
Abstract. This paper consists of two parts. The first is a review
of the classical Schwinger±DeWitt technique for calculating the
effective action in quantum field theory and quantum gravity.
We systematically present the background field and heat kernel
methods and the calculation of heat kernel coefficients for
minimal second-order operators, and apply these methods to
calculations of the divergent part of the one-loop effective
action. We then discuss the method of universal functional
traces, which is also applicable to higher-order minimal and
nonminimal operators. In the second part, we discuss new
results obtained recently on off-diagonal heat kernel expan-
sions for higher-order minimal operators. These expansions,
which generalize the standard DeWitt ansatz, are shown to
have the form of a double functional series in some new special
functions, which we call the generalized exponential functions.
The properties of these functions and expansions constructed
from them are discussed in detail, including the presence of
terms with arbitrarily large negative powers of the proper
time. Finally, we discuss two different covariant methods for
calculating the coefficients of off-diagonal expansions: a gen-
eralized Fourier transform and the perturbation theory.

Keywords: Schwinger±DeWitt technique, proper-timemethod, heat
kernel, effective action, higher-order theories, off-diagonal expan-
sions

1. Introduction

The importance of functional methods in modern quantum
field theory (QFT) has increased enormously [1, 2]. The
functional approach within QFT is based on the study of
generating functionals for quantum field correlators, which
encode all information about the field theory model under
consideration. They are functionals of background fields, i.e.,
of either external sources or average fields of a general type.
The use of functional methods has largely directed progress in
studying the renormalizability of various QFT models, their
renormalization group properties, anomalies, and so on.

Moreover, because the geometry of space±time itself can
be regarded as such a background field, this opens up the
possibility of developing an approach where QFT is first
constructed on a fixed classical space±time background and
at the next stage the back reaction of quantum fields (both
matter fields and gravitons) on the underlying classical curved
background is considered [1, 3±5]. Although this approach
obviously loses its applicability on the Planck scale, it is
important from both practical and general theoretical
standpoints. From the practical standpoint, it is about
studying phenomena where both quantum and gravitational
effects are significant, but which are still far from the Planck
scale (for example, the physics of massive black holes and the
early stages of cosmological evolution). From the general
theoretical standpoint, it is a necessary step towards the
construction of complete quantum gravity.

The application of functional methods in QFT is based on
a combination of two main ideas: the background field
method and the heat kernel method, which we address in
Sections 2.1 and 2.2 below. Anticipating the treatment in
what follows, we say that the heat kernel method allows
effectively describing the features of quantum field propaga-
tors and, further, regularizing and renormalizing Feynman
integrals. The convenience and power of this method underlie
its utmost importance in the analysis of gauge theories and
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modified (super)gravity models: it underlies most of the
results on their (non)renormalizability, renormalization
group behavior, anomalies, and so on.

However, the applicability range of the heat kernel method
actually extends far beyond the scope of QFT.We can say that
this method is currently one of the key and most commonly
used tools in all modern mathematical physics. From the
standpoint of pure mathematics, it has deep relations to the
theory of pseudodifferential operators [6], index theorems [7],
K-theory, spectral and noncommutative geometries, etc. The
range of its practical applications is equally wide, from solid
state physics to the analysis of markets.

Before proceeding with a detailed description of the heat
kernel method and its QFT application, a few historical
remarks are in order. From its very inception, the method
developed along two intertwined but still distinct directions,
which can be conventionally called `physical' and `mathemat-
ical.' The foundation was laid by Hadamard [8] in his work
on hyperbolic linear equations, where he first obtained an
expansion for the Green's function, and by the work of Fock
[9], who noticed that many quantities in quantum theory can
be conveniently represented as integrals with respect to an
auxiliary `proper time' variable t. Themathematical direction
was developed in the work of Meenakshisundaram on the
Laplace operator on a Riemannian manifold [10, 11]. In turn,
Schwinger [12] developed Fock's proper time method for
renormalizing divergent integrals in QFT.

But a true revolution occurred in the early 1960s when
DeWitt [1], by an extremely successful combination of the
ideas of Schwinger and Hadamard, showed that the one-
loop effective action of a theory can be expressed in terms
of the coefficients of the heat kernel of its wave operator
and developed his classical method for their calculation of
the minimal second-order operator on a curved space±
time. DeWitt's method served as the basis for all
subsequent additions to QFT; we discuss it in detail in
Section 2.3.

At about the same time, Seeley's important work [13]
on complex powers of elliptic operators appeared, which
determined the subsequent development of the mathematical
direction. It was followed by a stream of studies of the heat
kernel, still ongoing, centered on Gilkey's work [14±20]. The
mathematical approach to the heat kernel is essentially based
on the well-developed theory of pseudodifferential operators
[6] and the use of so-called `functoriality properties.' Despite
the importance of this area, it has a number of significant
disadvantages from physicists' standpoint. First, the mathe-
matical approach is fine for proving general theorems and
estimates, but it seems too abstract and not entirely con-
venient for applied calculations. Second, from the very
beginning, it was limited to the case of only compact
manifolds, while, for a physicist, naturally, noncompact
physical space±time is of greatest interest. Finally, mathema-
ticians are usually only interested in the trace of the heat
kernel, which may also be insufficient for physics applica-
tions. Therefore, we do not discuss the work in the
mathematical field in any more detail, but concentrate
instead on the computational physical approach and its
applications to QFT.

The Schwinger±DeWitt method has been successfully
applied to lower-spin fields and Yang±Mills gauge theories
[21±23], which underlie the modern Standard Model of
particle physics, as well as to gravity and supergravity
theories [24±26]. Ordinary Einstein gravity with the action

linear in curvature is known [1] to be nonrenormalizable. This
problem is solved by introducing higher-derivative terms into
the Lagrangian theory: in the simplest case, adding terms
to the action that are quadratic in curvature [27]. Such
modified models have also been analyzed within the frame-
work of the general Schwinger±DeWitt approach. In parti-
cular, their asymptotic freedom was investigated [28, 29]. The
Schwinger±DeWitt technique has been used to study the
general properties of dimensional and zeta-functional reg-
ularizations [24, 30] and the conformal anomaly of various
conformally invariant models at the classical level in curved
space [31±34], and to calculate the quantum average of the
energy±momentum tensor for a general metric and in spaces
with various types of symmetries [35±39], including the
effective potential on the de Sitter space [40]. Renormalizable
and, in particular, Weyl-anomaly-free conformal supergrav-
ity was studied in [41, 42].

Although such gravity, quadratic in curvature, serves as
the basis for the cosmological inflation model proposed by
Starobinsky [43], the presence of higher derivatives gives rise
to Ostrogradsky ghosts and a unitarity violation. To over-
come this problem, much attention has recently been
attracted to Ho�rava±Lifshitz-type models [44], which allow
preserving the renormalizability and unitarity simultaneously
at the cost of breaking Lorentz invariance at high energies,
and which have also been analyzed by the Schwinger±DeWitt
method and its generalizations [45±47].

But this class of models is plagued by an essential
difficulty: the method proposed by DeWitt for calculating
the heat kernel coefficients is directly applicable only to
Laplace-type operators (so-called minimal second-order
operators). Therefore, the analysis of models with higher
derivatives or a nonminimal operator required developing
indirect calculation methods that allow a more complex case
to be somehow reduced to the already known DeWitt case.
Their presentation and application to quantum field models,
including the so-called method of universal functional traces,
which we briefly discuss in Section 2.5, is contained in
Barvinsky and Vilkovsky's work [48]. We also note a series
of works by Gusynin et al. [49±54], who calculated the heat
kernel coefficients using the Fourier transform. An
important development of the DeWitt method was the
covariant perturbation theory, where the local DeWitt
series in powers of dimensional tensor structures is
partially resummed into a series in powers of curvature
with nonlocal form factors [55±60]. Further references can
be found in review papers [61±63].

This review consists of two parts. The first (Section 2) is
devoted to the presentation of the results, which have already
become classical, on the use of the heat kernel method in QFT
and quantum gravity. We sequentially consider the back-
ground field (Section 2.1) and the heat kernel (Section 2.2)
methods and the calculation of heat kernel coefficients for
Laplace-type operators (Section 2.3); we then proceed with
the application of these methods to the calculation of the one-
loop effective action (Section 2.4) and, finally, briefly discuss
indirect methods (Section 2.5). The second half of the review
(Section 3) is devoted to the method of off-diagonal
expansions of the heat kernel developed by the authors in
recent years, which is applicable to higher-order minimal
operators and to a wide class of nonminimal (causal)
operators. In contrast to indirect methods, this is a direct
generalization of the DeWitt technique for Laplace-type
operators, but at the same time it is quite distinct from it in a
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number of unusual features, which offer a new look at the
classic results expounded in the first part.

2. Classic Schwinger±DeWitt method
and its generalizations

We first go into some details about the physical situations that
we discuss in what follows and introduce the necessary
notation.

Any field theory lives on some space±timeM, by which
we invariably mean a d-dimensional (pseudo-)Riemannian
manifold with a metric gab defined on it. Although the real
physical metric is Lorentzian, i.e., has the signature
�ÿ � � � � ��, in practice all calculations are usually carried
out for the Euclidean metric with the signature �� � � � � ��,
after which the so-called `Wick rotation' is performed,
providing a transition to the physical case by analytic
continuation in the complex time variable x 0. Accordingly,
we also consider the Euclidean metric throughout this paper.
Associated with the metric gab is the usual Levi-Civita
connection Ha for which the metric is covariantly constant,
Hagbc � 0, and which has no torsion. Although the methods
discussed below can be relatively easily extended to more
general cases involving torsion and nonmetricity, we do not
discuss these issues in this review.

Next, a certain set of fields j�x� � jA�x� are assumed to
live on space±time M, which, from a mathematical stand-
point, are sections of a vector bundle overM. Their indicesA
can be of any nature: space±time, spinor, internal, or
combined. We omit them whenever possible in what follows,
using hats to denote matrices in the space of fields. In
particular, 1̂ � dA

B simply denotes the identity matrix. The
Riemann tensorRc

dab and the curvature R̂ab in the bundle are
defined standardly via commutators of the covariant deriva-
tives Ha:

�Ha;Hb�v c � Rc
dabv

d ; �2:1�
�Ha;Hb�j � R̂abj : �2:2�

Finally, at the classical level, the fields must satisfy certain
equations of motion. It is assumed that such equations are
determined by the least action principle. It is extremely
convenient to additionally introduce auxiliary external
sources of the fields J�x� � JA�x�, such that the equations of
motion of the theory become

dS
dj
� ÿJ ; �2:3�

where S�j� is the classical action functional of the theory.

2.1 Background field method
The background field method is based on decomposing the
total quantum field j�x� into two parts, which respectively
correspond to the background field F�x� � hj�x�i �where
h. . .i is the quantum average in the presence of external field
sources J�x�� and small quantum fluctuations f�x�:

j � F� f : �2:4�

It is convenient to expand the classical action in a
functional Taylor series with respect to small perturbations:

S�F� f� �
X1
n�0

1

n!
Sn�F�f n ; �2:5�

Sn�Fjx1; . . . ; xn� � dnS�j�
dj�x1� . . . dj�xn�

����
j�F

; �2:6�

Sn�F�f n �
�
dx1 . . . dxn Sn�Fjx1; . . . ; xn�f�x1� . . .f�xn� :

�2:7�

The linearized classical equation for the small perturbations
f�x� propagating on a given background F�x� is then
determined by the second variational derivatives of the
action,

F̂�H�f � 0; where F̂�H�d�x; y� � S2�Fjx; y� ; �2:8�

and the `classical vertices'S�Fx1; . . . ; xn� are n-point functions
that determine the nonlinear coupling of fluctuations.
Importantly, both the operator F̂�H� and the vertices Sn�F�
are functionals of the average background field F�x�.

At the quantum level, all vacuum correlators of quantum
fields hj�x1� . . .j�xn�i are encoded in a single object, the
generating functional:

Z�J�
Z�0� �



exp �jJ��

�
X1
n�0

1

n!

�
dx1 . . . dxn



j�x1� . . .j�xn�

�
J�x1� . . . J�xn� ; �2:9�



j�x1� . . .j�xn�

� � 1

Z�J�
dnZ�J�

dJ�x1� . . . dJ�xn�
_����
J�0

; �2:10�

which is, in turn, determined by the Feynman functional
integral 1

Z�J� �
�
Dj exp

1

�h

ÿÿS�j� ÿ j J
�
: �2:11�

Next, we successively introduce the generating functional
of connected correlation functions

W�J� � ÿ�h lnZ�J� �2:12�

and its Legendre transformationÐ the effective action

G�F� � ÿW�J� ÿ F J
�
J�J�F� ; �2:13�

where J�F� is the inversion of the functional dependence
F�J� � dW�J�=dJ. Then, the equation describing the back
reaction of quantum corrections on the classical background
F�x� takes the form

G1�Fjx� � dG�F�
dF�x� � ÿJ�x� : �2:14�

Therefore, the average field F�x�, the effective action G�F�,
and Eqn (2.14) are the respective quantum analogues of the
classical field j�x�, the action S�j�, and equations of
motion (2.3).

Finally, the semiclassical (loop) expansion of the effective
action in powers of the Planck constant �h,

G�F� �
X1
n�0

�hnG �n��F� ; where G �0��F� � S�F� ; �2:15�

1 As noted above, we write all expressions for a Euclidean QFT, and they

therefore differ from the perhapsmore familiar Lorentzian notation by the

absence of additional imaginary units i.
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allows obtaining expressions for each order G �n��F� in the
form of space±time integrals of the classical propagator
Ĝ�x; y� defined as the kernel of the operator inverse to (2.8),

F̂�H�Ĝ�x; y� � 1̂d�x; y� ; �2:16�

and the classical vertices Sn�F� in (2.6). For this, we rewrite
expression (2.11) in the form

exp

�
ÿG�F�

�h

�
�
�
Df exp

1

�h

ÿÿS�F� f� � G1�F�f
�
; �2:17�

substitute expansions (2.5) and (2.15), and equate terms with
the same powers of �h. In the resulting expressions, the path
integrals are already Gaussian and can therefore be easily
evaluated using Wick's theorem.

It is convenient to present the results obtained in this way
graphically in the form of (space±time) Feynman diagrams,
where the classical vertex Sn�F� is shown with a thick dot with
n outgoing lines , and the classical propagator Ĝ�x; y�, with a
line connecting the corresponding vertices. It turns out that
the term G1�F�f in (2.17) ensures a systematic subtraction of
the `tadpoles' (i.e., subdiagrams connected to the rest of the
diagram by a single line). Therefore, each n-loop contribution
is given by a set of one-particle irreducible (OPI) vacuum
diagrams with n loops. In particular, it can be shown that

G �1��F� � 1

2
ln Det F̂�H� � 1

2
Tr ln F̂�H� � 1

2
; �2:18�

G �2��F� � 1

8
� 1

12
; �2:19�

where Det and Tr denote the functional determinant and the
functional trace.

We emphasize once again that the expressions obtained in
this way are not functions of the particle momenta and
coupling constants but are functionals of all average back-
ground fields of the model under consideration (which can
include scalar, spinor, and vector fields, a metric, and so on:
j � j�x�;c�x�;Aa�x�; gab�x�; . . .). Therefore, this form of the
diagram technique is defined not on the trivial background of
flat space±time and vanishing average fields but on an
arbitrary fixed background.

2.2 Heat kernel method
Not unexpectedly, however, the space±time integrals corre-
sponding to Feynman diagrams obtained in the background
field method are divergent and therefore require a regulariza-
tion and renormalization procedure. As noted in the Intro-
duction, a universal tool for this is the heat kernel (or proper
time) method. Its main idea is the observation that any power
of an operator F̂ can be written in the form of a so-called
Schwinger representation, given by an integral of the operator
exponential exp �ÿtF̂ � with respect to the auxiliary para-
meter t called the `proper time,'

F̂ ÿs � 1

G�s�
�1
0

dt t sÿ1 exp �ÿtF̂ � ; �2:20�

whereG�s� is the standard Euler gamma function. Here, F̂ can
be an arbitrary positive-definite differential (or even pseudo-
differential) operator, and the exponent can take arbitrary
complex values, except negative integers: s 6� 0;ÿ1;ÿ2; . . . .

For s 2NN, this relation can be directly verified by alternating
the action of F̂ and the integration by parts s times.Moreover,
from representation (2.20), using the properties of the gamma
functions, it is easy to obtain properties that would naturally
be expected of a complex power, for example, F̂ a F̂ b � F̂ a�b.

The inverse transformation is given by

exp �ÿtF̂ � � 1

2pi

�w�i1
wÿi1

tÿsG�s�
F̂ s

ds ; �2:21�

where the integration contour is parallel to the imaginary axis
for a sufficiently large positivew. The last expression is easy to
understand as follows: the gamma function G�s� has simple
poles at sn � ÿnwith the residues �ÿ1�n=n!. The integral over
s then reduces to the sum of residues at these poles, which
exactly reproduces the standard Taylor series expansion for
the operator exponential exp �ÿtF̂ �.

Next, it turns out to be convenient to pass from operators
to their kernels. Actually, the heat kernel K̂F�tjx; x 0� of an
operator F̂�H� is typically understood as the kernel of its
operator exponential exp �ÿtF̂ �:

K̂F�tjx; x 0� � exp
ÿÿtF̂�H�� 1���������

g�x�p d�x; x 0� : �2:22�

This is a two-point (i.e., depending on x and x 0) matrix-
valued function. Obviously, it is a solution of the differential
heat equation

�qt � F̂x�K̂F�tjx; x 0� � 0 �2:23�

with the initial condition

K̂F�0jx; x 0� � 1̂���������
g�x�p d�x; x 0� : �2:24�

The terminology established in the literature (`heat
equation,' `heat kernel,' etc.) is historically determined by
the fact that, in the case of three-dimensional flat space
M� RR3, a single scalar field j�x�, and the covariant
Laplacian taken as the operator F�H� � ÿ& � ÿgabHaHb,
Eqn (2.23) indeed coincides with the standard heat conduc-
tance equation. 2

Now, passing from operators to their kernels in relations
(2.20) and (2.21), we find that the heat kernel K̂F�tjx; x 0� and
the Green's function ĜF s�x; x 0� � F̂ ÿsd�x; x 0� are related by
the direct and inverse Mellin transformations:

ĜF s�x; x 0� � 1

G�s�
�1
0

dt t sÿ1K̂F�tjx; x 0� ; �2:25�

K̂F�tjx; x 0� � 1

2pi

� w�i1

wÿi1
ds tÿsG�s� ĜF s�x; x 0� : �2:26�

These transformations are a convenient tool for regulariz-
ing various divergent quantities. It is remarkable that it is then
possible to equally successfully apply and combine various
methods of covariant regularization: dimensional (when the
space±time dimension is formally assumed to differ from the
physical one by a small amount, d � 4� e), z-functional

2 We note that, for the covariant Laplacian, instead of D accepted in the

Euclidean case, we use the notation &, which is more suitable in light of

the applications we are interested in; in addition, it allows the symbol D to

be used for the Pauli±Van Vleck±Morette determinant (2.47).
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(based on some special analytic continuation) [30], point
splitting, etc. (a detailed discussion and comparison of
various regularization methods can be found, e.g., in [4]).

To show more specifically how exactly this is done, we
suppose that the inverse propagator of the theory, F̂�H�, is a
minimal operator of order 2n, i.e., its leading term can be
represented as the covariant Laplacian raised to the nth
power,

F̂�H� � 1̂�ÿ&�n � P̂�H� ; �2:27�

where

P̂�H� �
X2nÿ1
k�0

P̂ a1...ak
k Ha1 . . .Hak �2:28�

includes all terms of lower orders in derivatives. It is well
known that, for s < d=2n, the Green's function ĜF s�x; x 0�
tends to infinity in the coincidence limit x 0 ! x. Accordingly,
the functional trace

Tr F̂ ÿs �
� ���

g
p

ddx tr ĜF s�x; x� �2:29�

is also undefined for sufficiently small s. But the functional
trace of the heat kernel

Tr exp �ÿtF̂ � �
� ���

g
p

ddx tr K̂F�tjx; x� �2:30�

is guaranteed to be well defined for t > 0. Its Mellin trans-
form gives the so-called operator zeta function

zF�s� � 1

G�s�
�1
0

dt t sÿ1 Tr exp �ÿtF̂ � : �2:31�

The last integral converges everywhere in the domain
Re s > d=2n and defines an analytic function in it; to the
domain Re s < d=2n, the function zF�s� can be continued
analytically. Then, the expression for Tr F̂ ÿs can be
regularized as follows: instead of divergent expression
(2.29), we set

Tr F̂ ÿs �reg zF�s� : �2:32�

Further, the functional determinant of F̂�H� can also be
naturally regularized using the operator zeta function

Det F̂�H� �reg exp
ÿÿz 0F�0�� �2:33�

(in mathematics, this relation is often promoted to a
definition [64]), and we then obtain the one-loop effective
action of the theory in the form

G �1� � 1

2
Tr ln F̂�H� �reg ÿ 1

2

�1
0

dt
t

Tr exp �ÿtF̂ � : �2:34�

Thus, the one-loop effective action for the theory with the
inverse propagator F̂�H� can be expressed in terms of only the
diagonal elements x � x 0 of the heat kernel K̂F�tjx; x 0� (we
note that, if we want to calculate the higher-loop contribu-
tions similarly, then we encounter nondiagonal elements with
x 6� x 0 in general). In the case of minimal operator (2.27) and
amanifold without boundary, qM� 1 , it is well known that,

in the coincidence limit x � x 0, the heat kernel has a power-
law asymptotic expression for small values of the proper time
t! 0,

K̂F�tjx; x� � tÿd=2n
X1
m�0

tm=nÂm�Fjx� ; �2:35�

where the heat kernel coefficients Âm�Fjx� are constructed
from the coefficients of the operator P̂ a1...ak

k , the Riemann
tensor Ra

bcd, and the curvature of the bundle R̂ab.
3

The general form of asymptotic expansion (2.35) of the
heat kernel diagonal is determined by dimensional considera-
tions. Indeed, in the coincidence limit, the only negative-
dimension quantity is the proper time t. For a minimal
operator of order 2n, we then have

dim t � ÿ2n : �2:36�

In expansion (2.35), the general prefactor tÿd=2n is
responsible for the total dimension of the heat kernel,
dim K̂F�tjx; x 0� � d, while each product in the summand is
dimensionless, whence we have

dim Âm�Fjx� � 2m : �2:37�

In addition, the derivatives of the background fields have
positive dimensions in the coincidence limit:

R � fRa
bcd; R̂ab; P̂

a1 ...ak
k g ; where dimH � 1 ; �2:38�

dimRa
bcd � dim R̂ab � 2 ; dim P̂ a1...ak

k � 2nÿ k : �2:39�
Then, the heat kernel coefficients in the coincidence limit are
constructed from contractions of the derivatives of the
background fields with due account for the overall back-
ground dimension:

Âm�Fjx� /
X

HlR k ; where dim �HlR k� � 2m : �2:40�

Thus, from the standpoint of dimensional analysis, expansion
(2.35) can be regarded as an expansion in increasing powers of
the background dimension, and the proper time t is then
simply a parameter responsible for the grading by the
dimension of the local terms HlR k.

To summarize, calculating the one-loop effective action
of the theory using the heat kernel method amounts to
calculating the coefficients tr Âm�Fjx� as functions of the
background fields R. If F̂�H� is a Laplace-type operator,
i.e., a second-order minimum operator, a simple and
elegant method for calculating the heat kernel coefficients
was proposed by DeWitt, as is described in the next
section. But this method is not directly applicable to
those theories where F̂�H� is a higher-order operator or is
not minimal. Section 2.5 is devoted to this more general
case.

2.3 Classic DeWitt method
The method proposed by DeWitt allows calculating the
coefficients of the heat kernel for a Laplace-type operator
(i.e., a minimal second-order operator (2.27) with n � 1). This

3 Heat kernel coefficients are known in the literature under a variety of

names associated with the names of DeWitt [1], Hadamard [8], Meenak-

shisundaram [10, 11], Schwinger [12], Seeley [13], and Gilkey [14] in

various combinations.
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operator is standardly written in the form

F̂�H� � ÿ1̂&� P̂� 1̂

6
R ; �2:41�

where the `potential term' P̂�x� does not contain derivatives,
i.e., is just a matrix (because the term with first-order
derivatives can always be eliminated by redefining the
covariant derivative Ha), and the term with R=6 is tradition-
ally added for convenience.

But, before we go on to discuss the DeWitt method, we
introduce several more definitions that are standard in
differential geometry, to be consistently used in what
follows. We systematically use square brackets to denote the
coincidence limit x � x 0 for a two-point function f �x; x 0�:�

f �x; x 0�� � f �x; x� : �2:42�

We assume that the points x and x 0 are close enough that
there is a unique geodesic between them. Then, the important
Synge's world function s�x; x 0� is defined as half the square of
the geodesic distance between the points. We introduce the
shorthand notation for the derivatives of the world function:

sa1...an � Han . . .Ha1s : �2:43�

In particular, s a�x; x 0� � H as is simply a vector at a point x,
tangent to the geodesic connecting x and x 0, whose length is
proportional to the geodesic distance between the points.
Then, the definition of the world function can be rewritten as

sas a � 2s : �2:44�
By differentiating this master relation, we obtain another
important property:

s bs a
b � s a : �2:45�

In the coincidence limit, obviously, we have

�s� � 0 ; �s a� � 0 ; �s a
b� � d a

b : �2:46�

It can be shown that the Pauli±Van Vleck±Morette determi-
nant

D�x; x 0� � det �ÿHaHb 0s����������������������
g�x� g�x 0�p �2:47�

is related to the rate of the divergence of geodesics s a
a as

s aHaD � D�dÿ s a
a� : �2:48�

We similarly define the parallel translation tensor Î �x; x 0�
along a geodesic connecting points x and x 0 by the relations

s aHa Î � 0 ;
� Î � � 1̂ ; �2:49�

and introduce the shorthand notation for its derivatives:

Îa1...an � Han . . .Ha1 Î : �2:50�

The coincidence limits �sa1...an � and � Îa1...an � can be calculated
using only the rules for commuting covariant derivatives (2.1)
and (2.2).

With all the necessary definitions given, we now
proceed directly to the DeWitt method. Its main idea is
very simple: in the case of a Laplace-type operator (2.41),

we use the ansatz

K̂F�tjx; x 0� � D1=2�x; x 0�
�4pt�d=2

exp

�
ÿ s�x; x 0�

2t

�

�
X1
m�0

tm âm�Fjx; x 0� ; �2:51�

where we call the two-point matrix-valued functions
âm�Fjx; x 0� (independent of the proper time t) the HaMi-
DeW coefficients or simply the heat kernel coefficients. The
specific form of this ansatz and, in particular, the appearance
of the Pauli±Van Vleck±Morette determinant D1=2�x; x 0� in it
raised to a certain power is due to the similarity with the
semiclassical approximation, where the proper time t plays a
role similar to that of Planck's constant �h. We note, however,
that the factor D1=2 can, in principle, be changed or removed
altogether by redefining the coefficients âm�Fjx; x 0�.4

We now substitute ansatz (2.51) in heat equation (2.23) for
operator (2.41), require that the terms at different powers of
the proper time t vanish independently, and simplify the
resulting equations using relations (2.45) and (2.48). We then
obtain an infinite chain of recursive relations

�m� s aHa�âm � ÿDÿ1=2F̂�H�D1=2âmÿ1 ; �2:52�

with the initial condition

â0 � Î : �2:53�

If we differentiate recursive relations (2.52) and then take
the coincidence limit x � x 0, we can express the coincidence
limit �H kâm�1� in terms of �H lâm�, l4 k� 2, and the limits
�sa1...an � and � Îa1...an �. By sequentially calculating �H kâm�, we
obtain exact local expressions for them in the form of
combinations of contractions of covariant derivatives of the
background fieldsR in (2.38).

In particular, for the simplest coincidence limits, this
method allows obtaining the well-known expressions (which
can be found in [1] or [48])

�â0� � 1̂ ; �Haâ0� � 0 ; �HaHbâ0� � 1

2
R̂ab ; �2:54�

�â1� � ÿP̂ ; �Haâ1� � ÿ 1

2
HaP̂ÿ 1

6
HbR̂ba ; �2:55�

�â2� � 1

180

ÿ
RabcdR

abcd ÿ RabR
ab �&R

�
1̂

� 1

2
P̂ 2 � 1

12
R̂abR̂ ab ÿ 1

6
&P̂ : �2:56�

DeWitt's method does not allow obtaining closed expres-
sions for the coefficients âm�x; x 0� beyond the coincidence
limit. However, they can be reconstructed from the coin-
cidence limits �H kâm� using a covariant Taylor series expan-
sion. That this procedure can be carried out consistently
confirms the validity of the initial choice of ansatz (2.51).

In the coincidence limit x � x 0, the exponential and
determinant D1=2 disappear from expansion (2.51), and we
obtain the well-known asymptotic form for the heat kernel

4 As we see in what follows, the generalized Fourier transform method

does generate expansion (3.43), where the determinant D is raised to a

different power.
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diagonal, Eqn (2.35), with the coefficients

Âm�Fjx� � �4p�ÿd=2
�
âm�Fjx; x 0�

�
: �2:57�

2.4 Ultraviolet divergences and anomalies
We use dimensional regularization by formally setting the
dimension of space equal to 2o, and the even physical
dimension d, not necessarily equal to 4, to be fixed. Then,
the regularization removal corresponds to the limit o! d=2.
To also eliminate infrared divergences, we introduce an
additional constant mass term 1̂m 2 into operator (2.27) of
the theory. Taking the integral with respect to the proper time
t in (2.34) and using the asymptotic expansion for the heat
kernel diagonal, Eqns (2.35) and (2.57), yields the one-loop
effective action decomposed into divergent, logarithmic, and
finite parts [1, 48, 65],

G �1� � Gdiv � Glog � Gfin ; �2:58�

each of which is representable as an expansion in inverse
powers of m 2:

Gdiv � 1

2�4p�d=2
Xd=2
n�0

�
1

oÿ d=2
ÿ c

�
d

2
ÿ n� 1

��

� �ÿm
2�d=2ÿn

�d=2ÿ n�!
� ���

g
p

ddx tr �ân� ; �2:59�

Glog � 1

2�4p�d=2
ln

m 2

m 2

Xd=2
n�0

�ÿm 2�d=2ÿn
�d=2ÿ n�!

� ���
g
p

ddx tr �ân� ;
�2:60�

Gfin � ÿ md

2�4p�d=2
X1

n�d=2�1

G�nÿ d=2�
m 2n

� ���
g
p

ddx tr �ân� :
�2:61�

In the expression for Gdiv, c�z� is the digamma function
(the logarithmic derivative of the gamma function), and
in the expression for Glog, m 2 is some mass parameter
reflecting the ambiguity of the renormalization proce-
dure.

Obviously, this asymptotic expansion of the effective
action makes sense only when �ân�5m2n, i.e., if, in view of
(2.40), the background fields and their derivatives are small
compared with the corresponding power of the mass para-
meter: H lR n 5m 2n�l.

The simplest example of this local expansion is the
effective Coleman±Weinberg potential [66] for a 4-dimen-
sional scalar field with the lj 4=12 self-coupling. In the case
where the average field is constant and effectively plays the
role of a mass parameterm 2 � lj 2, logarithmic part (2.60) is
represented by a single nonzero HaMiDeW coefficient a0 � 1
and is given by the space±time integral of the effective
potential:

GCW �
�
d4x

l2j 4

64p2
ln

lj 2

m 2
: �2:62�

An important application of the local expansion is the
calculation of the anomaly in the trace of the energy±
momentum tensor associated with the local Weyl invariance
violation when renormalizing ultraviolet divergences. In an
even dimension d, the divergent part of the action and the
trace anomaly are determined by the coefficient tr �âd=2�. In

particular, for d � 4, we have

Gdiv � ÿ 1

32p2
1

2ÿ o

� ���
g
p

d4x tr �â2� ; �2:63�

hT a
a i �

2gab���
g
p dG

dgab
� ÿ 1

�4p�2 tr �â2� : �2:64�

An exact calculation [4, 48] shows that, for a conformally
invariant theory with N0 real scalar fields, N1=2 Dirac
fermions, andN1 vector multiplets (including the correspond-
ing contributions from the Faddeev±Popov ghosts), the
sought coefficient can be written in the form

1

�4p�2 tr �â2� � cW 2 ÿ aEÿ b&R ; �2:65�

whereW 2 �WabcdW
abcd is the square of the Weyl conformal

tensor and E � RabcdR
abcd ÿ 4RabR

ab � R 2 is the Gauss±
Bonnet density. The coefficients a and c are given by simple
formulas (demonstrating that the contribution of each
particle to the anomaly is only determined by its type),

a � 1

360�4p2�
ÿ
N0 � 11N1=2 � 62N1

�
; �2:66�

c � 1

120�4p2�
ÿ
N0 � 6N1=2 � 12N1

�
; �2:67�

and the coefficient b at&R turns out to be scheme dependent
(it is equal toÿ2c=3 for dimensional regularization and toÿc
for zeta-functional regularization).

2.5 Method of universal functional traces
The DeWitt technique described above, however, essentially
relies on the choice of ansatz (2.51) and is directly applicable
solely to Laplace-type operators (2.41) but not to minimal
operators (2.27) of a higher order n > 1, and certainly not to
nonminimal operators, i.e., those that cannot be represented
in form (2.27).

Indeed, it is straightforward to verify that a naive
substitution of DeWitt ansatz (2.51) into heat equation
(2.23) for minimal higher-order operator (2.27) leads to
inconsistent equations. Attempts to modify ansatz (2.51)
undertaken from time to time (see, e.g., [67]) based on the
semiclassical approximation or other considerations even-
tually fail.5

But these more general operators are also extremely
important in applications. Higher-order minimal operators
arise in higher-derivative gravity theories, as well as in other
cases. A typical example is given by so-called `conformally
covariant differential operators,' such as the Paneitz fourth-
order operator

D4 �& 2 � 2RabHaHb ÿ 2

3
R&� 1

3
�H aR�Ha �2:68�

and its analogues; an extensive amount of the literature is
devoted to the study of operators of this type (see, e.g., [68±
70]). Nonminimal operators already arise in the simplest case
of electrodynamics considered in the general Lorentz-covar-

5As we see in the second part of this paper, recent results on terms with

arbitrarily large negative powers of t being present in this case make it

clear why these attempts were initially doomed to failure.
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iant gauge, with the operator

F̂�H� � F a
b �H� � ÿd a

b
&� lH a Hb � . . . ; �2:69�

for a wide class of such gauges in ordinary Einstein's gravity
[48], and in modified gravity models [28, 29].

The importance of higher-order minimal operators and
nonminimal operators has led to the development of indirect
methods, which in one way or another reduce the problem of
calculating the heat kernel coefficients for these classes of
operators to a simpler problem for Laplace-type operators,
which can already be solved by the DeWitt method. The most
common of these indirect methods is the so-called `universal
functional trace method' [48, 71].

The essence of this method can be explained using the
example of a higher-derivative theory where the inverse
propagator is given by operator (2.27). The one-loop
functional determinant of this theory,

Tr ln
ÿ
1̂�ÿ&�n � P̂�H�� � n Tr ln&� Tr ln

�
1̂� P̂�H�
�ÿ&�N

�
;

�2:70�

can be expanded in a series in powers of the nonlocal
perturbation P̂�H�=�ÿ&�N. If we then commute all powers
of P�H� to the left and all inverse powers of& to the right, we
express the result as an infinite series of coincidence limits�

Ha1 . . .Han

1

�ÿ&�m d�x; x 0�
�
; �2:71�

contracted with some tensors of increasing dimension.
Universal functional traces (2.71) can already be calculated
using the DeWitt method, because an mth power of the
inverse Laplacian can easily be represented as an integral
over the proper time of the heat kernel of the operator& (see
Eqn (2.25)).

The method of universal functional traces has proved to
be extremely effective, in particular, in calculating the beta
functions of a �3� 1�-dimensional Ho�rava-type projective
gravity model [46, 47]. This problem is currently impossible to
solve using conventional diagram techniques in momentum
space on a flat background, because it requires calculating
hundreds of thousands of Feynman diagrams.

3. Off-diagonal heat kernel expansions
for higher-order minimal operators

Although themethod of universal functional traces, at least in
the one-loop approximation, in principle allows calculating
everything that we need, it has one very significant drawback:
as can be seen from (2.71), it directly operates only with
coincidence limits. But the structure of the heat kernel
K̂F�tjx; x 0� outside its diagonal, at x 6� x 0, may also be
important (for example, if we want to calculate higher-loop
contributions).

In addition, as is clear from considering the DeWitt
method, the coefficients âm�x; x 0� enter recursive relations
(2.52) precisely as two-point functions, and not as the
coincidence limits �âm�. Calculating just the coincidence
limits �âm� already requires knowing the coincidence limits of
the derivatives of the lower coefficients �H kâl�, l < m. Thus,
the diagonal of the heat kernel is determined by its overall
structure outside the diagonal, at x 6� x 0. It is therefore
natural to expect that clarifying the details of this structure

and taking them into account can help in developing new,
more efficient methods, even for calculating the coincidence
limits x � x 0. The indirect methods developed to date simply
ignore the structure of the heat kernel outside the diagonal.
This is exactly the gap that the study of off-diagonal
expansions is aimed at filling.

3.1 Dimensional analysis
The nature of the difficulties we encounter when trying to
generalize DeWitt's method to the case of higher-order
operators can be clarified somewhat by using dimensional
analysis. As we noted in the discussion after formula (2.35),
the general form of the asymptotic expansion of the heat
kernel diagonal is determined by dimensional considerations.

But beyond the coincidence limit, at x 6� x 0, the situation
becomes much more involved, because, in that case, in
addition to the proper time t, two other quantities of
negative dimension appear,

dim s � ÿ2 and dims a � ÿ1 ; �3:1�
which can be used to construct dimensionless combinations

s
t 1=n

and
s a

t 1=2n
: �3:2�

Their appearance is not forbidden by dimensional considera-
tions, and therefore the expansion of the heat kernel outside
the diagonal can, in principle, include terms with arbitrarily
high powers of these dimensionless combinations. But this
would obviously lead to the appearance of arbitrarily large
negative powers of the proper time t.

If we return to DeWitt's ansatz (2.51) in the case n � 1
and apply a similar argument, it becomes clear that there is
in fact nothing strange about the appearance of negative
powers of t outside the coincidence limit: to see that they
do actually occur, it suffices to expand the exponential
factor exp �ÿs=2t� in a series. A miracle manifests itself in
just the opposite: in the fact that, for Laplace-type operators,
the heat kernel expansion outside the coincidence limit is
remarkably structured such that all negative powers of t sum
up into a single exponential factor exp �ÿs=2t�, which is
regular in the coincidence limit x � x 0 (and hence the negative
powers of t disappear from it, as they should), but which
develops an essential singularity as t! 0. In any case, the
existence of the DeWitt ansatz does not follow from
dimensional considerations, and therefore looks accidental
from the standpoint of dimensional analysis alone.

Therefore, we cannot a priori expect a similar resumma-
tion to necessarily take place for higher-order minimal
operators. This leaves room for a wide range of different
opinions. On the one hand, an optimist would claim that the
possibility of such a resummation must follow from the
semiclassical approximation. This would mean that the
strategy behind DeWitt's method can be transferred to the
case of higher-order operators without significant changes.
On the other hand, a pessimist could just as well express
doubts about the existence of any observable structure
beyond the coincidence limit, pointing out that the ratios
s a=t 1=2n can give rise to increasingly complex tensor expres-
sions at increasingly more negative powers of t.

This imaginary dispute can be resolved only by a
dedicated study of the heat kernel structure beyond the
coincidence limit, which underscores the importance of the
problem under consideration. Our recent results show that
the truth, as is usually the case, is exactly half-way: on the one
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hand, a resummation of dimensionless combinations s=t 1=n

into some new special functions similar to the exponential in
the DeWitt ansatz does happen, and this leads to a beautiful
structure, in its own way, of the off-diagonal expansions of
the heat kernel. On the other hand, however, such a
resummation is no longer complete: the expansion is now
realized in the form of a functional series in special functions,
which leaves terms with negative powers of t as free factors.6

Thus, a generalization of DeWitt expansion (2.51) to the
case of higher-order minimal operators is achievable. More-
over, it can be regarded as a gradient expansion in the
background dimension, which is exactly what is needed for
effective quantum field theory. However, the presence of
terms with arbitrarily large negative powers of t in it makes
it impossible to construct a system of recursive relations for
their coefficients, similar to (2.52). Nevertheless, we have
developed two algorithms, which are consistent with each
other, for calculating such generalized coefficients: one based
on the so-called `generalized Fourier transform' and the other
based on the perturbation theory. In a sense, the yield of our
methods exceeds the DeWitt method results, because the
latter is limited to answers in the form of coincidence limits
�H kâm�, while we are able to immediately obtain closed
expressions for the coefficients in the form of two-point
functions at x 6� x 0.

3.2 Generalized exponentials
We start by presenting a very simple idea, which nevertheless
became the starting point for all subsequent research. First, in
DeWitt ansatz (2.51), we redefine the coefficients âm�Fjx; x 0�
so as to absorb the common prefactor D1=2�x; x 0�, and then
write the expansion in the form of a functional series:

K̂F�tjx; x 0� �
X1
m�0

KKm�s; t� âm�Fjx; x 0� ; �3:3�

KKm�s; t� � tm

�4pt�d=2
exp

�
ÿ s
2t

�
: �3:4�

At this point, this is just a rewriting, containing nothing new
and apparently rather unprepossessing.

But we can now observe that, first, successive actions of
the covariant derivative Ha reduce the functions KKm�s; t� to a
single basic functionKK0�s; t� and, second, that this function is
just the heat kernel of the covariant Laplacian ÿ& �
ÿgabHaHb in flat d-dimensional space.

Therefore, if we want to generalize DeWitt expansion
(2.51) to the case of higher-order minimal operators, it is
natural to first find the heat kernel for its top-order term,
i.e., for a power of the Laplacian �ÿ&�n, also in the flat
d-dimensional space.

In [74], we found that the corresponding heat kernel has
the form

KK�n; d �0 �s; t� �
�

ddk

�2p�d exp �ÿtk 2n � ikas a�

� 1

�4pt 1=n�d=2
En; d=2

�
ÿ s
2t 1=n

�
; �3:5�

where the functions En; a�z� are specially chosen to play the
same role as the exponential in the standard DeWitt
expansion (2.51). This is why we use the name `generalized
exponentials.'

These generalized exponentials En;a�z� play a key role in
the rest of this study.We therefore provide a brief summary of
their properties that we need in what follows. Some proper-
ties, along with their derivation and detailed discussion, can
be found in [72].

Generalized exponentials can be defined via the Mellin±
Barnes integral

En; a�ÿz� � 1

2pi

�
C

en; a�s�zÿs ds ; �3:6�

en; a�s� �
G�s�Gÿ�aÿ s�=n�

nG�aÿ s� �
�1
0

z sÿ1En; a�ÿz� dz ; �3:7�

where the integration contour C is drawn in the complex
plane such that it separates the poles of G�s� that go to the left
from the poles of G��aÿ s�=n� that go to the right.

This definition makes it straightforward that, for n � 1,
the situation reduces to the one that is already known,

E1; a�z� � exp z ; �3:8�

and heat kernels (3.5) reduce to the function KK0�s; t�.
The generalized exponentials En; a�z� belong to the class of

so-called Fox H-functions or, more precisely, the Fox±
Wright C-functions. In our study of the properties of
En; a�z�, we essentially relied on the well-developed theory of
these special functions [72].

For example, if we close the contour C in (3.6) on the left
and evaluate the integral using residues, we obtain the power
series

En; a�z� � 1

n

X1
m�0

G
ÿ�a�m�=n�
G�a�m�

zm

m!
: �3:9�

This series is everywhere convergent for n > 1=2, and is
therefore the Taylor series of an entire function En; a�z�.
Conversely, if we close the contour on the right, then, for
noninteger n, we obtain a power-law asymptotic form of the
function En; a�z� as z!1 (for integer n, the poles of the
gamma functions in the numerator and denominator cancel
each other out, and the power-law asymptotic regime is
superseded with an exponential one). It is interesting to note
that, for n < 1=2, the situation is just the opposite: the series in
powers of zÿ1 is convergent everywhere, and the series in
powers of z becomes asymptotic (and at the critical value
n � 1=2, the function can be found exactly).

Another key property of generalized exponentials is the
remarkable differentiation rule

db

dzb
En; a�z� � En; a�b�z� : �3:10�

The properties of generalized exponentials were studied in
great detail in [72]. In particular, several potentially useful
integral representations for such functions were obtained,
their connection with the Bessel and Bessel±Clifford func-
tions was noted, exponential asymptotic formulas as z!1
were obtained at integer n (which is a rather subtle problem),
and their consistency with the answer suggested by the
more familiar saddle point method was shown. Among the
interesting properties of these functions, we note that, as

6 As regards the semiclassical approximation, we discussed its inapplic-

ability in the case of higher-order operators in detail in [72]. The point is

that the asymptotic behavior of the heat kernel can be obtained by the

saddle point method [73] in the limit z � s=2t 1=n !1. But, for n > 1, the

corresponding functions turn out to be singular in the coincidence limit

s! 0 and cannot therefore be used as an ansatz.
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z!1, in contrast to the exponential, En; a�ÿz� decreases not
monotonically but in an oscillatory manner. For full details,
we refer the interested reader to the paper cited.

Among the new properties not present in [72], of
importance for us are additional relations among the general-
ized exponentials at integer n. In this case, as is easy to verify,
they satisfy the equationYnÿ1

k�1

�
z

d

dz
� a� k

�
En; a�n�z� � 1

n
En; a�z� : �3:11�

3.3 Powers of Laplace-type operators
The question may nevertheless arise: even if we know that the
generalized exponentials arise in the heat kernel of a power of
the Laplacian in the case of flat space, how can we be
confident that these functions play an important role in the
general case ofminimal operators on a curved background? A
partial answer to this can be deduced from the problem of
finding the heat kernel expansion for a power of a Laplace-
type operator (which, in addition, underlies the method
developed in Section 3.5).

We therefore assume that a Laplace-type operator Ĥ�H�
in (2.41) is given, whose heat kernel expansion has form (3.3).
Wewant to obtain a similar heat kernel expansion for a power
of this operator, F̂�H� � Ĥ n�H�. This can be done quite easily
using the direct and inverseMellin transformations (2.25) and
(2.26).

First, substituting expansion (3.3) into transformation
(2.25) and integrating the series term-wise, we obtain the
expansion for the Green's function

ĜHs�x; x 0� �
X1
m�0

GGm�s; s� âm�Hjx; x 0� ; �3:12�

where the basis Green's functions GGm�s; s� are given by the
integral

GGm�s; s� � 1

G�s�
�1
0

dt t sÿ1 KKm�t; s�

� G�d=2ÿmÿ s�
�4p�d=2G�s�

�
s
2

�s�mÿd=2
; �3:13�

which is easy to calculate using the substitution z � s=2t and
the definition of the gamma function.

We next substitute expansion (3.12) into transformation
(2.26) for the operator power Ĥ n. Having again integrated the
series term-wise, we find the heat kernel expansion

K̂H n�tjx; x 0� �
X1
m�0

KK �n; d �m �t; s� âm�Hjx; x 0� ; �3:14�

where the new basis kernels KK
�n; d �
m �t; s� are given by the

integral

KK �n; d �m �t; s� � 1

2pi

� w�i1

wÿi1
ds tÿsG�s�GGm�ns; s�

� t �mÿd=2�=n

�4p�d=2
En; d=2ÿm

�
ÿ s
2t 1=n

�
; �3:15�

which can be reduced to the definition of the generalized
exponential in (3.6) by setting z � s=2t 1=n and m �
d=2ÿmÿ ns.

Thus, we have verified that the heat kernel for a power of a
Laplace-type operator, Ĥ n, has expansion (3.14) at x 6� x 0,
which is similar in form to DeWitt expansion (3.3) for the

original operator. Moreover, the coefficients in the expansion
for a power of the operator are the same HaMiDeW
coefficients âm�Hjx; x 0� for the original operator Ĥ�H�.

The only difference is that new basis kernels (3.15) replace
the original basis kernels (3.4). Moreover, all original basis
kernels KKm�s; t� included the same exponential exp �ÿs=2t�,
which could therefore be pulled out of the sum, making
expansion (3.3) a power series in the proper time t, but each
new basis kernel KK

�n; d �
m �t; s� has its own generalized expo-

nential En; d=2ÿm�ÿs=2t 1=n�. These different functions can no
longer be pulled out of the sum, and therefore expansion
(3.14) is not a power series but a functional series.

If we now move to the coincidence limit x � x 0 in the
expansion for the operator power Ĥ n and substitute the
values of the generalized exponentials at zero, En; a�0� �
G�a=n�=nG�a�, we obtain

K̂H n�tjx; x� � tÿd=2n
X1
m�0

tm=n Âm�H njx� ; �3:16�

Âm�H njx� � G
ÿ�d=2ÿm�=n�
nG�d=2ÿm� Âm�Hjx� : �3:17�

This is the well-known Fegan±Gilkey formula obtained in a
new way [17], and the property of the heat kernel coefficients
to preserve their formwhen the operator is raised to a power is
precisely what is called the `functoriality property' in the
mathematical literature.

The analysis of the heat kernel expansions outside the
diagonal, at x 6� x 0, significantly simplifies the proof of the
corresponding properties compared with the approach
usually accepted in the mathematical literature, which deals
with operator z-functions only in the coincidence limit
x � x 0. At the same time, our approach does not suffer from
anything similar to the appearance of mysterious terms that
are logarithmic in the proper time t. There has been a long
debate in the literature about such terms (see, e.g., [75]), but,
in light of our approach, it seems that they are likely to be a
mere artifact of the method used. Moreover, the above
transformations are only the simplest example of a general
scheme of reasoning, which can be extended without much
difficulty to a considerably wider area: from Laplace-type
operators to general minimal operators of higher orders and
even some types of nonminimal (causal) operators; from the
heat kernel of an operator power exp �ÿtĤ n�, to functions of
a more general form, for example, Ĥÿm exp �ÿtĤ n� or
�Ĥ m � l�ÿ1, etc. Relevant issues related to such `generalized
functoriality' will be addressed in [76], a paper currently being
prepared for publication.

The Laplace type operator F̂�H� � Ĥ n�H� raised to a
power is the simplest minimal operator of a higher order 2n.
Therefore, it is quite tempting to use expansion (3.14)
obtained for it as a replacement for the DeWitt ansatz in the
case of minimal differential operators of general form (2.27).
However, it can be easily verified directly that substituting
expansion (3.14) into heat conduction equation (2.23) does
not lead to a consistent chain of recursive relations. We hence
draw the conclusion that, for a minimal operator that cannot
be represented as a power, the expansion actually has a more
complex structure, even if it somehow reduces to (3.14) in the
special case of a Laplace-type operator raised to a certain
power. In what follows, we substantiate this preliminary
conclusion by deriving an expansion for the general minimal
operator using two methods simultaneously: the so-called
`generalized Fourier transform' and the perturbation theory
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(with a power of an operator representing the unperturbed
case), building upon the results in this section. In addition to
the two computation algorithms, which are interesting to
compare with each other as well as with the method of
universal functional traces, this allows us to answer the
questions as to why a generalization of the DeWitt method
fails and regarding the impossibility of constructing general-
ized recursive relations in the coordinate representation.

3.4 Generalized Fourier transform
The use of the Fourier transform underlies the study of
(pseudo)differential operators and their spectral geometry
(see, e.g., [13, 14]). However, in most mathematical texts, it is
used in a somewhat inconvenient coordinate form. In a fully
covariant form, the Fourier transform method on a curved
space±time was developed in the form of `symbol calculus' by
Widom [77±79]. In this form, it was successfully applied to the
calculation of the coincidence limits of the heat kernel
coefficients by Gusynin and coauthors [49±54].

In contrast to these studies, we use the generalized Fourier
transform to infer the structure of the heat kernel outside the
diagonal, at x 6� x 0. The corresponding algorithm for the
generalized exponentials was discussed in detail in [80]. In this
subsection, we reproduce the main stages of its derivation,
omitting technical details and referring the interested reader
to the cited work.

Before proceeding to the method itself, we introduce an
abbreviated notation that proves convenient in what follows.
We systematically omit contractions of repeated indices,
instead writing

F̂k � H k � F̂ a1...ak
k Ha1 . . .Hak : �3:18�

An arbitrary order-N differential operator (acting on the set
of fields j�x� � jA�x�, as the hats remind us) can be written
in the form

F̂�H� �
XN
k�0

F̂k�x� � H k : �3:19�

We note that we originally restricted ourselves exclusively
to the case of a Riemannian space±time in this paper, but the
method of the generalized Fourier transform and further
considerations based on it are applicable in a much broader
context of theories with torsion and nonmetricity, when the
connection Ha is no longer defined by the metric gab. A
discussion of the details can be found in [80] and we do not
dwell on the subject here.

The vector s a 0 �x; x 0� can be regarded as a generalization
of the vector x 0 ÿ x connecting points in flat space. The
generalized Fourier transform method in curved space is
based on the covariant integral representation of the delta
function in terms of plane waves exp �ikb 0s b 0 �, where kb 0 is the
cotangent vector at x 0. This representation has the form7

1̂d�x; x 0� �
�

ddk

�2p�d exp �ika 0s a 0 � Î �x; x 0� : �3:20�

In fact, instead of the parallel translation tensor Î �x; x 0�, we
could of course have chosen any other matrix-valued two-
point function that gives the identity matrix 1̂ in the
coincidence limit and in addition has the correct transforma-
tion properties with respect to both arguments x and x 0 (for
this reason, the constant matrix 1̂ is not suitable for the
covariant formalism). This method has some inherent
ambiguity, but it should not affect the final answers obtained
by integrating over momenta. In this regard, our choice of the
tensor Î �x; x 0� seems to be the simplest and most natural.

We apply the operator exponential exp �ÿtF̂�H�� to
representation (3.20) and move the plane waves past the
operator F̂�H� in accordance with the commutation relation

exp �ÿikb 0s b 0 � F̂�Ha� exp �ikb 0s b 0 � � F̂�Ha � ikb 0s b 0
a � ; �3:21�

where s b 0
a �x; x 0� � Ha s b 0 �x; x 0�. As a result, we obtain the

integral representation for the heat kernel:

K̂�tjx; x 0� �
�

ddk

�2p�d exp �ika 0s a 0 � K̂�t; kjx; x 0� ; �3:22�

K̂�t; kjx; x 0� � exp
�ÿtF̂�Ha � ikb 0s b 0

a �
� Î �x; x 0� �3:23�

(here and hereafter, we use boldface for Fourier transforms).
It may seem that expression (3.23) in and of itself is

already the sought Fourier transform of the heat kernel in
closed form, and we could simply expand the corresponding
operator exponential in a power series. This strategy,
however, would not lead us to the final goalÐan expansion
in powers of the background dimension 1=l, because the
leading term of the operator F̂�Ha � ikb 0s b 0

a � has zero back-
ground dimension: dim F̂ a1 ...aN

N �x� � 0. Therefore, our task is
to explicitly extract O�1=l 0� terms from the operator
exponential, find a zeroth-order solution explicitly, and only
then construct a perturbation theory in 1=l over that solution.

Hence, instead of expression (3.23), wemust use an ansatz
for the Fourier transform of the heat kernel,

K̂�t; k� � exp
�ÿt�ik�N � F̂ � T̂�H� Î ; �3:24�

where

F̂ � F̂ b 0
1
...b 0N � F̂ a1...aN

N s
b 0
1

a1 . . . s
b 0N
aN �3:25�

is a matrix-valued two-point function, which is a scalar with
respect to x and a tensor with N upper indices with respect to
x 0 (it plays the role of the principal symbol of the operator
F̂�H� typically used in Fourier analysis of (pseudo)differential
operators) and T̂�H� � T̂�H; t; kjx; x 0� is an operator
unknown at this stage.

After a careful expansion in powers of the momentum k
and all the necessary commutations (see the details in [80]), we
obtain the following problem for the operator T̂�H; t; k�:
�qt � F̂� T̂�H; t; k� � 0 ; �3:26�
T̂�H; 0; k� � 1̂ : �3:27�

Here, new operators are introduced as

F̂�H� � F̂�H; t; kjx; x 0� �
XNÿ1
m�0

XNÿm
n�0

t n�ik�m�Nn � fF̂gm; n ;
�3:28�

fF̂gm; n �
XN

k�m�n
F̂k�x� � fH kgm; n ; �3:29�

7 Alternatively, we could just as well have used the expansion in the

functions exp �ikbs b�. Although we prefer (3.20) for certain reasons, and

although these two possible choices lead to different expressions for the

coefficients outside the coincidence limit, both give the same local

expressions after passing to the coincidence limit. Therefore, comparing

the results obtained by these two methods can even be used as an error-

detection tool.
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and the action of the operation f. . .gm; n on a set of
covariant derivatives Hk � Ha1 . . .Hak produces � k

m; n� �
k!=�m!n!�kÿmÿ n�!� terms, in each of which m derivatives
are replaced by functions of the form s b 0

a , and n derivatives,
by functions of the form ÿHaF̂ , with the order being strictly
preserved.8 Thus, fF̂gm; n � fF̂g b 0

1
...b 0mc

0
1
...c 0Nn

m; n are operators of
the order Nÿmÿ n and dimension Nÿm with m�Nn
upper primed indices, and fF̂gN; 0 � F̂ .

We now expand the operator T̂�t; k� in a double series in
powers of t and k:

T̂�H; t; k� �
X1
n�0

XLn

l�0
t n�ik�l � T̂n; l�H� ; �3:30�

where T̂n; l�H� � T̂
b 0
1
...b 0

l

n; l �Hjx; x 0� are some unknown opera-
tor-valued coefficients which are tensors with l upper primed
indices, andLn is the summation limit, which is still unknown.
Substituting expansions (3.28) and (3.30) into Eqn (3.26)
leads to a system of recursive relations for T̂n; l�H�:

�n� 1�T̂n�1; l � ÿ
XNÿ1
p�0

XNÿp
q�0
fF̂gp; qT̂nÿq; lÿpÿNq ; �3:31�

T̂0;0 � 1̂ ; T̂0; l � 0 for l > 0 : �3:32�

(It is assumed here that T̂n; l � 0 for n < 0 or l < 0 and, as it
should be, composing a tensor fF̂gp; q of valence p�Nqwith a
tensor T̂nÿq; lÿpÿNq of valence lÿ pÿNq on the right-hand
side of the equation generates a valence-l tensor on the left-
hand side.) The initial values (3.32) follow from initial
condition (3.27) and allow the recursive relations to be
sequentially solved for all T̂n; l. Also, from system (3.31),
(3.32), it is easy to obtain the summation limit in (3.30):

Ln�N� �
�
Nÿ 1

2

�
n : �3:33�

An example of calculating the operators T̂n; l�H� in terms
of lower-order operators is shown in Fig. 1 for T̂6; 5�H� and
N � 2.

We note that the recursive relations allow closed expres-
sions to be obtained for some operators T̂n; l�H�, for example,

T̂n; l � 1

n!

��ÿF̂�n	
l
; for l < N ; �3:34�

T̂2k; �2Nÿ1�k � 1

2kk!

ÿÿfF̂gNÿ1; 1�k : �3:35�

However, an arbitrary operator T̂n; l�H� cannot be obtained
using such simple formulas. The most we can say in the
general case is that the operator can be represented as a sumof
terms (with some coefficients) of the form

fF̂ k1gm1; n1
. . . fF̂ kpgmp; np

; �3:36�

whereXp
i�1
�ki � ni� � n and

Xp
i�1
�Nni �mi� � l : �3:37�

With the expansion of the Fourier transform K̂�H; t; k�
obtained, finding the sought heat kernel expansion only
requires integrating this expansion with respect to the
momenta k. Substituting (3.24) and (3.30) into integral
(3.22), we obtain our main result for the heat kernel of a
general positive-definite differential operator of order N,

K̂�tjx; x 0� �
X1
n�0

t n
XLn

l�0
Ŝl�t� � T̂n; l�H� Î �x; x 0� ; �3:38�

where

Ŝl�t� � Ŝl; b 0
1
...b 0

l
�tjx; x 0�

�
�

ddk

�2p�d �ik�
l exp

�ÿt�ik�N � F̂ � ika 0s a 0� �3:39�

are two-point matrix-valued tensors with l primed lower
indices.

Importantly, expansion (3.38) is effective from the QFT
standpoint, as an expansion in the dimension of background
fields, because, as n increases, the background dimension of
the corresponding term also increases monotonically:

dim T̂n; l�H� � nNÿ l5
n

2
: �3:40�

In the particular case of minimal operator (2.27) of a
higher order 2n, integrals (3.39) reduce to a single basic
integral (3.5) and are therefore easy to calculate in terms of
generalized exponentials. Again referring to [80] for simple
but somewhat cumbersome technicalities, we give the final
answer:

Ŝl; a 0
1
...a 0

l
�tjx; x 0� � Dÿ1�x; x 0�

�4pt 1=n�d=2

�
Xl
r5 l=2

Sr; l; a 0
1
...a 0

l

�ÿ2t 1=n�r En; d=2�r
�
ÿ s
2t 1=n

�
1̂ ; �3:41�

where the new totally symmetric tensor coefficients
Sr; l � Sr; l; a 0

1
...a 0

l
�x; x 0� with r5 0 and l � r; . . . ; 2r have l

primed lower indices and no longer depend on t. Each Sr; l

consists of 2rÿ l factors of the form sa 0 and lÿ r factors of
the form ga 0b 0 � �s c

a 0gcd�s d
b 0 , where �s a

b 0 �x; x 0� is the inverse
tensor to s b 0

a , with the combinatorial coefficients equal to

n

l

Figure 1.Operators T̂n; l forN � 2. Blue line shows the maximum value of

l, Ln�N� � �Nÿ 1=2�n. Each point on the plane at position �n; l� denotes
operator T̂n; l. Shaded area shows means to calculate operator on the left-

hand side of recursive relations (3.31) (in this example, T̂6; 5).

8 We note that, compared to [80], we changed the notation: in that paper,

this operation was denoted by double square brackets [ . . . ]m; n, but here
we use curly brackets f. . .gm; n for it, and the double square brackets are

reserved for nested commutators in what follows.
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the number of different terms appearing in symmetrizing over
l indices. For example,

S1; 1 � sa 0 ; S1; 2 � ga 0b 0 ; S2; 2 � sa 0sb 0 ;

S2; 3 � 3g�a 0b 0sc 0� ; S2; 4 � 3g�a 0b 0gc 0d 0� ; �3:42�
S3; 3 � sa 0sb 0sc 0 ; S3; 4 � 6g�a 0b 0sc 0sd 0� ;

and so on. These coefficients have an important property:
because �sa 0 � � 0 and �ga 0b 0 � � gab, it follows that, in the
coincidence limit, they are nonvanishing only for l � 2r.

After the substitution of (3.41) into expansion (3.38) and
resummation, we obtain our main result for the heat kernel
expansion of the general minimal differential operator of
order 2n,

K̂F�tjx; x 0� � Dÿ1
X1

m�ÿ1

X1
n5Nm

KK �n; d �m; n �s; t� b̂m; n�x; x 0� ; �3:43�

where we introduce new basis kernels

KK�n; d �m; n �s; t� � t �mÿd=2�=n

�4p�d=2
En; d=2�nnÿm

�
ÿ s
2t 1=n

�
: �3:44�

Here, the lower summation limit for n in the mth order of
expansion in t 1=n is given by

Nm�n� �
m

n
; m > 0 ;

2jmj
2nÿ 1

; m < 0 :

8><>: �3:45�

We call the two-point matrix-valued functions b̂m; n�x; x 0�
the generalized HaMiDeW coefficients. They are given by
finite contractions of the differential operators T̂n; l�H�
introduced above with the tensor coefficients Sp; l�x; x 0�,

b̂m; n�x; x 0� � 1

�ÿ2�nnÿm

�
XbLm; nc

l�nnÿm
Snnÿm; l�x; x 0� � T̂n; l�H� Î�x; x 0� ; �3:46�

where the upper summation limit for l is the integer part of

Lm; n � 2nnÿmax

�
2m;

n

2

�
: �3:47�

In the special case m � nn, as follows from (3.35), the
coefficients acquire an especially simple form:

b̂nn; n�x; x 0� � T̂n; 0�H�Î � 1

n!
�ÿF̂ �n Î : �3:48�

The most significant difference between expansions (3.43)
and the expansion (2.51) for a second-order operator is the
appearance of arbitrarily large negative powers of t and the
absence of a common exponential factor in front of the power
series in proper time. Instead, each generalized HaMiDeW
coefficient b̂m; n at tm=n is multiplied by its own generalized
exponential, which explicitly depends on both indicesm and n
of the double infinite series.

Due to the appearance of arbitrarily large negative powers
of t, expansion (3.43) can no longer be interpreted as an
expansion in the small proper time parameter t! 0. Instead,
it should be understood as an expansion in the background
dimension, and this is exactly what we need for renormaliza-
tion and for effective field theory. Indeed, as follows from

(3.40), the dimensions of b̂m; n�x; x 0� are always positive and
increase with the indices m and n:

dim b̂m; n 5 min
f l g
�dim T̂n; l� � max

�
2m;

n

2

�
: �3:49�

We note a significant difference between the general-
ized Fourier transform method and the classical DeWitt
method. In the latter, to calculate the coincidence limit
�âm�, we must know the coincidence limits for all lower
coefficients, as well as for a certain number of their
derivatives. By contrast, in our method, the recursive
procedure involves not the generalized coefficients b̂m; n
themselves but the operators T̂n; l�H�; the coefficients are
then obtained independently of each other in each order in
the form of contractions of these operators with the tensors
Sr; l in (3.46). Moreover, this procedure generates not the
coincidence limits �b̂m; n� but the coefficients b̂m; n�x; x 0� as
exact two-point functions with x 6� x 0.

We have implemented the algorithm described in this
section in the symbolic computing system Wolfram Mathe-
matica using the packages xAct and xTras and applied it to
Laplace-type operator (2.41) and the fourth-order minimal
operator of the general form

F̂�H� � 1̂&2 � Ô abcHaHbHc � D̂ abHaHb �HaHa � P̂ : �3:50�

Here, we do not go into the details of these calculations, which
allowed not only reproducing the coincidence limits pre-
viously obtained by other authors but also obtaining results
that have not yet been reported in the literature (in particular,
contributions of third-order terms involving Ô abc). For the
details, we again refer the reader to [80].

An important circumstance that we do discuss here
instead is the apparent contradiction between the results
generated by the Fourier transform and the standard DeWitt
method. Indeed, if we set n � 1 in formulas (3.43) and (3.46),
we obtain the following expansion for the Laplace-type
operator:

K̂F�tjx; x 0� � Dÿ1

�4pt�d=2
exp

�
ÿ s
2t

� X1
m�ÿ1

tmb̂m�x; x 0� ;
�3:51�

b̂m�x; x 0� �
X1

n5Nm

b̂m; n�x; x 0� : �3:52�

As we see, terms with negative powers of the proper time
persist in this expansion, whereas there are simply no such
terms in DeWitt's ansatz. How is this possible?

The apparent paradox can be resolved by calculations. It
turns out that, in the case of a Laplace-type operator, all the
generalized coefficients b̂m; n�x; x 0� that we were able to
calculate for m < 0, even if this is not obvious at first glance,
vanish identically due to special relations that exist between
the tensors s b

a1...an and Îa1...an . An example of such relations
can be obtained by acting on (2.45) and (2.49) with the
operator of differentiation along the geodesic s aHa and then
simplifying the resultant expressions using (2.45). This leads
to the relations

s a1 . . . s ans b
a1 ...an � 0 for n > 1 ; �3:53�

s a1 . . . s an Îa1...an � 0 : �3:54�
There are other, more complex relations of this kind.
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We say that these types of coefficients that vanish
identically outside the coincidence limit are spurious. A
natural question arises as to whether the same happens for
higher-order operators. Are all coefficients at negative
powers of t for them also spurious? Symbolic calculations
give a negative answer to this question: although some
coefficients of a fourth-order operator are spurious, there
certainly are those that do not vanish identically. For
example, the simplest coefficient b̂ÿ1; 1 contains a term of the
form Ô abcsasbscÎ �x; x 0�. This shows that the appearance of
coefficients with negative powers of t is not an artifact of the
method used but is an essential feature of the heat kernel
expansions for higher-order operators.

On the other hand, although there are nontrivial coeffi-
cients at negative powers of t for higher-order operators, it
follows from the well-known expansion for heat kernel
diagonal (2.35) that they must at least vanish in the
coincidence limit. Indeed, the remark after formula (3.42)
that �Sl; p � 6� 0 only for l � 2p implies that a nonvanishing
contribution to the sum over l in (3.46) can only be made if
l � 2�Mnÿm�4Ln�2M� � �2Mÿ 1=2�n, whence we have
the constraint

�b̂m; n� � 0 for n > 4m : �3:55�

(The coincidence limits actually start vanishing much earlier,
which is consistent with a stronger estimate in (3.80), which
follows from the perturbation theory.) In the case n � 2, the
generalized coefficients are schematically shown in Fig. 2.

Moving to the coincidence limit x � x 0 in expansion
(3.43) with constraint (3.55) taken into account, we return to
the well-known expansion of the heat kernel diagonal in
(2.35), where the coefficients Âm�Fjx� are expressed in terms
of the coincidence limits of the two-point generalized
coefficients �b̂m; n�Fjx; x 0�� as

Âm � 1

�4p�d=2
X4m

n5m=n

G
ÿ�d=2ÿm�=n� n

�
nG�d=2ÿm� nn� �b̂m; n� : �3:56�

As we see, the coincidence limit leads to a natural
truncation of expansion (3.43) because the coefficient at
each power of the proper time t is given by only a finite

number of terms of the nontruncated expansion outside
the diagonal.

3.5 Perturbation theory
We next discuss the second method of calculating the heat
kernel coefficients for minimal higher-order operators. As we
saw in Section 3.3, if Ĥ�H� is an arbitrary Laplace-type
operator (2.41), then the technique involving the direct/
inverse Mellin transformation allows heat kernel expansion
(3.14) to be immediately obtained for an arbitrary power
Ĥ n�H�. Because an order-2n minimal differential operator
F̂�H� of the general form, Eqn (2.27), cannot be represented
as the nth power of a second-order operator, the heat
kernel expansion for it does not have to be of form (3.14).
Indeed, although expansion (3.43) obtained using the
generalized Fourier transform still contains the general-
ized exponentials En; a�ÿs=2t 1=n�, it nevertheless has a
somewhat more complex form: it involves a double
summation, and an infinite series of terms with negative
powers of the proper time appear.

However, an arbitrary order-2nminimal operator F̂�H� in
(2.27) can always be represented in the form

F̂�H� � Ĥ n�H� � Ŵ�H� ; �3:57�

where Ĥ�H� is a Laplace-type operator (2.41) and the addition
Ŵ�H� is an arbitrary differential operator of the lower order
2nÿ 1. The main idea of our second method is very simple
and natural: in expansion (3.57), we consider the term Ĥ n�H�
as the `unperturbed part' of the operator, and the term Ŵ�H�
as a `perturbation,' and then seek the expansion of the heat
kernel K̂F�tjx; x 0� of the total operator F̂�H� within the
perturbation theory in powers of Ŵ�H� over the already
known `unperturbed kernel' of Ĥ n�H�.

Thus, using the analogy with the perturbation theory in
quantum mechanics, we pass to the `interaction picture.'
There, the perturbation acquires a dependence on the proper
time t,

Ŵt � exp �tĤ n� Ŵ�H� exp �ÿtĤ n� ; �3:58�

and the `evolution operator'

Ût � exp �tĤ n� exp �ÿtF̂ � �3:59�

satisfies the equation

�qt � Ŵt�Ût � 0 ; Û0 � 1̂ : �3:60�

We can then expand the evolution operator in a series in
powers of the perturbation Ŵt,

Ût � 1̂ÿ
� t

0

dt ŴtÛt � �T exp

�
ÿ
� t

0

dt Ŵt

�
�
X1
n�0
�ÿ1�n

�
ftg

dnt Ŵtn . . . Ŵt1 ; �3:61�

where �T is the operation of antichronological ordering, and
integration is carried out over an n-dimensional hyperpyr-
amid 0 < t1 < . . . < tn < t,�

ftg
dnt �

� t

0

dtn

� tn

0

dtnÿ1 . . .

� t2

0

dt1 : �3:62�

n

m

Figure 2. Generalized coefficients b̂m; n in the case n � 2. Blue lines on left

and right represent expression (3.45) for Nm�2�. Coefficients shown with

gray dots are certain to vanish in the coincidence limit, and those shown

with black dots can make a nonzero contribution; line separating them is

defined by condition (3.55).
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Next, we note that, as is clear from definition (3.58),
commuting the operators Ŵt through exp �ÿtĤ n� simply
reduces to a shift of the proper time parameter:

exp �ÿtĤ n�Ŵt � Ŵtÿt exp �ÿtĤ n� : �3:63�

With (3.59), it hence follows that

exp �ÿtF̂ � � exp �ÿtĤ n� Ût � Û 0t exp �ÿtĤ n� ; �3:64�

where antichronological ordering is replaced with the chron-
ological one in the new operator Û 0t :

Û 0t � �T exp

�
ÿ
� t

0

dt Ŵtÿt

�
� T exp

�
ÿ
� t

0

dt Ŵÿt

�
�
X1
n�0
�ÿ1�n

�
ftg

dnt Ŵÿt1 . . . Ŵÿtn : �3:65�

In the language of kernels, relation (3.64) takes the form

K̂F�tjx; x 0� � Û 0t K̂H n�tjx; x 0� : �3:66�

Thus, the operator Û 0t implements the heat kernel transfor-
mation caused by introducing the perturbation Ŵ�H� into the
operator. The operators Ŵÿt and Û 0t are integral, but if we
expand them in power series in t, the coefficients of this
expansion are differential operators.

We first do this for Ŵÿt. We use the well-known relation

exp �ÿtB�A exp �tB� �
X1
k�0

t k

k!
[A;B]k ; �3:67�

where [ . . . ; . . . ]k denotes a nested kth order commutator
defined as

[A;B]0 � A ; �3:68�
[A;B] k �

�
[A;B] kÿ1;B

�
�
h
. . .
��A;B�;B�; . . . ;B|���������{z���������}

k

i
; k > 0 : �3:69�

It immediately follows from relation (3.67) that

Ŵÿt �
X1
k�0

t k

k!
V̂k�H� ; where V̂k�H� � [Ŵ; Ĥ n] k �3:70�

are differential operators of the order �2nÿ 1��k� 1� and
dimension 2n�k� 1�.

We now substitute expansion (3.70) into representation
(3.65). The proper time integral is evaluated straightfor-
wardly, 9�

ftg
dt n t a � t n�jaj

c�a� ; �3:71�

c�a� � �a1 � 1��a1 � a2 � 2� . . . �jaj � n� ; �3:72�
and we hence obtain an expansion of the heat kernel
deformation operator Û 0t in a series in powers in t,

Û 0t �
X1
k�0

t k Ûk�H� ; �3:73�

where

Ûk�H� �
X

n�jaj�k

�ÿ1�n
a!c�a� V̂an�H� . . . V̂a1�H� �3:74�

are differential operators of the order �2nÿ 1�k and dimen-
sion 2nk.

We now want to represent the heat kernel K̂F�tjx; x 0� of
the perturbed operator F̂�H� as a functional series in general-
ized exponentials. For this, we substitute the expansions of
unperturbed kernel (3.14) and kernel deformation operator
(3.73) into formula (3.66) and commute the operators Ûk�H�
with the generalized exponentials En; d=2ÿm�ÿs=2t 1=n�. Taking
the rule for differentiating generalized exponentials (3.10)
into account, we introduce the following notation for the
result of commuting an order-N differential operator through
a generalized exponential:

F̂�H� En; a
�
ÿ s
2t 1=n

�
�
XN
n�0

tÿn=n En; a�n
�
ÿ s
2t 1=n

�
hF̂ in : �3:75�

The operation h. . .in is very similar to the curly bracket
operation f. . .gn; 0 introduced in (3.29), with the only
difference being that the n covariant derivatives Ha are
replaced not with s b 0

a but with the functions ÿsa=2.
Otherwise, their properties and calculation rules are the
same.

After commuting all the generalized exponentials to the
left and performing a necessary resummation (the details of
which we omit as well), we obtain the sought heat kernel
expansion outside the diagonal,

K̂F�tjx; x 0� �
X1

m�ÿ1

X1
n5Km

KK �n; d �m; n �s; t� âm; n�Fjx; x 0� ; �3:76�

which involves a double sum of the same basic kernels (3.44)
as in expansion (3.43). The new generalized coefficients
âm; n�Fjx; x 0� follow by acting with the deformation opera-
tors



Ûn�H�

�
k
on the HaMiDeW coefficients of the original

Laplace-type operator Ĥ�H�,

âm; n�Fjx; x 0� �
Xm��nÿ1�n

l5Lm; n



Ûn�H�

�
k
âl�Hjx; x 0� ; �3:77�

where k � nn� lÿm. The lower summation limits for n and l
are

Km � max

�
0; ÿ m

nÿ 1

�
; �3:78�

Lm; n � max f0;mÿ nng : �3:79�

The index n can be interpreted as the perturbation theory
order in powers of Ŵ�H�.

Just as in the case of expansion (3.43), the coincidence
limits of the coefficients at negative powers of t vanish.
Indeed, because �sa� � 0 and �sab� � gab, the operator
hÛn�H�ik makes a nonzero contribution to the coincidence
limit only if each of the k functions sa contained in it is further
differentiated at least one more time. Because the operator
Ûn�H� has the order �2nÿ 1�n, only terms with k4 �nÿ 1=2�n
can survive. And because k � nn� lÿm and l5 0, this in

9 Here, we use the standard multi-index notation a � �a1; . . . ; an�,
t a � t a11 . . . t ann , jaj � a1 � . . .� an, and a! � a1! . . . an!.
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turn leads to the constraint

�âm; n� � 0 for n > 2m ; �3:80�

which is much stronger than a similar constraint in (3.55).
We note that the summation limits in (3.43) and (3.76)

differ, as do the generalized coefficients b̂m; n and âm; n entering
them. The reason is that neither of the algorithms we use is
very `smart,' in the sense that they generate mechanistic
expressions that can be significantly improved. An example
is the appearance of spurious coefficients: obviously, a more
careful consideration of relations like (3.53) and (3.54) among
the tensors s b

a1...an and Îa1...an would allow simplifying many
generalized coefficients, and all spurious coefficients would
then vanish.10 Another example is the presence of termswhere
the world function s�x; x 0� enters as a factor. It is easy to see
that, using equation (3.11), which relates various generalized
exponentials En; a�z�, we can systematically eliminate such
terms, bringing the expansion to some simple canonical
form.

4. Conclusions

To conclude, we note that, along with presenting the well-
known Schwinger±DeWitt technique in quantum field theory
and gravity, we have also obtained a number of new results in
developing this method and opened up new prospects for its
extensions.

Forminimal operators of a higher order 2n, Eqn (2.27), we
first established the structure of the heat kernel outside the
diagonal (i.e., for x 6� x 0) in the form of double functional
series (3.43) (or (3.76)). This expansion is a direct general-
ization of DeWitt's ansatz (2.51) for Laplace-type operators,
although it differs in two significant points.

First, instead of the standard exponential factor
exp �ÿs=2t�, the expansion is carried out in terms of the
`generalized exponentials' En; a�ÿz� of the dimensionless ratio
z � s=2t 1=n. Their remarkable properties, including differ-
entiation rule (3.10) and Mellin transformation (3.7), allow
effectively manipulating these new functions.

Second, the off-diagonal expansions involve terms with
arbitrarily large negative powers of the proper time tm=n. As it
should be, all the corresponding coefficients vanish in the
coincidence limit x � x 0, which guarantees that the well-
known asymptotic expansion of the heat kernel diagonal in
(2.35) is reproduced. However, the absence of a `bottom' in
the system of off-diagonal coefficients b̂m; n�Fjx; x 0� makes it
impossible to construct recursive relations for them.

We have nevertheless developed and implemented two
algorithms for obtaining off-diagonal coefficients with the
symbolic computing system Wolfram Mathematica; the
algorithms are based on the Fourier transform (Section 3.4)
and on the perturbation theory (Section 3.5). Both algorithms
provide more than the classical DeWitt method does in the
sense that they allow obtaining not only the coincidence limits
�b̂m; n� but also closed expressions for the coefficients with
x 6� x 0. Of course, the act of going beyond the diagonal in and
of itself does not provide any gain in computational efficiency
and in fact leads to a significant increase in complexity.

However, it clarifies the general off-diagonal structure of the
heat kernel, whose careful consideration should allow the
calculation of coincidence limits to be streamlined.

Another advantage that comes from going off the
diagonal is the possibility of a more flexible use of integral
transformations, which generalize the technique used in
Section 3.3 with the term-by-term application of the direct
and inverse Mellin transformations. The `generalized func-
toriality' statement can be loosely formulated as follows: for a
wide class of `good' operators F̂ and a wide class of `good'
functions f, the off-diagonal expansion of the kernel of the
operator function f �F̂ � has the form

f �F̂ � 1̂���
g
p d�x; x 0� �

X
m

KKm� f js� âm�Fjx; x 0� ;

where the matrix-valued two-point off-diagonal coefficients
âm�Fjx; x 0� depend only on the operator F̂ and the space±time
geometry but not on the function f; the scalar basis kernels
KKm� f js�, conversely, depend only on the form of f but not on
the operator F̂ or the geometry.We plan to publish our results
in this area in a separate paper [76], which is currently in
preparation.

In addition, both algorithms, the Fourier transform and
the perturbation theory, can be relatively easily generalized to
amuchwider class of so-called causal operators (which can be
defined, for example, as those that give a minimal operator
when multiplied by some other operator). These new results
will be presented in a forthcoming paper [81].

Although the method of off-diagonal expansions, which
generalizes the classical DeWitt technique, is still taking its
very first steps, the results obtained to date are sufficient to
conclude, without overstatement, that its appearance opens
up new prospects both in the study of the heat kernel and in a
wide range of its potential applications, including QFT and
studies of modified gravity models.
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