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Abstract. We review recent progress in the field of optical
quantum metrology, with a focus on the analysis of the current
level of theoretical and experimental research on the genera-
tion, transformation, and measurement of nonclassical states of
light, such as NO0ON, squeezed, and hybrid states, which com-
bine transformations of both discrete and continuous variables
of a quantized light field. We show how such states can be used
to improve the measurement accuracy and to estimate unknown
phase parameters in both linear and nonlinear metrology. Sig-
nificant attention is paid to the description of actual quantum
metrology schemes that take the loss of particles, the limited
fidelity of photon detectors, and other factors into account. We
therefore identify both the ultimate (fundamental) bounds im-
posed by quantum mechanical uncertainties of the quantities
being measured and the bounds due to the effect of classical
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noise on the propagation and measurements of a quantized field.
Of special importance are quantum metrology options based on
spontaneous parametric light scattering, which, for more than
50 years, has been an indispensable tool for key accomplish-
ments in quantum optics and related areas of photonics: quan-
tum cryptography, quantum computing, and quantum sensing.
In this regard, we analyze the current status of the use of the
well-known Hong—Ou—Mandel photon anticorrelation effect
and biphoton interference in various quantum metrology ap-
proaches in measuring temperature, length, material concentra-
tion, and so on. We also discuss the use of biphotons in
photometry, radiometry, and sensing for the absolute calibra-
tion of modern photon-count detectors, as well as for measure-
ments of the brightness temperature of hot radiation sources.
The quantum metrology phenomena, methods, and ap-
proaches discussed here in light of the most recent progress
on sources and detectors of quantum radiation will be an
important tool in developing and practically implementing
new schemes and algorithms for quantum processing and
information transmission.

Keywords: quantum measurement, quantum interferometry, spon-
taneous parametric light scattering, quantum sensing, photometry,
radiometry, nonclassical states of light, biphotons, quantum
information and computing

1. Introduction

Increasing the accuracy of primary measuring technologies
(sensors and transducers) and their calibration are becoming
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progressively more important for modern industry and
advanced technologies in developed countries, as is stated in
the relevant road maps (see, e.g., [1, 2]) and other national
development programs [3]. These relevant technologies
include precision instrumentation, positioning and naviga-
tion technologies (GPS, GLONASS), mobile communica-
tions, and telecommunications to be used in industry, science,
medicine, and other areas of human activity. Classical optical
measurements are traditionally of major significance here as
regards measuring small displacements (of the order of or less
than a nanometer) and monitoring and calibrating devices
and instruments for modern technological processes [4]. Such
measurements are underlain by the universal principles of
interferometry, which have long been known from classical
optics [S] and are actively being developed for quantum states
of light [6, 7].

As a science of measurement, metrology offers two
approaches to describing the results of an experiment: using
the concepts of the true value and error (deviation from the
true value) or using the concepts of the estimate and
uncertainty (the measure of doubt in the estimate).! The
measurement uncertainty, according to these standards, is a
parameter pertaining to the measurement result and char-
acterizing the spread of values that could reasonably be
assigned to the measured quantity.

From a practical standpoint, the accuracy of classical
measurements of physical parameters is determined by noise
caused by various defects in technical measuring tools, which,
in theory, can be eliminated. As a result, the task of classical
metrology has traditionally been to improve the measurement
accuracy by developing new methods and approaches to
eliminate such imperfections.

With demands on the capabilities of modern technologies
increasing worldwide, the requirements for accuracy and
uniformity of approaches to measuring various physical
quantities are also becoming more stringent, giving rise to
one of the tasks of metrology as a science in general [8]. It is
obvious in this regard that classical methods and approaches
become inapplicable to measurements carried out at the level
of quantum limits, which have a fundamental nature [9] and
are referred to in the literature as the standard quantum limit
(SQL) of the relevant measurements [6]. We note that the
concept of SQL was initially formulated by Braginsky [10] in
connection with the problem of testing the equivalence
principle by estimating the ultimate sensitivity of a quantum
mechanical macroscopic oscillator under the action of
physically weak forces. Later, this concept was generalized
to quantized electromagnetic radiation in a coherent state,
whose fluctuations determine the so-called shot noise level in
a balanced homodyning scheme [11]. This is justified from a
physical standpoint, because the quadratures of a quantized
field are analogous to the momentum and coordinates of a
quantum mechanical oscillator [12]. However, if the physical
measurement scheme, along with the quantized radiation
field, also involves a ‘true’ quantum mechanical oscillator
(e.g., a thin membrane in optomechanic experiments), the
SQL measurements with this oscillator must be distinguished
from those with quantized radiation (cf. [13]).

! The approach associated with estimates and uncertainties is used by the
international organization for standardization (ISO/IEC Guide
98.3:2008), and, in Russia, the corresponding GOST 34100.3-2017, which
provides guidance on the expression of measurement uncertainty, was
introduced as a national standard on September 1, 2018.

Laser

Figure 1. Schematic representation of Michelson interferometer for
detecting gravitational waves (GWs), whose action, designated as Ggw,
reduces to the appearance of small physical displacements, which are
reflected in path difference 8L for waves in the interferometer arms (4 km
in length) [17]. E" is field produced by a laser source, EM' are fields
reflected from mirrors M; ,, D is a detector, BS is a semitransparent
beamsplitter, and green arrows show small physical displacements due to
the action of GWs.

Quantum metrology deals with noise associated with
various kinds of uncertainty relations that impose restric-
tions on the accuracy of quantum measurements (cf. [12]).
Over the past 20 years, nonclassical states of light have
become an indispensable tool in optical quantum metrology,
which allows controlling fluctuations of canonically conju-
gate quantities— the Hermitian quadrature components that
are continuous observable parameters of the electromagnetic
field [14].

Importantly, the measurement paradigm in quantum
theory, touching upon its foundations, has traditionally
been the subject of heated debate (not only in physics) and
serves as a source of various paradoxes in quantum mechanics
and beyond [15]. The role of the ‘measuring device,” which
essentially represents a certain physical process in quantum
measurement, is enormously greater than that assigned to a
device in the classical case [16]. Thus, the task of quantum
metrology is not only to eliminate (or minimize) classical
noise caused by the technological and design features of
measuring devices and setups but also to increase the
absolute accuracy of measurements based on controlling
the uncertainty ratios of the conjugate physical quantities
involved in the measurement process.

The most striking recent example is given by the
observation and registration of gravitational waves, which
would have been impossible without measuring physically
small displacements (of the order of or less than 6L ~
10~'® m) with a technologically unique Michelson interfe-
rometer (MI) [18] (Fig. 1). These experiments are based on
methods and approaches for measuring weak forces in
nature, first proposed and studied by Braginsky’s group [19]
and then developed in various laboratories around the world
[17, 20, 21].

A special role in such measurements is played by the
coherent squeezed vacuum (CSV) state, which was proposed
in [6] and has been successfully used in gravitational wave
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detectors for more than 10 years [14]. CSV states are classified
among the continuous observables that can contain a
macroscopically large number of photons due to the
coherent component of the field , which allows them to be
used in unique experiments, e.g., in [22]. We also note study
[23], where the peculiarities of squeezed states of light used to
increase the sensitivity of gravitational antennas were
analyzed from the standpoint of the progress achieved in
experiments on gravitational wave detection.

It is worth noting that optical methods and approaches in
quantum metrology are currently successfully being applied
to develop quantum frequency standards [24], quantum
magnetic field sensors (magnetometers) [25], and quantum
imaging [26], as well as in many other areas that are
traditionally associated with quantum technologies (see,
e.g., [27]). These methods and approaches developed in
optics turned out to be so universal from a practical
standpoint that they were laid into the foundation of various
metrological applications involving atoms and other material
objects that demonstrate a wave nature under appropriate
physical conditions (see, e.g., [28-30]).

Quantum magnetic field sensors have an energy resolu-
tion per passband of the order of or less than the Planck
constant /i, which quantitatively characterizes the spatial,
temporal, and field resolution of a magnetic field sensor. In
practical terms, the purposes of such devices are diverse: for
example, they can account for the minimum possible change
in the electromagnetic field allowed by a sensor and
determined by the signal-to-noise ratio, the bandwidth, the
measurement duration, the size of the sensor area, its
operating temperature, and so on (see, e.g., [25]). Methods
for generating and measuring single-photon light in the
visible and near-infrared (IR) ranges play a major role in
modern quantum sensing. We refer the reader to review [31],
whose relevance is preserved to this day and which combines
an in-depth analysis of experimental methods with methodo-
logical and interpretational aspects of the study of quantum
optical effects associated with quantization and statistical
properties of the field and the peculiarities of detection in
different regimes and the use in quantum metrology.

The majority of devices under development in atomic
optics — optical clocks, gravimeters, and magnetometers —
are based on ultracold atomic ensembles placed in optical
lattices and controlled by electromagnetic pulses (cf. [32]).
The accuracy in determining frequency has been achieved at
the level of 2.5 x 10~!% or 100 uHz at an optical frequency
[33]. Going beyond the SQL is possible if quantum atomic
fluctuations are controlled using nonclassical states of light;
for this, one can use both optical squeezed states of light,
which are discussed in what follows, and atomically squeezed
states involving spin squeezing, which, in addition, allow
achieving atomic entanglement [34, 35]. Due to measure-
ments carried out beyond the SQL level, these devices
demonstrate a high stability in frequency, but with fewer
atoms. Among such systems, we single out atomic clocks [36]
and magnetic field sensors [37]. In particular, cells containing
a macroscopic number of atoms N ~ 10'? allow attaining a
sensitivity of magnetic field measurements of less than
1 fT Hz /2 [38], which is comparable to magnetometers
containing a much greater number of atoms [39].

Recently, technologies have been under development
worldwide for manufacturing atomic chips containing Bose—
Einstein condensates (BECs) of atoms, to be used in quantum
metrology and sensors involving the effects of gravity [40, 41].

Precisely such systems are promising for gravimeters to be
placed in orbit [28]. The advantages of atomic chips are their
compactness and the ability to create sufficiently deep
magnetic traps. The main challenges in operating such
systems are associated with the need to maintain low
temperatures (tens of puK and below) to ensure the overall
physical coherence of the atomic system. Of course, the study
of such systems is of great interest for the development of
quantum metrology in Russia but requires separate con-
sideration and analysis, because their practical use is
associated with considerable capital investments to create
the necessary infrastructure, to master the technology for its
use, and so on [28]. In addition, optical metrology is an
integral part of quantum sensing [42, 43], which is a
subtechnology of the high-tech field of quantum technolo-
gies, which has been actively developed in recent years
throughout the world.

This review is devoted to topical problems in quantum
metrology based on the use of optical systems that already
today can provide a high measurement accuracy at the SQL
level or even overcoming it in modern problems of photonics,
laser technology, and processing and transmitting quantum
information.

Overcoming the SQL in measuring small phase shifts was
predicted theoretically and demonstrated experimentally for
various optical systems containing two effectively coupled
(interfering) modes and using nonclassical squeezed or
entangled quantum states as the initial states for Mach—
Zehnder interferometers (MZIs) [6, 7, 44], gyroscopes
(Sagnac interferometers) [45], lithographs [46, 47], radars
[48], and lidars [49, 50]. Special attention is devoted to issues
of the implementation of so-called ‘quantum illumination’
devices [51], which, although outside the scope of quantum
sensing/metrology, are based on methods of generating and
detecting nonclassical light and are actively discussed in view
of their potential applications.

In particular, as shown in [52-54], with a small average
number of photons, CSV states can overcome the SQL and
saturate the so-called Heisenberg limit (HL) in measurements
of an unknown phase parameter with an MZI. At the same
time, it is already intuitively clear that the corpuscular
properties of light must already be taken into account to a
certain extent by the quantum metrology problem setup in
and of itself. In this regard, the minimal resource for such
measurements is individual photons, often considered in the
literature as discrete-variable systems of a quantized light
field. Because high-precision quantum measurement schemes
(including those used in modern optical quantum informa-
tion technologies) are underlain by quantum N-photon
interference (see, e.g., [55]), an extremely important task of
quantum metrology is to prepare correlated states of two or
more photons. This was noted by Klyshko [56], who proposed
to use the link between spontaneous and stimulated two-
photon transitions to determine the spectral brightness and
effective temperature of incoherent light. This measurement
technique was subsequently verified experimentally [57], and
today it deservedly occupies its rightful place in photometry
and in problems of calibrating light detectors[31, 58], offering
an example of a simple and accessible method for assessing
the spectral distributions of quantum efficiency. Unfortu-
nately, although absolute quantum photometry was pro-
posed and tested quite a long time ago, it has not yet attained
the metrological level. This is primarily due to the difficulties
in dealing with the nonidealities of the proposed optical
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setups: losses, matching and filling of modes, and so on.
Obviously, this technique can be improved based on current
advancements in quantum optics and in view of pressing
practical problems associated with measuring the tempera-
tures of hot (significantly above room temperature) radiation
sources in a wide range.

In what follows, we present an analysis of modern trends
in the field of optical quantum measurements and their
practical capabilities in solving quantum metrology prob-
lems. We note that these areas are closely related to other
(nonoptical) methods of high-precision measurements and
sensing in atomic physics, superconducting systems, and
micro- and nanostructures, which have been the subject of a
large number of recent studies (see, e.g., [59]). But it is the
paradigm of optical quantum measurements associated with
manifestations of coherence and interference that in many
cases offers a simple and intuitively transparent understand-
ing of the essence of the proposed high-precision measure-
ments [29].

This review is organized as follows. In the Introduction,
we outline the main advanced areas in quantum metrology
and sensing which have a significant impact on the develop-
ment of quantum, information, digital, and other technolo-
gies of paramount importance for the modern scientific
community. In Section 2, from a unified perspective, we
discuss the main goals and objectives of modern quantum
metrology, viewed as both a fundamental and applied science
of quantum measurements. For clarity, semiclassical methods
(based on coherent light) for measuring small phase shifts in
optics are presented and the main limitations associated with
the SQL are identified. Also in Section 2, we present the
fundamentals of a theoretical description of methods and
approaches in the language of estimation theory and
quantum Fisher information, which have recently become
standard in assessing the (maximum permissible) metrologi-
cal accuracy of a measurement, including with various
nonclassical states of the light field discussed in what
follows. A related discussion in Section 3 concerns practical
issues of the generation and detection of squeezed states of
light, which are typically described by continuous variables
(CVs) of quantized light radiation, and the so-called NOON
states maximally entangled with respect to spatial modes, for
which the minimum allowed error in measuring and estimat-
ing an unknown phase parameter is predicted theoretically.
Such an error can be revealed in an experiment based on the
detection of the photon-number parity, which can be done
using modern detectors with a photon-number resolution,
already making such states practically useful right now. The
main emphasis in Section 4 is on the preparation of NOON
states and their use in quantum metrology and sensing.
Spontaneous parametric down conversion (SPDC) is cur-
rently the main resource of modern optical quantum
technologies. It is therefore no coincidence that a special
place in this review is given to the use of quantum properties
of SPDC, which can manifest themselves in the effect of
squeezing the dispersion of the quadrature component
fluctuations of an optical CV state as well as in the Hong—
Ou—Mandel effect for a biphoton. Modern achievements and
problems of quantum sensing with NOON states obtained with
SPDC are discussed. Section 5 is devoted to the actual
capabilities of the quantum metrology schemes considered
in this review, with the photon losses, inevitable in practice,
taken into account. In this regard, a universal method of
fictitious beamsplitters is discussed, which allows revealing

the accuracy of measurements and estimates of unknown
phase parameters with photon losses taken into account. In
Section 6, we identify current problems of quantum photo-
metry, radiometry, and sensing with SPDC based on the
schemes of absolute calibration of modern photodetectors as
well as frameworks for measuring and assessing temperature
with vacuum fluctuations used as a light brightness reference
in metrology. In the Conclusions, we summarize the methods
and approaches of modern quantum metrology and sensing
discussed in the review, which allow practical demonstrations
of the ‘quantum supremacy’ of nonclassical states of light
compared to classical ones. Current tasks and development
paths for the near future of quantum metrology and sensing
are also outlined.

2. Physical foundations
of optical quantum metrology

2.1 Quantum metrology. Main goals and objectives

The goal of physical quantum metrology is to develop
methods and approaches and to fabricate appropriate
instruments and devices that measure physical quantities at
the level of quantum limits set by quantum mechanics. We
assume that, in the most general case, we have some a priori
unknown parameter ¢, which is to be estimated by quantum
metrology methods. The general strategy to do so is a three-
step procedure: preparation, measurement, and subsequent
statistical evaluation. The quantum metrology algorithm
formally presented in Fig. 2 is universal and currently well
established (all classical (technological) noise in the system is
assumed to be suppressed and decoherence is assumed to be
absent; cf. [60]).

At the first stage, as can be seen from Fig. 2a, a probe
quantum state |if;,) of the light field is prepared. Subse-
quently, the probe state is subjected to the action of a unitary
transformation, which already contains an unknown para-
meter ¢, giving rise to the state Yo, ) = Uy|Pi,), where U, is
the operator of evolution containing information about the
unknown parameter ¢.

The practical implementation of quantum metrology is
shown in Fig. 2b, where an MZI is used to prepare |/ ). We
note that the MZI is physically entirely similar to the MI (cf.
Fig. 1). The difference between these interferometers is only in
construction: in the MZI, optical beams generally pass
through two different beamsplitters BS; and BS,, whereas,
in the MI, beams pass twice through the same beamsplitter
BS: at the entrance to and at the exit from the interferometer.
For this reason, the use of an MI is preferable in practice (it
does not require calibrating the relative position of the
beamsplitters) [18, 61]. An MZI is more convenient for
theoretical research and in quantum technology applications
when fabricating photonic chips with modern methods of
integrated optics [62]. The MZI theory allows visualizing the
evolution of the quantum state of a two-mode system in the
Schrodinger picture, or, equivalently, the evolution of the
operators in the Heisenberg picture.

Thus, the main problems of optical quantum metrology
can be formulated as follows:

e What probe quantum state |i};,) can be used for optical
quantum metrology?

e What should the transformation U¢ be to yield an
estimate of an unknown (small) parameter ¢ with the
minimum possible uncertainty?
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Figure 2. (a) Outline of optical metrology setup to measure and assess unknown phase parameter ¢ based on a step-by-step transformation of initial

quantum state [;,) of the system and detection of its final state [/, ) =

Uy ;) in the two-mode approximation. ¢ are measurement outcomes, &(e) is

statistical point estimate of unknown parameter ¢. (b) Optical MZI implementing such a measurement. a;, @> and a;, @; are field modes at entrance to and
exit from MZI, D, ; are detectors, and BS, » are semitransparent beamsplitters.

e How is a point estimate made of an unknown parameter
based on measurement outcomes, and how does the estimate
of an unknown parameter ¢ depend on the measurement of
the |{,,,) state?

We attempt to answer these (and related) questions in this
review based on the existing realities and advances in both
theory and experiment. We note that various aspects of
quantum interference and its use in quantum metrology
problems and quantum information processing are also
discussed in review [63].

2.2 Elements of the estimation theory

for an unknown parameter in quantum mechanics

We begin the discussion of optical quantum metrology
methods by answering the third question in Section 2.1. We
consider the problem of estimating one unknown physical
parameter of the system ¢ by using an already prepared probe
state, described by a density operator p, and assume that the
parameterization of this probe state p, = U¢p U' has already
been chosen. We only note that, in general, state parameter-
ization can be realized by using a quantum operation that is
not necessarily unitary. Measuring the parameterized probe
state p, allows obtaining a set of measurement outcomes to
be used to derive an estimate ¢ of the unknown parameter ¢
in accordance with some rule. Naturally, in the general case,
such an estimate cannot be accurate, ¢ # ¢, and the
difference |¢p — ¢p| between the point estimate and the
unknown parameter determines the accuracy of the proce-
dure used. In addition to this value, the resulting estimate is
also assigned some uncertainty. The error of the measurement
result is fundamental and is related to Heisenberg’s uncer-
tainty relation, which for a quantum mechanical particle has
the form

2

Ag*Ap? > % (2.1)

where Ag2 = ((Ag)*) and Ap? = ((Ap)?) are dispersions of
the coordinate and momentum of a particle, characterizing
the uncertainty of its physical state in phase space [12]. Thus,
we are interested in the problem of finding the minimum
uncertainty of the estimated quantity ¢ and the conditions

under which it is attained. We note that there are different
methods of post-measurement processing of the measure-
ment outcomes & implemented using an estimator—a
function @(g). Various aspects of the choice of the estimator
are a subject of mathematical statistics and therefore are not
considered here in detail. We only note that the maximum
likelihood function method is often used in optical quantum
metrology; in what follows, just this function is used as ®(¢).
In some cases, the use of the maximum likelihood function
method allows obtaining an analytic expression for the
estimate ¢ and its standard deviation depending on the
measurement outcomes.

The analysis outlined in what follows is applicable to
various physical systems, including optical media. To extract
conditional information from a pre-prepared state p,, we
consider a quantum measurement determined by the set of its
positive operators I1(g;) = 0, the so-called POVM (positive
operator-valued measure) elements, which satisfy the
normalization condition ./ II(¢;) =1, where I is the
unit operator and ¢; is a set of measurement outcomes
(for simplicity, we consider a discrete set of ¢ values; in
general, this consideration also applies to the case where ¢
takes continuous values). Then, the conditional probability
can be evaluated as

P(zi|¢) = tr (IT(z:)p,) -

If the initial state consists of v uncorrelated subsystems,
Py = p( ) p( '®...® p(;) ), with the same parameteriza-
tion, then the cond1tiona1 probability of a given separable
v-partite state is P (e;]¢p) = [, P(eil¢p).

We consider the case of one measurement with a
measurement result &, which allows the experimenter to
obtain an estimate ®(¢) = ¢ and assign it to the unknown
parameter ¢. But this estimate can only be correct on average,

ZQD P(eilo),

when the measurement of identically prepared states is
repeated a large number of times with an unbiased estimator
(®) = ¢. Information on the uncertainty in estimating the
unknown parameter ¢ is contained in the dispersion of the

(2.2)

(2.3)
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estimator, which can be standardly evaluated as

= 3 (@(e) — (@) P(edlo).

i

(AD?) = Ad? (2.4)

The quantities (@) and (A®?) can depend on ¢, but we omit
their argument. The tools of mathematical statistics allow
estimating the lower limit of the estimator dispersion.
Remarkably, the boundary value can be obtained via simple
algebraic transformations. For this, we use two quantities: the
derivative of the average of the statistical estimate
O(®)/0¢p = (POL(&;|p)/0p), where L(e|p) =In P(e|p) is
the logarithmic conditional probability [60], and the aver-
aged logarithmic derivative (0L/0¢) = 0. W1th the Cauchyf
Schwarz inequality for operators (4 B)* < (A2)(B?), the
chain of transformations

G - (o5 %)
~ ({0~ @) 2{;>) <((@- <¢>>2><(2{;)2>

= AP F(¢) (2.5)

allows estimating the lower bound (the Cramér—Rao bound,
CRB) of the standard deviation of the estimator A@cg for the
obtained probability distribution (2.2),
1 d(P)
AD = Adcr = — 2.6
ox == 45 26)

where we use the expression for Fisher information

ro=((&) ) - E mmrm (Y5

In the case of an unbiased estimator (d(®)/d¢ = 1), we
obtain the expression for the CRB widely used in the
literature (see, e.g., [11, 60, 64]),

(2.7)

ADcgr = ——, 2.8

R = (2.8)
for a separable state p,, with a set of measurement outcomes
¢ =(e1,6,...,8&), because Fisher information becomes an
additive quantity in this case, F, = vF. We note that (2.8)
follows from the theorem on the asymptotic attainability of
the CRB in the case where the maximum likelihood method is
used for the estimator @(¢). It can be proved that, in the limit
of v — oo measurement outcomes, the asymptotic distribu-
tion @(¢) is Gaussian with the mean ¢ and dispersion
1/vF(¢$), which can be conventionally represented as
®(e) ~ P,(p,1/vF(¢)), where P, is the standard Gaussian
distribution and the symbol ~ is used in the sense that the
asymptotic distribution ®(¢) approaches the Gaussian dis-
tribution as v — oo.

The family of measurements with a set of measuring
elements {II(¢;)} is infinite, which gives rise to the problem
of maximizing Fisher information by seeking a measurement
that maximizes the Fisher information of the p,, state used,
ie., Fy,(¢) =maxyy() F(¢); this quantity is called the
quantum Fisher information (QFT). It can be shown that the
procedure for maximizing with respect to the measuring
elements leads to a decrease in the lower bound for the

unknown parameter estimates to its ultimate fundamental
limit A®qcr (the quantum Cramer—Rao bound, QCRB) and,
in the case of an unbiased estimator, the following inequalities
hold:

1

q

> Adocr = (2.9)

Thus, a fundamental problem in quantum metrology and
sensing is to find the QFI F,(¢), which is directly related to
the procedure for measuring the unknown parameter ¢ and
its dispersion. Below, we discuss the physical quantum
metrology schemes where F,(¢) can be maximized.

The QFI F,, in turn, is the dispersion of the Hermitian
operator of the symmetric logarithmic derivative Fy(¢) =
AD? = tr (p,D?), because (D) = tr (p(i,D) = 0. This operator

satisfies the equation dp(b/dqﬁ (p (PD+ Dpd))/z = {p¢D}/2

where {A,B} = AB+ BA is the anticommutator of two
operators. The solution of this equation, realized by diag-
onalizing the initial state to p, = >, 4i{Y;) (Y|, always exists:

= 22”{p¢D}”|¢ Nz |/(/1 + 4;). This allows calculating
the quantum limit of Flsher information as

(6 b 1i)2
Z —ﬁf_

i

Fy(pg) = (pyD?) =

+ZZ 7 +/1

Here and hereafter, 04 denotes the derivative of a function or
state with respect to the parameter ¢. The QFI no longer
depends on the type of measurement chosen and is completely
determined by the probe state p,. Knowing the form of the
symmetric logarithmic derivative operator we can choose the
eigenstates of this operator D = >, ! |1// >< ; )\ which
can also depend on ¢, as the measurmg elements
{(g) = |1// )( \} thereby reducing the uncertainty of
the estimator to the QCRB value. We note that the choice of
eigenstates of D is not the only POVM measurement that
allows attaining the QCRB, but the search for such operators
is a difficult problem in general. A situation is possible in
which the experimenter can surmise what values the unknown
parameter ¢ can take as a result of preliminary ‘rough’
measurements in order to ‘improve’ the measurement basis
of the subsequent measurements, but such complex adaptive
strategies are beyond the scope of this review. The expression
for the QFIin (2.10) can depend on ¢ in a rather intricate way,
and therefore the choice of the probe state p, can be good in a
certain range of ¢ values. Conversely, the use of the same state
py does not guarantee that this state can be useful in
estimating ¢ in another range.

Calculating the QFI in (2.10) may turn into a rather
involved technical problem, which, however, can be simpli-
fied in two common cases. For example, the form of the
symmetric logarithmic derivative operator is simplified to
D= 204, in the case of a pure state Py = [ o) (Youe|» Which
can be proved directly starting with the definition of the
operator D and the condition Py = ,bdf for pure states. The
pure-state QFI then becomes

F(l//out) = 4<<a¢l//oul|a¢l//out> - ’<6¢¢0ut‘wout>’2) ) (211)

@l (2.10)

which is most often taken as the definition of QFI in modern
scientific literature [11, 60, 64].
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The second assumption, which partly answers the second
question, is the possibility of a unitary ‘encoding’ of the probe
state

Uy = exp (~i¢G)
with a Hermitian generator G (cf. [64]). The operator U¢
defines a transformation of the pure state [,,) = ¢|lﬁm?,
and, in the general case, of a mixed probe state p, = UypU,,
and satisfies the von Neumann equation i0p,,/0¢ = G, Pols
where [4, B] = AB — BA is the commutator of two operators.

Thus, the QFI can be calculated as four times the dispersion
of the observable G:

(2.12)

Fy(Wous G) = 4((G?) = [(G)’) = 4AG> (2.13)
for a pure state and
)L] A 2
Fy(py, G 22 g )] (2.14)

for a mixed state ﬁ¢ in the most common case 944; = 0, when
the classical contribution p, to this quantity is not used.
Expression (2.14) may seem weird when trying to use it, e.g.,
for a pure state or a balanced state with 4, =4, =

J; = 1/N. The ‘weirdness’ entirely disappears when using the
completeness of the basis states |1,b) together with two
obvious transformations, (4; — 4;)* = (4 + 4;)* — 44:4; and
(OpWi|¥hj) = —(W;[04¥;), which allows writing (2.14) in the

form
Py 6) = 4( a6 ~2 5 7% [widiv )
' (2.15)

We also note the important convexity and additivity
properties of QFI,

F, (f) = Z;,ip(;f>) < Z/lin(ﬁ 0 (2.16)
Fy(@py) Z Fy( (2.17)

and the inequality
Fy(py,G) < 4AG?, (2.18)

which can be qualitatively explained as follows: adding
classical information to the formation of a mixed state p,,
reduces the total amount of information that can be gleaned
from measuring the state. The last step to determine the exact
bound for the unknown parameter is to maximize the QFI in
(2.15) with respect to the probe states, i.e., to seek a state p
that provides the maximum QFI, max;, F(p,), which is
already beyond the scope of this review but is touched upon
in some examples below.

Estimates (2.13) and (2.14) were obtained with the use of a
generator G of the physical system. We therefore consider the
case, important in practice, of estimating a physically small
parameter ¢. In this limit, the parameter uncertainty A¢ < 1
can be estimated based on the error propagation formula [11,
64]

Al

e

(2.19)

which involves the standard deviation AT = ((I%) — (I >2)1/ 2
and the average I = (I) of the operator of a detected
(random) signal I. As can be seen from (2.19), assuming all
other conditions to be ideal, increasing the accuracy of
measuring small displacements requires, first, an increase in
the signal-to-noise ratio and, second, the maximum slope of
the curve, determined by 0//0¢. A decrease in Alis possible to
the shot noise level [65], due to the efficiency of signal
detectors. This noise determines the SQL of classical
measurements.

The smallness condition ¢ < 1 allows approximating the
transformation of the operator of the observable I’ = Ud)fll/,
as

1" = exp (ipG)lexp (—ipG) ~ I —ip[l, G . (2.20)
For any two operators Iand G, we can write the uncertainty
relation in the form

1.
AING > 5 [[1.G)|

(2.21)

and hence the expression for the phase error propagation in
(2.19) takes the form

Al Al 1
pyeel e C T T ¢

A =

which coincides with the QCRB in (2.9) and (2.11). In
estimation theory, relations (2.22) physically embody the
uncertainty principle [64]. Hence, in quantum metrology, the
quantity A¢ is to be minimized by choosing the appropriate
operator G of a physical quantity and the probe quantum
state of the light field with respect to which the averaging is
done.

2.3 Advantages of nonclassical states

in estimating an unknown parameter in linear metrology
We now consider the answer to the first question posed in
Section 2.1: the use of nonclassical states of light in optical
quantum metrology, which allows researchers to obtain an
extra ‘quantum’ resource that is decisive in ensuring the
advantage of quantum technologies over classical ones in
ultraprecise estimations of an unknown parameter [66]. Such
states are the subject of quantum optics: over the past three
decades of development, a significant number of nonclassical
states have been presented, and methods for their transforma-
tion, preparation, and measurement have been developed [22,
67].

In classical optics, the key parameter is the phase
difference, for example, between MZI arms, which deter-
mines the interference at the exit (see Fig. 2). The phase
difference is regarded as a classical parameter rather than a
quantum observable, which leaves this parameter subject to
estimates rather than measurements. A detailed discussion of
the phase problem in quantum optics, the existence of a
Hermitian phase operator of the electromagnetic field, and
related detection methods can be found elsewhere (see, e.g.,
[68, 69]).

In many practically important cases, the phase difference
between two light beams whose behavior we observe can be
represented as the sum ¢, + ¢ of a ‘classical’ part of the phase
shift (the reference phase) ¢,, which is known a priori from
the preparation of the initial quantum state (or from the
results of a previous classical measurement), and the
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unknown part ¢. An ‘extra’ increase in the light wave phase ¢
occurs when one of the MZI arms contains a transparent
medium with an unknown refractive index that depends on
the material parameters of the medium, temperature, and so
on, which are just the ultimate goal of measurement and
estimation in metrology and sensing. In that case, the error in
measuring the phase difference A(¢p, + ¢) = A¢ is entirely
determined by A¢, whose measurements and estimates are
discussed below. The choice of the reference phase ¢, is
determined by the condition of minimizing the resultant
measurement error. Another example of an unknown para-
meter that can be estimated by quantum mechanics is
provided by the photon delay time t in the Hong—Ou—
Mandel interferometer.

We use expression (2.19) to estimate the uncertainty in
measuring the phase difference in the MZI shown in Fig. 2b.
In the Heisenberg picture, the input and output channels of
the interferometer can be described by the respective bosonic
annihilation operators a;, d», and a{, @, which satisfy the
standard bosonic commutation relations

la:,af] = [a},a]"] = o;;. (2.23)
Mathematically, the propagation of fields in the MZI can be
conveniently represented using the quasispin operators of a

two-mode system [70],

R | B a

J;(—E(al'aeraz'al)7

R 1 s i

Jy:i(alaz—agal), (2.24)
R | B i

Jz —5(541'“1 —aya) ,

which satisfy the SU(2) algebra commutation relations

V. Iyl =1z, Uy Jzl =y, [z, Jx|=1y. (2.25)

The operation of the MZI can be described as a sequence
of rotations in an abstract (spin) space, defined by the unitary
operator Ug = exp (—i®Jn) (where J = {Jy, Jy,J,} and ©
and n are the angle and the vector of the rotation axis),
similarly to angular momentum in quantum mechanics (see,
e.g., [71]). The transformation of quasispin operators in the

setup in Fig. 2b can then be written as

J = Ul SOz, j=X,Y,Z, (2.26)
where the operator
Umz = Ul Uy Uss (2.27)

describes the evolution of states in the MZI [11, 70, 72]. In
(2.27), Ugs = exp (—i(n/2)Jy) is the equilibrium beamsplitter
operator, and the evolution operator of the phase parameter
has the form

Uy = exp (—igJz). (2.28)
It can be shown that, in this configuration, the MZI operator
in (2.27) becomes Umz = exp (—ipJy). Detectors at the exit
from the MZI measure the photon numbers N7%', which allow
defining a Hermitian observable, the photon-number differ-

1 ob ¢ noton-niim €
ence operator [= N — Nowt—allal —allal = —2J).

Thus, the standard deviation
AT =2AJ =24/ (JJ2) — (J4)°

bounds the measurement accuracy of the phase parameter ¢.

In quantum optics, an interferometer built based on the
SU(2) rotation group can easily be implemented using linear
optical elements: beamsplitters, phase shifters, and so on (see,
e.g., [73]). Based on relations (2.26), the average value of the
experimentally measured quantity (J’Z) can be expressed in
terms of operators (2.24) averaged with respect to the input
quantum state [, ):

(J7) = cos (¢) (Jz)in — sin (¢) {Jx)is - (2.29)
Calculating AJ/, leads to an expression for the dispersion
AJ}?* in the form

AJL? = cos® (p)AJ 2 + sin® (p)AJ 2 — sin (2¢) cov (Jz, Jy)
(2.30)

where covA(jZ,jXA) is the covariance parameter of the
operators J, and Jy, defined as

cov (Jz,Jx) :%<(jzjx +IxJ2)) 0 = Ux)inlI2)in - (2.31)

In the MZI representation, when measuring the observable
quantity 7 = (2J%), formula (2.22) becomes

AJ/2
Ap=——2
’ 0(74) /04|

(cf. (2.19)).

Let us consider specific examples. In the semiclassical
limit, coherent (laser) radiation is supplied to input 1, and
input 2 is left “idle,” i.e., in the vacuum state, and hence |;,) =
|o}110), = |a, 0), where |0) is the vacuum state and

o =erw (-1 T

is a coherent state (|o|* = (N) = N is the average number of
photons in the interferometer). From (2.32), we then obtain
Ap = v
VN |sin (¢)|

(2.32)

(2.33)

(2.34)

Expression (2.34) can be optimized near the value of the
reference phase ¢ ~ ¢, = n/2, which gives the following
estimate for coherent states:
|

Adeon = ﬁ = Ad’SQL . (2.35)
The value in (2.35) determines the SQL in quantum metrology
measurements, also known experimentally as the shot noise
limit [14]. Physically, this is the ultimate accuracy of classical
interferometry, which involves coherent sources of laser
radiation with |oc|2 > 1, assuming the complete absence of
radiation losses in the MZI. To overcome the SQL in (2.35),
essentially nonclassical quantum states must be used, which
are discussed in what follows. Before that, we note that the
same result (2.35) can be obtained from (2.18) in the form
Ao = 1/2AJ7), because AJ, = (1/2)]a| = (1/2)y/N for
the state in (2.33).
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We next consider classical single-mode states py =
| %o P (a)|or) (o], where the Glauber-Sudarshan quasidistri-
bution P () is a classical probability density, Pg(o) = 0.
Using inequality (2.18), we can then estimate the QFI for the
generator G = N/2 = a'a/2 as

F, (ﬁcl’i) <ANG = szoc Pu(a)|o)* = Tr (pyN) = Nq .
(2.36)

Expression (2.36) implies a lower bound for the standard
deviation of the phase when measuring a classical state in one
dimension v = 1:

1

Apocp = —— .
QCR /_Ncl

(2.37)

To obtain a lower value of the uncertainty of A¢gcgr, we
have to ensure the condition F,(p, N/2) > N,. Therefore, the
measured state p must be nonclassmal Wthh in combination
with inequality (2.18) allows obtaining the necessary
(although not sufficient) condition AN} > N, for the SQL
to be overcome. Interestingly, the required nonclassical state
p must a have super-Poisson statistics to satisfy condition
(2.37), which means that not every nonclassical state can be
useful in optical quantum metrology.

Next, as examples of nonclassical states, we consider a
single-mode squeezed vacuum (SMSV) state with a real value
of the squeezing parameter of the quadrature component
r > 0, which we represent in the form

2n)

|SMSV(y)) = |2n),  (2.38)

\/cosh Z \/y2n

where y =tanh(r)/2. If we pass this state through a
beamsplitter with arbitrary real transmission, 7, and reflec-
tion, R, amplitudes, then the output state becomes a hybrid
entangled state [74, 75]

BS12(|SMSV(y)) ‘0>2)
1 /7
- cosh() On B2 #7700, 02 2:3)

with the amplitudes ¢,” (v, B) = (—1)' (1 B)"?/VI1, where
the input squeezing parameter y becomes equal to
yi =yT? =y/(1 + B) < y with the beamsplitter parameter
B=(1-T2)/T? also, Z"(y;) = d"Z(y1)/dy] is the nth
derivative of the function Z(y;)=1/(1—4y?)"? with
n = 2m,2m + 1. Definite-parity states are defined as

v (2(n+m))!

1 o0

|P2m(01)) = VZ(y) &= \/(2,1)! (n+m)! [2n) (2.40)
| Yomt (}1 i;lH»l \/m
Mp nt 1) (2.41)

(n+m-+1)!

and are obtained from hybrid entangled state (2.39) by
extracting 2m and 2m + 1 photons from it.

Hybrid state (2.39) and so-called measurement-induced
states, both even (Eqn (2.40)) and odd (Eqn (2.41)), are based

on the preparation of the required state by measurements
carried out on a ‘part’ of the state obtained within the scheme
(cf. [76]) and are of significant interest for optical quantum
metrology; the measurement-induced preparation of the
NOON state is to be discussed in Section 4.4. An increase in
the number of extracted photons leads to a significant
increase in the average number of particles in measurement-
induced states, which allows obtaining a lower uncertainty of
the estimated parameter compared with the uncertainty
provided by the initial state (2.38) [75]. In addition, measure-
ment-induced states (2.40) and (2.41) can be approximated as
even,

) o o
|SCS.. () = 2N, (=) exp (- 7) ; DI 2n), (2.42)
and odd,
|oc|2 00 a2n+1
|SCS_(a)) = 2N_ () exp (— 7) ; Ve [2n+1),
(2.43)

optical Schrodinger-cat states; they have the amplitude o > 5
with an accuracy greater than 0.99, where Ni(a)=
1/[2(1 + exp (=2|a*))]"/? is the normalization coefficient
[74]. Optical Schrodinger-cat states are another example of
states with a continuous observable that can be used in optical
quantum metrology.

Among two-mode states, the maximally entangled state

[NOON) = %(IM 0) + 10, N)) (2.44)

plays an important role in quantum metrology, as do various
types of separable states composed of the above single-mode
states. For example, we can use the separable state
[SMSV),|n), at the entrance to the MZI, where the number
n can take values n = 0 and n # 0. The input state can also be
an arbitrary mixture of a coherent or a thermal state with the
photon state p = p, ® |N),(N| [77]. The use of entangled
states at the entrance to the MZI can provide an additional
resource for ultraprecise estimates of an unknown parameter.

Table 1 shows analytic expressions for quantum Fisher
inforrndtion for some selected states when using the generator
G = J with the input state |y;,), 10),, which transforms into
|lp0ut> Ud)‘l//ln) |0>2 = &Xp (_1¢Jz)|l/j1n> |0> As we can see
from the table, only the Fock state and the odd Schrodinger-
cat state cannot overcome the SQL. Moreover, a single-mode
squeezed vacuum state can also overcome the Heisenberg
limit, to be discussed below, because Andysy = (M) avsy- For
the Schrodinger-cat states, on the other hand, the term oc |o|*
is a correction that vanishes for N > 1. Although nonclassical
states of light can overcome the SQL, realizing this advantage
in practice is a challenging experimental task, which faces
obstructions due to the level of development of modern
quantum optical technologies (as we discuss in subsequent
sections).

Interestingly, in the context of metrological applica-
tions, so-called four-mode scalar light, whose polarization
degree is zero, may be of some interest, because the total
averages of the Stokes operators are also equal to zero [77].
However, the issue of their use in quantum metrology
problems requires separate studies that go beyond the
scope of this review.
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Table 1. Quantum Fisher information of some nonclassical and coherent
states in the case where phase shift operators Uy = exp (—i¢pJ) are
applied to initial (probe) pure state |,), i.e.. |Vou) = Usly,) or
[Wou) = Up|¥in) ® |0). Some estimates are expressed in units of average
number of particles N = (N) for convenience.

Average Quantum Fisher
Probe state |y;,) number information,
of particles Fy(hy, G) = 4AG?,
(N)=N G=Jy
Fock state |N) N 0
Coherent state |o) |orf? N
Single-mode squeezed vacuum sinh? (r) 2(N?+N)
state |SMSV)
NOON state [NOON) N N?
Even Schrodinger-cat state |°‘|2 tanh (\“\2) |‘1|4
ISCS, () cosh? (J|*)
Odd Schrodinger-cat state 5 ) |oc|4
o|” coth (| -
ISCS_(2)) e (I sinh? (Jo[?)

2.4 Limit estimates of phase parameters

in nonlinear metrology

We have tacitly assumed in the foregoing that the phase ¢ is
independent of the number of particles. But, in a more general
formulation of the problem, ¢ should be considered a small
parameter dependent on the number of photons. Physically,
this situation may correspond, for example, to measuring and
estimating the cubic nonlinearity parameter of a transparent
medium placed in one of the MZI arms and causing an
additional nonlinear phase shift.

Because the calculation of the lower CRB in this case is an
ongoing problem in modern quantum theory, we present only
limit estimates of the accuracy of measuring phase para-
meters, derivable by intuitively relying on the use of
nonclassical states, which are useful in linear metrology. We
therefore consider generators of two types: those correspond-
ing to linear (separable) and to nonlinear (nonseparable)
transformations. These generators can be respectively re-
presented as the sum G = Z,": & and the product
GNL = ka:1 g; of k generators. The dispersions of such
generators can be represented in the form [79, 80]

k

1
AGL - E(Zmax - /Imin) 5 AGNL - 5 (/lk - /lk ) 5

max min

(2.45)

where Amax and Ami, are the maximum and minimum
eigenvalues of g;. Because the g; are most often taken to be
the particle number operators, for which A,,x = N and
Amin = 0, we can write

1
AGL = g N, AGnL = 3 Nk, (2.46)
whence
1 1
Ap = N ApnL = NE (2.47)

We also note the following terminology, which has
become established in quantum metrology. At k =1, the
Hamiltonian of the physical process corresponding to the
evolution of the unknown (phase) parameter depends linearly
on the number of particles, H x ¢N, and it is therefore
appropriate to speak about linear quantum metrology. The
maximum achievable accuracy of ¢ measurements is the HL
Ap > N—".

The transformation generators Gy in (2.46) with k > 1
pertain to nonlinear metrology of some phase parameter
involved in the process of nonlinear phase shift H o« ¢N*,
and hence the expression

1

Ap > NE (2.48)
is a super-Heisenberg limit of the measurement (estimate) of
the phase parameter. Expression (2.48) allows describing the
ultimate accuracy in both linear (k = 1) and nonlinear (k > 1)
quantum metrology in a unified way. For simplicity, in what
follows, we speak of (2.48) as the generalized Heisenberg limit
(GHL).

Thus, the maximum metrological accuracy (without
taking losses into account) that can be achieved in view of
(2.47) is in the range

1 1

(2.49)

The right-hand side of (2.49) is a generalization of the
SQL to nonlinear metrology and can be obtained using probe
coherent states (2.49) under the same condition of a nonlinear
phase shift H < ¢N* [79, 80]. Interestingly, the error A¢ of
measuring the unknown parameter ¢ in nonlinear metrology
overcomes the SQL A¢ = 1/v/N by orders of magnitude of N,
even if the interferometer input contains coherent states.

From a practical standpoint, an important limit case of
(2.49) is the estimate of the unknown parameter of the cubic
nonlinearity of the medium, for which k=2 and which
corresponds to the self-action of a plane (light) wave in such
a medium. However, as was shown in [44, §1], quantum
nonlinear metrology with (spatial) bright solitons leads to an
estimate of the metrological window of quantum measure-
ments of the Kerr nonlinearity parameter in the form

<A < (2.50)

1 1
N N7
which formally corresponds to the value k = 31in (2.49). From
a physical standpoint, this is because of spatial nonlinear
effects that occur during the formation of bright solitons. A
practically important contribution would be provided by the
experimental confirmation of inequalities (2.50) based on
optical or atomic bright solitons. However, for now, obtain-
ing quantum regimes for such solitons with a relatively small
(mesoscopic) number of particles faces objective challenges.
In optics, with a small Kerr nonlinearity parameter, solitons
typically contain a macroscopically large number of photons,
N ~ 10° [82] or more, and experience decoherence at a
significant level for such problems. Some hopes are pinned
on the use of semiconducting media with high cubic
nonlinearity. In experiments with nonequilibrium exciton—
polariton condensates, it was possible to obtain bright
solitons with a mesoscopic number of particles (in the
hundreds) [83]. However, such media are ‘highly noisy’ (at
least at observation temperatures of several kelvins) due to
the excitation of a large reservoir of excitons and the finite
lifetime of photons in the microcavity [84].

In atomic optics, Bose—Einstein condensates, which have
a negative scattering length, allow obtaining solitons with a
mesoscopic number of atoms N ~ 10° [85]. However, such
experiments are still unique because bright solitons form in a
fairly narrow range of the number of particles that satisfy the
soliton stability condition.
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Thus, expression (2.49) shows that the nonlinear metrol-
ogy options for overcoming the SQL with an increasing
parameter k > 1 significantly broaden. However, the use of
purely nonlinear media forming the corresponding phase
parameters is generally associated with an increase in noise,
dissipation, thermal fluctuations, and so on. The use of
quantum metrological schemes based on highly nonlinear
media has be to physically justified in each particular case
[86].

3. Limit measurements and detection
of phase parameters in quantum optics

3.1 Quantum measurements with squeezed states of light
Historically, states with squeezed fluctuations of the electro-
magnetic field were among the first ones proposed for
measuring small displacements beyond the SQL in an MI
[6]. Today, there are numerous reviews devoted to squeezed
and correlated states of the light field, and we note one among
the most recent of them [87]. In studies dating back to the
1980s—1990s, the main emphasis was on various fundamental
properties of nonclassical states of light and on measurements
with them (see, e.g., [§8-96]). Currently, such states are of
great practical interest from the standpoint of various
applications, in quantum metrology and sensing, as well as
in quantum communications and quantum computing [74,
97-101]. Similarly to coherent states (2.33), they are states
with continuous field variables, which can be characterized by
some complex number { = rexp (i), where r and 0 are the
squeezing parameter and phase. The SMSV state in (2.38) can
be realized in the general form by applying the squeezing
operator S({) = exp [(1/2)(*a> — (1/2)¢a"?] to the vacuum
state, i.e., as [SMSV) = $()|0).

Physically, the SMSYV state can be obtained as a result of
frequency-degenerate SPDC of light, when a pump field
photon decays into two twin photons, identical in frequency
(and polarization) (Fig. 3).

In a more general case where photons 1 and 2 differ at
least in polarization, such a process is described by the
squeezing operator Si2({) =exp[(*did, — C&f&;], which
allows obtaining a two-mode squeezed vacuum (TMSV):

[TMSV),, = $12(0)0),0),
- m Z(_l)n tanh” (r) exp (in0)[n),|n), . (3.1)

n=0

It readily follows from (2.38) and (3.1) that the corre-
sponding light radiation states |TMSV),, (except the
vacuum) at the exit from a nonlinear crystal always contain
an even number of photons. These states have several
remarkable statistical properties, which are well known and

which allow using the states in various applications of modern
quantum optical technologies [98]. For example, quantum
properties of the SMSV state are due to the behavior of
Hermitian quadratures of the light field, analogous to the
coordinate ¢ and momentum p in quantum mechanics

(cf. (2.1)),

O==(a"+a), P==(a"-a). (3.2)

0o —
o =

The commutation relation [Q, P] = i/2 between operators
(3.2) leads to the Heisenberg uncertainty relation

1
AQ*AP? > —

6’ (3.3)

which makes a simultaneous exact measurement of the
corresponding light field quadratures impossible. With the
optimal value chosen for the squeezing phase 0, we can obtain
the SMSYV state dispersions in (3.3) as

1

AQ? = exp (F2r),

1
) AP? = — exp (£2r),

2 (3.4)

which correspond to the squeezing phase 0 = 0 (the upper
signs) and 0 = 7 (the lower signs).

Expressions (3.4) demonstrate the effects of squeezing,
which consists of an exponential decrease in one of the
quadrature dispersions, and of antisqueezing, which is an
increase in the dispersion of fluctuations in the phase-
conjugate quadrature with increasing squeezing parameter r.
The coefficient 1/41in (3.4) gives the value of the dispersion for
the vacuum or coherent states of light at » = 0. This allows
interpreting squeezed states as those with fluctuations
suppressed below the shot noise level. We note that the
uncertainty relation valid for the dispersions of quadratures
in (3.3) takes a minimum value and is not violated for any 0
or r.

The parameter rin (3.1) describes the SPDC efficiency and
depends on the crystal thickness L, its quadratic nonlinearity
7'?, and the classical pump wave amplitude /7, (where 1, is
the intensity), such that r o y?) /T, L [101]. As follows from
(3.1), ideal (100%) squeezing ((AQ)?) — 0 can be achieved
only in the limit as r — oo, which physically requires infinitely
large values of the above parameters. In experiments with
squeezed light, a nonlinear crystal is placed in a cavity in order
to effectively increase L (cf. [14]). In practice, the quadrature
dispersions are always limited due to radiation losses and the
finite value of r. The squeezing level is directly related to the
squeezing parameter, which in turn is determined by the
pump power of the nonlinear crystal. This level is usually
measured in dB, calculated as

AX?
[dB] = —101og,, )= —101logy (exp (—=2r)),  (3.5)

\A

Pumping Ws

Biphoton

Crystal

Crystal

Biphoton

Figure 3. (a) Degenerate and (b) nondegenerate SPDC in a crystal with quadratic nonlinearity ), which allows obtaining respective single-mode (a) and
two-mode (b) squeezed states. DBS is a dichroic beamsplitter, M is a mirror, and ;. w;, and wy are circular frequencies of pump, idler, and signal

photons.
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where X = {0, ﬁ}m is the minimum of the two quadratures
and AX2. = ((AX)"),,. is dispersion for the vacuum state.
The last equality in (3.5) holds in view of (3.4). For example,
for a 15-dB squeezing, as was obtained experimentally in
[102], the formal squeezing parameter calculated in accor-
dance with (3.5) is r ~ 1.73.

Losses in squeezed-light setups can be estimated using the
method of fictitious beamsplitters (see Section 5). The essence
of the method is that (fictitious) beamsplitters are added to
the setup to deflect some of the photons; this is equivalent to
accounting for losses and/or interaction with the environment
represented by quantum modes (oscillators) in the vacuum
state.

As a result, the measured quadrature dispersion (without
taking the efficiency of detectors into account) becomes
(cf. [101])

AX?

means

1 —
:nAX2+—4”7 (3.6)

where X = {0, P} and 5 is the setup transmittance of
(0 < < 1). In the ideal case, AX2_, .. =AX? at n =1. We
note that, with (3.6) taken into account, the minimum
product of dispersions (3.3) is no longer attainable.

Over the past 20 years, experiments with squeezed light
have seen significant progress, due to the new hardware
components of both linear and nonlinear elements that
allow integrated implementation on a chip (see, e.g., [103,
104]). Figure 4 shows a simplified setup of the experiment to
generate SMSV states [105], consisting of four main blocks. A
fiber laser generates the working SMSV wavelength, the one
used in schemes for gravitational wave detection. Its coherent
radiation (the |o), state) is used as the field of a local
(reference) oscillator in the balanced homodyne detector
block when registering SMSV states. The second-harmonic
generation (SHG) block allows pumping at a wavelength of
0.775 pm, which is then used in the SPDC block, where the
|SMSV), state forms (see (2.38)). We note that both the SHG
and SPDC units involve cavities with quadratic nonlinear
periodically polarized potassium titanyl phosphate crystals
(PPTPCs) placed inside. As a result, the main factors limiting
the squeezing of one of the quadratures is the efficiency of
radiation conversion in these media. To be specific, for
theoretical estimates of the setup in Fig. 4, the phase-
optimized dispersion AX? of one of the squeezed light
quadratures can be expressed as

4\/ P/P[hr
(1= VP[P ) +4Q%

where 7 ~ 0.965 is the parameter responsible for the effi-
ciency of detectors and SPDC, Py, ~ 221 mW is the thresh-
old power of parametric generation in a nonlinear crystal, Pis
the pump power, and Q is the ratio of the frequency at which
squeezed light is measured (ranging from units to tens of
MHZz) to the losses in the cavity with the SPDC crystal. As a
result, a 12.3-dB squeezing was obtained.

We now discuss how squeezed states of light are used to
improve the accuracy of measurements in optical interfero-
meters (cf. [14, 18]). For this, we analyze the measurement
accuracy in an MZI in the case where the initial state at the
first MZI beamsplitter (Fig. 2b) is a combination of coherent
light and an SMSV, |y;,,) = |«);|SMSV),, which corresponds
to quantum metrology with the CSV state, for which the

AX? =141 (3.7)

BHD
Dy
Local
oscillator |, ,
Laser > > A |
_ BS BS |
4 =1.55um : SA
\ 4 I
|
I
1
|
NC PET A) | PET NC
. |
e [Eii)
DBS DBS
SHG SPDC

Figure 4. Simplified diagram of generating and detecting SMSV states
[105]: SHG —second harmonic generation unit, SPDC—unit with
spontaneous parametric down conversion, BHD — balanced homodyne
detector, DBS — dichroic beamsplitter, BS — semitransparent beamsplit-
ter, PET — piezoelectric element, SA— spectrum analyzer, NC—non-
linear crystal, AO— pump phase control element.

average number of photons is

(Ny = |o* + sinh? (r) . (3.8)

The first term in (3.8) corresponds to the coherent part of
the field at the entrance to the MZI, and the second
corresponds to the average number of noise photons
generated in SPDC (the second term is the average number
of photons in the SMSV state, as noted in Table 1). In this
case, taking { to be real for simplicity and calculating similarly
to what was done in (2.29)—(2.32) for a part of the interference
pattern formed on the MZI detectors (at ¢, = ©/2), we obtain
the error shift of the phase parameter A¢ in the form (cf. [11,
52])

\/|o<|2 exp (—2r) + sinh? (r)
A= ||e* — sinh? ()|

(3.9)

We assume that the coherent field component at the
entrance to the MZI is much greater than the noise
component, i.e., N ~ |a|* > sinh? (r). From (3.9), we then
have

exp (=)

Ap ~ N (3.10)
which means that it is in principle possible to overcome the
SQL using SMSYV states (cf. [6]). The dependence on rin (3.10)
has been confirmed in experiment. Already in pioneering
study [106] devoted to the use of squeezed states in metrology,
a 2-dB quadrature suppression was achieved. The experiment
was based on the same scheme involving an MZI, in which a
quadratic nonlinear SPDC crystal was placed in one the arms
to generate the SMSV states. To date, a record level of
suppression of quadrature dispersion of light radiation was
achieved in [102] with a quadratically nonlinear PPTPC
crystal 9.3 mm in length. The squeezed light was detected
with a 99.5% efficiency in a standard manner using balanced
homodyne detection and calibrated InGaAs p—i—n photo-
diodes.
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Importantly, expressions (3.9) and (3.10) are essentially
the result of using formula (2.19), which characterizes the
propagation of the phase measurement error in the SMSV
experiments described above. Formula (2.19) does not answer
the question as to what extent Eqns (3.9) and (3.10)
correspond to the allowed limit measurements of the phase
parameter, because it does reflect various strategies for
measuring, detecting, and estimating the phase parameter.
In this regard, a more precise approach would be to estimate
the maximum measurement accuracy in the formalism of
Fisher information (2.10), (2.11), which is unrelated to a
specific measurement/detection scheme and allows estimating
the maximum information gleaned when assessing an a priori
unknown phase parameter. These issues were extensively
discussed in [52, 53]. In particular, the use of (2.7) to calculate
Fisher information allows estimating the phase error A¢ in a
way that turns out to be independent of the phase ¢ itself,

Ap = :
\/|oc|2 exp (2r) + sinh? (r)

7 (3.11)

and hence the ‘classical’ (reference) phase ¢, can take values
in the range 0 < ¢, < m. It follows from (3.11) that A¢
reaches the SQL at |«* =0 and sinh?(r) = N, when the
initial state is just the SMSV. Similarly, if initially we have
only the coherent state with N = |oc|2 (r =0), then Eqn (3.11)
implies SQL (2.35). The optimum situation from the metrol-
ogy standpoint is the one where

Nexp(Zr)NE
> — .

2 : 2
~
|OC| sinh (V) 2

(3.12)
In this case, estimating the phase parameter leads to the HL
A¢p = 1/N. Because the squeezing parameter r is small in
practice, expression (3.8) imposes stringent restrictions on the
amplitude of the coherent field «. For example, to obtain a
noticeable squeezing of one of the quadratures at a 15-dB
level, the squeezing parameter must be r ~ 1.73 (cf. [107]),
and the average number of photons in the coherent field
|o* ~ 8, which is much less than the values corresponding to
the laser field intensities in gravitational wave detection
schemes [6]. These limitations may be overcome (at least in
theory) by using more complex unbalanced interferometers
with SU(1, 1) symmetry, containing quadratic nonlinear
crystals instead of beamsplitters (see [54]), but such schemes
require careful experimental selection of phase parameters,
the squeezing and antisqueezing parameters, losses, and so
on.

In this review, we mainly consider SU(2) interferometers,
which essentially allow high-precision measurements of
unknown phase parameters with both macroscopic and
small numbers of photons. Of interest in the last case, in
view of the developing technologies for detecting quantum
states of light (see, e.g., [31]), which we discuss in what
follows, are entangled states with a fixed total number of
photons, and NOON states in particular.

3.2 Detecting quantum states with ultimate sensitivity

We study the physical criteria that must be satisfied by light
radiation sources and detection setups to achieve the HL.
Physically, the GHL in (2.48) can be achieved by using the so-
called NOON state, which is maximally entangled in path, at
the entrance to the interferometer. As can be seen from (2.44),
the NOON state is a superposition of two Fock states: one
describes N photons in channel 1 and none in channel 2, and

the other, N photons in channel 2 and none in channel 1. The
problem of obtaining and using state (2.44) in practice is
discussed in more detail in subsequent sections. Here, we only
address the detection of a quantum state at the exit from an
MZI and analyze the interference pattern and estimate the
phase ¢. Namely, we assume that one single-photon detector
is placed in arm 2 of the MZI (Fig. 2b) and that this detector
can distinguish how many photons hit it simultaneously. It
can then also measure the parity of the number of incident
photons, i.e., the quantity described by the operator
[Ty = (—1)%® = exp (inalas) = exp (inJ) exp (—injy),
(3.13)

where J = N/2. In the MZI shown in Fig. 2b, the evolution of
the state ;) = |NOON) in (2.44) is described by the operator

Oz = Ul Uy = exp (i : jX> oxp(—ipdy)  (3.14)

and (up to the overall phase) leads to

Wou) = Onzlti,) = exp (lg jX) [V,0) + ex\%immm |
(3.15)

where ¢ is the phase shift in the MZI, given the reference
phase ¢, and the information about the measured parameter
¢. In the simplest case ¢, = 0, we have ¢ = ¢ (cf. (2.27) and
(2.28)). Therefore, the average of operator (3.13) at the exit
from the MZI can be described as

(IL) = (Yinl Uiz 1 Uniz |y = (Win| exp (in]) exp (igJ )

X {exp (—i g jx) exp (—inJz) exp (i g jX)} exp (—ipJz) [ y,) -

(3.16)
After simple calculations [72, 108], we obtain
- (—I)N/Qcos(goN), if Niseven, 317
<H2> = (N+1)/2 . . ( : )
(-1 sin (pN), if Nisodd.

Furthermore, because IT 22 = Tis the unit operator, which does
not change the state it acts on, the dispersion of operator
(3.13) averaged over state (2.44) is given by

Ally = (I13) — (I>)*

B { sin? (@N),
~ Lcos? (@N),

if Niseven,

. . (3.18)
if Nis odd.

Expressions (3.17) and (3.18) have an important physical
interpretation. Parity detectors can detect N-photon events,
namely, the interference of N photons. From the error
increase expression in (2.32), the error of measuring the
phase parameter ¢, on which the phase ¢ depends, follows
in the form

-1

A= — 2~
’ o(IL) /o] N

0¢

This implies that, using the MZI shown in Fig. 2b, the HL

(3.19)

Ap— L

N (3.20)
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is attained when measuring the small phase ¢ within the linear
metrology framework, where ¢ = ¢, + ¢.

In nonlinear metrology problems, when a medium with an
unknown Kerr nonlinearity is placed in an MZI arm, the
phase ¢ should be assumed to depend on the number of
photons N, ¢ = N¥~!(¢, + ¢), and the super-HL,

(3.21)

then follows from (3.19) (cf. (2.48) and (2.47)).

Thus, it is the parity detector that in our case allows
achieving the maximum metrological accuracy with the initial
(probe) NOON state.

Parity measurements currently represent an important
avenue in the practical development of quantum optics and
quantum information [109]. In a more general case, they are
based on a detector that must be ‘calibrated’ to measure Fock
states, i.e., to distinguish the incident photons. Currently, the
most popular detectors are those whose operating principle is
based on superconductivity [110]. Obvious progress in this
direction over the past 10 years is already visible from a
comparative analysis of studies [111-117]. The main advan-
tage of the detectors under consideration is their high
quantum efficiency (over 98%) in a wide spectral range,
speed (ability to repeat measurements) at the level of
nanoseconds or less, a low level of dark noise [118], and
options to increase the number of measured photons. For
example, the correlation function g with N =15 was
recently measured experimentally in [111]. A disadvantage
of such detectors is still the need to maintain ultra-low
temperatures (down to 100 mK), and a decrease in the
detection efficiency as the number of photons N increases.
In addition, we mention the high cost of such devices
compared to their semiconducting counterparts. It is
obvious that, with the progress in quantum technologies in
general, superconducting detectors will become quite acces-
sible for applications in integrated photonics dealing with a
mesoscopic number of photons (tens of particles). In this
regard, special hopes can be pinned on new (superconducting)
materials that demonstrate high sensitivity at moderately low
temperatures (up to 25 K) [119].

3.3 Limit capabilities of quantum sensing

Expressions (3.17) and (3.18) show that an interference
pattern can be observed with a period N times less than with
one photon, which means superresolution of the phase ¢ (at
¢, = 0), i.e., its hypersensitivity [120, 121]. This interference
pattern can be amplified by N* times in the general case of
nonlinear metrology.

In reality, however, the interference pattern has a finite
visibility V" ranging within 0 < V' < 1, and a measurement
efficiency 0 < 5 < 1. The probability of N-photon interfer-
ence (within linear metrology) for one measurement with
these quantities taken into account is

p= g (14 Vsin (¢N)) (3.22)

(cf. (3.17) and also [122]).
The phase estimate is then determined by the average rate
of N-photon events in v trials, i.e.,

C,=vp. (3.23)

In experiments, the number of trials v is always finite, and
hence C, has the standard deviation

AC, = +/vp(1 —p).

Quantity (3.24) can be associated with the phase hypersensi-
tivity S determined in the course of detecting the interference
of N photons in the form

1

VINAG

where A¢ is the measurement error of the phase ¢, which can
be expressed in terms of AC, using phase error propagation as

AC,
Ap=——"—'.
[0Cy /09|

Expression (3.25) can be interpreted differently if we use
the definition of QCRB (2.8). We then estimate the parameter
S'in a measurement as

£y

O<S< AT
N

(3.24)

(3.25)

(3.26)

(3.27)

where F, is the QFI associated with the accuracy of measuring
¢. Using (2.48), we arrive at the upper bound Sy.x for the
phase measurement sensitivity in the form

Smax = N*¥1/2. (3.28)

On the other hand, under classical measurement condi-
tions, it follows from (3.27) that

0<Sa<l, (3.29)
where S = 1 corresponds to the SQL phase measurement
with totally coherent light. Therefore, the quantum sensitivity
of a sensor whose operation is based on the accuracy of
measuring the phase parameter ¢ corresponds to the range

1<S, < N2 (3.30)

wherek=1,2,....

In the case of a nonideal interference pattern considered
above, described by the N-photon detection probability
(3.22), the parameter S is given by [122]

VOSTNV[cos (¢,
\/(1 + Vsin (¢oN)) (1 — 0.57(1 + Vsin (¢, N)))

We see from (3.30) that S reaches its maximum value at the
phase ¢, satisfying the condition | cos (¢yN)| = 1, with

VO.SyNV

VI=035"
We see that (3.32) depends on the interference pattern
visibility V" and the measurement efficiency #. In the limit of
ideal visibility and detection V,n — 1, we have S — VN,
which corresponds to the HL sensitivity of phase estimate
(3.28)atk = 1.

S = L (3.31)

S = (3.32)

4. Quantum metrology based on
maximally entangled photon states

4.1 Hong—Ou—Mandel effect
A practically important resource of optical quantum metrol-
ogy, allowing measurements at the HL level, is the NOON state
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Figure 5. Schematics of (a) HOM experiment and (b) its analogue with weak coherent light pulses [127]: NC — quadratic nonlinear crystal of barium beta
borate; wy, w, and w; — frequencies of pump, signal, and idler photons; M — mirrors, BS — beamsplitter, SF; , — spectral filters, Dy , — detectors, 1 —
time difference between signal and idle photons, Ax = ¢t — optical path difference of photons (¢ is speed of light in vacuum), R.(t) — sought function of
the number of detector coincidences during observation time; PET — piezoelectric element.

containing N = 2 photons (see (2.44)). The preparation of
such states is based on the Hong—Ou—Mandel (HOM)
interferometer (Fig. 5a); it allows identifying the HOM
effect, manifesting one of the fundamental and practically
most significant quantum effects associated with (destructive)
quantum interference of photons on a beamsplitter [55].

The experiment to observe the HOM effect is based on
SPDC in a nonlinear crystal, i.e., the decay of a pump laser
photon with a frequency w, into two photons (so-called
biphotons): the signal photon with a frequency ws and the
idle photon with a frequency ;. In the general case, these
frequencies have a distribution different from the delta
function: in the stationary case, the frequencies are related
to each other as @ 4+ @; = w,,. The photons are then sent into
two arms of the interferometer (see Fig. 5a and [123]).

The biphoton travel time difference t can be caused by
various physical processes: elongation of an optical fiber
placed in a heated/cooled environment, shift of installation
elements, and so on. Hence, if we take the travel time of the
idler photon as a reference, then only a change in the travel
time 7 of the signal photon is considered. The dispersion of the
medium in which the biphoton field propagates also leads to a
temporal shift t. Finally, the interferometric setup itself can
introduce some displacement and the resultant delay 7(. After
mixing the signal and idler photons on a beamsplitter, the
photons are recorded by detectors in the coincidence counting
regime. In other words, the probability R.(z) is recorded for
two photons to arrive at two detectors simultaneously, i.e.,
the quantum state |1, 1). The minimum of R.(t), known as the
HOM dip in the literature, is formed at = 0 and is associated
just with the HOM effect [124]. The shape of the anti-
correlation dip corresponds to the inverted envelope,
squeezed by a factor of two, of the correlation function
g (1) of the first order in intensity (of the second order in
the field) [125],

Re~1—-gW(20), (4.1)
which is related to the spectral density of the field by the
Wiener—Khinchin theorem [126].

In the case—important from an experimental stand-
point— where narrow-band filters are installed in front of
detectors with the spectral transmission described by a
Gaussian function with a width o,,” the shape of the dip is

2 This refers to the case where the filter spectrum is narrower than the
SPDC spectrum.

determined by this Gaussian, but is still v/2 times narrower
than the corresponding correlation function g(!)(z):

R ~ 1 iJex Q—z cos (Qr) dQ (4.2)
¢ 2n) P\ 402 o '

Here, 2 = o — wy is the frequency detuning from the central
frequency wg of the SPDC spectrum in the degenerate regime
2wy = wp).

To understand what causes the dip and to estimate its
magnitude in experiment, it is useful to consider a simple
physical picture with two photons that are prepared using a
nonlinear crystal and are incident on a semitransparent
beamsplitter, as shown in Fig. 5a. The initial state at the
entrance to the beamsplitter is

Win) = [1.1) = 4/a[0) . (4.3)
The state at the exit from the beamsplitter depends on the
distinguishability and statistics [55]. For T = 0, in the general
case, we can write

1 1, s

Wou) =5 ((@])" = (@)")|0) + 5 (@3a] —aja)|o). (44)

Expression (4.4) is sufficiently universal: it describes the
experiment on the passage of particles through a beamsplitter
not only for photons, which are bosons and which we discuss
here, but also for fermions [55]. Due to the indistinguish-
ability of bosons, the last term in (4.4) vanishes. Then, the
probabilities of detecting one photon on each of the detectors,
P(1,1) = (1, 1|1//0ul)|2, and two photons on any of the
detectors, P(2,0) = P(0,2) = |{2, 0|z//0ut)|2, are given by

1

PQ()EP(z,O):P(O,Z):*.

P115P(1,1):0, 3

(4.5)
We see from Table 2 that subtraction of the corresponding
probability amplitudes leads to destructive interference on the
beamsplitter, which gives rise to the HOM dip (Fig. 6). In
addition, because (&J)2|0> = /2|2), the state of photons at
the exit from the beamsplitter, up to an overall factor, can be
written as

1
|'//oul> = ﬁ
which, up to a sign of the second term (the phase factor

exp (inr) = —1), coincides with the NOON state (2.44) for
N = 2. Thus, by analyzing the entire setup in Fig. 5a, we can

(|27 0> - |0’ 2>) ’ (4'6)
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Table 2. Elementary physical processes of transformation (transmission/
reflection) of two photons in a semitransparent beamsplitter, contributing
to individual probabilities of their detection at beamsplitter exit in
quantum and classical cases. Second column (P};) shows probabilities of
events of simultaneous registration of one photon at BS exit; third column
(P29/02) corresponds to the case of transmission and reflection of both
photons.

Particles Photon registration probabilities

P P02

-4 | M A
[ | M A

say that, in the ideal (quantum) case, the SPDC process in a
BBO crystal generates two identical photons with frequencies
ws = w; = wp/2, which at 7 =0 simultaneously hit the
beamsplitter, which, due to interference, gives rise to the
two-photon NOON state (4.6) at its exit; in the case of ideal
operation of the detectors, this ensures the maximum dip of
the function R.(0) = 0 (red curve in Fig. 6a).

Quantum (bosons),
indistinguishable

Classical, completely 2

distinguishable

4.2. Impact of classical noise on Hong—Ou—Mandel effect

and photon indistinguishability

In a real experiment, due to inevitable classical noise, it is
impossible to prepare two identical photons with 100%
fidelity; only the equality of the average frequencies
s = ®; = wp/2 and fulfillment of the energy conservation
law s + w; = w, can be guaranteed in a series of such
experiments. As a result of the nonidentity of the signal and
idler photons, interference on the beamsplitter is violated and
the dip loses its depth R.(0) > 0; in experiments, this
corresponds to a decrease in the visibility of the interference
pattern.

In experiments, therefore, particles can be partially or
even completely distinguishable by their frequency, polariza-
tion, and so on. To take this factor into account, photons
should be regarded as single-particle wave packets

where &IT (ws) is the operator of the creation of the signal
photon in arm 1 with the frequency ws and @ (o) is a similar
operator for the idler photon in arm 2, with
@] (1), @(@2)] = dud(r — o). (4.8)
In (4.7), f(ws, i) is the joint spectral intensity (JSI)
function, which in the most general form can be written as

S (s, i) = Cfs(05 + i) fom (05, @5) (4.9)

where C is the normalization constant, fi(ws+ w;) is the
pump spectrum profile, and fym (w5, ;) is the phase-matching
function:

Som(ws, ;) = sinc <§ (kp (5 + 03) — ky(ws) — ki(wi)))

X exp (—i

Here, k() is the dispersion of the pump wavenumber, and,
similarly, k(ws) and k;(w;) are dispersions for the signal and
idler photons; L is the crystal thickness.

If the pump is narrowband (with a spectral linewidth
op < 10 THz or, in terms of the wavelength, A4 < 1 nm), the
JSI function coincides in absolute value with a Gaussian
pump profile:

(4.10)

Sl

(ko) — ky(s) - /a(wi))) .

flon o) = exp (f1 (“”S — @) F (@i - “’)))

2 op

T )
(4.11)

The phase factor in (4.11) arises due to the differences among
group velocities of the pump, idler, and signal photons v, v;,
and vg [128, 129]. In general, the criterion for a narrowband
pump is the condition g, < v;/L, where L is the thickness of
the optical crystal and j = p,1,s.

From a physical standpoint, the loss of quantum indis-

; ; tinguishability of particles has a negative impact of classical
[Win) = ” dos do f(ws, wi) a) (ws)a, (0i)]0), (4.7)  noise on the visibility of the interference pattern. This effect
can be taken into account if we assume that an additional
1.0 1.0
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Figure 6. Quantum interference of single photons in HOM experiment and its ‘classical’ analogue with weak coherent light pulses. Probability of (a) joint
and (b) single activation of detectors (see Fig. 5). Red solid and green lines in (a) are obtained from quantum (bosonic) probabilities with classical noise
taken into account (see (4.13)). Black dashed-dotted lines correspond to classical metrology limit with averaging of rapidly oscillating components for
o > Jg (where o is width of HOM dip at height e ~'/2). Oscillating curves in (b) (see expression (4.16)) and blue curve in (a) (see expression (4.17)) are due to

interference for state (4.15); ¢ = 10004,.
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random phase shift exp (iews) occurs between photons,
assigned, for example, to the signal photon. Here, € is a
classical random (fluctuating) quantity with a Gaussian
distribution

@ =——own )
€)= — ).
g V2mo, P 202

After simple calculations with the JSI function, we obtain
(cf. [130])

1 I Ax?
R =1= "z P (—m T) )

where Ax = ¢(r — 1), 79 determines the position of the
minimum, ¢ is the HOM dip width in the ideal case without
noise, determined by the width of the pump spectrum and the
nonlinear BBO properties, and ¥ = ¢./o > 0 is the relative
‘amount’ of noise (the case ¥ = 0 corresponds to the absence
of noise). Figure 6a shows the corresponding dependences
(4.13) for ¢ = 0 (red solid curve), 9 = 1 (green solid curve),
and ¥ = 1.7 (green dotted curve). It can be seen that the
presence of classical noise (¢ # 0) reduces the depth of the dip
by a factor of v/1 + 1992 and increases its width proportionally.

An interesting experiment from the standpoint of metrol-
ogy was performed in [131]. Based on the estimation of the
Fisher information and the use of the maximum likelihood
method, the measurement of an optical delay of 4.97 nm was
demonstrated with an accuracy of 0.89, determined by the
CRB. The spectral width of the biphoton field was about
160 nm (a PPTPC crystal, type I synchronism).

(4.12)

(4.13)

4.3 Classic limit of Hong—Ou—Mandel effect

To fully understand the behavior of the HOM dip, we
consider the same experiment with photons at the entrance
to a beamsplitter, assuming them to be completely classical
(distinguishable) particles. These issues were discussed pre-
viously in [132] at different levels, including metaphysical
ones. Some recent indications of progress in this field are
related to the use of the HOM effect in boson sampling
schemes (see, e.g., [132]).

For clarity, we imagine that both photons in Fig. 5b are
classical particles simultaneously incident from different
directions on a beamsplitter, which with some classical
probability reflects or transmits these particles individually.
In this case, if the beamsplitter is ideally semitransparent, then
four equally probable outcomes of such an experiment are
possible: each photon is reflected, each photon passes
through, two photons are reflected, and two photons pass
through. As a result, we have the classical probabilities
(cf. (4.5))

(4.14)

Ascan be seen from (4.14) and Table 2, the probability Py,
of an event in which one photon (no matter which one) hits
each of the detectors is the sum of the probabilities of their
passage and reflection separately, and it is greater than the
probabilities of the detection of two-photon events Pyy. Thus,
the complete indistinguishability of quantum particles, which
allows operating with the amplitudes of quantum probabil-
ities rather than with the probabilities themselves, leads to a
dip in the visibility of the interference pattern in Fig. 6a.
Partial visibility corresponds to the solid green curve in the
figure.

An elegant experiment was recently described in [127],
with the photons emitted by weak coherent pulses of light and
prepared in a state corresponding to classical probabilities
(4.14) (Fig. 5b). We assume that coherent radiation in a state
[Win) = |o), is delivered to the entrance to the interferometer,
then at the beamsplitter BS; (used instead of the SPDC in the
original HOM scheme (Fig. 5a)) it is split into two coherent
beams in states |x), and |a), (Fig. 5b). If the incoming
coherent beam is sufficiently weak and contains only two
photons on average (N = |oc|2 =2), this scheme can be
considered a specific (‘classical’) counterpart of the HOM
experiment. Two-photon states of two types then form at the
exit from BS;. The first type is when both photons are in one
arm of the interferometer, which corresponds to the two-
photon NOON state (4.6). The second type is when the two
photons are in different arms, which corresponds to the |1, 1)
state. Therefore, the states at the exit from BS; can be written
as

1 . 1
Wou) =7 (12,0) — exp (i2¢) [0,2)) +ﬁ|1’ D, (415

where ¢ = 2nAx/ A is the relative phase shift in the arms of
the interferometer, depending on the optical path difference
of the beams Ax, and /¢ is the central wavelength of pump
radiation. The factor of 2 occurs in (4.15) because N =2
(Fig. 5b). It can be clearly seen from (4.15) that the reduction
of the state |y,,,) to any of the states |1, 1), |2,0), or |0,2)
leads to results similar to classical probabilities (4.14). But,
this does not make the diagram in Fig. 5b entirely classical:
state (4.15) is still quantum. Indeed, after mixing at BS,, the
beams reach detectors operating in the single-shot counting
mode (when only one of the two detectors is triggered) or in
the coincidence counting regime (when both detectors are
triggered simultaneously). In the first case, the number of
detector activations during the exposure time can be
estimated as [127]

Riingle, + (AX) m% [l +cos (¢)exp (—% A{:’;)}, (4.16)

and, in the second, as

1 1 Ax?
RcoinsAcl(Ax) o<1 — E (l + cos (2¢)) exp| —= ? R (417)

2
where ¢ is determined by the width of the Gaussian profile of
the input coherent beam |), .

As can be seen from (4.16), interferometry based on low-
intensity laser beams leads to quantum interference of weak
coherent light pulses (oscillations in Fig. 6b), reproducing the
HOM effect with a dip in the form of an inverted Gaussian
whose width is determined by the width of the initial wave
packet (see Section 4.1).

The fully classical limit of (4.16), (4.17) corresponds to the
disappearance of the interference pattern and can be obtained
from (4.16), (4.17) by averaging the cosine function over fast
spatial oscillations, leading to the expressions

1 1 Ax?
Rsingle,i(Ax) X E P Rcoins,cl(Ax) o1 — E exXp <_ E ?) .
(4.18)

Formulas (4.18) are illustrated in Fig. 6 with black
(dashed-dotted) lines. Figure 6a, interestingly, shows a
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Figure 7. Quantum metrology schematic for unknown phase parameter ¢,
based on an HOM interferometer that receives biphotons (beams A; and
A,) as input and prepares state (4.7) (beams B, and B,), combined with an
MZI that completes preparation of final state (beams C; and C,).

difference between the behavior of the probabilities of joint
activation of detectors in the HOM setup under the effect of
classical noise (green dashed curve at 99 = 1.7) and the limit
(classical) averaged dependence Rcoins,d in (4.18); in both
cases, the maximum value of the dip is the same, R = 1/2.
Thus, this approach allows distinguishing the quantum HOM
effect from its classical counterpart even in the presence of
classical noise.

4.4 Quantum sensing with VOO states

and the problem of their preparation for N > 2

The NOON states currently occupy a special place in quantum
optical metrology, because they allow attaining the HL on
any two-mode device: an interferometer, a gyroscope, a
lithograph, etc.

Figure 7 shows a setup for measuring and estimating the
phase ¢ using the NOON state with N = 2. It is essentially a
combination of a HOM interferometer with an MZI: state
(4.6) is prepared at the output of the first beamsplitter and is
then used in measuring ¢ (cf. [133]).

In experimental work [134], a setup similar to that shown
in Fig. 7 was used to measure the concentration of bovine
serum albumin (BSA) in an aqueous solution, a sample of
which was placed in one of the MZI arms (green circle in
Fig. 7). In addition, measurements were first carried out with
distilled water to assess the level of losses and to determine the
value of the reference phase ¢, = n/2. When a photon passed
through the interferometer arm containing a BSA sample, the
change in the refractive index Ang was found to depend
linearly on the unknown phase ¢,

Ans:L(/)v

T (4.19)

where A = 0.785 um and L = 0.55 um is the wavelength and
also the size of the microchannel with a BSA sample. In (4.19),
the phase shift ¢ < Cs depends linearly on the BSA concen-
tration Cs. The authors of [134] obtained the slope
dng/dCs = (1.79 £ 0.04) x 1073, which is consistent with the
result dng/dCs = 1.82 x 10-3 obtained at the wavelength
A =0.578 um by other methods [135].

In the course of measurements in [134], all combinations
of the states |2,0), |0,2), and |1,1) were detected, which
allowed comparing the visibility of interference patterns and
estimating the loss level. It was found that the losses in the
interferometer arms are asymmetric, leading to a limited
measured visibility of the two-photon interference pattern,
V' ~ 82%. The obtained value turned out to be higher than
the visibility V'~ 70.7% corresponding to measurements at
the SQL level, calculated for this experimental design in
accordance with the method described in Section 2.4. The
relatively small gain in measurement accuracy associated with

V' was attributed by the authors of [134] to the imperfection of
the photodetectors.

It was shown in [136] that a temperature sensor can be
built using the technique described here, based on the HOM
effect. The MZI arm containing a section of quartz fiber was
immersed in a temperature-controlled furnace. Even with a
slight change in temperature, the fiber cladding thermally
expanded, thereby changing the refractive index. The result of
the measurements was dZ/dT ~ 4.8 x 1077 m deg~! with an
accuracy of 0.12 deg (where L is the fiber length), which was
also consistent with previously obtained data [137].

We note that, in addition to the effects of losses, the
nonideal efficiency of detectors, and so on, the fundamental
limitations of the methods under consideration are associated
with the use of NOON states with N =2 photons. In this
regard, an urgent and not fully studied task of modern
quantum technologies in general is to obtain NOON states
with N > 2 that would be robust to losses. More precisely, we
are talking about states that are not strictly NOON states but
are a superposition of entangled Fock states (cf. [138]). The
preparation of such states is based, to one degree or another,
on nonlinear elements of SPDC of light and also on linear
optical elements: beamsplitters, phase plates, polarizers,
analyzers, and so on (see, e.g., [60, 139]). Recently, the
preparation of states with the desired quantum properties
has become possible based on machine learning methods [140,
141]. It is noteworthy that, as the main basic elements for such
states, the machine agent suggested actively using the
solutions that had been proposed in [142].

Itis important to keep in mind that the limited capabilities
of modern detectors in measuring Fock states with a large
number of photons and the fragility of NOON states in
measurements motivate attempts to solve the problem of
quantum technologies outlined here using modern methods
of integrated optics [143, 144]. Today, it is already possible to
create waveguides and linear optics elements with ultra-low
losses down to 0.1 dB cm™! [145] and efficient parametric
generators of entangled photon pairs [146]. Here, we focus on
the method, in wide use recently, for obtaining NOON states
with continuous variables of light. From a physical stand-
point, these are hybrid methods of information processing
within a single optical setup, allowing one to obtain hybrid
states of the light field by combining discrete and continuous
field variables (see, e.g., [147]). The main problem in such
setups is the need to eliminate ‘superfluous’ states present in
the superposition along with the NOON components. This can
be done by preparing a conditioned state (a partial reduction
of a quantum state) and/or postselection when processing the
measurement results.

In [148], it was theoretically predicted for the first time
that interference between coherent laser radiation and SPDC
radiation gives rise to large-N NOON states with a fidelity
exceeding 90%. This method was experimentally implemen-
ted in the design of an ultrasensitive MZI-based microscope
[149]. It involves the mixing of a coherent state with the SMSV
at the first MZI beamsplitter (Fig. 8), which gives rise to the
state (cf. [150])

N
|‘sz,out> = Z Am|N_ m,m) ) (4‘20)
m=0

at its exit; here, |N — m,m) = |N — m),|m), is the Fock state
with a known number of photons N distributed over two
modes with the probability coefficients A,, satisfying the
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Fig. 8. Schematic for the preparation of a remote NOON state: NC—
nonlinear crystal, BS —semitransparent beamsplitter, D—detector. Blue
arrows show pumping of crystals.

normalization condition S>N_[4,,]* = 1. The interference
pattern obtained in [151], recorded by measuring the coin-
cidence probabilities for N — m photons on one detector and
m photons on the other, indicates that the ‘superfluous’ states
can be eliminated from the sum in (4.20), i.e., we can have
A=A, =...= Ay_; = 0. An important point is to ‘tune’
the key parameters of the system: the phase 0. ~ /2 of the
coherent state o = |a|exp (i0;) and the combination of
parameters ¢ = |«|*/r, where r is the squeezing parameter. In
[151], the interference pattern was observed up to N =15,
which corresponds to & ~ 2.16. A further increase in N in
[151] was limited by losses, inefficiency of detectors, etc.,
which the authors estimated with the help of an effective
transmittance # for the entire setup: the value of # turned out
to be abouty ~ 0.12 at N = 5.

We note that a more complex setup based on the
conditional (measurement-induced) preparation of NOON
states using the HOM effect was proposed in [152] (cf. [76]).
In [150], the authors were the first to implement a method for
remote preparation of NOON states. Namely, the proposal
was to use two identical TMSV sources, the output of which
was a four-mode quantum state of pairwise entangled
photons. One mode from each TMSV source was then sent
through a quantum channel with a transmittance 5 to a block
consisting of a sequence of N/2 beamsplitters, at the output of
which photons were detected, leading to a partial reduction of
the initial state to NOON states of the remaining two modes
with an even number of photons (the cases N =2, 4, and 6
were analyzed in the cited paper). For a small squeezing
parameter r < 1, it was shown in [150] that the fidelity of
preparing NOON states is

Fi~1—(N+2)r?, (4.21)
which, for relatively small N, allows obtaining NOON states
with high fidelity. A minor challenge of the proposed method
is a small total amplitude of NOON states (before the normal-
ization), which decreases as ", which determines the optimal

probability of preparing such a state as

pr ~ V8N exp (—=N) r2VyN/? (4.22)
(see [150] for details). It is obvious that, for small r, n < 1 (a
lossy channel); this probability is too small for large N, which
limits the practical use of the proposed method.

We briefly summarize the existing problems with obtain-
ing NOON states. The experimental results show the feasibility
of obtaining NOON states with the number of photons N < 10
using quantum optics methods. Obtaining the required meso-
(N o 10>-10%) and macroscopic (N > 10°) optical NOON
states is a nontrivial and still unsolved problem. There are at
least two fundamental circumstances that hamper the use of
NOON states with a relatively large number of photons N in
practice and significantly reduce the visibility of the N-photon
interference pattern.

First, as discussed above, the detection of states contain-
ing a definite (and large) number of photons is an unresolved
technological problem.

Second, a significant problem is the sensitivity of NOON
states to photon losses. Indeed, if we take into account that
the NOON state is a maximally path-entangled state, whose
properties are associated with the uncertainty in the location
of photons relative to two spatial modes, the loss of a single
photon (which from the standpoint of quantum mechanics is
equivalent to making a measurement) leads to the collapse of
state (2.44) with an equal probability of 1/2 to Fock states
[N —1,0) or |0, N — 1), which no longer have any advantages
for quantum metrology. In this regard, it makes sense to study
the critical values of the number of photons at which the
NOON states can still be useful for quantum metrology
problems at a reasonable (from an experimental standpoint)
loss level.

5. Quantum metrology with particle loss

5.1 Fictitious beamsplitter method

The effect that the loss of photons in an MZI has on the
accuracy of measurements can be studied in a sufficiently
general form based on the method of fictitious beamsplitters
(FBSs) mentioned above, as shown in Fig. 9. The purpose of
these elements is to account for the interaction of the
interferometer with the environment, which is accompanied
by decoherence and the loss of a small number of particles
from the interferometer channels. In particular, the FBS
method was used to study the applicability of NOON states
to practical problems in quantum metrology [153—156]. The
various strategies proposed in these studies to achieve the

1 /

- > : % State detection
Initial stgte FBS 7 and assessment
preparation . of measured

2 @ FBS parameter ¢
@ h i‘

Vi) W) Pout

Fig. 9. Effective quantum metrology schematic with particle loss. Interac-
tion with environment in each channel is ensured using fictitious
beamsplitters (FBS), which randomly remove /; and /, particles from
corresponding channel. Dotted arrows indicate vacuum noise introduced
into measurement system by the environment.
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maximum available accuracy of estimating an a priori
unknown phase show that the ideal (symmetric) NOON state
may not be the optimum one in the presence of losses;
entangled Fock states, asymmetric NOON states, and certain
two-mode states turn out to be more useful [154, 155, 157].
Importantly, in an optical experiment within dissipative
quantum metrology studies, real (not fictitious) beamsplit-
ters can be used for controlled decoherence of the system.
Let us consider the diagram shown in Fig. 9; it reflects the
procedure for measuring the phase shift ¢ in the presence of
losses. Let a two-mode state as in (4.20) be fed to the entrance
to the interferometer (cf. [158]). We then take the phase shift
in the interferometer arms into account, assuming the first
mode to be a reference one for simplicity. Then, only the
second mode gains a phase shift ¢ described by the operator

Uy = exp (ip(alar)") (5.1)
which gives rise to the state [/o,) = Us|Win)s
Vout) ZA”’ exp (ipm®)|N — m, m), (5.2)

m=0

where, as previously, k is the ‘nonlinearity degree’ of quantum
metrology. It is worth noting that, for k = 1, operator (5.1) is
physically equivalent to the previously used operator (2.28).
After two FBSs, state (5.2) becomes (see [155])

N N—-I N-|,

/ : k

out Z Z Z Am l] b exp (1¢m )
=0 Hh=0 m=/h

X |N—m—l]7m_12>®|11712>7

where /| » is the number of photons lost in respective channels
1 and 2, and |/;, /) is the Fock state of the lost photons. In
(5.3), we introduce the coefficient

Dyt = 1)

(5.3)

Bf!), = Cy_p Com ™" (7 = (5-4)
to characterize the corresponding probability amplitudes of
Fock modes in the presence of particle losses [157]. In (5.4),
CF are the binomial coefficients and 1, , < 1 are the FBS
transmittance coefficients in the interferometer arms. Impor-
tantly, the phase shift operator (for example, (2.28)) com-
mutes with the FBS operator [11]. This means that the FBS
can formally be placed anywhere in the setup in Fig. 9: from
the preparation of the initial state to the detection of the final
state |- It is therefore irrelevant whether the particles
were lost before, during, or after the phase shift: the accuracy
of the measurement does not change.

Because the lost particles /;» are not detected, it is
convenient to eliminate the states |/;, /) from (5.3). For this,
we use the density matrix [,,) (Y| and trace it over the
|/1, ) state. As a result, we obtain the density matrix of the
(spatially) mixed two-mode state of particles that remain in
the interferometer and participate in the measurement [155],

N—-1

Pout = Z th B |En.n (D)) (Enn ()], (5.5)
0 /7
where
| Nk 4
|&1.0(0)) = NS Ay [B]", exp (ipm")
X |N—=m—1li,m—b), (5.6)

with p, 1, = fo;g |4, By, . State (5.5) is a universal tool
for describing quantum metrology based on two-mode states
with particle losses taken into account. The amplitudes 4,, in
(5.6) allow unambiguously describing the quantum state of
the system both at the initial instant, Eqn (5.2), and after the
loss of particles, Eqns (5.5) and (5.6), and calculating the QFI,
as we show below.

5.2 Metrology accuracy assessment in the case of particle
number dissipation. Optimum states

We estimate the maximum accuracy of quantum metrology in
the case of particle dissipation in terms of the QCRB in
Eqn (2.8). For simplicity, we restrict ourselves to linear
quantum metrology, setting k =1 in (5.6). Because we are
dealing with mixed states, calculating the QFI requires using
expression (2.10); such a calculation is nontrivial in general,
but in the case where the density matrix is represented in
standard form (5.5), the method proposed in [155] allows
estimating the QFI of a mixed state as a weighted sum of QFIs
calculated for each term in (5.5) separately:

N N-I
Z Z /.,lz( @91, 1106&1 1) — [(Bp & 1180 1)] ) -
ke (5.7)

In all cases, F, < F, due to the convexity and additivity
properties of the QFI, Eqns (2.16) and (2.17) (also see [155]).
An important point is that, in application to quantum
metrology, the difference F, — Fq is formed due to the
nonorthogonality of the vectors |, ,,(¢)) with a fixed total
number of lost particles / = [} + » (see. (5.6)). In turn, this
nonorthogonality is due to the lack of information about
exactly how many particles were lost from each arm of the
MZI. This problem does not occur if the losses can in
principle be observed from only one arm of the interferom-
eter, for example, n, < 1 = 5, when the losses are entirely due
to the phase shift and/or detection of the parity of the number
of particles in arm 2: we then have F F,. Also, F F, for
the NOON state in (2.44), because the loss of a partlcle from
one of the MZI arms can then be unambiguously identified by
the Fock state to which the NOON state reduces. In other cases
considered here, F, < F,. However, as was also shown in
[155], F and F, are very close and such an approximation is
Justlfled Substituting (5.5) in (5. 7) we obtain

N N R ( " mA2 B
Fq :4 Z 2A2 l, /7)

2 Z s
N-=li g2 pm
m=0 =0 /= Z A B

m=1 h,h

. (5.8)

In the case of particle loss, with interferometer transmit-
tance n < 1, it is useful to introduce a classical bound for the
accuracy of quantum metrology with losses, the so-called
standard interferometric limit (SIL), which is in fact the limit
of the classical metrology with losses and with the inter-
ferometer transmittance # taken into account [155, 157]. The
SIL can be calculated by substituting a two-mode binomial-
distribution state in (5.8), such that

1
Am :ﬁ \/Cﬁ. (59)
We then have
Jr
By = LIz (5.10)

2\/’11’72N
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Figure 10. Accuracy of quantum interferometry with particle losses depending (a) on initial average number of photons N for fixed 1, =1, = 0.9 and
(b) on MZI transmittance 5 for a fixed N = 20. For squeezed states, r = 0.88 is assumed, which gives a good approximation of A¢,;, for N > 1. Shaded
areas indicate fundamental bounds on quantum metrology accuracy within SQL (top) and HL (bottom). SIL is standard interferometric limit in (5.11).

We note that, for a state with distribution (5.9), F, = F,,
and therefore (5.10) is a counterpart of the SQL in the case of
particle loss. In the limit of equal losses in the MZI arms, the
values of the transmittance coefficients of the MZI arms are
equal, n; =1, = 5, and (5.10) is simplified to

1
A¢SIL =

NG (5.11)

(cf. (2.39)).

The physical meaning of (5.11) is quite simple: # N is the
average number of particles passing through the interferom-
eter and participating in the measurement, while, in the
classical limit for the coherent state, Sq = F/N =1 (see
(3.29)).

On the other hand, for the NOON state, we have

1
—, m=0,N,
V2

0, 0O<m<N,

Ap = (5.12)

and (5.8) gives F = F=y"N?2, whence the QCRB in (2.8)
becomes (for v =1)

L +n)
A¢QCR :N W7

and, in the case of equal transmittance values in the MZI
arms,

A9’5QCR =

(5.13)

1

VL

The deterioration of the QFI by nV times reflects the
fragility of NOON states: a measurement is possible only in the
case where all the N particles pass through the FBS, and " is
the probability of such an event. Expression (5.14) allows
calculating the number of particles corresponding to the
maximum quantum metrology accuracy with NOON states at
a given loss level n (Fig. 10). Calculating the derivative of the
QFI F, = N?y" with respect to N, we find this number of
particles N as

2
In ()

(5.14)

N, = — (5.15)

In [157], the problem of optimizing input states to
maximize the accuracy of quantum metrology was solved
numerically with particle losses taken into account. Expres-
sion (5.8) was in fact maximized by varying 4,, at different #.
The NOON states were shown to be optimal for MZI
transmittance values n > 1, ~exp (—1/N). Thus, for the
experimentally attainable value N = 20, we have 5, ~ 0.95,
which means that the required loss level y, = 1 — 5, must not
exceed 10% for the NOON-state quantum metrology to remain
applicable in experiment.

Figure 10 shows the metrology accuracy A¢,;, with
various nonclassical states for equal values of the transmit-
tance coefficients of the MZI arms 1, = n, = 5. The quantum
metrology limit corresponds to the curves located in the
shaded areas determined by the lossless SQL and HL. The
red curve shows the quantity A¢,,;, obtained with NOON
states (5.14); green curves correspond to quantum metrology
schemes with the CSV states discussed in Section 2, in the limit
|o|* > sinh? (r), with (cf. (3.10) and [14])

Ap > nexp(=2r)+1—n
= 1/IN )

(5.16)

where N~ |af*. In Figure 10, the squeezing coefficient
r=0.88 is small, and hence sinh?(r) ~ 1, and the above
limit is applicable in the range N > 9, for which the green
curve in Fig. 10a is constructed.

It follows from Fig. 10a that, already at N > 15 for fixed
values of the MZI transmittance 5, CSV states provide better
accuracy A¢,,;, compared with NOON states. On the other
hand, as follows from Fig. 10b, at small (overall) losses of
photons in the setup (i.e., at n = n, ~ 0.95), the probe NOON
states are more optimal in quantum metrology than the CSV
states.

6. Quantum photometry, radiometry,
and sensing

6.1 Absolute calibration of photodetectors

Photometry, as part of quantum metrology, is currently one
of the most interesting areas where the corpuscular properties
of light radiation are harnessed to serve practical purposes.
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For incoherent light, the total energy of a photon and the
photon energy per mode are key photometry characteristics
as regards the units of energy and spectral brightness. From
the standpoint of measuring the limit characteristics of light
radiation associated with fundamental constants (Planck’s
and Boltzmann’s constants, etc.), it makes sense to consider
measurements that are independent of the initial number of
photons and are only determined by fundamental constraints
imposed by vacuum fluctuations of the light field. Back in the
1970s, attention was drawn to the fact that the process of
parametric down conversion is quite suitable for these
purposes, which allows obtaining noise photons per mode
for the signal and idler fields at the output of a quadratically
nonlinear crystal [56]. At that time, many interesting and
important applications of SPDC were proposed in photo-
metry in dealing with the generation of states with a definite
number of photons and so on. The main ‘drawback’ of the
first experiments, which corroborated these ideas, was the low
efficiency of single-photon detectors,® which essentially made
the proposed photometric methods and approaches ineffec-
tive in practice. However, at present, in view of the progress in
the design and production of new highly efficient photon
detectors, there is a tendency to return to early proposals of
quantum photometry, but at the current stage of development
of quantum optical technologies in the world. In this review,
we only outline the fundamental and practically important
avenues in modern quantum metrology and sensing.

We consider the propagation of photons of a signal (s) and
anidler (i) field in a medium with quadratic susceptibility. For
brevity, we consider the average number of photons per mode
at the exit from the medium; in the Heisenberg representation
and in the two-mode approximation, it can be represented as
(cf. [159])

(iig(t)) = (As(0)) cosh® (I't) + (A;(0)) sinh* (I't) + sinh* (I'1) ,
(6.1)
(I,
(6.2)

(iii()) = (i(0)) cosh® (I't) + (jis(0)) sinh? (I't) + sinh?

where (7 i(0)) is the average number of signal and idler field
photons at the input to the crystal (at the instant = 0) and I’
is the gain increment, proportional to the amplitude of
classical pumping of the crystal and its effective quadratic
susceptibility. In (6.1) and (6.2), the ‘cross’ correlators of the
creation/annihilation operators of photons belonging to
different modes are omitted, because we are interested in
only the vacuum and/or thermal states of light radiation at
the entrance to the medium. The last term in (6.1) and (6.2) is
independent of the initial number of photons and is due to the
contribution of vacuum fluctuations. They play a key role in
various measuring devices that use the quantum properties of
SPDC radiation, with (7 ;(0)) = 01in (6.1), (6.2).

Because each biphoton production event in SPDC occurs
at one space—time ‘point,’ biphotons can be used for absolute
calibration of detectors. Figure 11 shows a diagram of the
absolute calibration of detectors based on SPDC. The idea of
this method is quite simple. We assume that, over some
observation time ¢ = 7,p5, SPDC produces N biphoton pairs
on average. Two independent detectors with unknown
quantum efficiencies 7 ; then measure the average number

3 In the 1970s-1990s, the main instrument to detect ultra-weak light fields
was photomultiplier tubes, whose quantum efficiency was about 10 to
15%.

Coincidence
counter

D>

Figure 11. Schematic of absolute calibration of single-photon detectors
based on SPDC. 1 ; is the detector efficiency, NC is a nonlinear crystal,
N, are the numbers of activations of detectors 1 and 2, and N, is the
number of joint activations.

of photons (7 ;) in each field, and hence

<ﬁs(fobs)> =N, <ﬁi(fobs)> =mnN. (63)

In addition, the number of coincidences (7i.) measured at
the exit from the crystal during the same time period is given
by

<ﬁc("«'obs)> =n;N . (64)

It follows from (6.3) and (6.4) that the detector efficiencies
are
N <ﬁc(robs)> B <ﬁc(robs)>
Ny= 7 M=7 (6.5)
<ns(fobs)> <ni(fobs)>

and are independent of N. Importantly, expressions (6.5),
strictly speaking, determine not the efficiency of the
detectors themselves but the measurement efficiency of
the entire setup in Fig. 11, including possible losses on
optical elements.

In [118], a comparative analysis is given of methods for
calibrating detectors, including the traditional method based
on measuring the radiation power (substitution method) and
the methods based on detector calibration with correlated
photon pairs considered here. The destructive processes
affecting the measurement error are discussed. Overall, the
total relative measurement uncertainty for the substitution
method and the correlated photon pair method is respectively
0.17% and 0.18%. The advantage of the latter method is that
the parameters of one of the detectors (for example, in the
idler wave channel) can be known a priori (for example, from
other measurements), and then the properties of the unknown
detector in the other signal wave channel are to be
determined. In this case, it is possible to calibrate both
semiconducting avalanche diodes that do not distinguish the
number of photons and the TES (transition-edge sensor)
detectors, which resolve the number of photons. Relatively
recently, the method of correlated photon pairs was adapted
for the calibration of TES detectors with a relative uncer-
tainty of 1073 [160].

Significant effort is devoted to reference-free calibration,
not of counting photodetectors, but of analogue ones,
including in the terahertz frequency range. When using
analogue detectors, a current is recorded that is a super-
position of many photopulses or detector responses to the
external light field [161],

m

i()=> af(t— 1),

k=1

(6.6)
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where ¢y is the charge carried by a single-photon response
pulse and f is a function describing its temporal form. In
such experiments, parametric down conversion is typically
used in the high-gain (so-called twin-beam) regime. Con-
venient nonclassicality measures are the covariance
C = (3is0ii) /((is) + (i) and/or the difference photocurrent
noise reduction factor (NRF), which is proportional to the
two-mode squeezing factor. These measures are calculated
from current measurements at the exit from optical detectors
in the signal (s) and idle (i) channels.

For example, in [162, 163], the NRF and the relative
covariance of currents measured in the signal and idle
channels with conventional analogue photodetectors were
considered. General expressions were obtained that allow
developing approaches to reference-free measurement of the
quantum efficiency of sensitive elements for a wide class of
conventional analogue detectors. It turns out that, in order to
determine their quantum efficiency, in addition to direct
measurements of the current NRF, several approximation
procedures have to be used to predetermine the parameters of
single-photon responses of the detectors, the average charge
(qr) and the dispersion Agx. The quantum efficiency of
analogue detectors can possibly be determined much more
conveniently and more accurately from the covariance of the
signal and idle currents [164].

We note that, although the reference-free calibration
method has been widely tested on counting and analogue
detectors, there have been no studies yet where it would be
scaled to detectors with photon number resolution, whose
detection efficiency depends on the number of photons itself
[118]. Moreover, measuring an arbitrary observable in
quantum theory is an independent and often nontrivial
problem. In this regard, of particular importance are the
procedures for measuring a certain set of POVM operators
{I1,} that characterize an initial quantum state described by
the density operator p: upon detection, a certain k is obtained
with the probability

pr = tr[ip], (6.7)
where T, > 0and . IT; = 1.

Currently, to calibrate photon-resolving detectors that
allow the detection of a definite number of photons, a
quantum tomography procedure has been demonstrated for
detectors with probe coherent radiation whose density
operator is p = |o;)(o;|. In this case, (6.7) can be written as a
matrix equation, and hence

M
Pjk = Z F/',n Hn,k 5 (68)
n=0

where Fj , = exp (—|ocj|2])\/locj|2"/n!7 II,  are diagonal elements
of the operator Iy = Y ,_ I, k|n)(n|, taken in the Fock state
basis, and M is the maximum number of photons that a given
detector can resolve. Inverting (6.7) allows reconstructing the
unknown elements IT, ; given the results for the measured
probabilities p; , and the known probe (coherent) states, the
elements Fj ,. Moreover, their number depends on whether
we use the coherent field phase «; (phase-sensitive tomogra-
phy) or the phase-insensitive tomography procedure. In the
first case, the matrix IT, , contains N x M 2 elements, and, in
the second, N x M elements. In [165], the authors could
reconstruct the I7, , for a detector that resolves up to eight
photons. It turned out that the tomography procedure is quite

resistant to fluctuations in the energy of the initial state
pulses. Using a mixture of coherent Gauss-distributed probe
states with a distribution width of 0.02\09|2 instead of pure
states ultimately led to a relative error of only 0.7% in
determining I1,, .

In our view, the quantum tomography method is relevant
when the number of photons M resolved by a detector is
relatively small. As M increases, the tomography procedure
requires many measurements and, in the future, in creating
detectors that would resolve a large number of photons, will
become a time-consuming and rather cumbersome problem.
An urgent task, obviously, is therefore to optimize such a
procedure based on methods and approaches of quantum
machine learning, which are already used in the tomography
of quantum states of a light field [166].

6.2 Vacuum fluctuations

as a metrology reference for light brightness

Recently, the measurement and quantum assessment of
temperature as a (fluctuating) parameter of physical systems
of various natures has been gaining increasing interest (see,
e.g., [167, 168]).

In particular, it is shown in [167] that SQL measurements
(estimates) of the inverse temperature parameter
p=(kgT) " for a ‘thermometer’ made of N test particles
(modes) can be specified in the form

1

VN/|de/dpl

where € is the average internal energy per particle (mode).
Improved temperature measurements are also possible using
NOON probe states (cf. [136]).

In the context of the optical quantum metrology methods
discussed in this review, it is worth noting that the TES
photon detectors mentioned above are in fact the same
sensors that distinguish the energy of photons, but operate
in the range of low temperatures (100 mK and below) [169].
Their efficiency is already approaching 100%: for example,
the efficiency of titanium-based TESs is 98% at a wavelength
of 850 nm [170].

In the range of high temperatures (room and above), the
development of quantum sensors is still gaining momentum.
In this regard, it is interesting to note study [171], where the
authors achieved an accuracy of 80 nK Hz~!/? in measuring
temperature using the thermo—optical effect of whispering
gallery modes for a CaF, microcavity; the additional phase
shift for the selected modes is due to a change in the refractive
index due to heating of the material. It would be interesting to
develop this measurement technique by combining it with the
HOM interferometer, which allows using NOON states for
precision temperature assessment, as was done in [136] (see
also Fig. 12).

Here, we focus on the process of parametric down
conversion in quantum metrology and sensing, which is
simpler in our opinion and which allows estimating a
sufficiently high brightness temperature (exceeding room
temperature severalfold) at the level of vacuum fluctuations
of light. In view of the advent of photon-resolving detectors,
such systems are of interest not only from a fundamental but
also from a practical standpoint.

Figure 12 shows the setup of a photometer for measuring
the brightness temperature of an unknown incoherent light
field source [57, 172, 173]. The measurement proceeds in two

AB > (6.9)
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Figure 12. Photometer schematic for measuring brightness temperature of
an unknown thermal radiation source with N; photons per mode. Laser,
signal, and idle radiation are respectively shown blue, green, and red. T'
and R are transmittance and reflection coefficients of the two mirrors
(before and after crystal) at corresponding wavelengths, DBS is a dichroic
beamsplitter, NC is a nonlinear crystal, and N; ¢ are average numbers of
idler and signal photons detected.

stages. The goal is to measure the number of signal photons
(5(1)) per mode over some observation time 7 = Tops. At the
first stage, the measurement is carried out in the SPDC
regime, when the number of photons (/is(tops)) is measured
(per mode) with (75(0)) = 0 and (#;(0)) = 0. At the second
stage, the average number of photons (7] (7,ps)) is measured in
the signal field when the idler wave port at the crystal input is
illuminated by the thermal radiation from an unknown
source with the average number of photons

) 1
VO = b Gk T)) 1

where T'is the radiation temperature. Thus, the initial average
number of photons (7;(0)) in the idler wave can be determined
from the ratio of the measurement results

(Al(Tobs)) o __exp (hoi/ (ks T))
(7is(Tobs) ) = () +1= exp (hoi/(kgT)) — 1’

where (6.10) is used on the right-hand side.

Expressions (6.9) and (6.10) allow estimating the tem-
perature 7 of radiation from an unknown thermal source (see
Fig. 12). An important property of using this method is the
limit in which the idler wave contains only one (thermal)
photon per mode on average, i.e., (7;(0)) ~ 1. In this case, we
are talking about temperature measurements at the level of
vacuum fluctuations, which for the idle field wavelength of
1 pm is T~ 2.1 x 10* K. This allows the photometer to be
used as a temperature sensor for radiation sources with high
brightness characteristics. However, when implementing this
method for metrological purposes, the above-mentioned
difficulties arise, related to the correct accounting for the
population of the ‘illuminated” modes. In addition, the
method requires a careful independent measurement of
reflection losses of all elements of the calibrated path.

In the diagram shown in Fig. 12, the number of photons
N; is measured, which is proportional to the spectral bright-
ness of the source. The signal-mode photon numbers

(6.10)

(6.11)

Ne=F(0+1)=F,, (6.12)

NJE — F (N + 1) (6.13)

are respectively measured at the closed and open positions of
the intensity modulator, and

F, = 4’ wsmic 25 (o5 = op — wi)|Ep|2l2 (6.14)
is the so-called parametric conversion coefficient (with y(
being the quadratic susceptibility of the crystal, £, the laser
pump field amplitude, and / the crystal length).

An interesting spin-off of this method, which requires
further development today, is the use of a multimode N
regime, which, even in the case of independent modes, can
give a gain of /N, corresponding to the SQL. A more
important case is where entangled states of these modes are
used, which would allow overcoming SQL measurements and
temperature estimates, reaching genuinely quantum bounds
for its measurement. The method for measuring spectral
brightness was adapted to the terahertz range in [174].

7. Conclusions

We have discussed the current level of modern optical
quantum metrology and its possible impact on the develop-
ment of other areas that are currently associated with
quantum technologies. We presented relevant theoretical
approaches to quantum assessment of unknown parameters
in optics and discussed experimental methods for their
measurement based on a POVM of observable quantities
and photon number parity measurements, which allow
achieving a minimum error in measuring and assessing an a
priori unknown phase parameter. Particular attention is paid
to the generation and use of nonclassical (squeezed, maxi-
mally entangled in space, macroscopically superpositional,
and so on) states of light radiation in such measurements; the
main facts about their QFI are summarized in Table 1. To
achieve a maximum accuracy of measurements of unknown
phase parameters (maximum in terms of the number of
photons), we discussed both linear quantum metrology
setups and nonlinear ones, where the unknown phase
parameter depends on the number of photons.

As regards the practical aspect, we have discussed various
quantum metrology schemes: Mach—Zehnder, Michelson,
and Hong—Ou-Mandel interferometers and their combina-
tions, which are currently used to measure the characteristic
length difference, temperature variations, concentrations of
substances, and so on at the level of quantum limitations.
Particular attention is paid to the analysis of measurement
accuracy in the case of photon losses, imperfections of the
optical element base, detectors, etc. A considerable part of the
review is devoted to the new possibilities of quantum
metrology that have recently opened up due to the use of
various photon-resolving detectors.

Although the content of this review is quite vast, many
important areas of quantum metrology and sensing have not
been discussed. First and foremost are quantum measure-
ments and metrology carried out with atomic media. In the
Introduction, we only outlined the corresponding areas—
optical clocks, gyroscopes, gravimeters, and magnet-
ometers— which are actively being developed in the world
today and which can be useful in navigation, environmental
monitoring, searching for minerals, etc.

We did not discuss the problem of quantum metrology
with two or more (a priori unknown) phase parameters. This
problem is of great practical interest and has potential in view
of the creation of spatially distributed networks of quantum
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sensors (see, e.g., [175]). As theoretical analysis shows, the
multimode NOON state no longer saturates the QFI in this
case [176]. In addition, for the same reasons, the strategies for
optimal quantum estimation and measurement seem to be
more diverse here [177], requiring multiparameter squeezing
or entanglement (see, e.g., [178]). Analyzing multiparameter
quantum metrology and sensing requires a separate discus-
sion, including particular application areas that are still in
their infancy. Obviously, this review, which covers modern
theoretical and experimental methods and approaches in
quantum metrology together with the state of the art of
quantum technologies in general, can be a starting point for
this kind of research in the future.
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