
Abstract. One of the main problems in the construction of
quantum random number generatorsÐobtainment of a prova-
bly random output sequence from physical measurements, i.e.,
from an initial sequence generated by a physical random num-
ber generatorÐ is investigated. The conceptual feasibility and
the conditions under which randomness can be `reached,' as well
as the meaning of the `provable randomness' term, are dis-
cussed. We consider the methods of extracting provably ran-
dom bit sequences from stationary Markov chains of finite
order, i.e., under the assumption of the finite depth of the
dependence of the results of physical measurements on the
prehistory, which is an adequate approximation of the real
situation. The extraction of the output provably random bit
sequence from the initial sequence of the results of physical
measurements using V F Babkin's effective arithmetic coding
method is demonstrated. It is shown that random bit sequences
can be provably obtained even from primary sequences of the
results of physical measurements, which are dependent on

(correlated to) any finite depth (prehistory). We aim to reveal
the connection of various approximations employed in the
development and description of methods for obtaining random
bit sequences with the basic physical limitations of Nature. The
mathematical proofs are detailed to the level of practical algo-
rithms applied in real random number generators. The neces-
sary mathematical propositions are presented at an intuitive
level for physicists, do not require prior knowledge in this
area, and are comprehensible to undergraduate university stu-
dents.

Keywords: quantum random number generators, Markov chains,
random bit sequences

Truth is much too complicated

to allow anything but approximations.

John von Neumann

1. Introduction

Random numbers are widely used in various fields of science
and technology: computer passwords, smart card PIN codes,
and other electronic devices. The most important application
of random sequences is in quantum cryptography systemsÐ
quantum key distribution, where a large number of random
bits are required. In quantum cryptography systems, up to
108 random bits are needed to form one common key when
distributing secret keys. High-speed random number gen-
erators are required to generate large-volume random
sequences.

All random number generators can be divided into two
types: mathematical and physical.

Mathematical generators, often called software random
number generators (SRNGs), are based on a mathematical
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transformation, usually recursive, of a certain seed. The
algorithm for the mathematical transformation is publicly
known; it is only the seed which is unknown. If the seed is
known, the entire subsequent bit sequence is also known. For
this reason, mathematical generators only produce a pseudo-
random bit sequence, the `randomness' of which is based only
on an unknown seed.

Physical random number generators (PRNGs) operate
based on processing the results of measurements of some
physical system.

PRNGs can also be divided into two types: classical and
quantum.

Classical generators are based on extracting randomness
from some physical process, the evolution of which in time is
described by the laws of classical physics. The evolution of
any classical system, even an arbitrarily complex one, can be
described by differential equations. The sequences that are
obtained at the output of such a generator can hardly be
called truly random, since they are completely determined by
the initial conditions. In the classical domain, randomness in
observing a physical system arises only as a result of the
uncertainty of the initial conditions. If initial conditions are
known and the evolution of a classical system is the same, the
result of observations is completely deterministic.

Quantum generators are based on measuring some
quantum system. Unlike classical physics, measurements in
a quantum system, each time prepared in a certain and the
same state, yield a random result, which is a fundamental
law of Nature in the microworld. In implementing a
PRNG, it is desirable to find a suitable physical system,
the results of measurements in which would be of a purely
quantum nature.

It seems that true randomness only exists in the quantum
domain, in the sense that the result of a measurement in a
quantum system, each time prepared under the same initial
conditions, is fundamentally unpredictable.

In the quantum domain, probability is built into the
mathematical description of a measurement in a quantum
system.

Nevertheless, the following fundamental questions arise.
�What is meant by true randomness?
� Do the fundamental laws of Nature allow us to `reach'

true randomness in real physical experiments and devices?
Or does Nature only allow approaching true randomness,
in the spirit of von Neumann's statement quoted as an
epigraph?
� In what way can it be verified that the resulting output

bit sequences are truly random?
The implementation of any PRNG, either classical or

quantum, includes the following stages:
Ð selection of a physical system (the source of `noise'),

the measurements of which yield the initial random sequence;
Ð estimation of the amount of randomnessÐ the num-

ber of random 0s and 1s that can be extracted from the initial
random sequence;

Ð extraction of random 0s and 1s from the initial random
sequenceÐpost-processing of the initial sequence, i.e.,
transformation of the initial random sequence into an output
bit sequence;

Ð proof of the fact that the output bit sequence, under the
approximations accepted in describing the selected physical
system, is a truly random bit sequence in which the
probabilities of 0 and 1 are equal to 1=2, and all positions in
the sequence are independent of each other.

It turns out that there are fundamental limitations on the
generation of an initial sequence of independent results of
physical measurements.

There are basic limitations on the speed of random
number generation in quantum generators, which are related
to the fact that the spectrum of any stable physical system
must lie on the positive energy (frequency) semi-axis.1 This
fact is formalized by the well-known Wiener±Paley theorem.
� Any physical random process, either quantum or

classical, is characterized by a correlation function and a
spectral power density, related to each other by a pair of
Fourier transforms. Physical limitations require that the
spectral power density vanish at frequency values below a
certain threshold. In this case, the rate of correlation function
decay cannot be faster than (or equal to) exponential, which is
due to the fundamental Wiener±Paley theorem. This asser-
tion implies that the measurement results extracted from a
random process at different moments in time turn out to be
correlated (dependent). Measurements become formally
uncorrelated only when the moments of measurement are
separated in time by an infinite interval.

We now consider the spectral density

g�o� � 0 ; o < omin ;
g 0�o� ; o5omin > ÿ1

�

and the correlation function

R�t� �
�1
ÿ1

g�o� exp �ÿiot� do :

According to theWiener±Paley theorem [1, 2], for any square-
integrable function, the following integral must converge:�1

ÿ1

��ln jR�t�j��
1� t 2

dt <1 :

This condition implies that the decay rate of the function
jR�t�jmust be slower than exponential:��R�t��� �

t!1 exp �ÿct q� ; c > 0 ; q < 1 :

This formally shows that measurements can be independent
only if the time interval between them is infinite.

Note that fundamental restrictions on the decay rate of
correlations in time lead to the fact that a-decay2 cannot be
strictly exponential at large and small times (see details in [2]).
The fact that the spectrum of a stable physical system lies on
the positive energy (frequency) axis sets fundamental restric-
tions on the maximum rate of generation of random bit
sequences. This issue was studied in [3, 4].

Why is the independence of the initial sequence of results
of physical measurements so important? If it were possible to
achieve independence between successive measurements in a
finite time, the problem of high-speed PRNGs would be
solved in principle, since provably efficient methods are
available for extracting truly random bit sequences from an
initial sequence of independent measurements (see below and
[5]). However, the basic limitations of Nature do not allow

1Naturally, the choice of the point on the semiaxis fromwhich the energies

are measured is of no importance.
2 It should be noted that attempts were previously made to use a-decay to
generate random numbers, but this method did not find further applica-

tion due to technical difficulties and low speed.
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obtaining the initial sequence as a sequence of independent
measurements.

The only thing that can be done is to limit ourselves to a
finite depth of dependence on the history and assume that the
conditional probability of any measurement result depends
only on r previous outcomes, i.e., that the depth of correla-
tions is finite.

In this case, we are talking about Markov chains of order
r. This assumption that the initial sequence is a stationary
Markov chain of finite order r is the broadest assumption
under which a constructive construction of a provably
random output sequence is generally possible (see below).

We now discuss the issue of extracting bit sequences from
the initial sequence of measurement results of a physical
system.

Methods for extracting random bit sequences from
measurement results can be divided into two classes.

1. Probabilistic extractors.
2. Deterministic extractors.
It was previously shown in [5] that deterministic extractors

work effectively for initial sequences of independent measure-
ments.

The PRNG output sequence is considered acceptable for
use in cryptography if it is obtained in accordance with the
Bernoulli equiprobable trial scheme, i.e., it is a realization of a
sequence of independent and equiprobable random variables.
A well-known approach to testing this assumption, which
involves the use of a set of statistical criteria for the agreement
of the output sequence values with the hypothesis of
independence and equiprobability of the generated data, is
most fully presented in [6]. Theoretical issues related to
finding the limit distributions of the corresponding statistics
are presented in detail in book [7].

For a long time, this approachwas the only instrument for
checking the quality of output sequences, but its limitations
are quite obvious: the criteria of agreement are successfully
fulfilled by the output sequences of SRNGs, where what is
random is the so-called seedÐa bit segment of finite
lengthÐwhich is significantly smaller than the length of the
sequence generated by the SRNG. The output sequence of the
SRNG can hardly be considered to be obtained in accordance
with the scheme of equiprobable Bernoulli trials, at least from
cardinality considerations: the cardinality of the set of SRNG
sequences is limited by that of the set of `seed' binary vectors.

Informally speaking, this implies that the number of truly
random bits in the output pseudorandom sequence cannot be
greater than the number of seeds in the bit representation.

It may be asserted that the above-mentioned cardinality
considerations, the numerical `equivalent' of which is the
concept of Shannon's limiting entropy, were used as the
conceptual basis of the technique [8].

Technique [8] contains a number of tests (estimates) of the
minimum entropyHmin per symbol. The minimum entropy is
a lower bound for Shannon's entropy and, when converted to
a bit, satisfies the inequality 04Hmin 4 1. The maximum
value Hmin � 1 is achieved for the Bernoulli equiprobable
trial scheme. The minimum entropy is a very conservative
estimate of the power, since it significantly underestimates
Shannon's limiting entropy.

In obtaining a numerical estimateHmin < 1, it is proposed
to perform the appropriate compressionÐhashing of the
original sequence.

The result of applying the hash function is the output
sequence of a PRNG. The issue of choosing a hash

function that is efficient in some sense remains open at
the moment.

For a randomly selected hash function (probabilistic
extractor), the quality of the output sequence can be
estimated using the well-known Leftover Hash Lemma [9].

Let there be a probability distribution P�X� on the
original sequence X � �x1; x2; . . . ; xN� 2 f0; 1gN. Based on
some model assumptions regarding P�X�, an estimate of the
minimum-entropy is constructed:

Hmin � ÿ 1

N
log2 max

X2f0; 1gN
P�X� ;

0 < Hmin < 1 :

To obtain the output sequence Y � �y1; y2; . . . ; y`� 2
f0; 1g`, ` < N (extraction of random bits), compression±
hashing is used:

g : f0; 1gN ! f0; 1g` :

Application of the hash function g induces a distribution on
the bit string Y � �y1; y2; . . . ; y`�:

Pg�Y� �
X

X2f0; 1gN : g�X��Y
P�X� :

For a randomly selected function g from the class of
universal hash functions G [10], using the Leftover Hash
Lemma, one can establish the validity of an inequality that
characterizes the closeness of the probability distribution
Pg�Y� to an equiprobable distribution:X

g2G
P�g�

X
Y2f0; 1g`

����Pg�Y� ÿ 1

2`

����4 �������������������
2ÿNHmin�`
p

:

For a sufficiently large length N, the right side of the
inequality becomes smaller than an arbitrarily small value
of e.

The main problem here is that estimating Hmin requires
difficult-to-control model assumptions about the properties
of the original sequence as a result of physical measurements
and additional randomness for choosing the hash function.
Multiple use of the same randomness in choosing the hash
function leads (for fixed N and `) to an increase in the
estimation boundary e.

The question that is discussed here is whether it is possible,
based on some approximations regarding the nature of the
original sequence resulting from measurements, to construct
a provably random output sequence, namely, one with
probability 2ÿ`, ` being the length of the sequence. In this
case, individual bits, as random variables, are independent
and equally probable.

A method for constructing (extracting) a provably
random output sequence with probability 2ÿ` from a
sequence of independent nonequiprobable trials is known
(see, for example, [5]). This technique,whichusesVFBabkin's
arithmetic coding method [11], is implemented in experi-
mentally developed quantum PRNGs [12±15] based on
sequential detection of attenuated laser radiation photo-
counts.

We now outline some issues with implementing a
quantum PRNG of this type.

The underlying cause of the statistical nature of photo-
counts when detecting laser radiation, which is fundamentally
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quantum in nature, is due to the absorption of photons by
atoms. Avalanche photodetectors do not distinguish between
the number of photons, so two events are random: the
presence ��� of a photocount in a time window or its absence
�t�.

Avalanche photodetectors have a finite recovery time
after the detection event. If laser radiation is strongly
attenuated, the average frequency of photocounts is small,
and the detector has time to recover before the next detection
event. In this case, it is assumed that statistical independence
of successive photocounts, which is the original PRNG
sequence, is ensured.

Assuming independence of successive photocounts as
random variables, a provably random output sequence
with a probability of 2ÿ` can be obtained at the output
of a quantum PRNG, while knowledge of the prob-
abilities themselves, p � P�t� and 1ÿ p � P���, is not
required.

Due to the low average frequency of photocounts, such
quantum PRNGs are fairly slow. An attempt to increase the
speed of operation leads to an increase in the average
frequency of photocounts and to a corresponding negative
effectÐ the appearance of dependences in the original
sequence, where the current outcome of measurements
depends on previous outcomes.

In [16, 17], methods for extracting a random sequence
from Markov chain trajectories are studied. Proposed in
study [17] is an original method for extracting a provably
random sequence from the trajectories of a simple (r � 1)
Markov chain with a finite number of states; many proofs of
its operation are quite complex and multi-stage.

Below, following the main concept of proving random-
ness in [17], which consists in partitioning the probability
space into subsets of equivalent (equally probable) trajec-
tories, we generalize the results of [17] toMarkov chains of an
arbitrary order.

Using the design features of random bit extraction in
VFBabkin's arithmetic codingmethod [11], we first present a
detailed proof of the randomness of output sequences for an
independent source, which we then extend to Markov
sequences.

Following the general concept of [17], it is shown that, for
the initial PRNG sequences in the form of trajectories of a
Markov chain with two states, of arbitrary order r, the output
sequences have the same probability 2ÿ`.

It is necessary to clarify once again what the term
`provable randomness' means.

It is shown that, if the correlation depth is finite, our
method produces a truly random sequence of 0s and 1s at the
output.

True randomness is usually understood as the fact that
any position in the output sequence of 0s and 1s is realized
strictly with probability 1=2, and each position is independent
of the others.

It turns out that it is impossible to prove this statement
straightforwardly, even applying the employed assumption of
a finite correlation depth.

An equivalent statement is proved instead.
Namely, it is shown that the output sequences of 0s and 1s

for any length ` contain all possible combinations of 0s and
1s,

�000 . . . 000�
z���������}|���������{`

; �000 . . . 001�
z���������}|���������{`

; . . . ; �111 . . . 111�
z���������}|���������{`

;

and all such sequences have the same probability 2ÿ`,
regardless of the correlation depth. In this case, individual
bits, as random variables, are independent and equally
probable, i.e., they are truly random.

This is the actual situation. Ideal randomness is too
`strong and complex' an information resource. As shown
below, even under the approximations to the real situation
used, proving true randomness is a task that is far from trivial.

The consideration consists of two stages.
In the first one, an effective and provable method for

obtaining random sequences of 0s and 1s from a sequence of
independent trials is presented.

In the second stage, it is shown how the problem of
extracting provably random bits from the Markov chain
trajectory can be reduced to the problem of extracting from
a sequence of independent trials.

2. Source of independent states

If people do not believe that mathematics is simple,

it is only because they do not realize how complicated life is.

John von Neumann

Prior to showing how provable extraction of randomness
from a sequence of independent trials is obtained, we present
an informal explanation. The general idea can be understood
using the example of tossing an asymmetric coin, which has
the probability of getting Heads (H) p or Tails (T ) of 1ÿ p;
the probability p is unknown; each toss is independent of the
others.

We now split the entire sequenceÐobtained by tos-
singÐ into blocks of the same length but with different
numbers H and T. Blocks with the same number of H and T
have the same probability, equal to pnH�1ÿ p�nT (nH, nT are
the numbers of H and T in the block), and differ only in the
permutation of the symbolsH andT, nH � nT being the length
of the block.

Blocks with the same number of H and T are assigned to
one class. Let the number of blocks in some class be NnH; nT .
We renumber the blocks (sequences) in each class, starting the
numbering from 0. We assume (as a simplification) that the
number of equally probable blocks in a class is a power of 2,
i.e., NnH; nT � 2L, where L is the number of binary digits
required to represent numbers from 0 toNnH; nT ÿ 1 � 2L ÿ 1.

In other words, each ith block (04 i4 2L ÿ 1) in
the class of equally probable blocks is associated with
a number whose binary representation yields a binary
sequence of length L.

Binary sequences reproduce all possible combinations of
0s and 1s of lengthLi once, and are therefore equally probable
in their class.

Thus, by processing in the sequence of their appearance,
blocks of measurement results (detector readingÐH, no
readingÐT )Ðblocks of independent testsÐand by
sequentially connecting (concatenating) binary sequences,
we obtain, provided that the readings are independent, truly
random sequences of 0s and 1s.

Intuitively, the situation can be understood as follows:
each block is realized with some probability pnH

H pnT
T ; the

source produces one of the truly random sequences of 0s
and 1s of length Li with equal probability. This is equivalent
to having N sources, the number of which is equal to that of
classes of sequences (N is the length of a block ofHs and Ts).
Each source `turns on' with probability pnH

H pnT
T and produces

one of the equally probable binary sequences of length Li,
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which are then concatenated into a common output sequence
of 0s and 1s.

The question arises: if everything is clear enough at the
intuitive level, what is the problem?

The problem is in the numbering of blocks in each class
`on the fly.' The point is that the number of possible blocks in
a class is exponentially large. For example, with the length of
the processed block L � 64 (which is associated with the
architecture of a 64-bit processor), this number is 264 � 1022.
Numbering via a table requires computermemory of 1022 bits.
To clearly illustrate the scale of such memory, we give the
following example. Let the memory capacity of an `average'
flash drive be 1 GB (109 bits). A backpack can hold 1000 flash
drives, a total of 1000� 109 � 1012 bits. Thus, 1010 Ð ten
billionÐbackpacks are needed, or more than a backpack of
flash drives for each inhabitant of Earth, to obtain the
memory of 1010�103�109 � 1022 bits.

Apparently, this method of numbering is not feasible.
However, there is a method of numbering `on the fly,'

presented below, which only requires 64� 64 bits of memory
and 64 processing steps, i.e., the resources required are
643 bits.

We now proceed to a detailed derivation of the method of
numbering `on the fly' and extraction of bit sequences of 0s
and 1s from independent Bernoulli sequences.

Let there be a source generating Bernoulli (independent)
sequences of two symbols. Random sequences of 0s and 1s are
extracted from the Bernoulli sequences in two steps.

Step 1: numbering of Bernoulli sequences `on the fly'Ð
Babkin's method.

Step 2: a block of random 0s and 1s is formed based on the
obtained number of the Bernoulli sequence and consecutive
blocks are concatenated into an output random sequence.

2.1 First stage: numbering of Bernoulli sequencesÐ
Babkin's method, binary alphabet
Let there be a source that generates symbols of a binary
alphabet A � s1; s2f g.

Consider a sequenceÐ a block of length nÐwhich
contains k symbols s1. There are Ck

n such blocks in
total. Let k symbols s1 occur at positions �i1; i2; . . . ; ik�,
14 i1 < i2 < . . . < ik 4 n. We assign to the block a number,

Num �i1; i2; . . . ; ik� � C 1
i1ÿ1 � C 2

i2ÿ1 � . . .� Ckÿ1
ikÿ1ÿ1 � Ck

ikÿ1 ;

where it is set that Ci
j � 0 if j < i. This equality provides a

method for numbering blocks using Babkin's technique [11].
Proposition 1.
The following relations hold:

min
i1;i2;...;ik

Num �i1; i2; . . . ; ik� � 0 ;

max
i1;i2;...;ik

Num �i1; i2; . . . ; ik� � Ck
n ÿ 1 :

Proposition 2.
The relation between blocks with k events s1 at positions

�i1; i2; . . . ; ik� and numbers Num �i1; i2; . . . ; ik� is a one-to-one
correspondence.

Thus, any sequence containing exactly k symbols s1 at
positions �i1; i2; . . . ; ik� is uniquely assigned a number
Num �i1; i2; . . . ; ik�.

2.1.1 Stream numbering according to table. Blocks are
numbered sequentially as the event s1 arrives.

The block size n is specified; the table of binomial
coefficients (Table 1) of size �nÿ1��n is calculated once.
The value of k is not fixed in advance.

The numbering of sequences is reduced to moving along a
certain trajectory on the table with sequential summation of
binomial coefficients.

If event s1 occurs for the first time at positionm1, the value
of the binomial coefficient at the intersection of the row with
number i1 (the first event s1) with the column with numberm1

is taken.
If event s1 occurs for the second time at position m2

(m2 > m1), the value of the binomial coefficient at the
intersection of the row with number i2 and the column with
number m2 is taken and added to the previous value of the
binomial coefficient.

If event s1 occurs for the kth time at position mk

(mk > mkÿ1), the value of the binomial coefficient at the
intersection of the row with number ik and the column with
number mk is taken and added to the previous sum of the
binomial coefficients.

The process halts when the entire block of size n has been
scanned. According to the previous section, the number
Num �m1;m2; . . . ;mk� of the block with events s1 and s2 is
obtained as a binary representationÐ these are not yet
random bits.

After the number of a specific sequence of s1 and s2 is
obtained, a block of random 0s and 1s is extracted from its
binary representation.

2.2 Second stage: extraction of random binary sequences
from sequence number
The cardinality of the set of blocksRn�k�with k events s1 and
nÿ k events s2 is jRn�k�j � Ck

n . Blocks are numbered from 0
to Ck

n ÿ 1.
Let n be even. Consider the representation of jRn�k�j as a

sum,��Rn�k�
�� � 2 rm � . . .� 2 r1 � 2 r0 ; rm > rmÿ1 > . . . > r1 > r0 :

Let a block be realized that has a composition
�i1; i2; . . . ; ik� of events s1. The block number has a binary
decomposition of the form

Num �i1; i2; . . . ; ik� � erm�12
rm�1 � erm2

rm

� ermÿ12
rmÿ1 � . . .� e121 � e020 ; er 2 f0; 1g ;

and the corresponding binary representation

�erm�1; erm ; ermÿ1; . . . ; e1; e0� :

Extraction of a block feg of random 0s and 1s is
performed from the binary representation �erm�1; erm ;
ermÿ1; . . . ; e1; e0� of the number Num �i1; i2; . . . ; ik�. It is
performed differently, depending on the range of numbers

Table 1.

1 2 3 4 5 . . . nÿ 1 n

i1

i2

i3

. . .

inÿ1

0

0

0

. . .

0

1

0

0

. . .

0

C 1
2

1

0

. . .

0

C 1
3

C 2
3

1

. . .

0

C 1
4

C 2
4

C 3
4

. . .

0

. . .

. . .

. . .

. . .

. . .

C 1
nÿ2

C 2
nÿ2

C 3
nÿ2

. . .

0

C 1
nÿ1

C 2
nÿ1

C 3
nÿ1

. . .

1
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between 0 andCk
n ÿ 1 inwhich the numberNum �i1; i2; . . . ; ik�

of the current block lies.
Namely:

Number Block feg of random 0s and 1s

04Num �i1; i2; . . . ; ik�4 2 r0ÿ1 ; er0ÿ1; . . . ; e0 ;

2 r0 4Num �i1; i2; . . . ; ik�4 2 r0 � 2 r1ÿ1 ; er1ÿ1; . . . ; e0 ;

2 r0 � 2 r1 4Num �i1; i2; . . . ; ik�4 2 r0 � 2 r1 � 2 r2ÿ1 ; er2ÿ1; . . . ; e0 ;

. . . . . .

2 r0 � . . .� 2 rm 4Num �i1; i2; . . . ; ik�4 2 r0 � . . .� 2 rmÿ1 ; ermÿ1; . . . ; e0 :

We number the rows (inequalities) as 0; . . . ; j; . . . ;m. The
jth rowÐthe subclassÐcontains 2 rj different numbers
Num �i1; i2; . . . ; ik�, which uniquely correspond to binary
vectors from the space f0; 1grj . Then, for each current
number Num �i1; i2; . . . ; ik�, the corresponding block feg �
erjÿ1; . . . ; e0, consisting of 0s and 1s, is output.

Let us consider examples illustrating the general method,
for n � 8, k � 1; 2.

Example 1. n � 8, k � 1.��Rn�k�
�� � 8!

1! 7!
� 8 � 23 ; m � 0; r0 � 3 :

The length of the binary output (Table 2, fourth column) is 3.
Example 2. n � 8, k � 2.��Rn�k�

�� � 8!

2! 6!
� 28 � 24 � 23 � 22;

m � 2; r2 � 4; r1 � 3; r0 � 2 :

The length of the binary output (Table 3, fourth column)
is 2, 3, and 4.

Note that the binary output after Babkin numbering and
extraction of the block of 0s and 1s (fourth columns in Tables
2 and 3) contains all binary vectors of fixed length exactly
once.

2.3 Babkin's algorithm, m-ary alphabet
Consider a source that generates symbols from the m-ary
alphabet A � s1; . . . ; smf g.

Let Rn�k1; . . . ; km� be a set of blocks of length n, where
there are k1; . . . ; km symbols s1; . . . ; sm, k1 � . . .� km � n.
The total of such blocks is��Rn�k; . . . ; km�

�� � n!

k1! k2! . . . km!
:

In study [11], for the m-ary alphabet, V F Babkin
proposed an algorithm for assigning `on the fly' the number
04Num �. . .�4 jRn�k1; . . . ; km�j ÿ 1 to a specific block
from the setRn�k1; . . . ; km�.

Then, the extraction of random bits from the binary
representation Num �. . .� occurs similarly to the case of the

binary alphabet A � s1; s2f g. The corresponding table
becomes richer: it can contain binary outputs of greater
length.

We note again that, for a fixed length, the binary output of
Babkin's algorithm in the corresponding table for the m-ary
alphabet will also contain in the fourth column all binary
vectors of fixed length exactly once. This circumstance is one
of the main points for the further proof of the equiprobability
of binary sequences at the output of Babkin's algorithm.

Babkin's algorithm for the m-ary alphabet is used further
to prove the randomness of bits extracted from the trajectory
of a simple Markov chain of order r � 1 with m states
fs1; . . . ; smg. In study [18], Babkin's mth algorithm was used
to generate random sequences in quantum random number
generators based on homodyne detectionÐ `vacuum fluctua-
tions.'

When extracting provably random bits from the practical
case of aMarkov chain of order r5 2 with two states fs1; s2g,
which is of interest to us, the algorithm for them-ary alphabet
is not needed: Babkin's algorithm for the binary alphabet is
operative.

2.4 Main concept of proving equiprobability:
partitioning original probability space
into classes of equivalent (equally probable) sequences

Chance deals with order in disorder

while chaos deals with disorder in order.

K R Rao

The epigraph is emotional and is more of a controversial pun
than a mathematical definition. Randomness has a clear
mathematical definition. Randomness, in our case the true

Table 2. Babkin's algorithm, binary output, n � 8, k � 1.

Positions of s1
and s2 �i1�

Number
N�i1�

Binary
representation

Random block
feg � er0ÿ1; . . . ; e0

s1s2s2s2s2s2s2s2
. . .

j � 0

. . .
s2s2s2s2s2s2s2s1

0
1
2
3
4
5
6

7 � 2r0 ÿ 1

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

Table 3. Babkin's algorithm, binary output, n � 8, k � 2.

Positions of s1
and i2, i1, i2

Number N�i1; i2� Binary
representa-

tion

Random
block feg �
erjÿ1 ; . . . ; e0

s1s1s2s2s2s2s2s2
. . .
j � 0

0
1
2

3 � 2 r0 ÿ 1

00000
00001
00010
00011

00
01
10
11

j � 1

4
5
6
7
8
9
10

11 � 2 r1 � 2 r0 ÿ 1

00100
00101
00110
00111
01000
01001
01010
01011

100
101
110
111
000
001
010
011

j � 2

s2s2s2s2s2s2s1s1

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27�2 r2 � 2 r1 � 2 r0 ÿ 1

01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011

1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
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randomness of sequences of 0s and 1s understood as the
equiprobability and independence of the occurrence of 0s and
1s in each position, is the highest degree of disorderÐ
unpredictability, rather than order among disorder. Shan-
non entropy for independent trials is a measure of disorder;
for a truly random sequence of 0s and 1s, the entropy has a
maximum value equal to one per position.

Before proceeding to formal proofs, we present informal
qualitative considerations regarding the extraction of ran-
domness from the original sequences.

Consider a simple example. We toss a die with equally
probable outcomes O � f1; 2; . . . ; 6g, which we call elemen-
tary events, and extract random bits e 2 f0; 1g when an even
or odd outcome occurs, respectively. It is easy to see that, in
this case, with the same probability of events in the even
f2; 4; 6g and odd f1; 3; 5g subsets, we obtain the equiprob-
ability of random bits:

Pr �e � 0� � Pr �e � 1� � 1

2
:

A more complex construction of extracting equally
probable random bits from observations of elementary
events of the original probability space can be easily
imagined.

Suppose that the entire probability space O � fog is
divided into subsets (classes) of equally probable elementary
events:

O �
[
i

Si;P�o� � P�o 0� ; once o;o 0 2 Si :

If in each subset (class) Si the number of elementary
events generating the value e � 0 is equal to that of
elementary events generating the value e � 1, then, appar-
ently, Pr �e � 0� � Pr �e � 1�. Calculating the probabilities
Pr �e � 0� and Pr �e � 1� is the summation of the probabilities
of elementary events over the corresponding subsets. Condi-
tional equiprobability also occurs in the sense that

Pr
ÿ
e � 0 jo 2 Oe

� � Pr
ÿ
e � 1 jo 2 Oe

� � 1

2
;

where Oe is the set of elementary events that generate random
bits e.

The principle of partitioning equally probable elementary
events into classes is used to prove the equiprobability of
output sequences.

A practically working Babkin algorithm processes the
input sequence in blocks.

Let us assume, for example, that the input of the
algorithm is a Bernoulli sequence of three blocks of the same
size n � 8:

X � �X1;X2;X3� :

This is one of the possible elementary events of the original
probability space O � fXg � fs1; s2g24.

Let us denote by
Ð Yi � C�Xi�Ðthe binary output of Babkin's algorithm

from block Xi; jYij is the length of the binary output, i � 1; 3,
Ð Y � Y1 kY2 kY3 � C�X1�kC�X2� k C�X3� is the full

output of Babkin's algorithm from the sequence X as a
concatenation of individual outputs.

To simplify the notation, we also write Y � C X� �; jYj is
the length of the full output.

Let us consider the full binary output Y � 01011100� �,
jYj � 8.

To calculate the probability of this output, we must sum
the probabilities of those elementary events X that yield
Y � 01011100� �.

We now consider the subset S�O�fX��X1;X2;X3�g,
where blocks �X1;X2;X3� contain exactly k � 1; 2; 2 events s1,
respectively

This forms a class of S elementary events, where
X � �X1;X2;X3� differs from X 0 � �X 01;X 02;X 03� by a permu-
tation within the blocks, while, as is easy to see, the
probabilities of sequences X and X 0 are the same:

PS�X� � PS�X 0� �
�
P�s1�

�5 �
P�s2�

�24ÿ5
:

We call the class S of equally probable sequences an
equivalence class.

Is it possible to obtain the outputY � 01011100� �, jYj � 8
from sequences X 2 S?

Examination of the fourth columns of Tables 2 and 3
shows that

Ð the first blockX1 yields at the outputY1 � C X1� �with
a bit length of jY1j � 3,

Ð the second block X2 yields at the output Y2 � C X2� �
with a bit length of jY2j � 2; 3; 4,

Ð the third block X3 yields at the output Y3 � C X3� �
with a bit length of jY3j � 2; 3; 4,
the possible length jYj � jY1j � jY2j � jY3j varying from 7
to 11.

Partial binary output Yi � C Xi� � is the binary output
from the number Xi in Babkin's algorithm, i.e., Yi �
C�Num �Xi��.

Figure 1 below shows the partition of sequence numbers
Xi into blocks. The size of each block is a power of two. The
length of the binary output from each block (dashed and
dotted lines) is the same and does not depend on the bit
composition, and the output bit strings of length jYij � jY 0i j
range over all bit combinations of 0s and 1s (see Tables 2, 3).

The length of the full binary output jYj � 8 can be
obtained as jYj � 3� 2� 3 or as jYj � 3� 3� 2, the
specific binary output Y � 01011100� � being obtained in the
class S as a concatenation of partial binary outputs (see
Tables 2 and 3):

Y1 � 010kY2 � 11kY3 � 100

jYij � jY 0i j

jYij � jC�Num �Xi��j

Num �Xi�

jY 0i j � jC�Num �X 0i ��j

Num �X 0i �

Figure 1. Partitioning numbers of sequences from one equivalence class

into blocks.
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or

eY1 � 010k eY2 � 111k eY3 � 00;

i.e.,

Y � �01011100� � 010k11k100 � 010k111k00 :

Since, for a fixed length, the binary output in the right
column in Tables 2 and 3 contains all binary vectors exactly
once, it may be asserted that, for Y � �01011100� in the class
S, there are exactly two preimagesÐ two sequences X and eX,
such thatC�X� � C� eX� � Y.

We also assert that, for Y � �01011100� in the class S,
there are exactly two admissible partitions of a specific output
Y, namely �Y1;Y2;Y3� and � eY1; eY2; eY3�, for which the
corresponding preimages X and eX are found.

The set of admissible partitionsY for the classS is denoted
as YYS�Y�, and its cardinality as jYYS�Y�j, in this case
jYYS�Y�j � 2.

It is extremely important to note that, for any other binary
output of the same length, for exampleY 0 � �11010011�, also
by the construction of Babkin's algorithm, we obtain exactly
two concatenations of partial outputs:

Y 01 � 110kY 02 � 10kY 03 � 011 ;eY 01 � 110k eY 02 � 100k eY 03 � 11 :

These concatenations correspond to their two preimages
from the set S.

From this, we conclude that the cardinalities of the sets of
admissible partitions of the outputs Y � �01011100� and
Y 0 � �11010011� are the same:��YYS�Y�

�� � ��YYS�Y 0�
�� � 2 :

The corresponding generalizing conclusion can be made
for the remaining possible lengths jYj � 7� 11 of the binary
output of Babkin's algorithm.

Namely, for anyY,Y 0 with the same length jYj � jY 0j, the
cardinalities of the sets of admissible partitions for the class S
are the same:��YYS�Y�

�� � ��YYS�Y 0�
�� :

It is easy to see that such equivalence classes S consisting
of equally probable sequences can be constructed for any
composition k � k1; k2; k3, 04 ki 4 8 of events s1 in blocks
X1;X2;X3. Thus, we obtain a partition of the probability
space O � fX � �X1;X2;X3�g into equivalence classes S
consisting of equally probable sequences.

Note that a specific binary output Y � �01011100� can be
obtained for some input sequence X 2 S 0, S 0 6� S, i.e., in
another equivalence class. Again, we can assert that, for anyY
andY 0 with the same length jYj � jY 0j, the cardinalities of the
sets of admissible partitions for the class S 0 are the same:��YYS 0 �Y�

�� � ��YYS 0 �Y 0�
�� :

Thus, for complete output sequences Y, Y 0 with the same
length jYj � jY 0j in each class of equally probable sequences,
there is the same number of preimagesÐ sequences X. From
this, we can informally conclude that, for Y and Y 0, the
probabilities must be equal: P�Y� � P�Y 0�.

The above reasoning illustrates the proof of the equiprob-
ability of the output binary sequence for the general case of an
m-ary alphabet A � fs1; . . . ; smg.

2.5 Proof of equiprobability of binary sequence
at output of Babkin's algorithm
Let us consider the general case of a source generating
symbols from the m-ary alphabet A � fs1; . . . ; smg.

Let the input of Babkin's algorithm be a sequence of X
independent trials from a finite probability scheme with
outcomes fs1; . . . ; smgÐthis is the original probability
space. The probabilities fP�a1�; . . . ;P�am�g are unknown.

Below, we will present a proof of equiprobability of the
binary sequence at the output of Babkin's algorithm. We use
the above-discussed idea of partitioning the set of input
sequences into equivalence classes as a basis. This technique
will be used further, when considering Markov chain
trajectories at the input.

Thus, a practically working Babkin algorithm processes
the input sequence in blocks. Without loss of generality, we
assume that the input of the algorithm is a sequence

X � �X1;X2; . . . ;XM�; X1 2 fs1; . . . ; smgn1 ; . . . ;

XM 2 fs1; . . . ; smgnM ; �1�

where M is the number of blocks being processed, and
n1; . . . ; nM are the sizes of the blocks being processed.

We divide all possible sequencesX 2 fs1; . . . ; smg�n1�...�nM�

into equivalence classes and use G to denote the set of classes.
Definition.
Two sequences

X � �X1;X2; . . . ;XM�; X 0 � �X 01;X 02; . . . ;X 0M�

belong to the same equivalence class S if and only if the block X 0j
is a permutation of the block Xi, for any i � 1;M.

We denote the permutation as

X 0i � Xi :

Note that the equivalence class S corresponds to a certain
specific composition of symbols fs1; . . . ; smg in the blocks
X1;X2; . . . ;XM.

Namely, for each block Xi the numbers k
�i�
1 ; . . . ; k

�i�
m ,

k
�i�
1 � . . .� k

�i�
m � ni are fixed, where k

�i�
j is the number of

occurrences of the symbols sj in the blocks Xi.
Proposition 3.
Any two sequences X � �X1;X2; . . . ;XM� and X 0 �

�X 01;X 02; . . . ;X 0M� belonging to the same equivalence class S
have the same probability:

PS�X� � PS�X 0� :

The proof easily follows from the initial assumption that
the input sequenceX is a sequence of independent trials over a
finite probabilistic scheme.

Thus, the partitioning into equivalence classes is a
partition of the entire set of input sequences into classes of
equally probable sequences.

Let the input sequence X 2 S belong to some equivalence
class.

Let Y � C X� � 2 f0; 1g� be the full binary output of
Babkin's algorithm as a concatenation of partial outputs
Yi � C�Xi�.
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Here, we introduced the notation f0; 1g�, emphasizing the
uncertainty of the length jYj of the output binary sequence,
which depends on the specific composition of the outcomes
fs1; . . . ; smg in the blocks.

For Y 2 f0; 1g�, we denote by BY the set of sequences
X 2 fs1; . . . ; smg�n1�...�nM� such that C�X� � Y. The set BY is
the union of all preimages over all classes. It is clear that there
may exist classes S with an empty set of preimages.

Proposition 4.
For any class S 2 G, the cardinality of the set

jS \ BY 0 j � jS \ BYj whenever the lengths coincide: jY 0j � jYj.
Proof.
Let a specific output Y 2 f0; 1g� with length jYj be given.

Consider the class S. It consists of the original sequence of
blocks X � �X1;X2; . . . ;XM� and all permutations inside the
blocks.

We associate with the full binary output Y 2 f0; 1g� a
partition into partial binary outputs

Y1; . . . ;YM; jYj � jY1j � jY2j � . . .� jYMj ;

such that the concatenation

Y1 k . . . kYM � Y :

We define Si as the set consisting of all permutations of the
block Xi, i � 1;M and introduce the notation

Si�Yi� �
�
Xi 2 Si : C�Xi� � Yi

	
:

By the construction of Babkin's algorithm (the fourth
columns of Tables 2 and 3), for a fixed length jYij, the
cardinality jSi�Yi�j � 1 or jSi�Yi�j � 0 if the length jYij is
not suitable for the set Si.

ConsiderY 0 2 f0; 1g�, which does not coincide withY but
has the same length jY 0j � jYj and the corresponding
partition:

Y 01; . . . ;Y 0M; jY 0j � jY 01j � jY 02j � . . .� jY 0Mj ;

jY 0i j � jYij :

Again, by the construction of Babkin's algorithm, the
cardinality jSi�Y 0i �j � 1 or jSi�Yi�j � 0.

Therefore, exactly one sequenceXi;X
0
i 2 Si (i.e., one of all

permutations Si) in Babkin's algorithm yields partial outputs
Yi and Y 0i or, generally speaking, does not yield them if the
length jYij is not suitable for the set Si.

Therefore, it is not possible for every partition Y1;
Y2; . . . ;Yn, such that the concatenation Y1 k . . . kYM � Y,
to find a sequence

X � �X1;X2; . . . ;XM� 2 S

such thatC�X� � Y.
For example, the first block X1 may be scantyÐcontain-

ing, for example, only the pair of outcomes fs1; s2g,
k
�1�
1 � k

�1�
2 � n1. Then, the length jY1j of the binary output

of the first block cannot be large, which, generally speaking, is
admissible for another partition.

We call the partition Y1;Y2; . . . ;YM, such that the
concatenation Y1 k . . .kYM � Y is admissible for a given
class S if jSi�Yi�j � 1 for all i � 1;M, and denote as YYS�Y�
the set of admissible partitions.

Thus, we are interested in partitions �Y1;Y2; . . . ;YM� 2
YYS�Y� that belong to the set of admissible partitions.

The above reasoning regarding the constructive construc-
tion of Babkin's algorithm allows us to conclude that the
cardinality of jYYS�Y�j depends on the class S and on the
length jYj, rather than on the bit composition of Y, i.e.,��YYS�Y 0�

�� � ��YYS�Y�
��

once jY 0j � jYj.
It follows that��S \ BY

�� � X
Y1;Y2;:::;YM:

jY1j�jY2j�:::�jYMj�jYj

Yn
i�1

��Si�Yi�
��

are the cardinalities of the set of admissible partitions.
As was established above, the cardinality of jYYS�Y�j

depends only on the class S and on the length jYj.
Then, for Y 0, jY 0j � jYj, we have��S \ BY 0

�� � X
Y 0

1
;Y 0

2
;:::;Y 0M:

jY 0
1
j�jY 0

2
j�:::�jY 0Mj�jY 0 j

Yn
i�1

��Si�Y 0i �
��

Therefore, jS \ BY 0 j � jS \ BYj whenever jY 0j � jYj.
Proposition 4 is proved.
If, for a given class S, there are no preimages for

any partition Y1;Y2; . . . ;YM, i.e., Si�Yi� � fXi 2 Si :
C�Xi� � Yig � ; for all i � 1;M, then jYYS�Y�j � 0 and,
therefore, jS \ BYj � jS \ BY 0 j � 0.

We now formulate a theorem on the equiprobability of the
binary output of Babkin's algorithm.

Theorem 1.
Let a sequence X � �X1;X2; . . . ;XM� of independent trials

from a finite probability scheme with outcomes fs1; . . . ; smg be
used as input to Babkin's algorithm.

Then, the binary output Y 2 f0; 1g` obtained for any
possible ` has the probability

P�Y� � 2ÿ` :

Proof.
Consider the class S corresponding to a certain composi-

tion of symbols fs1; . . . ; smg in blocks X1;X2; . . . ;XM.
Above, in Proposition 3, it was established that, for any

X;X 0 2 S, the probability PS�X� � PS�X 0�.
Then, for Y 2 f0; 1g`, we have
P�Y� � P�X 2 BY�

�
X
S2G

P�X 2 S�P�X 2 BY j X 2 S�

�
X
S2G

P�X 2 S� P�X 2 S \ BY�
P�X 2 S�

�
X
S2G

P�X 2 S� PS�X� jS \ BYj
PS�X� jSj

�
X
S2G

P�X 2 S� jS \ BYj
jSj :

YY

�
X

�Y;Y2;:::;YM�2 S�Y�
1 � jYYS�Y�

��

YY

�
X

�Y 0
1
;Y 0

2
;:::;Y 0

M
�2j S�Y 0�j

1 � ��YYS�Y 0�
�� � ��YYS�Y�

�� :

September 2024 Quantum random number generators, extraction of provably random bit sequences fromMarkov chain trajectories 927



Now, consider any other output Y 0 2 f0; 1g`. For coinciding
lengths jY 0j � jYj, it follows from Proposition 4 that the
cardinalities of the preimages are also the same:��S \ BY 0

�� � ��S \ BY

�� :
From this, we immediately conclude that

P�Y� � P�Y 0� :

Since this equality holds for any Y;Y 0 2 f0; 1g`, it follows
that P Y� � � 2ÿ`.

Theorem 1 is proved.
A comment is relevant here.
1. As we noted above, it may turn out that in some classes

S there is no sequence X � �X1;X2; . . . ;XM� that generates Y
of a given length jYj � `, which, generally speaking, narrows
the original probability space. Thus, we conclude that the
reasoning above, in fact, justifies the equiprobable choice ofY
under the condition that the length jYj � ` is maintained
(fixed).

2. The proof of the equiprobability of the binary output is
based on the construction of equivalence classes, i.e., classes
of equally probable sequences. It is assumed that when
implementing Babkin's algorithm for another sequence
X 0 � �X 01;X 02; . . . ;X 0M� in the equivalence class, the order of
processing blocks does not change:

�Y 01;Y 02; . . . ;Y 0M� �
ÿ
C�X 01�;C�X 02�; . . . ;C�X 0M�

�
:

For an independent sequence, this assumption is natural,
since the blocks are processed in a single stream of incoming
symbols.

For the Markov chains considered below, preserving the
order of processing blocks in an equivalence class is key to
proving the equiprobability of the binary output of Babkin's
algorithm. Preservation of the order of processing blocks in
an equivalence class gives rise to a feature of the implementa-
tion of the algorithm for reading blocks for processing, in
which they are queued.

3. Markov chain

Before providing a detailed explanation of how provably true
randomness is extracted from correlated sequencesÐMar-
kov chain trajectories with finite dependence depth in the
measurement historyÐwe give a qualitative explanation of
how the problem can be reduced to the previous case of
independent measurements, Bernoulli sequences.

The general idea also consists in partitioning different
Markov chain trajectories into equivalence classes of trajec-
tories that, as a whole, are equally probable. If this can be
done, we can also enumerate the trajectories in each class of
equally probable trajectories, similar to how this was done
above by the enumeration of Bernoulli sequences in one class
of equally probable sequences. Next, each number is
associated with a block of truly random 0s and 1s, after
which the blocks are concatenated.

The main problem is how to split the various trajectories
of the Markov chain, corresponding to correlated sequences
of measurement results, into equivalence classes.

It turns out that each trajectory can be associated with a
closed graph, the Euler graph. The vertices correspond to
states, or, informally speaking, to the measurement result

combined with the prehistory. The edges correspond to
transitions between the states of the Markov chain.

It is shown below that the trajectories in one class of
equally probable trajectories include such trajectories of the
Markov chain which correspond to Euler graphs that differ
from each other in the sequence of traversing the edges in the
graph.

The central point is that only such an order of the traversal
of edges of a closed graph is allowed that does not affect the
edge connecting the end and the beginning of the Markov
chain trajectory.

After dividing equally probableMarkov chain trajectories
into classes, the problem of extracting truly random
sequences is reduced to that of extracting random sequences
from independent trials, the solution to which was given
above.

We now proceed to a detailed derivation. Next, we
consider Markov chain trajectoriesÐelementary events

X � x1x2 . . . xN ;

where xi 2 A � fs1; . . . ; smg belongs to the set of chain states.
Specified are the initial distribution,

P�s1�; . . . ;P�sm�;
Xm
i�1

P�si� � 1 ;

and the matrix of transition probabilities of size m�m,

P�sj j si�
 ; i; j � 1;m;

Xm
j�1

P�sj j si� � 1 :

The probability of an elementary event (trajectory) X is
defined as

P�X� � P�x1x2 . . . xN� � P�x1�
YNÿ1
i�1

P�xi�1 j xi� :

The matrix of transition (conditional) probabilities
contains in the condition the dependence on only one
previous state. This is the case of a stationary Markov chain
of order r � 1. Strictly speaking, for a chain to be stationary,
a certain condition for the initial distribution must also be
satisfied, but it is not essential for us.

Next, for a Markov chain withm states of order r � 1, we
describe an algorithm for obtaining a provably random
binary sequence and extend it to the practical case of interest
to us, i.e., a Markov chain with two states fs1; s2g of order
r5 2.

3.1 Construction of equivalence classes,
connection with Eulerian graphs
To prove the equiprobability of output sequences, it is
necessary to partition the trajectories of Markov chains into
classes with the same probability. An intuitively understand-
ablemethod of partitioning is based on some facts from graph
theory.

Surprisingly, the problem of partitioning Markov chains
(measurement results) into equivalence classes is connected
with Eulerian graphs, which arose in the well-known problem
of a single walk around the K�onigsberg bridges, the problem
that was solved by Leonhard Euler (see, for example, [19]).3

3 Recall that a single bypass of the K�onigsberg bridges turned out to be

impossible, which is due to the specific configuration of the connections

between the bridges.

928 I M Arbekov, S N Molotkov Physics ±Uspekhi 67 (9)



Thus, the immediate goal is to construct equivalence
classes (equally probable) of Markov chain trajectories.

For a Markov chain trajectory X � x1x2 . . . xN, a set of
p-sequences is generated,

p�X� � �p1�X�; p2�X�; . . . ; pm�X�
�
;

where pi�X� is a subsequence of states from X � x1x2 . . . xN
following the state si:

pi�X� � fxj�1 : xj � si; 14 j4Ng :

For example, for X � s1s4s2s1s3s2s3s1s1s2s3s4s1, we obtain p-
sequences

p�X� � �p1�X� � �s4s3s1s2�; p2�X� � �s1s3s3�;
p3�X� � �s2s1s4�; p4�X� � �s2s1�

�
:

Proposition 5.
The sequence X is uniquely determined by x1 and p�X�.
Proposition 5 implies that, if X is already a trajectory of a

Markov chain, and we do not know it, the trajectory of X is
uniquely reconstructed based on the initial state x1 and
p�X� � �p1�X�; p2�X�; . . . ; pm�X�� [17].

We denoteY � X ifY is any permutation ofX, and denote
Y�� X ifY is a permutation ofXwith a fixed tail (last element).

For example:

s1s2s2s3 � s3s2s2s1 ;

s2s3s2s1 �� s3s2s2s1 :

Proposition 6.
Two trajectories of a Markov chain X � x1x2 . . . xN and

X 0 � x 01x
0
2 . . . x 0N with the same initial x1 � x 01 have the same

probability if pi�X 0� � pi�X� for all 14 i4m.
Proof.
Note that the probability

P�X� � P�x1�P�x2 j x1� . . .P�xN j xNÿ1�

� P�x1�
Ym
i�1

Y
sj2pi�X�

P�sj j si� ;

and the probability

P�X 0� � P�x 01�
Ym
i�1

Y
sj2pi�X 0�

P�sj j si� :

If P�x1� � P�x 01� and pi�X 0� � pi�X� for all 14 i4m,
then, rearranging the terms in pi�X�, it is easy to find that
P�X 0� � P�X�.

Proposition 6 is proved.
Thus, for x1 � x 01, a permutation of symbols inside

p-sequencesÐ pi�X� � pi�X 0� for all 14 i4mÐdoes not
change the probability of the Markov chain trajectory, but
after a permutation of symbols, the p-sequences must
correspond to the Markov chain trajectory. In some cases,
after a permutation of symbols inside p-sequences, it is not
possible to construct a Markov chain trajectory.

The issue of which permutations are admissible in
constructing a class of equally probable trajectories is one of
the key ones in [17]. It is solved using the following
Proposition.

Proposition 7 (Admissible permutations).
Let the following be given:
1) a Markov chain trajectory X � x1x2 . . . xN with the last

state xN � sw,
2) p-sequences p�X�� �p1�X�; . . . ; pw�X�; . . . ; pm�X��,
3) a set of sequences �L1; . . . ;Lw; . . . ; Lm� such that
Lw � pw�X� is any permutation, sw is the last state in X,
Li �� pi�X�, i 6� w, is a permutation with a fixed tail.
Then, there exists a trajectory of a Markov chain X 0 �

x 01x
0
2 . . . x 0N with initial state x 01 � x1, final state x

0
N � xN, and

p-sequences p�X 0� � �L1;L2; . . . ;Lm�.
The proof of this statement in [17] is quite cumbersome

and involves a number of intermediate results.
We present an intuitive proof of this statement with some

comments.
We associate the Markov chain trajectories with a

directed graph. The vertices of the graph are the states of the
chain labeled with edgesÐ transitions between states in
accordance with the Markov chain trajectory.

Let a trajectory of a Markov chain with the number of
states m � 4 and length N � 9 be given:

X � s1s3s1s2s4s1s2s1s3s2 ;

where the last state sw � s2, and the p-sequences are

p�X� � �p1 � �s3swsws3�; pw � �s4s1�; p3 � �s1sw�; p4 � �s1�� :
We introduce a fictitious state s0 preceding the first

element x1 � s1. We close the graph with an edge originating
from the last element sw and entering s0. We represent the
closure as an edge denoted by a dotted line.

We represent the new trajectory as

X � � s0!1 s1!2 s3!3 s1!4 sw!5 s4!6 s1!7 sw!8 s1!9 s3!10 sw!11 s0 :

Apparently, there is a one-to-one correspondence between
the original trajectory of the Markov chain X and the
trajectory X �.

The corresponding graph is displayed in Fig. 2.
Each vertex of the graph has an even power: the number of

the edges incoming to and outgoing from each vertex is the
same. We then have a Euler graph. Starting from s0, we can

s0

s1

s4

s3

sw

1 2

3

4

5

6

7

8

9

10

11

Figure 2.Directed graph corresponding to trajectory X �.
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completely traverse the graph and return to the state s0,
passing each edge only once.

The trajectories X �, similar to the trajectories of the
Markov chain X, correspond to a complete traversal of the
corresponding graph.

The trajectory X � has the p-sequences `extended' com-
pared to the trajectory of the Markov chain X:

p�X� � �p1 � �s3swsws3�; pw � �s4s1�; p3 � �s1sw�; p4 � �s1�� ;
p�X �� � �p�0 � �s1�; p�1 � �s3swsws3�; p�w � �s4s1s0�; p�3� �s1sw�;

p�4 � �s1�
�
:

Disregarding the unimportant block p�0 � �s1�, one can
clearly see that the main difference is in the block
p�w � �s4s1s0� corresponding to the last element of the chain
w. In this block, the closing state s0 is added.

From here, it is easy to conclude that, for Proposition 7 to
be fulfilled, it is sufficient to show the existence of a new
trajectoryÐa complete traversal of the graphÐ for some
transposition in the new blocks p�i that does not affect the last
states in the blocks p�i . In the original block pw � �s4s1�, this
transposition can already affect the last state of the block s1.
Moving sequentially along the transpositions, we can proceed
to any permutations in the p-sequences that satisfy the
conditions of Proposition 7.

It is clear that, if after an admissible transposition (in some
block p�i ) a complete traversal of the graph is possible, it is
implied that the existence of the corresponding trajectory of
the Markov chain is shown.

In constructing the graph edges, movement is performed
between blocks p�i . The direction to the next block is indicated
by the corresponding current state in the block. As soon as it
is passed, it is excluded from the states of the block.

If, during transposition, the last states in blocks p�i are left
unaffected, in constructing a new trajectory (movement
between blocks), the last element in the block will only be
excluded when there is no new entry into this block, and
further movement will occur along the remaining blocks to
continue in this way until the very end when all states are
exhausted. In this way, a complete traversal of the corre-
sponding graph can be constructed.

This also applies to the block p�w � �s4s1s0�, where the last
element (in the block) is s0. Therefore, a transposition
affecting the penultimate element in the block p�w � �s4s1s0�
is possible. This implies that any transposition or any
permutation in block pw�X� of the original trajectory X is
possible.

We now illustrate the construction of trajectories using
the example of

X � � s0!1 s1!2 s3!3 s1!4 sw!5 s4!6 s1!7 sw!8 s1!9 s3!10 sw!11 s0 :

We take an admissible transposition in block p�1 �
�s3swsws3� ! p��1 � �sws3sws3�. Then,
p�X ��� � �p��0 � �s1�; p��1 � �sws3sws3�; p��w � �s4s1s0�;

p��3 � �s1sw�; p��4 � �s1�
�
;

X �� � s0!1 s1!2 sw!3 s4!4 s1!5 s3!6 s1!7 sw!8 s1!9 s3!10 sw!11 s0:

Note that trajectory X �� is a new complete traversal of the
Euler graph.

We now take an inadmissible transposition in block p�3 �
�s1sw� ! p���3 � sws1

ÿ �
. Then,

p�X ���� � �p���0 � �s1�; p���1 � �s3swsws3�; p���w � �s1s4s0�;

p���3 � �sws1�; p���4 � �s1�
�
;

X ��� � s0!1 s1!2 s3!3 sw!4 s1!5 sw!6 s4!7 s1!8 sw!9 s0!10 ? :

The trajectory is interrupted at step 9, where, before the
states s3 in p���1 � �� � �s3� and s1 in block p���3 � ��s1� are
exhausted, we return to block p���0 � �s1�, where moving to
state s1 is already forbidden.

The resulting Proposition 7 enables all possible trajec-
tories of the Markov chain X 2 fs1; s2; . . . ; smgN to be split
into equivalence classes (equally probable trajectories).

Namely, consider some Markov chain trajectory X �
x1x2 . . . xN as defining a class S and include X 0 � x 01x

0
2 . . . x 0N

in the class S if:
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Figure 3.Directed graph corresponding to trajectory X ��.
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Figure 4.Directed graph corresponding to trajectory X ���.
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1) x 01 � x1 and x 0N � xN � sw for some wÐthe beginning
and end of the trajectories X and X 0 are the same,

2) pw�X 0� � pw�X� is any permutation,
3) pi�X 0� �� pi�X�, i 6� w, is a permutation with a fixed tail.
According to Proposition 7, Markov chain trajectories

exist for such p-sequences. It follows from Proposition 6 that
they are equally probable:

PS�X 0� � PS�X� :

3.2 Algorithm A: memory-intensive random bit extraction
Below, we consider Algorithm A for extracting random bits,
which requires storing all p-sequences of a Markov chain
trajectory in memory.

3.2.1 Description of Algorithm A
Input: Markov chain trajectory X � x1x2 . . . xN, xi 2
fs1; s2; . . . ; smg.
Output: bit sequence Y � C�X� 2 f0; 1g�.

Algorithm A:
� generates p-sequences p�X� � fp1�X�; p2�X�; . . . ;

pw�X�; . . . ; pm�X�g, sw � xN is the last element of the chain,
� for all i 6� w, the block pi�X� without the last element of

the block pi�X�jpi�X�jÿ1 is taken,
� for all i 6� w blocks pi�X�jpi�X�jÿ1, the m-ary Babkin

algorithm is applied to the blocks: Yi � C�pi�X�jpi�X�jÿ1�,
� the block pw�X� is used entirely: Yw � C�pw�X��,
� partial binary outputs are concatenated:

Y � C�X� � C
ÿ
p1�X�jp1�X�jÿ1

�kCÿp2�X�jp2�X�jÿ1�k . . .

. . . kCÿpw�X��k . . . kCÿpm�X�jpm�X�jÿ1� :
3.2.2 Equiprobability of binary output
Theorem 2 (Algorithm A).
Let the trajectory of the Markov chain X � x1x2 . . . xN,
xi 2 fs1; s2; . . . ; smg be used as input for Algorithm A,
C�. . .�, which is the binary output of the m-ary Babkin
algorithm,

Y � C�X� � C
ÿ
p1�X�jp1�X�jÿ1

�k Cÿp2�X�jp2�X�jÿ1� k . . .

. . . k Cÿpw�X�� k . . . k Cÿpm�X�jpm�X�jÿ1� :
Then, the binary output Y 2 f0; 1g` obtained for some ` has

probability

P�Y� � 2ÿ` :

Proof.
Below, we give the proof of Theorem 2 reported in [17],

adding some useful clarifications and modifications.
For any Markov chain trajectory, we have a one-to-one

correspondence:

X � x1x2 . . . sw() p�X� � �p1�X�; . . . ; pw�X�; . . . ; pm�X�
	
:

�2�
All trajectories of the Markov chain are divided into
equivalence classes (equally probable trajectories) S 2 G.
Trajectories X 0 and X belong to the same class S if

1) x 01 � x1, x
0
N � sw,

2) p�X 0� � �p1�X 0� �� p1�X�; . . . ; pw�X 0�
� pw�X�; . . . ; pm�X 0� �� pm�X�

	
:

It follows from (2) and the equality of the probabilities of
the trajectories,

PS�X 0� � PS�X� ;

that the probabilities of the p-sequences are equal:

PS

ÿ
p1�X 0�; . . . ; pw�X 0�; . . . ; pm�X 0�

�
� PS

ÿ
p1�X�; . . . ; pw�X�; . . . ; pm�X�

�
: �3�

The binary output of Babkin's algorithm for AlgorithmA
is

Y � C�X� � C
ÿ
p1�X�jp1�X�jÿ1

� k . . . k Cÿpw�X�� k . . .

. . . k Cÿpm�X�jpm�X�jÿ1� � Y1 k . . . k Ym :

The blocks

p1�X�jp1�X�jÿ1; . . . ; pw�X�; . . . ; pm�X�jpm�X�jÿ1

feature lengths n1; . . . ; nw; . . . ; nm and some specific composi-
tion of symbols fs1; . . . ; smg in the blocks.

In this representation, the implementation of Babkin's
algorithm is similar to that for an independent source (1) with
the number of blocks M � m and, this time, sequential
processing of the blocks

p1�X�jp1�X�jÿ1; . . . ; pw�X�; . . . ; pm�X�jpm�X�jÿ1 :

The difference is that one must first wait for the complete
realization of the Markov chain X � x1x2 . . . xN, form
p1�X�; . . . ; pw�X�; . . . ; pm�X�, and then, prior to applying
Babkin's algorithm, exclude the extreme element in all blocks
pi�X� except pw�X�, where w corresponds to the last element of
the trajectory: xN � sw.

Similar to the case of an independent source, we denote by
BY the set of Markov chain trajectories X � x1x2 . . . xN such
thatC�X� � Y.

For a given equivalence class S, we have an admissible
partition Y1;Y2; . . . ;Ym such that

Y � Y1 k . . . k Ym � C
ÿ
p1�X�jp1�X�jÿ1

� k . . .

. . . k Cÿpw�X�� k . . . k Cÿpm�X�jpm�X�jÿ1� :
It can be easily seen that an incomplete set being included

in the equivalence class permutations does not cancel the
constructive property of Babkin's algorithm: exactly one
sequence pi�X�jpi�X�jÿ1 or pi�X 0�jpi�X

0�jÿ1 from the equivalence
class yieldsYi orY

0
i whenever jYij � jY 0i j. From this, the main

conclusion regarding the equality of the cardinalities of the
preimages jS \ BYj � jS \ BY 0 j easily follows.

Further, using the same probability of p-sequences
belonging to the same equivalence class S (3), the proof of
Theorem 2 is easily completed by analogy with the proof of
Theorem 1 for an independent source.

Theorem 2 is proved.

3.3 Algorithm B: extracting random bits `on the fly'
Using Algorithm A, equiprobable binary sequences can be
generated from the input trajectory of a Markov chain
X � x1x2 . . . xN.

However, Algorithm A has certain drawbacks:
Ð the entire input sequence must be stored,
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Ð the input cannot be a stream or an infinitely long
sequence, because no output random bits 0 and 1 can be
generated until the entire input trajectory of the Markov
chain has been received,

Ð Algorithm A can not be computed in the expected
linear time.

In practice, Algorithm B for generating random bits 0 and
1 `on the fly' turns out to be effective. This algorithm is not
memory intensive and does not require storing the entire
trajectory, but produces random 0s and 1s as the states of the
Markov chain arrive.

3.3.1 Description of Algorithm B
Input: Markov chain trajectory X � x1x2 . . . xN, xi 2
fs1; s2; . . . ; smg.
Algorithm B parameter: window size$. A window is needed to
cut consecutive blocks from pi�X�.
Output: bit sequence Y � C�X� 2 f0; 1g�.

Algorithm B:
� parallelizes the current states of the Markov chain

trajectory into current p-sequences p1�X�; . . . ; pm�X�, add-
ing the next state sj to the sequence pi�X� only if state si
precedes sj,
� if the sequence pi�X� has a current block Fik,

k � 1; 2; . . . ; of size$ added, then:
Ð it is immediately sent for transformation C Fik� � if the

last element in Fik is si,
Ð if the last element in Fik is not si, the block Fik waits to

be sent for processing until si appears in the Markov chain,
Ð the block Fik is not sent for processing at all if it fails to

wait for si to appear.
� partial binary outputs by blocks are concatenated:
Y � C�Fi1 j1� k C�Fi2 j2� k . . . k C�FiL jL� :

Here, i1 j1; i2 j2; . . . ; iL jL are the numbers of blocks from
pi1�X�; pi2�X�; . . . ; piL�X� sequentially arriving for processing.
It can be asserted that filled blocks in parallel p-sequences
p1�X�; . . . ; pm�X� are queued for processing. The sequence in
which they are read byAlgorithmBdoes not coincide with the
natural-temporal appearance of blocks. As shown below, the
order of reading blocks by Algorithm B for a given Markov
chain trajectory is also preserved when reading blocks of any
Markov chain trajectory in the equivalence class S (defined
below), which opens a direct way of proving the equiprob-
ability of the binary sequence at the output of Babkin's
algorithm by analogy with an independent source.

Let the trajectory of the Markov chain X � x1x2 . . . xN
with the last element xN � sw be read using Algorithm B.

For all 14 i4m, we can write

pi�X� � Fi1Fi2 . . .FiaiEi ;

where Fi j, 14 j4ai, are the blocks used to generate the
output binary data.

Note that Ei is the remaining `piece' of the output
sequence pi�X� from which binary data is not produced.

For all bit-producing segments, we have

jFi jj � $ ;

and

04 jEwj < $ ; 0 < jEij4$ ; i 6� w : �4�

Comment.
Condition (4) appears due to the way Algorithm B is

constructed.
1. Let the last element in the last block Fiai be i. Then, it

may be the very last one, i.e., i � w. In this case, exactly
jEwj � 0.

2. Let i 6� w be the last element of the entire trajectory.
Then, to send the last block Fiai for processing, one must wait
for si, but it is not the last one in the entire trajectory.
Therefore, if we managed to wait for si, then something
follows it and is included in Ei, i.e., a non-empty addition
with length jEij > 0 appears. If we fail to wait for such si,
the length of the last block jEij � $, and, according to
Algorithm B, it is not sent for processing.

Example 3. N � 29; m � 2; $ � 3.

X � s1s2s2s1s1s2s2s1s1s2s2s1s1s2s2s1s1s2s2s1s1s2s2s1s1s2s2s1s1 ;

p1�X� � s2 ÿÿs1s2
z�������}|�������{F11

ÿÿ s1s2 ÿÿs1
z�������}|�������{F12

s2 ÿÿs1s2
z�������}|�������{F13

ÿÿ

s1s2 ÿÿs1z�������}|�������{F14

s2 ÿÿs1z�����}|�����{E1

;

p2�X� � ÿ s2s1 ÿÿs2z�������}|�������{F21

s1 ÿÿs2s1z�������}|�������{F22

ÿÿ

s2s1 ÿÿs2z�������}|�������{F23

s1 ÿÿs2s1z�������}|�������{F24

ÿÿ s2s1
z}|{E2

ÿ :
The order is which blocks are read by Algorithm B is

F21 . . .F11 . . .F12 . . .F22 . . .F23 . . .F13 . . .F14 . . .F24 :

The natural-temporal order of reading blocks is

F11 . . .F21 . . .F22 . . .F12 . . .F13 . . .F23 . . .F24 . . .F14 :

As we can see, these orders of reading blocks are not the
same.

Theorem 3 (Algorithm B).
Let the trajectory of the Markov chain X � x1x2 . . . xN,

xi 2 fs1; s2; . . . ; smg, be used as input for Algorithm B, C�. . .�,
the binary output of the m-ary Babkin algorithm,

Y � C�X� � C�Fi1 j1� k C�Fi2 j2� k . . . k C�FiL jL� :

Then, the binary output Y 2 f0; 1g` obtained for some ` has
probability

P�Y� � 2ÿ` :

Proof.
Below, we present the proof of Theorem 3 reported in [17],

adding some useful clarifications and changes.
We divide all possible trajectories of the Markov chain

X 2 fs1; s2; . . . ; sngN into equivalence classes (of equal prob-
ability).

Consider a trajectory X as defining a class S and include
X 0 in class S if:

1) x1 � x 01 and xN � x 0N Ðthe beginning and end coin-
cide;

2) for all 14 i4m

pi�X� � Fi1Fi2 . . .FiaiEi ; �5�
pi�X 0� � F 0i1F

0
i2 . . .F 0iaiEi ;
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where Fi j and F 0i j are blocks used to generate output
data;

3) for all i, j we have Fi j � F 0i j, i.e., a complete permuta-
tion.

Note that the unprocessed parts Ei for trajectories X and
X 0 are the same.

According to Proposition 7 (Acceptable permutations),
such a trajectory X 0 exists. It is sufficient to note here that,
according to the comment given above, a complete permuta-
tion of the entire sequence pi�X� is only possible when i � w,
i.e., the last element of the entire trajectory X, and it may
happen that the length jEwj � 0. If i 6� w, a non-empty
addition jEij > 0 necessarily appears. Since X 0 is skipped
when proceeding to the construction of Ei, these conditions
correspond exactly to the conditions of Proposition 7. In
addition, according to Proposition 6, trajectories in the class
S are equally probable.

In sequences pi�X��Fi1Fi2 . . .FiaiEi, 14i4m, the
sequence of blocks Fi1;Fi2; . . . ;Fiai determines the order in
which these blocks were read for processing precisely for the
states following the sith state.

At the same time, the order of reading blocks is

F11; . . . ;F1a1 ;F21; . . . ;F2a2 ; . . . ;Fm1; . . . ;Fmam : �6�

The real-time appearance of states of the Markov chain by
AlgorithmB can be quite arbitrary, but strictly determined by
the original Markov chain X � x1x2 . . . xN (see Example 3
above). To simplify the reasoning, we assume that it is exactly
like this (6).

Now, assume that the order of reading blocks by
Algorithm B for all trajectories X 0 � x 01x

0
2 . . . x 0N from the

class S is preserved and equal to

F 011; . . . ;F 01a1 ;F
0
21; . . . ;F 02a2 ; . . . ;F 0m1; . . . ;F 0mam :

Similar to the case of an independent source, BY denotes
the set of trajectories of the Markov chain X � x1x2 . . . xN
such that C�X� � Y, and, for a given equivalence class S, we
have an admissible partition

Y11; . . . ;Y1a1 ;Y21; . . . ;Y2a2 ; . . . ;Ym1; . . . ;Ymam ;

such that

Y � C�X� � C�Y11� k . . . k C�Y1a1� k C�Y21� k . . .

. . . k C�Y2a2� k . . . k C�Ym1� k . . . k C�Ymam� :

Then, if the order of reading blocks by Algorithm B is
preserved, the constructive property of Babkin's algorithm
holds: exactly one sequence Fi j;F

0
i j yields Yi j, Y

0
i j whenever

jYij � jY 0i j. From this, themain relation on the equality of the
cardinalities of the preimages easily follows: jS \ BYj �
jS \ BY 0 j whenever jYj � jY 0j. Next, the trajectories of the
Markov chain inside the equivalence classes S being equally
probable, the proof of Theorem 3 is easily completed by
analogy with the proof of Theorem 1 for an independent
source.

It remains to prove that the order of reading blocks by
Algorithm B is preserved for all trajectories of the Markov
chain X � x1x2 . . . xN from the equivalence class S.

1. It is clear that it is sufficient to prove the equality of the
order of reading blocks for only one trajectory X 0 �
x 01x

0
2 . . . x 0N in the class S, which differs from X � x1x2 . . . xN

by one transposition for an arbitrary i in an arbitrary block
Fik:

X 0 � x 01x
0
2 . . . x 0N()

pi�X 0� � Fi1Fi2 . . .F 0ik . . .FiaiEi ;

pj�X 0� � Fj1Fj2 . . .FjajEj ; j 6� i

� �
:

Then, moving sequentially along the transpositions, we can
go to any permutation with preservation of the order of
reading blocks.

2. Consider the part of the original trajectory of the
Markov chain Xa that ends in the state xa, which is followed
the reading of block Fik for conversion into bits. According to
the reading of blocks by Algorithm B, xa � si, and, in
addition,

pi�Xa� � Fi1Fi2 . . .Fik ;

pj�Xa� � Fj1Fj2 . . .Fjkj ; bEj; j 6� i ;

0 < j bEjj4$ :

We use the notation bEj becauseX
a is part of the trajectory

X.
Clearly, j bEij � 0 because Fik is the last block to be read, in

which case either the last element in Fik is si or si is part of
some bEj, after which Fik is read.

Can a part of the Markov chain trajectory be constructed
by transposing the block Fik?

Since the last element xa � si, we can perform any
transposition in the block Fik Ðit is as if we made any
permutation on the whole pi�Xa� � Fi1Fi2 . . .Fik, including
the last element.

We get

pi�X 0 a� � Fi1Fi2 . . .F 0ik ;

pj�X 0 a� � Fj1Fj2 . . .Fjkj
bEj ; j 6� i ; �7�

j bEjj > 0 ;

which is acceptable for constructing the initial segmentX 0 a of
the Markov chain trajectory according to Proposition 7.

In addition, according to Proposition 7, the length jX 0 aj �
jXaj and the last elements coincide: x 0a � xa � si. This implies
that, in our configuration, for the initial segment of the
Markov chain trajectory, block F 0ik will definitely be sent for
processing. Will it be the last one?

If x 0a � si and is the last one in F
0
ik,F

0
ik is sent for processing

(zeroed) last.
If this is not the case, there must be another si that zeroes

F 0ik before some Fjs, and then ours, finally the last x 0a � si,
must appear.

We must then get

pi�X 0 a� � Fi1Fi2 . . .F 0iksi :

We have a contradiction. Therefore, block F 0ik is read last.
3. It is easy to see that, after the element xa, the

trajectories of X and X 0 coincide, and the order of reading
blocks does not change.

4. Consider the initial part of the trajectory of theMarkov
chainX 0 b, which ends at the state xb (b � i�, which is followed
by the first element of block F 0ik. It is easy to see that, before
the element xb, the trajectories of X and X 0 coincide, and the
order of reading blocks does not change.

From this, we can conclude that the order of reading
blocks by Algorithm B for trajectories X and X 0 is the same.
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Theorem 3 is proved.
We now consider an example illustrating the preservation

of the order of reading blocks by Algorithm B.
Example 4. N � 29, m � 3, $ � 3.
1. Initial trajectory

X � s1s2s2s3s2s3s1s1s2s2s3s3s1
z���������������������}|���������������������{Xb

s1s2s1s3s2s1 s3s2s1s2s3s1s1s2s3s2
z���������������}|���������������{Xa

:

Movement along blocks

p1�X� � s2 ÿÿÿÿÿ s1s2
z��������������}|��������������{F11

ÿÿÿÿ s1s2 ÿ s3
z�����}|�����{F12

ÿÿ

s3 ÿÿs2 ÿÿs1
z�����������}|�����������{F13

s2
z}|{E1

ÿÿ ;

p2�X� � ÿ s2s3 ÿ s3
z�����}|�����{F21

ÿÿÿ s2s3 ÿÿÿÿs1z�����������}|�����������{F22

ÿÿ

s1 ÿÿs1 ÿ s3
z����������}|����������{F23

ÿÿÿ s3
z}|{E2

ÿ ;

p3�X� � ÿ ÿÿ s2 ÿ s1 ÿÿÿÿs3
z��������������}|��������������{F31

s1 ÿÿÿÿs2 ÿÿs2
z����������������}|����������������{F32

ÿÿÿ

s1 ÿÿÿ s2
z��������}|��������{E3

:

The order of reading blocks by Algorithm B is

F21 . . .F31 . . .F11 . . .F22 . . .F12 . . .F32 . . .F13 . . .F23 :

2. Trajectory after transposition in the block
We now perform transposition in F12� s1s2s3!

F 012� s1s3s2. After transposition,

p1�X 0� �
�
F11 � s2s1s2;F

0
12 � s1s3s2;F13 � s3s2s1;E1 � s2

	
;

p2�X 0� �
�
F21 � s2s3s3;F22 � s2s3s1;F23 � s1s1s3;E2 � s3

	
;

p3�X 0� �
�
F31 � s2s1s3;F32 � s1s2s2;E3 � s1s2

	
:

Trajectory

X 0 � s1s2s2s3s2s3s1s1s2s2s3s3s1
z���������������������}|���������������������{X 0 b�Xb

s1s3s2s1s2s1 s3s2s1s2s3s1s1s2s3s2
z���������������}|���������������{X 0a�Xa

:

Movement along blocks

p1�X 0� � s2 ÿÿÿÿÿ s1s2
z��������������}|��������������{F11

ÿÿÿÿ s1s3 ÿÿs2z�������}|�������{F 0
12

ÿ

s3 ÿÿs2 ÿÿs1
z�����������}|�����������{F13

s2
z}|{E1

ÿÿ ;

p2�X 0� � ÿ s2s3 ÿ s3
z�����}|�����{F21

ÿÿÿ s2s3 ÿÿÿÿÿ s1
z��������������}|��������������{F22

ÿ

s1 ÿÿs1 ÿ s3
z����������}|����������{F23

ÿÿÿ s3
z}|{E2

ÿ ;

p3�X 0� � ÿ ÿ ÿ s2 ÿ s1 ÿÿÿÿs3
z��������������}|��������������{F31

s1 ÿÿs2 ÿÿÿÿs2
z����������������}|����������������{F32

ÿÿÿ

s1 ÿÿÿ s2
z��������}|��������{E3

:

The order of block reading by Algorithm B is

F21 . . .F31 . . .F11 . . .F22 . . .F 012 . . .F32 . . .F13 . . .F23 :

The order of block reading by Algorithm B for trajectories
X and X 0 is the same.

3.4 Example of non-uniqueness of binary output
of Babkin's algorithm with natural-temporal reading
of blocks for processing
One of the main points in the proof of Theorem 3 is based on
the fact that, in the equivalence class S, the number of
preimages of the full binary output Y 2 0; 1f g� with a fixed
length Yj j � ` is the same for any binary composition of Y.

This is the case if the order of reading blocks in the
equivalence class of Markov chain trajectories (p-sequences)
corresponds to Algorithm B.

The question arises as to whether this property is
preserved with natural-temporal reading of blocks, which is
simpler in practical implementation.

We provide below an example for which this property is
violated with natural-temporal reading of blocks: the number
of preimages is different for some Y and Y 0 of the same
length.

Consider the original trajectory of the Markov chain X as
defining a class S, N � 10, m � 2; $ � 4:

X � s1s1s1s2s2s2s1s2s2s1 ;

p1�X� � s1s1s2 ÿÿÿ s2
z�����������}|�����������{F11

ÿÿ ;

p2�X� � ÿ ÿÿ s2s2s1 ÿ s2
z�������}|�������{F21

s1
z}|{E2

:

According to Algorithm B, block F21 � �s2s2s1s2� will be
processed first, since s2 is the last element in the block, and
then F11 � �s1s1s2s2�.

The order of reading by Algorithm B is preserved for all
trajectories X of the equivalence class determined by
permutations in blocks F11 � �s1s1s2s2� and F21 � �s2s2s1s2�.
The natural-temporal order of reading blocks is F11 �
�s1s1s2s2�, F21 � �s2s2s1s2�.

Using the original Markov chain trajectory, we construct
an equivalence class S.

There are six permutations inside the block F11 �
�s1s1s2s2� and four permutations inside the block F21 �
�s2s2s1s2�.

In total, the equivalence class S will include 24 permuta-
tions, defining 24 equally probable Markov chain trajec-
tories.

In Tables 4 and 5 (corresponding to Tables 2 and 3 of
Section 2.2), for the first block F11, we denote �i1; i2�Ðthe
positions of occurrence of state s1 Ðwhile, for the second
block F21, we denote �i1�Ðthe position of occurrence of state
s1. Babkin's numbering method:

Num �i1; i2� � C 1
i1ÿ1 � C 2

i2ÿ1 ; Num �i1� � C 1
i1ÿ1 ;

where Ci
j � 0 if j < i. The fourth column specifies the binary

output of Babkin's algorithm.

Table 4.

No. F11, permutations Num �i1; i2� Binary
output

1

2

3

4

5

6

�s1s1s2s2�
�s1s2s1s2�
�s2s1s1s2�
�s1s2s2s1�
�s2s1s2s1�
�s2s2s1s1�

Num �1; 2� � 0

Num �1; 3� � 1

Num �2; 3� � 2

Num �1; 4� � 3

Num �2; 4� � 4

Num �3; 4� � 5

0

1

00

01

10

11
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For each pair of blocks �F11;F21� and an additional block
E2 � s1, the trajectories of the Markov chain X are con-
structed, and the sequence of reading blocks according to
Algorithm B and the natural-temporal (NT) order are
determined. For each order of reading, the binary output of
Babkin's algorithm Y � C�X� is constructed.

For example, for blocks F11� �s1s1s2s2�, F21� �s2s1s2s2�,
which corresponds to the choice of numbers (1, 2) in the first
columns of Tables 4 and 5, we have

X � s1s1s1s2s2s1s2s2s2s1 ;

p1�X� � s1s1s2 ÿÿs2
z���������}|���������{F11

ÿÿÿ ;

p2�X� � ÿ ÿÿ s2s1 ÿ s2s2
z�������}|�������{F21

s1
z}|{E2

:

We obtain the following reading order.
1. Algorithm B: F21, F11, binary output Y � C�X� �

01k0 � 010.
2. NT: F11, F21 binary output Y � C�X� � 0k01 � 001.
In Table 6, the binary outputs are ordered according to

the choice of pairs of numbers (permutations) in the first
columns of Tables 4 and 5:

No. 1 Ð �1; 1�, No. 2 Ð �1; 2�; . . . ;No. 24 Ð �6; 4� :

The results obtained show that, with natural-time NT
block reading,

Ð with output length jYj � 3, the number of preimages of
combination Y � 110 is 2; combination Y � 001 has no
preimages, and the remaining combinations Y 2 0; 1f g3
have one preimage each,

Ð with output length jYj � 4, the number of preimages of
combination Y � 0001 is 2; combination Y � 0100 has no
preimages, and the remaining combinations Y 2 0; 1f g4 have
one preimage each.

3.5 Two-state Markov chain of finite order r
The above algorithms for extracting random bits are con-
structed for simple (r � 1) stationary Markov chains with an
initial distribution P�si� and a transition probability matrix
P�sj j si�, si; sj 2 fs1; . . . ; smg.

The probability of an arbitrary trajectory of the Markov
chain XN � x1x2 . . . xN is defined as

P�XN� � P�x1�
YNÿ1
i�1

P�xi�1 j xi� :

In practice, in constructing a quantum PRNG associated
with the detection of photocounts, we are dealing with
symbols of a binary alphabet A � �;tf g and some arbitrary
order r5 2.

In practical applications, it is convenient to represent the
alphabet in binary form: A � 0; 1f g.

A Markov chain with two states A � 0; 1f g, of order
r5 2, is defined by the initial distribution

P�e1; . . . ; er�;
X

�e1;...;er�2f0;1gr
P�e1; . . . ; er� � 1 ;

and a transition probability matrix of size 2r � 2

P�er�1je1; . . . ; er�k k; er�1 2 f0; 1g; �e1; . . . ; er� 2 f0; 1gr :

The probability of the trajectory

E � e1e2 . . . eL; ei 2 f0; 1g

is defined as

P�E� � P�e1; . . . ; er�
YLÿr
i�1

P�ei�r j ei; . . . ; ei�rÿ1� :

A transition to a simple Markov chain of order r � 1 can
be made by enlarging the alphabet, where the number of
states is m � 2 r.

We introduce a new alphabet,

A 0 � fs1; . . . ; smg �
�
s1 � �0 . . . 0�; . . . ; sm � �1 . . . 1�	 ;

by combining adjacent r bits in the trajectory EL � e1e2 . . . eL
with a 1-bit engagement into one symbol, and obtain a
trajectory of length N � Lÿ r:

X � �e1e2 . . . er��e2e3 . . . er�1��e3e4 . . . er�2� . . .

. . . �eLÿr�1eLÿr�2 . . . eL� � x1x2 . . . xN ; xi 2 f0; 1gr :

Table 5.

No. F11, permutations Num �i1� Binary
output

1

2

3

4

�s1s2s2s2�
�s2s1s2s2�
�s2s2s1s2�
�s2s2s2s1�

Num �1� � 0

Num �2� � 1

Num �3� � 2

Num �4� � 3

00

01

10

11

Table 6.

No. Algorithm B
reading

Binary
output Y

NT
reading

Binary
output Y

1 �1; 1�
2 �1; 2�
3 �1; 3�
4 �1; 4�
5 �2; 1�
6 �2; 2�
7 �2; 3�
8 �2; 4�

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

000

010

100

110

001

011

101

111

F21;F11

F11;F21

F11;F21

F21;F11

F11;F21

F11;F21

F11;F21

F21;F11

000

001

010

110

100

101

110

111

9 �3; 1�
10 �3; 2�
11 �3; 3�
12 �3; 4�
13 �4; 1�
14 �4; 2�
15 �4; 3�
16 �4; 4�

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

0000

0100

1000

1100

0001

0101

1001

1011

F11;F21

F11;F21

F11;F21

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

0000

0001

0010

1100

0001

0101

1001

1101

17 �5; 1�
18 �5; 2�
19 �5; 3�
20 �5; 4�
21 �6; 1�
22 �6; 2�
23 �6; 3�
24 �6; 4�

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

0010

0110

1010

1110

0011

0111

1011

1111

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

F21;F11

0010

0110

1010

1110

0011

0111

1011

1111
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We now consider the transition probabilities

P�xi�1 j xi� � P�ei�1; . . . ; ei�rÿ1; ei�r j ei; ei�1; . . . ; ei�rÿ1� :

The part of the condition ei�1; . . . ; ei�rÿ1 (highlighted in
bold) is fixed, so the transition probability depends only on
the value of ei�r and, as can be easily seen, is

P�xi�1 j xi� � P�ei�1; . . . ; ei�rÿ1; ei�r j ei; ei�1; . . . ; ei�rÿ1�
� P�ei�r j ei; . . . ; ei�rÿ1� :

Then, the probability of the trajectory

P�X� � P�E� � P�e1; . . . ; er�
YLÿr
i�1

P�ei�r j ei; . . . ; ei�rÿ1�

� P�e1; . . . ; er�
YLÿr
i�1

P�ei�1; . . . ; ei�rÿ1; ei�r j ei; . . . ; ei�rÿ1�

� P�x1�
YN
i�1

P�xi�1 j xi� :

Thus, we arrive at a stationary Markov chain of order 1.
Here, we have an essentially sparse matrix of transition

probabilities: each row contains only two nonzero transition
probabilities.

This is due to the fact that, for any state si �
�e1; e2; . . . ; er�, a transition to only two states is possible:
�e2; . . . ; er; 0� and �e2; . . . ; er; 1�.

In the example of r � 2, the matrix of transition
probabilities (Table 7) looks like what follows.

The generated p-sequences

fpi�X� � Fi1Fi2 . . .FiaiEi; 14 i4mg

will be binary, and it is not necessary to use Babkin's m-ary
algorithm.

Example of Algorithm B operation for r � 2, N � 36,
m � 4,$ � 3.

At the top of the trajectory E, superscripts indicate the
states of the chain of Markov trajectory X with an enlarged
alphabet, and subscripts, the number of the step,

E � 01210
3
20

1
31

2
40

3
51

2
61

4
70

3
81

2
90

3
100

1
111

2
121

4
131

4
141

4
150

3
160

1
171

2
180

3
191

2
20

03210
1
220

1
231

2
241

4
251

4
260

3
270

1
280

1
290

1
301

2
311

4
320

3
330

1
341

2
350

3
36 ;

p-sequence:

p1�X� � 1:2:3 24:5:6:7:8:9:10:11212:13:14:15:16:17218
z������������������������������}|������������������������������{F11

:19:20:21:22

123224:25:26:27:281
z�������������}|�������������{F12

29
130231:32:33:34235
z�������������}|�������������{E1

:36 ;

p2�X� � 1 32:3:435:647
z��������}|��������{F21

:8:9 310:11:12413:14:15:16:17:18319
z����������������������}|����������������������{F22

:20

321:22:23:24425:26:27:28:29:30:31432
z���������������������������}|���������������������������{F23

:33:34:35 336
z}|{E2

;

p3�w��X� � 1:2 13:4:526:7:829
z���������}|���������{F31

:10 111:12:13:14:15:16117:18:19220
z����������������������}|����������������������{F32

:21

122:23:24:25:26:27128:29:30:31:32:33134
z������������������������������}|������������������������������{F33

:35:36 ;

p4�X� � 1:2:3:4:5:6:7 38:9:10:11:12:13414415
z����������������}|����������������{F41

316:17:18:19:20:21:22:23:24:25426327
z���������������������������}|���������������������������{F42

:28:29:30:31:32

333
z}|{E4

:34:35:36 :

The order of reading blocks by Algorithm B is

F21 . . .F31 . . .F41 . . .F22 . . .F32 . . .F11 . . .

. . .F12 . . .F42 . . .F23 . . .F33 :

4. Conclusion

The epigraph given at the beginning of this review reflects in
the best possible way the situation with regard to obtaining
truly random sequences of 0s and 1s.

As can be seen from the above discussion, Nature sets
some fundamental physical limitations on the rate of decrease
of correlations in time, which, in turn, follow from the fact
that the spectrum of a stable physical system must lie on the
positive semi-axis of energies (frequencies). For this reason, it
is possible to `reach' true randomness only in an unlimited
time, i.e., for the successive measurement results to be
independent, it is necessary to separate the measurements by
an unlimited time. Correlations (dependence) between meas-
urements extend to an unlimited depth in time.

If successive measurements were independent, it would be
possible to present effective methods for extracting truly
random sequences of 0s and 1s from the original sequence.

Real experiments are always carried out in a finite time
interval, so the results of successive measurements cannot be
made independent.

In fact, Nature only allows counting and taking into
account correlations between measurements to a finite depth
in time. Moreover, the explicit (functional) form of correla-
tions in a real experiment is unknown. In such a situation,
approximations are a must. An adequate approximation is to
take into account correlations to a finite depth, which is
achieved using stationary Markov chains of finite order. In
this approximation, correlations are described by transition
(conditional) probabilities between measurement results. The
explicit form of the transition probabilities themselves is
unknown and is not required when constructing algorithms
for extracting random bits.

As demonstrated above, with a finite depth of correla-
tions, it is possible to obtain provably random output bit
sequences, even if events in the original sequence are not
independent. In this approach, unlike other techniques, for
example, using probabilistic extractors, in fact, only one
assumptionÐ the finite depth of correlationsÐ is employed.
Thus, any approaches to obtaining true randomness, due to
the fundamental limitations of Nature, are only an approx-
imation. The issue is only how adequately a specific approx-

Table 7.

00 �s1� 01 �s2� 10 �s3� 11 �s4�

00 �s1�
01 �s2�
10 �s3�
11 �s4�

P�s1js1�
0

P�s1js3�
0

P�s2js1�
0

P�s2js1�
0

0

P�s3js2�
0

P�s3js4�

0

P�s4js2�
0

P�s4js4�
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imation describes the real situation and how many assump-
tions it involves.

Proving the randomness of the output bit sequence is a
nontrivial task, even in the chosen approximation, stationary
Markov chains. Not all approaches allow obtaining provable
randomness in the sense discussed above.
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