potential flow,

vp
— Wy,
o

divv=0.

0h = v. — v,0,h. (32)
As before, the Greek letters take the values x and y, and the
repeating indices are used for summation.

The dynamic boundary condition is significantly modified
owing to the consideration of the viscosity of the liquid and
the surface film. In fact, this condition means that the total
force acting on an arbitrary element of the surface is zero.
This requirement is a direct consequence of Newton’s second
law, where we neglect the term with acceleration, since the

film is assumed to be thin and has a negligible mass. We also
assume that no forces are applied to the liquid surface from
the side of the air. The role of the film is that it changes the
coefficient of surface tension ¢(n) depending on the surface
density of the film n. The non-uniformity of the surface
tension leads to an additional tangential force, which must
be taken into account in the boundary condition [45, § 63]. As
a result, by projecting the dynamic boundary condition onto
the direction along the normal to the surface 1 and onto the
tangential plane, we obtain

P —2pvli[0;vr = pgh + oK,
pv5 Qv +0kvy) =0 5l6 .

Here, 5; = 0;; — lil;1s the projector onto the tangential plane,
K is the average surface curvature equal to the trace of the
curvature tensor Ky = Ki; = (3 Ojlx, and o' =00 /0On. The
operator 5L6 does not contam derlvatwes in the direction
perpendlcular to the surface. Therefore, when calculating
partial derivatives, the concentration field » can be formally
considered to be continued from the surface into three-
dimensional space in any convenient way. Expression (33)
generalizes relation (4) by taking into account the nonzero
viscosity of the liquid and additional capillary pressure. As
for the balance of forces in the tangential plane (34), this
condition is not required for an ideal liquid and is associated
with a higher order of the Navier—Stokes equation. We also
point out that the unit vector normal to the liquid surface l can
be expressed through the deviation of the surface from
equilibrium

(—0ch, —0,h, 1)

(35)
1 4 (Vh)?

1(t,x,y) =

To close the system of equations, it remains for us to
describe the dynamics of the surface density of the film, which
we shall present here as a function of only two horizontal
coordinates, n = n(t,x,y). We shall think of the film as
insoluble, which means the conservation of its mass [35]

on + v,0,n + néﬁa,-v,- =0, (36)
where the values of the velocity field and its gradients should
be taken on the surface of the liquid. The second term in (36)
describes the transfer of the film substance. The third term
takes into account the process of the compression/extension
of the film; due to the incompressibility of the liquid, the two-
dimensional divergence of the velocity is proportional to the
normal component of the viscous stress arising in boundary
condition (36), 5L6 vi = —lilj0jv;. As discussed earlier, the
model of the film used does not describe the most general case
and has limited applicability. Nevertheless, it describes the
experiments quite well. The case of a free liquid surface
corresponds to the limit ¢’(n) — 0, and there is no need to
describe the surface density of the film in this approximation.

So far, we have discussed the boundary conditions on the
surface of the liquid z = A(¢, x,y). As for the bottom, it is
assumed to be flat and coincident with the plane z = —d. All
three velocity components must be zero at a solid boundary.
In a horizontal plane, the flow is considered unlimited unless
otherwise stated. Further, we will often assume the liquid to
be infinitely deep.

When describing the vortex flow generated by waves near
the surface, it will be convenient to use the vorticity @ = rotv
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instead of the velocity v. By taking the curl from the Navier—
Stokes equation (30), we find

dw=—(vV)w+ (wV)v+ W w. (37)
The boundary condition for the vorticity component normal
to the surface can be obtained by applying the operator
€imglmd, (Which contains only derivatives along the surface)
to both sides of relation (34):

Ll Ok, + (aka + ékvi)efmqlml(kq =0. (38)
Here, ¢;j is the unit antisymmetric tensor, and w; = €;x0;v.
When deriving Eqn (38), we used the identity €;q/,0,0; =
€imglmKyi = 0, which can be verified by direct calculations.
The surface tension gradient is not included in boundary
condition (38), since the surface force arising as a result of the
spatial non-uniformity of the surface tension has a potential
character. Hereafter, this circumstance significantly simpli-
fies the nonlinear analysis.

3.2 Linear theory of surface waves in presence of film

The linear analysis of surface waves in the system under
consideration is well known [26, 28-30]. The dispersion law
has two branches: gravity-capillary waves and Marangoni
waves. From the viewpoint of film dynamics, gravity-
capillary waves are predominantly transverse, while Maran-
goni waves are longitudinal. Hereafter, we assume that
gravity-capillary waves are weakly attenuating. This is
ensured if the dimensionless parameter y = y/vk?/w < 1,
where w and k are the frequency and wave number of the
wave. Marangoni waves attenuate considerably faster; thus,
we do not consider them. The velocity field of gravity-
capillary waves will be denoted by u. Hereafter, the total
velocity field v will consist of rapid wave motion u and a slow
vortex flow V.

In the linear approximation, all quantities that character-
ize gravity-capillary waves can be expressed through the
deviation of the liquid surface from equilibrium /(¢, x,y)
exp (ik,r, — iwt). For deep water d > 1/k, the velocity field is
determined by the expression [36]

_exp (kz) — Dexp (x2)
=Tk (1 = (k/=)D)
exp (kz) — (k/x%)Dexp (xz)

: 1— (k/=)D

0,0,
(39)

o,

where x = \/k? —iw/v (with a positive real part), and all
dependence on the film properties is reduced to the factor

—noo ' (ng)

20y — ¢ .
Vv k2

D= o =&

(40)

where 7 is the equilibrium value of the surface density of the
film on a surface at rest, and the parameter ¢ > 0 can be called
the dimensionless elastic compression modulus of the film.
This quantity must be positive for the film to be thermo-
dynamically stable [77]. Note that the value of ¢ not only
characterizes the properties of the film but also depends on
the parameters of wave motion. At a fixed value of the
compression coefficient of the film —nyo’ (1), the maximum
dimensionless parameter ¢ is reached in the region of a
transition from gravity to capillary waves at k = \/5gp/ao,
where o is the surface tension at rest.

The expression for velocity field (39) includes two
contributions. The first is proportional to exp (kz) and
corresponds to the potential component of the velocity field
that penetrates into the liquid to a distance of the order of 1 /k.
The second contribution is proportional to exp (xz) and
results from the viscosity of the liquid. It is localized in a
thin viscous sublayer near the surface with the thickness
0 ~vy/k < 1/k. Outside the viscous sublayer, the second
contribution can be disregarded, and the velocity field
becomes potential.

In our model, the properties of the film are characterized
by one dimensionless parameter ¢ > 0 and affect the velocity
field of the wave through the complex parameter D. The case
of a free surface corresponds to ¢—0 and D —
2uk/(%* 4+ k2) and was analyzed in Ref. [12]. The other
limiting case, ¢ — oo and D — 1, describes an almost
incompressible film and was described in Ref. [35]. In the
intermediate range, the absolute value of the parameter D is
of the order of or less than unity; therefore, the factor kD /x is
small atleast asy < 1. This means that the surface film mainly
modifies the nonpotential component of the horizontal
velocity. Moreover, if |[D| ~ 1, this nonpotential correction
becomes comparable to the potential contribution inside the
viscous sublayer. If there is no film on the liquid surface,
|D| ~ 7y, and the potential contribution dominates every-
where.

For further calculations, we will need an expression for
vorticity in the linear approximation w" =rotu. It is
determined only by the vortex component of the velocity
field and, therefore, is localized inside the viscous sublayer.
Direct calculation gives

(x* —k*)D
k(1 — (k/»)D)

u

W, = €yp exp (#z)0p0h, wi =0, (41)

where ¢, is the second-rank unit antisymmetric tensor. The
vorticity is directed horizontally in the linear approximation
in the wave amplitude and depends significantly on the film
properties.

The presence of a film on the liquid surface does not
change the dispersion law of surface waves > = gk + aok?/p
except for a possible change in the equilibrium value oy of the
surface tension coefficient. However, the rate of wave
attenuation —Im w changes significantly [36]:

g2

Y
2V2 e2— V241

Imw ~ _sz

(42)

The second term in expression (42) becomes the leading one if
¢ > /7, and the attenuation of waves reaches its maximum at
the finite compressibility of the film ¢ =+/2 (Fig. 3a).
Physically, this behavior is related to the proximity of
resonance between gravity-capillary waves and Marangoni
waves [77-79]. Note that expression (42) does not take into
account dissipation associated with friction at the boundaries
of the system, which may be important in laboratory
experiments, and depends on the size of an experimental
setup and the parameters of wave motion (see Ref. [37] and
[45, §25]). Formula (42) corrected for friction at the
boundaries can be used to infer the value of the elastic
compression modulus of the film ¢ from experimental
measurements of the time of surface wave attenuation.
Another method to determine the elasticity of a film that is
spontaneously formed on a liquid surface was developed in
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Figure 3. Dependence of (a) wave damping of surface waves (42) and (b) ratio of amplitudes of horizontal and vertical velocity components (43) on inverse
value of dimensionless elastic modulus of film 1/e. Parameter 7 is ~ 1/120, which corresponds to waves on water at frequency of 3 Hz. Blue dotted lines

mark asymptotic form for a clean surface at ¢ — 0.

Ref. [36]. The authors proposed to measure the horizontal
and vertical velocities of wave motion on the liquid surface
and analyze the ratio of their amplitudes ||u;|| = max.,, |u;].
For a plane wave propagating in the x direction, we obtain

ICNIp !

[[ae]] - Vel —e/2+1 '

The ratio of the amplitudes varies in the range from 0 to v/2,
depending on the properties of the film (Fig. 3b). A
combination of both methods allows us to eliminate possible
ambiguity in determining the parameter ¢ when the corre-
sponding equations have two solutions.

(43)

3.3 Nonlinear generation of slow current

We shall now consider the process of generation of a slow
vortex current V that occurs because of the attenuation of
surface waves. This is a quadratic effect in terms of wave
amplitude; therefore, the characteristic frequency of the
induced flow V is determined by the characteristic width Aw
of the spectrum of surface waves. We shall assume that this
spectrum is narrow, Aw < , so as to allow dividing relatively
fast waves u and slow vortex flows V by frequencies.

Since the current V is incompressible, it can be parameter-
ized by two components, for which we shall choose the
vertical components of vorticity ! and velocity V., where
@" =rot V. We now assume that the vortex flow V is weak
and that the characterizing Reynolds number is small; hence,
the dynamics of these two types of flow are linecar and
independent of each other. If 7, = 0, the streamlines of the
slow flow are directed horizontally everywhere, and the
incompressibility condition takes the form 0,V = 0. Below,
in Section 3.5, we will show that the vertical flow V, turns out
to be suppressed. Therefore, here, we start with the calcula-
tions of the generation of vertical vorticity @ .

The equation for w! can be obtained from the z-
component of the volume equation (37) and the boundary
condition (38) as a result of linearization over the slow current
V and retention of contributions quadratic in the wave
amplitude, which are averaged over the rapid wave oscilla-
tions. However, the linear theory built in Section 3.2 turns out
to be insufficient for the analysis of nonlinear terms. The
point is that expressions (39) and (41) for the fields of velocity
and vorticity are true only if the wave amplitude is small
compared to the thickness of the viscous sublayer, & < ¢. In

practice, the opposite case 0 < h < 1/k is usually realized,
and, therefore, the viscous sublayer should be measured from
the current surface of the liquid [80] taking into account both
its displacement and rotation relative to the plane z = 0. The
mathematical aspect of this procedure is described in
Appendix A. As a result, the vortex components of the
velocity of wave motion in expressions (39) and (41) should
be measured from the surface, which corresponds to the
formal replacement exp (xz) — exp (x(z — h)), and the hor-
izontal components should now be understood as the
corresponding projections of the vortex velocity onto the
vectors tangential to the liquid surface.

As a result, the z-component of the vorticity equation (37)
averaged over rapid wave oscillations takes the form

@ —vA)@) = (@} d,(u- — O.h)). (44)
The form of the nonlinear term on the right side of (44) is
determined from Eqn (A2). The contribution to the right side
proportional to 0,0,/ ensures that the rotation of the liquid
surface is taken into account, which is accompanied by the
rotation of the vector w¥, which in itself does not result in the
generation of a mean flow. After averaging over rapid wave
oscillations, the boundary condition (38) leads to

azsz = few<(6au[g + a,;ua)a,;aym . (45)
When calculating the average of the first term in (38), we took
into account that the part of the vorticity w linear in the
wave amplitude has a zero projection onto the normal to the
liquid surface. Note that the surface curvature appears on the
right side, since 030, = —Kp, in the linear order in the wave
amplitude.

The right side of Eqn (44) is nonzero only in the viscous
sublayer; therefore, we can say that a slow vortex current is
generated in this sublayer. Since the characteristic horizontal
scale of slow currents is significantly larger (not less than the
wavelength), the system of Eqns (44) and (45) can be rewritten
in the equivalent form

pv .Y |__y = €ap0uTp (46)
where the operator %> = 0,/v — 0,0,, and 1, is the previously
introduced virtual wave stress. After substituting relations for

linear waves (44) and (45) into the right sides of expressions
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(39) and (41), we obtain

2 R
€,40,Tp = pvea/;<z (6167}1)(656}.8,(1 - D)h)

+ (aah)(a[,a,mh)> : (47)

where the operator D was determined earlier in expression
(40), and the wave number k corresponds to waves at the
frequency w. In the limiting case of a free surface ¢ < /7, in
relation (47) it is necessary to take into account that D ~ 2k
and |D| ~ y < 1 and select the terms according to this small
parameter. The expression for the stress t in this case was
previously obtained, e.g., in Ref. [81, Eqn (7.154)]. In the
opposite limit of a significant effect of the film ¢ > /7, on the
contrary, y < |D| < 1; therefore, only the second line in
expression (47) should be retained. The formal solution to
Eqn (46) is

oV exp (%z)

= (48)

604369(‘[[; .

Note that the virtual wave stress (47) is a time-averaged
quadratic form of 4 and, therefore, contains only small
frequencies ~ Aw. The general case can be expanded into a
direct sum of the result of pairwise interference of waves
propagating at an angle of 20 to each other [40]. This pair of
waves generates the stress t with a wave number ¢ =
2ksin < 2k. Based on (40), (42), and (47), it can be
concluded that the absolute value of the virtual wave stress
is 1~ Imw-pw(h?). According to expression (48), the
vorticity ! propagates to the depth ~ y/v/Aw if the time
of change 1/Aw of the virtual wave stress is short compared to
the time ¢z = 1/vg? of viscous relaxation of the vortex flow.
The amplitude of the flow is V ~ t/(pVvAw). If the wave
motion is almost monochromatic, 1/Aw > tg, the flow has
vertical dependence exp (¢z) and penetrates to a depth of 1/4.
An estimate for the flow amplitude is V' ~ 7/(pvg). At the
same wave motion /(¢, x, y), the right side of expression (47)
increases by 1/y under a transition from a clean surface to one
with a film with ¢ > 1. If the wave motion is monochromatic,
the amplitude of vorticity (48) does not depend on viscosity in
the case of a clean surface and is as large as 1/y if ¢ 2 1.

3.4 Stokes drift and mass transport

To obtain the Lagrangian velocity averaged over wave
oscillations, in addition to the Eulerian flow (48), we must
calculate the Stokes drift (27). In the depth of the liquid
outside the viscous sublayer, the Stokes drift is determined by
the potential flow and, therefore, remains the same as in the
nonviscous case [56]

U = exp (2kz)(k ~*0ph0,050,h + hd,0, h) (49)
and the vertical component is US = 0.

Let us now find the correction to expression (49) that
arises inside the viscous sublayer. This question is important
in terms of the analysis of the motion of particles floating on
the surface that have a small size compared to the thickness of
the viscous sublayer. Since the viscous sublayer is measured
from the current surface of the liquid, expression (27) must be
modified according to the same scheme as expression (A2).
More precisely, when determining the variation of the vortex
component of the wave flow, the displacement of the

Lagrangian trajectory must be measured from the liquid
surface, i.e.,

vE=vi+US,  US=(G(1,r0) 8Ry(1))

+ (G (1,70) (SR (1) — 0:h(1))) (50)
where G id/)' and G,-‘/; are the gradients of the potential and vortex
components of the velocity field (39) in a linear wave.
Calculations by formula (50) on the surface lead to expres-
sion (49) with z = 0, where replacements 7 — (1 — D)k must
be made in the first term.

If the surface of the liquid is clean, |D| ~ y, the correction
to the result (49) that follows from the complete expression
(50) is as small as y and should be neglected. If the effect of the
film on the surface motion is significant, ¢ 2 1 and |D| ~ 1,
the Stokes drift is as small as at least y compared to the
Eulerian velocity (48); therefore, its consideration for the
steady-state case would be an excess of accuracy. As a result,
it turns out that the correction to the Stokes drift inside the
viscous sublayer is insignificant and can be neglected in the
future.

As with the tangential stress, the Stokes drift can be
considered a result of the interference of two waves (see the
text after expression (48)). Let us point out the characteristic
differences between the Stokes drift and the slow Eulerian
vortex flows generated by crossing waves. First, the penetra-
tion of the Stokes drift into the depth of the liquid can be
described by the factor exp (2kz) and does not depend on the
spatial configuration of the waves. Slow vortex flows can
penetrate to a considerably greater depth determined by the
factor exp (¢z) with ¢ = 2ksin 0 if the surface waves propa-
gate at a small angle 20 < 1 to each other [40]. Second, the
Stokes drift on the surface is comparable to the steady-state
Eulerian flow only in the case of a clean surface, |D| ~ y, and
for waves propagating at an angle sin (26) ~ 1 to each other.
If the angle is small, < 1, the amplitude of the Eulerian flow
V increases by ~ 1/60 times, while the amplitude of the Stokes
drift remains unchanged in order of magnitude. The surface
film leads to an additional enhancement of the Eulerian flow.
Third, the Stokes drift is an almost instantaneous (time of one
oscillation period) response to the wave flow. This difference
in dynamic properties from slow vortex currents manifests
itself if the amplitude of surface waves changes at times that
are considerably shorter than 7z ~ 1/vg? = 1/(4vk?sin® f).
Not only is this realized for small angles 26 between the waves
[41] but it can also be observed for orthogonal surface waves if
the characteristic time of attenuation and stabilization of
wave motion turns out to be significantly less than the
estimate ~ 1/(vk?) due to additional dissipation of the wave
motion at the boundaries of the system or the presence of a
surface film [37]. In this case, to interpret the motion of
particles on the surface, it may be necessary to take into
account the Stokes drift at initial times even if the surface of
the liquid is covered with a film.

In our early work [35, 36], the vertical coordinate was not
measured from the surface of the liquid to calculate the vortex
component of the velocity in a linear wave. As a result,
contributions arose in the individual Stokes drift and
Eulerian velocity inside the viscous sublayer that were
relatively large as 1/y compared to the vortex correction
given by expression (50). These contributions were equal to
each other and had opposite signs; therefore, the total
Lagrangian vorticity w! in the viscous sublayer coincided
with the result of the calculations described above. The
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method presented here is preferable, since it allows excluding
immediately nonphysical contributions to both the Stokes
drift and the Eulerian velocity. Otherwise, for a single plane
traveling wave, it can be found that the Stokes drift vanishes
on a clean liquid surface owing to the viscous correction [82].
Actually, even in the limit of an almost incompressible film
& — 00, the Stokes drift for a traveling wave on the surface
decreases by only two times compared to the case of a clean
surface and does not vanish. This, however, has no physical
meaning in our formulation of the problem, since the Stokes
drift is comparable to the Eulerian flow established in just one
period of oscillations under the action of a virtual wave stress,
which is now estimated to be ~ 1/y times greater than
expression (16).

If the wave motion is significantly three-dimensional,
there is no direct generalization of relation (29) between the
surface density of the momentum 7, and the vertically
integral Stokes drift. Indeed,

h
n“:p< [ dzva> ~ pk 1 (h0,0,h) ; (51)

therefore, the difference between these two quantities is the
circulation flow:

0
1
Ty — J dz U5 = o €250 (€,50,h 050, ) . (52)

The difference results from the fact that, in the general case,
the Lagrangian trajectories in the wave field are significantly
three-dimensional (we recall that these trajectories are almost
closed in one period). As a result, the flows of the liquid and
Lagrangian particles across a single vertically oriented
rectangular elementary area do not coincide. The reason is
that, at the edges of the elementary area, there are trajectories
that intersect it only in one direction during one oscillation
period, and they return beyond the edge of the elementary
area. In the case of a plane wave (29), this edge effect occurs
only at the horizontal boundaries of the elementary area;
therefore, it is eliminated by vertical integration. In the case of
significantly three-dimensional wave motion, the edge effect
also arises at the vertical boundaries of the elementary area;
therefore, it cannot be eliminated by vertical integration
in (52).

3.5 Vertical current

We shall now return to the component of the slow current that
has 7, # 0. To derive the boundary condition, let us formally
integrate the continuity equation divv = 0 vertically and
average the result over the rapid wave oscillations:

<Jw Bavs dz> +{v:l.s) = 0.

In the first term, we factor the derivative outside the integral
sign using the rule of differentiation of integrals with a
variable upper limit. Moreover, we transform the second
term according to the kinematic boundary condition (32)

(53)

0,y

+ 61<J; V., dz> +(0h) =0. (54)

Within an accuracy to the second order in wave amplitude,
the upper limit of integration in the second term can be

assumed to be zero, and, taking into account the incom-
pressibility of the slow flow divV =0, we find the final
answer:

(55)

This boundary condition is a clarification of the boundary
condition (19) for the vertical velocity that was used
earlier.

Let us estimate the right side of expression (55). First, we
recall that the nonlinear interaction of surface waves can
generate a slow potential flow (u), which we discussed earlier
in Section 2.4. According to the results of this section, in the
case of an ideal liquid, the right side should be estimated as
~ Awk(h?), i.e., it has smallness in the spectral width of the
waves. Second, in addition to the excitation of a slow
potential flow, the excitation of a slow vortex contribution
with V7, # 0 is also possible. For this contribution, the right
side either has a similar smallness in spectral width or, if
taking into account weak attenuation of waves 0,7,/p ~
Im o k(h?), contains another smallness — the inverse quality
factor of a wave (42). Hence, the boundary conditions for V;
(55) and @ (46) differ in type, while the volume equation for
V. coincides with that for wv As a result, an estimate for V.
will be the right side of expression (55), which is always small
compared to the velocity of the Stokes drift on the surface
~ wk(h?) as either Aw/w < 1 or Imw/w < 1.

The suppression of currents with V. # 0 is confirmed in
experiments. The existence of a nonzero vertical flow means
the compressibility of the surface flow, since the two-
dimensional divergence of the Lagrangian velocity is
0, VL #0. In the experimental work [14], it was observed
that the two-dimensional divergence of the velocity is small
compared to the vertical vorticity ww’, indicating the relative
smallness of the vortex flow with ¥, # 0 according to the
above reasoning.

As discussed earlier, the attenuation of a traveling wave
gives rise to the virtual wave stress T =Imw pwH? (see
expression (16)). The stress t causes a flow that carries along
the material of the film. If there are surface boundaries that
impede the motion of the film, its reaction occurs, limiting its
further extension and compression. The reaction leads to the
suppression of the vortex flow under the film. However, at
high wave amplitudes, the stress 7 can lead to a rupture of the
film; therefore, it is carried along by the flow from the part of
the surface, resulting in spatial non-uniformity in the proper-
ties of the surface [83]. In particular, this non-uniformity can
give rise to a vertical component of the velocity in the wave-
induced vortex flow V. These scenarios, however, are beyond
the scope of our analysis.

3.6 Discussion of experiments

We are now ready to discuss experiments in which surface
vortex currents were generated by crossing waves. The first
studies investigated the generation of flows by two orthogo-
nal standing waves in square cells. The waves could be excited
either by oscillations of the meniscus at the walls of the cell
resulting from its periodic vertical motion [12] or, e.g., by
vertically oscillating plungers mounted on the lateral walls
[37]. The deviation of the liquid surface from equilibrium in
this system can be described by the expression

h = H, cos (wt) cos (kx) + H, cos (wt + ) cos (ky), (56)
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Figure 4. Distribution of vertical component of vorticity of vortex motion
generated by two orthogonal standing waves (see expression (57)); wave
frequency is 3 Hz, phase difference is = 1/2, and angular amplitude is
kH = 0.035. (Data taken from experiment [13].)

where V is the phase shift between the waves. For simplicity,
the depth of the liquid will be assumed to be infinite. Slow
currents can be experimentally characterized by vertical
vorticity from the Lagrangian velocity w! = @ + ¢,50, U},
for which it follows from expressions (48) and (49) in the
steady-state regime [36] that

_ e2exp (kzv/2) b (s . ;
= —2y(82_8\/§+1)+\/§e p(kzV2) +e p(2k)}

x HyHywk? sin (kx) sin (ky) sin .

N

(57)

Here, the last term in parentheses corresponds to the Stokes
drift, and the first two terms describe the contribution of the
Eulerian flows. The contributions have different dependences
on the depth z but the same spatial structure in the horizontal
plane. The first term in brackets describes the effect of the
surface film, and it dominates if ¢ > /7. In the opposite case
of an almost clean surface ¢ < /7, it can be neglected. Then,
the vorticity o™ measured in the steady-state regime does not
depend on the viscosity of the liquid. An experimental
observation of the vorticity distribution is shown in Fig. 4.

From an experimental viewpoint, it is easiest to measure
flows on the surface of a liquid at z=0. In Ref. [12], a
‘chessboard” of vortices corresponding to wl o sin (kx) x
sin (ky) was observed, and it was shown that the generation of
slow currents was a quadratic effect in terms of the wave
amplitude, wZL « H|H,. To explain the experimental results,
a theory was developed that described the generation of
Eulerian vorticity for a clean surface; however, the contribu-
tion from the Stokes drift was not taken into account. On the
contrary, in Refs [14, 15], the authors explained the genera-
tion of the ‘chessboard’ of vortices by the Stokes drift and did
not consider the viscous mechanism of current generation. In
those studies, the experimental setup allowed changing the
phase difference yy between the waves. However, at small
values of W, large-scale flows arose in the system, which
significantly deformed the vortex lattice. The dependence
wl o siny was confirmed quantitatively in Ref. [13], where
measurements were not carried out in the steady-state regime,
and, therefore, large-scale flows deforming the vortex lattice
did not have time to be excited.

To achieve quantitative agreement between theory and
experiment, it was necessary to take into account both
mechanisms of current generation and the effect of a thin
adsorbed film on the surface [35, 36]. The corresponding
theory was tested experimentally in Ref. [37], where the
existence of the Eulerian contribution @) to the slow current
was proven experimentally. The idea was that surface waves
attenuated considerably faster than slow flows due to the
presence of a film on the surface and friction against the
boundaries. Therefore, after switching off the pumping, it was
possible to observe a ‘chessboard’ of vortices even in the
complete absence of wave motion. Nonstationary processes
of vorticity establishment and attenuation were also theore-
tically described and experimentally studied in Ref. [37].
Another idea that allowed verifying the existence of the
Eulerian contribution w? to the Lagrangian vorticity wr
was to investigate the dependence of the intensity of slow
currents on depth. The corresponding measurements were
carried out in Ref. [16], and their results were interpreted by
the authors in favor of the existence of both contributions:
Eulerian vorticity and Stokes drift.

A further development was related to the study of systems
where waves propagated at an arbitrary angle to each other.
Let two traveling waves propagate at angles 46 to the y-axis;
therefore, the surface has the shape

h = H, cos (wt — kir) + H; cos (ot — kor) (58)

with the wave vectors kj » = k(£ sin6,cos6). Then, at an
unlimited depth of the liquid, the vorticity established at long
times is

e2exp (¢qz) cos 0

e _<ﬁv(e2 —&v2+1)

+ 4exp (2kz) cos’ Osin 0) Hi Hyok? sin (¢x) , (59)

+ 4exp (gz) cos® 0

where the wave number that determines the period of
modulation is ¢ = 2k sin 6. If the angle between the waves is
small, the waves are able to generate a large-scale current that
has a long relaxation time [40, 41]. This scenario enabled an
explanation of the generation of large-scale flows at long
times observed in many early experiments. Recent investiga-
tions have focused on the result of interference of many waves
at a time [18-20]. Complex wave motion makes it possible to
create controllably vortex flows on a surface with complex
geometry. If there are particles on the surface of a liquid, they
are drawn into motion by vortex structures, and their motion
can be controlled by tuning the wave field. This paves the way
to applications related to the manipulation and sorting of
particles. When 6 — 0, proportionality between (42) and the
Eulerian part of the vorticity in (59) as functions of ¢ is
reached, which corresponds to the qualitative understanding
that currents are generated due to wave attenuation.

4. Interaction of waves
with near-surface currents

As the intensity of the vortex flow V increases, its interaction
with the wave motion becomes significant. As a result, on the
one hand, deformation of the wave field by the vortex flow
gives rise to a volume force f¥ that acts on the flow V from the
side of the waves; it is called the vortex force [57]. On the other
hand, the waves begin to scatter and refract on the vortex
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flow. As a result, the force f¥ gets additional correlations with
the flow V, which can significantly modify its dynamics. This
occurs, e.g., in the case of Langmuir circulation (see below).
The interaction between waves and a vortex flow does not
depend on the fact that the liquid has low viscosity. Hence, it
is sufficient to describe this interaction within the model of an
ideal liquid.

The separation into wave motion and a vortex flow is
possible if there is a separation of these flows in time, that is,
the wave frequency w is high compared to both the rate of
change 1/T of the flow V and the characteristic value of its
gradient gradV ~ V/L,

1

V
_<17 _<17

oT Lo (60)

where L is the characteristic scale of the change in the flow. In
particular, this means that the Froude number that char-
acterizes the vortex flow is small, Fr = V2/gL < 1. This
inequality allows us to assume that the boundary condition
(19) is also preserved for the vertical component V7, i.e., the
vortex flow V does not lead to a change in the shape of the
surface.

4.1 Vortex force

As with the virtual tangential stress 1, the vortex force f¥
arises since the wave flow is no longer completely potential.
The nonzero high-frequency vorticity w" in the bulk arises
because the wave field is deformed by the nonzero vorticity
Q = rotV of the vortex flow. To find @w?", let us represent the
wave flow as a potential part and a small vortical correction
u”, u = grad ¢ + u®. The equation for vorticity (37) linear-
ized in the wave amplitude and the amplitude of the small
vortex correction has the form [56]

0,4+ (VV))w" =rot[grad¢ x Q], w"=rotu®. (61)

In Eqn (61), we have disregarded the viscous term, since the
scale of the flow zo* in the bulk is assumed to be considerably
larger than the viscous scale 0, and the term (w*V)V, since it
is relatively as small as V/ Lo compared to the term 0,z0". The
solution of (61) is

w" =rot[6R; x Q] (62)

SRy (t,1) = Jt dr’ grad ¢ (1',x(1")),

where the Lagrangian trajectory r(¢) is given by the slow flow,
i(¢) = V(¢,r), and 3R, is the displacement of the Lagrangian
marker introduced in (27), resulting from wave oscillations.
An estimate of the vorticity amplitude (62)is w" ~ hV/L,i.e.,
the vortex part of the wave oscillating motion u® is relatively
small in the second parameter (60), u®/u ~ V/Lw.

In order to obtain a generalization of Eqn (17) for the slow
current V with respect to the influence of waves, one should
extract in (30) the term bilinear in grad ¢ and w". Then, the
term should be averaged over fast oscillations. Detailed
calculations are presented in Appendix B. We write the
resulting Navier—Stokes equation in the Lamb form [56],

VP

oV +[Qx (V+U9)] = HvAv. (63)

If we move the term proportional to the Stokes drift to the
right-hand side of Eqn (63), we obtain the vortex force

f¥ = p[US x QJ. The form of the nonlinear term in (63) can
be interpreted as follows: the vorticity in the vortex flow is
transferred by not only the flow itself but also the Stokes drift
generated by the wave motion, i.e., on the whole, with the
average Lagrangian velocity. The effective pressure P in (63)
differs from the physical pressure (see (B4)). It must be
determined from the condition of flow incompressibility
divV = 0 and the condition that the vertical velocity V., is
zero on the surface.

Which effect determines the vortical flow V— the virtual
wave stress t or the vortex force f¥—depends on its
amplitude. The virtual wave stress is estimated as t© ~
Im o wH?, where the wave decay rate is given in (42). The
volume force is estimated as fV/p ~ wkH*Q and penetrates
to a depth of ~ 1/k, assuming the vertical scale of the slow
flow is greater than or of the order of the wavelength. The
effects are of the same order when the vorticity of the slow
flow is comparable to the wave decay rate,

0
J dzfV~1: Q~Imo. (64)

At lower velocity amplitudes, the effect produced by t
dominates, while at higher amplitudes, the effect produced
by the force f¥ dominates. Estimate (64) is rough and may
require refinement for specific flow geometries.

4.2 Wave propagation on background of vortical flow

Let us now consider how the vortical flow affects wave
propagation. The vorticity w* found above describes the
local distortion of the wave field produced by the presence of
the vortical flow V. Our goal now is to derive a system of
equations for the potential ¢ and the surface form / that
determines wave propagation in the linear approximation
with respect to their amplitude. Throughout, we will
disregard viscosity. We start from the Euler equation for the
wave motion u on the background of the vortical flow V:

_vp

ou+ (uV)V+ (VV)u = +g, (65)

where P* is the part of the pressure associated with the wave
motion. The vorticity w" itself does not uniquely determine
the vortical part of the wave field u®. We fix this ambiguity by
imposing the condition on the surface u”|._, = 0 (deep down,
the entire u® vanishes); as a result, the change in the surface
shape turns out to be related only to the potential part of the
wave flow. We generalize the Bernoulli equation (2) to the
form [58]
PM

r =—gz— @, +Vi%)p+p~, (66)

where p® can be conventionally called the contribution to the
pressure from the vortical part of the flow u®. The kinematic
(2) and dynamic (33) boundary conditions take the form

@+ 0,V )h =k,

(at + szax)lp = _81€h _|_pw s
where ¢; = g + (6/p)k? is the wave potential energy opera-
tor, Y is the value of the potential ¢ on the surface z = 0, and

the quantities 7, and p® should also be taken there. The
volume equation for p® can be obtained by substituting the
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ansatz (66) into equation (65), and the boundary condition
for p® on the surface follows from the requirement u>” = 0:

ApT =89 AV +20u” 8;V, ()

azpw|2:0:axlpa:sz7 Pw| — 0. (70)

Z—=—00
If the slow flow V is purely potential, i.e., it represents a long
surface wave, then AV =0 and u® =0, so p® = 0 as well. It
follows that the pressure part p® is a product of the vorticity
Q of the slow flow, but this relationship is nonlinear in V.

4.3 Guyon waves
The Guyon wave is a plane wave traveling along the x-axis,
propagating on a background of a flow V,(z) directed along
the same axis and having a vertical shear (see, e.g., [59]). We
will demonstrate how the equations from Section 4.2 allow us
to determine the properties of Guyon waves to the first order
in the small parameter Q,/w < 1, where the vorticity of the
slow flow is , = 0. V.. In doing so, we will reproduce the
classical result of [60].

In the leading order of the wave amplitude, the surface
elevation amplitude and the potential are harmonic func-
tions. We represent them using complex amplitudes:

h=Hexp (ip), ¢ =yexp(kz), Y xexp(ip), (71)
where the phase is ¢ = kx — wt. For example, Re/ is the
physical surface elevation amplitude. Without loss of general-
ity, the wave amplitude H can be considered positive.

The Stokes drift is given by expression (28), so the only
nonzero component of the vortex force is the vertical one,
fV = kwH?exp (2kz). This force contributes only a time-
independent component to the pressure and does not alter
the slow flow.

Let us now determine the dispersion relation. First, note
that, due to the geometry of the problem, w"” = 0. The
boundary conditions (67) and (68) on the surface are

(—iw + ik V) h = kg,
(—ie> + ik V) = —gh+p® |

and the vortical pressure correction is
0
p=(0) = 2ikys (VX(O) — 2k[ dzexp (2kz) Vx(z)) . (74)

Solving equations (72), (73) in the linear approximation with
respect to the small parameter Q,/w < 1 yields the dispersion
relation [60]

0
wo=+gk+o', o= 2k2J dz exp 2kz)Vi(z). (75)

If the shear force is constant along the vertical, V, = Q,z,
then the frequency shiftis o’ = —Q, /2.

4.4 Short-wave limit

The short-wave limit is reached when the scale L of the flow V
significantly exceeds the wavelength, kL > 1. In the region of
wave propagation, it should be assumed that the change in the
velocity V in order of magnitude does not exceed the phase
velocity of the wave w/k. Then, the second term in (69) is, at
most, of the same order as the first, and, in the boundary
condition (68), p® is smaller than ¢ 0,V by a factor of 1/kL.
Neglecting this small correction, we arrive at the wave

equation

1
0401+ Vi) -0+ 0yVp) ¥ = A

(76)

where V is the value of the potential on the surface, and the
dispersion relation is wx = \/gk + (a/p)k3.

Let us consider the propagation of wave packets using the
standard geometrical optics approximation. We will treat s
as a complex amplitude and parameterize it via the absolute
amplitude value |¥|(z,x,y) and the real phase (eikonal)
o(t,x,y), ¥ = |¢|exp (ip). The amplitude |y|(¢,x,y), the
wave vector k = grad ¢, and the frequency w = —0,¢ are
slowly varying quantities compared to the phase ¢. The real
part of equation (76) multiplied by exp (—i¢), where correc-
tions of order 1/(kL)* are neglected, yields the dispersion
relation

(0 — (Vk))2 =w}. (77)
The combination @ = w — (VKk) is the relative frequency of
the wave — the frequency of its oscillations in the reference
frame moving with the fluid velocity V—whereas o is the
wave frequency in the stationary frame. In other words,
relation (77) includes the Doppler effect. Let us compute the
derivatives of the dispersion relation (77) with respect to time
and coordinates, which results in equations for the evolution
of the frequency and the wave vector along the motion of the
wave packet:

(78)
(79)

(a, +((V+ vg)V))w = (kd,V),

(30 + (V4 v8) V) Jhu =~k 2.7,

where the group velocity of the packet relative to the fluid is
v = 0wy /Ok,. In the stationary coordinate system, the wave
packet moves with velocity V + v&. The first equality (78)
implies, notably, that, in a stationary flow V, the wave
frequency w in the stationary frame remains constant. The
second equation (79) determines the trajectory of the wave
packet propagation.

The equation for the wave amplitude follows from the
imaginary part of equation (76) multiplied by exp (—igp). It
can be reduced to the form of a conservation law

T — ’.SkI‘I2
2Cl)k

O +div ((V+v9)T) =0, : (80)

where the surface oscillation amplitude is H = (k/wy)|y|. To
derive (80), corrections linear in the derivatives of the slowly
varying quantities V, ||, , k must be retained on both sides
of the wave equation (76). This procedure is carried out in
Appendix B. The quantity Z is proportional to the surface
energy density of the wave g H?/2, divided by its relative
frequency wi. The conserved quantity | dxdyZ is called the
wave action (see, for example, [61] and monographs [62, 84,
85)).

Based on the presented theory, let us consider the problem
of a gravity wave propagating against a current V,(x) <0
that is inhomogeneous along the streamlines, when a plane
wave propagates in the positive x direction relative to the
fluid, i.e., kx > 0. The dispersion relation (77) takes the form
kyx(Vy + 208) = w, where v& = wy /2k,, which can be treated
as an equation for the wave number k, [63, 64]. Assume the
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wave is stationary, so that 0,Z = 0 in (80). Then, the wave
amplitude satisfies the relation v&(V, 4+ v&)H? = const. It
increases unlimitedly when approaching the stopping point
V. = —v&. At this point (assume its coordinate is x = 0), the
group velocity becomes half of its value v& = g/2w in the
region where there is no flow, v& = v&/2 (or k, = 4k?).

Near the stopping point, the equation for k, presented
above leads to the speed of the wave packet in the absolute
coordinate system behaving as the square root of the distance
to this point, V, + v& x \/m Consequently, there is an
unbounded growth in wave steepness according to the law
kH  |x|”"/*_If its initial amplitude is sufficiently large, this
growth leads to wave breaking, so that beyond the point
V,=—v0 /2 the water surface becomes smooth. The disap-
pearance of the wave leads to the transfer of its momentum to
the flow, which is observed in experiments [86]. There are also
oceanic measurements where increased wave breaking density
was observed in regions of strong upwelling currents, which
lead to large gradients in horizontal flow velocity [87]. The
stopping point ¥, = —v& corresponds to the merging of two
roots of the equation for k.. Therefore, for a sufficiently small
initial wave amplitude, when breaking does not occur, a
reflected wave with k, > 4k? is generated, whose group
velocity v& < —V, and which is consequently carried by the
flow in the negative x direction. For a mathematical
description of wave behavior near the reflection point x = 0,
it is necessary to go beyond the geometrical optics approx-
imation (77) and return to the original wave equation (76).
In [64], based on asymptotic analysis, it was established that it
takes the form of an Airy equation. The wave equation (76)
we obtained allows a systematic transition to this limit.

4.5 Langmuir circulation

The concept of vortex force has made it possible to explain the
mechanisms behind the generation and maintenance of
Langmuir circulation [88]. Langmuir circulation arises on a
water surface when two conditions coincide: a propagating
(along the x-axis) surface wave (7) is excited, and a wind-
induced flow V?(z) with vertical shear is established in the
direction of its propagation (or at a small angle to it).
Langmuir circulation V is a superposition of two flow
components, which are almost uniform along the x-direction
and quasi-periodic in the transverse y-direction. The first
component is a modulation 8V (y, z) of the shear flow V?(z),
and the second component consists of rolls with circulation in
the transverse plane yz, in which the velocity can be
parameterized by a stream function ¥(y,z): 8V, =0.¥,
dV. = —0,¥. The flow within the rolls leads to the accumula-
tion of foam and contamination on the liquid surface into
stripes elongated along the x-direction, which visualizes the
Langmuir circulation. Furthermore, the vertical velocity
component in the rolls enhances turbulent mixing in the
upper oceanic layer (see, for example, the general review [89]
and the review of recent experimental work with the Black Sea
[90D).

Study [65] demonstrated that a combination of a
propagating wave and a shear flow is unstable with respect
to transverse modulation. The structure of the unstable mode
corresponds to Langmuir circulation. In this problem, besides
the conditions of weak shear flow Q = 0. VB and small wave
amplitude kH < 1, an important dimensionless parameter is
the Langmuir number La = v?k?/wH?>Q, where viscosity is
often interpreted as turbulent viscosity. If La <1, the
viscosity does not play a significant role in the dynamics of

the unstable mode. In this limit, specifically, the growth rate
of the instability found in [65] for the case of a vertically
uniform shear flow (Q}‘? = 0. V" independent of the vertical) is
kHO
200 —
U

A= (81)

where 21t/ (k0) is the modulation period in the y-direction, p is
the smallest root of the equation Jy(u) = 0, and J is the Bessel
function. It should be assumed that the shear force Q;.)
significantly exceeds the value (19) produced by wave
damping; then, it also exceeds the instability growth rate,
A< Qf,) . Note also that the instability occurs only if the shear
is co-directional with the wave, QS > 0[91]. If the modulation
period is large compared to the wave period, 6 < 1, then the
longitudinal vorticity 8Q, penetrates to a depth of ~ 1/k,
whereas the circulation 8V, - and the modulation of the shear
flow 8V, penetrate to a greater depth, ~ 1/k6. The velocity
amplitude in the circulation is significantly weaker than the
amplitude of the shear modulation, 8V, ./8V, ~ 4/ Q}O The
described mechanism for the generation of Langmuir circula-
tion was subsequently named the CL2-model after the
authors A.D.D. Craik and S. Leibovich.

Model [65] does not account for wave dynamics, and
therefore the Stokes drift in it is determined solely by the
original (reference) wave (7). However, the periodic modula-
tion of the vortical flow in the y-direction also leads to a
similar modulation of the wave motion. This modulation has
been observed both in numerical simulations [92, 93] and in
experiments [94]. The interference between the base wave and
the modulated wave results in a modulation of the Stokes
drift, which in turn alters the dynamics of the vortical flow.
Thus, the modulated wave becomes the third component of
the unstable mode. Theoretical study [58] takes into account
the wave modulation. The instability growth rate does not
change significantly in the region 6 2 1, since, in this case, the
wave vector of the scattered wave differs substantially from k&,
i.e., it does not satisfy the dispersion relation. Weak wave
modulation in this limit was studied in [95]. For large
modulation periods, wave scattering becomes more signifi-
cant, so that for 0 < (Q? /w)l/ ? the instability growth rate
becomes independent of the modulation period, 1 = QSkH.
Note that, in the course of the calculations, the vortical
pressure correction p¥ in the boundary condition (73) turns
out to be the key one; that is, one can say that p= takes into
account the scattering of the reference wave. However, it
should be remembered that, for wave scattering to produce a
coherent effect, the spatial structure of the Langmuir
circulation must be periodic with long-range order, persist-
ing over distances of the order of the wave travel length in a
time of ~ 1//. In reality, this condition is apparently not
always met. Also noteworthy are earlier papers [56, 96], which
showed that two waves propagating at angles equal in
magnitude but opposite in sign relative to the shear flow
lead to a linear growth in time of the Langmuir circulation
when its amplitude is small and to the maintenance of the
circulation in a state of saturated amplitude due to turbulent
viscosity. This mechanism for generating circulation is called
CLI1.

5. Turbulent regime

In a number of experiments [21-25], in which surface waves
were excited by the mechanism of Faraday instability, and in
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experiments [53, 54], in which waves in a square cell were
excited by plungers located on adjacent walls, slow vortex
flows generated by waves exhibited a turbulent character near
the surface. Their statistical properties reproduced a number
of features found in two-dimensional turbulence. For the sake
of simplicity, Appendix C briefly presents the main properties
of a two-dimensional turbulent flow. To learn more about the
features of two-dimensional turbulence, we recommend
review [55].

The turbulent nature of a flow generated by Faraday
waves was first studied in Ref. [21]. The experiment was
carried out in shallow water; the thickness of the liquid was
~ 2 mm, and the wavelength was 4 =~ 10 mm. The velocity
field was measured on the liquid surface. It turned out that the
energy spectrum E(k) of the horizontal motion had an
inflection near the wave number k= 0.12 mm~! that
approximately corresponded to the wavelength. In the
region k < ki, the dependence was close to £(k) oc k—>/3; in
the region k > ki, the behavior £(k) oc k =3 was observed (see
expressions (B5) and (B6)), although the ranges of the
corresponding power dependences were rather short, espe-
cially in the region k > kr. Additionally, mean energy and
enstrophy fluxes were measured. They had signs correspond-
ing to the picture of an inverse energy cascade in the region
k < kfand a direct enstrophy cascade at k > k¢ characteristic
of two-dimensional turbulence, although they were not
constant in scale. Finally, studies of the relative dispersion
of passive particles were in agreement with Richardson’s law
(B4).

Subsequent experiments were carried out on the surface of
deep water in a wide range of parameters [22, 23]. Surpris-
ingly, the surface flow still exhibited properties characteristic
of a two-dimensional turbulent flow, although the depth of
the liquid was greater than the wavelength. In the region of an
inverse energy cascade, the spectrum of the horizontal flow
E(k) showed a slope of —5/3, in accordance with expression
(B5S), and the direction of the energy flux was confirmed by
measuring the triple correlator (B7). The region of a direct
cascade k > kr was short and was not studied in detail. The
excitation of Faraday waves in a small square cell resulted in
the formation of a large-scale coherent vortex. This is
qualitatively similar to the condensation of energy in two-
dimensional turbulence when the size of the system is less than
the scale at which dissipation stops an inverse energy cascade
(see [97-100]). Similar behavior was observed in a later
experiment by another group [53], in which surface waves
were excited by plungers, the depth of the liquid was ~ 4 cm,
and the wavelength was ~ 5 cm. In the region k < k¢, the
energy spectrum of the vortex flow E&(k) oc k=3 was
measured, and, at the largest scales, there was a peak
corresponding to the directly observed statistically stable
large-scale vortex.

The results contradict the expectation that large horizon-
tal flows should penetrate deeper into the liquid than smaller
flows, which, in turn, would violate the picture underlying the
model of two-dimensional turbulence. Measurements of the
dependence of the vortex flow on the distance to the surface
were carried out in Refs [24, 25]. They showed that the
velocity and kinetic energy of horizontal flows decreased
sharply at distances of half a wavelength below the surface.
Below this layer, the flow was three-dimensional, was
considerably less intense, and had large correlation times
and scales. The motion in the depth arose owing to jets that
were formed on the surface and penetrated deep. The

presence of such jets was identified by measuring the two-
dimensional divergence of the velocity field on the surface
and then confirmed by PIV measurements in a vertical
slice.

Today, these experimental observations await a theoret-
ical explanation. It remains unclear whether waves partici-
pate in the formation of large-scale vortices through the
action of a virtual surface stress or a vortex force correlated
with the vortex flow or their role is limited to the excitation of
vortices with a horizontal size of the order of the wavelength.
Estimates made on the basis of experimental data show that
the vortex force integrated over height is significantly greater
than the virtual wave stress (see expression (64)). Experiments
[101, 102], in which a three-dimensional statistically station-
ary turbulent flow in the bulk under a free surface was excited
by jets from the bottom, show that some not very pronounced
elements of an inverse cascade are observed near the surface.
Namely, the horizontal integral scale near the surface is
~ 2 times greater than in the bulk, and the root-mean-square
horizontal velocity near the surface is ~ 1.5 times greater than
in the bulk. Numerical calculations for attenuating turbu-
lence demonstrate qualitatively similar results [103]. How-
ever, it can be assumed that, in this formulation of the
problem, three-dimensional turbulent pulsations coming
from the bulk to the free surface do not allow an inverse
cascade to be formed near it.

6. Conclusions

Waves on the surface of water are often described within the
potential approximation and the model of an ideal liquid. It is
important to understand that this description has its limita-
tions. The consideration of small but nonzero viscosity of the
liquid leads not only to a decrease in the amplitude of surface
waves in space or time but also to the generation of slow
vortex flows that ensure the fulfillment of the momentum
conservation law. The momentum is transferred from
attenuating waves to a slow flow in a thin viscous sublayer
near the surface, where the viscosity of the liquid violates the
potential approximation. We emphasize that, in an ideal
liquid, the excitation of vortex flows by potential waves is
prohibited by Kelvin’s theorem.

Slow currents are excited by a surface force (a virtual wave
stress) and spread into the bulk of fluid due to viscous friction.
In a steady-state regime, the amplitude of the slow flows
significantly affects the Lagrangian velocity, which describes
the motion of infinitesimal fluid elements. In addition to the
slow flows, rapid wave motion also contributes to the
Lagrangian velocity. The contribution from the waves is
called the Stokes drift, and, as the analysis for the case of a
free surface shows, it can be calculated within the model of an
ideal liquid. The Stokes drift responds almost instantaneously
to changes in the amplitude of surface waves.

In practice, the fluid surface is often contaminated,
meaning it is covered by a thin adsorbed film. The presence
of a film on the surface increases the dissipation of surface
waves and consequently also enhances the generation of the
slow flows. In this case, in the steady-state regime, the
Lagrangian velocity is determined by the slow flow, and the
Stokes drift can be disregarded.

An increase in the amplitude of the vortical flow leads to
increased nonlinearity. The total flow in the volume can no
longer be considered purely potential due to the presence of
the slow vortical flow. The vorticity that slowly changes in
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time gives rise to a weak vorticity oscillating together with the
wave motion through nonlinear interaction. As a result, a
volume vortex force arises, acting from the waves on the mean
flow, and the waves themselves begin to scatter and refract on
the slow vortical flow. In experiments where the vortical flow
is generated solely by surface waves, an increase in the
amplitude of the surface wave ensemble leads to the
chaoticization of the slow flows, and their statistical proper-
ties largely resemble those of two-dimensional turbulent flow.
A theoretical explanation for the experimental results in this
regime remains an open question at present.

In the case of weak nonlinearity, the presented theory
allows describing Lagrangian particle transport in the field of
interfering waves. It has been demonstrated that the inter-
ference effects can enable the control of the transport of
particles, bacteria, and active matter by tuning the wave field
[20, 104]. By manipulating the distribution of particles on the
surface of a fluid, one can potentially control its physical
properties, which provides opportunities to create two-
dimensional biocompatible materials with remotely tunable
characteristics [14]. Furthermore, rapid wave and slow
vortical flows act as external factors and influence bacterial
life activities, allowing the cultivation of biofilms with
tailored properties [105]. The results presented in this review
may also find application in describing surface motion of the
ocean and the propagation of plankton and pollutants near
its surface [106].
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7. Appendices

A. Viscous boundary layer on free surface
Here, we develop a mathematical framework for describing
the viscous sublayer that moves and tilts with the fluid
boundary. One version of such a framework was constructed
in [2]. We aim to keep the mathematical complexity to a
minimum, based on the premise that the description should be
confined to the thickness of the viscous boundary layer and
limited to the second order in wave amplitude. Let us
introduce an auxiliary curvilinear coordinate system
{t,x,y,{} with a new vertical coordinate { = z — h(t, x, ),
in terms of which the boundary always has a flat form
{ = 0. The description of the viscous sublayer is confined to
values { ~ ¢, so the specific nature of the coordinate
transformation at depths of the order of the wavelength is
not important to us. The rules for recalculating derivatives
are

0, =0,—010;, 0, =0,—0,h0;, 0.=0. (A1)
Here, differentiation in the curvilinear coordinate system is
denoted by a tilde. The constructed curvilinear coordinates
are not orthogonal, so we also need to introduce an
orthogonal matrix O;; = 6;; + 6;:0;i — 0;h6;-, which rotates
the local orthogonal coordinate system so that the third axis is
directed along the normal to the fluid surface, /; = O,.. The
components of velocity and vorticity in the new coordinates

w; are related to the components of vorticity w; in the original
Cartesian coordinates by relations like @; = O;;w;. Note that
we define the transformations with an accuracy up to the first
order in wave amplitude /4, since, in the Navier—Stokes
equation, we need to account for no more than the second
order in 4. With this accuracy, the vorticity equation (37) in
the new coordinates takes the form

3w = —((V— €0nV)@ + (V) (¥ — e0,h)

+ & VOh + vl (A2)
where e” is the unit vector directed upward, and in the last
term, corrections of order y2 have been neglected. The
correction in the first term on the right-hand side of (A2)
accounts for the fact that the advection of vorticity by the
flow, leading to a change in its distribution relative to the fluid
surface, must be measured relative to that surface. The
corrections in the second and the third terms account for the
subtraction of the rotation occurring together with the
rotation of the surface. Since we perform calculations with
an accuracy only up to quadratic contributions in the wave
amplitude, in the nonlinear contributions in (A2), there is no
need to account for the difference between the vectors w" and
@". In the linear approximation in the wave amplitude,
equation (30) takes the form 0,@) = va,?z%;‘ with boundary
conditions

~ U

Ve, |C:0 = €,$0,(0'n — 2v0.¢h) ’::o , o)

=0, (A3)

=0
following from (34), (38). On the right-hand side, the value of
the potential part of the velocity is sufficient to compute on
the unperturbed surface z = 0, since condition (1) holds for
any surface shape, so the exponential dependence on the
vertical coordinate is determined by the periodic dependence
in the horizontal direction. The boundary condition in the
form (A3) was discussed, in particular, in [80, 107].

B. Interaction between surface waves and slow vortex flow
The Navier—Stokes equation (30), averaged over rapid wave
oscillations, can be written as

u?

P
AV +(VV)V = —V<; +5

> +VAV + ([u,w"]). (BI)

Using (62), it is possible to rewrite the last term in (B1) in a
more convenient form,

(W’ x @w"]) =tV +grad (QA), ¥ =[U°xQ], (B2)

where the vector A = ([grad ¢ x 8R;])/2. In performing the
derivations, we used the fact that the potential flow is
incompressible, so, in particular, divdR; = 0; moreover,
(u; OR1j) = —(u; 8Ry;). The Stokes drift previously defined in
(27)is

US =rot A = (rot[u? x §R]); (B3)
it is determined solely by the potential part of the wave flow in
the fluid bulk. The gradient contribution in (B2) should be
included in the effective pressure in (B1), so the effective
pressure in (63) is

P_P_ V+)

= . (QA).

(B4)
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Note that all time averages (...) in (B1)-(B3) must be
performed along the Lagrangian trajectories r(¢) defined
after (62).

Let us now proceed to the short-wave limit (see Section
4.4). We will first describe how to extract the imaginary part
on the right-hand side of the wave equation (76) multiplied by
exp (—ig). Consider a neighborhood of some point ‘0, where
we place the origin of coordinates. The phase can be expanded
in a Taylor series

1
go:qoo—l—k,-or,-—i—i(Oiki)or,-r,-—&—..., (BS)

On the right-hand side of (76), the quantity wi should be
considered an integro-differential operator. Let us expand
this operator near the carrier wave vector k® = grad ¢|,_:

0 (wkﬂ ”zﬁgo)

0
Ok

—wioiiv ~ —6012{0 + 2iwk0 ’Ul-goa,' + ajé,- + ... (B())

As a result, the imaginary part (we omit the ‘0’ indices) is

—Im (exp (—iw)wlzg(|¢| exp (W)))

= 2wk(VEV) || + Y| div (wr vE) . (B7)

Now let us perform the calculations for the left-hand side of
equation (76), starting with the formal calculation

%5é$ﬂwwmw»
= 53 (Wlewp i0) + 51 -~ - 5) &' (lex o).
k k

(B8)
where the operators are > = i(0; + V,0,), o' = 1(0; + 0, V).

The second term on the right-hand side of (B8) is determined
by the nonzero value of the commutator in parentheses:

(213 1 i a>> exp (i)

& &

. (~ dSk awk aw/\»>
=exp(ip)(® —— = —— ——

e &} doy Ok, Or,

= exp (ip) (6, + ((V+ve®) V)) L

o (B9)
The first term on the right-hand side of (B8) is calculated
relatively straightforwardly up to the first derivatives of the
slowly varying quantities. After extracting the imaginary
parts, both sides of equation (76) must also be multiplied by
|| /&x to obtain equation (80).

Finally, note that the wave equation (76) can be regarded
as a consequence of the requirement that the variation in the
action

S = J drdxdy (((a, + 0 V)W) — ((0; + 0, Vo )b) — wéw)

1
(B10)

be zero on the true trajectory. The condition that the variation
in the action (B10) with respect to the phase ¢ of the potential
Y be zero leads to the conservation law for the wave action
(80) (see, for example, [84, § 11.7] or [85, §4.11]).

C. Two-dimensional turbulence
The motion of a two-dimensional turbulent flow can be
described by the modified Navier-Stokes equation

atv+(vV)v:f%+vV2vfocv+f. (CI)

Here, the velocity field v is two-dimensional and incompres-
sible, 0,v, = 0. Compared to Eqn (30), the right side is
supplemented by an external force f, which excites the flow,
and by a dissipative term —ov, which describes the linear
friction against the bottom. Physically, this equation
describes the motion of a thin layer of the liquid on scales
greater than its thickness, and the friction against the bottom
is related to the three-dimensionality of the problem. Here-
after, we will assume that the external force f has a
characteristic scale /r ~ 1/kr and a power ¢ = (vf), where the
angle brackets denote averaging over space and time.

Along with the velocity v, the motion of the liquid can be
characterized by vorticity, which is a pseudoscalar w =
0v, — O,v, in the two-dimensional case. The equation for
vorticity follows from the Navier—Stokes equation (C1)

0,4+ vVw = vwWiw — aw + fir (C2)
where f =0.f, —0,f,. In the absence of dissipation and
pumping, Eqns (C1) and (C2) conserve not only the energy of
the system E = (1/S) [dxdyv?/2 but also its enstrophy
Z = (1/S) [dxdyw?/2, where S is the area of the system.
The presence of an additional quadratic integral of motion
fundamentally distinguishes the behavior of a two-dimen-
sional turbulent system from that of its three-dimensional
analogue.

At a qualitative level, the following occurs. An external
force pumps the energy ¢ and enstrophy n = (w /) ~ ek}
into the system per unit time. For a turbulent flow, dissipation
on the pumping scale is negligible; hence, these conserved
quantities begin to redistribute over scales due to nonlinear
interactions. It turns out that the enstrophy flux is directed
toward small scales and forms the so-called direct enstrophy
cascade. Assuming that the typical velocity fluctuations dv on
the scale r in the direct cascade depend only on the enstrophy
flux 5 and the scale r, one can obtain the estimate dv ~ 5 '/3r,
where r < /; from dimensional considerations. Next, by using
this estimate for the velocity fluctuations and comparing the
nonlinear and viscous terms in the Navier—Stokes equation
with each other, it can be established that the viscosity of the
liquid will come into play and stop the direct cascade on the
scale Ly ~ v1/2p=1/6,

The energy flux is directed in the opposite direction and
results in the excitation of increasingly larger-scale flows. If
we similarly assume that the typical fluctuations in the
velocity on the scale r in the inverse energy cascade depend
only on the energy flux ¢ and the scale r, we can obtain the
estimate dv ~ (61’)1/3, where r > ;. The inverse cascade is
stopped by friction against the bottom, and this occurs on the
scale

Ly ~ ' Pa732 (C3)
when this mechanism is able to dissipate all the power ¢
pumped in by the external force. The regime of developed
turbulence assumes the fulfillment of inequalities
Lq < Ir < L,, which means that dissipation on the pumping
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scale due to the viscosity and friction against the bottom is
small compared to nonlinearity [108].

In the region of the inverse energy cascade Iy < r < L,,
one of the consequences of the estimate of velocity fluctua-
tions dv~ (er)'° is Richardson’s law, which describes
particles passively carried by a flow moving apart from each
other. Let us consider two particles separated by the distance
R. Over time, this distance will increase, and the main
contribution to this process will be made by fluctuations
with a scale of R, i.e., dR/dr ~ (¢R)'. Larger fluctuations
will carry both particles in the same way, while smaller
fluctuations will do that considerably more weakly. In
experiments, the root-mean-square distance between parti-
cles is usually measured, for which the following solution is
obtained:

(R*) ~et?. (C4)
Here, averaging is implied over pairs of particles that were at
the same distance from each other at the initial moment of
time. On average, the particles move apart faster than at the
diffusion behavior (R?) o t and faster than under ballistic
motion (R?) o £2.

Turbulent motion is traditionally characterized by an
energy spectrum that describes the distribution of energy
over scales. By using Parseval’s theorem, the energy of
the system can be presented as the sum of Fourier
harmonics for the velocity field E= 3", ¥|>/2, where
Vi = (1/S) [ dxdyv(r)exp (ikr). The expression under the
summation sign is called the two-dimensional energy spec-
trum. In practice, one usually works with a one-dimensional
energy spectrum &(k), which is obtained from a two-
dimensional one by averaging over the angle, i.e.,
(k) = mk(|¥,|*), where the angle brackets mean averaging
over all |k| = k. According to this definition, the energy and
enstrophy of the system are E= [dk&(k) and Z=
[dk k2E(k). Previous estimates for fluctuations of the
velocity in the regions of the inverse and direct cascades
allow us to obtain the following expressions for the one-
dimensional energy spectrum [55]:

g(k) ~ 62/3](75/3,

Li<k<kf, (C5)

1
Ek) ~n* k=3, kr <k < o (C6)

These dependences are shown schematically in Fig. 5.

log E(k) Ly ~ 232
T ~ 23503 Lg~v2yle
[
[
|
I 'A 2/31.-3
I I ~ Rk
[ |
[ [ \
| Energy | | Enstrophy
flux flux
[ [ |
| | |
1/L, ke 1/Lq logk

Figure 5. Schematic of energy spectrum of two-dimensional turbulent
flow.

An analysis of the Navier—Stokes equation (C1) allows us
to establish an exact relation for the third-order correlation
function S3(r) = ((v; — vz)f>, which is an analogue of the
Kolmogorov relation for developed three-dimensional turbu-
lence. Here, indices 1 and 2 denote the quantities taken at
points r; and r,, and (v; — v,), denotes the projection of the
difference of velocities onto the vectorr =r; — r; and r = |r|.
In the regions of the inverse and direct cascades, the relations
take the form [55]

lf<r<<Loc7 (C7)

Ly <r<li (C8)

and express the constancy of the energy and enstrophy fluxes
over the scales, respectively. In the case of three-dimensional
turbulence, the Kolmogorov relation has a different sign,
S3(r) = —4er/S, compared to expression (C7), reflecting the
opposite direction of the energy flux. In three-dimensional
turbulent systems, energy is transferred from the pumping
scale to small scales, and enstrophy is not a conserved
quantity; therefore, its cascade does not exist.

For the sake of completeness, we shall briefly discuss
characteristic times of the formation of cascades. After
switching on pumping, a direct enstrophy cascade is formed
very quickly, in a period of time that can be estimated as
n~'/3. Aninverse energy cascade is formed considerably more
slowly, since it involves the excitation of motions with
increasingly larger scales /(¢). During time 7, only motions
with a characteristic time //dv < ¢ can be excited, from which
we find the estimate /() ~ ¢'/?t32. The formation of the
inverse cascade finishes when /() reaches the scale L,.

So far, we have assumed that the size of the two-
dimensional system under consideration is greater than L,.
If the size of the system is L < L,, the inverse energy cascade
will have to stop at the scale L. Since the friction against the
bottom o cannot completely dissipate the energy € supplied by
pumping at this scale, it will accumulate (in other words,
condense) at the scale L. As a result, a large-scale coherent
flow will arise in the system, which is able to change
significantly the energy spectrum of the system and modify
the inverse cascade. The structure of the coherent flow
depends strongly on the boundary conditions. For a square
cell with non-slip boundaries, the formation of a large-scale
coherent vortex was observed in laboratory and numerical
experiments [97-100, 109].
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