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Abstract. Significant advances in the development of computing
devices based on quantum effects and the demonstration of their
use to solve various problems have rekindled interest in the
nature of the “quantum computational advantage.” Although
various attempts to quantify and characterize the nature of the
quantum computational advantage have previously been made,
this question largely remains open. Indeed, there is no universal
approach that allows determining the scope of problems whose
solution can be accelerated by quantum computers, in theory of
in practice. In this paper, we consider an approach to this
question based on the concept of complexity and reachability
of quantum states. On the one hand, the class of quantum states
that are of interest for quantum computing must be complex,
i.e., not amenable to simulation by classical computers with less
than exponential resources. On the other hand, such quantum
states must be reachable on a practically feasible quantum
computer. This means that the unitary operation that trans-
forms the initial quantum state into the desired one must be
decomposable into a sequence of one- and two-qubit gates of a
length that is at most polynomial in the number of qubits. By
formulating several statements and conjectures, we discuss the
question of describing a class of problems whose solution can be
accelerated by a quantum computer.
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1. Introduction

The development of the technology for fabricating processors
based on semiconductor microelectronics [1] has allowed
computing power to constantly increase over the last
decades; as a result, computing devices are now used
virtually everywhere and on a daily basis. However, some
computation problems retain an extremely high computa-
tional complexity for the available devices. Examples of such
problems are, first, the factorization of integers into prime
factors, where, given a composite number N, one has to find
its nontrivial factors p and ¢ (such that N = p x ¢). This
problem has direct applications in cryptography, because the
analysis of the security of public-key cryptography algo-
rithms is based on the assumption of the difficulty of solving
the large-N factorization problem [2]. A second example is
provided by the modeling of complex quantum systems, in
particular, the calculation of the energy states of large
molecules. The study of the properties of molecules and
chemical reactions is important for various applications, for
example, the creation of materials with specified properties
and the design of drugs. Third, finally, of interest are
combinatorial optimization problems, where the best solu-
tion has to be found among a large set of possible
candidates, e.g., in logistics and scheduling tasks. Although
classical algorithms and computing devices continue to
evolve, and the demise of Moore’s law [3] is a considerable
overstatement [4], the above-mentioned computation pro-
blems apparently cannot be solved efficiently with existing
devices and known algorithmic methods, even assuming the
predicted growth of their power.

One approach to expanding computation power is to
build fundamentally different types of computing devices:
quantum computers, which use phenomena that manifest
themselves at the level of individual quantum objects, such
as individual atoms, ions, and photons, as well as macro-
scopic nonlinear superconducting circuits that exhibit the
properties of single atoms [5]. Quantum computers, also often
called quantum processors or quantum coprocessors (which is
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perhaps the most accurate way to describe them, because
quantum devices work in conjunction with classical ones and
also have classical input and output interfaces), are regarded
as a pathway to solving classically hard computational
problems. For example, for the already mentioned factoriza-
tion problems [6] and modeling of complex quantum systems
[7], quantum algorithms are known that are capable of
solving such a problem in polynomial time.

Historically, several concepts have led to the emergence of
quantum computers. Feynman proposed a quantum compu-
ter as a tool for modeling other quantum systems [8, 9], which
are believed to be difficult to model using classical methods
[10]. More precisely, for a class of many-body interacting
quantum systems, the resources for modeling, i.e., calculating
the measurement probabilities (‘strong modeling’) or gener-
ating a finite sample of measurement results (“‘weak model-
ing”), are assumed to grow exponentially with the system
dimension. This phenomenon is known as the ‘quantum
entanglement threshold’ [11]. Then, indeed, starting from a
certain size of the system, its classical modeling becomes
impossible, and therefore alternative approaches are needed,
with quantum entanglement playing a key role.

For example, we consider the state of n qubits (of two-
level quantum systems)

W) =@ (wl0) + Bil1)) (1)
1

where o; and f; are complex numbers satisfying the normal-
ization condition |o;|* + |;|* = 1 fori = 1,...,n. Describing
such a state requires up to 2n real numbers, for example, if
angles on the Bloch sphere are used for the parameterization.
But, if a sufficiently long sequence consisting of single-qubit
operations and a two-qubit entanglement operation acting
on different pairs of qubits (e.g., the controlled NOT gate
CNOT [12]) are applied to a quantum state, then the resultant
state becomes entangled, i.e., not representable as a product
of subsystem states. There is then apparently no straightfor-
ward way to simulate such a state using linear resources.
We can assume that the required resources would grow as
2" i.e., exponentially, as the system dimension increases.
For n =100, direct simulation would require storing a
2190_dimensional complex vector in memory and computing
the results of rotations in a 2'%-dimensional space, which
seems impossible with any computing hardware. Therefore,
the presence of any entangled superposition state should be
considered a prerequisite for quantum computational advan-
tage.

However, the Gottesman—Knill theorem [13—15] demon-
strates that this is not so in a number of cases. A many-particle
entangled state prepared by using only a set of gates from the
Clifford group, applied to a computational-basis state (so-
called stabilizer state), can be simulated with polynomial
resources with respect to any Pauli measurements, including
measurements in the computational basis. An example of
Clifford operations is given by the CNOT gate. Examples of a
many-particle entangled quantum state belonging to this class
are the Greenberger—-Horne—Zeilinger (GHZ) state [16] and
graph states [17]. This demonstrates the naivety of the
argument that the computational advantage of quantum
computers comes solely from the superposition and
entangled nature of the quantum states being processed.
Another example is given by quantum circuits consisting of
match gates, which are also known to allow efficient
simulation on a classical computer [18].

The question of which classes of quantum states can be
modeled classically plays an important role in achieving
quantum computational advantage, i.e., demonstrating that
a quantum computer can solve a problem faster than classical
computing devices. However, this question is related not only
to the degree of entanglement but also to the type of
measurements and operations applied. Indeed, applying a
layer of non-Clifford operations to an entangled stabilizer
state just before computational-basis measurements (which is
equivalent to implementing some common local measure-
ment) makes the Gottesman—Knill theorem inapplicable, and
the corresponding state is difficult to simulate classically.
Also, adding non-Clifford operations, such as the T-gate, to a
quantum circuit makes it unmodelable using classical
resources. These examples show that the space of possible
states of a quantum system —its Hilbert space —is nonuni-
form in terms of modeling complexity (relative to measure-
ments in the computational basis): an n-qubit separable state
requires linear resources, an n-qubit entangled state prepared
only by Clifford operations is polynomially complex in
modeling, and n-qubit entangled states are known that may
require exponential resources for modeling (for example,
prepared by non-Clifford operations).

On the other hand, although a quantum processor is
regarded as a universal quantum device, which means that
any unitary operation can be implemented in principle (with a
specified accuracy), not all unitary operations can be
effectively decomposed into sequences of one- and two-
qubit quantum operations (gates), which are the operations
implemented by actual quantum processors. Indeed, the
decomposition of an arbitrary 2” x 2” unitary matrix into
2x2 and 4 x4 unitary matrices (the respective matrices of one-
and two-qubit operations) is exponentially long in n. In a
number of exceptional cases, such sequences can be linear or
polynomial (as in the case of Shor’s factorization algorithm
[6]). Manin’s observation [19] regarding ““a larger capacity of
the quantum state space” is based on the assumption that
such states are achievable using a practically feasible quantum
computer.

Thus, quantum computers are useful for analyzing
classically unmodelable and quantum-achievable states.
How vast is the class of such states? What is the Hilbert-
space structure of this class? Such questions motivate us to
take the first steps towards classifying quantum states from
the above standpoint. Finding relations between different
classes of states can shed new light on the nature of quantum
computational advantage, which in this context is super-
venient on the size and structure of the set of complex
quantum states that cannot be modeled classically with less-
than-exponential resources. We present a first version of a
complexity diagram of quantum states, in which certain
classes are not yet clearly delineated. The proposed classifica-
tion reflects the existing approaches to assessing the complex-
ity of quantum states from the standpoint of many-body
physics, condensed matter physics, and quantum information
theory.

It is worth noting that we are here working with ideal
qubits, also called logical qubits. In real physical systems,
noise exerts a significant effect on the computation process.
However, either this noise can be suppressed to an acceptable
level, or, alternatively, the effect can be eliminated using error
correction codes. Today, experimental demonstration of the
feasibility of error correction is one of the key areas in the
development of quantum computing. Among the most
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striking results is the implementation of a “logical quantum
algorithm,” i.e., the action of logical (error-corrected)
operations on logical qubits using the Quantinuum H1-1 ion
quantum processor [20].

Today, issues associated with the implementation of
quantum computing devices have become the subject of
work across a wide scientific community. In Russia, this
area is being developed within the framework of the
Quantum Computing Roadmap coordinated by the Rosa-
tom State Corporation; a review of the development of
quantum technologies in Russia as of 2019 (the Roadmap
start) is presented in [21]. One of the most dynamically
developing platforms for quantum computing is represented
by trapped ions. The creation of quantum computing devices
on this platform requires the development of research
subjects that are traditionally thoroughly pursued at the
Lebedev Physical Institute [22], such as laser cooling,
ultrastable lasers, and frequency standards [23], as well as
the development of new areas, for example, in the field of
multilevel quantum logic for the implementation of quantum
algorithms [24]. In 2020-2024, this allowed building quan-
tum computing devices with several dozen qubits and
demonstrating the operation of quantum algorithms [24—
26], including for the modeling of phase transitions [27]. The
quantum computing devices being developed allow practical
tests of hypotheses regarding the relation between complexity
classes of quantum states.

2. Quantum-state picture and universal gate
model of quantum computing

We focus on the n-qubit quantum state |¥,,) that appears after
applying all unitary operations U, in a quantum circuit to the
state [0)*"; in other words, this quantum state | ¥,,) = U |0)*"
appears prior to measurement in the computational basis.
Why are we interested in states, although we could speak not
only about complex quantum states but also about complex
quantum processes U and complex Hamiltonians H that
define nontrivial quantum dynamics U = exp (—iH?) depend-
ing on time ¢ or define a complex ground state, or about
complex measurements?

First, the Choi—Jamiolkowski isomorphism allows all
quantum processes (such as U) corresponding to quantum
circuits to be considered quantum states in the extended
Hilbert space Hi, ® Hou (Where H;, and Hoy, are the Hilbert
spaces of input and output states). As regards Hamiltonians
and measurements, the equivalence of the adiabatic [28],
measurement-based [17], and gate [12] models of quantum
computing allows all the complexity to be discussed in terms
of quantum states without loss of generality. We note that
arbitrary output measurements can always be reduced to
measurements in the computational basis by appending
suitable unitary operations to the quantum circuit. A similar
approach can be resorted to when considering operations
built on direct feedback from the results of intermediate
measurements, which can be replaced by control unitary
operations and deferred measurements. Thus, our approach
to the complexity of quantum states is universal due to the
universality of the gate model of quantum computing.

3. Classification of states

Let us recall that, in order to achieve a quantum computa-
tional advantage, we consider quantum states that are

exponentially difficult to model, i.e., difficult to predict the
probabilities of the implementation of measurement out-
comes or at least to imitate the corresponding procedure of
their random playout. If the relevant states are amenable to
classical modeling, expecting the advantages of quantum
computing would seem unrealistic. Below, we introduce
certain classes of states and formulate several statements
and conjectures about them.

We consider the following set of mn-qubit quantum
states:

e Stab: the set of stabilizer (‘Clifford’) states, i.e.,
quantum states obtained by applying quantum circuits of
Clifford gates to a computational-basis state;

e ClassSimMeas: the set of states for which a classical
algorithm exists whose complexity is no greater than a
polynomial in » and which is capable of reproducing the
results of measuring such states in the computational basis, at
least in the weak sense;

e ClassNonSimMeas: the set of states for which no
classical algorithm exists with complexity of at most a
polynomial in # that would reproduce the results of measur-
ing such states in the computational basis, at least in the weak
sense;

¢ QuantPrep; ,: the set of states that can be prepared on a
quantum computer using a quantum circuit consisting of a
number, at most a polynomial in #, of one- and two-qubit
gates applied to some initial computational-basis state;

e NotQuantPrep; »: the set of states that cannot be
prepared on a quantum computer using a quantum circuit
consisting of a number, at most a polynomial in 7, of one- and
two-qubit gates applied to some initial computational-basis
state;

e ArecalLaw (VolLaw): the set of states for which the
entanglement entropy of a region of space has a tendency to
grow as the size of the boundary (volume) of the region for
sufficiently large regions;

e QuantCompAdyv: the set of states that arise before a
measurement in the computational basis in quantum algo-
rithms with explicit circuits (in particular, without oracles
such as ‘black boxes’), having an advantage greater than a
polynomial in n compared to the best (known or theoretically
conceivable) classical algorithm.

We note that ClassNonSimMeas is the complement of
ClassSimMeas, and QuantPrep; , is the complement of
NotQuantPrep; . We also comment on the class Quant-
Prep; ». Its definition emphasizes the possibility of expres-
sing the general unitary transformation in terms of practically
available one- and two-qubit gates. This class corresponds to
the set of quantum states that can be obtained using a realistic
quantum computer, while, as is known, the decomposition of
an arbitrary n-qubit unitary U, into a sequence of one- and
two-qubit gates typically requires an exponentially long
sequence. This class can be extended, say, to QuantPrep; 5
if the quantum hardware supports up to m-qubit gates, which
is usually not yet available in practice. However, even if such
gates exist for some fixed m, this does not affect the
asymptotic behavior of the gate sequence length. The same
is true for NotQuantPrep ».

Recent studies in many-body quantum physics and
condensed matter physics, which incorporate the concept of
modeling quantum systems within classical approaches, have
shown that a decisive role is played by the behavior of
entanglement when partitioning the entire system into two
parts. We note that such a partitioning is usually implemented
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with regard to the topology of the corresponding physical
system, for example, within a one-dimensional circuit or a
two-dimensional or three-dimensional array of quantum
objects. For example, we can talk about spin systems. There
are effective classical tools for modeling entangled quantum
many-body systems, where the entanglement of a region of
space has a tendency to scale (for sufficiently large regions) as
the size of the region boundary. However, if the entanglement
grows as the volume of one of the regions, such methods may
no longer work efficiently. According to our definition, we
call these classes ArealLaw and VolLaw. In particular, tensor
networks such as matrix product states (MPSs) are good for
approximating ArealLaw quantum states [29], while neural
network quantum states (NNQSs) are considered useful for
describing certain VolLaw states [30-32]. We also note that
ArealLaw and VolLaw are not each other’s complements,
because states can exist whose entanglement scales as neither
volume nor area (e.g., can be constant or scale as some
nontrivial power of area).

4. Relations between classes of states

Let us consider a number of statements and conjectures
concerning the relations between the introduced classes of
quantum states.

By definition, we have

Statement 1. QuantCompAdv belongs to QuantPrep;
and ClassNonSimMeas.

Only such states can provide quantum computational
advantage using realistic quantum computing devices.

Statement 2. In accordance with the Gottesman—Knill
theorem [13-15], Stab belongs to ClassSimMeas.

This is obvious due to the possibility of modeling
quantum stabilizer states using polynomial resources [13—15].

Statement 3. By virtue of [15, 33, 34], Stab belongs to
QuantPrep; ;. Specifically, the complexity of preparing a
given stabilizer state |¥,,) scales as O (n?/logn).

This is because stabilizer states can be efficiently prepared
using one- and two-qubit gates, for example, via a set of Pauli
rotations and CNOT gates. An example of such a state is the
multiqubit GHZ state

0" +[1)°"

GHZ,) = ,
| ) NG

(2)

where 7 is the number of qubits.

Statement 4. Stab intersects AreaLaw and VolLaw.

Examples of states at the intersection of these classes are
given by cluster states used in measurement-based quantum
computing [17].

Statement 5. AreaLaw intersects ClassSimMeas.

This is based on the fact that tensor networks in the MPS
form of the state can effectively describe entangled quantum
states whose entanglement grows in accordance with the area
law [29]. MPSs are particularly well suited for describing one-
dimensional quantum lattice systems with a gap and with
local interactions [35].

Conjecture 1. ArealLaw belongs to ClassSimMeas.

This conjecture is a strengthening of Statement 1. We here
assume that all quantum states whose entanglement grows as
the subsystem partition area can be simulated on a classical
computer with at most polynomial resources (e.g., using
MPSs or generalizations).

Statement 6. ClassSimMeas intersects VolLaw.

This is because some states from VolLaw can be
effectively described using NNQSs [30-32]; for example,
there are states of one-dimensional systems that cannot be
effectively described using MPSs, but can be described using
NNQS:s [30, 32].

Statement 7. QuantPrep intersects ArealLaw and VolLaw.

An Arealaw state can be prepared by applying ~ n
random two-qubit gates acting between neighboring qubits
(within a given topology). A VolLaw state, accordingly, can
be prepared by applying ~ n2 random two-qubit gates to all
possible pairs of qubits. We note that an arbitrary two-qubit
gate can be implemented using at most three CNOT gates
[36].

Conjecture 2. There are VolLaw states outside ClassSim-
Meas.

Examples of such states are presumably the quantum
states produced by random circuits (in the absence of noise)
that were used to demonstrate quantum computational
advantage (this was done for noisy circuits in [37, 38]). In
fact, quantum circuits were chosen for such demonstrations
so as to ensure the preparation of VolLaw states and thereby
eliminate the possibility of their simulation by tensor-network
ansatzes and other known classical methods. However, we are
unaware of a rigorous proof for this intuitively natural
conjecture. We also note that, in the noisy case, a classical
polynomial algorithm was proposed in [39] (which, however,
does not concern the above-mentioned experiments on the
quantum advantage of a finite-size circuit).

Conjecture 3. ClassSimMeas intersects NotQuantPrep ».

This conjecture is related to the fact that all known
algorithms for preparing an arbitrary state

|lpn>: Z Cx|X> (3)

x€{0,1}"

with probability amplitudes { Cy} have exponential complex-
ity in the number of operations required (see a recent review
of results in [40]). On the other hand, we can imagine a
situation where the function x—|Cy|* is constructed such that
it can be efficiently calculated on a classical computer, but at
the same time does not respect the structure of the tensor
product of the physical space of qubits. A similar situation is
realized, in particular, in NNQSs, where the Cy are essentially
the output signals from the neural network for a given input x.

The ensuing expected relations among the classes of states
are shown in Fig. 1. We further discuss the question of the size
of the classes of states for a fixed n. It is known that the set of
stabilizer states Stab contains

2727+ 1) (4)
i=1

states [41]. At the same time, QuantPrep; », AreaLaw, Vol-
Law, and NotQuantPrep; , contain an infinite number of
states, because adding arbitrary continuous local operations
to their preparation schemes leaves states inside these classes.
ClassSimMeas contains an infinite number of states because
AreaLaw and QuantPrep; , intersect. An infinite subset inside
QuantCompAdv contains states arising in random schemes,
for example, with single-qubit gates distributed uniformly
randomly with respect to the Haar measure. It seems
interesting to ask whether a class of problems can be specified
in the definition of the quantum computational advantage
within QuantCompAdv such that the corresponding set of
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VolLaw

( ClassSimMeas \ \

VolLaw U AreaLaw

ClassNonSimMeas = ClassSimMeas
NonQuantPrep, , = QuantPrep, ,

Figure 1. Schematic illustration of presented relations among classes of
states. Class denotes the complement set of Class. x symbols in the
notation for the Stab class (which belongs to the intersection of ClassSim-
Meas and QuantPrep; >, but does not exhaust it) are used to emphasize
finiteness of this class for a fixed n.

states, or more precisely, the set of corresponding readout
probability distributions, becomes finite.

5. Conclusions

In this paper, we proposed an approach to drawing connec-
tions between different classes of quantum states. We note
that the “simplicity” of the states does not mean that they are
generally impractical for quantum information technologies.
A good example is given by the BB84 quantum key
distribution protocol (see [42] for a review), where stabilizer
states and Pauli measurements are used to solve the problem
of information-theoretic secure generation of cryptographic
keys.

Another interesting area comprises oracle-invoking algo-
rithms that can provide a provable advantage (see, e.g., the
single-run Bernstein—Vazirani algorithm [43]). However, we
believe that the potential speedup in such algorithms can be
attributed to the field of quantum communication rather than
quantum computing, at least from a practical standpoint.

Third, a pressing issue is the construction of complexity
classes taking the impact of errors on quantum computing
processes into account.

Finally, we note specific attempts to propose classes of
quantum states for studying ‘complexity transitions’ [44, 45],
i.e., sets of quantum states that (being achievable) can be
driven more or less complex by changing their parameters. An
example of such states is provided by the class of sign-
alternating Dicke states, in which the transition to the
VolLaw class is observed for a certain set of parameters [45].
Such states can serve as a basis for experimental verification
of the conjectures formulated above.
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