
Abstract. Non-Gaussian quantum states whose Wigner func-
tions can take negative values are important both for funda-
mental tests of quantum physics and for the quantum
information technologies that have been under active develop-
ment recently. A typical example of a non-Gaussian state is the
so-called Schr�odinger's cat state. Its very interesting feature is
that its `classical' part (two Gaussian maxima) is geometrically
separated from the `nonclassical' part (interference fringes). In
this paper, several methodological issues related to these fringes
are considered.
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1. Introduction

The famous thought experiment formulated by Schr�odinger
in [1] is perhaps the most vivid demonstration of the main
methodological problem of quantum physics, namely the
problem of the absence of a smooth limiting transition from
the quantum description of the world to the classical one. In
this thought experiment, a method is proposed that is
completely correct from the point of view of quantum
mechanics for transforming the superposition state of a
microscopic object (an atom) into the superposition state of
a macroscopic object (a `cat,' or more precisely, a composite
system, `atom� cat'). But it is `obvious' that macroscopic
objects cannot be in a state of superposition, so is there
something wrong with quantum mechanics?

All existing interpretations of quantum mechanics some-
how solve this problem. In particular, in the Copenhagen
interpretation, `extra' branches of the wave function are
randomly cut off by means of quantum state reduction. In
the Everett many-worlds interpretation, all branches of
evolution coexist, but cannot communicate with each other
due to the linearity of the Schr�odinger equation.

In the last two or three decades, interest in quantum states
that are superpositions of two well-distinguishable wave
functions has moved into the practical realm due to the
rapid progress of quantum information processing and
transmission technologies. Of course, we are not yet dealing
with the states of `Schr�odinger's cat' (SC) for really macro-
scopic objects. The bulk of work in this area deals with optical
field states that are superpositions of the form

jC i � 1����
N
p ÿjai � exp �iy�j ÿ ai� ; �1�

where jai and jÿai are coherent states, and N is a normal-
ization factor (see review Ref. [2] and references therein). At
present, it is possible to generate SC states with values a 2 � 3
[3, 4]. Methods have also been proposed for obtaining SC
states with amplitudes up to a � 4ÿ5 [5, 6]. Recent years have
seen the demonstration of similar states for translational
mechanical degrees of freedom (see, for example, Ref. [7]).

The SC states are typical examples of so-called non-
Gaussian quantum states, i.e., those whose Wigner functions
[8] are different in shape from two-dimensional Gaussian
bells. It is well known that non-Gaussian states are `more
quantum' than Gaussian (e.g., coherent) states. In particular,
Gaussian states cannot be orthogonal to each other; they
allow a classical description in terms of local hidden variables
[9]; quantum information processing protocols using only
Gaussian states can be efficiently simulated by classical
computers [10].

It is also known that the orthogonality properties of SC
states, which stem from their non-Gaussian nature, allow
them to be effectively used in optical interferometric measure-
ments [11].

A very interesting feature of the Wigner functions of SC
states is that the `classical' part, i.e., the twoGaussianmaxima
corresponding to the `alive' and `dead' statuses of the cat, is
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geometrically separated from the `nonclassical' part, known
as SC `interference fringes.' An example of the Wigner
function of state (1) is shown in Fig. 1. The three parts
mentioned are clearly discernible in it. This feature makes
the SC states a useful subject of study, for example, the effect
of dissipation on non-Gaussian quantum states.

In this paper, several methodological issues related to the
SC fringes are considered. In Section 2, a convenient tool for
subsequent analysis is introduced, namely, the generalized SC
state (4), and a simple universal formula (7) is obtained
expressing the Wigner function of such a state in terms of
the Wigner function of the corresponding basis state c�x�.
Discussed in Section 3 is the question of what, in fact,
interferes in the SC states to form the fringes. Next, in
Section 4, the feasibility of direct (nontomographic) observa-
tion of these fringes is discussed. Finally, Section 5 briefly
summarizes the results of this paper.

2. Wigner function of generalized state
of Schr�odinger's cat

Following the convention adopted in quantum optics, we will
use the dimensionless normalized coordinate and momentum
defined by the relations

â � x̂� ip̂���
2
p ; �x̂; p̂� � i ; �2�

where â is the annihilation operator. In the case of a
mechanical harmonic oscillator, x and p are related to the
`usual' dimensional coordinate and momentum by the
formulas

x �
����������
mO0

�h

r
X ; p � P������������

�hmO0

p ; �3�

where m is the mass and O0 is the oscillator's eigen
frequency.

Assume for simplicity that the parameter a in formula (1)
is real. The generality is not limited in this case, since any
complex a can be transformed into a real one by a unitary
rotation in the phase plane. Next, we consider a general-
ization of such a state defined by a wave function that has the
following form in the coordinate representation:

C�x� � hxjCi � 1����
N
p �

c�xÿ x� � c�x� x� exp �iy�� ; �4�

where c�x� is an arbitrary basis wave function and x is a real
parameter. The normalization factor N in this case is

N � 2 �1� K� ; �5�

where

K � Re

�1
ÿ1

c��xÿ x�c�x� x� exp �iy� dx : �6�

For the purposes of this methodological note, the advantage
of state (4) is that its basis functionc can be so chosen that the
overlap of components c�xÿ x� and c�x� x� is strictly zero
(see Section 3).

Proceeding from definition (4), we can obtain a universal
closed expression for the Wigner function of the generalized
SC state. Directly using the definition of the Wigner function
(see, for example, monograph [12]), it is easily shown that, for
any states of the form (4), it can be represented as

W �x; p�� 1

N

�
W0�xÿ x; p� �W0�x� x; p� � 2W1�x; p�

�
;

�7�

where

W0�x; p� � 1

2p

�1
ÿ1

c�
�
xÿ y

2

�
c
�
x� y

2

�
exp �ÿipy� dy

�8�

is the Wigner function of the basis state c�x� and
W1�x; p� �W0�x; p� cos �2px� y� : �9�

Note also that�1
ÿ1

W1�x; p� dx dp � K : �10�

The structure of formula (7) generalizes that shown in
Fig. 1. It comprises two shifted and scaled copies of the
Wigner function W0 of the basis state c0, as well as
interference fringes produced by another (unshifted) copy of
W0 modulated by the oscillating factor cos �2px� y�.

3. Interference fringes

One can see from formula (7) that the interference term W1

does not vanish even if the functions c�x� x� and c�xÿ x�
do not overlap, i.e., if for any x

c��xÿ x�c�x� x� � 0 : �11�

Specifically, it follows (contrary to popular belief) that the
interference fringes do not disappear with increasing distance
2x between the `live' and `dead' components of the cat; in this
case, only the modulation frequency of the function W1

increases.
Here, the question may arise: what actually interferes if

the functions c�xÿ x� and c�x� x� do not overlap? The
answer is quite obvious. TheWigner wave function is defined
in the phase space �x; p�, and the wave functions in the
momentum representation are as important for it as in the
coordinate representation. Function (4) in the momentum
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Figure 1.Wigner function of state (1) for a � 2
���
2
p

and y � 0.
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representation is of the form

F�p� � hpjCi � f�p�����
N
p �

exp �ÿipx� � exp
ÿ
i�px� y��� ;

�12�
where

f�p� �
�1
ÿ1

c�x� exp �ÿipx� dx������
2p
p �13�

is the wave function of the basis state in the momentum
representation. For the corresponding probability distribu-
tion, we obtain��F�p���2 � 2

��f�p���2
N

�
1� cos �2px� y�� �14�

(compare with formula (7)). In this case, a narrow coordinate
wave function of widthDx5 x yields a widemomentumwave
function of width

Dp � 1

Dx
4

1

x
; �15�

in accordancewith the fact thatmanymodulation periods p=x
fit into the interval Dp.

By way of example, consider the case of a `squeezed'
Schr�odinger's cat, whose basis wave function is

c�x� � 1

�ps�1=4
exp

�
ÿ x 2

2s

�
; �16�

where s is the squeeze factor. In this case,

W �x; p� � 1

psN

�
exp

�
ÿ �xÿ x�2

s

�
� exp

�
ÿ �x� x�2

s

�
� 2 exp

�
ÿ x 2

s

�
cos �2px� y�

�
exp �ÿsp 2� : �17�

On the one hand, such a basis state is Gaussian and therefore
does not complicate the consideration by additional (apart
from the cat fringes) negative-valued regions. On the other
hand, by decreasing the factor s, it is possible to provide
exponentially small values of the overlap coefficient (11) for
any given x.

The plot of theWigner function (17) is shown in Fig. 2 for
characteristic values of parameters s and x. The shortening of
the interference fringes associated with the narrowing of the
functionW1�x; p� in the coordinate direction is clearly visible.

4. On the feasibility
of observing Schr�odinger's cat fringes

Is it possible to experimentally observe the SC fringes? It
would seem that the obvious answer is yes, it is possible, since
the quantum tomographic procedure [13, 14] allows one, in
principle, to reconstruct theWigner function of any quantum
state. However, quantum tomography is, an essentially
ensemble procedure, which, in fact, makes it possible to
accurately (in the ideal case) reconstruct any quantum state
without any restrictions associated with the Heisenberg
uncertainty principle. However, for the same reason, quan-
tum tomography cannot be employed, for example, to detect
an external effect on a single object. Therefore, let us pose the
question differently: can the structure of the fringes manifest
itself in the results of an `ordinary' directmeasurement limited
by the uncertainty principle?

It is obvious that the required procedure should provide
information about both the coordinate and themomentum of
the object. A canonical example is the so-called coherent
measurement [15, 16], characterized by the same measure-
ment errors for the coordinate and momentum, Dx �
Dp � 1=

���
2
p

, and described by the positive operator-valued
measure (POVM) [17] of the form

P̂�~x; ~p� � 1

2p
j~aih~aj : �18�

Here, j~ai is the ket-vector of the coherent state, with
parameter ~a equal to

~a � ~x� i~p���
2
p ; �19�

and ~x, ~p are the measurement results. The statistics of the
coherent measurement results are given by the Husimi
function [18]:

Q�~x; ~p� � 
CjP̂ �~x; ~p�jC� ; �20�

which is theWigner function [19] smeared symmetrically in all
directions in the phase plane.

For an optical wave, this procedure can be implemented
by dividing it with a symmetric (R � T ) beam splitter with
subsequent measurement of two orthogonal quadratures of
the output beams using two homodyne detectors placed in the
output ports of the beam splitter (Fig. 3).

It is obvious, however, that to resolve the SC fringes, the
measurement errors of the momentum and coordinate must
be consistent with the geometry of these fringes and, notably,
can differ from each other:

Dx �
�����
sm
2

r
; Dp � 1��������

2sm
p ; �21�

where sm is the measure of asymmetry of Dx and Dp (the
measurement squeeze factor). Such a measurement, which we
will call squeezed coherent, can also be implemented using the
setup shown in Fig. 3, but the beam splitter in it must now be
asymmetric, R 6� T. In this case, the POVM will be of the
following form:

P̂�~x; ~p; sm� � 1

2p
j~a; smih~a; smj ; �22�

where j~a; smi is the displaced squeezed state:
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Figure 2.Wigner function (17) for s � 0:1, x � 2, and y � 0.
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hxj~a; smi � 1

�psm�1=4
exp

�
ÿ �xÿ ~x�2

2sm
� i~px

�
; �23�

(compare with formula (16)).
The corresponding probability distribution for the meas-

urement results will be of the form

Q�~x; ~p; sm� � hCjP̂�~x; ~p; sm�jCi : �24�

When sm � 1, it coincides with the usual Husimi function
(20). When sm 6� 1, we obtain a `squeezed' Husimi function,
smeared predominantly either by the coordinate (when
sm > 1) or by the momentum (when sm < 1). For sm 5 1, it
degenerates into a one-dimensional coordinate probability
distribution, and, for sm 4 1, into a momentum distribution.
In all cases, function (24) remains nonnegative everywhere.

We revert to the case of the SC state (4), assuming that the
basis state is squeezed (see formula (16)). In this case, it
follows from formula (24) that

Q�~x; ~p; sm�� 1

N

�
Q0�~xÿ x; ~p; sm� �Q0�~x� x; ~p; sm�

� 2Q0�~x; ~p; sm� exp
�
ÿ x 2

s� sm

�
cos

�
2smx~p

s� sm
� y
��
; �25�

where

Q0�~x; ~p; sm� �
�������
ssm
p

p�s� sm� exp
�
ÿ ~x 2 � ssm~p 2

s� sm

�
�26�

is the `compressed' Husimi function of the basis state. It is
easily seen that, in general, the structure of formula (25)
coincides with the structure of the corresponding Wigner
function (17), with one significant difference: in the case of
formula (25), the interference term can be suppressed by the
factor exp �ÿx 2=�s� sm��. To avoid this, the factor sm must be
large enough. On the other hand, if it significantly exceeds the
distance 2x between the `live' and `dead' components of the
SC, then the double-humped structure of the coordinate
distribution vanishes in the function Q.

The three characteristic cases described are shown in
Fig. 4. One can see from the figure that the value of sm can
be selected so that both the fringes and the two classical
maxima are clearly discernable.

5. Conclusion

Using a convenient general expression for the Wigner
function of `Schr�odinger's cat' quantum states, this paper
discusses several methodologically interesting properties of
such states, in particular, the reason for the appearance of
their characteristic interference fringes. It is also shown that
there is a nontomographic measurement procedure, namely
squeezed coherent measurement, which allows visualization
of the `Schr�odinger's cat' fringes.

This paper was supported by the Rosatom State Corpora-
tion within the framework of the Quantum Computing
Roadmap (contract no. 868-1.3-15/15-2021 dated October 5,
2021), as well as by grant no. 23-1-1-39-1 from the BASIS
Foundation for the Development of Theoretical Physics and
Mathematics.
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Figure 3. Possible implementation of POVMs (18) and (22). Here, the

quantum state jCi under study is mixed with a vacuum field on a beam

splitter. Two homodyne detectors HDc and HDs are located at output

ports of beam splitter, measuring cosine and sine quadrature of output

beams, respectively. R;T are reflection and transmission coefficients of

beam splitter.
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Figure 4. Probability distributions (25) for (a) sm � 0:3, (b) sm � 3, and

(c) sm � 30. Remaining parameters: s � 0:1, x � 2, and y � 0.
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