
Abstract. Thermodynamic properties of classical and quantum
simple Boltzmann systems are discussed. It is pointed out that
the standard formulas of a classical ideal gas actually describe a
quantum Boltzmann gas. The heat capacity of classical and
quantum Boltzmann systems is analyzed. The melting of classi-
cal systems and Boltzmann quantum hard spheres is considered.

Keywords: ideal gases, Sackur±Tetrode equation, heat capa-
city of hard and soft spheres, Boltzmann system of quantum
hard spheres

1. Introduction

Gases, liquids, and solids surround us in everyday life.
Obviously, the desire to understand and describe the properties
of these bodies has been a natural challenge for humankind
since ancient times. At present, we already know a great deal,
and the base features of the material world are presented in
numerous textbooks. Nevertheless, many important details of
the behavior of even the simplest systems, i.e., gases, liquids,
and solids possessing no magnetism, superfluidity, supercon-
ductivity, ferroelectricity, or other specific properties, require a
special analysis. This is the very subject of the present paper.

2. Ideal gas

2.1 Classical ideal gas
The classical ideal gas is described by the free energy (1), this
expression being considered purely classical. In fact, the

effects of phase space quantization and indistinguishability
of particles are taken into account here, but the Maxwell±
Boltzmann statistics are used to count the number of states.
Hence, expression (1) actually describes an ideal quantum
Boltzmann gas:

F � ÿkT lnQN �NkT

�
lnNÿ 1ÿ 3

2
ln

�
mkT

2p�h 2

��
: �1�

Note that the logarithm argument expression mkT=2p�h 2 in
Eqn (1) is nothing but the reciprocal square of the thermal de
Broglie wavelength. Here, QN is the configuration integral,
expressed as

QN �
�
V

� � �
�
V

exp

�
ÿUN �q1 � � � qN�

kT

�
dq1 � � �dqN : �2�

In the case of an ideal gas, UN�0 and, therefore, QN�VN.
From Eqn (1), we obtain for entropy S � ÿ�qF=qT �V the

following expression:

S � 5

2
Nk�Nk lnV� 3

2
Nk ln

�
mkT

2p�h 2

�
: �3�

From Eqn (3), it follows that the heat capacity of a classical
ideal gas is

CV � 3

2
Nk � 1:5R : �4�

Equation (3), in fact, is the Sackur±Tetrode equation,
formulated back in 1912, before the discovery of quantum
mechanics (see Section 1.2). It is useful to rewrite Eqn (3) in
the form

S

kN
� ln

�
V

NL3

�
� 5

2
; �5�

where L is the thermal de Broglie wavelength. Equation (5) is
valid for V=NL3 > 1; otherwise, the entropy becomes
negative.
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Relation (5) means that, when the thermal wavelength
becomes comparable to the mean interparticle distance, the
Boltzmann statistics fail. Indeed, when the thermal wave-
length exceeds the mean interparticle distance, the particles
become indistinguishable. The corresponding combinatory
distribution function, taking this circumstance into account
[1, 2], has the form

W �
Y
i

�mi � ni�!
ni!mi!

�6�

and finally leads to the Bose±Einstein distribution. Here, ni
are particles with energy ei, occupying the energy levels mi.

However, when mi 4 ni, the distribution function can be
written in the simplified form:

W �
Y
i

�mi�ni
ni!

: �7�

This expression leads to the classicalMaxwell±Boltzmann
distribution. It is remarkable that the Boltzmann distribution
corresponds to small occupation numbers, when it is in
principle possible to identify particles, which makes them
distinguishable. For completeness, we present the distribu-
tion function for a system in which every energy level can be
occupied by only one particle, which corresponds to the
Fermi distribution

W �
Y
i

mi!

ni!�mi ÿ ni�! : �8�

In this case, the condition mi 4 ni also leads to the classical
distribution. To avoidmisunderstanding, recall thatEqns (6)±
(8) determine the distribution of n indistinguishable particles
over m positions under certain limitations only. To get to the
actual statistical expressions, it is necessary to perform a
number of manipulations [1]. For us, it is important to
emphasize that the classical Maxwell±Boltzmann statistics
arise when particles are distinguishable.

2.2 On the history of the Sackur and Tetrode equation
In 1912, Otto Sackur and Hugo Tetrode independently
derived an equation for the absolute entropy of monoatomic
ideal gas and published their discovery inAnnalen der Physik,
as pointed out in Refs [3, 4]. The main achievement of this
discovery was discretization of the phase space into cells with
the size dp dq � h, where p and q are conjugate variables, and
h is the Planck constant. It is surprising that this was done
long before the creation of quantum mechanics and became
one more confirmation of the validity of Planck's idea.

H Tetrode came from a rather rich Dutch family; he was
only 17 when he wrote his paper forAnnalen. Formally, he had
no higher education and spent the year of 1912 at Leipzig
University, where he apparently attended some lectures but did
not pass ordinary exams. Tetrode corresponded with Dutch
physicists of his time but had no lasting scientific contacts. Nor
did he seek the patronage of those who could promote his
scientific career. Once, Albert Einstein and Paul Ehrenfest
decided to visit him at home, but the maid said he could not
receive them. Hugo Tetrode died of tuberculosis in 1931.

O Sackur's career as a scientist developed in the usual way.
After receiving his doctorate from the University of Breslau
(now the Polish city of Wroclaw), he worked there with
Rudolf Ladenburg, then in London with William Ramsey,

and finally in Germany with Walter Nernst, whose thermal
theoremÐwith some help from Sackur's and Tetrode's
workÐ finally led to the Third Law of Thermodynamics.
O Sackur wrote well-accepted books on thermodynamics and
in 1914 joined the prestigious Fritz Haber Institute in Berlin.
Haber's reputation at the time was very good due to his
development of a method for synthesizing ammonia (he was
later awarded the Nobel Prize for this work). His reputation
began to suffer when he headed a project on using poisonous
gases as a weapon in the First World War. Haber's institute
worked on this project, which involved Otto Saskur, James
Frank, and others. At the end of 1914, O Sackur died in a
laboratory explosion. Thus ended his career. But that was not
all. Haber's wife Clara Immerwahr was a close friend of
Sackur's. She was against her husband's work with poisonous
gases on moral grounds. When she learned of Sackur's death,
she considered it the result of working on an immoral project.
Inconsolable, she committed suicide with her husband's
service pistol, thus completing a tragedy of Shakespearian
proportions. Otto Sackur and Hugo Tetrode died too young,
victims of disasters of their time, war and tuberculosis.
Despite their different origins and careers, they, like Boltz-
mann, left their equation as an epitaph that unites them.

3. Simple systems with interaction

3.1 Hard and soft spheres
Let us now turn to the simplest systemwith interaction, which
is the system of classical hard spheres interacting through a
potential of the form (Fig. 1).

F�r� � 0; r > s; F�r� � 1; r < s : �9�
Since the potential energy of the interaction in a system of

hard spheres is always zero, it follows from Eqn (1) that the
heat capacity of a system of hard spheres is equal to that of an
ideal gas (4). At this point, the resemblance of these two
systems is finished. In a system of hard spheres, along with the
characteristic length L, the mean distance between particles,

F�r�

s

r

Figure 1. Potential of interaction of hard spheres.
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one more characteristic length s obviously appears, corre-
sponding to the diameter of a hard sphere. It is clear that at
L=s � 1 each particle becomes a `prisoner' of its neighbors,
and the system crystallizes. However, the nature of the
corresponding transition was not clear. Moreover, it was
sometimes assumed that this transition would be a second-
order phase transition [5]. In this regard, we emphasize
L Landau's conclusion about the fundamental difference
between the symmetries of a liquid and a crystal, due to
which crystallization cannot occur continuously and is always
a first-order phase transition [6]. However, material evidence
of crystallization±melting in a system of hard spheres as a
first-order phase transition was obtained as a result of
computer experiments [7±9]. Thermodynamic characteristics
of melting±crystallization of hard spheres will be presented
below together with the results for a system of particles
interacting according to a power law (Fig. 2). As follows
from O Klein's theorem (cited from [10]), formulated back in
1919, the nonideal components of the thermodynamic
quantities for a system of particles whose potential energy is
an nth order homogeneous function of the particle coordi-
nates do not depend separately on volume and temperature,
and are functions of the combined variable r�e=kT �3=n, where
r is the density of the system, and e is the energy scale of the
interparticle interaction. Melting as a phase transition of the
first order is characterized by two values of this variable, from
which follow the relationships for the densities of the liquid
and solid phases (10), the melting curve equation (Fig. 3), and
the jump in volume and entropy (11) [11, 12]:

rl � cl

�
kT

e

�3=n

; rs � cs

�
kT

e

�3=n

; �10�

where cl and cs are constants

Pm �
�
kT

e

�1�3=n
;

DV
Vs
� const;

DS
R
� const : �11�

Note that, at n!1, the relations that characterize the
melting of hard spheres follow from Eqns (10) and (11):

Pm � cT ; Vl;Vs � const ;

DV
Vs
� const ;

DS
R
� const :

�12�

Here, it should be recalled that the interaction potential in
a realistic system always contains an attractive part, due to
which the melting temperature of classical substances at
atmospheric pressure is always greater than zero (Fig. 4).

3.2 Heat capacity
Above, we have found that the heat capacity of a system of
hard spheres is a constant equal to CV � 1:5R. However, in
a simple case of soft spheres, it is no longer so. Indeed,
addressing the Klein theorem again, for a system of
particles interacting by means of a power-law potential, we
can express the system heat capacity as CV �
1:5R� f �r �e=kT �3=n�. It is interesting to compare this
result with experimental data; for example, let us see
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Figure 2. Potential of interaction of soft spheres F�r� � rÿn.
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whether this approach works in the case of argon. For this
purpose, let us use the results of Ref. [13].

Here, the radial distribution function g�r� at moderate
density is approximated by the step function:

g �r� � 0 ; r < s ;

g �r� � 1 ; r > s :
�13�

This approximation should work well enough at high
temperatures.

For further analysis, the potential F�r� was used,

F�r� � 4e
��

r0
r

�12�
: �14�

It is assumed that the evolution of function g�r� with
temperature is determined by the temperature dependence of
the collision diameter s�T �. Let us define the temperature
dependence of s using the relation

4e
�
r0
r

�12

� kT ; �15�

where r � s.
Finally, for the heat capacity CV, we have

CV

R
� 3

2
� pr 30

6V
N

��
4e
kT

�1=4 �
: �16�

As is seen from Eqn (16), the heat capacity CV at a
constant density of the system of particles interacting via the
potential of the formF�r� � 1=r 12 decreases at high tempera-
tures according to the law � Tÿ1=4, approaching the value of
the heat capacity of hard spheres CV � �3=2�R. Using the
potential parameters known for Ar, the values of the Ar
molar volume at the triple point (e=k � 119:3, r0 � 3:405 A

�
,

VT:P: � 28:33 cm3 molÿ1) [14], and Eqn (16), appropriate
calculations have been performed, illustrated in Fig. 5. It is
remarkable that the reference data for CV of Ar [15] are very
close to the calculated curve (see Fig. 5), which means that
using only the repulsive part of the interaction potential is
quite satisfactory to reproduce the experimental result for
argon. This is not surprising, since a system of soft spheres
against a homogeneous attraction background works well for
noble gases. Note that the homogeneous attractive back-
ground does not affect the heat capacity.

As is seen from Fig. 5, the asymptotic value �3=2�R is
practically unachievable. A significant part of the heat
capacity curve is near the value 1:7R, thus passing the
`magic value' 2R at approximately 300 K. We recall that
earlier in Ref. [16] it was proposed that the decrease in heat
capacity of a liquid with an increase in temperature is related
to the disappearance of transverse elastic modes, due to which
the heat capacity of the liquid tends to the value 2R. In our
case, at 105 K (the critical point for Ar is � 150 K), the heat
capacity is still close to 1:6R. However, this value is not a
result of losing vibrational modes but arises in our model due
to a temperature change in the collision diameter s.

3.3 On the heat capacity of a quantum system
of hard spheres
As alreadymentioned, a system of classical hard spheres is the
simplest nontrivial system with interaction of the form (9).

In contrast to the classical system of hard spheres, in the
quantum case, due to the uncertainty principle, interparticle

repulsion occurs, giving rise to a `returning' force with respect
to long-wave acoustic deformations [17].

The quantum model of hard spheres was used in the
analysis of behavior of quantum systems with short-range
interaction, in particular, helium [18, 19]. This section is based
on an analysis [28] of the results of calculations carried out
using the quantumMonte Carlo method [20].

The author of [20] presented the values of dimensionless
energy E=kT of the liquid state of the system depending on the
specific density r � � rs 3 (diameter of s-sphere) along the
directions with constant l �(l ��h=�2pmkTs 2�1=2 being the
ratio of the thermal de Broglie wavelength to the diameter of a
hard sphere). For the present analysis, the results of calculating
the energy were chosen for the density r � � 0:3, covering the
maximum range of reduced de Broglie wavelengths l �. The
corresponding data are shown in Fig. 6. As is seen from Fig. 6,
the results of calculations explicitly extrapolate to the classical
values E=kT � 1:5 at l � ! 0, which confirms their validity.
Note that the total energy of quantum hard spheres includes
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only the kinetic energy of translational motion of particles and
the zero-point energy related to the uncertainty principle.

The data obtained lead to rather unexpected conclusions.
The zero-point energy decreases with temperature so slowly
that it turns out to be an almost constant addition to the
classical value (Fig. 7). The behavior of the quantum
contribution to the energy of the system of hard spheres (see
Fig. 7) confirms the conclusion of Ref. [21] that, despite naive
expectations, quantum effects turn out to be very important,
evenwhen the thermal de Broglie wavelength amounts to only
a small part of the hard sphere diameter. Due to these
specifics of the quantum contribution, the heat capacity of
the system slightly differs from the classical value �3=2�k
everywhere except a narrow region of low temperatures,
where the system heat capacity decreases to zero (Fig. 8).

3.4 On the melting of a Boltzmann system
of quantum hard spheres
At high enough temperatures or in systems with strong
repulsive interaction, when the exchange of particles is
practically impossible, the effects of Bose and Fermi statistics
can be ignored. However, the system can still be quantum. The
fact is that the effects of quantum statistics exponentially
decrease with the temperature growth, whereas the `diffrac-
tion' effects, associated with the wave nature of particles,

decrease only as a degree of reciprocal temperature at
T!1. Thus, in a quantum system of hard spheres, there is
a significant range of temperatures where the effects of
quantum statistics play only an insignificant role [17]. Below,
we will use as our basis recent paper [24]. First, a few words
about the crystallization of classical systems of hard spheres.

As was established in pioneering numerical calculations
[7, 8], a classical system of hard spheres can crystallize and
melt via a first-order phase transition. It is not difficult to
show that the classical melting curve for hard spheres has the
form P � kT=C, where P and T are the pressure and
temperature, and C is a constant with the dimension of
volume [12]. Obviously, the only constant with the dimen-
sion of volume in a system of hard spheres is the volume of
hard spheres. Then, for the melting of a classical system of
hard spheres, it is possible to write an expression with a
dimensionless constant, adopted from detailed study [22]:

P � 11:7 kT

s 3
; �17�

where s is the diameter of a hard sphere. From here,
obviously, the melting line (17) is a straight line, going from
the origin of coordinates P � 0;T � 0.

Let us now see how quantum effects affect the melting of
hard spheres. It is to be noted that in a system of dense hard
spheres particles are imprisoned in a kind of cage arising due
to their impermeability. Thus, the particles become distin-
guishable and, therefore, obey the Boltzmann statistics. The
only quantum property of the system of hard spheres is the
wave nature of particles. It has been shown that in a system of
hard spheres it is possible to allow for quantum effects in the
first approximation using the effective diameter of particles,
increased approximately by the thermal de Broglie wave-
length lT � h=�2pmT �1=2 [17, 23, 25]. This could be expected,
since, in correspondence with the uncertainty principle,
quantum particles tend to repulse each other. The effective
diameter of a quantum hard sphere becomes equal to
s� lT=2

���
2
p

. Then, Eqn (17) can be rewritten in the form

P � 11:7 kT

�s� lT=2
���
2
p �3 �18�

or

P � 11:7 kT

s 3�1� 3l=s2
���
2
p � : �19�

As is seen from Eqn (19), quantum effects do not shift the
quantum melting line from the origin of coordinates P � 0,
T � 0, but its slope must differ from the classical one for one
and the same hard sphere diameter at any final temperature.
From Eqns (17) and (19), it follows that, for the melting lines,
the following inequality should be valid:�

dP

dT

�
classical

>

�
dP

dT

�
quantum

�20�

or �
dT

dP

�
classical

<

�
dT

dP

�
quantum

: �21�

On the other hand, the quantum correction to the melting
line of hard spheres should decrease to zero under an increase
in temperature as Tÿ1=2 (see Eqn (19)), which means that the
quantum melting line should be a curve rather than a straight
line, as in the case of classical melting. Moreover, the classical
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limit in a quantum system of hard spheres can be reached only
at T!1.

Now, let us proceed to the quantum Monte Carlo data
describing the melting of a Boltzmann system of hard spheres
[17, 26]. Calculations by the quantum Monte Carlo method
[17, 26] were carried out within the framework of the
Boltzmann statistics for the particle diameter s � 2:2 A

�
and

mass m � 4. The corresponding data, together with the
classical melting line of hard spheres, are shown in Fig. 9.
The calculations of a classical melting line were consistently
carried out for the case s � 2:2 A

�
. Note that the slopes of

melting lines in Fig. 9 agree with the prediction (20), (21).
The Monte Carlo data for the melting line of a system of

quantum hard spheres and the classical melting line (see
Fig. 9) are described well by the expressions

Tquantum � 1:812� 10ÿ2P 0:92202 ; �22�

Tclassical � 6:57� 10ÿ3P : �23�
As follows from (22) and (23), both melting lines in Fig. 9

can intersect only at the origin of coordinates T � 0, P � 0,
which means that the classical limit is unattainable at any
finite temperature. To conclude, it is worth noting that by
inverting expression (22) one can obtain a melting line with a
similar shape to the melting line of soft spheres [12, 22]:

P � T 1�3=n ; �24�
where n � 35. Therefore, the effective quantum repulsion that
turned out to be very steep can be described by the relation
F�r� � 1=r 35 (compare it with the Van der Waals repulsion,
where n � 12). Thus, the quantum melting line always differs
from the classical one, except for the casesT � 0,P � 0, when
both lines intersect. Quantum corrections to the melting line
of a system of hard spheres fade as Tÿ1=2 with an increase in
temperature. The quantum melting line is curved, in contrast
to the classical case. The classical limit in a quantum system of
hard spheres cannot be reached at any finite temperature. 1

4. Appendix

Let us derive the equation of state for an ideal classical and
ideal quantum gas of Boltzmann `spinless' particles from the
dimension relations.

4.1 Equation of state of a classical ideal gas
From Eqn (1), we obtain the equation of state in a standard
form:�

qF
qV

�
T

� ÿP � ÿkT q lnVN

qV
� ÿNkT

V
; �25�

PV � NkT � RT : �26�

However, a simpler approach is possible. Considering
that in an ideal gas system there is only one characteristic
length L � �V=N �1=3, the average distance between particles,
and only one quantity with the dimension of energy, the
temperature T, we use the dimensionality consideration
(pressure� energy/volume) to obtain the equation of state in
the form P � kT=L 3, or PV � RT.

Let us now derive the equation of state for a classical ideal
gas using the regular analysis of dimensionalities [29, 30]. We
assume that the pressure in the system is determined by the
function P � f �L;M;Y; k�, where L is the characteristic
length, M is the mass, Y is the temperature, and k is the
Boltzmann constant. Let us write down the dimensionality
equation:

Lÿ1MTÿ2 � LaMbY ck d � LaMbY c�L 2MTÿ2Yÿ1�d
� La�2dMb�dY cÿdTÿ2d : �27�

Comparing the exponents on the left and right sides of
equation (27), we obtain a � ÿ3, b � 0, c � 1, d � 1. As a
result, for the pressure, we haveP � kY=L 3 or, assuming that
L 3 is the volume per particle and introducing the factor n, the
Avogadro number, we finally obtain P � RY=V.

4.2 Equation of state of a Boltzmann quantum gas
Let us repeat the exercise for the case of an ideal quantum gas
of Boltzmann `spinless' particles in the limit of low tempera-
tures. We write the corresponding function in the form
P � f �h;L;M�, where h is the Planck constant. The dimen-
sionality equation in this case will be

Lÿ1MTÿ2 � haLbMc � LbMc�L 2MTÿ1�a
� L 2a�bMa�cTÿa : �28�

By comparing the left- and right-hand sides of Eqn (28),
we get a � 2, b � ÿ5, c � ÿ1, which makes it possible to
express the pressure in the system as

P � h 2

L 5M
� h 2

MV 5=3
: �29�

It is remarkable that, in Eqn (29), a dependence of mass
has appeared, which had to be expected in the quantum case.
Note that, from the uncertainty principle DxDp5 �h=2, it
follows that

E � �h 2

MV 2=3
and P � �h 2

MV 5=3
:
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1 Thus, the earlier analysis of Refs [27, 28] turned out to be not quite

correct as to melting in a system of quantum hard spheres.
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5. Conclusion

To conclude, I would like to emphasize the following
important results of the analysis carried out.

(1) The heat capacity of a classical real gas tends to the
value of �3=2�k atT!1. A decrease in the heat capacity of a
liquid with an increase in temperature is not due to the
disappearance of transverse elastic modes, as was assumed
in Ref. [16].

(2) The zero-point energy of a quantum system of hard
spheres decreases with an increase in temperature so slowly
that it turns out to be an almost constant addition to the
classical value. Due to this feature of the quantum contribu-
tion, the heat capacity of a system of quantum hard spheres
differs only a little from the classical value �3=2�k everywhere,
except in a narrow region of low temperatures, where the heat
capacity of the system falls to zero (see Fig. 8).

(3) The melting line of a system of quantum hard spheres
always differs from the classical one, except the case T � 0,
P � 0, when both lines intersect. Quantum corrections to the
melting line of a system of hard spheres vanish with an
increase in temperature as Tÿ1=2. The quantum melting line
is a curved line, in contrast to the classical case. The classical
limit in a quantum system of hard spheres cannot be attained
at any finite temperature.
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