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Abstract. The main experimental studies of the spin properties
of two-dimensional electron systems by means of electrically
detectable electron spin resonance are discussed. The key as-
pects of spin resonance are considered, including the detection
mechanism, the anisotropy of spin splitting, and the influence of
hyperfine and spin-orbit interactions on the physics of spin
resonance. Particular attention is paid to systems with strong
electron-electron interactions formed in various AlAs/AlGaAs
and ZnO/MgZnO semiconductor heterostructures. It is in such
material systems that a whole series of unique physical phenom-
ena related to spin have been observed. The prospects of elec-
tron spin resonance in two-dimensional systems are discussed.

Keywords: semiconductor heterostructures, two-dimensional
systems, spin physics, electron spin resonance, transport
properties

1. Introduction

The internal degrees of freedom of charge carriers signifi-
cantly enrich the condensed matter physics and give rise to
both a huge variety of ground states of electron and hole
systems [1-4] and a nontrivial spectrum of excitations [5-7].
The most striking example of such a degree of freedom is spin.
From an applied point of view, the spin degree of freedom can
be used in addition to the charge of an electron or hole for
storing and processing information in the paradigm of
innovative electronics.
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The spin has a quantum nature and is a pseudovector
oriented in space, with its magnitude measured in units of /i
(the reduced Planck constant), and the proportionality factor
S between the spin value and 7/ takes only discrete values,
integer or half-integer. The fundamental nature of the spin
degree of freedom is emphasized by the fact that particles with
integer and half-integer spin obey fundamentally different
statistics, the Bose—Einstein or Fermi—Dirac distribution,
respectively. In a system of charged fermions, the Coulomb
interaction between particles, together with the Pauli exclu-
sion principle, leads to the appearance of a new type of
interaction, the exchange interaction. It is this type of
interaction that determines the energy scale in a variety of
magnetic systems [9—11]. For example, under certain condi-
tions, strong interparticle interaction in an electron system
can lead to a chain of phase transitions associated with the
appearance of a macroscopically large spin polarization [3, 4].
Such a transition was predicted theoretically at the beginning
of the 20th century and only recently was implemented
experimentally in a series of ultrahigh-purity, low-density,
two-dimensional electron systems [12, 13].

The spin degree of freedom of a particle is inextricably
linked to the magnetic moment, the magnitude of which is
proportional to the spin value. As a consequence, the
application of an external magnetic field causes Larmor
precession of the spin with a frequency €, generally given by
the expression

hQ, = gupupBp . (1)

Here, pp is the Bohr magneton, and By is the projection of
the magnetic field vector onto the coordinate axis. The
proportionality coefficient g,s is usually called the Landé
factor or g-factor. In free space (or a crystal with high
symmetry), the g-factor is a scalar [14], but when the
dimensionality is reduced, e.g., in two-dimensional electron
systems, the Landé factor becomes a tensor [15], and the
Larmor precession frequency begins to depend on the
orientation of the external magnetic field in space [16].
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The nonzero magnetic moment associated with the spin
also provides the possibility of interaction between the spin
degree of freedom and the translational motion of the
electron in space. Such interaction is usually called spin-
orbit coupling. For simplicity, let us consider the motion of
a free electron in a constant external electric field. In
accordance with Lorentz transformations, a magnetic field
proportional to the vector product of the particle velocity and
the electric field arises in the coordinate system of the electron
itself. This field causes electron spin precession. The effect
under consideration is relativistic and, therefore, weak.
However, in real material systems, crystalline solids, or
molecules, the electron moves in strong electric fields of the
atomic cores, which significantly enhances the effect under
consideration [17, 18]. In this case, all the main characteristics
of the spin-orbit coupling become parameters of the material
under study, such as the electron effective mass, and the
precise determination of these parameters is a separate
fundamentally important scientific problem. It should be
emphasized that the spin-orbit coupling plays a key role in
modern semiconductor spin physics, since it is a bridge
between the motion of charges in a crystal and an internal
degree of freedom, the spin. For example, such coupling
offers opportunities for manipulating the spin state of an
electron [19] and largely determines the relaxation rate of the
nonequilibrium spin polarization of delocalized electrons [20,
21]. Moreover, strong spin-orbit coupling is one of the
necessary conditions for the existence of unique quasiparti-
cles— Majorana fermions —in hybrid semiconductor struc-
tures [22, 23].

The magnetic moment associated with the spin of an
electron placed in a crystal can also interact with the
moments of the lattice nuclei. Such interaction cannot be
ignored in many solids, for example, in GaAs—a semicon-
ductor of extreme importance for both fundamental science
and applied physics—and the effective magnetic field of
polarized nuclear spins, which leads to the energy splitting
of electron states with different spin projections, can reach
several teslas [24], which is quite comparable to typical
external magnetic fields. Moreover, one of the main channels
for the relaxation of electron spins localized in one or several
quantum dots (essentially semiconductor spin qubits) is
precisely the process of exchanging magnetic moments
between electrons and nuclei [25].

The concept of a spin degree of freedom was formulated at
the beginning of the 20th century, and its existence has been
confirmed many times, e.g., in the Stern—Gerlach experiments
[26]. It was shown that silver atoms have two possible discrete
angular momenta, despite the complete absence of orbital
momentum. The subsequent development of spin physics was
accompanied by the emergence of new and increasingly
sophisticated experimental techniques that make it possible
to study even the most subtle spin phenomena. In the middle
of the 20th century, the technique of electron paramagnetic
(or spin) resonance (or ESR) [27] emerged, which played a key
role in the development of many modern concepts of the spin
properties in a variety of material systems: from macroscopic
biological objects to nanoscale defects in crystals containing a
single spin.

ESR is based on the phenomenon of resonant absorption
of electromagnetic radiation, provided that the energy of its
quanta coincides with the magnitude of the energy splitting of
electron states with different spin projections and the
magnetic moment conservation law is fulfilled. In this case,

the absorption of radiation can be detected directly, e.g., by
the deterioration of the quality factor of a microwave
resonator. This approach works well even for systems with
reduced dimensionality under conditions of a relatively small
number of spins [28]. On the other hand, the absorption of
radiation can modify the physical properties of the electron
system itself, e.g., optical or transport properties. In the first
case, we speak of optical detection of spin resonance [29], and
in the second case, of electrical detection [30].

The purpose of this review is to present the main
experimental results in the field of studying the spin proper-
ties of two-dimensional electron systems using the technique
of electrically detected spin resonance. The presentation is
organized as follows. Section 2 describes the main experi-
mental implementations of the approach and considers
possible detection mechanisms. Section 3 discusses the study
of the g-factor and its anisotropy in various semiconductor
heterostructures. Section 4 presents experimental studies of
the spin-orbit coupling using the electron spin resonance
technique. Section 5 presents the main experimental results
on hyperfine interactions between the spins of electrons and
nuclei of the crystal lattice in semiconductor heterostructures.
Section 6 discusses the physics of spin in strongly correlated
two-dimensional electron systems. Section 7 outlines the
prospects of electron spin resonance in two-dimensional
systems.

2. Method of electrical detection
of spin resonance in two-dimensional systems

2.1 Experimental method

As arule, electron spin resonance is registered by the resonant
absorption of electromagnetic radiation, the frequency of
which corresponds to the splitting energy between the states
of an electron with different spin projections [31]. Under
certain conditions, the dissipation of wave energy in an
electron system leads to a change in the resistance of the
sample under study. Thus, the sample itself can act as an
effective bolometric detector of resonant absorption of
electromagnetic radiation, and the ESR will be observed as
a peak in the resistance of the sample. This approach has
proven itself in studying the spin properties of two-dimen-
sional electron systems at low temperatures in quantizing
magnetic fields.

To carry out low-temperature transport measurements, as
arule, samples are made in the form of standard Hall bar with
a drain, a source, and several potentiometric contacts. A
typical view of a Hall bar is shown in Fig. 1c. An electric
current is passed through the drain—source, and the voltage,
proportional to either the longitudinal or transverse resis-
tance of the two-dimensional electron channel, is measured at
the potentiometric contacts. A typical view of R, and R,, of
a two-dimensional electron system is shown in Fig. la. The
transport characteristics demonstrated were obtained in a
GaN/AlGaN heterostructure at a temperature of 0.5 K.
More detailed experimental studies of this sample, including
the use of the spin resonance technique, are given in Ref. [32].
As a rule, experiments on ESR spectroscopy of two-dimen-
sional systems are carried out at low temperatures (down to
several ten mK) and in high magnetic fields. The quality of the
structures under study is quite high and usually allows one to
observe well-expressed Shubnikov—de Haas oscillations and
the quantum Hall effect under such conditions.
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Figure 1. (a) Typical longitudinal and transverse resistance of a Hall bar at
low temperatures (7' = 0.5 K) and in high magnetic fields. The sample is a
GaN/AIGaN heterojunction. (b) Variation of the longitudinal magne-
toresistance of the sample due to absorption of electromagnetic radiation
with a frequency of 350.1 GHz. Data were obtained using the same sample
as in panel a. Arrow marks position of ESR. (c) Typical circuit for
electrical detection of ESR in a two-dimensional system. (d) Example of
an ESR peak measured in a GaN/AlGaN heterojunction at incident
radiation frequency of 360.3 GHz. Temperature was 0.5 K.

With such a measurement scheme, the AR, signal in the
region of low magnetic fields is usually determined by the
plasma response of the system [33]. In this case, the energy of
plasma waves excited by the incident radiation dissipates in the
electron system and thereby heats it. In quantizing magnetic
fields, AR\, exhibits oscillatory behavior, which is explained by
the dependence of the Shubnikov—de Haas oscillation ampli-
tude on temperature [34]. As a rule, the spin resonance peak has
a significantly smaller width than all other features of AR,
which makes possible high-precision measurements of its main
characteristics: the amplitude, width, and resonance value of
the magnetic field.

The conductivity of a two-dimensional channel can also
be measured in a noncontact manner, e.g., by the transmis-
sion of a coplanar waveguide deposited on the sample surface
[35]. In this case, spin resonance can also be measured in a
noncontact manner [36]. We emphasize that other transport
properties of the system also change near resonance, which
brings additional possibilities for detecting spin resonance.
For example, ESR can be detected by photovoltage [37]
generated at the contacts to a two-dimensional system, as

well as by a resonant change in tunnel characteristics [38].
Transport approaches to ESR detection work well not only
for two-dimensional systems but also for zero-dimensional
objects, such as quantum dots [39].

Let us consider another important methodological aspect
of ESR in two-dimensional systems. As a rule, the transition
associated with ESR is magnetic dipole, i.e., the maximum
absorption of the maximum wave energy should be observed
in the antinode of the alternating magnetic field. This
behavior was observed in GaAs/AlGaAs heterostructures
[40]. However, many studies have suggested that the spin flip
near ESR can also be induced by an alternating electric field
of the wave [41-43]. Indeed, the electric field causes an
oscillating correction to the electron wave vector at the same
frequency, which is ‘processed’ into an alternating magnetic
field, with which the electron spin interacts. Experimental
evidence of the electric-dipole nature of ESR was obtained in
studies of AlAs and InAs quantum wells [44, 45]. Due to the
key role of spin-orbit coupling in this mechanism, the ratio of
the contributions from the electric and magnetic-dipole
transitions near ESR depends on the characteristics of a
particular material [46].

2.2 Electron spin resonance in quantum Hall effect regime
Let us discuss in more detail the mechanism of changing the
longitudinal resistance in a two-dimensional channel under the
action of electromagnetic radiation near spin resonance in the
quantum Hall effect regime. For simplicity, we will restrict
ourselves to the case of weak interaction between electrons in a
two-dimensional system. In a high magnetic field perpendi-
cular to the plane of a two-dimensional system at low
temperatures (it is under such conditions that spin resonance
spectroscopy usually occurs), the spectrum of electron motion
is a discrete set of Landau levels, each split by spin projections.
Each sublevel has a finite number of states in which electrons
can be, and the number of filled sublevels is called the filling
factor v.

Let us consider the simplest case of an electron system
having a unity filling factor, when the lowest spin sublevel of
the zero Landau level is completely filled, and the upper
sublevel is empty. Then, the spin resonance is absorption of
photons incident on the electron system, accompanied
simultaneously by the transition of electrons from the lower
to the upper sublevel with the flip of the electron spin. The
excited electron and the hole left at the lower sublevel form a
bound state—a spin exciton, the dispersion of which was
calculated theoretically in a number of papers [47, 48] and is
shown schematically in Fig. 2. In full accordance with the
Larmor theorem, the exciton energy begins with single-
particle Zeeman splitting, grows quadratically with respect
to the wave vector k, and in the limit of large k asymptotically
tends to the value of the exchange energy e?/el,. Here,
Iy = \/hc/eB is the magnetic length, and ¢ is the relative
permittivity of the medium. In the act of absorption of a
photon, the laws of conservation of both energy and
momentum must be satisfied. Due to the large wavelength
of light compared to the value of /, for typical magnetic fields,
the dispersion curves of the photon and spin exciton intersect
at ki, ~ 107*—1073, i.e., the dependence of the spin exciton
energy on the wave vector can be disregarded. As was shown
in Ref. [48], the characteristic radius of the exciton is k/7,
which means that only compact excitations are created near
the spin resonance. Note that the dispersion of the spin
exciton can be measured by Raman scattering [50] rather
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Figure 2. Schematic representation of spin exciton dispersion near unity
filling factor. Dotted line shows dispersion of light. Dispersions of spin
exciton and photon intersect at kl, < 1. Inset schematically shows spin
exciton formation near unity filling factor. Theoretical calculations were
performed in Refs [47, 48].

than direct absorption of radiation. In Refs [51, 52], spin
excitons with a large k were excited via interaction with
surface acoustic waves, which made it possible to measure
the evolution of the short-wave part of the spin exciton
spectrum depending on the filling factor and clearly demon-
strate its relationship with the exchange energy.

Let us now turn to the key question for understanding the
mechanism of transport detection of spin resonance: how can
spin excitons excited by light affect the transport properties of
the system? Indeed, a spin exciton with a small k is a compact
and electrically neutral particle, and therefore cannot partici-
pate in transport. Only excitons with a large wave vector can
participate in charge transfer processes. At large k, the size of
the spin exciton increases due to the Lorentz force. When its
size becomes large enough and comparable to the character-
istic free path (for example, with the characteristic fluctuation
length of a random potential), the exciton can be expected to
decay into independent electrons and holes, which can
participate in charge transport. This is, notably, illustrated
by the well-known fact that the activation energy of a
quantum Hall ferromagnet near a unity filling factor is
significantly greater than the single-particle Zeeman energy
[53-55]. Thus, light-excited spin excitons can affect the
resistance of a two-dimensional channel only indirectly,

transferring energy to all spin excitons, including those with
large k. We emphasize that, as a rule, the lifetime of spin
excitons at low temperatures and in high magnetic fields is
large [56, 57] and exceeds the characteristic energy relaxation
time by several orders of magnitude, which means that most
of the created excitations manage to increase the temperature
of the entire ensemble of spin excitons by A7, while in the
linear approximation the resistance of a two-dimensional
channel should change by an amount proportional to
AT3R,./dT.

The mechanism described above is confirmed by measure-
ments of the temperature dependence of the spin resonance
amplitude [49, 58, 59]. The experimentally obtained ampli-
tude is compared with the first derivative of the longitudinal
resistance of the sample, measured independently. When the
value of the single-particle spin splitting is much greater than
the experimental temperature, very good agreement between
these two dependences is observed, which is illustrated in
Fig. 3 using the example of a wide AIAs quantum well. As was
shown in Ref. [58], when the spin splitting is not too large
(e.g., in GaAs/AlGaAs heterostructures), due to the small-
ness of the Landé factor, the amplitude and the first derivative
behave similarly only in the region of low temperatures, and
at a temperature higher than the spin splitting, a decrease in
the amplitude relative to the derivative is observed. This
feature is associated with a decrease in the number of vacant
states at the upper spin sublevel due to thermal fluctuations.
In Ref. [49], it was also demonstrated that the above
mechanism is not entirely valid when moving away from
odd filling factors.

3. Spin resonance and Landé factor
in two-dimensional systems

3.1 Landé factor in a magnetic field

The Landé factor is a coefficient of proportionality between
the energy of the spin splitting of electron states and the
magnitude of the magnetic field and, in fact, is the most
important parameter in spin physics. Thus, the thermody-
namics of a quantum Hall ferromagnet near odd filling
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Figure 3. Typical ESR peaks observed at different temperatures in a wide AlAs quantum well near unity filling factor. (b) Dependence of spin resonance
amplitude (symbols) on temperature near unity filling factor for the same sample. Solid line specifies course of first derivative of resistance of two-
dimensional channel with respect to temperature. Derivative was extracted independently from temperature dependence of the sample (shown in inset).
Derivative was normalized to coincide with ESR amplitude in high-temperature region. More detailed experimental data are given in Ref. [49].
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factors is determined precisely by single-particle Zeeman
splitting, i.e., the g-factor [60]. Moreover, the sign of g
specifies the orientation of the spin relative to the magnetic
field and, thus, controlling the magnitude and sign of the
Landé factor will allow us to control the spin state of the
electron.

It is well known that the value of the g-factor for a free
electron is =~ 2 and is isotropic in space. However, in
crystalline media, as a rule, the value of the Landé factor is
significantly modified due to the presence of spin-orbit
coupling and is a parameter of the medium, which is specified
by the band structure of the material [14]. Thus, in some
narrow-band semiconductors (e.g., InAs, GaSb) the spin-
orbit coupling effectively mixes valence p-states into the
conduction band, and g can reach values of up to —10 and
more [61]. Thus, it is an important fundamental problem to
determine the Landé factor in various semiconductors and
heterostructures based on them.

The ESR technique allows accurate measurement of the
Landé factor, since ESR resonance lines are usually char-
acterized by a high quality factor, which means that the
position of the magnetic field By of the resonance line at a
fixed frequency of incident radiation F can be determined
with very high accuracy. The value of the Landé factor can
then be easily calculated:

hF
= . 2
$= B ()

It should be emphasized that such an expression for the
Landé factor does not at all imply a linear dependence of the
ESR frequency on the magnetic field. Moreover, in some
semiconductor heterostructures, a quadratic dependence of F
on the magnetic field is observed. Such nonlinear effects have
been studied in detail using ESR in various GaAs/AlGaAs
heterostructures containing a two-dimensional electron
system.

Figure 4 shows the dependence of the ESR frequency and
the Landé factor calculated according to Eqn (2) on the
magnetic field for a GaAs/AlGaAs heterojunction with a
two-dimensional electron density of n = 1.5 x 10! cm~2. The
data were obtained at a sample temperature of 1.3 K [62]. The
arrows indicate the position of the filling factors.

Note two important features of the demonstrated data,
which are typical of all two-dimensional electron systems
enclosed in GaAs/AlGaAs heterostructures. Near each odd
v, the g(B) dependence is linear, and the slope of the line
depends on the v value itself. It was shown experimentally in
[63] that the slope tangent is directly proportional to v. From
the theoretical point of view, such behavior is a consequence
of the nonparabolicity of the GaAs conduction band, which
was demonstrated in Ref. [64]. In this paper, it was also shown
that the proportionality coefficient between the slope tangent
of the g(B) line and v is determined by the band structure of
the material system. Let us emphasize that the linearity of
g(B) is preserved even under conditions of the fractional
quantum Hall effect, and the appearance of energy gaps in the
spectrum of a two-dimensional system near fractional states
does not affect the g(B) dependence. This experimental fact
was reported in Ref. [40].

Linear extrapolation of the measured dependences g(B)
into the region of zero magnetic fields makes it possible to
obtain the value of gy, the single-particle Landé factor near
the bottom of the dimensional quantization subband. As a
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Figure 4. Magnetic field dependences of resonance frequency (a) and
Landé factor (b), measured in a GaAs/AlGaAs heterojunction with
density n = 1.5 x 10" cm~2 in a perpendicular field. Arrows indicate

positions of filling factors 1 and 3.

rule, the approximation is carried out by magnetic field
dependences of the Landé factor near different odd filling
factors simultaneously, which significantly increases the
accuracy of the determined value. The values of g, obtained
in this way coincide very well with the values of the Landé
factor determined using other experimental approaches: the
Raman scattering spectroscopy [65] and magneto-optical
experiments to measure the angle of rotation of light
polarization [66].

The ESR technique made it possible to measure with high
accuracy the dependence of gy on various parameters of
GaAs/AlGaAs heterostructures, namely, the quantum well
width and the Al concentration in the barrier layers [67, 68]. A
decrease in the well width led to a decrease in the absolute
value of the Landé factor, which is explained by two factors: a
decrease in the admixture of p-states into the conduction
band due to an increase in the energy of dimensional
quantization of the structure, as well as an increase in the
square of the electron wave function in barrier layers with a
different gy value. In Ref. [69], the possibility of limited
control of the g-factor by applying an external electric field
to the heterostructure was demonstrated. In this case, the
electric field in some sense acts similarly to a decrease in the
well width—it pushes the electron wave function into the
barrier and changes the levels of dimensional quantization of
the electron. In a series of studies [70-72], the g-factor of an
electron in single-layer graphene was measured using the ESR
technique. It was shown in [72] that the value of g strongly
depends on the composition of the layers surrounding the
graphene.

3.2 Anisotropy of Landé factor

The value of the Landé factor in two-dimensional electron
systems enclosed in various semiconductor heterostructures
may depend not only on the amplitude but also on the
direction of the magnetic field. The ESR technique has
shown itself most clearly in the study of this effect in GaAs
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and AlAs heterostructures. Let us consider the main results of
these studies in more detail.

Bulk semiconductors GaAs and AlAs have a zinc blende
structure characterized by the point symmetry group 7,. The
high symmetry of such materials imposes very strong
restrictions on the form of the tensor g, which lead to
degeneration of the g,s-factor into a scalar. In this case, the
Zeeman splitting does not depend on the direction of the
magnetic field. A two-dimensional electron system has a
reduced symmetry, which gives rise to anisotropy of the spin
splitting in space [15, 73-75]. Note that the symmetry
properties of the structure largely depend on the crystal-
lographic direction of the growth axis. Below in this section,
all samples considered will have the growth axis [001].

Quantum wells grown symmetrically along the [001]
direction have the point group Dy,. In this case, the Landé
factor is symmetric in the plane of the structure, and g,p has
two independent components, g and g... If the profile of the
quantum well confining potential is asymmetric along the
growth direction of the heterostructure, then such a system is
characterized by the group C»,. In this case, g,z has three
independent components and, as a consequence, anisotropy
of the spin splitting appears in the plane of the structure. Note
that the mechanism for the appearance of in-plane anisotropy
is closely related to the existence of spin-orbit coupling in the
electron band of the semiconductor. The in-plane component
of the magnetic field mixes the motion of an electron along the
growth direction (the spectrum of such motion is a set of size
quantization levels) and in the plane of the structure. The
resulting correction to the in-plane quasi-momentum of the
electron changes the effective spin-orbit magnetic fields,
which leads to anisotropy of the spin splitting in the plane of
the well. The sequential consideration given in Ref. [16] allows
us to write in the axes [100] (Ox), [010] (Oy), and [001] (Oz):

¢ ((p2)z) —

8yx = &xy = <pzzz>) . (3)

hSC,“B

Here, y is the Dresselhaus constant for the bulk material.
The expression in parentheses in Eqn (3) vanishes for a
structure symmetric along the growth direction. For an
asymmetric structure, nondiagonal components appear in
the g, tensor. Considering the initially selected axes, we can
say that the principal axes of the g, tensor in the plane of the
structure should be directed along the crystallographic axes
[110] and [110]. Note that the application of an external
electric field also leads to a significant asymmetry of the
electron wave function in the direction of structure growth
and, therefore, modifies the in-plane components of the
Landé factor tensor. This effect offers one more mechanism
for controlling the electron g-factor.

The Landé factor was measured experimentally in [001]
GaAs/AlGaAs heterostructures using the ESR technique in
[67, 68, 76, 77]. Similar results were obtained using the
magneto-optical technique based on the analysis of the
rotation of the plane of polarization of incident light [66,
78-82]. In the ESR technique, the dependence g(B) was first
measured for different orientations of the magnetic field, after
which extrapolation to the zero field made it possible to
extract the value of the Landé factor for a given field
direction. The orientation of the field relative to the crystal-
lographic axes of the sample can be conveniently chosen in
accordance with the layout shown in Fig. 5a. In this case, 6 is
the angle between the magnetic field and the normal to the

quantum well plane, and ¢ specifies the orientation of the in-
plane component relative to [110]. Then, for a fixed ¢, in
accordance with Eqn (1), we can write

gl = gzzz cos? 0 + g”2 sin® 0. 4)

Thus, the dependence of g2 on cos? 0 should be linear, and
its extrapolation to the region of cos0 =0 (i.e. 0 =90°)
allows one to determine the in-plane component for a given
¢. This fact is illustrated in Fig. 5b for the cases of a GaAs
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Figure 5. (a) Schematic diagram of magnetic field orientation relative to
sample and its crystallographic directions. (b) Dependence of the square of
g-factor on the square of cosine of tilt angle between external magnetic
field and normal to sample plane for GaAs/AlGaAs quantum wells grown
nominally symmetrical and asymmetrical. In-plane component is directed
along one of the crystallographic axes [110] or [110]. (c) Dependence of in-
plane component of Landé factor on angle ¢ for same two structures.
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quantum well symmetric and asymmetric along the growth
direction in the case of ¢ = 0° and 90°. A more detailed
description of experimental studies is given in Refs [76, 77].
Figure 5¢ shows the dependence of the in-plane component
on the angle ¢. It is clearly seen that, for a symmetric well, the
anisotropy of the in-plane component of the Landé factor is
clearly noticeable, while, for a symmetric well, the g-factor is
practically isotropic in the plane (a small anisotropy is
probably associated with the residual asymmetry of the
structure growth). In [68, 83], an analysis of the anisotropy
of the Landé factor was used to determine the Dresselhaus
constant in GaAs. The resulting y value differed several times
from the result of calculations based on the GaAs band
structure. Such a discrepancy is usually attributed to the
occurrence of interface spin-orbit coupling [84-86]. The
dependence of the slope of the magnetic field dependence
g(B) on the orientation of the magnetic field was studied in
Refs [76, 77]. It was demonstrated that the g-factor is
determined only by the magnetic field component perpendic-
ular to the plane of the two-dimensional electron system. This
feature fits well into the model in which the dependence of the
Landé factor on the field is caused by the nonparabolicity of
the conduction band. It is the perpendicular field that
significantly modifies the spectrum of electron motion in the
plane of the quantum well. The dependence of the Landé
factor tensor and the pseudotensor of its derivatives with
respect to the magnetic field on the width of the quantum well
was measured in Ref. [67]. It was shown that a decrease in the
well width suppresses the in-plane anisotropy of the g-factor,
which is probably due to a decrease in the asymmetry along
the growth direction of the structure in narrower quantum
wells. In Ref. [87], the anisotropy of the Landé factor was
measured in a wide AlAs quantum well. In such structures,
electrons fill two equivalent in-plane valleys, the principal
axes g,p of which, due to the symmetry of the structure, are
rotated relative to each other by Ap = 90°. As a consequence,
the dependence of the in-plane component of g on ¢ has two
branches shifted relative to each other by this value of Ag.

4. Flectron paramagnetic resonance
and hyperfine interaction

In this section, we discuss the influence of the interaction
between the magnetic moments of electrons and lattice nuclei
on the physics of ESR in two-dimensional electron systems.
On the one hand, such interaction provides an additional and
very accurate tool for studying the spin properties of
electrons. The change in the relaxation rate of nuclear spins
can be used to judge the modification of the spectrum of spin
excitations of the electron system [88], and analyzing the
Knight shift of nuclear magnetic resonance allows measuring
the spin polarization of electron systems. For example,
measuring the Knight shift in GaAs/AlGaAs quantum wells
made it possible to obtain evidence of the existence of
topological spin-texture excitations near the unity filling
factor [7] and showed that the unique state of the fractional
quantum Hall effect near the filling factor of 5/2 is completely
spin polarized [89]. On the other hand, hyperfine interaction
leads to dynamic polarization of nuclear spins near the spin
resonance and, therefore, to the appearance of an Overhauser
shift, which significantly distorts the shape and position of the
spin resonance [90, 91].

Let us consider the spin part of the single-particle
Hamiltonian of an electron in a magnetic field, considering

the hyperfine interaction:

H = gugB,S, + AL,S, . (5)

The left term describes Zeeman splitting; the right term
describes the hyperfine interaction. Parameter A4 is the
hyperfine interaction constant. As a rule, the dominant
contribution is the Fermi contact interaction, and the value
of A is proportional to the square of the electron wave
function near the nucleus. In the general case, 4 is a tensor
Aap, but, for the further discussion, this is not of fundamental
importance and A can be considered a scalar. The hyperfine
interaction Hamiltonian can be rewritten using the raising
and lowering operators /. and S in the form

Hy = ALS, = 0.5(1,S_ +1_S,) + LS. . (6)

The expression in parentheses corresponds to the pro-
cesses of simultaneous flip of the spin of the electron and
nucleus with conservation of the total magnetic moment and
is the basis of one of the relaxation channels for the none-
quilibrium spin polarization in the electron system [56]. This
process is shown schematically in Fig. 6a. Even though under
typical experimental conditions this channel is not dominant
in two-dimensional electron systems, some part of the none-
quilibrium polarization of electrons created during the
absorption of microwave radiation near the electron spin
resonance relaxes into the nuclear subsystem. In this case, a
nonzero average polarization of nuclei arises, i.e., (I.) # 0.
Thus, near the electron spin resonance, dynamic polarization
of nuclear spins occurs. The described phenomenon plays an
important role in the physics of magnetic resonance phenom-
ena, since it allows achieving sufficiently large values of (I).
Consequently, the sensitivity of the nuclear magnetic reso-
nance technique significantly increases [92].

On the other hand, the appearance of a nonzero (I.) leads
to a shift in the position of the spin resonance in the magnetic
field by By, the Overhauser shift [90]. Indeed, averaging
Eqn (5) yields

A(L
hF = gug(B + Bn) = gup (B+ gif>

). )

The Overhauser shift By is seen to be directly propor-
tional to the average nuclear spin. Despite the apparent
weakness of hyperfine interaction, this correction to the
position of the electron spin resonance cannot always be
disregarded. For example, in semiconductor systems, the
observed ESR shifts reach several T [93] and are quite
comparable to the applied external magnetic field.

The appearance of the contribution from nuclear spins to
the single-particle spin splitting of electron states has
important consequences. First, the Overhauser shift in
combination with the effect of dynamic nuclear polarization
significantly complicates ESR experiments in two-dimen-
sional electron systems. Indeed, near the ESR, the nonzero
(L) is arranged, dynamically shifting the resonance position
of the ESR. If the directions of the external magnetic field
change and the Overhauser shift are opposite (for example,
the external field increases, and the Overhauser shift moves
the ESR to the region of lower fields), then the resonance peak
will have a smaller width and amplitude. If both the shift and
the external field change in a similar way, i.e., the Overhauser
shift ‘catches up’ with the external field, then the system is in
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Figure 6. (a) Schematic representation of process of dynamic polarization of nuclei, in which part of nonequilibrium polarization of electron spins relaxes
into nuclear subsystem. (b) Typical form of spin resonance near unity filling factor in a wide [001] AlAs/AlGaAs quantum well before (upper curve) and
after (lower curve) dynamic polarization of nuclei. Data are shifted for clarity along vertical axis. (c) Overhauser decay with time near different filling
factors of electron system in the same sample. Approximation of experimental data (symbols) by a linear dependence (straight lines) made it possible to
determine relaxation time of nuclear spins. Obtained time is indicated near each data set. (d) Dependence of spin-lattice relaxation times of nuclei on

filling factor of electron system. Data are given for the same sample.

spin resonance conditions for a long time. In this case, the
resonance peak itself becomes extremely wide and no longer
has a regular shape. This effect requires careful selection of
the radiation power exciting the spin resonance, as well as the
field reversal rate. Typical ESR peaks before and after nuclear
spin polarization are shown in Fig. 6. The spin resonance
peaks were measured in a wide [001] AlAs quantum well near
a filling factor of 1 at a temperature of 1.4 K. It can be seen
that, upon nuclear spin polarization, the ESR peak splits into
several field-shifted peaks. In GaAs quantum wells, the ESR
peak is usually shifted as a whole [91].

On the other hand, the hyperfine interaction opens up wide
experimental possibilities for studying the spin properties of
the nuclear subsystem. For example, the Overhauser shift of
the spin resonance allows measuring the polarization of the
nuclear subsystem. In Ref. [94], the polarization of nuclear
spins created by optical pumping was estimated from the
Overhauser shift. Relaxation of (I.) leads to the attenuation
of the Overhauser shift, which allows measuring the spin-
lattice relaxation time of nuclei [95]. Such measurements,
performed in a wide [001] AlAs quantum well, are presented
in Ref. [96]; let us consider them in more detail. A typical
change in the Overhauser shift of the spin resonance with time
without additional pumping of nuclear spins is shown in
Fig. 6¢. The data are presented for a wide [001] AlAs quantum
well at a temperature of 1.5 K. The decay of the Overhauser

shift is exponential in time. The characteristic time of nuclear
spin relaxation can be measured from the slope of the time
dependence of the shift logarithm. The dependence of the
inverse spin-lattice relaxation time 1/t on the filling factor of
the system is shown in Fig. 6d for the same sample. It is clearly
seen that 1/t is largely determined by the filling factor. Similar
results were obtained earlier in GaAs/AlGaAs heterostruc-
tures [95]: the time 1/t demonstrated magnetic quantum
oscillations upon filling factor variation. Thus, it can be
concluded that the dominant channel of nuclear spin relaxa-
tion is based on the interaction between the spins of nuclei and
of the electron system, and 1/t is determined by its spin state.
In Ref. [97], it was shown that the formation of fractional
quantum Hall effect states also slows down the relaxation of
nuclear spins but does not affect the width of the electron spin
resonance, i.e., the time of spin-spin relaxation in the electron
system.

The coupling of electron and nuclear spins allows detecting
nuclear magnetic resonance by the transport properties of a
two-dimensional electron channel [91, 98, 99]. For this purpose,
as a rule, the sample is placed in an additional coil, the axis of
which is oriented in the plane of the two-dimensional system,
and an alternating current passed through the coil creates an
alternating magnetic field oscillating with the frequency of the
current and directed perpendicular to the external magnetic
field. Near nuclear magnetic resonance, nonzero spin polariza-
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tion (it can be created, e.g., by the dynamic polarization of
nuclei) is destroyed, which is detected by a change in the shape
of the spin resonance. In this case, it is possible to fix the
frequency of the radiation and change the magnetic field or fix
the field and scan the frequency. Such a technique is rather
accurate and allows, e.g., resolving the quadrupole splitting of
the nuclear magnetic resonance line [96].

There is another method of electrical detection of nuclear
magnetic resonance, which is usually applied at extremely low
temperatures. At temperatures of ~ 10 mK, the spin splitting
of nuclei in typical magnetic fields becomes comparable to the
characteristic thermal energy k7. Then, thermal fluctuations
do not completely suppress the average nuclear spin and (Z)
becomes nonzero, and a contribution proportional to (I.)
appears in the energy splitting of the electron spin states. At
low temperatures near odd filling factors of the electron
system, the resistance of the two-dimensional channel
depends exponentially on the spin gap and even small
variations in it, associated with a change in (I.), lead to
quite noticeable changes in the transport properties of the
sample [100, 101]. Near nuclear magnetic resonance, the
radio-frequency electromagnetic field resonantly destroys
(L), which allows electrical detection of nuclear magnetic
resonance [102, 103]. Such a technique, for example, made it
possible to study in detail the spin properties of an electron
system near various states of the fractional quantum Hall
effect using the Knight shift of nuclear resonance [89, 104].

5. Electron spin resonance
in systems with spin-orbit interaction

In this section, we consider the effect of spin-orbit coupling on
the physics of spin resonance in two-dimensional electron
systems. Spin-orbit interaction in the electron band couples
the spin degree of freedom of electrons and their orbital
motion in the plane of the system. Nonzero spin-orbit
coupling of electron states is possible only in the absence of
an inversion center in the system, which means that, in
semiconductor heterostructures, it can arise due to the
absence of an inversion center in the bulk materials of which
the structure is composed, or due to the asymmetry of the
structure itself. Local asymmetry of bonds at heterobound-
aries also gives rise to spin-orbit coupling.

Let us first consider the influence of the spin-orbit
coupling on the splitting of electron states by spin in strong
quantizing magnetic fields. In this case, the energy spectrum
will be a set of Landau levels, each of which is split by spin.
The spin-orbit interaction can usually be considered a small
correction in this case, and the formalism of perturbation
theory can be used. We restrict ourselves to the case of the
Dresselhaus spin-orbit coupling, linear in the wave vector,
having the form (k.o —k,0,). Itis convenient to rewrite this
expression through k. =k, £ ik, and o+ = (1/2)(0y £ ig,),
since, in the symmetric gauge, k, =+2a*/l, and
k_=+/2a/l,, where the operators a* and a are the operators
of the electron transition between adjacent Landau levels
without spin flip. Here, as before, /, is the magnetic length.
The total Hamiltonian of the electron will then have the form

1 2
H:hwc(a+a+§) +guBBa:+¥(a+o++aa,). (8)
b

Here, the quantity w, is the cyclotron frequency, and Zo,
is the distance between adjacent Landau levels with the same

spin projection. In fact, the spin-orbit interaction provides the
possibility of transition between Landau levels with a spin flip
of the electron. We can similarly rewrite the Rashba
interaction linear in the wave vector: a(k,0, — ky0,). Then,
using the second-order perturbation theory, we can find a
correction to the Landé factor, which specifies the spin
splitting of the Landau level with number N:

GRSy ©)

Here, the parameter C is a combination of world
constants and material parameters of the system— the
effective mass and Landé factor. The value of C is directly
proportional to the effective mass of the electron, and the
corresponding correction to the g-factor will be most
significant in two-dimensional systems with a large effective
mass of charge carriers. We also emphasize that the approx-
imation used to derive Eqn (9) implies the smallness of the
spin-orbit correction and is therefore applicable only in the
region of high magnetic fields.

The electron spin resonance technique allows measuring
the Landé factor with high accuracy and, as a result,
extracting the correction specified in Eqn (9). Let us consider
how this approach works using narrow AlAs quantum wells
grown in the [001] direction as an example. The main
experimental results of these studies are presented in [105—
107]. Let us discuss them in more detail. Figure 7b
demonstrates the experimentally obtained dependence of
the g-factor on the magnetic field in a 5-nm AlAs quantum
well grown in the [001] crystallographic direction. The
characteristic magnetoresistance of a two-dimensional elec-
tron system enclosed in this structure is shown in Fig. 7a. As
the magnetic field decreases, the electron g-factor near odd
filling factors continuously increases and demonstrates
pronounced jumps around each even filling factor. In this
case, the value of the Landé factor itself directly at the odd
filling factor v=2N+1 (here, as before, N specifies the
Landau level number) demonstrates a clear dependence on
v. This behavior is fundamentally different from that typically
observed in GaAs/AlGaAs heterostructures. Indeed, the
small effective mass of the electron in GaAs, apparently,
determines the smallness of the correction to the g-factor in
Eqn (9).

Following Ref. [106], we demonstrate that the spin
resonance technique makes it possible to determine the spin-
orbit correction to the g-factor with high accuracy. For this
purpose, Fig. 7c shows typical ESR lines measured near
v=1.7,3,5 and 7, with the corresponding Landau level
numbers N =0, 1,2, and 3. For convenience, the magnetic
field is normalized to the value By = hF/goug —its own for
each ESR peak. The field By represents the position of the
spin resonance in the absence of spin-orbit renormalization of
the g-factor. Then, the difference in the positions of the
resonance peaks constructed in this way directly reflects the
correction to the Landé factor in accordance with Eqn (9).
The observed difference exceeds the width of the resonance
lines, which allows measuring the indicated correction with
high accuracy.

Near odd filling factors, the experimental dependence of
the Landé factor on the magnetic field is very well approxi-
mated by expression (9) with a single fitting parameter, the
coefficient 2. The value of g is taken from the region of high
magnetic fields, where the spin-orbit correction can be
ignored. In this case, the contribution from «?, i.e., from the
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Figure 7. (a) Longitudinal resistance of wo-dimensional electron channel
formed in a 5-nm [001] AlAs quantum well at 0.5 K. (b) Dependence of
Landé factor on magnetic field near various odd filling factorsv = 2N + 1.
Symbols are experimental data obtained in a 5-nm [001] AlAs quantum
well, solid lines are theoretical approximation using a single parameter f3.
Values of N are indicated near each curve. (c) Typical ESR peaks
measured near different filling factors v =1.7,3,5,7. Frequencies of
electromagnetic radiation F are indicated near each curve. Field is
normalized to value By =hF/goug (individual for each peak).
(d) Dependence of spin-orbit interaction constant  on quantum well
width. Solid line is approximation of data taking into account theoretically
calculated value of (k2).

Rashba-type spin-orbit coupling, is assumed to be negligibly
small. To confirm this statement, measurements were
performed in [105] in one-side doped samples with different
electron concentrations in a two-dimensional system. Indeed,
the coefficient o is proportional to the electric field Ealong the
growth direction in the vicinity of the two-dimensional
system. In the absence of an external electric field, a nonzero
Eis produced by the d-layer of ionized donors separated from
the well by a barrier layer. Since the structure as a whole is not

charged, the value of E is proportional to the two-dimen-
sional electron density n, hence, o ~ n. This situation is quite
typical of quantum wells [108]. The contribution to the
g-factor associated with the Rashba interaction is then
proportional to n% and opposite in sign to the contribution
from the Dresselhaus interaction. Experimentally, the depen-
dences of the g-factor coincided for different values of n,
which determines the smallness of the Rashba interaction in
narrow AlAs quantum wells. Figure 7d shows the dependence
of the coefficient  on the width of the AlAs quantum well; in
Ref. [106], an approximation of such a dependence consider-
ing the theoretically calculated value of (k?) made it possible
to obtain a value of y &~ 3.5 eV A? in bulk AlAs.

As is clearly seen from Fig. 7b, two spin resonance peaks
are observed near even filling factors, which clearly contra-
dicts the expected zero spin polarization near even filling
factors. We will discuss the possibility of observing spin
resonance near even v in the next section of this review.

The approach described above was also extended to other
material systems. In Ref. [109], the Rashba spin-orbit
coupling constant was measured in a series of GaN/AlGaN
heterojunctions with different electron densities. Bulk GaN
has a wurtzite structure, the presence of a high-order
symmetry axis in which dictates the dominance of the
Rashba-type spin-orbit coupling. The electron density in the
samples was varied in diverse ways: by optical pumping, using
an upper gate semitransparent to microwave radiation, and
changing the Al concentration in the barrier layers. An
analysis of the dependence of the constant on the electron
density made it possible to establish the coefficients for the
terms of the spin-orbit coupling, both linear and cubic in the
wave vector. Similar measurements were made for a series of
ZnO/MgZnO heterojunction samples with different Mg
concentrations in the barrier layer in [110].

It is of interest to compare the obtained spin-orbit
constants with the results of other techniques typically used
to study spin-orbit interactions. Techniques based on the
analysis of the beats in the Shubnikov—de Haas oscillations in
the region of low magnetic fields, as a rule, give an over-
estimated result in comparison with the ESR spectroscopy
technique [111], which is probably explained by the extreme
sensitivity of the technique to inhomogeneities in a two-
dimensional system [112]. On the other hand, the constants
measured by the weak antilocalization effect demonstrate
good agreement with the results of the ESR technique. This
fact was shown in Ref. [109] considering the renormalization
of the effective mass of electrons due to the electron-electron
interaction. It should also be noted that in GaN/AlGaN
heterojunctions the electron density is significantly higher
than in AlAs quantum wells, which results in a significantly
smaller contribution of electron-electron interaction to the
transport properties of a two-dimensional system and, as a
consequence, good agreement between the results of the two
methods even without taking renormalizations into account.

In material systems with the energy spectrum linear in the
wave vector, the spin-orbit coupling splits the spin resonance
line into two with the same slope relative to the magnetic field
[113]. An analysis of the relative position of these lines made it
possible to determine the energy of the bulk spin-orbit
splitting.

Let us dwell on one more important aspect. Strong spin-
orbit coupling violates the Larmor theorem, which means
that a multiparticle contribution may appear in the spin
splitting measured by ESR spectroscopy [114, 115]. How-
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ever, in none of experiments discussed in this section were
such effects observed, which is probably due to the insuffi-
cient strength of the spin-orbit coupling.

6. Spin resonance in two-dimensional electron
systems with strong electron-electron interaction

In the previous sections, we discussed the physics of the
electron spin system in the single-particle approximation,
i.e., we considered the system as a set of particles that do not
interact with each other. In a number of cases, this approach
is quite justified. However, under certain conditions, the
exchange interaction arising from the usual Coulomb repul-
sion of charged fermions — the electrons — together with the
Pauli exclusion principle, largely determines the spin proper-
ties of a two-dimensional system and contributes to the
physics of electron spin resonance. This section of our review
is devoted to a discussion of these effects.

Many-particle effects are especially pronounced when the
kinetic energy of charged particles is much less than the
characteristic energy of interaction between them. In this
case, to describe the contribution from many-particle inter-
action, it is convenient to use the dimensionless parameter r;,
the ratio of the characteristic energy of Coulomb repulsion
and the Fermi energy. Since the energy of interaction between
electrons is inversely proportional to the average interparticle
distance, i.e., ~ n'/2, and the Fermi energy is proportional to
the combination n/m*, the parameter r,; will increase with
decreasing effective electron mass. For example, if the ratio of
the characteristic Coulomb energy to the Fermi energy
reaches ~ 40, spontaneous spin polarization of a two-
dimensional electron system occurs [4, 12, 13]. In this case,
the characteristic value of n is only 10° cm~2. Such low
electron densities, and with them Fermi energies, entail
extremely stringent requirements for the purity of the
electron system, since at ultra-low electron densities both
decent transport characteristics and exceptional homogeneity
of the system must be maintained.

A strong external magnetic field leads to the transforma-
tion of the continuous spectrum of electron motion into a
discrete one—a set of Landau levels. In fact, the magnetic
field ‘freezes’ the electron motion in the plane of a two-
dimensional system. In this case, even in samples with quite
average characteristics, one can observe quantum many-
particle effects, for example, the fractional quantum Hall
effect [116, 117], including states with even denominators
[118], Wigner crystallization at filling factors less than unity
[119], and a ferromagnetic phase transition near nominally
nonmagnetic even filling factors [120, 121]. To estimate the
strength of the electron-electron interaction in a magnetic
field, it is reasonable to replace the Fermi energy with the
distance between the Landau levels, which is also inversely
proportional to the effective mass of the electrons. Strictly
speaking, Landau quantization is valid only in the limit where
the Coulomb repulsion is weak and can be considered a small
correction.

Let us consider the phenomenon of the ferromagnetic
phase transition near even filling factors in more detail,
focusing on the behavior of the electron spin resonance near
such a transition. As experimental samples, semiconductor
heterostructures with a relatively large effective mass of
~ 0.3—0.5 my, such as ZnO/MgZnO heterojunctions and
AlAs quantum wells, are usually used. Such masses ensure the
dominance of the Coulomb energy over the splitting between

the Landau levels in typical magnetic fields. In Ref. [121], an
analysis of the photoluminescence line shape of a two-
dimensional electron system in ZnO/MgZnO heterojunc-
tions made it possible to construct a phase diagram of the
ferromagnetic transition near v = 2 in the following coordi-
nates electron density—magnetic field tilt angle. Note that an
increase in the magnetic field tilt angle leads to an increase in
the spin splitting at a fixed filling factor of the electron system,
since the filling factor is determined exclusively by the
perpendicular component of the magnetic field, and the
Zeeman splitting is determined by the total field. The higher
the electron density and, therefore, the smaller the relative
contribution from the exchange interaction, the greater the
field tilt angle required for the transition of the electron
system to a spin-polarized state. In Refs [120, 122], it was
shown that such a transition is accompanied by the appear-
ance of a clearly defined spike in the longitudinal resistance of
the sample, which is apparently due to the division of the
system into domains with different spin polarizations. In this
case, the domain walls can scatter conduction electrons and
lead to an increase in the resistance of the system. Such a spike
is a very convenient indicator of a phase transition.

Let us now consider the evolution of the spin resonance
near the ferromagnetic transition, measured in Ref. [123].
Figure 8 shows the longitudinal resistance of a two-dimen-
sional electron system with a density of n = 2.1 x 10'! cm™2
at three different magnetic field tilt angles 0 = 0°,22.5°, and
35° near a filling factor of 2. At an intermediate angle, a sharp
peak is observed in the resistance, shown on a larger scale in
Fig. 8b. Figure 8c shows a typical evolution of the spin
resonance amplitude near an even filling factor. At zero tilt
angle in the paramagnetic state, no spin resonance is
observed, while at § = 35° in the ferromagnetic state, ESR is
observed in the entire range of fields in the vicinity of v = 2.
At 6 = 22.5°, the resonance amplitude at a certain v sharply
decreases by several orders of magnitude, and the position of
this drop coincides with the position of the peak in the
resistance (labelled with a marker in the figure). Such
behavior clearly indicates that near the peak in the resistance
a ferromagnetic phase transition indeed occurs, accompanied
by a macroscopic change in the spin polarization of the
system. Moreover, in the same study, it was demonstrated
that the shape of the ESR peak is significantly modified near
the ferromagnetic transition — the spin resonance is split into
several peaks. This is most likely associated with the
appearance of domains with different spin polarizations. In
this case, the possibility of scattering on domains actually
leads to a violation of the Larmor theorem and much softer
conditions on the law of conservation of the quasi-momen-
tum of a spin wave.

Note that the behavior of the electron spin resonance in
the nominally paramagnetic phase is also nontrivial. It is
logical to expect that, in a state with zero spin moment, the
phenomenon of electron spin resonance is not observed. This
is precisely the behavior that was discovered near the
ferromagnetic transition of the paramagnetic phase. How-
ever, if we try to measure the spin resonance in samples with a
higher electron density and at a zero tilt angle—i.e., ‘further’
from the transition in the nominally nonmagnetic phase —it
turns out that ESR is quite detectable, as was shown in
Refs [124, 125]. Moreover, the spin resonance near an even
filling factor has an important difference —its amplitude has
a different sign from the resonance near odd filling factors.
This fact is illustrated in Fig. 9a, b, which shows typical ESR
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Figure 8. (a) Longitudinal resistance of a two-dimensional electron
channel formed in a ZnO/MgZnO heterojunction at 0.5 K for three
different magnetic field tilt angles 6 = 0°,22.5°, and 35°. Two-dimensional
electron density in sample was 2.1 x 10" ¢cm~2. (b) Enlarged resistance of
sample at 0 = 22.5°. Spike in resistance is pointed at with a marker.
(c) Spin resonance amplitude measured in same sample as a function of
filling factor for different magnetic field tilt angles. Marker points at
position of peak in resistance associated with ferromagnetic phase
transition at § = 22.5°.

peaks near filling factors 3 and 4, respectively, which were
measured in a sample with a two-dimensional density of
n=45x10"cm™2.

The difference mentioned is of a fundamental nature.
Indeed, near odd filling factors, the sign of the resistance
change near the ESR corresponds to the heating of the
electron system in full accordance with the mechanism
discussed in one of the previous sections. However, near
even filling factors, the spin resonance corresponds to a
decrease in the resistance of the system, i.e., its ‘cooling.’
This feature was rechecked in [125] by directly measuring the
resistance of the sample (i.e., without using the double lock-in
amplifier technique). In the same study, it was shown that,
upon a transition of the system to a ferromagnetic state near
an even filling factor, the anomalous behavior of the spin
resonance is also replaced by the usual ‘heating’ behavior.
The data obtained allowed us to propose a hypothesis that
describes all the main observed features of the spin resonance
near even filling factors. The proposed explanation is based
on the fact that, at a nonzero sample temperature and in not
too high magnetic fields in the system near even filling factors,
there is always a finite number of excitations, which can be
thought of as a transition of an electron to the upper Landau
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Figure 9. (a, b) Typical spin resonance peaks observed in a ZnO/MgZnO
heterojunction with electron concentration n =4.5 x 10! cm~? near
filling factors of 3 and 4, respectively. Frequency of electromagnetic
radiation is indicated in each of the two figures. Magnetic field is normal-
ized to resonance value. Experimental temperature is 0.5 K. (c) Typical
spin resonance peak measured near filling factor 2 in paramagnetic phase
at 0 = 0° and in ferromagnetic phase at 50°. Magnetic field is normalized to

resonance value. Experimental temperature is 0.5 K.

level with a spin flip. Since both the Landau level number and
the spin projection change in this case, the many-particle
contribution to the energy of such modes is not forbidden.
Moreover, as shown in Refs [5, 126, 127], their spectrum is
softened due to electron-electron interaction. Since the
excitation of such modes implies a spin flip, the system has a
nonzero spin polarization, and electron spin resonance
becomes possible. Under the action of microwave radiation,
a redistribution of spin excitations probably occurs. This
redistribution implies a decrease in the number of excitations
with a large radius participating in dissipative charge transfer
processes, and the resistance of the system decreases. When
transitioning to the ferromagnetic state, the excitation
spectrum changes— the spin exciton becomes the lowest,
and the anomalous ESR mechanism is no longer valid. In
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the immediate vicinity of the transition, domain nuclei
effectively scatter the spin, significantly reduce the lifetime
of spin excitations, and, as a result, make it impossible to
observe electron spin resonance.

7. Conclusion

The study of electron spin in various semiconductor hetero-
structures is an important part of modern condensed matter
physics. The presence of this internal degree of freedom
significantly enriches the fundamental physics of such
systems, giving rise to both unique ground states with a
nontrivial structure and new excitations. From an applied
point of view, the spin moment can be used in addition to the
electron charge for storing and processing information,
including in the paradigm of quantum computing.

The concept of a spin degree of freedom was formulated
over a hundred years ago. The rapid development of spin
physics since then has given rise to a variety of increasingly
sophisticated techniques that allow studying the most subtle
physical phenomena. One of the key experimental
approaches to spin studies is the electron paramagnetic
resonance technique, which has played a key role in the
formation of physical concepts in a wide variety of areas. In
particular, the ESR technique has proven to be extremely
effective in studying the spin properties of two-dimensional
electron systems.

The electron spin resonance technique is being continu-
ously improved — the sensitivity of the method is increasing,
and the operating range of electromagnetic radiation fre-
quencies, magnetic fields, and temperatures is expanding. The
techniques are being adapted to new and the most diverse
structures. Thus, resonant absorption of microwave radia-
tion, the frequency of which coincides with the spin splitting,
is actively used to control the spin states of single electrons in
quantum dots —in essence, spin qubits [128]. The possibility
of detecting electron spin resonance in single-layer and
multilayer graphene structures has recently been demon-
strated [70, 72, 113, 129, 130]. The results of ESR spectro-
scopy [130], obtained in samples with layers misoriented
relative to each other, will allow a better understanding of
the nature of multiparticle effects arising in such structures,
including superconductivity. Thus, the ESR technique
remains relevant and in demand in the physics of low-
dimensional semiconductor structures.

The study was supported by the Russian Science Founda-
tion, grant no. 20-72-10097 (extension).
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