
Abstract. Since the pioneering work of V L Ginzburg and
N G Denisov, who discovered the effect of linear absorption of
electromagnetic radiation in an inhomogeneous plasma due to
strong plasma resonance at near-critical density, the theory of
this phenomenon has not been developed steadily in application
to strong electromagnetic fields of practical interest today,
primarily laser ones. This review is devoted to a systematic
presentation of the results of an analytic relativistic-nonlinear
theory of resonant absorption and generation of laser radiation
harmonics in an inhomogeneous plasma with a strongly mani-
fested plasma electron nonlinearity up to laser light intensities
that make the motion of electrons in the vicinity of the critical

density relativistic. Using the methods of the modern theory of
transformation groups, we describe the structure of the non-
linear electromagnetic field in a plasma resonance, nonlinear
effects of the suppression of the resonant absorption coefficient
and the angle shift of the resonance absorption curve with
increasing laser intensity, the formation of sufficiently smooth
spectra of laser light harmonics, decreasing in accordance with
a power law, the spectrum of laser light harmonics emitted by
plasma near the breaking threshold of a nonlinear plasma field,
and the basic properties of the electrostatic field generated in
the vicinity of the critical density.

Keywords: laser plasma, resonant absorption, harmonic generation,
nonlinear plasma oscillations, relativistic effects, plasma hydro-
dynamics, renormalization group symmetries

1. Introduction

About seventy years ago, a systematic study of the phenom-
enon of plasma resonancewas initiated in the theoretical work
of Denisov and Ginzburg [1±3]. Since then, the classic effect
of a linear transformation of an electromagnetic wave into a
plasma wave, observed under oblique incidence of p-polar-
ized radiation with a frequency o0 on a weakly inhomoge-
neous plasma, has become well known in the theory of the
interaction of electromagnetic (laser) radiation with an
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inhomogeneous plasma.1 It occurs in the region where the
laser frequency o0 is comparable to the natural oscillation
frequency of the plasma oL. The resonance of electron
oscillations in the laser radiation field with Langmuir
electron oscillations leads to an increase in electrostatic
oscillations, i.e., to plasma resonance, which manifests itself
as a sharp increase on the potential electric field in the vicinity
of the critical plasma density [2±5]. The study of plasma
resonance is of fundamental and applied interest because it
underlies the development of processes such as resonance
absorption [6, 7], the generation of harmonics [8±16], the
generation of quasistatic fields near the critical density [14,
17], and the formation of fast particles in laser plasma [18±26].
These processes, in turn, are of special importance in light of
the global problem of inertial confinement fusion (ICF) [27±
36], which remain relevant.

Resonance absorption (RA) is one of the most important
channels to transfer laser radiation energy into an inhomoge-
neous plasma. It makes a significant, and sometimes decisive,
contribution to the absorption coefficient. From a practical
standpoint, RA studies deal with problems of the interaction
of laser radiation with plasma formed as a result of laser
ablation of solid targets, and mainly with ICF experiments
[31±34], as well as the problem of harmonic generation [10, 11,
14]. The linear theory of RA, developed in the 1960s±1970s [6,
37] based on the model proposed in [1], still underlies many
calculations and estimates performed in the framework of
ICF experiments [31]. However, the natural logic of the
development of laser technologies has made it routine to use
lasers with an intensity that makes the applicability of the
linear theory of RA doubtful.

Modern experiments on ICF with direct irradiation,
including the concept of shock ignition, are characterized by
large plasma inhomogeneity scales (tens and hundreds of
laser wavelengths) and laser intensities up to 1017 W cmÿ2.
Under such conditions, manifestations of strong nonlinear
effects at a near-critical plasma density are possible [14, 38±
44], and hence there is a need to significantly improve
the theory of absorption of intense laser radiation in the
critical density domain of inhomogeneous plasma, where the
phenomenon of relativistic-nonlinear plasma resonance occurs
[43, 44]. The fact is that, at a plasma resonance under ICF
conditions, an increase in the plasma field can give rise to the
electric field strength reaching relativistic magnitudes,
although the intensity of the incident laser field remains
significantly lower than the relativistic one [40, 41, 43, 44].
Such a strong nonlinear resonance has a significant impact on
the absorption process [44-46], which means that the task of
constructing the theory of RA under conditions of relativistic
plasma resonance is very relevant.

The strong charge separation that occurs in the vicinity of
the plasma resonance generates a powerful quasistatic electric
field localized near the critical density [14, 17]. Already in the
second half of the 1970s, a number of experimental facts were
known that indicated the generation of strong quasistatic
electric fields in plasma under the effect of high-power laser
radiation [47, 48]; studying them was of interest from the
standpoint of the processes of transport [49] and acceleration
of particles in plasma [21]. In particular, the formation of fast
electrons in the critical density region deserves attention as an
undesirable effect in the ICF context, because it provides

preliminary heating of the target, which hampers its optimal
compression and hence further initiation of the thermo-
nuclear reaction [20, 23, 24, 30, 33, 50, 51]. Therefore,
studying the spatial structure of quasistatic electric fields
excited in the vicinity of the critical plasma density is of
interest and can serve as the basis for a theoretical interpreta-
tion of the observed generation of fast electrons.

Harmonic generation (HG) of laser radiation is another
important process that develops under plasma resonance
conditions and has attracted the attention of researchers as a
tool for obtaining high-frequency sources of secondary
radiation [15] and for diagnosing the laser plasma corona
(including in ICF experiments), i.e., the possibility of
determining the plasma density, temperature gradient, and
corona velocity from the spectral composition of secondary
radiation [52, 53]. Since the 1970s, numerous experimental
and theoretical studies have been carried out around the
world on the generation of harmonics whose characteristics
can be used to determine the indicated parameters in localized
regions of the plasma: near the critical and quarter-critical
density [12, 52, 53]. For example, recent experiments at the
NIF (National Ignition Facility) carried out within the direct
compression scheme [34] used the spectra of the o0=2
subharmonic to determine the electron temperature of dense
laser plasma. From a theoretical standpoint, the description
of HG in the regime of a strongly nonlinear plasma
resonance, observed in classical experiments [54, 55], is of
particular interest. The slowly decaying spectra of secondary
radiation obtained in [54, 55] are not described by the
perturbation theory [11], which predicts an exponential
decrease in the intensities of harmonics with an increase in
the harmonic number. Going beyond the perturbation theory
was first achieved in [14], where the analytically found
coefficients of conversion to higher harmonics demonstrated
a rich spectral composition of secondary radiation, with a
strong nonrelativistic nonlinearity of electron motion in the
vicinity of the critical density. Study [14] was continued in the
last decade [44, 56, 57]; there, the problem of the relativistic
effects exerted on HG by the dynamics of the electron
component of plasma in the vicinity of plasma resonance
was solved.

Modern experiments on the interaction of laser radiation
with plasma at high laser intensities deal with the strong
nonlinearity of electromagnetic fields. The key role of
nonlinearity was noted in the first theoretical studies on the
interaction of powerful electromagnetic radiation with
inhomogeneous plasma (see, e.g., [58, 59]) and was subse-
quently confirmed in laboratory experiments and studies of
ionospheric plasma [60±63]. Plasma inhomogeneity can be
caused both by the action of a strong electromagnetic field
during self-focusing of laser radiation [58, 60] and by natural
plasma inhomogeneity, e.g., during ionospheric experiments
[61±63], and can also result from the combination of these two
effects [63]. Because strong nonlinearity significantly compli-
cates the task of giving an analytic description, nonlinear
processes, for example, RA, are typically studied numeri-
cally [39, 40, 64±66] or using semi-analytic models [38, 41]
in which equations that are simplified compared with the
original ones are first obtained by analytic methods and
then solved numerically. Fully numerical approaches often
involve a kinetic description based on the particle-in-cell
(PIC) method [39, 40, 64, 65]. However, despite the rapid
development of numerical methods widely used in high-
energy laser physics, analytic approaches can still be an

1 Below, we clarify the condition for weak plasma inhomogeneity in terms

of the laser±plasma parameters.
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effective way to study processes associated with strong
nonlinearity.

We note that numerical calculations of the absorption and
generation of laser radiation harmonics by an inhomoge-
neous plasma face a problem associated with the different
scales of modeling domains when calculating the self-
consistent electromagnetic field in a plasma. On the one
hand, to resolve a narrow resonance region, which is tenths
of the laser wavelength in width, a small step on a space-time
grid is needed. On the other hand, when calculating fields in
the bulk of a plasma target, determined by the density
inhomogeneity scale, which is tens and hundreds of laser
wavelengths, a large number of such steps are necessary,
which critically increases the resource consumption of the
computation. In addition, the use of numerical methods
makes it difficult to obtain practically necessary scalings
from laser±plasma parameters due to the multiparameter
dependence of numerical calculations, because nonlinear
absorption depends on the laser pulse intensity, the angle of
incidence on the plasma, the geometry and density of the
plasma target, the expansion velocity, and temperature [40,
67]. In this regard, theoretical approaches are important,
allowing one to obtain analytic solutions whose value lies not
only in the fact that they provide a visual description of
processes dependent on numerous parameters of the problem
but also in the fact that they can be used in constructing and
justifying numerical and analytic methods as model solutions
that highlight the key properties of the system under
consideration.

In this review, we present the results of using the method
of renormalization group (RG) symmetries based on the
modern theory of transformation groups [68±70]; the
method emerged from developing ideas on functional self-
similarity [71] and Bogoliubov's quantum-field RG [72±75]
considered as a group of continuous Lie transformations. The
use of this method has allowed constructing a self-consistent
analytic solution of a highly nonlinear problem of the
interaction of laser radiation with an inhomogeneous
plasma. This solution has been used to describe the structure
of the singularity of the nonlinear electromagnetic field in
plasma resonance [42, 43, 76], to solve the problem of
nonlinear RA [44±46], to find the intensities of higher
harmonics generated in a resonance region and emitted into
a vacuum [44, 56, 57], and to characterize the properties of a

quasistatic electric field [45] generated in the vicinity of the
critical density of an inhomogeneous laser plasma.

The review is divided into five parts, including three more
sections in addition to the introduction and conclusions. In
Section 2, the structure of nonlinear plasma resonance is
found and studied in detail, and the mechanism of breaking
relativistic plasma oscillations in the vicinity of the critical
plasma density and the spatial properties of the longitudinal
electric field of plasma resonance are considered. Section 3 is
devoted to finding the relativistic-nonlinear RA coefficient,
studying the applicability limits of the hydrodynamical model
of plasma resonance in terms of the physical parameters of the
laser±plasma system, and discussing the properties of the
quasistatic electric field. In Section 4, we find the conversion
coefficients to higher harmonics of laser radiation, study the
spectral composition of secondary radiation, and discuss the
relation to previous theories of HG by the plasma resonance
mechanism.

2. Nonlinear plasma resonance
in inhomogeneous plasma

Solutions of the equations describing oblique incidence of
electromagnetic waves on a weakly inhomogeneous plane-
layered isotropic plasma were first studied in detail by
Zhekulin [77, 78] in relation to the problem of radio wave
propagation in the ionosphere. In such a medium, with the
density and the dielectric constant dependent on one spatial
coordinate, waves with different polarizations of the electric
vector (perpendicular and parallel to the plane of incidence)
propagate independently of one another. Moreover, the
problem of reflection of an s-polarized wave, whose electric
vector is perpendicular to the plane of incidence, is not
fundamentally different from the simplest problem of
normal incidence [3, 79]. In front of the reflection (turning)
point, an oscillatory structure of a standing electromagnetic
wave then forms as a result of the superposition of the
incident and reflected waves; behind the reflection point, the
field decays exponentially into the plasma. The only differ-
ence is the shift in the point of reflection of the incident wave.
A different picture is observed in the case of p-polarization of
the incident electromagnetic wave, whose electric vector lies
in the plane of incidence (Fig. 1). In that case, a standing wave
is again formed, which, after passing the reflection point, first
attenuates in the bulk of the plasma, but the point where the
medium dielectric constant e vanishes is singular (Fig. 1b):
Zhekulin showed that the requirement for the solution of the
wave equation to vanish at infinity (in the region of negative
values of e) leads to the field becoming infinite at the point
where e � 0. He did not, however, suggest a suitable strategy
to eliminate the singularity.

Later, F�orsterling and W�uster [80, 81] gave a more
detailed analysis of this singularity of the field occurring in
the course of the propagation of an electromagnetic wave in
an inhomogeneous plasma. Using approximate solutions
applicable in a small neighborhood of a zero of e, they
found that the longitudinal component (the one along the
plasma inhomogeneity gradient) of the electric field has a 1=e
singularity, and the transverse component has a logarithmic
singularity. Hence, it was concluded that a sharp increase in
the electric field strength in the region where e! 0 makes it
impossible to describe the field using the standard dielectric
constant, because the motion of electrons in the field with a
strong spatial inhomogeneity is no longer harmonic. F�orster-

e � 1

E, B, k, o0

o0, 2o0, ... ,no0

y
Ey

Ex

jExja b
n�ncr

e � sin2 y e � sin2 y e � 0 xe � 0

Figure 1. (a) Schematic representation of oblique incidence of a p-polarized

plane electromagnetic wave at an angle y onto a plasma that is

inhomogeneous along the x-axis. At the reflection point, the dielectric

constant takes the value e�x� � sin2 y; at the point of plasma resonance,

plasma density n is equal to critical value ncr and the dielectric constant

vanishes: e�x� � 0. (b) Qualitative picture of spatial distribution of

longitudinal electric field amplitude in an inhomogeneous plasma whose

density varies along the x coordinate, with an oblique incidence of a

p-polarized electromagnetic wave without taking small dissipation effects

in the vicinity of the critical density into account. At the reflection point,

e�x� � sin2 y, and at the plasma resonance point, e�x� � 0.
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ling and W�uster were the first to demonstrate that the
equations for the field become nonlinear under such condi-
tions, and whenever a wave of a certain frequency propagates
in an inhomogeneous plasma, waves of other (multiple)
frequenciesÐ higher harmonicsÐarise [81].

In 1956, an article by Denisov, ``On a singularity of the
field of an electromagnetic wave propagating in an inhomo-
geneous plasma'' [1], was published, which in many ways
became fundamental in the theory of radio wave propagation
in plasma and to the ICF problem. Developing the ideas of
predecessors [77, 78, 80, 81], the structure of the electro-
magnetic field with a singularity was studied in [1] in detail
within a linear theory (in the incident wave amplitude) based
on Maxwell's equations and the equations of collisionless
hydrodynamics for electrons. The physical nature of the
electric field singularity was clarified for the first time. The
crucial point is that longitudinal plasma oscillations can build
up in an inhomogeneous plasma due to a resonance of
electron oscillations in the field of an electromagnetic wave
with a frequency o0 and natural oscillations of the plasma
with the Langmuir frequency oL. A plasma resonance
occurring at e � 0, i.e., at the coincident frequencies o0 and
oL, leads to an increase in electrostatic oscillations and to a
sharp increase in the potential electric field in the vicinity of
the critical plasma density (Fig. 1b). Thus, in [1], a qualitative
description was given of the role of plasma resonance in the
specific process of absorption of electromagnetic radiation by
an inhomogeneous plasma, which was subsequently called
resonance absorption. In addition, the field amplification
coefficient was calculated for the first time and a finite value
of the electric field amplitude of the plasma resonance was
shown to be ensured either by collisional dissipation of
plasma oscillations in the case of cold plasma or by the
escape of plasma waves when thermal effects are taken into
account in the case of hot plasma [1±3]. Subsequently, the
results in [1] served as the basis for the development of various
theories pertaining to ionospheric and laser plasmas. In
ionospheric plasma, these results underlie research (both
theoretical and experimental) on the linear transformation
and absorption of waves [82], on the formation of artificial
ionospheric irregularities elongated along the magnetic field
[83, 84], on the creation of an artificially ionized region in the
stratosphere [85], and on nonlinear phenomena in plasma
resonance in the ionosphere [63], including the kinetic theory
of plasma turbulence with the formation of cavitonsÐ
plasma density pits that cause the acceleration of electrons.
In laser plasma, study [1] contributed to the development of
the theories of HG [8±16], quasistatic fields [14, 17], RA [6, 7],
and the generation of fast particles from the critical density
region of inhomogeneous laser plasma [18±26], which is the
subject of many studies by Russian and foreign researchers.
Thanks to steady improvement in the technology of laser-
physics experiments, a progressively greater intensity of laser
radiation was being attained, and it hence became necessary
to take nonlinear plasma oscillation effects into account in the
vicinity of the resonance.

Strongly nonlinear nonrelativistic plasma oscillations
were first studied by Akhiezer and Lyubarskii [86] in
analyzing stationary nonlinear Langmuir oscillations in the
form of traveling waves that are solutions of the equations of
cold collisionless hydrodynamics for a spatially homogeneous
electron plasma with a neutralizing ion background. When
the finite (but still essentially nonrelativistic) speed of the
electrons is taken into account, the frequency of nonlinear

oscillations is independent of the velocity amplitude and is
determined by the classical Langmuir formula. Generalizing
the method used in [86] to the case of arbitrary electron
velocities, Akhiezer and Polovin [87] studied various regimes
of longitudinal and transverse electron oscillations in plasma
in detail. They found, in particular, that the relativistic
motion of electrons gives rise to a dependence of the
frequency of longitudinal oscillations on the velocity ampli-
tude, namely, a decrease in frequency with increasing velocity
due to a relativistic change in the particle `mass.' 2 Thus, as the
speed of a traveling wave approaches the speed of light,
v! c, the frequency tends to zero, because the electron
mass tends to infinity.

The results in [86, 87] implicitly indicated a limit,
determined by the nonlinearity itself, on the amplitude of
oscillations of the electron component of the plasma. This
was pointed out by Dawson in [88], where, in the language of
the derivative of the Lagrangian displacement of plasma
electrons relative to their initial positions, a wavebreaking
criterion for the profile of the nonlinear plasma wave was
foundwhen the oscillation amplitude exceeds a certain critical
value. Later, in [89], the stationary structure of longitudinal
electron oscillations and the conditions for their breaking in
plasma were studied based on solving the system of Vlasov±
Poisson equations using a simple `water bag' type of model
distribution of electron velocities on the background of
stationary ions. It was shown that the limit amplitude of
oscillations corresponding to breaking monotonically
decreases with an increase in the ratio of the thermal velocity
of electrons to the phase velocity of the wave.

Stationary (quasistationary) regimes of nonrelativistic
plasma oscillations in the vicinity of a plasma resonance
were studied, based on the Ginzburg±Denisov plasma
resonance model, in work on the generation of harmonics of
p-polarized laser radiation incident on an inhomogeneous
plasma [8, 10, 11, 13, 14]. In contrast to studies [8, 10, 11, 13]
carried out within the weakly nonlinear theory, Kovalev and
Pustovalov [14] developed a nonperturbative approach that
allowed taking the strong nonlinearity (in the electric field
amplitude) of the motion of electrons into account, albeit
with the relativistic effects ignored. Using the method of RG
symmetries [68], a stationary nonlinear structure of the
electromagnetic field in the plasma resonance region was
found and used to calculate the amplitudes of the harmonics
of the electromagnetic wave incident on inhomogeneous
plasma. A generalization of the breaking condition [88] to
the strongly nonlinear nonrelativistic case of Langmuir
oscillations in the vicinity of the critical density was also
formulated. The approach to describing nonlinear plasma
oscillations beyond the perturbation theory proposed in [14]
was used in [42, 43, 76] to reconstruct the structure of the
electric field with the relativistic effects of electronmotion at a
near-critical plasma density taken into account. In presenting
the results of the theory of nonlinear plasma resonance, we
mainly follow [42, 43, 76].

In relation to the problems of particle acceleration and
plasma heating, the nonrelativistic dynamics of the electron
component of the plasma in the vicinity of the critical density
was discussed in [18, 21, 22] in a different setting, the one

2 The use of quotation marks here and below emphasizes that we are

talking about the changes in the laws of dynamics at high speeds, but with

the stipulation that mass, being a four-dimensional scalar, is a relativistic

invariant.
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corresponding to the so-called `capacitor model.' In this
model, forced oscillations of an inhomogeneous plasma
layer placed in an external uniform high-frequency electric
field are considered. Due to plasma inhomogeneity [21, 88],
the process of electron oscillations is nonstationary, giving
rise to the breaking of the plasma wave profile in a finite time.
The calculation of the maximum amplitude of forced
Langmuir oscillations corresponding to the breaking
instant, carried out in [18] for a cold plasma, was continued
in [90] for a plasma with a finite temperature of electrons
whose distribution function has a `water bag' shape.

Taking the relativistic nonlinearity of electron dynamics
into account significantly complicates the problem of analytic
research, and relativistic plasma oscillations in inhomoge-
neous plasmas are therefore studied mainly by numerical
modeling methods, e.g., as in [40, 91, 92] or in the framework
of approximate and semianalytic models [41, 93±95]. In the
numerical modeling of plasmas, both the hydrodynamic
description using the Lagrangian formalism [91, 92] and the
kinetic approach based on the PIC method [40] are used.
When studying the nonlinear evolution of relativistic plasma
waves [93], the solution to the initial value problem exhibits a
steepening of the wave front with time, resulting in its
breaking.

2.1 Construction of strongly nonlinear solutions
of plasma resonance theory equations
using the method of renormalization group symmetries
To describe the dynamics of electrons and the structure of the
electromagnetic field near the critical density and, in sub-
sequent sections, also the processes of nonlinear absorption
and generation of harmonics of a p-polarized electromagnetic
wave incident on a weakly inhomogeneous plasma along the
x coordinate at an angle y and characterized by the electric E
and magnetic B fields with a frequency o0,

B � 1

2

�
0; 0;B0�x�

	
exp �ikyyÿ io0t� � c:c: ;

E � 1

2

�
E0x�x�;E0y�x�; 0

	
exp �ikyyÿ io0t� � c:c: ; �2:1�

ky � k0 sin y ; k0 � o0

c
;

we take the initial equations to be the equations of collision-
less hydrodynamics of cold relativistic electron plasma and
Maxwell's equations:

qtp� �vqr�p � e

�
E� 1

c
�vB�

�
; qtne � div �nev� � 0 ;

rotE � ÿ 1

c
qtB ; rotB � 1

c
qtE� 4p

c
enev ; divB � 0 ;

divE � 4p�ene � eini� ; p � mvg � mv��������������������
1ÿ v2=c 2

p :
�2:2�

Here,m and e are the electron mass and charge, c is the speed
of light in a vacuum, ne, v, and p are the density, speed, and
momentum of plasma electrons, and E and B are the electric
and magnetic field strengths of p-polarized electromagnetic
radiation with the electric field component in (2.1) directed
along the plasma inhomogeneity gradient. Ions with a fixed
density ni are considered a stationary neutralizing back-
ground that corresponds to the electron plasma approxima-
tion used in this paper, and the effects of thermal motion and

collisions of electrons that are not included in Eqns (2.2) are
assumed to be small, although their role in the regularization
of the plasma resonance singularity is taken into account, in
accordance with the procedure for constructing a nonlinear
solution.

Assuming the x and y components of the electron velocity
and the electric field, as well as the z component of the
magnetic field, to be nonzero, after eliminating the electron
density, we obtain the following system of equations from
(2.2):

g�qtv� avqxv� auqyv� � a 2g 3

c 2
�
vu
ÿ
qtu� avqxu� auqyu�

� v 2�qtv� avqxv� auqyv�
� � P� au

c
R ;

g�qtu� avqxu� auqyu� � a 2g 3

c 2
�
vu�qtv� avqxv� auqyv�

� u 2�qtu� avqxu� auqyu�
� � Qÿ av

c
R ;

�2:3�
qtP� avqxP� avqyQÿ cqyR� o2

Lv � 0 ;

qtQ� auqxP� auqyQ� cqxR� o2
Lu � 0 ;

qtR� cqxQÿ cqyP � 0 :

Here and hereafter, we use the notation qx i � q=qx i for the
partial derivative with respect to x i (i � 1; . . . ; n). The
functions v � vx=a and u � vy=a describe the normalized
values of the electron velocity components;
g � 1=

��������������������������������������������
1ÿ �a 2=c 2��v 2 � u 2�p

; P � eEx=ma, Q � eEy=ma,
and R � eBz=ma are normalized values of the components
of the electric fEx;Ey; 0g andmagnetic f0; 0;Bzg fields, where
a � ÿ2ejB1�0�j sin y=mo2

0L is a dimensionless constant pro-
portional to the amplitude of the magnetic field jB1�0�j at the
plasma resonance point x � 0; and B1�0� is a complex
amplitude of the Fourier component of the magnetic field at
x � 0 at the laser frequency o0:

B1�0� �
��B1�0�

�� exp �i argB1�0�
�� mo2

0La

2jej sin y exp
�
i argB1�0�

�
:

�2:4�
The electron Langmuir frequency oL � oL�x� �
�4pe 2n0=m�1=2 of a plasma with the density n0�x� � niei=jej
is approximated in the vicinity of the plasma resonance point
x � 0 by a linear dependence on the x coordinate,
n0�x� � �1� x=L�nc, where nc � mo2

0=4pe
2 is the critical

density and L is the characteristic density inhomogeneity
scale, defined as the ratio of the electron density ne to its
gradient calculated at the critical density: L � jne=Hnejne�nc .
In the case of a smooth gradient of plasma inhomogeneity,
L4 d; 1=k0 (where d is the plasma resonance width), the
linear dependence on the x coordinate is valid in the vicinity
of the resonance for any monotonic density profile. The
condition of weak plasma inhomogeneity k0L4 1 is also
critically important for the effective RA.

The p-polarization of an electromagnetic wave incident
on the plasma considered here corresponds to a nonzero
projection of the electric field onto the direction of the spatial
inhomogeneity gradient in the plasma. In this case, in the
vicinity of x � 0, where the frequency of electron oscillations
in the laser radiation field is equal to the frequency of
Langmuir electron oscillations of the plasma, o0 � oL, a
resonant increase in the longitudinal electric field occurs, and
part of the energy of the incident electromagnetic wave is
transferred to longitudinal plasma fluctuations. Therefore,
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repeating the reasoning in [8, 14], we take into account that
the largest contribution to the nonlinear effects of plasma
resonance is made by the x component of the electric field and
electron velocity:

vx 4 vy ; Ex 4Ey 4Bz : �2:5�

To obtain equations for the longitudinal resonantly
amplified plasma field, we select two equations invol-
ving the x-components of the electric field and the electron
velocity from system (2.3), using the hierarchy of fields and
velocities (2.5) in the vicinity of the critical density. We then
arrive at a pair of nonlinear first-order partial differential
equations for the x components of the normalized electric
field P and the electron velocity v near the plasma resonance,

qtv� avqxv � Pgÿ30 ; �2:6�
qtP� avqxP � ÿo2

0v ;

where g0 � �1ÿ bv 2�ÿ1=2 and b � a 2=c 2. The equations for
the transverse components of velocity u and electric field Q
are found similarly:

qt�ug0� � avqx�ug0� � Q ; �2:7�
o0qxQ� kyqtP � 0 :

It is assumed in Eqns (2.6) and (2.7) that oL � o0, which
means that we neglect the dependence of the frequency oL on
the x coordinate, which is justified in the case of a weakly
inhomogeneous plasma. We are interested in analytic solu-
tions of Eqns (2.6) and (2.7) in an arbitrary order of
nonlinearity, i.e., beyond the perturbation theory.

We first consider Eqns (2.6) and use their group properties
to find a solution. We note that these equations involve two
parameters, a and b, corresponding to the contributions of
the electron nonrelativistic (or convective, associated with the
term avqx) and relativistic (associated with the term
Pgÿ30 � P�1ÿ bv 2�3=2) nonlinearities. Generally speaking,
the measure of relativistic nonlinearity is the parameter
b � 1=c 2, which tends to zero in the nonrelativistic limit
c!1. However, the choice of the relativism parameter in
the form b � a 2=c 2 (which arises naturally after the transition
to dimensionless variables) is dictated by the significant
simplification of subsequent calculations in that case. At
a � 0 and b � 0, Eqns (2.6) transform into equations that
describe linear plasma resonance and have well-known
solutions [1, 3, 37], corrections to which can be found by
constructing the perturbation theory series in a and b. Using
the symmetry properties of the equations, solutions found
using the perturbation theory can be related into solutions for
finite a and b. This approach is based on the method of RG
symmetries, well known in theoretical physics [68]; the
symmetries are sought using algorithms of modern group-
theory analysis [96, 97].

The gist of the method is as follows. At the first stage, we
calculate the widest group of point transformations allowed
by the original equations (in our case, Eqns (2.6)) in the space
of all dependent and independent variables and the para-
meters included in the equations. Next, using the procedure of
group restriction to a particular solution, a finite-dimensional
subgroup of the admitted group is identified, under which the
solution of the original system obtained within the perturba-
tion theory with respect to the chosen parameters remains
invariant. Finally, the use of finite transformations specified

by this subgroup allows relating solutions for small values of
parameters, i.e., perturbative solutions, to highly nonlinear
solutions that correspond to finite values of these parameters.

The infinite group of continuous point transformations in
the space of six variables, a, b, t, x, v, and P, allowed by
Eqns (2.6) is defined by the infinitesimal operator (the group
generator)

X � x 1qt � x 2qx � x 3qa � x 4qb � Z1qv � Z2qP �2:8�

with coordinates x i, i � 1; . . . ; 4, and Z j, j � 1; 2, which are
functions of the variables t, x, v, and P and the parameters a
and b, and which are determined in accordance with the
standard procedure of group theory analysis [96, 97] (see
Appendix A and [42, 43, 76]). A perturbative solution of
system (2.6) can be constructed using two parameters a and b,
and the procedure for restricting3 the infinite group leads to
RG transformations that extend this solution to the region of
finite values of a and b. Omitting cumbersome calculations,
we present the resultant RG transformations defined by two
infinitesimal operators

R1 � x 2
RGqx � qa ; �2:9�

R2 � x 1
RGqt � qb � Z1RGqv ;

with the coordinates x 1
RG, x

2
RG, and Z1RG given by

x 1
RG �

1

b

"
�6� bI1�E�m; s�

2
���������������
4� bI1
p ÿ F�m; s����������������

4� bI1
p

�
���
b
p

P=o0

4� bI1

��������������������
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���
z
p ÿ 1

1� 1=
���
z
p

s #
;

�2:10�
x 2
RG � ÿ

P

o2
0

; Z1RG � ÿ
z 3=2

2vb 2

�
2� 1

z 3=2
ÿ 3���

z
p
�
;

where

m � arcsin
P=o0����

I1
p ; s �

����������������
bI1

4� bI1

s
;

�2:11�
I1 � 2

b

�
1���
z
p ÿ 1

�
� P 2

o2
0

:

Here, z � 1ÿ bv 2, and F�m; s� and E�m; s� are incomplete
elliptic integrals of the respective first and the second kind [98,
99],

F�m; s� �
� m

0

dx��������������������������������������1ÿ sx 2��1ÿ x 2�p ;

�2:12�

E�m; s� �
� m

0

�����������������
1ÿ sx 2
p ��������������

1ÿ x 2
p dx :

Calculating the commutator of the operators R1 and R2, we
can easily verify that R1;R2� � � 0, i.e., the group generated by
them is Abelian. Therefore, the finite group transformations
corresponding to R1 and R2 on the plane fa; bg, given by
integrating the Lie equations, can be regarded as a sequence
of two independent steps with the respective group transfor-
mation parameters a and b, as shown in Fig. 2. The arrow

3 See [68] for details on the procedure of restriction.
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from point 1 to point 2 denotes a transformation relating the
solution of a linear problem with a nonlinear nonrelativistic
solution, and the arrow frompoint 2 to point 3 corresponds to
the transition from a nonlinear nonrelativistic to a relativistic
solution. Because R1 does not contain differentiation opera-
tors with respect to the time t, the speed v, and the field P,
whereas R2 does not contain differentiation operators with
respect to the coordinate x and the electric field P, it follows
that these quantities are invariants of the transformations
corresponding to R1 and R2. At the first step, determined by
the action of R1, i.e., by solving the corresponding Lie
equation

dx

da
� x 2

RG ; x
��
a�0 � Z ; �2:13�

we find the finite transformations for the time t, coordinate x,
field P, and speed v,

tI � tlinear ; xI � Zÿ aoÿ20 PI ; �2:14�
PI � Plinear�w; Z� ; vI � vlinear�w; Z� ;

where w � o0tlinear and Z � x�0; Z� denotes the coordinate
x � x�a; Z� at a zero value of the parameter a. Formulas (2.14)
determine the transition from a solution obtained in the linear
theory to one that takes electron nonlinearity into account,
but without relativistic effects. The invariance of the time t,
speed v, and field P is manifested in the fact that they are
determined by the linear theory formulas (which is indicated
by the subscript `linear'). Thus, the nonlinear structure of the
field and the electron speed depends on the form of the electric
field Plinear, which is a solution of a linearized system of
equations corresponding to (2.6). When choosing a linear
solution that can be extended by the RG transformation to
the region of finite values of the nonlinearity parameters, we
use the result obtained for cold electron plasma with a linear

density profile [1, 37]. In this case, the field at the point x � 0
has a 1=e singularity (with e � 1ÿ o2

L=o
2
0 being the dielectric

constant of the plasma, which vanishes at the resonance
o0 � oL), which is eliminated, however, when collisions or
buildup of longitudinal plasma oscillations are taken into
account, thereby determining the final width D of the linear
plasma resonance. For a particular type of linear structure of
the field, expressions for the field and speed corresponding to
the first step of the transformation can be written as

PI � ÿ o2
0L

2

D2 � Z2
�Z cos w� D sin w� ;

vI � ÿ o0L
2

D2 � Z2
�Z sin wÿ D cos w� ; �2:15�

xI � Z� aL2

D2 � Z2
�Z cos w� D sin w� ;

where D is determined either by the thermal motion of
electrons with a thermal speed VT or by the low collision
frequency n of particles in the plasma:

D � max

�
nL
o0

;

�
3V 2

TL

o2
0

�1=3�
: �2:16�

We now take the second step, the one associated with finite
transformations with respect to the relativism parameter b,
which follow from the Lie equations corresponding to the
generator R2:

dt

db
� x 1

RG ; tjb�0 � tI ;
�2:17�

dv

db
� Z 1

RG ; vjb�0 � vI :

Integrating Eqns (2.17) gives the transition from the non-
linear nonrelativistic solution in (2.15) to the relativistic
solution. The invariance of the electric field P (PII � PI) and
the coordinate x (xII � xI) under the transformation asso-
ciated with R2 allows using the corresponding expressions
from (2.15), and the calculation, based on (2.17), of the final
transformations of the velocity v � vII and the `time'
t � o0tII then leads to the formulas

v � vI
ÿ
1� �1=4�bv 2I

�1=2
1� �1=2�bv 2

I

;
�2:18�

t � wÿ
� ���������������

4� bI1
p

E�j; k� ÿ 2F�j; k����������������
4� bI1
p ÿ j

�
;

where

j � arcsin
PI=o0����

I1
p ; k �

����������������
bI1

4� bI1

s
;

�2:19�
I1 � 2
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p ÿ 1

�
� P 2

I
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0

:

Formulas (2.15), considered together with (2.18), impli-
citly describe the nonlinear structure of the longitudinal
components of the field and electron velocity in terms of the
parametric variables Z and w, taking two types of nonlinearity
into account: nonrelativistic and relativistic. The explicit
dependence of the electric field and the electron velocity on
the true coordinate x and time t is determined by eliminating Z

b

1 R1

R2

2 a

3

Figure 2. RG transformation using a two-parameter RG on the plane of

transformation parameters fa; bg, implementing the transition between

theories of plasma resonance. Point 1 corresponds to the linear theory,

point 2, to the highly nonlinear nonrelativistic theory, and point 3, to the

nonlinear relativistic theory.
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and w from (2.15) and (2.18). Expressions (2.15) and (2.18) are
the result of continuing the corresponding solutions of
equations linearized with respect to (2.6) to finite values of
the parameters a 6� 0 and b 6� 0 using theRG transformation.
We note that the coordinate transformation law in (2.14)
completely coincides with what was found in [14] when
constructing a nonlinear nonrelativistic solution. A signifi-
cant difference from the nonrelativistic case [14] is that, in
addition to the x coordinate, the RG transformations also
involve the velocity v and time t. The electric field P remains
an invariant of RG transformations, which corresponds to
the vanishing of the coordinate Z2RG � 0. A similar result
follows for the transverse components of the electric field Q
and electron velocity u when the action of the transformation
group by (2.8) is extended to Eqns (2.7). Supplementing
generator (2.8) with the terms Z3qu and Z4qQ, we obtain [56],
at which, with an accuracy not exceeding the accuracy of
calculating the nonlinear currents, the group generator
coordinates Z3RG and Z4RG can be assumed equal to zero, and
the functionsQ and u, to be invariants of the RG transforma-
tions. This last fact allows using the functions from [14] for the
amplitudes of the transverse components of the electric field
Q and velocity u:

u � kyo0L
2

�
1

2
ln

�
k 2
y e

2C

4
�D2 � Z2�

�
cos w

ÿ arccos
Z����������������

Z2 � D2
p sin w

�
;

�2:20�

Q � kyo2
0L

2

�
ÿ 1

2
ln

�
k 2
y e

2C

4
�D2 � Z2�

�
sin w

ÿ arccos
Z����������������

Z2 � D2
p cos w

�
:

Here, C � 0:5772156 is the Euler±Mascheroni constant. The
difference from the nonrelativistic case in [14] for u and Q is
that expressions (2.20) must be considered together with the
finite `time' transformation from (2.18).

It thus follows that expressions (2.15), (2.18), and (2.20)
implicitly define the space±time structure of the electric field
and the electron velocity, namely, their longitudinal (P and v)
and transverse (Q and u) components with both nonrelativis-
tic and relativistic nonlinearities of electron motion near the
plasma resonance taken into account. Combining formulas
(2.15) and (2.18) gives an exact solution of the system of
equations (2.6), as can be verified by substitution, and
expressions (2.20) and (2.18) describe the space±time depend-
ences of the amplitudes of the transverse components of the
electric field and the electron velocity with an accuracy � ky.
In Sections 3 and 4, we obtain general relativistic expres-
sions for the currents in the plasma resonance region that
are sources of secondary radiation at the main frequency
o0 and its multiple frequencies no0, n5 2. These expres-
sions are constructed from the electric field and electron
velocity functions on a plasma resonance and, according to
the construction conditions, have an accuracy not exceed-
ing ky. Consequently, when finding the structure of the
transverse components of the electric field and electron
velocity, we can limit ourselves to the accuracy � ky. In the
nonrelativistic limit c!1, the found expressions trans-
form into the formulas of the nonlinear nonrelativistic
theory in [14].

Putting Eqns (2.15), (2.18), and (2.20) together and
moving to the normalized functions and variables

P0 � a

Do2
0

P ; Q0 � a

Do2
0

Q ; v1 � a

Do0
v ;

u0 � a

Do0
u ; x0 � x

D
; l � Z

D
;

we write the resulting expressions for the nonlinear structure
of the electric field and electron velocity in the vicinity of the
critical plasma density:

P0 � ÿ A
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4� B 2�v 20 � P 2
0 �

s
:

Nonzero values of the relativistic parameter b for a fixed
dimensionless amplitude of the plasma field a (or for a fixed
parameter A � aL2=D2) correspond to finite values of the
dimensionless parameter B � o0D=c. We therefore associate
B with the relativism parameter. The case of the nonrelativis-
tic approximation (B5 1) was considered in [14]. We note
that the condition kyD � B sin y5 1, corresponding to the
effect of resonance amplification of the potential component
of the plasma field [3, 14], can still be satisfied in our case for
laser radiation incident on the plasma layer at sufficiently
small angles.

Considering the interaction of laser radiation with plasma
at a moderate laser intensity, we limit ourselves to the case
where the oscillatory motion of electrons in the laser field is
nonrelativistic, eElaser=mo0 5 c, where Elaser is the laser field
amplitude. Equations (2.6) and (2.7) were obtained under the
assumption that relativistic effects are significant only for the
longitudinal component of the electron velocity near the
plasma resonance, where the effect of resonance amplifica-
tion of the electric field manifests itself. The most significant
nonlinear effect in our theory is the nonlinearity of the
longitudinal motion of electrons in the vicinity of the plasma

436 I I Metelskii, V F Kovalev, V Yu Bychenkov Physics ±Uspekhi 67 (5)



resonance, calculated using the group theory approach. For
relativistic laser fields, a more complex theory must be
developed that goes beyond the hydrodynamic model. At
such high laser radiation intensities, the dynamics of the
electron component of the plasma must be described in a
multi-flow regime, which requires the use of kinetic equa-
tions. 4 However, the threshold of the breaking of plasma
oscillations can also be studied in the framework of the
hydrodynamic approximation, as is demonstrated in what
follows.

2.2 Stationary and nonstationary relativistic electron
oscillations on a plasma resonance
We study formulas describing the longitudinal and transverse
components of the electric field and electron velocity near a
plasma resonance. We first discuss the expressions in (2.21)
for the electric field P, velocity vI, and coordinates xI (see also
formulas (2.15)), which are the result of the first step of the
RG transformation and completely coincide with the non-
linear nonrelativistic solution found previously [14]. The
transformation x � Zÿ Paoÿ20 (or, in dimensionless form,
x0 � lÿ P0) can be viewed as a Lagrangian replacement of
the Euler coordinate x if Paoÿ20 is understood as the
Lagrangian displacement of electrons relative to the coordi-
nates Z. The dependences of the dimensionless coordinate
x � xI=D on l � Z=D at different times and for different values

of the parameter A are presented in Fig. 3. When the pump
field amplitude is linear, x � Z, the plasma resonance field
was monochromatic. It is due to the nonlinear connection
between P and x that the electric field P in the nonlinear
nonrelativistic case has a spectrum containing higher
harmonics with frequencies that are multiples of the funda-
mental frequency o0 of the laser radiation field.

Next, including relativistic nonlinearity and hence expres-
sions for the transformed speed v and time t, Eqns (2.18), into
consideration, we note the branching of the solution due to
the existence of two possibilities to continue from the branch
point w0 of the functions involved in the expression for
t � t�w; l�, which characterizes the change in the phase of
oscillations of relativistic electrons in a resonantly amplified
plasma field. The branching of solutions of nonlinear
equations of motion is well known, for example, in some
problems in mechanics [101]. Taking this property into
account, the choice of the method to continue functions
from the point w0 determines one of the two types of excited
plasma oscillations. To illustrate this, we first consider the
graphical representation of the expression for t�w; l�. We fix,
e.g., B � 1:8, thereby fixing the plasma parameters. Taking
into account that different values of the parametric variable l
correspond to different branch points w0, for definiteness, we
consider the case l � 0, where w0 � p=2. Figure 4a shows two
branches of the solution for the same values of A and B.
Disregarding relativistic effects, i.e., setting B � 0, we have a
linear dependence of t�w; l� on w: t � w. In the figure, this case
corresponds to the bisector. In the transition to the relativistic
regime, this dependence is replaced with a dependence of the

4 One example of the use of such a transition from single-flow motion to a

multi-flow regime is provided by the problem of the dynamics of cold

dissipative gas in the expanding Universe [100].
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form t � Cw, where C � C�w; l� 6� 1. On one of the solution
branches (dashed line), two trends in the manifestation of
relativistic effects are discernible. The first is a slow periodic
dependence of C�w; l� corresponding to a space±time phase
modulation, and the second is a change in the angle of
inclination t�w; l�, characterized by the derivative qwt, which
corresponds to a shift in the electron vibration frequency to
the lower-frequency range. On the other branch of the
solution (solid curve in Fig. 4a), only phase modulation is
observed. The nature of the change in the phase of oscillations
with increasing parameter A for two branches of the solution
is presented in Figs 4b and 4c: the phase modulation increases
with increasing dimensionless amplitude A. In the first case
(Fig. 4b), the dependence of t on w remains single valued at
any A. For the second branch of the solution (Fig. 4c), an
increase in modulation above a certain critical valueAcr leads
to the formation of kinks in the function t�w; l � 0� at the
points w � p� 2pn, n � 0; 1; . . . ; and hence the `time' t is no
longer a single-valued function of w; therefore, the electron
velocity v and electric field P functions also lose their single-
valuedness. Staying within the hydrodynamic model, we
consider only single-valued dependences of functions of
physical quantities, which corresponds to the A and B
parameter values such that A2B 2 < 2

���
3
p

, an inequality that
follows from the condition qwt�p; 0� � 0 and determines the
upper applicability bound of the formula for t�w; l�. The
formulas that determine the implicit dependence of the
functions P and vI on the coordinate x in (2.15) also have
the applicability bound determined by the limit value of the
dimensionless parameter A � A0 � 1, which characterizes
the contribution of the nonrelativistic electron nonlinearity.
In [14], it was found that, forA5 1, the dependence x�l� is not
single valued, whichmeans thatP and vI, as functions of the x
coordinate, lose their single-valuedness. However, as we show
in what follows, the constraints A2B 2 < 2

���
3
p

and A < A0 are
necessary but not sufficient for the single-valuedness of the
functions P�t; x� and v�t; x�.

Let us discuss the physical consequences of the expression
for t�w; l�. Figure 5 shows the time dependences of the
longitudinal components of the plasma electric field P and
electron velocity v at the point x � 0 for different values of the
parameter A. It is clear from Figs 5a and 5c that the shift of
the oscillation frequency to the low-frequency region, char-
acteristic of the first branch of the solution (Fig. 4b), leads to a
loss of the property of stationary oscillations: at different
points in space, oscillations occur with different frequencies,
and over time this leads to an increase in the phase difference
between them. A secularly increasing phase difference, whose
existence is associated with the spatial inhomogeneity of the
amplitude of plasma oscillations [93, 94], ultimately leads to
the intersection of the trajectories of neighboring particles,
i.e., to the breaking of the oscillation profile. We emphasize
that, in the nonstationary regime, the profile breaking occurs
at arbitrarily small amplitudes in a finite time interval, in
accordance with the well-known results obtained previously
(see, e.g., [92] and review [102]). The breaking in a finite time is
demonstrated in Fig. 6: as time progresses, a gradual
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steepening of the profile of plasma oscillations is
observed, ultimately leading to the multivaluedness of
the longitudinal electric field P�t�. The second branch of
solution (2.21) determines the stationary regime of plasma
oscillations with a modulated phase (Figs 5b, d), in which
case breaking occurs only when the field amplitude
exceeds a certain threshold value: with increasing para-
meter A, a steepening of the profile of stationary plasma
oscillations is observed up to a limit value of A at which
the derivative qxP becomes infinity and the hydrodynamic
model becomes inapplicable.

The nonstationary and stationary nature of plasma
oscillations is clearly illustrated by the space±time distribu-
tions of the resonantly amplified fieldP�t; x�, shown in Fig. 7.
The space±time structure of the field far from the resonance
region corresponds to weakly perturbed stationary plasma
oscillations. In the vicinity of the resonance, where nonlinear
effects are significant, a considerable distortion of the field
structure is observed, which manifests itself in both nonsta-
tionary (Fig. 7a) and stationary (Fig. 7b) regimes, depending
on the choice of the branch of solution (2.21).

2.3 Breaking and spatial characteristics of a stationary
resonantly amplified electric field
Solving the RA and HG problems for a nonlinear plasma
resonance naturally implies determining the nature of
electron dynamics near the critical plasma density, where
nonlinear currents are formed that generate secondary
radiation and determine its spectral composition. Classical
theories [8, 11, 14] deal with a boundary value setting of the
problem, where the dynamics of stationary oscillations of the
electron component of the plasma are considered with
boundary conditions imposed at inénity. In a number of
studies of strongly nonlinear (relativistic) plasma oscillations,
a choice is made in favor of the problem with an initial time
[91ë93]. In that approach, a nonstationary regime of non-
linear plasma oscillations arises, not requiring the develop-
ment of theories of absorption and generation of laser
radiation harmonics in the region of relativistic plasma
resonance as a natural generalization of the results obtained
previously within stationary nonlinear nonrelativistic the-
ories [11, 14] and the linear theory [1, 37]. The need for such
a generalization is dictated by the actual slow 5 dynamics of
changes in laser intensity corresponding to an electromag-
netic radiation pulse incident on the plasma, for which a

linear plasma resonance occurs initially [1, 37, 103] and, with
an increase in the pulse intensity, is subsequently superseded
by a nonlinear nonrelativistic resonance structure [14], with
relativistic effects starting to appear as the intensity increases
even further. We give the allowed duration of the laser pulse
taking the dynamics of plasma resonance formation into
account. According to the theory describing how a station-
ary plasma resonance sets in [103], the time of formation of a
stationary structure of a resonantly ampliéed plasma éeld can
be estimated as tst �

������������
12LD
p

=VT. Given the inhomogeneity
scale L � 10l and plasma temperature T � 2 keV, we obtain
tst � 10ÿ13 s, i.e., the minimum laser pulse duration allowed
by our theory is approximately a hundred femtoseconds
for the characteristic plasma parameters indicated. The
construction of an analytic stationary theory of a relativis-
tic plasma resonance is also of interest, because the multi-
valuedness of the known nonlinear solutions [14, 40, 92,
93, 104] that describe the interaction of a powerful
electromagnetic field with an inhomogeneous plasma
suggests the possibility of realizing unexplored dynamical
regimes of plasma oscillations, searching for and studying
which are of universal importance both for the theory of
laser±plasma interaction and for the theory of nonlinear
oscillations in general.

In what follows, based on the above physical considera-
tions, we focus on studying just the stationary regime of
relativistic plasma oscillations, which occurs under the
condition of an adiabatically slow increase in the laser pulse
intensity. We do not discuss issues of stability and implemen-
tation of the nonstationary branch of the solution.6 We
emphasize that the breaking of plasma oscillations in the
case under discussion results from the superposition of
electron nonlinearities of two types, nonrelativistic and
relativistic, and the above constraints A2B 2 < 2

���
3
p

and
A < 1 (the first of which follows from the single-valuedness
of t�w; l� as a function of w, and the second, from the
condition of single-valuedness of P and v as functions of
the coordinate x), generally speaking, do not define a
criterion for the single-valuedness of the functions P�t; x�
and v�t; x�. The manifestation of nonlinear effects is most
significant at the plasma resonance point x � 0 (or at
l � 0). In this case, the loss of single-valuedness with
increasing A, as can be seen, e.g., from Fig. 5b, first occurs
at t � p. Therefore, to obtain the complete condition for
the breaking of the profile of stationary plasma oscilla-
tions, we must calculate the derivative of the electric field
with respect to the coordinate, qxP�t; l�, at ft � p; l � 0g
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Figure 7. Space±time distributions of resonantly amplified longitudinal electric fieldP in (a) nonstationary and (b) stationary oscillation regimes. Plots are

constructed at A � 0:66 and B � 1:5.

5 Compared with the dynamics of the electron component of the plasma.

This reasoning is valid in the case of not too short laser pulses with a

duration of nano-, pico-, and hundreds of femtoseconds. 6 As was done, e.g., in [21].
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or, equivalently, at fw � p; l � 0g,

qxP
��
w�p; l�0 �

1

D
�qwt qlPÿ qlt qwP�

���
w�p; l�0

; �2:22�

where D � qlx qwtÿ qwx qlt is the Jacobian of the transition
from the variables t and x to w and l. Writing the vanishing
condition for the Jacobian Djw�p; l�0, which corresponds to
the derivative qxP turning to infinity and to the breaking of a
nonlinear plasma wave, we obtain the following relation
between the parameters A and B:

A� 2� A2B 2��������������������
4� A2B 2
p � 2 : �2:23�

Relation (2.23) complements the inequalities A < 1 and
A2B 2 < 2

���
3
p

, thereby defining the domain of A and B values
that are admissible as regards the single-valuedness of the
functions P�t; x� and v�t; x� (Fig. 8). The superposition of
two nonlinearity types leads to a different form of the
breaking threshold compared to the nonrelativistic theory
[14]: for a fixed B0 > 0, the value of A cannot exceed the
maximum Amax < A0 � 1, which is determined by solving a
fourth-order equation following from condition (2.23),

�B 2 ÿ B 4�A 4 ÿ 4B 2A3 � 4A2 ÿ 16A� 12 � 0 : �2:24�

When A > Amax, a multi-flow regime arises and solution
(2.21) becomes inapplicable.

It may seem that a comparison of the curve representing
the breaking threshold in the relativistic theory with the
dashed line corresponding to the breaking in the nonrelati-
vistic theory [14] (see Fig. 8) demonstrates a more stringent
constraint imposed in the relativistic theory on the maximum
possible amplitude of the A field at which the hydrodynamic
model formulas for physical quantities remain single valued.
From this, we would be able to conclude that the transition to
the relativistic theory does not allow advancing into the
region of higher laser intensities I0 than those considered in
[14]. However, this is not so. We show in Section 3.3 below

that, due to the effect of saturation of the plasma resonance
field amplitude, the breaking threshold in the relativistic
theory actually shifts to the region of higher (relativistic)
laser radiation intensities. We obtain a nonlinear relation
between the magnetic field amplitude at the resonance and
laser pumping field amplitude, which allows moving from the
dimensionless parameters A and B to the natural physical
parameters of the laser±plasma system and exploring the
applicability limits of the hydrodynamic approximation in
terms of the laser radiation intensity I0 and the plasma
temperature T.

We note that expressions (2.15), (2.18), and (2.20) for
the electric field and electron velocity structure contain the
linear plasma resonance width D determined by dissipative or
thermal effects, although it does not appear in the original
nonlinear equations (2.6) and (2.7). We explain how the D
appears in the solution. In the classical linear theory [1, 3],
equations that do not contain dissipative terms due to their
smallness are also used as the initial ones, andD appears when
small dissipation effects are taken into account by introduc-
ing a finitely small imaginary part into the frequency o. It
would be possible to introduce terms associated with
dissipation into the original equations, but the correspond-
ing effects are quite small for the RA process, because
corrections of the order of neff=o occur in the solution. And
the presence of D in (2.15), (2.18), and (2.20) is due to the
method of RG symmetries, which is based on the procedure
of continuing a linear solution (in the electric field amplitude)
into the region of laser and plasma parameters where
nonlinear effects are significant. For moderate intensities of
laser radiation and relatively long laser pulses (with durations
of pico and nanoseconds and hundreds of femtoseconds), a
stationary solution for the electric field near the plasma
resonance is realized, which corresponds to an adiabatically
slow (on the pulse time scale) increase in the laser field
compared to the dynamics of electrons in plasma resonance.
In this regime, there is a continuous transition from a
stationary linear resonance to a stationary nonlinear reso-
nance structure. In other words, the spatial structure of a
solution of the form 1=e�x� � L=�xÿ iD� is inherited from the
solution obtained in the linear plasma resonance theory [1, 3].
The electric field in the linear approximation plays the role of
the `initial' condition and subsequently changes with an
adiabatic increase in the laser pulse amplitude. Accordingly,
D, which corresponds to the width of the linear plasma
resonance, loses its meaning in the nonlinear regime and
becomes simply a fixed constant defined by the effective
collision frequency neff. We also note that the laser field,
generally speaking, can affect the rate of pair collisions in
(2.16), and this can be taken into account by renormalizing
neff in accordance with [105], for example.

It follows from formulas (2.15), (2.18), and (2.20) that the
electrostatic plasma field in the vicinity of the critical density
somewhat `swells' and, due to nonlinear effects, is character-
ized by the nonlinear resonance width d > D. To verify this,
we consider the spatial and spectral characteristics of the
stationary solution of Eqns. (2.6) with the electric field
expanded in a series in the incident wave harmonics about
the point x � 0:

P �n� � 1

2p

� 2p

0

P�t; x� exp �ÿint� dt ; n � 0; 1; . . . : �2:25�

Figure 9a shows the spatial distributions of the amplitude of
the first harmonicP �1��x� in the nonlinear nonrelativistic case
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Figure 8. Region of admissible values of parameters A and B. Solid curve

corresponds to the breaking threshold in relativistic hydrodynamics,

dashed line (A � 1) corresponds to breaking in the nonrelativistic theory

[14]. Dashed-dotted line corresponds to the condition A2B 2 � 2
���
3
p

.
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(B � 0) and with the relativistic nonlinearity (B � 1:5) taken
into account at a fixed value of the parameterA. According to
our theory, taking the relativistic nature of plasma oscilla-
tions into account does not lead to a shift in the maximum
electric field relative to the point x � 0, but results in a
decrease in the amplitude of the electric field component
P �1��x; t� at the fundamental frequency, which is associated
with a redistribution of the field energy between harmonics
during the transition to the relativistic oscillation regime.
Namely, due to the phase modulation effect, the amplitudes
of harmonics with numbers n5 2 are amplified, which
significantly changes the spectral composition of the field,
enriching it with higher harmonics. In Fig. 9b, to illustrate the
growth of the amplitudes of higher harmonics, we compare
the spatial distributions of the amplitudes of the eighth
harmonic of the longitudinal electric field P �8��x; t) in the
absence (B � 0) and in the presence (B � 1:5) of the
relativistic nonlinearity.

We now discuss the spatial localization region of the
plasma field energy, and take the plasma resonance width d
as a quantitative measure of that region; we define it as
HWHM, half width at half maximum. In our case, this region
corresponds to the localization of the total energy (intensity)
W of all spectral components of the field,W �P1n�0 jPnj2. It
was shown in [43] that keeping the contribution correspond-
ing to relativistic nonlinearity in (2.6) does not lead to a
change in the total energy of the longitudinal component of
the electric field P and hence to a change in the plasma
resonance width d. This inference is consistent with the above
statement: as a result of taking relativistic effects into
account, part of the energy is transferred into the energy of

higher harmonics, while the total energy of the electric field
does not change. However, as can be seen from Figs 9c, d, the
width of the nonlinear plasma resonance depends on the
dimensionless amplitudeA. Plots of the spatial distribution of
the field energyW for different values ofA up to the breaking
point are shown in Fig. 9c, and a slight increase in the
resonance width d with increasing A is illustrated in Fig. 9d.
Thus, as the field amplitude increases, a slight `swelling' of the
plasma resonance is observed: near the breaking threshold,
for different values of the plasma parameters, the nonlinear
plasma resonance width d is on average approximately
1.5 times greater than the resonance width D in the linear
theory.

A detailed study of analytic solutions (2.21) of nonlinear
differential equations (2.6) and (2.7), which describe relativis-
tic plasma oscillations in the vicinity of the critical density of
an inhomogeneous plasma, showed that taking the relativistic
nonlinearity of electron motion into account leads to two
classes of solutions. The first extends the standard linear [1]
and nonlinear nonrelativistic [14] solutions, thereby describ-
ing the stationary regime of relativistic plasma oscillations
with a modulated phase. This regime corresponds to a
physical picture where the field amplitude in a laser pulse
changes quite slowly in comparison to the dynamics of
plasma electrons. It is then natural to believe that, for a
finite-duration laser pulse, as the pump field amplitude
increases in time, the solution describing the plasma reso-
nance field passes through three stages: from the linear stage
at a low amplitude to the nonlinear nonrelativistic stage and
then to the relativistic stage. Solutions of the other type
correspond to nonstationary plasma oscillations in the
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Figure 9. (a) Spatial distributions of first harmonic of longitudinal electric field of plasma resonance without (B � 0, dashed line) and with (B � 1:5, solid
line) the relativistic nature of plasma oscillations taken into account at a fixed field amplitude (A � 0:66). (b) Spatial distributions of eighth harmonic of

longitudinal electric field of plasma resonance. Dashed line corresponds to nonrelativistic approximation (B � 0), solid line corresponds to the result of

taking relativistic nonlinearity into account (B � 1:5). Plots correspond to fixed parameter A � 0:66. (c) Spatial distributions of plasma field energy

corresponding to different values of dimensionless amplitude A. (d) Dependence of plasma resonance width (in units of linear-theory width D) on A.
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vicinity of the critical density and are similar to solutions
obtained in the framework of other models [40, 91, 92, 94].
Here, the breaking occurs at arbitrarily small amplitudes of
the pump field. The possibility of implementing such a
solution is not yet obvious, but it may well be associated
with a violation of the condition of quasistationary transition
from a linear to a nonlinear regime, and it requires a separate
study.

The results obtained in this section are fundamentally
important, because the revealed relativistic-nonlinear sta-
tionary structure of the resonantly enhanced electric field
and electron velocity underlies the construction of stationary
theories of RA and HG, as well as calculations of the static
electric field in the vicinity of the critical plasma density.
These issues are discussed in subsequent sections.

3. Nonlinear resonance absorption
and electrostatic field generation

The analytic theory of linear RA based on the Ginzburg±
Denisov linear plasma resonance model [1, 2] was developed
by Hirsch, Shmoys, and Piliya [106±108] for cold [106, 107]
and hot [108] plasmas. It follows from the results in [106±108]
that the RA coefficient G is independent of the plasma
temperature, electron collision rate, and pump field inten-
sity, but is characterized by a self-similar dependence on a
single variable r determined by laser±plasma parameters,
r � �o0L=c�2=3 sin2 y, with the maximum Gm � 0:4 at the
optimum value r � ropt � 0:2.Here, c is the speed of light in a
vacuum and y is the angle of incidence on an inhomogeneous
plasma with an inhomogeneity scale L. Due to the approx-
imation of the analytic solutions of the field equations for
optimum values of r, quantitative estimates of the absorption
efficiency given in [106±108] were not completely accurate, as
was demonstrated analytically for cold plasma by
Omel'chenko and Stepanov in the limit of small angles [109]
and by Tang in the limit of large angles [110] of incidence of
laser radiation on the plasma, and later by Omel'chenko,
Kelly, Forslund, and others using numerical solutions of the
wave equation for arbitrary angles [6, 111, 112]. A systematic
description of the shape of the resonance curveG�r� in [6, 111]
allowed clarifying the maximum value of the absorption
coefficient and the corresponding optimal r: Gm � 0:5 at
ropt � 0:5 (Fig. 10). In addition, in [6], a negligibly weak
dependence of the absorption coefficient on temperature
was demonstrated, which confirmed the general conclu-
sion about the decisive role of the variable r in describing
absorption in the linear regime. We note that the
significant absorption of a p-polarized electromagnetic
wave in the vicinity of plasma resonance was also noted in
Budden's book [113].

The analytic approach developed for cold plasmas by
Speziale and Catto [37] has led to significant improvements in
solutions [109, 110] in the limit cases of small and large
incidence angles; in the case of hot plasmas, Pert [7] obtained
a solution in the power series form, generalizing previous
results [108] to a wide range of angles. Subsequent analytic
studies of linear radiation conversion in an inhomogeneous
plasma refined the dependence of the absorption coefficient
G�r� in the case of a linear plasma density profile [114]; in the
limit of small incidence angles, a density profile with a local
stepwise jump in density near the plasma resonance was
considered in [67], and the shape of the G�r� curve for a
parabolic profile was studied in [115±117].

In connection with the problem of the efficiency of RA,
interest arose quite early [118] in the nonlinear influence of the
ponderomotive force of laser radiation on the plasma density.
It was shown in a number of studies [119±121] that, under the
action of the ponderomotive force of a p-polarized electro-
magnetic wave incident on a plasma in the vicinity of the
plasma resonance, stepwise distributions of the dielectric
constant are formed that can contribute to an increase in
RA.A distinctive feature of these studies is that, in writing the
field equations in plasma, the striction nonlinearity that
changes the plasma density is taken into account, but the
nonlinearity of electron motion in a strongly nonlinear self-
consistent plasma resonance field is ignored. More recent
studies on RA were devoted to the effect of nonlinear
(including relativistic) electron motion and the deformation
of the plasma density profile on the absorption coefficient
[38±41]. The authors of [39], working within a one-dimen-
sional PIC model, used estimates based on the `capacitor'
model [18, 21, 22] to demonstrate the influence of relativistic
and ponderomotive nonlinearities near the critical density of
inhomogeneous plasma on the process of absorption of laser
radiation of moderate and subrelativistic intensity. Accord-
ing to their calculations, with an increase in the laser intensity
to � 3� 1017 W cmÿ2, the absorption level in the vicinity of
the plasma resonance can decrease from 50% to 30%. This
decrease in the absorption coefficient was associated with the
effect of an electron acquiring an extra `weight' when
oscillating in a resonantly amplified plasma field. With a
further increase in the laser pumping amplitude, due to the
ponderomotive nonlinearity, the decrease in the absorption
coefficient is superseded by its increase, which results in
absorption at the level of 60±70% at a laser radiation
intensity of � 1018 W cmÿ2.

In another paper of the same year [38], a simplified
hydrodynamical model was used together with Maxwell's
equations in the approximation where the electric field in the
plasma is divided into two parts: an electromagnetic compo-
nent associated with the incident laser wave and an electro-
static component corresponding to electron plasma oscilla-
tions. As a result, it was concluded that the optimal 7 angle of
incidence yopt of laser radiation on the plasma remains
constant and the absorption coefficient monotonically
increases as the laser pump field intensity increases. The
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Figure 10.Dependence of linear RA coefficientG on self-similar variable r
based on the numerical solution of the field equations [6, 67].

7 The optimum angle of incidence is the one for which RA is maximum:

yopt corresponds to ropt at a fixed inhomogeneity scale L.
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dependence of the optimal angle on the plasma density
inhomogeneity scale was revealed. We note, however, that a
very wide range of inhomogeneity scales k0L � 10ÿ2ÿ10,
k0 � o0=c was considered in [38], but the applicability limits
of the model were not indicated and the possibility of its use
within such wide limits was not justified. The trends in the
dependence of absorption on the laser intensity identified in
the previous study [39] were later confirmed and refined using
the improved technique of numerical calculation of the two-
dimensional PIC model [40]. Then, in [41], an attempt was
made to consider the relativistic nonlinear RA effects by a
numerical±analytic solution of the wave equation; this
partially confirmed the conclusions in [39, 40], but at the
same time suggested a shift of the maximum of the nonlinear
absorption curve relative to the position of the maximum in
the linear theory due to changes in the laser radiation flux.

In contrast to numerical calculations [38±41], recent
studies [44±46] were aimed at constructing a systematic
analytic theory of nonlinear RA at a relativistic plasma
resonance, which is a natural generalization of classical
theories [7, 37, 108] and [14] based on the Ginzburg±Denisov
model. Using this theory, characteristic dependences of the
absorption coefficient on many control parameters of the
laser±plasma system, including the laser pumping field
intensity, can be identified. The results of analytic studies
[44±46] constitute the main part of this section.

3.1 Basic equations and the general solution
to the boundary value problem
for nonlinear resonance absorption
To describe the process of nonlinear absorption (reflection) of
a p-polarized electromagnetic wave (2.1) incident on a weakly
inhomogeneous plasma along the x coordinate at an angle y,
we take the initial equations, as in the preceding section, to be
Eqns (2.2), which take form (2.3) in component notation.
Representing the velocities and fields v, u, P, Q, and R
entering (2.3) in the form of series expansions in harmonics
of incident wave (2.1), we associate each of these quantities
with its Fourier component vn, un, Pn, Qn, and Rn:

fv; u;P;Q;Rg �
X1
n�ÿ1

�
v; u;P;Q;R

	
n
exp

�ÿin�o0tÿ kyy�
�
:

�3:1�
From system of equations (2.3), using expansion (3.1), we
obtain the following equation for the nth harmonic of the
magnetic field:

qxxRn ÿ qxen
en
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no0

c
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: �3:2�

The subscript n in (3.2) indicates taking the nth Fourier
component of the corresponding function. Here,
en � 1ÿ o2

L=�n 2o2
0� is the complex dielectric permittivity of

the plasma at the frequency no0. The right-hand side of
Eqn (3.2) corresponds to the nonlinear source of HG in the
plasma. In the absence of nonlinear effects (at a! 0), this
source disappears, and Eqn (3.2) becomes an equation for the
free propagation of a p-polarized electromagnetic wave with
the frequency no0 in an inhomogeneous plasma.

We take into account that the dependence of electro-
magnetic fields and electron velocities on the x coordinate
along the density gradient near the plasma resonance is
inversely proportional to the width of the plasma resonance
d5L and is much more significant than the dependence on
the transverse coordinate y, which is proportional to ky:
qx�. . .�4 qy�. . .�. In addition, in the considered case of a
weakly inhomogeneous plasma with a characteristic inhomo-
geneity scale L4 1=k0, we can disregard contributions
proportional to the inhomogeneity gradient on the right-
hand side of (3.2). Collecting the above conditions, we arrive
at a set of inequalities that define the domain of applicability
of the model:

k0L4 1 ; kyd5 1 ; d5L : �3:3�

With the main assumptions and model limitations of the
theory of plasma resonance, which are specified by inequal-
ities (3.3) and thereby determine the hierarchy of fields and
velocities near the critical density (2.5), we use (3.2) to obtain
an equation for the magnetic field amplitude reflected from
the plasma to the vacuum at the fundamental frequency, with
the right-hand side of the equation containing a radiation
source in the form of a nonlinear current localized near the
critical plasma density. In the case of interest, for the
magnetic component of the field at the laser frequency o0,
we take into account that, for n � 1 in (3.2), the largest
contribution to the source is made by the resonant terms
� 1=e1, where e1 � �iDÿ x�=L.

Under the above assumptions, Eqn (3.2) with n � 1
becomes

qxxR1 ÿ qxe1
e1

qxR1 �
�
o0

c

�2

�e1 ÿ sin2 y�R1

� ÿ 4p
c

�
a

4p
rot J1

�
z

� a=c

xÿ iD

�
uqxPÿ io0v qx�g0u� ÿ

o2
0

a
�g0 ÿ 1�u

�
1

; �3:4�

where the components of the vector J1 are given by

J1 �
�
v qxPÿ io0v qx�g0v� ÿ

o2
0

a
�g0 ÿ 1�v ;

uqxPÿ io0v qx�g0u� ÿ
o2

0

a
�g0 ÿ 1�u ; 0

�
1

: �3:5�

Subscript 1 in (3.4) and (3.5) indicates taking the first Fourier
component of the corresponding function. In (3.4), we
assume that oL � o0, i.e., we ignore the dependence of the
frequency oL on the x coordinate. This approximation is
justified for a weakly inhomogeneous plasma, when the
localization region of the plasma resonance field is small
compared to the characteristic plasma inhomogeneity scaleL.
It follows from Eqn (3.4) and relation (3.5) that the first
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harmonic of the magnetic field in the vacuum is determined
by the electric field and the electron velocity in the plasma
resonance region that were found in Section 2.

The solution of inhomogeneous equation (3.4) can be
written in terms of the fundamental system of solutions C�

andCÿ of the homogeneous equation as

R1�x� � a�1 C�1 �x� � aÿ1 C
ÿ
1 �x� �

� x

ÿ1
dxG�x; x� f1�x� ;

G�x; x� � ÿ C�1 �x�Cÿ1 �x� ÿC�1 �x�Cÿ1 �x�
C�1 �x�Cÿ 01 �x� ÿC� 01 �x�Cÿ1 �x�

;
�3:6�
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where G�x; x� is the Green's function, and the functions C�1
andCÿ1 satisfy the homogeneous equation

qxxC�1 ÿ
qxe1
e1

qxC�1 �
�
o0

c

�2

�e1 ÿ sin2 y�C�1 � 0 : �3:7�

In formulas (3.6), a�1 are constants determined by the
boundary conditions for Eqn (3.4) applied to solution (3.6).
The boundary conditions, in turn, follow from the form of the
magnetic field R1�x� as x! �1,

R1 � eC�1 exp

�
i
o0

c
x cos y

�
� eCÿ1 exp

�
ÿi o0

c
x cos y

�
;

x! ÿ1 ;

R1 � 0 ; x! �1 ; �3:8�

where the complex amplitudes eC�1 and eCÿ1 correspond to the
respective incident and reflected waves. We emphasize that,
for convenience, we consider the field R (and the correspond-
ing amplitude eCÿ1 ) normalized to the dimensionless ampli-
tude a, but the ultimate goal is to obtain formulas for the
magnetic field Bz (and the amplitude Cÿ1 ). The equation for
the Fourier component B1 follows from the equation for R1

after multiplication by ame=e, with the relation between
the amplitudes eCÿ1 and Cÿ1 being the same as between R1

and B1. Therefore, when moving to the formula for the
Fourier component Cÿ1 of the magnetic field Bz at the
fundamental frequency, the amplitude eCÿ1 must be multi-
plied by ame=e.

In constructing nonlinear solution (3.6), we rely on linear
solutions of (3.7), which are currently available in analytic
form only in two limit cases: for r5 1 and r > 1 [37, 109]. For
a fixed plasma inhomogeneity scaleL4 1=k0 (more precisely,
we consider L > 10=k0) and a given laser frequency o0, these
two cases correspond to the limits of small (r5 1) and large
(r > 1) angles of incidence y of laser radiation on the plasma.
In this respect, the nonlinear solutions found are asymptotic
in nature, allowing absorption to be found to the right and to
the left of the maximum of the function G�r� (see Fig. 10).

Thus, solving Eqn (3.4) with the Green's function
method with boundary conditions (3.8) (see Appendix B
and [44±46]), we obtain expressions for the amplitude of
the first harmonic of a magnetic field in a vacuum in the
case of not small angles of incidence of laser radiation on

the plasma (r > 1),

Cÿ1 � O1C
�
1 �

me

e

o3
0D

�2p�3=2
�

L

co0j cos yj
�1=2

O2I ; �3:9�

where

O1 � R
1=2
L exp

�
2i

o0

c
L��ÿ1� ÿ i

p
2

�
;

�3:10�

O2 �
�
GL

2

�1=2

exp
�
iZ � i argB1�0� ÿ ip

�
;

and in the limit of small angles of incidence (r5 1),

Cÿ1 � R
1=2
L exp �2iZ�C�1 ÿ

2jC�1 jrL
ALD

ÿ
Ai 0�0��2

�
�
1ÿ 1

2
�1ÿ R

1=2
L ��1� i

���
3
p
�
�
exp

ÿ
iZ � i argB1�0�

�I :
�3:11�

In these formulas, RL � jCÿ1L=C�1 j2 and GL � 1ÿ RL are the
reflection and absorption coefficients in the linear theory, and
Cÿ1L is the amplitude of themagnetic field of the reflectedwave
in the linear approximation; AL � aLL

2=D2, where aL is the
dimensionless amplitude of the magnetic field at the plasma
resonance point in the linear theory; and I is given by (B.11).
At large angles of incidence (r > 1),

RL �
�
1ÿ �1=2� exp �ÿ�4=3�r 3=2

�
1� �1=2� exp �ÿ�4=3�r 3=2

��2

;
�3:12�

aL �
���� cB 2

0 e
2

pm 2

j cos yj
o5

0L
3
�1ÿ RL�

����1=2 ; B0 � 2C�1 :

At small angles of incidence (r5 1),

RL �
�
1ÿ 2p2

ÿ
Ai 0�0��2r�2 ;

�3:13�

aL �
���� 2e sin ymo2

0L

�
c

o0L

�1=6ÿ
pj cos yj�1=2Ai 0�0��1ÿ R

1=2
L �C�1

���� :
The prime after Ai in (3.13) denotes taking the first derivative
of the Airy function.

3.2 Removing divergence in the reflection coefficient:
taking relativistic effects into account
It follows from (3.9) and (3.11) that the reflected magnetic
field amplitude is represented as the sum of a linear term,Cÿ1L,
which is independent of a, and a nonlinear term, Cÿ1N, viz.
Cÿ � Cÿ1L � Cÿ1N, where the dependence of Cÿ1N on a
(actually, on the laser light intensity) is given by the integral
I in (B.11). In linear theory, the dimensionless amplitude
a � aL is determined by relations (3.12) and (3.13), connect-
ing the magnetic field amplitude on the plasma resonance
with the incident wave amplitude via the reflection coefficient
RL [37, 108]. It is easy to verify that, if aL / B0 (see (3.12) and
(3.13)) is used in (3.9) and (3.11) (more precisely, in the
integral I ) instead of the amplitude a that takes the
nonlinearity into account, the Cÿ1N values are overestimated
as the laser radiation intensity increases. 8 We demonstrate
this using formula (3.9) as an example.

8 Naturally, at intensities that are limited by the condition that plasma

oscillations do not break at the resonance.
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Below, when substituting specific laser and plasma
parameters, for definiteness, we speak of the laser intensity
I0 [W cmÿ2] of anNd laser with the wavelength l � 1:064 mm,
inhomogeneity scale L �l� expressed in laser radiation wave-
lengths, plasma temperature T [keV], laser radiation inci-
dence angle y, and self-similar variable r. Because the
nonlinear solution of Eqn (3.4) in (3.9) is constructed on the
basis of a linear solution of the homogeneous equation, which
exists at not too small angles for r > 1, the value of the
parameter rmin � �o0L=c�2=3 sin2 ymin � 1 can be regarded as
the limit for the theory in this case, and ymin, as the minimum
admissible angle of incidence of laser radiation on the plasma
for given o0 and L.

Figure 11 shows the unbounded increase in Cÿ1N�aL�, as a
result of which, starting with a certain laser intensity level,
Cÿ1N�aL� exceeds the field amplitude of laser pumping, which
is physically impossible. This behavior of the nonlinear
contribution is associated with the unjustified use in the
source f1�x� of the amplitude aL taken in the linear
approximation, Eqn (3.12), which does account for the
nonlinear relation between the plasma field amplitude at
x � 0 and the laser radiation field amplitude. This demon-
strates the need to construct a self-consistent nonlinear theory
of reflection of laser radiation by an inhomogeneous plasma
with a magnetic field amplitude different from (3.12) and
(3.13) at the resonance point, a 6� aL, which would take the
nonlinear dependence of jB1�0�j on C�1 into account and
where the source function f1�x� would be renormalized to the
new amplitude a. As we see in what follows, the unbounded
increase in the nonlinear part of the reflection coefficient
Cÿ1N�a� is replaced by saturation as a result of such
renormalization. The dependence of the total nonlinear
reflection coefficient R � jCÿ1 =C�1 j2 at the fundamental
frequency on the laser intensity for r > 1, after renormaliz-
ing to the amplitude a with the nonlinearity taken into
account, is shown by the blue solid curve in Fig. 11. Finding
the analytic relation between B1�0� and C�1 and obtaining a
formula corresponding to the saturation of the nonlinear
increase in Cÿ1N�a� observed in Fig. 11 is the subject of this
section.

We explicitly outline a sequence of steps to eliminate the
divergence in the case r > 1; for r5 1, we present the final
result obtained by following the scheme described below (see
[44] for the details). Based on (B.5), we write a formula for the
first harmonic of the magnetic field at the resonance point
x � 0:

R1�0� � a�1 C
�
1 �0� � aÿ1 Cÿ1 �0�

� pcL
o0

� 0

ÿ1
dx

f1�x�
iDÿ x

�
C�1 �0�Cÿ1 �x� ÿC�1 �x�Cÿ1 �0�

�
:

�3:14�

Substituting expression (B.6) that relates aÿ1 to a�1 into (3.14),
we obtain

R1�0� � a�1

�
C�1 �0� �

i

2
exp

�
2o0

c
L��0�

�
Cÿ1 �0�

�
ÿ i

2

�
2cL

o0

�1=2

Cÿ1 �0� exp
�
o0

c
L��0�

�
�
�1
ÿ1

dx f1�x�K1

��xÿ iD�ky
�

� pcL
o0

� 0

ÿ1
dx

f1�x�
iDÿ x

�
C�1 �0�Cÿ1 �x� ÿC�1 �x�Cÿ1 �0�

�
� L1 � L2 � L3 : �3:15�

We compare the two integral contributions L2 and L3 to
(3.15). To estimate the integrals, we use (B.2) and approx-
imate formulas for the Infeld and Macdonald functions at
small values of the argument, K1�x�jx�0 � 1=x and
I1�x�jx�0 � x=2:

C�1 �0�Cÿ1 �x� ÿC�1 �x�Cÿ1 �0� �
o0x�2iDÿ x�

2pLc
;

�3:16�
L2 � i

2p�xÿ iD�k 2
y

; L3 � x�2iDÿ x�
2�iDÿ x� :

It follows from the second inequality in the applicability
conditions of our model in (3.3) that L2 4L3, and therefore
the contribution ofL3 can be disregarded, given the smallness
parameter k 2

yD
2 5 1. Thus, we obtain a simplified expression

for the magnetic field amplitude at the plasma resonance:

R1�0� � L1 � L2 � a�1 C
�
1 �0� � aÿ1 C

ÿ
1 �0� : �3:17�

Hence, using the relation of a�1 to aÿ1 in (B.6) together with
formulas (B.8), we find

R1�0� �
�

2cj cos yj
po0L sin2 y

�1=2 exp
�L��0� � iZ�

1� �1=2� exp ��2o0=c�L��0�
� eC�1

ÿ i=pk 2
y

1� �1=2� exp ��2o0=c�L��0�
� �1
ÿ1

dx
f1�x�
xÿ iD

: �3:18�

Formula (3.18) can be interpreted as a nonlinear equation for
themagnetic field amplitude at the plasma resonance, because
the right-hand side of this expression contains the integral
determined by the source f1�x�, where all functions are
normalized to the sought amplitude. The solution of (3.18)
for this amplitude determines its nonlinear relation to the
pump field amplitude.

Passing from eC�1 toC�1 bymultiplying eC�1 by �ame=e� and
using normalization (2.4), albeit now outside the linear

2.0

R
,jC

ÿ 1
N
=
C
� 1
j2 1.5

1.0

0.5

1015 1016 1017
I0, W cmÿ2

Figure 11.Nonlinear reflection coefficientR at the fundamental frequency

after renormalization procedure (blue solid curve) and the value of

jCÿ1N=C�1 j2 without taking renormalization into account (dashed curve)

depending on intensity of Nd laser field I0 for temperature T � 2 keV and

plasma inhomogeneity scale L � 30l at angle of incidence of laser

radiation ymin � 10�. Dashed vertical line corresponds to threshold of

the breaking of electron plasma oscillations at the resonance point when

using amplitude aL from the linear theory. Dashed horizontal line

corresponds to asymptotic limit of total reflection R � 1.
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approximation (3.12), we rewrite Eqn (3.18) in the form

o2
0

2

�
aLÿ DI

p2
ÿ
1��1=2� exp ��2o0=c�L��0�

��� exp
�
i argB1�0�

�
� jej

m
jC�1 j

�
2cj cos yj
po0L

�1=2 exp
�L��0� � iZ � i argC�1

�
1� �1=2� exp ��2o0=c�L��0�

�
�3:19�

or, equivalently, in terms of dimensionless variables (ampli-
tudes) A � aL2=D2 and AL � aLL

2=D2, where aL is deter-
mined from (3.12), in the form�

Aÿ L=D
2p2
�1� R

1=2
L �I

�
exp

�
i argB1�0�

�
� AL exp

�
iZ � i argC�1

�
: �3:20�

Because the integral I in (B.11) is a complex function of the
amplitude a, and hence of the dimensionless amplitude A, it
follows that expression (3.20) is a nonlinear transcendental
complex equation for the dimensionless magnetic field
amplitude at the plasma resonance as a function of the
linear-theory amplitude A � A�AL�, and therefore as a
function of the incident wave amplitude A � A�C�1 �.

Calculating A in (3.20) solves the problem of finding the
nonlinear relation between the magnetic field amplitude at
x � 0 and the pump field amplitude; it allows renormalizing
the functions in (3.9) to a new amplitude by using the
established connection. Complex equation (3.20) is equiva-
lent to a pair of equations for the moduli and arguments of
complex functions on the right- and left-hand sides of (3.20),��F�A��� � AL ; f� f1 � Z � f0 ; �3:21�

where

F�A� � Aÿ L=D
2p2
�1� R

1=2
L �I ; �3:22�

f � argF�A� ; f0 � argC�1 ; f1 � argB1�0� :

To calculate the integral in (B.11) and solve the moduli
equation in (3.21), we used the Wolfram Mathematica
computer algebra package [122]. Figure 12a shows the
dependences of the amplitude A on the linear-theory
amplitude AL for five values of the inhomogeneity scale L.

The dependences of A on the laser radiation energy flux
density I0 for three values of the inhomogeneity scale L are
shown in Fig. 12b. The plasma temperature T is fixed, and the
angles of incidence are equal to the minimum ones for the
corresponding L, y � ymin. The nonlinearity in the resonance
region leads to a drop in the field amplitude at x � 0
compared with the linear theory result, and a saturation
effect is observed: deceleration of the growth of the reso-
nance field amplitude as the pump field amplitude increases.
In the case of a weakly inhomogeneous plasma,
L ' �10ÿ100�l, the difference between A and AL increases
quite significantly as the laser intensity increases, whereas, for
relatively sharper inhomogeneity gradients L ' l, the differ-
ence between A and the amplitude AL is weakly noticeable.

We similarly obtain equations for the resonant amplitude
and phase in the limit of small angles of incidence (r5 1),��F�A��� � AL ; f� f1 � Z � f0 ; �3:23�
where

F�A� � A� L=D
p2
�1ÿ R

1=2
L � exp

�
ip
3

�
I ;

�3:24�
f � argF�A� ; f0 � argC�1 ; f1 � argB1�0� ;

and the dimensionless amplitude aL and the linear reflection
coefficient RL at the fundamental frequency are given by
formulas (3.13).

3.3 Applicability limits of the hydrodynamic model
in terms of physical parameters
Renormalizing the source function to the plasma field
amplitude at the resonance and taking the nonlinearity into
account allows the range of applicability of the hydrodyna-
mical model (see Fig. 8) to be studied in terms of the physical
parameters of the laser and plasma. The applicability limit is
determined by the breaking of the plasma oscillation profile
at the resonance point [14], which occurs when the laser
energy flux density reaches a threshold. Therefore, the drop
in the resonant amplitude identified above in the relativistic
regime shifts this threshold value to the region of higher laser
intensities compared with the values following from the
nonrelativistic theory [14].

Figure 13 shows the breaking thresholds on the fT; I0g
plane for different values of the plasma inhomogeneity
scale. The figure confirms the conclusion that the applic-

0.8

0.6

0.4

0.2

0
0.2 0.4 0.6 0.8 1.0 1015 1016 1017 1018

AL I0, W cmÿ2

A
A

a

L � 2l

L � 10l

L � 30l

L � 30l

L � 50l

L � 50l

L � 100l

L � 100
l

b0.8

0.6

0.4

0.2

Figure 12.Dependences of amplitudeA in the nonlinear theory (a) on amplitudeAL defined by the linear approximation, and (b) on energy flux density I0
of Nd laser radiation, calculated for plasma electron temperature T � 2 keV, inhomogeneity scales L � 2l,L � 10l,L � 30l,L � 50l, andL � 100l, at
corresponding minimum angles of incidence of laser radiation on the plasma y � ymin. Black bisector in (a) and black lines in (b) correspond to linear-

theory limit.
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ability limits of the plasma resonance theory are expanded
to the range of the maximum possible laser field intensity,
where the formulas of the model that we use for collision-
less hydrodynamics of cold electron plasma remain single
valued. Because a significant difference between the
amplitudes in the nonlinear theory and those in the linear
approximation is observed for smooth plasma density
gradients L ' �10ÿ100�l (see Fig. 12), it follows that the
expansion of the applicability domain of the hydrodynamical
model is most conspicuous in this case: the breaking threshold
shifts to the range of relativistic laser intensities, far beyond
the limits predicted by the nonlinear nonrelativistic theory
[14] (green dashed curve). With a sharper inhomogeneity
gradient (Fig. 13d), the positions of the breaking thresholds
differ insignificantly. Figure 13 also shows the breaking
thresholds calculated with the relativistic effects of the
motion of plasma electrons partly taken into account,9 but
with the use of linear relation (3.12) between the amplitude of
the magnetic component of the electromagnetic field at x � 0
and the pump field amplitude. In this case, on the contrary, a
comparison with the nonrelativistic theory shows a shift of
the breaking threshold to the range of lower laser intensities.
We emphasize once again that relativistic effects are taken
into account in our constructions only in a narrow region of
the plasma resonance, where an electron moves in a self-
consistent resonantly amplified plasma field, while non-
relativistic laser field intensities are understood. Therefore,
in subsequent calculations of the absorption and HG

efficiencies, we do not consider laser radiation intensities
exceeding the relativistic threshold,10 but limit ourself from
above to the intensity at which the dimensionless amplitude
of the laser field a0 � 0:85� �I0 �1018 W cmÿ2] l �mm�2�1=2 is
equal to unity, a0 � 1. In this regard, the breaking thresholds
shown in Fig. 13 that lie in the relativistic region, where
a0 > 1, should be considered from a formal standpoint. We
indicate this by dashed-dotted horizontal lines in Fig. 13,
which cut off the regions of relativistic laser field intensities.

We note that the breaking condition obtained in [14] (the
green dashed curve in Fig. 13) coincides with the well-known
condition kpeEp=mo2

p � 1, where kp � �l2DL�ÿ1=3, op � oL,
andEp is the plasma electric field (see, e.g., [88]). The breaking
of stationary plasma oscillations discussed in this study has a
threshold nature and occurs only when the oscillation
amplitude exceeds a threshold value. This regime does not
correspond to that of plasma oscillations [18, 22] used in
discussing the nonrelativistic dynamics of plasma electrons in
the vicinity of the critical density in the framework of the
capacitor model and in considering forced oscillations of an
inhomogeneous plasma layer in an external uniform high-
frequency electric field. Due to the plasma inhomogeneity,
such oscillations are nonstationary and the breaking occurs in
a finite period of time.

3.4 Relativistic nonlinear resonance absorption coefficient
With the relativistic nonlinear relation between the amplitude
of the plasma resonance field and the pump field amplitude
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Figure 13. Domains of applicability of the theory (hydrodynamic model) on the parameter plane fT; I0g for an Nd laser and various plasma density

inhomogeneity scales (a) L � 50l, (b) L � 30l, (c) L � 10l, and (d) L � 2l. Solid red curve shows the breaking threshold in relativistic hydrodynamics,

with nonlinear renormalization to the amplitude A at the resonance. Blue dashed line corresponds to the relativistic breaking threshold, but without

taking nonlinear renormalization into account. Green dashed curve corresponds to the breaking threshold in the nonrelativistic theory [14]. Angles of

incidence are everywhere equal to the minimum, y � ymin, for corresponding L. Horizontal dashed-dotted line delineates the relativistic intensities of the

laser field.

9 In the language of RG transformations, this means that only the velocity

amplitude transformation is taken into account, and the time transforma-

tion, which is responsible for phase modulation, is disregarded.

10 A laser field is called relativistic if an electron moving over the distance

of one wavelength in this field gains kinetic energy equal to the rest energy.
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found in Section 3.2, we now obtain the RA coefficient. We
consider the case r > 1. Substituting I found from the first
equation in (3.21) into Cÿ1 given by (3.9) and taking the
equality of phases into account, we use the second equation
in (3.21) to find the amplitude of the magnetic field emitted
from the plasma at the fundamental frequency:

Cÿ1 � ÿiC�1 exp

�
2i

o0

c
L�ÿ1�

��
R

1=2
L � �1ÿ R

1=2
L �

�
�
1ÿ A

AL
exp �ÿif�

��
: �3:25�

Formula (3.25) takes the nonlinearity of the plasma reso-
nance field amplitude into account, which is expressed by
moving from the amplitude AL in the linear theory of
reflection to the amplitude A calculated from (3.21). The
reflection coefficient can then be written in the form

R �
����Cÿ1C�1

����2 � ����R 1=2
L � �1ÿ R

1=2
L �

�
1ÿ A

AL
exp �ÿif�

�����2 :
�3:26�

Numerical and analytic (see Appendix B) studies of the
integral I in (B.11) show that it is a purely imaginary
quantity. Therefore, from (3.21) and (3.22), we then have
the equalities

f � argF�A� � arccos
A��F�A��� � arccos

A

AL
; cosf � A

AL
;

�3:27�

which allow writing the reflection coefficient in a more
compact form. A chain of identical transformations gives����R 1=2

L � �1ÿ R
1=2
L �

�
1ÿ A

AL
�cosfÿ i sinf�

�����2
� 1ÿ

�
A

AL

�2

�1ÿ RL� : �3:28�

Finally, we obtain the nonlinear reflection coefficients R and
the absorption coefficient G for r > 1:

R � 1ÿ
�
A

AL

�2

�1ÿ RL� ; G �
�
A

AL

�2

GL : �3:29�

Formulas (3.29) clearly demonstrate the limit transition to the
linear theory as A! AL, i.e., the upper bound for the
reflection coefficient R and the absorption coefficient G by
their limit values RL and GL. The decrease in the RA
coefficient with increasing laser energy flux density can be
seen from Fig. 14a, which shows the dependences of G on the
self-similar variable r at a fixed plasma temperature and
inhomogeneity scale (r > 1). Figure 14b demonstrates the
decrease inG under the transition to aweakly inhomogeneous
plasma at a fixed laser intensity.

In a similar way (see details in [44]), we find the reflection
coefficientR � jCÿ1 =C�1 j2 and the absorption coefficient G in
the limit r5 1:

R �
����R 1=2

L �
�
exp

�
ip
3

�
ÿ R

1=2
L

��
1ÿ A

AL
exp �ÿif�

�����2 ;
G � 1ÿ R :

�3:30�
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Figure 14.Dependences of the RA coefficientG on the self-similar variable r at (a, b) large and (c, d) small angles of incidence. (a, c) Graphs are plotted at

fixed values of plasma temperature T � 2 keV and plasma inhomogeneity scale L � 10l for different intensities of an Nd laser: I0 � 1016 W cmÿ2 (G1),

I0 � 5� 1016 W cmÿ2 (G2), I0 � 1017 W cmÿ2 (G3), and I0 � 5� 1017 W cmÿ2 (G4). (b, d) Laser intensity is fixed at I0 � 5� 1016 W cmÿ2, and solid

colored curves correspond to plasma inhomogeneity scales L � 10l and L � 30l. Dashed black curve GL corresponds to the linear-theory absorption

coefficient.
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We emphasize the fundamental importance of taking
relativistic effects on a plasma resonance into account
when finding the nonlinear RA coefficient. An analytic
estimate of the integral I in (B.11) shows that it is nonzero
only when relativistic nonlinearity is taken into account
(see Appendix B). Namely, for finite values of A at c � 1
and B � 0, integral (B.11) strictly vanishes:

Ijc�1 � I 0 � 0 : �3:31�

Moreover, it follows from (3.21), (3.23) and (3.29), (3.30) that
A � AL and R � RL, i.e., there is no nonlinear contribution
to the reflection coefficient in the nonrelativistic limit, even
when nonrelativistic nonlinearity is taken into account, and
linear relations (3.12) and (3.13) remain valid. Thus, the
difference between R and RL arises only in the relativistic
theory of nonlinear plasma resonance.

Figure 14c shows the curves of the nonlinear RA
coefficient G calculated in the limit r5 1 using formula
(3.30) for various radiation flux densities of an Nd laser at a
fixed plasma temperature and a fixed inhomogeneity scale. As
in the case r > 1, the RA coefficient decreases as the laser
radiation intensity increases. Figure 14d corresponds to a
fixed laser intensity and demonstrates an increase in the
absorption suppression effect under the transition to a
weakly inhomogeneous plasma, which is consistent with the
tendency for the resonant amplitude of the plasma field to
saturate.

We show that an analysis of the RA coefficient G�r� for
r > 1 and r5 1 not only leads to a general conclusion about
the suppression of absorption but also allows formulating a
hypothesis on a change in the optimal angle of incidence of
laser radiation on the plasma, i.e., on the shift of the
maximum of the G�r� curve relative to the maximum
predicted in the linear theory. Indeed, comparing the G�r�
curves for r > 1 and r5 1 (see Fig. 14) at a fixed intensity I0,
we see an asymmetry of suppression to the left and to the right
of themaximumofG�r�. Namely, in the region of large angles
of incidence (r > 1), absorption is suppressed more signifi-
cantly than at small angles. This asymmetry may mean that
an increase in the intensity of the pump field leads not only to
a decrease in the absorption coefficient in a wide range of r
but also to a shift of the absorption maximum to the region of

smaller r or, equivalently, to the range of smaller incidence
angles y of laser radiation onto the plasma. Although, as
already mentioned, expressions (3.30) and (3.29) are asymp-
totic in nature and reflect the behavior of the absorption
coefficient in two limit cases, and hence, strictly speaking, do
not allow the coefficient to be calculated in the entire range of
r, we can nevertheless use general similarity considerations to
interpolate the function G�r� in the intermediate region
r � 0:5, combining the asymptotics for r > 1 and r5 1 at a
fixed laser radiation intensity (Fig. 15a). As an example, we
take I0 � 1016, 5� 1016, and 1017 W cmÿ2 and connect the
asymptotic forms corresponding to these intensities (dashed
colored curves in Fig. 15a). In these cases, the absorption
maximum decreases to the respective values Gm � 0:47,
Gm � 0:43, and Gm � 0:4, which is in qualitative agreement
with the results in [39, 40], and the optimum value ropt
corresponding to such maxima shifts from the point
ropt � 0:5 towards lower r and reaches ropt � 0:3 at
I0 � 1017 W cmÿ2.

Let us emphasize the following circumstance. We com-
pare the absorption coefficients at different laser intensities I0
keeping the scale of plasma density inhomogeneity L fixed,
although it is known that L can change as a result of plasma
expansion and the action of the ponderomotive force of the
laser field [6, 64, 118±121, 123±129], which we do not take into
account, but which ultimately influence the absorption value.
For example, according to [39, 40], when the laser radiation
intensity surpasses I0 � 3� 1017 W cmÿ2, the decrease in the
absorption coefficient is replaced by its increase due to the
nonlinear effect of steepening of the plasma density profile by
the ponderomotive effect of incident electromagnetic radia-
tion. On the other hand, we note that the jump in the density
profile in the resonance region tends to smear over time due to
the hydrodynamical spreading of plasma over times of the
order of a nanosecond and fractions of a nanosecond (see,
e.g., [130]). We believe that the change in the density profile
can be taken into account in our theory in the first
approximation in terms of the parameter L by assuming that
the condition of weak plasma inhomogeneity is satisfied.
Although L depends on I0 in general, L and I0 are external,
formally independent control parameters in our case, and the
relation between them can be determined, e.g., by methods of
numerical modeling of plasma hydrodynamics. The theory
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Figure 15. (a) Asymptotic forms of nonlinear absorption coefficient G�r� reconstructed in intermediate range r � 0:5 for different intensities of an Nd

laser I0 � 1016, 5� 1016, and 1017 W cmÿ2 (G1, G2, and G3, respectively). Plots correspond to fixed temperature T � 2 keV and plasma inhomogeneity

scale L � 10l. Black dashed curveGL corresponds to absorption in the linear theory [6, 67]. (b) Spatial distributions of quasistatic electric field of plasma

resonance calculated at different values of flux density I0 of Nd laser radiation for plasma temperature T � 2 keV, inhomogeneity scale L � 30l, and
angle of incidence ymin � 10�. Curves 1 and 2 correspond to respective intensities I0 � 1017 W cmÿ2 and I0 � 1018 W cmÿ2. Dashed curve describes spatial

profile of the field in the nonlinear nonrelativistic theory [14] at intensity I0 � 1017 W cmÿ2.
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`demonstrates how the absorption value is influenced just by
the relativistic nonlinearity of electron motion in a resonantly
amplified plasma field for given I0, T, and L and can be
regarded as part of larger-scale computation schemes,
including the use of numerical methods to study laser±
plasma interaction. Systematic analytic consideration of the
self-consistent deformation of the density profile of an
inhomogeneous plasma under space±time modulation of the
phase of relativistic electron oscillations is a nontrivial
problem in need of a separate detailed consideration in the
further development of the theory.

3.5 Generation of an electrostatic field
near the critical density
When studying electromagnetic fields excited near the critical
density, quasistatic fields, in addition to fundamental and
higher harmonics, are also of interest. Their generation
mechanism is based on the nonlinear interaction of high-
frequency oscillations such that the frequency of the resulting
mode formed when adding them is zero. The effect of a
quasistatic field generation is trivial when considered for
weak nonlinearity, when the ratio of the amplitude of
electron oscillations in a resonantly amplified potential
electric field to the width of the plasma resonance is much
smaller than unity; such a mechanism corresponds to the
beating of twomain harmonics of the plasma field and gives a
well-known expression for the force of high-frequency
radiation pressure (the Miller force). For strong nonlinear-
ity, when that ratio is comparable to unity, the spectrum of
the nonlinear plasma field in the vicinity of the resonance is
enriched with higher harmonics of finite intensity. In this case
[14], the contribution to the generation of a quasistatic field
comes from the entire variety of interactions of harmonics of
the fundamental frequency f1� 1; 2� 2; . . . ; n� n; . . .g,
whose calculation in the presence of various types of
nonlinearity is a nontrivial problem, important in estimating
the field amplitude. In this section, we show that assessing the
amplitude of a quasistatic field in the framework of a weakly
nonlinear or strongly nonlinear nonrelativistic theory gives
an overestimated result, which is corrected when taking
relativistic nonlinearity into account [45].

A weakly nonlinear theory of generation of a quasistatic
electric field by a p-polarized electromagnetic wave in
inhomogeneous plasma, with the dissipation of radiation at
the plasma resonance taken into account, was constructed by
Bychenkov, Abdullaev, Aliev, and Frolov [17]. The authors
found a stationary spatial distribution of the quasistatic
electric field in the vicinity of the plasma resonance and
showed that it has a bipolar shape. Later, Kovalev and
Pustovalov [14] found the structure of quasistatic fields in
the regime of strong nonrelativistic nonlinearity and came to
a conclusion similar to the one in [17] regarding the bipolarity
of the spatial distribution of the electric field, indicating that
the quasistatic electric field component changes sign when
passing through the plasma resonance. The theory presented
here allows estimating not only the nonlinear absorption and
reflection coefficients at the fundamental frequency but also
the efficiency of generating higher harmonics of laser
radiation, as well as the quasistatic electric field in the vicinity
of plasma resonance. The next section is devoted to finding
plasma emission spectra and their detailed analysis. Here, we
illustrate the progress achieved in the theory of plasma
resonance using the example of a quasistatic electric field Est

localized in the critical density region. This field is the time

average of the total longitudinal electric field of the plasma
resonance with all spectral components included,

Est � 1

2p

� 2p

0

Epx�t; x� dt ; �3:32�

where Epx is determined implicitly by the functions P0�w; l�,
v0�w; l�, x0�w; l�, and t�w; l� in (2.21) in terms of the parametric
variables w and l.

Figure 15b shows the spatial distribution of the quasi-
static electric field in the vicinity of the plasma resonance
point x � 0 at fixed plasma temperature and inhomogeneity
scale for various laser energy flux densities. It can be seen that
electric field (3.32), as in the weakly nonlinear [17] and
strongly nonlinear nonrelativistic [14] theories, has a uni-
versal bipolar form and changes sign at the plasma resonance
point x � 0. The nonlinear nonrelativistic theory [14] gives
overestimated values of the field amplitude (dashed line in
Fig. 15b). Thus, for fixed values of T and L, the maximum
amplitude of the static field Est � 7 MV cmÿ1 in the non-
relativistic theory is attained already at I0 � 1017 W cmÿ2,
while, in the relativistic theory, we haveEst � 2:5MV cmÿ1 at
the same laser intensity.

We estimate the characteristic energyW � eEstD acquired
by an electron accelerated by a quasistatic electric field
over a distance of the order of the plasma resonance width.
For the parameters L � 30l, T � 2 keV, I0 � 1018 W cmÿ2,
and ymin � 10�, the energy of accelerated electrons is
W ' 30 keV. The possible consequences of such a mechan-
ism for the generation of fast electrons have yet to be
understood, although it can already be concluded that, due
to the bipolarity of the electric field, fast electrons experience
the action of a multidirectional static electric force at the
plasma resonance and therefore do not leave its narrow
spatial region. This allows us to conclude that such electrons
do not exert an additional parasitic effect of preheating the
ICF target, suppressing which is one of the most important
tasks in identifying the optimal conditions for the implemen-
tation of ICF in the direct heating scheme [18±21, 24±26, 33].

4. Generation of higher harmonics

Processes of HG in laser plasma formed when laser radiation
interacts with solid targets have been the subject of both
experimental and theoretical studies for half a century [15].
HG was first observed in 1970 in [131], where the second
harmonic of laser radiation was obtained, and was subse-
quently also demonstrated in [132, 133]. It soon became clear
that a detailed study of the characteristics of secondary
radiation could serve as a source of rich information about
the state of laser plasma. What is meant here is a plasma
diagnostics technique based on the study of the second
harmonic, which allows obtaining information about the
evolution of laser plasma parameters with high temporal
and spatial resolution. The first proposals for using measure-
ments of the intensity and spectrum of the second harmonic to
determine various laser plasma parameters in the vicinity of
the critical density were put forward by Pustovalov, Vino-
gradov, and Silin [134, 135]. Estimates of the local tempera-
ture and the characteristic density inhomogeneity scale of
laser plasma obtained later by various groups [136±139]
demonstrated the feasibility of developing methods for
diagnosing parameters of the plasma from its radiation in
the frequency range near the double frequency of the pump
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field. In addition, it was noted in [140] that, in the framework
of diagnostics with the use of the second harmonic, informa-
tion can be gleaned not only about the macroscopic
parameters of the plasma but also about the level and
spectrum of parametric turbulence developing in it.

The experiments in [131±133] were soon followed by
others to detect the third harmonic [141] and higher
harmonics up to the 11th and n � 2ÿ5 for a CO2 [54] and
neodymium laser [142], respectively. Higher-order harmonics
were registered in 1981 during experiments in [55, 143] on the
interaction of a CO2 laser at an intensity of 1014±1016 W cmÿ2

with solid-state targets. Laser frequency harmonics up to the
29th [143] and even 46th [55] were observed. Moreover, the
spectra of secondary radiation were obtained for the first
time, characterized by a slow (nonexponential) decrease in the
intensities of harmonics with increasing number, as were `pale
fencing' spectra, with the intensities of neighboring harmo-
nics equalized.

Many theoretical studies of HG in inhomogeneous
plasma rely on a mathematical model based on the plasma
resonance effect [1, 3]. By the time of the experimental
discovery of the second harmonic [131], theoretical ideas
were already developed [8] indicating a possible connection
of this effect with the excitation of strong Langmuir long-
itudinal electron oscillations in laser plasma due to a linear
conversion of laser radiation. In the range where the
frequency of plasma oscillations is close to that of
radiation incident on the plasma further interaction of
longitudinal plasma oscillations with each other or with
laser pump waves leads to the generation of secondary
radiation at twice the laser light frequency. Based on these
ideas, Erokhin, Zakharov,Moiseev, andMukhin constructed
a weakly nonlinear theory of second harmonic generation [8,
10]. By generalizing the approach proposed in [8], Silin,
Vladimirskii, and Trotsenko solved the problem of generat-
ing harmonics of arbitrary multiplicity in cold [11] and hot
[13] plasmas. They showed that strong plasma oscillations
resulting from resonance generate nonlinear electron currents
that serve as the source of secondary radiation enriched in
higher harmonics. The same mechanism was considered in
[144] in connection with the explanation of a number of
experiments [55, 143]. The assumption of weak nonlinearity
in the vicinity of the resonance allowed the authors of [8, 11,
144] to use the perturbation theory in the pump field
amplitude. This assumption allows neglecting the influence
of higher harmonics on lower ones, including the funda-
mental harmonic, whose amplitude is considered fixed. It
follows from the perturbation theory that the flux density of
secondary radiation at the frequency no0 is proportional to
the nth power of the flux density of laser radiation incident on
the plasma. This dependence leads to an exponentially fast
decrease in harmonic intensities as the number n increases.
However, as the pump field amplitude increases, the assump-
tion of weak nonlinearity is violated, and the effects caused by
strong nonlinearity must be taken into account. The presence
of strong nonlinearity qualitatively changes the process of
generating integer harmonics; the higher harmonics, which,
according to the standard (weakly nonlinear) perturbation
theory [8, 11], were exponentially small, are then significantly
amplified, which leads to a smoother decay or even equaliza-
tion of the intensities of neighboring harmonics [55].

Indications of the possibility of the existence of more
gently decaying spectra of radiation from plasma were given
by Isichenko and Yankov [145, 146] in a qualitative discus-

sion of the generation of laser radiation harmonics due to the
breaking of nonrelativistic electron flows, but without a
rigorous theoretical justification. In a series of theoretical
studies in the late 1980s [14, 147±153], an analytic theory of
the generation of higher harmonics was constructed under
conditions of strong nonrelativistic nonlinearity in the
vicinity of the critical density of an inhomogeneous plasma.
It was shown that, even at laser intensities of � 1016 W cmÿ2,
which are low by modern standards, it is possible to generate
electromagnetic radiation with a spectrum with a much
slower decay of harmonic amplitudes with an increase in
their number compared with the standard perturbation
theory [11]. This was confirmed experimentally in [55, 143].
The basic formulas for the coefficient of laser radiation
conversion into harmonics for cold and hot plasmas were
then obtained, and their temperature dependences were
analyzed [148, 150±152]. This work was continued in recent
studies [56, 57], where the issue of the influence of the
relativistic effects of the dynamics of the electron component
of a plasma near the critical density and under the condition
of effectiveRAon the generation of harmonics was discussed.
In what follows, we present the results of these latest
theoretical studies, which allow describing the spectral
composition of harmonics emitted from the plasma reso-
nance region.

4.1 Solution to the problem of generating
higher harmonics on a relativistic plasma resonance
To describe the HG process, we proceed from the previously
obtained formula (3.2). With the inequalities (3.3) for n5 2,
Eqn (3.2) takes the form

qxxRn ÿ qxen
en

qxRn �
�
no0

c

�2

�en ÿ sin2 y�Rn

� a

c

�
inkyv qxP� kyo0vqx�g0v� �
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v�g0ÿ 1��
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u�g0 ÿ 1����

n

:

�4:1�
In deriving (4.1), as in previous sections, we neglected the
dependence of the frequency on the x coordinate, oL � o0,
which is justified for weakly inhomogeneous plasma, where
the width of the plasma resonance is small compared with the
characteristic density inhomogeneity scale L. The hierarchy
of electromagnetic field components near the critical density
(2.5) allows us to keep only terms proportional to ky on the
right-hand side of (4.1). As a result, we obtain a wave
equation with a source in the standard form:

qxxRn ÿ qxen
en

qxRn �
�
no0

c

�2

�en ÿ sin2 y�Rn

� ÿ 4p
c

�
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rot Jn
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where the nonlinear current components are given by
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At electron speeds much lower than the speed of light
(g0 ! 1), expression (4.3) turns into a formula for the current
obtained in constructing the nonlinear nonrelativistic theory
[14]. As in the case n � 1, it follows from Eqn (4.2) and
relation (4.3) that calculating the nth harmonic of the
magnetic field in a vacuum requires knowing the nonlinear
current determined by the structure of the electric field and
the electron velocity in the plasma resonance region described
in (2.21).

Similarly to the case of the fundamental harmonic, we
write the solution of the inhomogeneous equation (4.2) in
terms of the fundamental system C� and Cÿ of solutions of
the homogeneous equation as

Rn�x� � a�n C�n �x� � aÿn C
ÿ
n �x� �

� x

ÿ1
dxG�x; x� fn�x� ;

G�x; x� � ÿ C�n �x�Cÿn �x� ÿC�n �x�Cÿn �x�
C�n �x�Cÿ 0n �x� ÿC� 0n �x�Cÿn �x�

;
�4:4�
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Here, a�n are constants determined by the boundary condi-
tions for Eqn (4.2) when applied to solution (4.4). The
boundary conditions in turn follow from the form of the
magnetic field Rn�x� as x! �1,

Rn � eCÿn exp

�
ÿi o0

c
x cos y

�
; x! ÿ1 ;

�4:5�
Rn � 0 ; x! �1 ;

where the complex amplitude eCÿn corresponds to the wave
reflected from the plasma layer.

We find the conversion coefficient to harmonics at the
angles y that are not too small, such that r > 1. The solution
of a homogeneous linear equation in various regions relative
to the turning point xn0 for the harmonic with a frequency no0

has the form (with s1 and s2 being some constants)
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It follows that a uniformly applicable representation for the
functionsC� andCÿ in the entire range of the x coordinate,

except a small neighborhood of the higher-order resonance
(the region where e�no0; x� � 0), is given by the functions
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The turning point xn0 of the harmonic with the frequency no0,
determined by the condition e�no0; xn0� � sin2 y, in the
considered case of not too large angles y such that
sin2 y < 3=4, lies to the right of the plasma resonance point
for all higher harmonics, i.e., xn0 > 0.

Following the general scheme outlined for n � 1 in
Appendix B (see the details of calculations for n5 2 in [44,
56, 57]), we obtain the following expression for the amplitude
of the magnetic field harmonic Bz with the number n5 2 in a
vacuum:
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The presence of two terms in square brackets in the formula
for Cÿn corresponds to two different physical mechanisms of
HG. The term proportional to I �n describes the harmonic
wave directly emitted into the vacuum from the plasma
resonance region, and the term proportional to I ÿn describes
the harmonic wave emitted from the plasma resonance region
deep into the plasma and escaping to the vacuum after
reflection from a region of denser plasma. Integrals (4.8) in
(4.7) are further calculated using the computer algebra system
Wolfram Mathematica [122].
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4.2 Spectral composition of radiation and comparison
with the strongly nonlinear nonrelativistic theory
To study the spectral composition of radiation, we take the
magnetic field of the first harmonic as x! ÿ1 to be of the
form

B1 � B0 cos �kxx� kyyÿ o0t� j0�
� Bs cos

ÿÿ�kxxÿ kyy� ÿ o0t� js

�
; �4:9�

where the subscripts 0 and s denote the respective incident and
reflected waves. From (4.7), the intensity In of the harmonic
emitted from the plasma and the reflection coefficient Rn at
the frequency no0 can then be written in the form

Rn �
����CÿnC�1

����2 � k0LGLjOnj2
4p3A2
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In � RnI0 ; C�1 �
B0

2
;

where I0 is the flux density of radiation incident on the plasma
and the I �n are defined in (4.8). To evaluate the results of the
theory at its applicability limit, we consider the characteristics

of radiation emitted by plasma at the angle ymin for an Nd
laser with the wavelength l � 1:064 mm. Figure 16a shows the
dependences of the intensities In of the reflectedmagnetic field
harmonics on the number n at fixed values of the inhomo-
geneity scale L and plasma temperature T for different laser
radiation flux densities I0 corresponding to points 1, 2, and 3
on the parametric plane fT; I0g (Fig. 16b). It follows from a
comparison of the In�n� spectra that, as the pump field
amplitude increases, the slope of the spectral curve changes:
it becomes more gentle, and this is most pronounced near the
breaking point of resonant plasma oscillations, where the
emission spectra are formed such that In decreases with
increasing n in accordance with a power law faster than 1=n.
In Fig. 17a, we present spectral curves obtained with and
without taking relativistic effects into account [14] for fixed
parameters I0, y, T, and L; the figure shows that, due to
saturation of the plasma resonance field amplitude and the
shift of the breaking threshold towards higher laser inten-
sities, the radiation spectrum in the relativistic theory
demonstrates a faster decay of harmonics with increasing n.
In Fig. 17b, the point corresponding to the set of
parameters in Fig. 17a is marked; clearly, it is close to
the breaking threshold in the nonrelativistic theory [14]
and is far from the breaking threshold in the relativistic
theory presented here.
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Figure 16. (a) Spectra of radiation emitted from plasma, calculated for flux densities of Nd laser light I0 � 1016 W cmÿ2 (curve 1), 1017 W cmÿ2 (curve 2),
and 1018 W cmÿ2 (curve 3) at fixed plasma temperature T � 3 keV, inhomogeneity scale L � 10l, and angle of incidence of laser radiation ymin � 14:5�.
(b) Applicability limits of hydrodynamical model on the parameter plane fT; I0g for inhomogeneity scale L � 10l. Solid red curve denotes breaking

threshold in relativistic hydrodynamics, with nonlinear amplitude renormalization at resonance. Blue dashed line corresponds to relativistic breaking

threshold, but without taking nonlinear renormalization into account. Green dashed curve corresponds to breaking threshold in the nonrelativistic

theory [14]. Points 1, 2, and 3 on the parameter plane fT; I0g correspond to curves 1, 2, and 3 in Fig. a.
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Figure 17. (a) Magnetic field spectra in relativistic (curve 1) and nonrelativistic [14] (curve 2) theories at I0 � 1017 W cmÿ2 (Nd laser), T � 2 keV, and

y � ymin forL � 30l. (b) Applicability limits of the hydrodynamicmodel on the parameter plane fT; I0g for inhomogeneity scaleL � 30l. Solid red curve
denotes breaking threshold in relativistic hydrodynamics, with nonlinear amplitude renormalization at resonance. Blue dashed line corresponds to

relativistic breaking threshold, but without taking nonlinear renormalization into account. Green dashed curve corresponds to breaking threshold in the

nonrelativistic theory [14]. Red dot corresponds to the set of parameters I0 � 1017 W cmÿ2 (Nd laser), T � 2 keV, y � ymin, and L � 30l.
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We emphasize that the significant differences between the
spectral curves in the relativistic and nonrelativistic [14]
theories are a direct consequence of the phase modulation of
relativistic plasma oscillations in the vicinity of the critical
plasma density, which was studied in detail in the previous
sections. Taking the relativistic nature of plasma oscillations
into account leads to the occurrence in formulas (4.7) and
(4.8) of both the Lorentz factor g0 and the parametric
dependence of t on x and P, which is responsible for the
phase modulation of oscillations. To illustrate the decisive
influence of phase modulation on the rearrangement of
spectra in moving to the relativistic theory, we compare the
spectra of radiation from plasma in the nonrelativistic theory
[14] with the spectra calculated using formulas (4.7) and (4.8),
but without taking phase modulation into account, i.e., when
t�w; l� � w and the I �n become

I �n �
�1
ÿ1

dl

� 2p

0

dw exp

 
inw� inBx0

�����������������������
cos2 yÿ 1

n 2

r !

�
(�
�g0 ÿ 1�qlx0 ÿ ql

�
P0 ÿ i

n
g0v1

��
v1 sin y

�
�����������������������
cos2 yÿ 1

n 2

r

�
�
�g0 ÿ 1�u0qlx0 ÿ

�
u0qlP0 ÿ i

n
v1 ql�g0u0�

��)
:

The comparison (see Fig. 18) shows the absence of significant
differences in the intensities of harmonics in the case of less
extended (L � 30l) and more extended (L � 100l) gradients
of plasma inhomogeneity (see also Table 1). Thus, the change
in the structure of the spectrum in moving to the relativistic
theory is mainly determined by the phase modulation of
resonantly amplified plasma oscillations.

The change in the In�n� dependence with a decrease in the
characteristic plasma density inhomogeneity scale L is shown
in Fig. 19. For relatively largeL (Fig. 19a), with an increase in
the inhomogeneity gradient, a transition to a smoother
dependence of In on n is observed, but a further increase in
the inhomogeneity gradient (Fig. 19b) leads to a decrease in
the efficiency of HG and gives rise to spectra with an
exponential decay law, because the condition k0L4 1
necessary for the plasma resonance mechanism [3] is satisfied
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Figure 18.Magnetic field spectra obtained in the nonrelativistic theory [14] (curve 1) and in the relativistic theory, but without taking phase modulation
into account (curve 2) at I0 � 1:3� 1017 W cmÿ2 (Nd laser), T � 2 keV, and y � ymin for (a) L � 100l and (b) L � 30l.

Table 1.Ratios of intensities of harmonics with numbers n � 2, 5, 7, 9, 11, 13, 15, calculated without taking phase modulation into account (~In) and in the
nonlinear nonrelativistic theory (I NR

n � [14] at I0 � 1017 W cmÿ2 (Nd laser) and T � 2 keV.

L ~I2=I
NR
2

~I5=I
NR
5

~I7=I
NR
7

~I9=I
NR
9

~I11=I
NR
11

~I13=I
NR
13

~I15=I
NR
15

30l

100l

2.2

1.7

1.4

1.0

1.5

1.0

1.6

1.0

1.7

1.0

1.8

0.9

1.8

0.9
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Figure 19. Spectral distributions of the magnetic field in a vacuum at a fixed Nd laser radiation field intensity I0 � 1017 W cmÿ2, angle of incidence

y � ymin, and plasma temperature T � 2 keV for different values of the inhomogeneity scale (a) L � 50l, L � 30l, and L � 10l and (b) L � 2l and

L � 10l.
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less and less accurately. This picture differs from the results in
[16, 154, 155], where the relative inhomogeneity scales L=l in
the range of 0.1±1.0 were considered in studying the efficiency
of laser radiation absorption and second harmonic genera-
tion. In particular, the value L=l � 0:23 was indicated in [16]
as the optimal one for the second harmonic generation by the
plasma resonance mechanism. Our theory shows that such
inhomogeneity scales are associated with manifestations of
the plasma resonance mechanism, although the model used is
applicable only for extended gradients L=l4 1=2p. For-
mally, we are prevented from making a comparison with
[16, 154, 155] forL=l � 0:23 by the applicability conditions of
our theory. However, it can be argued that the plasma
resonance effect as a mechanism for generating harmonics
stops working effectively for such sharp plasma density
gradients L � l.

The results of our theory are in good agreement with the
slowly decreasing harmonic spectra of aCO2 laser observed in
experiments more than forty years ago [54, 55] and unex-
plained until recently. Indeed, at a CO2 laser intensity
I0 ' 1015 W cmÿ2 and electron temperature T ' 1 keV,
nonlinear effects in the vicinity of the critical density are so
strong that they can lead to the breaking of plasma
oscillations. Near this intensity, the theory predicts harmonic
spectra with a weak dependence on n. For example, for the
incident radiation intensities I0 ' 1015 W cmÿ2 at L � 10l
and T ' 1 keV, we obtain I2=I3 � 2, I3=I4 � 1:7, and
I5=I6 � 1:4, which corresponds to the experimental results
[55]. Where I0 ' 1014ÿ1015 W cmÿ2, the theory gives
I2=I3 � 9, I3=I4 � 6:5, and I5=I6 � 5, which is in good
agreement with [54], where the decrease in the energy of
harmonics with increasing n was estimated as In=In�1 � 6.

Because experimental data [54, 55] were obtained for
sufficiently long laser pulses, we discuss the role of ion
motion and give estimates that support our proposed
mechanism of the formation of secondary radiation spectra.
Along with the fast motion of electrons, which makes a
leading contribution to the structure of the spectra, there is a
slow hydrodynamic motion of ions, typically with velocities
of the order of the speed of ion sound vs � 107 cm sÿ1. This
manifests itself in the form of motion of the critical density
surface itself, as well as in the form of plasma flow through the
critical density region [12]. The motion of the critical surface
has the effect that the spectral peak of a harmonic can be
Doppler-shifted either to the blue or to the red spectral range.
The flow of plasma, given the finite time of recording its
spectrum, leads to Doppler broadening of the harmonic line,
because the flow velocity changes with time. Due to the
smallness of the characteristic velocity of ions compared
with electron velocities (thermal and oscillatory), taking the
motion of ions into account does not lead to significant
changes in the global line structure of the harmonic
spectrum. Small shifts and broadenings of spectral lines can
be neglected, because their characteristic scale is insignificant
compared with the separation between harmonics, i.e., in the
case of the inequality o0 4 vs=d, which is easy to satisfy
because it becomes approximately 1015 sÿ1 4 1011 sÿ1.

4.3 Relation to the perturbation theory
We discuss the relation between the theory constructed here
and the weakly nonlinear theory of HG. The authors of [10]
noted the weak dependence of the efficiency of the second
harmonic generation on the plasma resonance width
(effective collision rate) when nonlinear effects are small. We

show that this is indeed the case. In Table 2, we compare the
intensities of the second harmonic in the perturbation theory
[8, 11] with the intensities obtained in the relativistic theory. It
can be seen that, at moderate laser radiation flux densities I0,
the nonlinearity has little effect on the second harmonic
generation, but as I0 increases, i.e., as we approach the
breaking threshold, the difference becomes noticeable: the
perturbation theory significantly overestimates the intensity
of the second harmonic. On the other hand, it was shown in
[10] that the applicability limit of the weakly nonlinear theory
lies significantly below the breaking threshold. The authors of
[10] formulated a criterion for the smallness of nonlinearity,
which formally defines the applicability limits of the perturba-
tion theory for estimating the efficiency of second harmonic
generation:���� eH0 sin y

2mco0
~b

���� < � ~b
r0

�2=3

: �4:11�

Here, H0 is the amplitude of the magnetic field at the plasma
resonance point, ~b � ����������������

Te=mc 2
p

, and r0 � o0L=c. In terms of
the laser radiation intensity I0 for the set of parameters given
in Table 2, this condition is equivalent to the inequality
I0 < 5� 1015 W cmÿ2. However, as Table 2 shows, at
I0 � 1016 W cmÿ2, the perturbation theory still gives the
second harmonic intensities I PT

2 coincident with those of the
relativistic theory. Thus, the weakly nonlinear theory of
second harmonic generation gives a good estimate of the
generation efficiency even beyond the formal applicability
limits of the theory.

We compare the generation efficiencies of higher harmon-
ics at different laser radiation flux densities (Fig. 20). At low
and moderate laser field intensities I0, the results of the
weakly nonlinear theory [11] coincide with the results of the
relativistic theory up to the harmonic numbers n � 10
(Fig. 20a). Then, with an increase in the laser pump field
intensity, the Vladimirskii±Silin theory starts significantly
overestimating the harmonic amplitudes (Fig. 20b). Finally,
in the range of parameters of the laser±plasma system where
relativistic effects are significant in the vicinity of the plasma
resonance, the perturbative series diverges (Fig. 20c), and the
perturbation theory has no chance of yielding a satisfactory
estimate of the harmonic intensities In.

To conclude this section, we note that slowly decaying
spectra of radiation from plasma have also been obtained in
the cases of shorter, more powerful (relativistic) laser pulses
of femtosecond duration and sharper gradients of plasma
inhomogeneity; there, other harmonic generation mechan-
isms, different from plasma resonance, are realized [15, 102].
In the limit case of a semiconfined plasma, the HG process
can be represented as the reflection of laser radiation from an
oscillating electron (plasma) mirror [156±158]. The oscillating
mirror model leads to power-law harmonic spectra of the
form / oÿ8=3 in the strongly relativistic limit [159], when the
speed of electrons oscillating in the laser field is close to the

Table 2. Second harmonic intensities calculated by the perturbation
theory, I PT

2 , and in the relativistic theory, I2, for various êux densities I0
of Nd laser light at L � 10l, T � 3 keV, and y � ymin.

I0, W cmÿ2 I PT
2 , W cmÿ2 I2, W cmÿ2

1016

1017

1018

1014

4� 1016

1018

1014

4� 1015

3� 1016
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speed of light. This HG model [156, 159] was confirmed by
numerical simulation using the PIC method. Smooth second-
ary radiation spectra under conditions of a sharp (stepped)
plasma±vacuum interface, which demonstrate a power-law
decay of the intensity of the harmonics, were also obtained in
[160±163] using numerical modeling, but still have not
received a detailed theoretical justification. The methods
used in our research allow us to look forward to the
construction of a reasonable physical theory in this field,
because these methods can be extended in the future to the
above regimes of HG at high laser intensities, when the
plasma dynamics should be described in terms of kinetic
equations.

5. Conclusions

It is hardly disputable that the presence of a consistent
analytic theory of any phenomenon, even within certain
limitations, is strongly indicative of the level of understand-
ing of its physical foundations and the possibilities of its
description in a wide range of control parameters. Of special
value are theories applicable in the case of strong nonlinear-
ity, where perturbative methods cannot be used and new
approaches are often needed. Since the late 1980s, the search
for such approaches has led to the introduction of unique
mathematical tools of RG symmetries into the physics of
strong laser±plasma interaction [68]. This has allowed
describing plasma resonance and the generation of higher
harmonics in the case of strong nonrelativistic electron
nonlinearity in the region of the critical density of inhomoge-
neous plasma [14, 147±153], new self-focusing regimes of light
[164±168], nonlocal heat transfer [169], acceleration of ions at
the expansion of plasma into a vacuum [170±175], and
ponderomotive cumulation of ions in a laser±plasma channel

[176]. This review provides another illustration of the
successful use of RG symmetries in the physics of laser±
plasma interaction.

Thirty years after the appearance of [14], it has become
possible to develop the RG ideas contained in that paper and
construct a theory of nonlinear relativistic plasma resonance
proceeding from the Ginzburg±Denisov electromagnetic
structure [1, 2]. As a distinctive feature of the method used
in finding solutions of nonlinear first-order partial differen-
tial equations for the electric field and the electron velocity
near the critical plasma density, a two-parameter algebra of
RG generators was used, which allowed obtaining solutions
that are valid in a wide range of parameters pertaining to
different nonlinearity types, and separating the contributions
of relativistic and nonrelativistic (convective) nonlinearities
(see Section 2.1). This possibility is one of the reasons for
using multidimensional RGs for systems with several para-
meters [177]. The separation of nonlinearities, in turn, led to a
systematic two-step transition between solutions. The first
step corresponds to the transition from a linear [2] to a
strongly nonlinear nonrelativistic solution [14] via an RG
transformation with respect to the nonrelativistic nonlinear-
ity parameter. At the second step, the transition to a nonlinear
relativistic solution is carried out by the RG transformation
with respect to the relativistic parameter. The applicability
limits of the hydrodynamic model that we use are naturally
determined by the breaking condition of resonantly amplified
plasma oscillations derived by taking both convective and
relativistic nonlinearity of electron motion into account (see
Sections 2.3 and 3.3).

Knowing the electromagnetic field in the plasma reso-
nance region has allowed constructing a theory of relativistic
nonlinearRAof electromagnetic radiation in inhomogeneous
plasma and thereby significantly pushing the envelope of a
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Figure 20. Spectra of the magnetic field in a vacuum obtained in the relativistic theory (1) and in the perturbation theory [11] (2) for various intensities of

Nd laser radiation: (a) I0 � 1016 W cmÿ2, (b) I0 � 1017 W cmÿ2, and (c) I0 � 2:5� 1017 W cmÿ2. Plots correspond to fixed valuesT � 3 keV,L � 10l, and
r � 1.
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theoretical description of RA by laser plasma in the range of
high laser intensities: the theory allows the nonlinear RA
coefficient G to be calculated in the range of laser intensities
up to I0l

2 � 1018 W cmÿ2 mm2. The coefficient G obtained in
Section 3.4 depends on four laser±plasma control parameters:
the laser intensity, the plasma inhomogeneity scale, the
plasma temperature, and the angle of incidence of laser
radiation on the plasma. We note that a number of studies
[39±41] have demonstrated the dependence of the absorption
coefficient on the laser radiation intensity when taking the
relativistic effects of electron motion into account near the
critical density of inhomogeneous plasma, although the linear
theory does not of course provide such a dependence [6]. At
the same time, the obvious successes in the description of
nonlinear RA notwithstanding, we see inconsistencies in the
currently known results obtained by different scientific
groups. For example, some authors [38] assert the univer-
sality of the optimal angle of incidence of laser radiation on
plasma and the monotonic increase in the absorption
coefficient as the laser pump field intensity increases.
Others, on the contrary, note the effect of suppression of
RA as the laser intensity increases to I0 � 3� 1017 W cmÿ2

(Nd laser) [39, 40] or indicate a shift of the maximum of the
angular function of the nonlinear absorption coefficient away
from the position of the maximum in the linear theory [41].
Moreover, no clear-cut applicability limits of the proposed
semianalytic models are established in [38, 41], but the range
of plasma inhomogeneity gradients considered is so wide that
it must, generally speaking, involve transitions between
different absorption models, depending on the characteristic
density inhomogeneity scales. The approach considered in
this review allows us to articulate the applicability limits of
the nonlinear plasma resonance model that are associated
both with the limit value of the laser radiation flux for the
hydrodynamical model and with the maximum admissible
value of the plasma density gradient.

The nonlinear effect of suppression of the plasma reso-
nance field amplitude and nonlinear `termination' of RAwith
increasing laser intensity, demonstrated in Sections 3.2 and
3.4, are qualitatively consistent with the conclusions of
studies based on numerical simulations [39, 40]. So far, only
a qualitative comparison of the theory with these simulations
has been possible, because studies on PIC modeling give the
behavior of the absorption maximum depending on the
magnitude of the laser flux at the optimal incidence angle in
accordance with the linear theory, whereas, in our theory, the
absorption value at that point can be estimated by extra-
polating the asymptotic solutions for large and small
incidence angles (see Section 3.4). However, such extrapola-
tion also agrees well with numerical simulations. For
example, in [39], at L � 4l and I0l

2 � 1017 W cmÿ2 mm2, the
amount of absorbed energy decreases from 50% to 45%,
while the theory estimate gives G � 0:4. In addition, analysis
of the asymptotic behavior of the absorption coefficient
allowed us to conclude that the effect of relativistic non-
linearity on the angular function of the RA coefficient is
asymmetric: at large incidence angles, absorption is sup-
pressed more significantly than at small ones. This asymme-
try may mean that an increase in the intensity of the pump
field leads not only to a decrease in relativistic-nonlinear RA
in a wide range of incidence angles but also to a shift of the
absorption maximum towards smaller angles.

The study of the properties of the quasistatic electric field
Est of the plasma resonance in Section 3.5 shows that the

shape of the spatial distribution of the field in the relativistic
theory remains the same as predicted by weakly nonrelativis-
tic [17] and strongly nonlinear nonrelativistic [14] theories: the
field is bipolar and changes sign at the plasma resonance
point. At the same time, the relativistic nonlinearity notice-
ably affects the amplitude of Est, lowering the maximum field
value compared with the nonrelativistic theory results [14].
For laser fluxes up to I0l

2 � 1018 W cmÿ2 mm2, the field Est

generated in the vicinity of the critical density of inhomoge-
neous plasma does not exceed a value of several MV cmÿ1,
which limits themaximum energy of electrons accelerated in it
to a level of several ten keV. Due to the bipolarity ofEst, these
electrons do not leave the spatial region of the plasma
resonance and do not contribute to the effect of target
preheating, which is parasitic for ICF experiments. We note
that a full-fledged quantitative study of the dynamical and
energy properties of hot electrons generated in the vicinity of
the critical density requires a systematic description, not only
in the framework of the acceleration mechanism by an
electrostatic field in the cold plasma model but also in the
regime of plasma wave escape taking the thermal motion of
plasma electrons into account, which is beyond the scope of
the presented studies and requires a separate analysis.

The theory of HG of laser radiation in an inhomoge-
neous plasma constructed in Section 4, taking relativistic-
nonlinear effects into account in the vicinity of the critical
density, allowed studying the spectral characteristics of
radiation emitted from plasma resonance in the range of
laser intensities up to I0l

2 � 1018 W cmÿ2 mm2. The
formation of energy spectra of radiation from plasma
that decay in accordance with a power law near the
breaking threshold of resonantly amplified plasma oscilla-
tions has been demonstrated. The generation of higher
harmonics is most effective at gradient plasma scales of the
order of 10l and in the range of laser radiation intensities
I0l

2 � 5� 1017±1018 W cmÿ2 mm2. The results in [56, 57] are
in good agreement with the results of experiments [54, 55],
where slowly decreasing spectra of harmonics emitted by
plasmawere discovered at low intensities I0 ' 1015 W cmÿ2 of
CO2 laser radiation (see Section 4.2). We emphasize that, in
the context of ICF, of interest for the developed theory are
experiments in the shock ignition regime [33, 178], because
they involve precisely those laser radiation intensities at which
relativistic effects can appear in the vicinity of the critical
plasma density. Unfortunately, there are no dedicated
experiments on recording higher harmonics in such a high-
intensity ICF regime. Our research presented in this paper
could stimulate relevant experiments.

Significant progress in laser technologies over the past
30 years, largely due to themethod of amplifying chirped laser
pulses [179], has led to a shift in research interest towards the
processes of generation of higher harmonics in plasma by
relativistically intense, short (femtosecond) laser pulses.
When such pulses interact with solid targets, plasma with
steep density gradients is formed, where local inhomogene-
ities in the electron density distribution appear in the form of
thin electron bunches [15]. As a result, HG regimes different
from the effective plasma resonance regime are realized in the
plasma. For example, the relativistic oscillating mirror model
has become widespread [102, 156]; in it, the interaction of
electromagnetic radiation with local plasma inhomogeneities
is viewed as a reflection from a harmonically oscillating
electron mirror with a relativistic change in the frequency
and amplitude of the reflected wave. Based on this and similar
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mechanisms, the generation of secondary electromagnetic
radiation from plasma in the far ultraviolet and X-ray ranges
[15] and the generation of attosecond pulses [160, 180, 181]
are studied, and methods are proposed for increasing the
frequency and intensity of radiation [182±188]; however,
systematic analytic theories are still unavailable. In this
regard, the research presented here, from the theoretical and
methodological standpoint, suggests a possible strategy to
construct a consistent theory ofHGof a relativistically strong
laser pulse, inasmuch as the approaches of a rather universal
applicability that we use can serve as the basis for its
development.

To summarize, the theory presented in this review allows
quantitatively and qualitatively estimating the absorption
and the efficiency of HG of laser radiation at a nonlinear
plasma resonance in inhomogeneous plasma, depending on
the intensity of laser light, its angle of incidence on the
plasma, the characteristic density inhomogeneity scale, and
the plasma temperature. The possible improvement of the
theory, noted in Section 3.4, by taking the self-consistent
deformation of the plasma density profile into account or by
considering the obtained analytic expressions in conjunction
with codes describing the hydrodynamics of the plasma under
laser pumping conditions, will make it possible to refine the
conclusions presented here about the behavior of the
absorption coefficient with increasing laser energy flux. The
results of the theory can find application in problems
concerning diagnostics of laser plasma and in planning or
interpreting ICF experiments, and can also play an important
role in supporting and directing full-scale numerical modeling
of the interaction of laser pulses with solid targets.
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6. Appendices

A. Calculating the admissible group
Using the example of equations for the longitudinal compo-
nents of the electric field and the electron velocity, Eqns (2.6),
we outline the main steps in finding the admitted group of
transformations. We use the procedure of classical Lie group
analysis of differential equations [96], with a distinction that
our list of independent variables, alongwith t, x, v, andP, also
includes the parameters a and b. This trick of increasing the
number of variables to be used in group transformations is
characteristic of the RG method. The coordinates x i,
i � 1; . . . ; 4 and Z j; j � 1; 2, of operator (2.8) are found from
the system of defining equations that express the invariance of
system (2.6) under the sought group:

X
1

�
qtv� av qxvÿ gÿ30 P

����
�2:6�
� 0 ; �A:1�

X
1

�
qtP� av qxP� o2

0v
����
�2:6�
� 0 :

Here, X
1
is the érst prolongation of the inénitesimal operator

X of the sought transformation group (2.8). The symbol j �2:6�
means that the action of the prolonged operator X

1
is

considered on the manifold deéned by Eqns (2.6) and all

their differential corollaries. The operatorX
1
is related toX by

the prolongation formula

X
1
� X� z 11 qqtv � z 12 qqxv � z 21 qqtP � z 22 qqxP : �A:2�

As above, we use the notation qx i � q=qx i for the partial
derivative with respect to x i, and hence qqku denotes the
derivative with respect to the derivative qu=qxk. Extra
coordinates z j

k are expressed in terms of x i and Z j by using
the total derivative operators Dk:

z j
k � DkZ j ÿ u j

i Dkx
i ; Dk � qxk � u j

kqu j ; �A:3�
u j
i � qx iu j ; fu jg � fv;Pg ; fx ig � ft; x; a; bg :

The indices in (A.3) range the values i � 1; . . . ; 4, j � 1; 2, and
k � 1; 2, and summation over repeated indices is performed.
With (2.6), (2.8) and (A.2), (A.3), the system of defining
equations takes the form

aZ1 � avYx 1 ÿ Yx 2 � vx 3 � 0 ;

YZ1 ÿ z 3=2�PYx 1 � Z2� � 3

2
�1ÿ z�Pz 1=2

�
x 4

b
� 2

Z1

v

�
� 0 ;

Y�aZ2 � x 2o2
0 � x 3P� � 0 ; Yx 3 � 0 ; Yx 4 � 0 ; �A:4�

where

Y � qt � avqx � Pz 3=2qv ÿ o 2
0 v qP ; z � 1ÿ bv 2 : �A:5�

Skipping the details of solving Eqns (A.4), we present the
found coordinates of the operator X:

x 1 � x1�I1; I2; I3� ÿ
Z 2

o 2
0 v

� x 4

4
���
2
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o0b

�
dz

2ÿ 3=
���
z
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bI1=2ÿ 1=

���
z
p � 1

p ;

x 2 � x2�I1; I2; I3� ÿ
aZ 2

o 2
0

ÿ x 3P

o 2
0

; �A:6�

Z1 � z 3=2

v

�
Z1�I1; I2; I3� ÿ

P

o 2
0

Z 2 ÿ x 4

2b 2

�
2ÿ 3���

z
p � 1

z 3=2

��
;

Z 2 � Z 2�t; x; v;P� ; x 3; 4 � x 3; 4�a; b; I1; I2; I3� :

Here, x1; 2, x 3; 4, and Z 2 are arbitrary functions of their
arguments, and I1, I2, and I3 are invariants of the operator
Y, defined as follows:

I1 � 2

b

�
1���
z
p ÿ 1

�
� P 2

o 2
0

;

I2 � x� Pa

o 2
0

; �A:7�

I3 � tÿ 1

2
���
b
p
�

dz

z 3=2
�����������
1ÿ z
p ��������������������������������������������������

I1 ÿ �2o 2
0 =b��1=

���
z
p ÿ 1�

q :
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Operator (2.8) with the found coordinates (A.6) defines an
infinite group of continuous point transformations in the
space of six variables, t, x, v, P, a, b, which is the sought
widest group allowed by Eqns (2.6), which is needed in
constructing the RG. Specifying the coordinates x i,
i � 1; . . . ; 4, and Z j, j � 1; 2, using the restriction [68] of
group (2.8), (A.6) to a particular solution defines RG
transformations that allow using the results of linear theory
when constructing a solution of Eqns (2.6) in a wide range of
values of the nonlinearity parameters a and b. Finite
transformations with respect to the group parameters a and
b are found in the usual way, by solving the corresponding Lie
equations.

B. Magnetic field amplitude at the fundamental frequency
in a vacuum
For weak plasma inhomogeneity, k0L4 1, an approximate
solution of Eqn (3.7) can be written in terms of the Airy
functions,

C�1 �x� � E1
�
3o0

2c
Lÿ�x�

�1=6

Ai

�
ÿ
�
3o0

2c
Lÿ�x�

�2=3�
; x < x0 ;

C�1 �x� � E1
�
ÿ 3o0

2c
L��x�

�1=6

Ai

��
3o0

2c
L��x�

�2=3�
; x > x0 ;

Cÿ1 �x� � E1
�
3o0

2c
Lÿ�x�

�1=6

Bi

�
ÿ
�
3o0

2c
Lÿ�x�

�2=3�
; x < x0 ;

Cÿ1 �x� � E1
�
ÿ 3o0

2c
L��x�

�1=6

Bi

��
3o0

2c
L��x�

�2=3�
; x > x0 ;

�B:1�

where

E1 �
����
e1
p���������������������

e1 ÿ sin2 y4
p ; Lÿ�x� �

� x0

x

dt
���������������������
e1 ÿ sin2 y

q
;

L��x� �
� x

x0

dt
���������������������
sin2 yÿ e1

q
:

Here, x0 is a turning point that satisfies the condition
e1�x0� � c 2k 2

y =o
2
0. Formulas (B.1), which define the solution

of homogeneous equation (3.7) to the right and to the left of
the turning point, are inapplicable in the vicinity of the
plasma resonance x � 0, where e1 ! 0.

Because the source f1�x� is localized in the vicinity of the
plasma resonance, it follows that, when calculating the
Green's function G�x; x�, we must use the formulas for C�
and Cÿ at x � 0. The solution of a homogeneous linear
equation near the plasma resonance point x � 0 at not too
small angles y such that r > 1 is expressed in terms of the
Infeld andMacdonald functions I1 andK1, which leads to the
following formulas for the functions C�1 to the right and to
the left of x � 0:

C�1 �x� �
iDÿ x���

2
p

L

�
o0L

c

�1=2

exp

�
o0

c
L��0�

�
� I1

ÿ�iDÿ x�ky
�
; x9 0 ;

C�1 �x� �
xÿ iD���

2
p

L

�
o0L

c

�1=2

exp

�
o0

c
L��0�

�
� I1

ÿ�xÿ iD�ky
�
; x0 0 ;

Cÿ1 �x� �
���
2
p �iDÿ x�

pL

�
o0L

c

�1=2

exp

�
ÿo0

c
L��0�

�
�K1

ÿ�iDÿ x�ky
�
; x9 0 ;

Cÿ1 �x� �
���
2
p �xÿ iD�

pL

�
o0L

c

�1=2

exp

�
ÿo0

c
L��0�

�
� �K1

ÿ�xÿ iD�ky
�� ipI1

ÿ�xÿ iD�ky
��
; x0 0 :

�B:2�
In the limit of small incidence angles (r5 1), we have

C�1 �x� � qÿ1=6
�
1

2
Bi�0�q 4=3Z 2

� Bi 0�0�
�
1� r

2
q 4=3Z 2

�
ln �q 2=3Z� ÿ 1

2

�
ÿ 1

3
q 2Z 3

��
; x9 0 ;

Cÿ1 �x� � ÿqÿ1=6
�
1

2
Ai�0�q 4=3Z 2

� Bi 0�0�
�
1� r

2
q 4=3Z 2

�
ln �q 2=3Z� ÿ 1

2

�
ÿ 1

3
q 2Z 3

��
; x9 0 ;

C�1 �x� � q 1=6Z1=2
n
p2r�Bi 0�0��2Ai

�
q 2=3�sin2 yÿ Z�� �B:3�

� i
�
1ÿ ip2rAi 0�0�Bi 0�0��Bi�q 2=3�sin2 yÿ Z��o; x0 0 ;

Cÿ1 �x� � q 1=6Z1=2
n
ÿp2rÿAi 0�0��2 Bi�q 2=3�sin2 yÿ Z��

� i
�
1� ip2rAi 0�0�Bi 0�0��Ai

�
q 2=3�sin2 yÿ Z��o; x0 0 :

Here, the prime means taking the first derivative and the
following notation is used: q � o0L=c, Z � �iDÿ x�=L.
Simple calculations give

C�1 �x�Cÿ 01 �x� ÿC� 01 �x�Cÿ1 �x�
���
x'0

�
ÿo0

pc
iDÿ x

L
; r > 1 ;

o0

pc
iDÿ x

L
; r5 1 :

8>><>>: �B:4�

Substituting (B.4) in (3.6), we obtain

R1�x� � a�1 C�1 �x� � aÿ1 C
ÿ
1 �x�

� pcL
o0

� x

ÿ1
dx

f1�x�
iDÿ x

�
C�1 �x�Cÿ1 �x� ÿC�1 �x�Cÿ1 �x�

�
;

�B:5�

where the � sign corresponds to the case r > 1, and the ÿ
sign, to r5 1. Using the condition that the magnetic field
R1�x� vanishes as x!1, the exponential decay of the
functions Ai�x� and K1�x�, and the exponential growth of
Bi�x�, we find the relation between the constants a�1 and aÿ1
for r > 1 in the form

aÿ1 �
i

2
a�1 exp

�
2o0

c
L��0�

�
ÿ i

2

�
2cL

o0

�1=2

exp

�
o0

c
L��0�

�
�
�1
ÿ1

dx f1�x�K1

��xÿ iD�ky
�
; �B:6�
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and for r5 1, in the form

a�1 �
Dÿ ip2r

ÿ
Ai 0�0��2aÿ1

1ÿ ip2rAi 0�0�Bi 0�0� ; D �
pcL
o0

�1
ÿ1

f1�x�
iDÿ x

M�x� dx ;

M�x� � �1ÿ ip2rAi 0�0�Bi 0�0��Cÿ1 �x�ÿ ip2r
ÿ
Ai 0�0��2C�1 �x� :

�B:7�

In the region where the plasma density vanishes, i.e., at
x! ÿ1, the magnetic field is represented as a linear
combination of the incident and reflected plane waves with
the coefficients eC�1 and eCÿ1 , Eqn (3.8). These coefficients can
be expressed in terms of a�1 and aÿ1 if we use formulas (B.2) in
(B.5) and take the limit x! ÿ1 using the asymptotic
expressions for the Airy functions. As a result, we have

eC�1 � �ia�1 � aÿ1 �
exp �ÿiZ�
2
����������������
pj cos yjp ;

eCÿ1 � �aÿ1 ÿ ia�1 �
exp �iZ�

2
����������������
pj cos yjp ; �B:8�

Z � p
4
� o0

c
L��ÿ1� :

To obtain the relation of the reflected amplitude eCÿ1 to the
incident one eC�1 , we eliminate the coefficients a�1 and aÿ1 from
(B.8) using (B.6) and (B.7); because the source is localized in
the region �xÿ iD�ky 5 1, we substitute the functions K1�x�
andM�x� in the integrand at small values of the argument.
This gives

eCÿ1 � ÿi exp �2i o0

c
L��ÿ1�

�
� 1ÿ �1=2� exp ��2o0=c�L��0�

�
1� �1=2� exp ��2o0=c�L��0�

� eC�1
ÿ i exp

�L��0� � iZ�
1� �1=2� exp ��2o0=c�L��0�

�
�
�

cL

2po0j cos yjk 2
y

�2 �1
ÿ1

dx
f1�x�
xÿ iD

; r > 1 ;

�B:9�
eCÿ1 � 1ÿ p2rAi 0�0��Ai 0�0� � i Bi 0�0��

1� p2rAi 0�0��Ai 0�0� ÿ i Bi 0�0�� exp �2iZ� eC�1
ÿ i exp �iZ�Dÿ

pj cos yj�1=2ÿ1� p2rAi 0�0��Ai 0�0� ÿ i Bi 0�0��� ; r5 1 :

Next, because P�x; t�, Q�x; t�, and the velocities v�x; t� and
u�x; t� vanish as x!1, we simplify the integral of the source
f1�x� in (B.9) by integrating by parts, thus eliminating the
functions of the transverse components of the electric field u
and the electron velocity Q from the integrand,�1
ÿ1

dx
f1�x�
xÿ iD

� iDo3
0ky

2pca
exp

�ÿip� i argB1�0�
�I ; �B:10�

where

I �
�1
ÿ1

dl

� 2p

0

dw
v1 exp

�
it�w; l��

x0 ÿ i

�
qwt ql�P0 ÿ ig0v1�

ÿ qlt qw�P0 ÿ ig0v1� ÿ �qwt qlx0 ÿ qlt qwx0��g0 ÿ 1�� ;

P0� ÿ A

1� l 2
�l cos w� sin w� ; v0� ÿ A

1� l 2
�l sin wÿ cos w� ;

g0� 1� B 2v 20
2

; x0� lÿ P0 ; v1 � v0
ÿ
1� �1=4�B 2v 2

0

�1=2
1� �1=2�B 2v 20

;

t�w; l� � wÿ
�
zE�j; k� ÿ 2

z
F�j; k� ÿ j

�
;

�B:11�

z �
����������������������������������
4� B 2�v 20 � P 2

0 �
q

;

j � arcsin
P0�����������������

v 20 � P 2
0

q ; k �
�����������������������������������

B 2�v 20 � P 2
0 �

4� B 2�v 20 � P 2
0 �

s
:

Using (B.10) and moving from the amplitudes characterizing
the normalized functionsR to the amplitudes that correspond
to the true magnetic field Bz, we find expressions for the
amplitudes of the first harmonic of the reflected magnetic
field in the vacuum, Eqns (3.9) and (3.11).

C. Estimating integral I analytically
We find approximately the integral in (B.11) for the values of
the dimensionless amplitude A such that A2 5 1. In the
relativistic regime, the parameter B responsible for the
relativistic nonlinearity takes the values B ' 1 at tempera-
tures T ' 1 keV and the dimensionless amplitude A ' 0:5,
and we can therefore expand the integrands in (B.11) in a
series in the parameter �AB�2. The difference between t and w
can be disregarded. Hence,

I �
�1
ÿ1

dl

� 2p

0

dw
v1 exp �iw�
x0 ÿ i

�
ql�P0 ÿ ig0v0� ÿ qlx0�g0 ÿ 1�� :

�C:1�

Expressing the speed v1 in terms of v0, and x0 in terms of P0,
and expanding the function v1 in a series in the parameter
�AB�2 through the first order, we obtain

I �
�1
ÿ1

dl

� 2p

0

dw
v0 exp �iw�
x0 ÿ i

�
�
ql�P0 ÿ iv0� ÿ B 2v 20

2

�
1ÿ 1

4
qlP0

��
� I 0 � I1 � I 2 :

�C:2�

Let us discuss the first term

I 0 �
�1
ÿ1

dl

� 2p

0

dw
v0 exp �iw�
x0 ÿ i

ql�P0 ÿ iv0� ; �C:3�

which is independent of B and corresponds to taking the
nonrelativistic nonlinearity into account, i.e., I0 � Ijc�1.
Noting that the integrand has the singularity �x0 ÿ i�ÿ1, we
calculate I0 using the theory of residues, replacing integration
over wwith integration over a unit-radius circle. Passing to the
variable z � exp �iw� gives

v0 � A�1ÿ az 2�
2z�1� il� ; P0 � ÿA�1� az 2�

2z�lÿ i� ;

�C:4�
x0 ÿ i � A�zÿ z1��zÿ z2�

2z�l� i� ;
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where

z1; 2 � ÿ 1� l 2

A

 
1�

�����������������������������
1ÿ A2

a�1� l 2�2
s !

; a � 1

z1z2
� lÿ i

l� i
;

jz1j > 1 ; jz2j < 1 :
�C:5�

The integral of the time w then reduces to the integral along
the circle jzj � 1, which is given by the residues at z � z2 and
z � 0 and turns out to vanish:�
jzj�1

dz
1ÿ az 2

z�zÿ z1��zÿ z2� � 2pi
X
z�z2 ; 0

res
1ÿ az 2

z�zÿ z1��zÿ z2� � 0 :

�C:6�
Thus, the nonrelativistic term I0 does not contribute to I .
The term I 1, after the change of the variable z � exp �iw�,
becomes

I 1 � ÿB 2

2

�1
ÿ1

dl

� 2p

0

dw
v 30 exp �iw�
x0 ÿ i

� ÿB 2A2

8i

�1
ÿ1
dl

l� i

�1� il�3
�
jzj�1

dz
1ÿ 3az 2� 3a 2z 4ÿ a 3z 6

z 2�zÿ z1��zÿ z2� :

�C:7�

The integral along the circle is given by the sum of residues of
the integrand f �z� at the points z � z2 and z � 0:�

jzj�1
dz f �z� � 2pi

X
z�z2 ; 0

res
1ÿ 3az 2 � 3a 2z 4 ÿ a 3z 6

z 2�zÿ z1��zÿ z2�

� 2pi
3z1 ÿ z2

z 31 z2
� 6ip

z 21 z2
: �C:8�

The last approximate equality is valid because jz1j4 jz2j.
Switching in Eqn (B.5) for z1; 2 to the limit A2 5 1 and
calculating the integral over space again using the theory of
residues, we obtain

z2 � ÿ A

2a�1� l 2� ; �C:9�
I 1 � 3ipA3B 2

8

�1
ÿ1

dl
l 2 � 2ilÿ 1

�1� l 2�3 � ÿ
3ip2

32
A3B 2 :

The I 2 contribution can be found similarly and is given by

I 2 � B 2

8

�1
ÿ1

dl

� 2p

0

dw
exp �iw�v 3

0 qlP0

x0 ÿ i
� ÿ 15ip2B 2A5

4096
:

�C:10�

Because I2 5 I 1, we can write the final approximate
value of the integral I :

I � ÿ 3ip2

32
A3B 2 : �C:11�
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